<]
TUDelft

Delft University of Technology

Beyond Local Nash Equilibria for Adversarial Networks

Oliehoek, Frans A.; Savani, Rahul; Gallego, Jose; van der Pol, Elise; Grol3, Roderich

DOI
10.1007/978-3-030-31978-6_7

Publication date
2019

Document Version
Final published version

Published in
Artificial Intelligence

Citation (APA)

Oliehoek, F. A., Savani, R., Gallego, J., van der Pol, E., & GroB3, R. (2019). Beyond Local Nash Equilibria for
Adversarial Networks. In M. Atzmueller, & W. Duivesteijn (Eds.), Artificial Intelligence : 30th Benelux
Conference, BNAIC 2018, Revised Selected Papers (pp. 73-89). (Communications in Computer and
Information Science; Vol. 1021). Springer. https://doi.org/10.1007/978-3-030-31978-6_7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-030-31978-6_7
https://doi.org/10.1007/978-3-030-31978-6_7

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ — Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care

®

Check for
updates

Beyond Local Nash Equilibria
for Adversarial Networks

Frans A. Olichoek!®™) | Rahul Savani?, Jose Gallego®, Elise van der Pol?,
and Roderich Grof*

! Delft University of Technology, Delft, The Netherlands
f.a.oliehoek@tudelft.nl
2 University of Liverpool, Liverpool, UK
3 University of Amsterdam, Amsterdam, The Netherlands
4 The University of Sheffield, Sheffield, The Netherlands

Abstract. Save for some special cases, current training methods for
Generative Adversarial Networks (GANs) are at best guaranteed to con-
verge to a ‘local Nash equilibrium’ (LNE). Such LNEs, however, can be
arbitrarily far from an actual Nash equilibrium (NE), which implies that
there are no guarantees on the quality of the found generator or clas-
sifier. This paper proposes to model GANs explicitly as finite games in
mixed strategies, thereby ensuring that every LNE is an NE. We use the
Parallel Nash Memory as a solution method, which is proven to monoton-
ically converge to a resource-bounded Nash equilibrium. We empirically
demonstrate that our method is less prone to typical GAN problems such
as mode collapse and produces solutions that are less exploitable than
those produced by GANs and MGANS.

1 Introduction

Generative Adversarial Networks (GANs) [14] are a framework in which two
neural networks compete with each other: the generator (G) tries to trick the
classifier (C) into classifying its generated fake data as true. GANs hold great
promise for the development of accurate generative models for complex distri-
butions without relying on distance metrics [23]. However, GANs are difficult
to train [1,2,40]. A typical problem is mode collapse, which can take the form
of mode omission, where G does not produce any points from certain modes,
or mode degeneration, in which G only partially covers some of the modes. In
fact, except for special cases (cf. Sect.7), current training methods [17,40] can
only guarantee to converge to a local Nash equilibrium (LNE) [35]. However,
an LNE can be arbitrarily far from an NE, and the corresponding generator
might be exploitable by an opponent due to suffering from problems such as
mode collapse. Moreover, adding computational resources alone may not offer
a way to escape these local equilibria: the problem does not lie in the lack of

This paper is based on a prior arXiv paper which contains further details [31].

© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 73-89, 2019.
https://doi.org/10.1007/978-3-030-31978-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_7

74 F. A. Oliehoek et al.

computational resources, but is inherently the result of only allowing small steps
in strategy space using gradient-based training.

We introduce an approach that does not get trapped in LNEs by formulating
adversarial networks as finite zero-sum games. The solutions that we try to
find are saddle points in mized strategies. This approach is motivated by the
observation that, in the space of mixed strategies, any LNE is an NE. We employ
Parallel Nash Memory (PNM) [29], to search for approximate mixed equilibria
with small support.

PNM has been shown to monotonically converge to an NE, provided that in
its iterations it has non-zero probability to find better responses [29]. However,
due to the extremely large number of pure strategies that result for sensible
choices of neural network classes, we cannot expect to find exact best responses.
Therefore, we introduce resource-bounded best-responses (RBBRs), and show
that our PNM approach monotonically converges to the corresponding resource-
bounded Nash equilibrium (RB-NE).

Key features of our approach are that: (1) It is based on finite zero-sum
games, and as such it enables the use of existing game-theoretic methods. In
this paper we focus on one such method, Parallel Nash Memory (PNM) [29]. (2)
It will not get trapped in LNEs: we prove that it monotonically converges to
an RB-NE, which means that more computation can improve solution quality.
(3) It works for any network architecture. In particular, future improvements in
classifiers/generator networks can be exploited directly.

We investigate empirically the effectiveness of PNM and show that it can
indeed deal well with typical GAN problems. We show that the found solutions
closely match the theoretical predictions made by [14] about the conditions at
a Nash equilibrium, and are much less susceptible to being exploited by an
adversary than those produced by GANs and MGANs [18].

2 Background

We defer a more detailed treatment of related work until Sect. 7. Here, we intro-
duce some basic game theory.

Definition 1 (‘game’). A two-player strategic game , which we will simply call
‘game’, is a tuple <D, {Siticn> {ui}i€D>, where D = {1,2} is the set of players,
S; is the set of pure strategies (actions) for player i, and u; : S — R is i's
payoff function defined on the set of pure strategy profiles S :== &1 x Sz. When
the action sets are finite, the game is finite.

We also write s; and s_; for the strategy of agent 7 and its opponent respectively.
A fundamental concept is the Nash equilibrium (NE), which is a strategy profile
s = (s;,$—;) such that no player can unilaterally deviate and improve his payoft:
u;(8) > u;((s}, s—;)) for all players ¢ and s} € ;.

