
 
 

Delft University of Technology

Web API Fragility
How Robust is Your Mobile Application?
Espinha, Tiago; Zaidman, Andy; Gross, Hans Gerhard

DOI
10.1109/MobileSoft.2015.9
Publication date
2015
Document Version
Submitted manuscript
Published in
Proceedings - 2nd ACM International Conference on Mobile Software Engineering and Systems,
MOBILESoft 2015

Citation (APA)
Espinha, T., Zaidman, A., & Gross, H. G. (2015). Web API Fragility: How Robust is Your Mobile
Application? In Proceedings - 2nd ACM International Conference on Mobile Software Engineering and
Systems, MOBILESoft 2015 (pp. 12-21). Article 7283022 IEEE. https://doi.org/10.1109/MobileSoft.2015.9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MobileSoft.2015.9
https://doi.org/10.1109/MobileSoft.2015.9


Web API Fragility:
How Robust Is Your Mobile Application?

Tiago Espinha
Delft University of Technology

The Netherlands
t.a.espinha@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

Hans-Gerhard Gross
Esslingen University

Germany
Hans-Gerhard.Gross@hs-esslingen.de

Abstract—Web APIs provide a systematic and extensible ap-
proach for application-to-application interaction. A large number
of mobile applications makes use of web APIs to integrate services
into apps. Each Web API’s evolution pace is determined by their
respective developer and mobile application developers are forced
to accompany the API providers in their software evolution tasks.
In this paper we investigate whether and how mobile application
developers deal with the added distress of web APIs evolving.
In particular, we studied how robust 43 high profile mobile
applications are when dealing with mutated web API responses.
Additionally, we interviewed three mobile application developers
to better understand their choices and trade-offs regarding web
API integration.

I. INTRODUCTION

Modern-day software development is inseparable from the
use of Application Programming Interfaces (APIs) [1]. Soft-
ware developers access APIs as interfaces for code libraries,
frameworks or sources of data, to free themselves from low-
level programming tasks or speed up development [2]. In
contrast to statically linked APIs, a new breed of so-called
web service APIs offer a systematic and extensible approach
to integrate services into (existing) applications [3], [4], [5].
However, what happens when these web APIs start to evolve?
Lehman and Belady emphasize the importance of evolution
for software to stay successful [6], [7], and updating software
to the latest version of its components, accessed through
APIs [8]. In the context of statically linked APIs, Dig and
Johnson state that breaking changes to interfaces can be
numerous [8], and Laitinen says that, unless there is a high
return-on-investment, developers will not migrate to a newer
version [9].

When integrating with a web API however, developers
can no longer afford the inertia that was noted by Laitinen.
The web API provider sets the pace for migrating to newer
versions (eventually removing older ones altogether) and client
developers are forced to migrate. In the statically linked API
context, developers could choose to stay with an older version
of e.g. libxml, which meets their needs, yet, with web service
APIs the provider can at any time unplug a specific version
(and functionality), thus forcing an upgrade.

Indeed, while Laitinen claims that client developers will
postpone migration to newer versions until there is a high
return-on-investment, in previous work [10], [11] we found
that some web API providers are eager to push breaking

changes and force client developers to migrate to a newer
version within a period as short as 4 months.

Through their loose coupling [12] and REST interfaces, web
APIs can easily be integrated into applications with a single
HTTP request [13]. However, as the integration becomes as
simple as exchanging HTTP requests, do client-side developers
consider the consequences of ever-evolving web APIs [14]?

We choose to perform our investigation into web APIs in the
realm of mobile applications. This was a conscious decision as
(1) mobile apps connected through web APIs are an integral
part of the mobile computing experience [15] and (2) in the
United States of America mobile applications’ Internet usage
has in 2014 surpassed Internet usage on desktop computers 1.
Being aware of the ever-growing importance of and reliance on
web APIs [16], particularly in the mobile computing domain,
we wonder how well-prepared some of the most popular
Android mobile applications, in some cases used by millions
of users, are with regard to a number of factors which include:
• changes and faults in the web API response from the

server due to evolution of the web API
• interrupted HTTP requests due to e.g. loss of Internet

connectivity
• empty response messages due to server overload
In order to steer our research, our main research question

is “How well-prepared are Android mobile applications with
regard to changes in response messages from the web API?”,
which we then divide into the following sub-research ques-
tions:
[RQ1] How robust are mobile apps when the web APIs being

used return unexpected responses?
[RQ2] Have web API client developers developed resilience

against changes in or failure of the web API?.
To address these questions we performed a study on 43

Android mobile applications which make use of at least one
web API. In our study we perform fuzz testing [17] through
a series of manual mutations aimed at mimicking potential
real-world scenarios where the web API changed its behavior
either through (communication) failure or software evolution.
We then report the different reactions displayed by the mobile
applications when dealing with such mutated responses and

1http://money.cnn.com/2014/02/28/technology/mobile/
mobile-apps-internet/, last visited December 26th, 2014.



interview three developers of some of the aforementioned
applications as a means to gather deeper insight on whether
these developers are aware of the added challenges introduced
by web APIs.

