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1.  Introduction
Global mean sea level (GMSL) has risen by around 1.5 mm/yr since the 1960s (Dangendorf et al., 2017; 
Frederikse et al., 2018) and is projected to rise at an accelerated pace unless greenhouse gas emissions are 
substantially reduced (Oppenheimer et al., 2019). Limiting the adverse impacts of sea-level rise (Nicholls & 
Cazenave, 2010) requires accurate sea-level projections to underpin effective coastal decision making and 
adaptation planning. GMSL change results from both ocean density changes (steric sea-level change) and 
the exchange of mass (barystatic sea-level change) between ocean and cryosphere or land. Global mean 
steric sea-level change is nearly equal to global mean thermal expansion (GTE), since global mean haloster-
ic change is negligible (Gregory et al., 2019; Gregory & Lowe, 2000).

Ensembles of complex, coupled global climate models (GCMs), such as the models in the fifth phase of the 
Coupled Model Intercomparison Project (CMIP5, Taylor et al., 2012), form the basis of many GMSL pro-
jections (e.g., Church et al., 2013; Kopp et al., 2014; Oppenheimer et al., 2019; Palmer et al., 2020; Palmer 
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emission of greenhouse gases early to mitigate GMSL rise.
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et al., 2018; Slangen et al., 2014, 2012). The fifth Assessment Report of the Intergovernmental Panel on 
Climate Change (IPCC AR5) constructed a Monte Carlo ensemble of GMSL projections from CMIP5 sim-
ulations of GTE and global mean surface air temperature (GSAT), with GSAT-driven parameterizations 
of the surface mass balance contributions to land-based ice melt (Church et al., 2013). Several subsequent 
studies built on this approach, updating the contribution of Antarctic ice sheet dynamics based on post-AR5 
modeling studies (Oppenheimer et al., 2019; Palmer et al., 2018, 2020).

The GSAT response to radiative forcing varies across GCMs according to the strength of different climate 
feedbacks, and can be characterized by estimates of climate sensitivity. In particular, equilibrium climate 
sensitivity (ECS) measures the GSAT response in GCMs upon reaching equilibrium following an instanta-
neous doubling of CO2 concentration in the atmosphere. Since running coupled GCMs to equilibrium is 
computationally very expensive, ECS is often approximated with effective climate sensitivity (EffCS). EffCS 
is obtained through linearly regressing the top-of-atmosphere radiative flux anomaly against GSAT in ideal-
ized experiments in which a GCM has not yet reached equilibrium (Gregory et al., 2004).

The current generation of GCMs in CMIP6 (Eyring et al., 2016) has a positively skewed EffCS distribution, 
including multiple models with a higher EffCS than the CMIP5 range (2.1–4.7 K; Andrews et al., 2012) and 
the 5%–95% range constrained by multiple lines of evidence (2.3–4.7 K; Sherwood et al., 2020). Consequent-
ly, CMIP6 models project a larger GSAT increase for a given emissions scenario (Forster et al., 2020). This 
has sparked an important debate about what model developments have caused the increase in EffCS and 
whether these developments have improved model physics. The increased EffCS in CMIP6 has been attrib-
uted to stronger positive cloud feedback (Meehl et al., 2020; Zelinka et al., 2020), and the representation of 
clouds has improved in several CMIP6 models compared to CMIP5 (e.g., Bjordal et al., 2020; Bodas-Salce-
do et al., 2019; Gettelmann et al., 2019; Swart et al., 2019; Voldoire et al., 2019; Williams et al., 2020). On 
the other hand, some high-EffCS CMIP6 models overestimate historical warming, suggesting their future 
warming may be too large (Brunner et al., 2020; Forster et al., 2020; Nijsse et al., 2020; Tokarska et al., 2020). 
Still, an EffCS higher than 5 K cannot be discounted as physically implausible (Bjordal et al., 2020). Thus, 
investigating the consequences of increased EffCS in CMIP6 for projected climate change is important.