A finite game may not possess a pure NE. A mized strategy p; of player i
is a probability distribution over i’s pure strategies S;. The payoff of a player
under a profile of mixed strategies p = (1, po) is defined as the expectation:

Beyond Local Nash Equilibria for Adversarial Networks 75

ui(p) =3 esllLjep #i(s5)] - ui(s). Then an NE in mixed strategies is defined
as follows. A p = (p;,pn—;) is an NE if and only if u;(n) > w;((s}, p—;)) for
all players ¢ and potential unilateral deviations s; € S;. Every finite game has
at least one NE in mixed strategies [25]. In this paper we deal with two-player
zero-sum games, where u1(s1,82) = —ua(s1,82) for all s; € 81,82 € Sa. The
equilibria of zero-sum games, also called saddle points,' have several important
properties, as stated in Von Neuman’s Minmax theorem [27]:

Theorem 1. In a finite zero-sum game, v* s the value of the game that satis-
fies: min,,, max,,, w1 (@) = max,, min,, ui (1) = v*.

All equilibria have payoff v* and equilibrium strategies are interchangeable: if
(1, p2) and (u}, ph) are equilibria, then so are (u), u2) and (uy, pb) [32]. This
means that in zero-sum games we do not need to worry about equilibrium selec-
tion. Moreover, the convex combination of two equilibria is an equilibrium, mean-
ing that the game either has one or infinitely many equilibria. We also employ
the standard, additive notion of approzimate equilibrium: A pair of strategies
(i, po—q) is an eNE if Vi w; (i, po—i) > max,,/ wi (), p—g) — €.

In the literature, GANs have not typically been considered as finite games.
The natural interpretation of the standard setup of GANs is of an infinite game
where payoffs are defined over all possible weight parameters for the respective
neural networks. With this view we do not obtain existence of saddle points in the
space of parameters, nor the desirable properties that follow from Theorem 1.2
This is why the notion of local Nash equilibrium (LNE) has arisen in the literature
[35,40]. Roughly, an LNE is a strategy profile where neither player can improve
in a small neighborhood of the profile. In finite games every LNE is an NE, as,
whenever there is a global deviation (i.e., a better response), one can always
deviate locally in the space of mixed strategies towards a pure best response (by
playing that better response with € higher probability).

3 GANGs

In order to capitalize on the insight that we can escape local equilibria by switch-
ing to mixed strategy space for a finite game, we formalize adversarial networks
in a finite games setting.?

We consider a standard adversarial network setup: M = (pg, (G, p.),C, $)
where

! Note that in game theory the term ‘saddle point’ is used to denote a ‘global’ saddle
point which corresponds to a Nash equilibrium: there is no profitable deviation near
or far away from the current point. In contrast, in machine learning, the term ‘saddle
point’ typically denotes a ‘local’ saddle point: no player can improve its payoff by
making a small step from the current joint strategy.

2 Some results on the existence of saddle points in infinite action games are known, but
they require properties like convexity and concavity of utility functions [5], which
we cannot apply as they would need to hold w.r.t. the neural network parameters.

3 By relying on Glicksberg’s theorem, we think it would be possible to extend our
formulation to the continuous setting.

76 F. A. Oliehoek et al.

— pq(x) is the distribution over (‘true’ or ‘real’) data points z € R%.

— (G is a neural network class with d outputs, parametrized by a parameter
vector fg € Og, such that G(z;0c) € R? denotes the (‘fake’ or ‘generated’)
output of G on a random vector z drawn from some distribution z ~ p,.

— (' is a neural network class with a single output, parametrized by a parameter
vector O € O, such that the output C(x;0¢) € [0, 1] indicates the ‘realness’
of = according to C.

- ¢:]0,1] — R is a measuring function [4]—e.g., log for GANs, the identity
mapping for WGANs—used to specify game payoffs, explained next.

We call M a Generative Adversarial Network Game (GANG), since it induces
a zero-sum game (D = {G,C},{Sq,Sc}, {ug,uc}) with:

- Sq ={G(:;0¢) | bc € Oc} the set of strategies sg;
— Sc ={C(;0c) | 0c € Oc} the set of strategies sc;

— ue(56,5¢) = By [0(50(2))] — Bavp[6(sc(s6(2)))]- Le., the score of C is
the expected ‘measured realness’ of the real data minus that of the fake data;

~ ug(sa,sc) = —uc(sg, sc).

As such, when using ¢ = log, the above formulation of GANGs employ a payoff
function for G that use [14]’s trick to enforce strong gradients early in the training
process (but it applies this transformation to uc too, in order to retain the zero-
sum property). It is also possible to use the original GAN objective. Correctness
of these transformations is shown in [31].

In practice, GANs are represented using floating point numbers, of which,
for a given setup, there is only a finite (albeit large) number. From now on, we
will focus on finite GANGs, which have finite parameter sets and a finite set of
neural network architectures.

We emphasize this finiteness, because this is exactly what enables us to obtain
the desirable properties mentioned in Sect. 2: existence of (one or infinitely many)
mixed NEs with the same value, as well as the guarantee that any LNE is an
NE. Moreover, these properties hold for the GANG in its original formulation—
not for a theoretical abstraction in terms of (infinite capacity) densities—which
means that we can truly expect solution methods (that operate in the parametric
domain [38]) to exploit these properties. However, since we do not impose any
additional constraints or discretization?, the number of strategies (all possible
unique instantiations of the network class with floating point numbers) is huge.
Therefore, we think that finding (near-) equilibria with small supports is one
of the most important challenges for making principled advances in the field
of adversarial networks. As a first step towards addressing this challenge, we
propose to make use of the Parallel Nash Memory (PNM) [29], which can be seen
as a generalization (to non-exact best responses) of the double oracle method |6,
24].

