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Abstract—Blockchain is a technology that is in use increasingly.
Although owing its common use to the cryptocurrencies there
is more to the blockchain technology than just the monetary
use. One of these uses is by smaller groups of participants
under the control of a central authority, for instance at a
company. Such private blockchains use permissioned blockchain
consensus algorithms as the participants need the permission
of the authority to be able to join the system. This paper will
give an overview of the blockchain technology, investigate permis-
sioned and permissionless blockchain, and focus on permissioned
blockchains to analyze it in terms of, e.g. trust models between
the nodes, incentives, number of nodes & parties involved, and
scalability regarding the number of transactions.
Index Terms—Blockchain, Byzantine Fault Tolerance, Consensus
Algorithms, Cryptocurrency, Permissioned

I. INTRODUCTION

Blockchain is a technology that is being used in increasingly
more platforms [1]. The idea of blockchain was first
introduced by Haber and Stornetta in 1990 [2], the first
conceptualization of it did not happen until 2008 when
Nakamoto applied blockchain as the underlying technology of
Bitcoin [3]. Bitcoin made it possible to make safe monetary
transactions without the need for a central authority such as a
bank, which remarked the strength of blockchain technology.
In the following years, blockchain technology has been used
in more fields from payment processing to online voting.

The main research question of this paper is: How the con-
sensus algorithms that are used in permissioned blockchains
compare against each other. The subquestions investigated
to answer this question are: How do consensus algorithms
compare against each other in the means of incentives, number
of nodes & parties involved, scalability regarding the number
of transactions, and trust models between the nodes. The

process of answering the research question consists of first
giving an overview of the blockchain. Then the consensus
algorithms used in blockchain technologies will be discussed
followed by the trust models between nodes, the incentive
mechanisms, and scalability analysis. Lastly, the comparison
of permissioned consensus algorithms will be discussed and a
conclusion will be drawn to the paper.

II. AN OVERVIEW OF BLOCKCHAIN

Blockchain [4] is a sequence of blocks, where each block
keeps a list of transactions. Each block consists of a header
and a body. The header contains the following information
about the block which can be seen in Figure 1:

• Block version: indicates the set of block validation rules
to follow.

• Merkle tree root hash: the hash value of the Merkle tree
root, which is recursively derived from the hash value of
the transactions in the block, as can be seen in Figure 1.

• Timestamp: the time passed in seconds from January 1,
1970 until the creation of the block (universal time).

• nBits: the target threshold of a valid hash. The gener-
ated hash needs nBits or a lower amount of 0’s at the
beginning of the generated hash.

• Nonce: a 4-byte field, which usually starts with 0 and
increases for every hash calculation.

• Previous block hash: a 256-bit hash value that points to
the previous block.

The hash of the previous block is contained in the block
header, a block has only one previous block. The first block
of a blockchain is called the genesis block. The genesis block
has no previous block.
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Fig. 1. An example of a block structure in a blockchain

The body consists of a transaction counter and a list of trans-
actions. The maximum number of transactions that a block can
contain depends on the maximum block size and the size of
the transactions that is set for the specific implementation of
blockchain. Bitcoin, for example, has a maximum block size
of 1 MB and a block is mined every 10 minutes on average.
This results in a maximum processing time of 7 transactions
per second. One solution to increase the transaction throughput
is to make use of larger blocks. This, however, means that if
all blocks are filled the blockchain will grow twice as fast as
before. This can make it significantly more costly to run a full
bitcoin miner node in the future. Doubling the block size can
thus result in a higher barrier of entry for node administrators
and lower the number of nodes ran on the network. This could
cause centralisation which is undesirable as it is contradictory
to the decentralized nature of the system.

A. Permissionless Blockchain

Permissionless blockchains [5] are open for any entity to
participate in by running a local instance of the protocol
using their digital signature (public key). There is no need
for participants to publicize their real identities. The first
permissionless blockchain was Bitcoin [3].

There are some advantages to the fully replicated immutable
data store of the permissionless blockchains and their open
nature, which are [5]:

1) No need to have full trust in any single entity in the
network or a third party.

2) Each entity in the network is identified by its digital
signature. There is no need for real identities. This
makes the permissionless blockchains pseudonymous.

3) Blockchains are fully replicated immutable data stores
that aim to ensure integrity and non-repudiation.

Permissionless blockchains do, however, suffer from several
drawbacks due to their fully replicated and open nature [5]:

1) They have low performance in terms of the ability to
process a high throughput of transaction requests. For
example, Bitcoin is currently able to process only about
7 transactions per second (TPS).