The remainder of this paper is structured as follows: in
Section II we describe our approach for analyzing web API
client robustness, in Section III we describe our experimental
setup including how the mobile applications were selected,
the added dimensions we analyzed and details regarding the
developer interviews, Section IV describes the results of our
experiment with mutation analysis as well as the insights from
the developer interviews, Section V discusses potential threats
to validity of our work, in Section VI we present related
work and lastly we present our conclusions and future work
in Section VII.

II. APPROACH

In order to investigate how robust Android mobile appli-
cations are when dealing with changing and/or faulty web
APIs, we employ a mutation analysis approach (also found in
the area of software testing [18]). We apply this approach on
web API responses by intercepting such messages before they
are received by the Android application. We chose mutation
analysis as it allows for the creation of potential mutant web
API responses and therefore makes it possible to simulate
real-world web API pains. An additional reason for choosing
mutation analysis is the fact that we lack metadata on each
web API response, and therefore a more targeted approach
(e.g. removing only “non-optional” fields) is impossible.

In this section, we first introduce our mutation analysis in
Section II-A, after which we explain the technical setup that
we have used to apply the mutations in Section III-B.

A. Mutation Analysis — Mutant Generation

Our mutation analysis consists of mutating the web API
response for a particular web API request sent by a mobile
application. Xu et al. [19] set forward four perturbation prim-
itive operators for mutating XML documents: two insertion
operators and two deletion operators where the difference is
the position in the XML tree where new nodes are added and
deleted. One of the addition operators which inserts nodes
at the same level as existing nodes is also included in our
study. The other addition operator relates to datatype insertion
and since none of the studied web API responses contain
datatype definitions, it was excluded from our study. The same
reasoning was applied to the deletion operators.

Thus, for the purpose of generating web API response
mutants, we devise two operators from the aforementioned
work: removal of existing nodes and addition of new unrelated
nodes (referred to in this paper as field removal and field
addition, respectively). We extend these operators with four
other operators: malforming a response, replying with an
empty message, changing the implicit data type of a field and
disrupting the data formatting.

The choice of mutation operators is also supported by the
work of Wang et al. [20]. Through a study on the evolution of

some of the most popular RESTful APIs, the authors found
that all of the proposed mutations (with the exception of the
data formatting disruption) are in fact common change types to
the APIs’ interfaces. The authors also analyzed StackOverflow
questions and concluded that questions related to the deletion
of parameters (or field removals) are in fact one of the three
most common questions regarding web API changes.

Field removal mutations consist of removing fields from the
web API response. This particular mutation is used as a means
to test robustness against breaking changes. Whether using a
structured approach such as semantic versioning 2, where only
major versions are allowed to bear breaking changes, or using
a more lenient approach, when dealing with a web API it is
possible that some fields are removed from web API responses.
Examples of breaking changes caused by the removal of fields
can be found in our previous work [10], in particular regarding
the Facebook web API 3. Such breaking changes, as defined by
Dig and Johnson [8] (in the context of statically linked APIs),
remind us that when fields are moved, changed, renamed or
replaced, a field is always inevitably removed (e.g. a rename
is a removal plus an addition with a different name). Also Li
et al. [21] show that indeed more providers rename parameters
which also results in breaking changes.

While applying this mutation, removing fields in different
parts of the web API response has the potential to result in
different behaviors. For this reason we perform a step by step
removal where after each step, the mobile application is tested
against the resulting mutated web API response for that step.
Our step by step removal is performed using the following
removal guidelines to ensure that each child node of each node
type is removed at least once. Since no data type definitions
were encountered, we assume a node is of the same type as a
different node when they share the same children structure.
Removal Guidelines.
Rule #1 — A node of each type is removed in its own step
once.
Rule #2 — If more nodes of the same type (as an already
removed node) exist at the same level, they are left to be
removed upon the removal of their parent node.
Rule #3 — After each bottom-most level has been emptied (or
only contains nodes, the type of which, one node has already
been removed), we move up a level.
Rule #4 — In each level, if nodes of different types exist but
neither have children (or have children of repeated types), all
these nodes are removed in one step.
Example. As an example, we analyze the node tree of Figure 1
where each node represents a web API response field. In this
node tree, the nodes are named after their type.
Step 1 — In the bottommost level (i.e. 1st level) two nodes
exist of the same type. According to Rule #1 we remove
node a and due to Rule #2, node a’ is left for later removal.
Step 2 — Due to Rule #3 we move up to the 2nd level.
At this stage, node b is removed and node b’ is ignored.