4 Therefore, our finite GANGs have the same representational capacity as normal
GANSs that are implemented using floating point arithmetic.

Beyond Local Nash Equilibria for Adversarial Networks 7

4 Solving GANGs

Treating GANGs as finite games in mixed strategies permits building on exist-
ing tools and algorithms for these classes of games [10,11,33]. In this section,
we describe how to use Parallel Nash Memory (PNM) [29], which is particu-
larly tailored to find approximate NEs with small support, and monotonically®
converges to such an equilibrium.

Parallel Nash Memory for GANGs. The basic idea of PNM is that we iter-
atively find new strategies which are good candidates for improvement of an
approximate mixed strategy NE (uq, uc). Previous works (such as the original
PNM paper [29], and before that the double-oracle method [24]) have considered
the use of exact best response (BR) functions to deliver such new candidates.
In GANGs, however, computing such an exact BR is intractable, and we typ-
ically use gradient descent, or another way to compute an approximate best
response. In phrasing our algorithm, we abstract away from the actual imple-
mentation of how it is computed, but we acknowledge the fact that the quality
we can expect is bounded by computational resources. As such we will use the
term ‘resource-bounded best response’ (RBBR) to denote an approximate best
response function which computes the best possible answer it can given some
amount of computational resources.

Definition 2. A strategy s; € SFP of player i is a resource-bounded best-
response (RBBR) against a (possibly mized) strategy p;, if

Vs; € 8P, wi(si, py) = uils, py)-

That is, s; only needs to be amongst the best strategies that player ¢ can compute
in response to ;.

For ease of explanation, we focus on the setting with deterministic best
responses, but the approach can easily be extended to non-deterministic RBBR
functions® and our empirical evaluation makes use of such non-deterministic
RBBR functions (due to random initializations).

Algorithm 1 details our approach. PNM incrementally grows a strategic game
SG over a number of iterations using the AUGMENTGAME function. It uses
SOLVEGAME to compute (via linear programming, see, e.g., [37]) a mixed strat-
egy NE (ua, uc) of this smaller game at the end of each iteration. At the begin-
ning of each iteration the algorithm uses the RBBR functions to deliver new

5 For an explanation of the precise meaning of monotonic here, we refer to [29].
Roughly, we will be ‘secure’ against more strategies of the other agent with each
iteration. This does not imply that the worst case payoff for an agent also improves
monotonically. The latter property, while desirable, is not possible with an approach
that incrementally constructs sub-games of the full game, as considered here: there
might always be a part of the game we have not seen yet, but which we might dis-
cover in the future that will lead to a very poor worst case payoff for one of the
agents.

By changing the termination criterion of line 8 in Algorithm 1 into a criterion for
including the newly found strategies. See the formulation in [29] for more details.

78 F. A. Oliehoek et al.

Algorithm 1. PARALLEL NASH MEMORY WITH DETERMINISTIC RBBRS
1: (s@,sc) < INITIALSTRATEGIES()

2: (pa, pe) — {{sa}, {sc}) > set initial mixtures
3: while True do

4: sa < RBBR(uc) > get new bounded best resp.
5: sc < RBBR(ug)

6: // Expected payoffs of these ‘tests’ against mixture:

7: upRs < uc(sa,pc) +uc(uc, sc)

8: if UBRs S 0 then

9: break

10: end if

11: SG — AUGMENTGAME(SG, sa, sc)

12: (1a, pe) — SOLVEGAME(SG)

13: end while

14: return (ug, pc) > found an RB-NE

promising strategies (sg, s¢). Then we test if they ‘beat’ the current (ug, pc).
If they do, uggrs > 0, and the game is augmented with these and solved again to
find a new NE of the sub-game SG. If they do not, ugrs < 0, and the algorithm
stops.

AUGMENTGAME evaluates (by simulation) each newly found strategy for
each player against all of the existing strategies of the other player, thus con-
structing a new row and column for the maintained payoff matrix. In order to
implement the best response functions, we have used standard stochastic gra-
dient descent, which means that any existing neural network architectures can
be used. However, we need to compute RBBRs against miztures of networks of
the other player. For C this is trivial: we can simply generate a batch of fake
data from the mixture pug. Implementing an RBBR for G against uc is slightly
more involved, as we need to back-propagate the gradient from all the different
s¢ € pe to G. Intuitively, one can think of a combined network consisting of
the G network with its outputs connected to every sc € uc. The predictions
Us. of these components s¢ € pc are combined in a single linear output node
U= scenc e (sc) Usc- This allows us to evaluate and backpropagate through
the entire network. A practical implementation loops through each component
sc € pe and does the evaluation of the weighted prediction pc(sc) - ¥s. and
subsequent backpropagation per component.

Analysis. Given that we do not compute exact BRs, we cannot get convergence
to an NE. Instead, using RBBRs, we define an intuitive specialization of NE:

Definition 3. p = (u;, ;) s a resource-bounded NE (RB-NE) if and only if

That is, an RB-NE can be thought of as follows: we present p to each player i
and it gets the chance to switch to another strategy, for which it can apply its
bounded resources (i.e., use RBBR;) exactly once. After this application, the

Beyond Local Nash Equilibria for Adversarial Networks 79

player’s resources are exhausted and if the found RBBR;(it;) does not lead to
a higher payoff it will not have an incentive to deviate.”

Intuitively, it is clear that PNM converges to an RB-NE, which we now state
formally.

Theorem 2. If PNM terminates, it has found an RB-NE.