2) Data stored in permissionless blockchains is publicly
accessible as it is fully replicated among all peers.
Without implementing additional measures on top of the
original protocol, permissionless blockchains suffer from
confidentiality issues.

3) Due to forking, permissionless blockchains with the
consensus protocols Proof of Work, Proof of Stake and
Proof of Authority never reach consensus finality, that
is, they have forks resulting in more waiting time for
a block to be deemed valid as they go by one of the
chains of the fork [6]. This chain could be chosen
by different parameters based on implementation, such
as the length of the chain. When forking is possible,
transactions committed in dropped chains of the fork
might be revoked.

To avoid these drawbacks, permissioned blockchains were
introduced.

B. Permissioned Blockchain

Permissioned blockchains have evolved as an alternative to
permissionless blockchains. In [7] Vukolić stated that ”this
happened in order to address the need for running blockchain
technology among a set of known and identifiable participants
that have to be explicitly admitted to the blockchain network”.

The permissioned blockchain [7] concept is best used in
business applications of the blockchain technology. Even
though the nodes do not necessarily trust each other or any

2



third parties, they are still required to identify themselves,
which is usually the case within business circles. The notion
of smart contracts [5] was introduced by Ethereum [8] and are
used in applications that require trustworthy and decentralized
execution of business logic involving multiple entities.

The reason permissioned blockchains provide enhancements
over their permissionless counterparts is that they facilitate
enterprise-grade use cases [5], such as:

1) The participation in the consensus protocol is limited to
a specific group of nodes that require explicit system
configuration in terms of permission from the authority,
software, and hardware. This results in permissioned
blockchains being able to use Byzantine Fault Tolerant
(BFT) protocols, which generally have better throughput
and transaction latency. [9].

2) Falazi et al. [5] noted that ”Permissioned blockchains are
generally better in terms of confidentiality since sensitive
transactions can be isolated from public access.”

3) For permissioned blockchains forks and non-final deci-
sions could be avoided. For example, Byzantine consen-
sus algorithms reach consensus with finality [10].

Note that, permissioned blockchains have similar drawbacks
and limitations as their permissionless counterparts that are
not desirable for the use of business applications. Also, the
enhancements for permissioned blockchains come with a price
[7][5]:

1) These enhancements reduce decentralization in the
blockchain networks, as user roles and participation
is decided by an administrative entity and transaction
validation is done by a predefined set of nodes.

2) Generally within applications, the order of execution of
transactions is determined by the consensus algorithms.
Therefore the execution is sequential. The effective
throughput is inversely proportional to the latency of
execution and therefore limited by this latency.

3) It is very hard to change the consensus protocol in
blockchains. Changing the consensus protocol under
different system conditions can be desirable as these
protocols are known to exhibit different performances
under different conditions.

III. CONSENSUS ALGORITHMS

In [4] it is stated that ”blockchain is a trustless distributed
ledger which allows transactions to take place in a decen-
tralized manner”. To establish any kind of trust within such
networks, the nodes need to reach consensus on which blocks
containing transactions are accepted into the distributed ledger.
In this section, several algorithms will be discussed to reach
such a consensus.

A. Proof-Based Algorithms

In this section different proof-based consensus algorithms will
be discussed. In proof-based algorithms miners must prove that
they can create a new block. The proof has to be mutually

confirmable by the other nodes and the proof should be
infeasible to forge.
1) Proof of Work
Proof of Work (PoW) was first introduced by Satoshi
Nakamoto in the implementation of the Bitcoin network [3].

Within a decentralized network [4], there needs to be some
node in the network that records the transactions, creates
a block, and sends it to all other nodes in the network for
them to attach it to their own blockchain. The created block
will then be recorded by all other nodes in the network. This
so called block creation is rewarded with a block reward
which will be discussed in section V. The easiest and the
fairest way to select such a node is random selection. But
randomly selecting such a node is vulnerable to attacks. To
avoid this, a node must do a lot of work in the form of
computer calculations to be selected. The idea behind this is
that a node which has done a lot of work would not be likely
to attack the network.