Although multiple studies have investigated the consequences of increased EffCS in CMIP6 for GSAT change 
projections, the consequences for GMSL change projections have only been studied using a reduced complex-
ity model (Vega-Westhoff et al., 2020). Here, we generate GMSL change projections based on CMIP6 using the 
Monte Carlo approach of IPCC AR5 (Church et al., 2013), including both GTE and the GSAT-driven barystatic 
contributions, and compare these to CMIP5-based projections. Isolating the impact of CMIP6 simulations 
using consistent methods is an important step to ensure traceability to past IPCC projections of global and re-
gional sea-level change. Given the complex correlations among different GMSL change components (Palmer 
et al., 2020), increased EffCS may not simply lead to increased GMSL projections. Additionally, the increased 
EffCS in CMIP6 motivates us to premise high-risk, low-probability GMSL projections on individual models, 
exploring high-end projections to a fuller extent than was previously possible with CMIP5.

In Section 3.1, we compare CMIP5 and CMIP6 projections of GTE and GSAT change, which form the input 
to the GMSL projections. Next, we investigate their relationship with EffCS in Section 3.2. We include their 
relationship with the transient climate response (TCR), another policy-relevant metric of climate sensitivity, 
in the supporting information. In Section 3.3, we compare CMIP5- and CMIP6-based GMSL projections 
and show GMSL projections based on individual CMIP6 models. Since we focus on the impact of increased 
EffCS on interensemble and intermodel uncertainties using IPCC AR5 methods, we acknowledge but do 
not consider more recent insights into the potential instability of the Antarctic ice sheet (e.g., DeConto & 
Pollard, 2016; Edwards et al., 2019).

2.  Data and Methods
2.1.  CMIP5 and CMIP6 Model Data

We use monthly CMIP5 GTE and GSAT data (“zostoga” and global mean “tas” variables) from IPCC AR5 
(Church et al., 2013) for representative concentration pathways (RCPs, Meinshausen et al., 2011) 8.5, 4.5, 
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and 2.6. This ensemble contains 21 models from 13 modeling centers. For three models RCP2.6 data was 
not provided and instead emulated by IPCC AR5 using the simple climate model of Good et al. (2011, 2013).

The CMIP6 data were downloaded from the Earth System Grid Federation (ESGF) for three shared socioec-
onomic pathways (SSPs, O'Neill et al., 2014). We picked SSPs with high fossil-fueled, middle-of-the-road and 
sustainable-development narratives, with nameplate radiative forcing in 2100 approximately corresponding 
with the aforementioned RCPs: SSP5-RCP8.5, SSP2-RCP4.5 and SSP1-RCP2.6, respectively. For CanESM5 
alone, both RCP- and SSP-forced simulations were available from ESGF. The median GSAT change in 2081–
2100 (relative to 1986–2005) of the 5 RCP-forced and 25 SSP-forced variants of CanESM5 differ by 0.27, 
0.19, and −0.15 K (SSP minus RCP) for SSP5-RCP8.5, SSP2-RCP4.5 and SSP1-RCP2.6, respectively. These 
differences will likely reduce in the multimodel mean, so based on this preliminary comparison we assume 
that differences in GSAT change between CMIP5 and CMIP6 are mainly due to increased EffCS (following 
Forster et al., 2020). Differences between RCPs and SSPs may have a larger relative effect on GTE because 
the interensemble differences in GTE are smaller (Section 3.1).

Our CMIP6 ensemble includes 20 models from 12 modeling centers (Table S1). For these models both GTE 
and GSAT were available by November 2, 2020, for the historical simulation (1850–2014) and all three emis-
sions scenarios (2015–2100). We select the first available simulation variant (identified by “ripf”, Table S1) 
of each model. Additionally, we require models to provide fully overlapping preindustrial control runs for 
GTE to allow us to correct for model drift, and idealized experiments to allow us to compute EffCS and TCR 
(see Section 2.2). All CMIP6 GCMs providing GSAT but not necessarily GTE (n = 31, Table S1) are used for 
context in Figures S2, S3 and Table S3.

We corrected GTE for model drift, which can arise from the slow adjustment of the deep ocean and/or 
imperfect representation of energy conservation in the model simulations (Hobbs et al., 2016; Sen Gupta 
et al., 2013). To remove drift, we apply a least squares quadratic fit to the full control experiment of each 
model and subtract the overlapping part of the fit from the historical and scenario runs. Although we chose 
a quadratic fit for consistency with IPCC AR5 (Church et al., 2013), the drift is nearly linear for most CMIP6 
models (Figure S1). This is consistent with the analysis of Hobbs et al. (2016) for CMIP5 models. The differ-
ence between linear and quadratic drift-correction (2081–2100 minus 1986–2005) is largest for INM-CM5-0 
(0.32 cm), which is small compared to projected GTE (8–37 cm; Figure 1). Finally, the monthly GTE and 
GSAT data were annually averaged.