Proof. We show that ugrs < 0 implies we have an RB-NE:

uprs = ug(RBBRg(puc), ic) + uc(pa, RBBRc(ua))
<0 =ug(pa, pc) +uc(pa, pe) (1)

Note that, per Definition 2, uc(RBBRg(uc), uc) > uc(sg, pe) for all com-
putable s, € SEP (and similar for C). Therefore, the only way that
ug(RBBRg(uc), be) > ua(pa, ue) could fail to hold, is if pe would include
some strategies that are not computable (not in SEP) that provide higher pay-
off. However, as the support of ug is composed of strategies computed in pre-
vious iterations, this cannot be the case. We conclude ug(RBBR¢(uc), e) >
ug(pa, po) and similarly uc(pg, RBBRo(ug)) > uc(pg, ie). Together with
(1) this directly implies ug(ug, o) = ua(RBBRg(uc), pc) and uc(pa, pc) =
uc(pa, RBBRc(ug)), indicating we found an RB-NE.

Corollary 1. Moroever, making use of the finiteness of the game, it can be
easily shown that Algorithm 1 terminates and monotonically converges to an
equilibrium.

Proof. This follows directly from the fact that there are only finitely many
RBBRs and the fact that we never forget RBBRs that we computed before, thus
the proof for PNM [29] extends to Algorithm 1.

Finally, an RB-NE can be linked to the familiar notion of e-NE by making
assumptions on the power of the best response computation.

Theorem 3. If both players are powerful enough to compute e-best responses,
then an RB-NFE is an e-NE.

Proof. Starting from the RB-NE (p;, jt;), assume an arbitrary i. By definition
of RB-NE u;(pi, 1) = wil RBBR;(p1), p17) > max,; ui(p, pj) — €.

The PNM algorithm for GANGs is parameter free, but we mention two adap-
tations that are helpful: Interleaved training of best responses and regularization
of classifier best responses. Details can be found in [31].

" During training the RBBR functions will be used many times. However, the goal of
the RB-NE is to provide a characterization of the end point of training.

80 F. A. Oliehoek et al.

5 Experiments

Here we report on experiments that aim to test if searching in mixed strategies
with PNM-GANG can help in reducing problems with training GANSs, and if
the found solutions (near-RB-NEs) provide better generative models and are
potentially closer to true Nash equilibria than those found by GANs (near-
LNEs). Since our goal is to produce better generative models, we refrain from
evaluating these methods on complex data like images: image quality and log
likelihood are not aligned as for instance shown by [39]. Moreover there is debate
about whether GANs are overfitting and assessing this from samples is difficult;
some methods have been proposed e.g., [3,22,28,36], but most provide merely a
measure of variability, not over-fitting. As such, we choose to focus on irrefutable
results on mixture of Gaussian (MoG) tasks, for which the distributions can
readily be visualized.

Ezxperimental Setup. We compare our PNM approach (‘PNM-GANG’) to a
vanilla GAN implementation and state-of-the-art MGAN [18]. Table 1 summa-
rizes the settings for GAN and PNM training. RBBR models were taken to be
as small as possible while still achieving good results. As suggested by [8], we
use leaky ReLU as inner activation for our GAN implementation to avoid sparse
gradients. Generators have linear output layers. Classifiers use sigmoids for the
final layer. Both classifiers and generators are multi-layer perceptrons with 3 hid-
den layers. We do not use techniques such as Dropout or Batch Normalization,
as they did not yield significant improvements in the quality of our experimental
results. The MGAN configuration is identical to that of Table 3 in Appendix C1
of [18].

Table 1. Settings used to train GANs and RBBRs.

GAN RBBR
Learning rate 3-107* 5.1073
Batch size 128 128
Dimension of z 40 5
Hidden nodes 50 5
Iterations 20000 750
Generator parameters | 4902 92
Classifier parameters | 2751 61
Inner activation Leaky ReLU | Leaky ReLU
Measuring function log 10~%-bounded log

We test on 3 MoG tasks: ‘round’, ‘grid’” and ‘random’ (cf. Fig. 1). For each we
create test cases with 9 and 16 components. In our plots, black points are real
data, green points are generated data. Blue indicates areas that are classified as
‘realistic’ while red indicates a ‘fake’ classification by C.

Beyond Local Nash Equilibria for Adversarial Networks 81

4
L » ”
2
03
o W w» - |
02
-2
» £ - .
-4
S 2 o 2 4 T 2 o 2 3 2
+ Tue 4+ Fake 4 Tue 4+ Fake 4 Tue 4+ Fake
. | 1l | A bl 1 I IR o I‘ v||||| L .|||.||.l
0 1 2 o 1 22 o 0 2 o 1 2 o 10 2 2 4 0 1 2 30 4
Generator Discriminator Generator Discriminator Generator Discriminator

4+ True 4+ Fake

2 0 2 -2 0
4 Tue 4+ Fake + Tue 4 Fake + Tue 4 Fake
bt vl b , Lo \.||IJ|| 'Ihl dwn ol | - ..I|||J. Y ,.|| el o e ..In...“n
o 20 4 6 o 2 0 0 2 0 2 W 0o 1 20 3 4 0 1 20 3 4
Generator Discriminator Generator Discriminator Generator Discriminator

4+ True 4+ Fake + True 4 Fake + True 4 Fake

Fig. 1. Results for mixtures of Gaussians with 9 and 16 modes. Odd rows: PNM-
GANG, Even rows: GAN. The histograms represent the probabilities in the mixed
strategy of each player. True data is shown in black, while fake data is green. The
classification boundary (where the classifier outputs 0.5) is indicated with a red line.
Best seen in color. (Color figure online)