In Bitcoin, each node of the network is calculating a hash
value of the block header. This is done by hashing all
transactions within a block into a single hash called the
Merkle Tree Root Hash. Together with this hash, using the
timestamp, the block version, the previous block hash and
a random number (nonce) a new hash value is created. The
miners change the nonce to get different hash values. In
larger mining pools other variables such as timestamps and
transactions inside the block can be changed to find a hash
value. A certain target value is given by the algorithm in the
form of nBits. This target value is the maximum number
of 0’s the calculated hash needs to start with. Due to the
properties of hash functions, it is only feasible to get this sort
of hash by randomly trying different values for the nonce, or
in the case of larger mining pools, other variables. When a
miner finds a hash value meeting this criterion, it broadcasts
the block to other nodes. All of the nodes need to validate
the generated hash value. If the nodes have confirmed the
correctness, then all nodes will append the created block to
their own blockchains. It could happen that multiple miners
reach the correct target value at roughly the same time. This
results in two blocks being sent to the nodes to be validated.
The nodes, in turn, create a “fork” of added blocks to their
blockchains. They keep adding blocks to the respective chains
of the fork. The longer chain is then seen to be the authentic
one as there is more work put into it, and the other ones will
be disregarded.

Specific to Bitcoin [3], the maximum size of the block is
fixed to 1 MB. The difficulty of the calculation is chosen
such that it takes 10 minutes on average. Should a node be
malicious, by for example adding fake transactions within a
block, it must then be able to compete with all other nodes
in the network by finding the right target value for several
blocks. Since the target value is chosen such that finding it
takes 10 minutes on average, it would be inefficient for a
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malicious node to alter transactions within a block, as the
calculations require intensive computing power. The resources
put in would outweigh the benefits.

Implementation of PoW within permissioned blockchains
would not be favorable. In permissioned blockchains, the
network is not accessible to everyone making the notion of
persistency used in PoW not needed. If it is used, it would be
inefficient regarding computational power and energy require-
ments.
2) Proof of Stake
First suggested by an anonymous user on a bitcoin forum
[11], then being implemented by PeerCoin [12], the Proof
of Stake (PoS) mechanism is an improved version of PoW
to reduce the excessive energy consumption. In PoS the
miner to forge the next block is selected with a probability
proportionate to the amount of its stake. Stake is the monetary
value a node is willing to put at stake. Should the miner
be fraudulent, then a miner is penalized by taking away a
percentage of the staked coins, resulting in a miner with
higher amounts of stake being less likely to be fraudulent. It
does, however, have its drawbacks since the rich tend to get
richer, as they are more likely to be selected [4]. PeerCoin
implemented a solution to this notion by not only taking
wealth into account when deciding the probability, but also
the coin’s age expressed in “coin-days”. [13]. Coin age is
simply defined as currencyAmount ∗ holdingPeriod. In
a simple example, if Bob received 10 coins from Alice and
kept it for 20 consecutive days, it is said that Bob has 200
coin-days.

Implementation of PoS within permissioned blockchains
would not be favorable. A miner with the most stake in the
network has the highest probability of getting picked to forge
a new block. However, such a miner could add transactions
which would otherwise not be approved by the authorities
within a permissioned blockchain as this could result in the
miner to gain more say in the network than the authorities.
3) Proof of Authority
Proof of Authority (PoA) [14] is a hybrid consensus algorithm
that is both Byzantine fault tolerant (BFT)[15] and Proof of
Stake based. Its eminence is due to the offered performance
increase with respect to typical BFT algorithms and toleration
to faults. PoA was first proposed by the private networks of
the Ethereum [8] ecosystem. PoA is a form of PoS where the
stake is not the monetary value, but instead the real identity
of the authority and therefor it’s reputation. This discourages
malicious use of the network, as the authorities can face
real-world consequences.

PoA algorithms rely on a set of N trusted nodes called the
authorities. The authorities each have a unique id, namely
their real identity and at least n

2 + 1 of these authorities are
assumed to be honest. The authorities need to reach consensus
to process transactions issued by clients. The PoA consensus

algorithms use mining rotation [16]. A mining rotation is a
widely used approach to fairly distribute the responsibility of
block creation among authorities. In a mining rotation, time
is divided into steps, each of which has an authority elected
as mining leader who is in charge of proposing new blocks
on which distributed consensus is achieved. Election of the
mining leader is algorithm specific and will be explained for
the following two algorithms.

Parity [17] and VeChain [18] are two blockchain
implementations which use PoA algorithms for permissioned
blockchains. Parity’s consensus algorithm Aura [19] is based
on UNIX synchronous time (the time passed in seconds
from January 1, 1970), all the authorities in the network are
assumed to be synchronous with this time. Each authority
is identified by a unique id. The index of the steps are
determined by the time and step duration, where the step
duration is constant. In each step the leader is determined
by i = stepIndex mod N , where i is the leader id. Each
authority has a queue of transactions and a queue of pending
blocks. The leader i always broadcasts a proposed block
which it forms from the transactions in the queue, also
when the queue is empty. The leader will be the only
one to broadcast a block. All authorities send the received
block to the other authorities. The block is accepted when
all authorities have received the same block. A voting is
triggered to decide if the leader is malicious when the
authorities do not accept the proposed block. A majority
among the authorities is needed to vote out the leader based
on, the leader not having proposed any blocks, more than one
or different blocks to different authorities. The leader is then
removed from the set of authorities.