2Semantic Versioning — http://semver.org/
3Facebook Completed Changes — http://bit.ly/fb-completedchanges



Fig. 1. Field removal mutation applied on a sample node tree

While node b” is also of the same type as node b, its parent
node is of a different type (node f, which has one more
child). Therefore, node b” and node c are removed in separate
mutations.
Step 3 — Having cleared the 2nd level, we move to the 3rd
level and all the nodes are child nodes of node g. Therefore,
according to Rule #4, nodes d, e, e’ and f are removed in
one mutation.
Step 4 — Again due to Rule #3, we move up to the 4th level
and apply Rule #4 to remove the remaining nodes (nodes g,
h and i) in one mutation. After this step, only the root node
is left, which is never removed.

Of note is the fact that despite removing fields, special care
was taken to keep the web API response semantically valid.
This was done through the usage of online validators for both
JSON 4 and XML 5 documents.

Malformed responses can happen for a number of reasons.
While not necessarily a direct result of software evolution,
such responses happen e.g. if the data encoder of the web
API fails to properly sanitize strings. Such failure could then
lead to floating reserved characters which in turn break the
document’s data format. This can happen while, for example,
encoding a JSON string which contains double quotes and
these are not properly escaped (i.e. “foo”:“b“ar” as opposed to
the valid “foo”:“b\“ar”). In order to mimic these failures, our
malformed response mutation consists of mutating a random
node of the web API response as to make it malformed in its
respective data format. In XML we mutate the response by
breaking an XML tag (e.g. ‘<data>’ becomes ‘<data’) and
in JSON this is achieved by leaving a dangling double-quote
in a JSON string (e.g. “foo”:“bar” becomes “foo”:“bar).

Empty responses can be a symptom of different types
of ailments on the web server. For instance, should the web
server be at the edge of its maximum capacity, some requests
may receive an empty response. Similarly, if the connection
is terminated due to communication issues, it could also lead
to empty responses being returned to the mobile application.

4JSON Editor Online — http://www.jsoneditoronline.org
5XML Viewer — http://codebeautify.org/xmlviewer/

Our empty response mutation consists simply of replacing the
response with an empty-bodied HTTP response.

Changing data types mutations consist of two changes:
selecting at random a numeric field and replacing it with a
string as well as performing the reverse operation on one other,
randomly selected, string field. As all the mobile applications
under study run on Java (by force of the Android platform) and
since Java is a statically typed language, if special care is not
taken when parsing the web API response, type mismatches
could occur. Also as a part of software evolution, web APIs
may at some point change the (implicit) data types of certain
fields. For instance, while the price field can be a string which
includes the currency symbol, at a later stage the price field
can become a purely numerical field.

An important remark is that no metadata is available for
any of the web API responses under study. Therefore, this
particular mutation is done by changing a field which visually
appears to be of a type into the other type.

III. EXPERIMENTAL SETUP

For our experiment, we first required a body of mobile
applications to be analyzed. How these applications were
chosen is described in detail in Section III-A. We then
introduce mutations in web API responses through the use
of a transparent web proxy, described in Subsection III-B.
These mutations, previously described in Subsection II-A, are
a means to probe the robustness of the mobile applications by
emulating breaking changes and faults of the web API.

We also expand this quantitative view with a more qual-
itative approach. To do so we interviewed 3 developers,
each from a different application under study. More details
regarding these interviews are also presented.

A. Application Selection

With our study we aim to understand what is the current
state of web API integration issues. We do so by analyzing
some of the most popular Android applications. All the
applications under study were required to meet two criteria.

The first criterion is that each application must use at
least one web API. Important to note is that our definition
of web API excludes mobile applications which simply load
HTML or RSS feeds. These exclusions are due to the fact
that with an HTML response, no processing is required on
the mobile application. With this we exclude also any mobile
application which may use screen-scraping techniques [22]
as screen-scraping is performed by extracting data from user
interface elements which are not necessarily designed with the
same backwards compatibility concerns of an API. Similarly,
RSS feeds have a fixed structure which means they are not
susceptible to software evolution changes which make them
not applicable for our study.