82 F. A. Oliehoek et al.

Found Solutions Compared to Normal GANs. The results produced by regular
GANs and PNM-GANGs are shown in Fig.1 and clearly convey three main
points: (1) The PNM-GANG mixed classifier has a much flatter surface than
the classifier found by the GAN. Around the true data, it outputs around 0.5
indicating indifference, which is in line with the theoretical predictions about the
equilibrium [14]. (2) This flatter surface is not coming at the cost of inaccurate
samples. In contrast: nearly all samples shown are hitting one of the modes and
thus the PNM-GANG solutions are highly accurate, much more so than the GAN
solutions. (3) Finally, the PNM-GANGs, unlike GANs, do not suffer from mode
omission. We also note that PNM-GANG typically uses fewer total parameters
than the regular GAN, e.g., 1463 vs. 7653 for the random 9 task in Fig. 1. This
shows that, qualitatively, the use of multiple generators seems to lead to good
results. However, not all modes are fully covered. This can be controlled by
varying the learning rate [31].

Found Solutions Compared to MGANs. Here we compare the solutions found
above for PNM-GANGs to a state-of-the-art GAN variant: MGAN [18] pro-
poses a setup with a mixture of k generators, a classifier, and a discriminator. In
an MGAN, the generator mixture aims to create samples which match the train-
ing data distribution, while the discriminator distinguishes real and generated
samples, and the classifier tries to determine which generator a sample comes
from. We use MGAN as a state-of-the art baseline that was explicitly designed
to overcome the problem of mode collapse.

Figure 2 shows the results of MGAN on the mixture of Gaussian tasks. We
see that MGAN results do seem qualitatively quite good. Comparing them to
the PNG-GANG results from Fig.1, we see that MGAN may even have less
mode degeneration. However, we also see that in the MGAN results there is one
missed mode (and thus also one mode covered by 2 generators) on the randomly
located components task (right column). In contrast, the PNM-GANGs results
did not fail to capture any mode.

We point out that MGAN results were obtained with an architecture and
hyperparameters which exactly match those proposed by [18] for a similar task.
This means that the MGAN models shown use many more parameters (approx.
310,000) than the GAN and GANG models (approx. 2,000). MGAN requires
the number of generators to be chosen upfront as a hyperparameter of the
method. We chose this to be equal to the number of mixture components, so
that MGAN could cover all modes with one generator per mode. We note that
PNM does not require such a hyperparameter to be set, nor does PNM require
the related “diversity” hyperparameter of the MGAN method (called 3 in the
MGAN paper).

Overall, these results show that the quality of the solutions found by PNM-
GANGS is competitive to that of the state-of-the-art MGAN, while using much
fewer parameters.

Ezxploitability of Solutions. Finally, to complement the above qualitative analysis,
we also provide a quantitative analysis of the solutions found by GANs, MGANs

Beyond Local Nash Equilibria for Adversarial Networks 83

w & o @ woo -
1. . -)
O . :
. - . -
N :

Z 5 _
True =% =) [57‘ + Tue 4 61 =} SR + T + 6 4 G (R 07]

G0 =3 =3 c6 o8 G0 =3 G4 3 o8

Fig. 2. Results for MGAN on several mixture of Gaussian tasks with 9 modes. Markers
correspond to samples created by each generator.

and PNM-GANGs. We investigate to what extent they are exploitable by newly
introduced adversaries with some fixed computational power (as modeled by the
complexity of the networks we use to attack the found solution). Intuitively,
since PNM-GANGs are trained by (against) more powerful attack than GANs,
we expect them to be more robust against new attacks of any kind. Specifically,
for a given solution fi = (tig, tic) we use the following measure of exploitability:

expl™P (jic, ic) & RBmax,,,uc(ua, tic) + RBmax, . uc (i, pe),

where ‘RBmax’ denotes an approximate maximization performed by an adver-
sary of some fixed complexity.

That is, the ‘RBmax’ functions are analogous to the RBBR functions
employed in PNM, but the computational resources of ‘RBmax’ could be differ-
ent from those used during PNM. Intuitively, it gives a higher score if [i is easier
to exploit. However, it is not a true measure of distance to an equilibrium: it
can return values that are lower than zero which indicate that & could not be
exploited by the approximate best responses. Our exploitability is closely related
to the use of GAN training metrics [20], but additionally includes the exploitabil-
ity of the classifier. This is important: when only testing the exploitability of the
generator, this does give a way to compare generators, but it does not give a
way to assess how far from equilibrium we might be. Since finite GANGs are
zero-sum games, distance to equilibrium is the desired performance measure. In
particular, the exploitability of the classifier actually may provide information
about the quality of the generator: if the generator holds up well against a perfect
classifier, it should be close to the data distribution.®

Figure 3 shows our exploitability results for all three tasks with nine modes.
We observe roughly the same trend across the three tasks. First, we investi-
gate the exploitability of solutions delivered by GANs, MGANs and GANGs of

8 This measure of exploitability was used to quantify convergence in PNM [29], and
also has been used in the optimization literature [26]. It was in the context of GANs
in [30], and further motivated for this purpose in [31]. Additionally, an empirical
evaluation of exploitability as a measure for GANs was performed in the mean-
time [16], suggesting that this is a useful measure to quantify sample quality and
mode collapse.