The VeChainThor [18][20] consensus algorithm which is used
by the VeChain cryptocurrency also depends on a set of N
trusted nodes. VeChain has 101 authorities that are authorized
by the VeChain Foundation. The rotation mechanism depends
on an active set of authorities. The authority that needs to
build and broadcast a block is each time step determined
by the deterministic pseudo-random process (DPRP), this
uses the timestamp and the number of the block. Due to
the pseudo-random properties of the DPRP, the order of
authorities that need to generate the blocks will not be
deterministic, this is desirable for a system-security point of
view.

Unlike Practical Byzantine Fault Tolerance (PBFT), PoA has a
preference for availability over consistency. This is not desir-
able for business applications that favor strong data integrity
guarantees.

B. Byzantine Fault Tolerance-based Algorithms

The Byzantine Generals problem [21] is a problem in
computer science that describes the difficulty of multiple
nodes in a distributed system reaching consensus. The
analogy with Byzantine generals goes as follows: multiple
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Byzantine generals have surrounded a city. Each general
has its own army. The challenge is that the generals must
reach a consensus on how to attack the city. If they do not
reach consensus their siege of the city will be unsuccessful.
The generals must communicate with messengers, however,
these messages are not reliable as they might be intercepted
or they may fail to reach to the other general. This means
that it is impossible to reach consensus in this way. The
same problem of nodes communicating with one another and
having to reach a consensus occurs in blockchain networks.
Nodes might not be trusted or the network can be faulty. For
this reason, certain blockchain systems have implemented
different consensus algorithms to overcome these challenges.

Byzantine Fault Tolerance is the ability of a distributed net-
work to function appropriately, such that the network correctly
and consistently reaches consensus despite bad actors either
propagating incorrect information or failing to send informa-
tion at all [15].

1) Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is one of the
first solutions to the Byzantine Generals problem [15]. The
PBFT model works by providing a practical Byzantine state
machine replication that accepts malicious nodes. PBFT offers
both liveness and safety provided at most n−1

3 out of a total
n replicas are simultaneously faulty. Liveness means clients
eventually receive replies to their requests. Safety means the
replicated service satisfies linearizability, that is, it behaves
like a centralized implementation that executes operations at
one time. PBFT works under the following assumptions:

• The distributed system is asynchronous: The network may
fail to deliver messages, delay them, duplicate them, or
deliver them out of order.

• Faulty nodes may behave arbitrarily, subject to the re-
striction that node failures are independent. To assure
this each node should run different implementations of
the service code and operating system, have separate
administrators and root passwords.

• Strong adversary can coordinate faulty nodes, delay com-
munication, or delay correct nodes to cause the most
damage to the replicated service. However, an adversary
cannot delay correct nodes indefinitely. Also, adversary
and the faulty nodes under its control are computationally
bound so that with high probability it is unable to subvert
cryptographic techniques that are used between the nodes
to prevent spoofing and replays, and to detect corrupted
messages.

The nodes in a PBFT network, which are called replicas,
consist of a primary node, called the leader, and the rest,
are the backup nodes. All nodes constantly communicate
with each other trying to reach a consensus state. For each
broadcast, every node has to prove that the message came
from a specific peer node using public-key signatures, and
the integrity of the message using message authentication

Fig. 2. PBFT algorithm stages. C represents the Client. 0 represents the
leader node and the rest of the numbers represent the backup nodes. [15]

codes (MAC).

Each round of consensus in PBFT algorithm works as de-
scribed in the following steps:

1) A client sends a request to the leader to invoke an op-
eration. This starts a three-phase protocol to atomically
multicast the request to the replicas. The three phases
are pre-prepare, prepare, and commit.

2) In the pre-prepare stage the leader multicasts the request
to the backups.

3) In the prepare stage, the backups that accept the pre-
prepare message send an acknowledgment message to
all other nodes.

4) After the nodes are prepared, in the commit stage, the
nodes send the commit message to all other nodes. If
a node receives valid commit messages from more than
n−1
3 nodes, then they carry out the client request and

send the reply to the client.
5) The client waits for n−1

3 + 1 replies from different
replicas with the same result to ensure it has the correct
result, that is, matching replies from one more node than
the faulty number of nodes. This is the result of the
operation.