2.2.  Calculating EffCS and TCR

CMIP5 EffCS and TCR were obtained from Andrews et al. (2012) and Forster et al. (2013), respectively. For 
CMIP6, we used the same method to compute these (see Table S1). To obtain EffCS, for each GCM we lin-
early regress the top-of-atmosphere radiative flux anomaly ΔN  against GSAT in 150 years of abrupt-4xCO2 
experiments (Gregory et al., 2004). We use the CO2 quadrupling instead of doubling experiment, because 
the signal-to-noise ratio is higher. Additionally, we assume that 4xCO2 forcing is twice 2xCO2 forcing and 
that the climate feedback parameter is constant. Extrapolating ΔN  to zero to approximate equilibrium, Ef-
fCS is found as 0.5 times the x-intercept. EffCS underestimates ECS in GCMs because the net climate feed-
back becomes less effective at restoring radiative equilibrium over time (Andrews et al., 2012; Rugenstein 
et al., 2020). Nevertheless, EffCS is a widely used metric relevant to 21st-century climate change (Grose 
et al., 2018) and thus a useful basis of comparison between CMIP5 and CMIP6. To obtain TCR, we calculate 
the mean GSAT change in years 61–80 in 1% CO2 experiments (window centered around the time of CO2 
doubling). For MIROC-ESM-CHEM (CMIP5) these idealized experiments were not available.

2.3.  GMSL Projection Methodology

To ensure traceability to previous GMSL projections, we compute CMIP6-based projections using the same 
approach as in IPCC AR5 (Church et al., 2013). For each emissions scenario, we generate a 450,000-mem-
ber Monte Carlo ensemble of GMSL projections. These projections contain contributions of thermal ex-
pansion, land-ice mass changes and land-water storage changes. The inputs to these projections are the 
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time-dependent CMIP6 mean and standard deviation of GTE and GSAT change, from which 450 samples 
are drawn (see Text S1 and flowchart therein for details). Through parameterization schemes (Text S1), the 
contribution of glaciers and the surface mass balance of the Greenland and Antarctic ice sheets depend on 
GSAT change, while the other barystatic contributions depend only on time. For comparison with the pro-
jections of Palmer et al. (2020), and indirectly with the projections of Oppenheimer et al. (2019), we also use 
an alternative parameterization of Antarctic dynamical ice discharge based on projections of Levermann 
et al. (2014).

For each GTE and GSAT sample pair, 1,000 samples are generated to represent methodological uncertainty in 
the parameterization schemes. This results in an ensemble of GMSL projections with 450 × 1,000 = 450,000 
members. These projections converge with a 0.01 m uncertainty for GMSL change and its components and 
0.1 mm/yr for its rate (Church et al.,  2013). Thus, subsequently computed GMSL projections can differ 
randomly by these amounts. We present a flowchart and a summary of the methods in Text S1, and refer to 
Church et al. (2013) and Palmer et al. (2020) for further information.

Finally, we also derive GMSL projections based on the GTE and GSAT simulations of each of the 20 CMIP6 
models individually (Text S1). This results in 20 ensembles of 1,000 members each, which allow us to study 
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Figure 1.  Ensemble median (CMIP6: colored solid lines; CMIP5: black solid lines) and 5%–95% range (CMIP6: colored 
shaded area; CMIP5: black dashed lines) of (a–c) GTE (m) and (d–f) GSAT(K) change of the 20-member CMIP6 and 
21-member CMIP5 ensembles, relative to the 1986–2005 average, for SSP5-RCP8.5 (orange, (a, d)), SSP2-RCP4.5 (blue, 
(b, e)), and SSP1-RCP2.6 (green, (c, f)). CMIP: Coupled Model Intercomparison Project; GSAT: global mean surface 
air temperature; GTE: global mean thermal expansion; SSP: shared socioeconomic pathway; RCP: representative 
concentration pathway.
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intermodel uncertainty related to EffCS. Additionally, equally weighting all models these ensembles can be 
joined into a 20,000-member ensemble to test the sensitivity to the assumptions made in constructing the 
450,000-member ensemble (Section 3.3).