The second criterion is that the web API communication
happens over an insecure channel such as HTTP as opposed to
HTTPS. Indeed, this is particularly important as an encrypted
protocol such as HTTPS does not allow for changes to be made
to the content of its messages (without a security certificate).



For this study we picked candidate applications from the
top 100 free applications available in the Google Play Store
of the Netherlands, United Kingdom, United States of Amer-
ica, Canada, Australia, Belgium, Brazil, Spain, Germany and
France. Many of the apps in the different countries overlap and
in the end we installed 198 applications. We had to exclude
68 of these because they use HTTPS, while a number of
other applications use proprietary binary data formats for the
communication. Similarly, other applications which use com-
pressed files as a means to transfer the web API responses (e.g.
ZIP files) were not mutable using our approach as it would
require the response to be decompressed and recompressed
on the fly. Ultimately, our study corpus is composed of 43
applications (see Table I 6).

6The Buienalarm and Eurosport mobile applications make use of two
distinct web APIs and therefore appear twice on the list.

TABLE I
LIST OF MOBILE APPLICATIONS STUDIED

Application Version Number C
ra

sh
es

V
er

si
on

in
g

C
ac

hi
ng

NS.nl 3.2.1
√ √ √

yr.no 3.0.1
√

Skyscanner 2.0.9
√

Buienalarm (own API) 2.3
Buienalarm (OpenWeatherMap) 2.3

BBC News 2.5.2 WW
√

Daily Mail Online 3.2
√

WeatherBug 3.5.97
√

The Weather Channel 5.0.3
√

Reddit is fun 3.3.12
√

Ozsale 3.3.12
√

tramTracker 1.3
√

NRL - League Live 4.5.7
The Masters Gold 4.1

mobile.de 4.2.0
√

Wetter App 2.3.3
MeinProspekt 7.19

√

TV Movie 1.3.1
√ √

Wetter.com 1.4.9.4
√

McDonald’s Deutschland 1.4.0.1
√

H&M 2.6.1
eltiempo.es 1.1.2

√

Liga de Futbol Professional 5.2.12
√

TecMundo 1.6.1d
√ √

Trivago 1.9.4
√

BeSoccer 3.0.3
√

La Chaine Meteo 1.1.3
√ √

Resultats Foot en Direct 2.8
RATP 3.0.10

ViaMichelin 3.5.0
√

Le Figaro 3.5.1
√ √

Le Parisien 3.3.2
√

Eurosport (XML) 3.7.6
Eurosport (JSON) 3.7.6

√

Tele Loisirs 4.4.1
NU.nl (stocks) 5.4.1

√ √

Just Eat 1.4.1.63
Couverts 2.8.3

Trulia 5.7.2
√ √

24Kitchen 2.2
NL Treinen 2.0.10

√

Huizen 1.71
√ √

Kieskeurig 0.9.9.2
√

Jumbo FoodMarket 1.1
√ √

Pull&Bear 1.2.3
√

Total 13 18 11

Of note is the fact that, despite not having been a criterion
for selection of the applications, all of the analyzed applica-
tions make use of either XML or JSON as a data format for the
web API requests. This is particularly relevant as a data format
like XML requires an additional XSD schema document to
enforce data types. For this to happen, the XML document
would require references to the XSD 7 document which can
be used to validate it. Such cases have not been encountered
in this study which means no XML documents were being
(explicitly) validated against an XSD schema. During our
mutation analysis, changing data types was still attempted on
XML documents (i.e. changing a field with a numeric value
to a string) even though none of the fields were specifically
numeric as it happens with JSON where numeric fields can
be identified by the absence of quotation marks.

B. Applying the Mutations

In order to mutate the responses from each mobile appli-
cation’s respective web API, we start by installing the chosen
applications for our study on a Google Nexus 7 tablet (running
Android KitKat 4.4.2) and configure the tablet to redirect all
the network traffic through a transparent proxy (Charles Web
Proxy) setup in a separate machine on the same network.

For each mobile application studied, before starting the
mutation analysis, we follow a series of manual steps:

1) While using the transparent proxy, we identify a repeat-
able action (e.g., the push of a button) which causes a
request and response interaction with the web API.

2) We then collect a standard response (we made all the
standard responses, many of which several hundreds of
lines long, available online [23]) for that particular web
API request made by the application under study and
configure the transparent proxy to replace the response of
all other similar requests (for the purposes of the Charles
web proxy, a similar request means a request sent to the
same endpoint) with a customized response.

3) The customized response is in fact the original web API
response although slightly modified. The first “modifica-
tion” that we try is actually a message identical to the
original one, in order to ensure that messages that we
intercept and change are actually loaded by the mobile
app. All subsequent customised response messages do in
fact undergo the mutation analysis.