An illustration of this process can be seen in Figure 2 where
node3 is the faulty node.

The requirements for the nodes are that they start in the same
state and that they are deterministic i.e., the execution of an
operation in a given state and with a given set of arguments
must always produce the same result. The model only
performs efficiently with a small group of nodes since nodes
are constantly communicating, therefore it is a consensus
algorithm that is suitable for permissioned blockchain systems.

Zilliqa [22] has a consensus algorithm based on PBFT.
PBFT uses MAC for authenticated communication between
the nodes. As MAC requires a secret key shared between
all pairs of nodes, the complexity of agreeing on the same
record is O(n2). To improve efficiency, Zilliqa replaces MAC
with digital signatures to effectively reduce the communication
overhead to O(n).
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2) Federated Byzantine Agreement
PBFT requires all nodes to agree upon the same set of
trusted validators, this means that acceptance to the system
will be centralized[23]. To prevent centralization, Federated
Byzantine Agreement (FBA) was introduced and implemented
in the Stellar Consensus Protocol (SCP) [23]. Instead of
having a central list of trusted validators, each node has
its own set of validators that they trust. A transaction is
only accepted by a node when the majority of a trusted set
of validators agree on a transaction. All sets overlap with
one another, meaning that the nodes are included in the
set of trusted validators of multiple nodes. This system of
overlapping sets ensures that the network is distributed, such
that no central authority can decide what nodes are to be
trusted. Nodes can only become part of the validation process
when they are included in the trusted set of other nodes.

Stellar Consensus Protocol
In Stellar, a node’s trusted set of validators is called the
quorum slice. The total overlapping set of quorum slices
is in turn called the quorum. Transactions are added to
the ledger in voting rounds. Each transaction must pass
through 2 voting rounds: a nomination protocol and a ballot
protocol. During the nomination protocol candidate values
are proposed to be agreed upon by the quorum through a
federated vote. Each node votes for a single value and listens
for votes from its peers until it finds a quorum that will
accept the vote. After the nomination protocol, the ballot
protocol is run. A ballot is a <Counter, Value> pair. The
counter is how often a certain ballot has been run and the
value is the value upon which is being voted. Now the nodes
run a federated vote to decide on whether or not the value
should be committed or aborted. If the nodes cannot reach
a consensus for a certain value, the nodes are stuck, this
is called a blocked state. The blocked state is resolved by
incrementing the counter on the ballot and re-executing the
ballot protocol. Ballots with a higher count have priority over
ballots with lower counts. Through this system, FBA can
provide liveliness by removing and avoiding all blocked-states.

Ripple Protocol Consensus Algorithm
Ripple is a network that has been designed to facilitate the
transfer of funds between banks and international institutions
[24]. Ripple makes use of a distributed ledger system where
all Ripple nodes keep track of all funds [25]. Stellar has
quorum slices as mentioned in section III-B2 and the Stellar
Consensus Protocol section. Likewise, in Ripple, all nodes
keep track of their own so called Unique Node List (UNL)
[23]. If 80 % of nodes in the nodes UNL agrees with a
candidate set of transactions, those transactions are added to
the ledger. According to the Ripple white paper, as long as
no more than 20% of nodes are faulty, the ledger will remain
correct.

The Ripple Protocol Consensus Algorithm (RPCA) works with
frequent voting rounds to decide what transactions are added

to the ledger. The RPCA works in 4 steps each round:
1) All valid transactions that the node has received are put

into the candidate set of the node.
2) All nodes collect the candidate sets of the nodes in their

UNL and votes on each transaction.
3) The transactions that receive sufficient votes are moved

to subsequent rounds. Transactions that receive insuf-
ficient votes are either discarded or included in the
candidate set of the next round.

4) For transactions to be added to the ledger at least 80% of
the nodes UNL must agree on a transaction. The ledger
is closed when all transactions that receive a minimum
of 80% of the votes in a UNL are added to the ledger.

Ripple is a permissioned blockchain system [26]. The network
has high expectations of trust (80% of the network must be
trustworthy) this is only realistically possible in a controlled
and permissioned environment.

FBA was designed for decentralized systems, this means
that no single authority decides what nodes are allowed to
join the consensus process. However, to become part of the
consensus process, other nodes must include the new node in
their quorum slice. The decision of whether or not nodes are
allowed to add a node to the consensus process could still
be decided by a central authority. Therefore it is possible to
use FBA in both permissioned and permissionless blockchain
networks, it is most suitable for systems that require many
validators.