3.  Results
3.1.  Comparing CMIP5 and CMIP6 Ensemble Projections of GTE and GSAT Change

We first compare CMIP5 and CMIP6 GTE and GSAT change projections, which form the input to the GMSL 
projections in Section  3.3. Despite increased EffCS in CMIP6, the CMIP5 and CMIP6 ensemble means 
and medians of GTE, averaged over the period 2081–2100, are similar (Figures 1a–1c & key statistics in 
Table S2). The 5%–95% range has widened from CMIP5 to CMIP6, particularly toward lower values, mainly 
due to the GTE projections of INM-CM4-8 (EffCS = 1.82 K) and INM-CM5-0 (EffCS = 1.92 K). Compared 
to CMIP5, the 95th percentiles of CMIP6 GTE increase by 1 cm (+4%, +5%, and +3%) under SSP5-RCP8.5, 
SSP2-RCP4.5, and SSP1-RCP2.6, respectively. The fifth percentiles of GTE correspondingly decrease by 4, 
2, and 2 cm (−17%, −13% and −22%). However, a two-sided Kolgomorov-Smirnov test suggests we cannot 
reject the null hypothesis that CMIP5 and CMIP6 GTE are drawn from the same underlying distribution 
(p ≥ 0.05, Figure S2).

In contrast to GTE, the mean, median, and 5%–95% range of CMIP6 GSAT change at the end of the 21st 
century are substantially higher than in CMIP5 for all emissions scenarios (Figures  1d–1f & Table  S2). 
The CMIP6 medians, averaged over 2081–2100, are 0.80, 0.60 and 0.43 K higher than for CMIP5 for SSP5-
RCP8.5, SSP2-RCP4.5, and SSP1-RCP2.6, respectively (+22%, +31%, and +41%; the relative difference due 
to increased EffCS could be larger in stabilization scenarios because the ocean heat uptake (OHU) efficiency 
declines faster than in higher emissions scenarios). The 95th percentile changes increase by 1.36, 0.91, and 
0.55 K (+29%, +35%, and +31%). The CMIP5 and CMIP6 distributions of GSAT change are only statistically 
different for SSP2-RCP4.5 (p < 0.05, Figure S2). However, this does not mean that the interensemble differ-
ences for SSP5-RCP8.5 and SSP1-RCP2.6 are unimportant.

3.2.  Relation of GTE and GSAT Change with Climate Sensitivity

The 20-member CMIP6 ensemble has a higher median EffCS and TCR than the CMIP5 ensemble (4.04 and 
2.00 K compared to 3.50 and 1.88 K, respectively), and spans a larger range (e.g., EffCS of 1.83–5.62 K com-
pared to 2.08–4.67 K; Table S2). However, insufficient evidence exists for significant statistical difference 
between the CMIP5 and CMIP6 distributions (Figure S3). Nevertheless, the higher upper tail of CMIP6 
motivates investigating the differences further.

To interpret the interensemble differences in GTE and GSAT change given the increased climate sensitiv-
ity in CMIP6, we linearly regress GTE and GSAT change in 2081–2100 against EffCS (Figure 2). We find 
statistically significant linear relationships with EffCS for both GTE (Figures  2a–2c) and GSAT change 
(Figures 2d–2f), except for CMIP5 GTE under SSP1-RCP2.6 (Figure 2c). Thus, EffCS is a relevant metric 
for 21st-century climate change. However, since EffCS represents the GSAT response to CO2-doubling, it 
explains much but not all of the intermodel variance of GSAT change in emissions scenarios with multiple 
forcing agents (Figures 2d–2f, R2 values). The role of OHU in determining the tendency of the curve of 
GSAT against EffCS to flatten for increasing EffCS likely causes the non-zero y-intercepts.

Linear regression against EffCS explains much less of the variance of GTE than of GSAT change (10%–63% 
vs. 59%–91%; Figure 2). While GTE correlates positively with GSAT change (r = 0.59–0.80; Figure S5), GTE 
is also controlled by the ocean dynamics governing OHU and expansion efficiency, which cause intermodel 
spread (Melet & Meyssignac, 2015). For example, OHU in CMIP6 models could partially occur in regions 
contributing little to increased GSAT change, or be driven by wind-driven subduction unrelated to GSAT 
change. Aspects like these could explain why GTE projections do not necessarily increase from CMIP5 to 
CMIP6, despite increased EffCS.