84 F. A. Oliehoek et al.

¥OPNM 4 GAN § MGAN| ¥ PNM GAN MGAN
Fa 100
8 32 15 +
¢+ 75
6 10
g g Yot g so0
R g s g
3 3 . . N v 2514
2 63 0 | . 001 ™ Wy wvy ¥ reyo—y
v Josa 1330 1995 oo
o x a] -5 -2.5
1 8 15 22 29 36 43 0 500 1000 1500 2000 0 200 400 600 800 1000 1200 1400
PNM Iteration Number of Parameters Number of Parameters of Attackers
¥ PNM 4 GAN & MGAN T PNM GAN MGAN |

125 17

¢ 8
10.0 o +
75 @ 1 e 6
5 3
5.0 32 3 + Sa
g 4
2
0

explRé

25 é

1064
J004 1330 1197 obe . b v g

0.0 0 v - vy ¥ v v -
1 6 12 18 23 29 35 500 1000 1500 2000 0 200 400 600 800 1000 1200 1400
PNM Iteration Number of Parameters Number of Parameters of Attackers

¥ PNM 4 GAN 4 MGAN ¥ oeNM GAN MGAN
125 3 - 6 -
10.0 F” - + 4
75 ~ + g
* s
50 }399 f,ﬁs o si) } + k 5,
25 % J197 931 .

. v v -t
o0 463 | 3.
1 4 8 12 16 20 24 250 500 750 1000 1250 1500 1750 0 200 400 600 800 1000 1200 1400
PNM Iteration Number of Parameters Number of Parameters of Attackers

expl®
explR8

Fig. 3. Exploitability results all 9 mode tasks. Top to bottom: round, grid, random.

different complexities (in terms of total number of parameters used). For this,
we compute ‘attacks’ to these solutions using attackers of fixed complexity (a
total of 453 parameters for the attacking G and C together). These results are
shown in Fig. 3 (left and middle column). The left column shows the exploitabil-
ity of PNM-GANG after different numbers of iterations, as well as the number
of parameters used in the solutions found in those iterations (a sum over all the
networks in the support of the mixture). Error bars indicate standard deviation
over 15 trials. It is apparent that PNM-GANG solutions with more parameters
typically are less exploitable. Also shown is that the variance of exploitability
depends heavily on the solution that we happen to attack.

The middle column shows how exploitable GAN, MGAN and PNM-GANG
models of different complexities are: the x-axis indicates the total number of
parameters, while the y-axis shows the exploitability. The PNM results are the
same points also shown in the left column, but repositioned at the appropriate
place on the x-axis. All data points are exploitability of models that were trained
until convergence. Note that here the x-axis shows the complexity in terms of
total parameters. The figure shows an approximately monotonic decrease in
exploitability for GANGs, while GANs and MGANs with higher complexity
are still very exploitable in many cases. In contrast to GANGs, more complex
architectures for GANs or MGANSs are thus not necessarily a way to guarantee
a better solution.

We also we investigate what happens for the converged GAN/PNM-GANG
solution of Fig. 1, which have comparable complexities, when attacked with vary-
ing complexity attackers. We also attack the previously reported MGAN solution

Beyond Local Nash Equilibria for Adversarial Networks 85

(Fig. 2), which has a significantly larger number of parameters (approx. 310,000)
than the GAN and GANG models (approx. 2,000). These results are shown in
Fig.3 (right). Clearly shown is that the PNM-GANG is robust with near-zero
exploitability even when attacked with high-complexity attackers. The MGAN
models also have low exploitability, but recall that these models are much more
complex. Even with such a complex model, in the ‘random’ task, the MGAN solu-
tion has a non-zero level of exploitability, roughly constant for several attacker
complexities. This is most likely related to the missed mode and the fact that
two of the MGAN generators collapsed to the same lower-right mode in Fig. 1.
In stark contrast to both PNM-GANGs and MGAN, we see that the converged
GAN solution is exploitable already for low-complexity attackers, again suggest-
ing that the GAN was stuck in an Local Nash Equilibrium far away from a Nash
Equilibrium.

6 Discussion

Overall, the preceding results are very positive: they demonstrate that PNM-
trained GANGs can provide more robust solutions than GANs/MGANSs with the
same number of parameters, suggesting that they are closer to a Nash equilibrium
and provide better generative models.

However, we have had (at least so far) less positive results scaling these
methods to the image tasks (e.g., MNIST, CelebA or CIFAR-10) that researchers
have used to evaluate GANs. A typical problem is that we experience extreme
mode collapse of the generator RBBR: i.e., the RBBR typically outputs a single
image, regardless of the noise vector z. This mirrors the problem of generator
mode collapse also observed in regular GAN training and we are investigating
how to overcome this problem by building on techniques, such as minibatch
discrimination [36], that were introduced to overcome the related problem in
regular GAN training.

An interesting observation that we made on MNIST is that we get the same
issues when initializing PNM with the solutions from a number of different runs
of normal GAN training. That is, using these GAN solutions as the set of initial
strategies, we still find RBBRs (which look like noise attacks) that significantly
gain over the mixed strategies maintained, for many iterations. This echos the
results that we reported above for the MOG domains: the GAN provided solu-
tions for MNIST are not robust to newly trained attacks. As such, one might
question in how far GAN training really works for MNIST in terms of capturing
the true data distribution: as far as we can tell these solutions are far from equi-
librium, and therefore there is no reason to conclude that the data distribution
would be well-captured.

7 Related Work

There is a vast body of work related to this paper. We will restrict to discussing
only the most relevant papers here. For a broader discussion, including recent

86 F. A. Oliehoek et al.

progress on solving in zero-sum games, more general GAN improvements, and
bounded rationality, please see [31].