3) Delegated Byzantine Fault Tolerance
Delegated Byzantine Fault Tolerance (DBFT) is a consensus
algorithm used in NEO blockchain [27]. DBFT enables
large-scale participation in consensus through proxy voting.
Proxy voting means participants can delegate their votes
to representatives every round, and a selected group of
representatives reach consensus between themselves in the
PBFT manner. In NEO ecosystem, these representatives are
named bookkeepers.

Since there is delegation, and the consensus is reached be-
tween a small number of representatives, the algorithm works
efficiently compared to PBFT. DBFT is an improved version
of PBFT, therefore as PBFT, it is suitable for permissioned
blockchain systems. DBFT is preferred for permissioned
blockchains that have many nodes as it scales well.

IV. TRUST MODELS BETWEEN NODES

Before people and organizations make use of a blockchain
network they must have faith in the network’s ability to
correctly maintain and validate transactions. This section
will discuss how the trust between nodes in a blockchain is
managed in different consensus algorithms suited for private
blockchains.

In PBFT, all nodes that are participating in the validation
process of the network must communicate with all other
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nodes in the network. PBFT algorithms are only functional
when less than 1

3 of the network is untrustworthy. Therefore,
the nodes have to trust that other nodes in the blockchain are
not malicious, essentially putting their trust in the organization
that controls access to the network.

In DBFT, nodes vote on what validation nodes they deem
trustworthy. This way, nodes have more control over which
nodes they trust.

In FBA based algorithms all nodes can partake in the
consensus process. Each node has its own list of trusted
validators. This way all nodes are fully able to control what
nodes they trust and what nodes they do not deem trustworthy.
In the Stellar whitepaper [23], this is called flexible trust.
Flexible trust is the opposite of the trust model of PBFT,
instead of trusting all nodes in the network that are granted
access by a central regulator, each node makes an individual
consideration of what nodes to trust.

In PoA [14] based algorithms validation nodes have to prove
they are trustworthy by using their real identity. The majority
of the validation nodes are assumed to be honest. A validation
node can be found malicious by a voting of the majority of
the validation nodes.

V. INCENTIVE ANALYSIS

To motivate participants to mine blocks and hence keep
the system running, cryptocurrency and smart contract
blockchains have incentive rewards implemented, to motivate
parties to participate in the system. Rewards can be given for
the mining blocks. Many BFT algorithms do not give direct
financial rewards for participating in the, but rather reward the
nodes through non-economic benefits. This will be discussed
in the following section.

A. Proof of Authority - Parity

In Parity’s [14][17] consensus algorithm, nodes or authorities
are required to give their real identity and therefore their
reputation is at stake. Parity is a client for permissioned setting
of Ethereum and can be used by business applications and for
smart contracts. Using these applications is the incentive to
join.

B. Practical Byzantine Fault Tolerance - Zilliqa

Zilliqa [22] which uses a modified version of PBFT incentives
miners by requiring the sender of each transaction to pay
some ”gas price” upfront. Gas the is the smallest unit of
computation. The Gas price is the amount that the sender is
willing to pay per unit of gas for computations incurred in the
transaction processing.

C. Delegated Byzantine Fault Tolerance - NEO

In NEO [27], GAS is the token for the network’s resource
control. The NEO network charges GAS for the operation and
storage of tokens & smart contracts, thereby creating economic

incentives for bookkeepers and preventing the abuse of the
resources by charging for resource usage.

D. Federated Byzantine Agreement - Ripple and Stellar

In Ripple and Stellar, there are no direct economic rewards
for participating in the validation process, unlike in PoW [28],
[29]. However, there are a few other benefits for parties that are
actively making use of the network to run their own validation
nodes. Most importantly being independent of third parties to
be able to participate in the network. This allows companies
to have a trusted entry point to the network. There are also
other benefits such as more up-to-date information about the
network, customized triggers and full control of what data
is stored. It is important to note that there is less need for
economic incentive for hosting a validation node as the costs
of running a server are low compared to a mining node in
PoW.

VI. SCALABILITY ANALYSIS

When comparing the scalability of different permissioned
blockchains, similarly to Vukolić [9], this paper distinguishes 3
important categories: the number of nodes to reach consensus,
the number of clients, and the number of transactions per
second (TPS). The number of consensus nodes is the number
of nodes that are actually taking part in the consensus process
and deciding what transactions get accepted into the ledger.
The number of transactions is the maximum throughput of the
consensus algorithm in real world applications. In this section,
implementations of PBFT, FBA, DBFT, and PoA consensus
algorithms are compared in terms of the specified criteria.