For both GTE and GSAT change, the correlations with EffCS are higher for higher emissions scenarios 
(Figure 2), consistent with previous results for GSAT change in CMIP5 (Grose et al., 2018). The reason is 
likely the larger ratio of forced signal to internal variability for higher emissions scenarios (Lyu et al., 2015). 
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Additionally, more of the intermodel variance of CMIP6 than of CMIP5 is explained by EffCS for all emis-
sions scenarios, suggesting that the increased spread of EffCS causes the increased spread of GTE and GSAT 
change (Table S2). The correlations of both GTE and GSAT change with TCR are lower than with EffCS 
(Figure S4), consistent with previous CMIP5-based studies (Gregory et al., 2015; Grose et al., 2016, 2018). 
Thus, TCR is less useful than EffCS for characterizing GMSL projections.

3.3.  CMIP6-Based GMSL Projections

Using the IPCC AR5 methods (Church et al., 2013) based on CMIP6 simulations results in ensemble-medi-
an projections of GMSL rise of 0.76, 0.56, and 0.47 m in 2100 (see Table S4 for 2081–2100 and Table S5 for 
a component breakdown) for SSP5-RCP8.5, SSP2-RCP4.5, and SSP1-RCP2.6, respectively (Figures 3a–3c). 
This represents a modest increase of 2, 3, and 3 cm (+3%, +6%, and +7%) relative to CMIP5. The 5%–95% 
range shifted up from 0.52–0.98, 0.36–0.71, and 0.28–0.61 m to 0.52–1.05, 0.38–0.76 and 0.30–0.64 m. For 
the 95th percentile, this is an increase of 7, 5, and 3 cm (+7%, +7%, and +5%). In comparison, the projected 
rates of GMSL rise (average rates during 2095–2100) increase more: 1.4, 0.9, and 0.4 mm/yr for the medians 
(+12%, +15%, and +9%) and 3.5, 1.6, and 0.5 mm/yr for the 95th percentiles (+21%, +18%, and +8%), re-
spectively. Projections with the methods of Palmer et al. (2020) show a comparable increase from CMIP5 to 
CMIP6 (Figure S6). Thus, updating existing GMSL projections with CMIP6 data affects projections at 2100 
only moderately but has a more pronounced impact beyond 2100.
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Figure 2.  (a–c) GTE (m) and (d–f) GSAT (K) change (2081–2100 minus 1986–2005) of the CMIP6 (colored circles) 
and CMIP5 (black circles) models against their EffCS (K), together with least squares linear regression (CMIP6: 
colored, solid; CMIP5: black, dashed) against EffCS for SSP5-RCP8.5 (orange, (a, d)), SSP2-RCP4.5 (blue, (b, e)), and 
SSP1-RCP2.6 (green, (c, f)). The intercept, slope, R-squared and p-value of the regression are indicated in each panel.
CMIP: Coupled Model Intercomparison Project; EffCS: effective climate sensitivity; GSAT: global mean surface 
air temperature; GTE:, global mean thermal expansion; SSP: shared socioeconomic pathway; RCP: representative 
concentration pathway.
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To study intermodel differences, we also generate GMSL projections based on the 20 individual CMIP6 
models directly (explained in Section 2.3 & Text S1). The 5%–95% range for individual models can be sub-
stantially outside the CMIP6 ensemble 5%–95% range (Figure S7) and may be used to describe the outer 
envelope of GMSL projections instead. Large intermodel differences exist: the CMIP6 model with the high-
est EffCS (CanESM5; Swart et al., 2019) projects 5%–95% ranges of 0.81–1.24, 0.51–0.82, and 0.39–0.67 m 
for SSP5-RCP8.5, SSP2-RCP4.5, and SSP1-RCP2.6, respectively, whereas the model with the lowest EffCS 
(INM-CM4-8; Volodin & Gritsun, 2018) projects 0.43–0.73, 0.29–0.56, and 0.23–0.48 m (Figures 3a–3c).