Recently, more researchers have investigated the idea of (more or less) explic-
itly representing a set or mixture of strategies for the players. For instance, [21]
retains sets of networks that are trained by randomly pairing up with a net-
work for the other player thus forming a GAN. This, like PNM, can be inter-
preted as a coevolutionary approach, but unlike PNM, it does not have any
convergence guarantees. MAD-GAN [13] uses k generators, but one discrimina-
tor. MGAN [18] proposes mixtures of k generators, a classifier and a discrim-
inator with weight sharing; and presents a theoretical analysis similar to [14]
assuming infinite capacity densities. None of these approaches have convergence
guarantees.

Generally, explicit mixtures can bring advantages in two ways: (1) Repre-
sentation: intuitively, a mixture of k neural networks could better represent a
complex distribution than a single neural network of the same size, and would be
roughly on par with a single network that is k times as big. Arora et al. [4] show
how to create such a bigger network that is particularly suitable for dealing with
multiple modes using a ‘multi-way selector’. In our experiments we observed
mixtures of simpler networks leading to better performance than a single larger
network of the same total complexity (in terms of number of parameters). (2)
Training: Arora et al. use an architecture that is tailored to representing a mix-
ture of components and train a single such network. We, in contrast, explicitly
represent the mixture; given the observation that good solutions will take the
form of a mixture. This is a form of domain knowledge that facilitates learning
and convergence guarantees.

A closely related paper is the work by [15], which also builds upon game-
theoretic tools to give certain convergence guarantees. The main differences are
as follows: (1) We provide a more general form of convergence (to an RB-NE)
that is applicable to all architectures, that only depends on the power to compute
best responses, and show that PNM-GANG converges in this sense. We also show
that if agents can compute an e-best response, then the procedure converges to
an NE. (2) [15] show that for a quite specific GAN architecture their first
algorithm converges to an e-NE. On the one hand, this result is an instantiation
of our more general theory: they assume they can compute exact (for G) and
e-approximate (for C') best responses; for such powerful players our Theorem 3
provides that guarantee. On the other hand, their formulation works without
discretizing the spaces of strategies. (3) The practical implementation of the
algorithm in [15] does not provide guarantees.

Ge et al. [12] propose a method similar to ours that uses fictitious play [7,11]
rather than PNM. Fictitious play does not explicitly model mixed strategies for
the agents, but interprets the opponent’s historical behavior as such a mixed
strategy. The average strategy played by the ‘Fictitious GAN’ approach con-
verges to a Nash equilibrium assuming that “the discriminator and the genera-
tor are updated according to the best-response strategy at each iteration”, which
follow from the result by [9] which states that fictitious play converges in con-

Beyond Local Nash Equilibria for Adversarial Networks 87

tinuous zero-sum games. Intuitively, fictitious play, like PNM, in each iteration
only ever touches a finite subset of strategies, and one can show that the value of
such subgames converges. While this result gives some theoretical underpinning
to Fictitious GAN, of course in practice the assumption is hard to satisfy and
the notion of RB-NE that we propose may apply to analyze their approach too.
Also, in their empirical results they limit the history of actions (played neural
networks in previous iterations) to 5 to improve scalability at the cost of conver-
gence guarantees. The Fictitious GAN is not explicitly shown to be more robust
than normal GANs, as we show in this paper, but it is demonstrated to produce
high quality images, thus showing the potential of game theoretical approaches
to GANS to scale.

Hsich et al. [19] also search in the space of mixed strategies, but without
making finiteness assumption (enabled by Glicksberg’s theorem). In particular
they extend entropic Mirror Descent and Mirror-Prox to infinite dimension to
solve GANSs, and propose an approximation that can be implemented making
use of sampling algorithms. However, for the algorithm to improve over time it
needs to make updates that are proportional to the expected payoffs of strategies
against the opponents current strategy. De facto this implies that the sampling
strategy must be able to find best responses, which in turn implies solving a
non-convex optimization problem. As such, it seems unlikely that their practical
approach would converge to Nash equilibrium. An interesting question is whether
their method can be shown to converge to an RB-NE.

8 Conclusions

We introduce finite GANGs—Generative Adversarial Network Games—a novel
framework for representing adversarial networks by formulating them as finite
zero-sum games. By tackling them with techniques working in mixed strategies
we can avoid getting stuck in local Nash equilibria (LNE). As finite GANGs have
extremely large strategy spaces we cannot expect to exactly (or e-approximately)
solve them. Therefore, we introduced the resource-bounded Nash equilibrium
(RB-NE). This notion is richer than LNE in that it captures not only failures of
escaping local optima of gradient descent, but applies to any approximate best-
response computations, including methods with random restarts. Additionally,
GANGs can draw on a rich set of methods for solving zero-sum games [10,11,
29,34]. In this paper, we build on PNM and prove that the resulting method
monotonically converges to an RB-NE. We empirically demonstrate that the
resulting method does not suffer from typical GAN problems such as mode
collapse and forgetting. We also show that the GANG-PNM solutions are closer
to theoretical predictions, and are less exploitable than normal GANs: by using
PNM we can train models that are more robust than GANs of the same total
complexity, indicating they are closer to a Nash equilibrium and yield better
generative performance.

We presented a framework that can have many instantiations and modifi-
cations. For example, one direction is to employ different learning algorithms.

88

F. A. Oliehoek et al.

Another direction could focus on modifications of PNM, such as to allow dis-
carding “stale” pure strategies, which would allow the process to run for longer
without being inhibited by the size of the resulting zero-sum “subgame” that
must be maintained and repeatedly solved.

Acknowledgments. This research made use of a GPU

donated by NVIDIA. F.A.O. is funded by EPSRC First I
Grant EP/R001227/1. This project had received funding o o g
from the European Research Council (ERC) under the Euro-

pean Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 758824—INFLUENCE).

References

10.

11.

12.

13.

14.
15.

16.

17.