A. Number of Validating Nodes & Block Validation Time

Validating nodes are the nodes that handle the requests made
by the client nodes.

In the case of PBFT consensus, it is desirable to keep the
number of validating nodes low to keep the transaction
throughput high. As described in section III-B1 algorithms
the complexity of agreeing on the same record is O(n2).
From practical tests, as done in [30], it can be seen that the
validation time for a block size of 10,000 transactions, goes
from 4 seconds for 40 nodes to 26 seconds with 200 Nodes.
For most applications a validation time this high may not be
practical for use cases that require faster validation, and other
consensus algorithms would be better suited.

DBFT algorithms were designed to overcome the limitation
of PBFT algorithms, which can only achieve consensus
in networks with a limited number of peers in a faster
manner. In the NEO implementation of DBFT, validation
time is just 15-20 seconds [27]. The NEO implementation
of DBFT has a minimum of 7 and a maximum of 1024
nodes [31]. The number of validation nodes must be kept low
compared to PoW and FBA to keep the transaction speed high.
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TABLE I
SCALABILITY OF CONSENSUS ALGORITHMS PREFERRED FOR PERMISSIONED BLOCKCHAINS

Implementation Number of validating nodes Transaction throughput Block Validation Time
Hyperledger Fabric v1.0 - PBFT less than 200 200 TPS 4-26s
NEO - DBFT 7-1024 up to 1000 TPS 15-20s
Stellar - FBA 1000s of nodes 4000 TPS 5-6s
Ripple - FBA (RPCA) 1000s of nodes 1500 TPS 3-5s
Parity - PoA 1000s of nodes 80 TPS 5-8s

FBA was created to allow for thousands of validation nodes
whilst still keeping transaction speed high. Validation of a
transaction takes 5-6 seconds in the Stellar network [32].
Currently, the Stellar network has 136 validating nodes [33],
however, there is no theoretical limit to the maximum size of
the network. The ripple consensus network functions similarly
to Stellar and is also capable of thousands of validators at
the same time. However, currently, the number of active
validators on the main Ripple network is approximately 130
[34]. It takes these validators about 3-5 seconds to validate a
block of transactions [24].

In PoA [14] [35] algorithms there is a set of trusted nodes
that validate the transactions on the blockchain network. Due
to the constant transaction processing of Parity, the throughput
remains constant when the number of nodes in the network
is increased. The block sizes in the network are determined
by the step duration, this is the time the leader has to build
and propose a block. The typical step duration for Parity is
between 5-8 seconds.

B. Number of Transactions

In tests of PBFT implementations in Hyperledger Fabric v1.0,
the number of transactions per second (TPS) given 10,000
transactions was 200 TPS [36].

DBFT implementations can support up to 10,000 TPS [27].
However, in the current practical application in the NEO
network, the TPS is closer to 1,000.

When looked at FBA implementations, the active stellar
network has reached up to 4,000 TPS [37] however there
have also been tests claiming over 10,000 TPS [38]. Currently,
according to the Ripple company, the TPS of the network is
around 1500. Ripple, however, claims that the number of TPS
could easily be expanded to support tens of thousands of TPS
[39]. It is hard to define an upper limit, because in practice
the maximum TPS is bottlenecked by different factors, such
as the implementation of the core software, used hardware,
and internet latency.

PoA is limited by hardware and not the consensus algo-
rithm itself. To keep the system working under the hardware
limitations of the network, blockchains using PoA enforce
transactions in a block to not surpass a certain threshold.
The threshold can be many things ranging from the total
monetary amount of transactions to the number of transactions

in the block. The implementations hardcode this amount based
on their network’s hardware limitations. For Parity [35], the
latency and throughput remain constant when transaction rates
are increased beyond 40 TPS. Parity has a maximum constant
client request rate of 80 TPS.

VII. DISCUSSION

Each consensus algorithms has its advantages and drawbacks.
They were made to tackle different kinds of problems and
are applied to different fields, from business applications
to payment processing. Each prioritizes some aspect of
scalability and reliability. For permissioned systems, it is
seen that Proof of Authority (PoA) (in section III-A3) and
Byzantine Fault Tolerant (BFT) (in section III-B) based
systems are the most applicable. Proof of Work (PoW) (in
section III-A1) and Proof of Stake (PoS) (in section III-A2)
based systems require additional work to guarantee safety
in permissionless systems. In permissioned systems there is
an assumption of trust between the nodes, therefore other
performance aspects such as transaction throughput can be
prioritized.