The differences between the 20,000-member ensemble consisting of the individual model projections com-
bined (20 × 1,000) and the 450,000-member ensemble of GMSL projections constructed by sampling from 
GTE and GSAT change (Text S1) are mostly below the random uncertainty of the Monte Carlo method. 
However, the 5%–95% range of the thermal expansion of the 20,000-member ensemble is around 2 cm lower 
because the GTE distribution of CMIP6 is negatively skewed (Figures 1a–1c). Thus, the assumptions made 
in constructing the 450,000-member ensemble (i.e., that GTE and GSAT change are normally distributed 
and perfectly correlated to one another) are reasonable but imperfect. The actual correlation structure (Fig-
ure S5) can be preserved by directly sampling from the CMIP6 ensemble, but the number of models is likely 
insufficient for a proper representation.
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Figure 3.  CMIP6-based projections of GMSL change and components in 2100 relative to 1986–2005 (m) and the average rate during 2095–2100 (mm/yr) 
computed using IPCC AR5 methods for (a) SSP5-RCP8.5 (orange), (b) SSP2-RCP4.5 (blue), and (c) SSP1-RCP2.6 (green), overlaid by CMIP5-based projections 
(Church et al., 2013, their Table 13.SM.1), and the ensemble-median GMSL change (m) against (d) ensemble-median GSAT (K) and (e) time-integrated 
ensemble-median GSAT change [K yr] for CMIP6 (solid curves) and CMIP5 (dashed curves) for 2007–2100 for the same emissions scenarios. The colored solid 
lines and boxes in (a–c) represent the CMIP6 ensemble-medians and 5%–95% ranges, and the black dashed lines those for CMIP5. The symbols and whiskers 
represent the median and 5%–95% for the two CMIP6 models with the highest and lowest EffCS, respectively. Note the secondary y-axes for the average rate of 
GMSL change. CMIP: Coupled Model Intercomparison Project; EffCS: effective climate sensitivity; GMSL, global mean sea-level; GSAT: global mean surface air 
temperature; IPCC AR5: fifth Assessment Report of the Intergovernmental Panel on Climate Change; SSP, shared socioeconomic pathway; RCP, representative 
concentration pathway.

(a) (b) (c)

(e)(d)
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For both CMIP5 and CMIP6, the relationship between the median projection of GMSL and GSAT change 
becomes less linear toward 2100 under most scenarios (Figure  3d). In contrast, GMSL change and the 
time-integrated (cumulative sum of) GSAT change have a nearly linear and approximately scenario-inde-
pendent relationship toward 2100 (Figure 3e). We explain why and discuss the implications for mitigation 
in the next section.

4.  Discussion & Conclusions
The increased EffCS in CMIP6 translates into substantially higher (e.g., 0.82, 0.56, 0.41 K for the medians) 
projections of 21st-century GSAT change than in CMIP5 for SSP5-RCP8.5, SSP2-RCP4.5, and SSP1-RCP2.6, 
consistent with previous findings (Forster et al., 2020; Tokarska et al., 2020). However, the differences be-
tween CMIP5- and CMIP6-based GMSL projections are relatively modest. Updating the IPCC AR5 pro-
jections with CMIP6 input leads to 5%–95% ranges of 0.52–1.05, 0.38–0.76, and 0.30–0.64 m in 2100 for 
SSP5-RCP8.5, SSP2-RCP4.5, and SSP1-RCP2.6. The medians have increased by 2–3 cm only and the 95th 
percentiles by 3–7 cm (see Table S4 for projections of other studies that used IPCC AR5 methods). This is 
caused by multiple different factors.

First, a higher GSAT increase results in a lower Antarctic GMSL contribution through increased snowfall 
accumulation. Moreover, the total land-ice contribution to GMSL is a (nearly linear) function of time-inte-
grated GSAT change, since the rate of ice mass loss from the Greenland and Antarctic ice sheets and glaciers 
is related to GSAT change (Text S1). Since the relative difference in time-integrated GSAT change between 
CMIP5 and CMIP6 is smaller than the relative difference in GSAT change itself, the relative difference in 
GMSL rise in 2100 is also smaller. This additionally explains why projected GMSL rise rates around 2100 
increase considerably from CMIP5 to CMIP6 (Figures 3a–3c), implying that GMSL projections beyond 2100 
(e.g., Nauels et al., 2017; Palmer et al., 2018b, 2020) will be affected more strongly by increased EffCS. It also 
implies that time-integrated GSAT change up to 2100 is a better and more scenario-independent descriptor 
of total GMSL rise in 2100 than GSAT change in 2100. The approximate proportionality between the rate 
of OHU and GSAT change (Gregory et al., 2015; Gregory & Mitchell, 1997) further contributes to this. To 
minimize the time-integral of GSAT change, emissions should be reduced early (e.g., Mengel et al., 2018), 
making time-integrated emissions metrics more relevant for GMSL rise targets than endpoint metrics (Col-
lins et al., 2020; Olivié & Peters, 2013).