. Arjovsky, M., Bottou, L.: Towards principled methods for training generative

adversarial networks. In: ICLR (2017)

. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.

In: ICML (2017)
Arora, S., Zhang, Y.: Do GANs actually learn the distribution? An empirical study,
ArXiv e-prints (2017)

. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y.: Generalization and equilibrium in

generative adversarial nets (GANs). In: ICML (2017)

Aubin, J.P.: Optima and Equilibria: An Introduction to Nonlinear Analysis, vol.
140. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03539-9
Bosansky, B., Kiekintveld, C., Lisy, V., Pechoucek, M.: An exact double-oracle
algorithm for zero-sum extensive-form games with imperfect information. J. Al
Res. 51, 829-866 (2014)

Brown, G.W.: Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc.
13(1), 374-376 (1951)

Chintala, S.: How to train a GAN? Tips and tricks to make GANs work. https://
github.com/soumith/ganhacks (2016). Accessed 08 Feb 2018

. Danskin, J.M.: Fictitious play for continuous games revisited. Int. J. Game Theory

10(3), 147154 (1981)

Foster, D.J., Li, Z., Lykouris, T., Sridharan, K., Tardos, E.: Learning in games:
robustness of fast convergence. In: NIPS 29 (2016)

Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cam-
bridge (1998)

Ge, H., Xia, Y., Chen, X., Berry, R., Wu, Y.: Fictitious GAN: training GANs with
historical models. ArXiv e-prints (2018)

Ghosh, A., Kulharia, V., Namboodiri, V.P., Torr, P.H.S., Dokania, P.K.: Multi-
agent diverse generative adversarial networks. ArXiv e-prints (2017)

Goodfellow, I., et al.: Generative adversarial nets. In: NIPS 27 (2014)

Grnarova, P., Levy, K.Y., Lucchi, A., Hofmann, T., Krause, A.: An online learning
approach to generative adversarial networks. In: ICLR (2018)

Grnarova, P., Levy, K.Y., Lucchi, A., Perraudin, N., Hofmann, T., Krause, A.:
Evaluating GANs via duality. arXiv e-prints (2018)

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In: NIPS 30 (2017)

https://doi.org/10.1007/978-3-662-03539-9
https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Beyond Local Nash Equilibria for Adversarial Networks 89

Hoang, Q., Nguyen, T.D., Le, T., Phung, D.Q.: Multi-generator generative adver-
sarial nets. In: ICLR (2018)

Hsieh, Y.P., Liu, C., Cevher, V.: Finding mixed Nash equilibria of generative adver-
sarial networks. ArXiv e-prints (2018)

Im, D.J., Ma, A.H., Taylor, G.W., Branson, K.: Quantitatively evaluating GANs
with divergences proposed for training. In: ICLR (2018)

Jiwoong Im, D., Ma, H., Dongjoo Kim, C., Taylor, G.: Generative adversarial
parallelization. ArXiv e-prints (2016)

Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. In: ICLR (2018)

Li, W., Gauci, M., Gro}; R.: Turing learning: a metric-free approach to inferring
behavior and its application to swarms. Swarm Intell. 10(3), 211-243 (2016)
McMahan, H.B., Gordon, G.J., Blum, A.: Planning in the presence of cost functions
controlled by an adversary. In: ICML (2003)

Nash, J.F.: Equilibrium points in N-person games. Proc. Natl. Acad. Sci. U. S. A.
36, 48-49 (1950)

Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approxi-
mation approach to stochastic programming. STAM J. Optim. 19(4), 1574-1609
(2009)

von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100(1), 295-320
(1928)

Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
GANSs. In: ICML (2017)

Oliehoek, F.A., de Jong, E.D., Vlassis, N.: The parallel Nash memory for asym-
metric games. In: Proceedings of the Genetic and Evolutionary Computation
(GECCO) (2006)

Oliehoek, F.A., Savani, R., Gallego-Posada, J., Van der Pol, E., De Jong, E.D.,
GroB, R.: GANGs: generative adversarial network games. ArXiv e-prints (2017)
Oliehoek, F.A., Savani, R., Gallego-Posada, J., van der Pol, E., Gross, R.: Beyond
local Nash equilibria for adversarial networks. ArXiv e-prints (2018)

Osborne, M.J., Rubinstein, A.: Nash equilibrium. In: A Course in Game Theory.
The MIT Press (1994)

Rakhlin, A., Sridharan, K.: Online learning with predictable sequences. In: COLT
(2013)

Rakhlin, A., Sridharan, K.: Optimization, learning, and games with predictable
sequences. In: NIPS 26 (2013)

Ratliff, L.J., Burden, S.A., Sastry, S.S.: Characterization and computation of local
Nash equilibria in continuous games. In: Annual Allerton Conference on Commu-
nication, Control, and Computing. IEEE (2013)

Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: NIPS 29 (2016)

Shoham, Y., Leyton-Brown, K.: Multi-Agent Systems: Algorithmic, Game-
Theoretic and Logical Foundations. Cambridge University Press, Cambridge (2008)
Sinn, M., Rawat, A.: Non-parametric estimation of Jensen-Shannon divergence in
generative adversarial network training. In: AISTATS (2018)

Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative
models. In: ICLR (2016)

Unterthiner, T., Nessler, B., Klambauer, G., Heusel, M., Ramsauer, H., Hochreiter,
S.: Coulomb GANS: provably optimal Nash equilibria via potential fields. In: ICLR
(2018)

	Beyond Local Nash Equilibria for Adversarial Networks
	1 Introduction
	2 Background
	3 GANGs
	4 Solving GANGs
	5 Experiments
	6 Discussion
	7 Related Work
	8 Conclusions
	References