In terms of the number of clients involved in the network,
there is no notable difference between the different consensus
algorithms. Each has the ability to support thousands of
clients with an upper bound set by their hardware.

The difference between the BFT consensus algorithms lay
within the number of validating nodes and the throughput of
the transactions. As can be seen in Table I, PBFT and DBFT
are both restricted in the amount of validating nodes. PBFT
is suitable for smaller circles where there are a small number
of validating nodes, and a high transaction throughput is
not the priority, like in business applications. DBFT is less
centralized compared to PBFT since the delegates are chosen
by all participants as stated in section III-B3. DBFT scales
better in terms of the number of nodes since a consensus
is reached between a number of delegates, that is, less than
the number of all nodes in the network. DBFT has high
transaction throughput since it can reach consensus with
a small number of delegates, which makes validation time
lower, hence allowing higher volumes of transaction at unit
time compared to PBFT.

FBA is the consensus algorithm that steers furthest away
from a centralized network structure. FBA can support up to
thousands of validating nodes making it much more scalable
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in terms of validating nodes. Allowing to reach consensus
with a smaller group in a similar manner to DBFT, FBA also
allows high volumes of transaction throughput.

PoA can support up to thousands of validating nodes. In the
means of transaction throughput, it is bound by the hardware.

There are different trust models between nodes among the
consensus algorithms to encourage participants to trust the
network. In PBFT and PoA, there is an assumption that the
majority of the validating nodes are trustworthy. In DBFT and
FBA, however, each node has a set of nodes that it decides
to trust on.

To motivate participants to mine blocks there are different
incentives among the consensus algorithms. In Parity which
implements PoA, the incentive is for each block to get their
transactions validated. In Zilliqa which implements PBFT,
and NEO implementing DBFT, the incentive is to obtain
some reward in exchange for creating a block. Lastly in
Ripple and Stellar which implement FBA, there is no direct
incentive other than having the benefits of independence of
the third parties and having full control over the data.

VIII. CONCLUSION

This paper has touched upon the notion of blockchain and
the distinctions between permissioned and permissionless
blockchains. PoW, PoS, PoA, PBFT, FBA, DBFT consensus
algorithms were then concisely explained, with additional
information on consensus algorithms that were suspected
to be beneficial for permissioned blockchains. Thereafter
the consensus algorithms have been analyzed in terms
of incentives, trust between nodes, and scalability. From
research, it has been found that PoA, PBFT, DBFT, and FBA
based consensus algorithms are the most suitable ones for
permissioned blockchains.

For most permissioned blockchains the main incentive to
participate and maintain the system is having access to
the system. Most permissioned blockchains are designed to
facilitate transactions between organizations. Having access to
these transactions is enough incentive to actively participate.
Also, it should be noted that the costs associated with running
permissioned blockchains is much lower than that of PoW
blockchains.

Trust between nodes in a permissioned blockchain differs per
consensus algorithm. In PoA based blockchains trust stems
from the knowledge of a node’s real world identity. In PBFT
and DBFT based blockchains, the trust comes from the fact
that the nodes participating in the validation process have
been approved by a central authority. Finally, trust in FBA
based systems is decided by the individual nodes, through
their own set of nodes that they trust.

Scalability in permissioned systems differs strongly between
the different consensus algorithms. In PBFT and DBFT based
systems, the number of nodes participating in the validation
process must remain low compared to FBA and PoA.
These algorithms are often not applicable with more than
a thousand validation nodes. FBA and PoA based systems
can support many thousand validation nodes. However, in
practice, there are often are not that many validation nodes.
In terms of transaction throughput, there is strong variation
between implementation, however, this is more likely to be
implementation specific rather than algorithm specific.

When comparing different consensus algorithms, we see
that this is a non-trivial task since each of them has its
own benefits and drawbacks. As seen in the examples of
implementations of blockchain systems as touched upon in
this paper, many of them use approaches where consensus
algorithms have been tailored for their specific use cases and
needs.

Future research could focus on a number of things. It is
difficult to fully and in detail compare the performance
of permissioned blockchains. A research complying with
this problem would consist of comparing multiple different
permissioned systems on comparable hardware and network
conditions. Only in this manner would it be possible to define
an accurate ranking of the performance of permissioned
blockchains. Another possible area of future investigation
would be the detailed comparison of the associated security
risks of different implementations of consensus algorithms in
permissioned blockchains.

In conclusion, architects of permissioned blockchain systems
should look into their system needs and tailor the consensus
algorithms that are close to their needs to work optimally for
their system.
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