Second, GTE is not substantially higher in CMIP6 than in CMIP5 and correlates with EffCS less strongly 
than GSAT change (Section 3.2). Given the increase in GSAT change, our results suggests that the average 
OHU efficiency (e.g., Kuhlbrodt & Gregory, 2012) in CMIP6 is lower than in CMIP5. While the reasons 
for this are unclear (it could reflect increases in mean ocean stratification or changes in the patterns of 
projected surface warming), the intermodel differences in OHU efficiency may be dominated by the inter-
model differences in the representation of ocean circulation processes (Newsom et al., 2020). Also, larger 
differences in GTE may only emerge after 2100, given the slow response of the deep ocean (Geoffroy & 
Saint-Martin, 2013; Held et al., 2010).

Third, the effect of increased EffCS in some CMIP6 models on differences between CMIP5 and CMIP6 is 
partially balanced by the very low EffCS in others, such as INM-CM4-8 and INM-CM5-0. Thus, the lower 
end of the CMIP6 EffCS distribution also needs to be scrutinized. Additionally, the 20 models in our CMIP6 
ensemble come from only 12 different modeling centers. Consequently, model weighting based on model 
interdependence (e.g., Brunner et al., 2020) may influence our results.

For consistency between GTE and GSAT change (Text S1), we only used CMIP6 models that provide simu-
lations of both GTE and GSAT. Since the ensemble-mean GSAT change of all 31 CMIP6 models providing 
GSAT simulations is 0.11–0.27 K lower than that of the 20-member CMIP6 ensemble (Table S3), our GMSL 
projections might change when GTE simulations from additional models become available. Alternatively, 
for these models GTE could be derived from ocean temperature simulations (e.g., Lorbacher et al., 2015; Me-
let & Meyssignac, 2015), or by emulation with simple climate models (e.g., Geoffroy & Saint-Martin, 2013; 
Good et al., 2013; Palmer et al., 2018b).
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Although the EffCS range of CMIP6 lies partially outside the range recently assessed by the World Climate 
Research Program (WCRP) (Sherwood et  al.,  2020), increased EffCS may result from an improved rep-
resentation of the atmosphere in at least some of the CMIP6 models (e.g., Bjordal et al., 2020; Gettelmann 
et  al.,  2019; Williams et  al.,  2020). Even though the differences in GMSL projections for 2100 between 
CMIP5 and CMIP6 are modest, the uncertainty around what constitutes EffCS in GCMs combined with the 
interest of risk-averse stakeholders in low-probability/high-impact GMSL projections (Hinkel et al., 2019; 
Stammer et al., 2019) clearly motivates exploring the outer envelope of GMSL projections by premising 
projections on individual CMIP6 GCMs (Figures 3a–3c & S7).

If the real world would behave as simulated with CanESM5 (highest EffCS of CMIP6: 5.62 K), we cannot 
exclude a GMSL rise of 1.24 m for SSP5-RCP8.5 with more than 95% confidence based on IPCC AR5 meth-
ods. This is 51 cm more than for INM-CM4-8 (lowest EffCS of CMIP6: 1.83 K). Incorporating marine ice cliff 
instability in Antarctica in our projections may further augment this difference (Vega-Westhoff et al., 2020). 
Thus, the choice between characterizing the central part of the probability distribution and more compre-
hensively sampling the high end of the GMSL projection space, through subsetting the CMIP6 ensemble us-
ing EffCS, has a substantial impact on GMSL projections. Our results underline the need to constrain EffCS, 
GTE and GSAT in global climate models in order to better characterize uncertainty in sea-level projections.

Data Availability Statement
The CMIP6 data was extracted from ESGF on November 2, 2020. The authors thank Chris Jones for pro-
viding the CMIP6 GSAT time series processed using JASMIN on November 1, 2020. The CMIP6 data and 
Monte Carlo GMSL projections produced for this manuscript are available in the 4TU Data Repository: 
http://doi.org/10.4121/12958079.
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