After ensuring the customized responses are replacing the
standard response, the original web API response is then
further disturbed with a number of different types of mutations
(explained in detail in section II-A). For each mutation we
observe how the Android application reacts to such changes.
Our observations are then categorized into different types
of behaviors (e.g. crashing or indefinitely loading without
a timeout) and turned into a report (a sample is available
online 8) which is two-fold in its content: it starts with a
statistical overview displaying how many applications behave

7XSD Schemas — http://www.w3.org/TR/xmlschema11-1/
8Sample status report — http://bit.ly/report-web-api



in each of the identified categories, and culminates with a
report specific to that particular application. In particular, we
provide data on how many applications crash due to a muta-
tion, how many use versioning and the divide between JSON
and XML implementations. Also for each type of mutation we
provide statistics on the different observed behaviors. We also
present statistics on how many applications use caching and
complement the report with application-specific findings (e.g.
some applications still load malformed data). It is also these
outlier findings of behaviors that are not common which we
aim at clarifying with the developers through the interviews.

C. Caching and Versioning

After beginning our experimental study, we found that for
some applications, after the “sample web API response” was
collected to be used as basis for the mutations, the mutated
data (even with a string for string mutation) would not be
loaded. This hinted at the usage of caching on some of
the mobile applications. As caching is of particular interest
for mobile applications where the Internet connectivity may
sometimes experience slow bandwidth and where the web API
may not respond due to high peaks of server load, we collected
data on whether each mobile application uses caching and
whenever possible, how the caching is used.

For what concerns versioning, in previous work [10] we
found that some high-profile web APIs (e.g. Twitter, Google
Maps, Netflix) make use of some form of versioning. Still, we
also found a major web API provider (Facebook) which does
not make use of any form of versioning in their web API.
Having studied these two different approaches and how client
developers perceive each of the aforementioned web APIs, we
also collect data on which web APIs are versioned.

D. Developer Interviews

While the empirical study described above provides inter-
esting insight on how a large body of mobile applications react
when web APIs experience different failures and changes, it
does not provide an explanation as to the choices of their
respective developers. As an attempt to shed some light on the
developer perspective of developing and testing an application
which integrates with a web API, we aimed at interviewing
the developers of some of the mobile applications under
study. These interviews took the format of a semi-structured
interview [24] using the questions in Table II as a basis to
stimulate the exploratory discussion.

While the questions listed in Table II are primarily targeted
at client-side developers, some of the questions are related
specifically to developers that also have knowledge of the
web API development side. In particular, Q6 gauges as to
whether the server and client-side are developed by the same
team. The answer to this question can in turn determine the
answer to questions like Q1 and Q3 (because these decisions
lie primarily with the web API developers and not the client
developers), Q4 and Q9.

We selected 14 applications which stood out either due
to a special versioning mechanism, because they crashed

or because of some particular behavior that other mobile
applications did not demonstrate. We sent the reports from
Section III-B to the respective developers of these 14 apps,
along with an invitation to participate in an interview.

Ultimately, only 3 developers responded to our request for
an interview: the mobile software architect for OZsale, the
product manager for the Trivago mobile application and lastly,
the sole developer of the NS.nl Android application. The
interviews lasted 15 minutes on average. While the insights
thus obtained are not enough to build solid conclusions on,
they do provide us with valuable anecdotal evidence.

The status report we compiled and sent to the developers
contains statistical information on all the applications under
study. We provide data on how many applications crash due
to a mutation, how many use versioning and the divide
between JSON and XML implementations. Also for each type
of mutation we provide statistics on the different observed
behaviors. We also present statistics on how many applications
use caching and complement the report with application-
specific findings (e.g. some applications still load malformed
data). It is also these outlier findings of behaviors that are
not common which we aim at clarifying with the developers
through the interviews.

IV. EXPERIMENTAL RESULTS

We present our findings regarding each observed behavior
in the Android applications under study upon applying the
different mutations to the web API response. Specifically, we
report on four of the six initially proposed mutations as the
field addition and data formatting mutations did not elicit any
unexpected behavior. We provide an analysis of the different
behaviors displayed by the mobile applications and whenever
relevant, provide anecdotal examples.

We also present our findings on the different types of
data caching and web API versioning encountered as well
as developer input on some of the choices used in web
API integration. Of note is that the results are valid for the
respective versions studied (see Table I), as each of the mobile
applications and their respective web API may change, so may
the mobile applications’ reaction to web API mutations.

TABLE II
QUESTIONS ASKED DURING THE DEVELOPER INTERVIEWS

Q1 What was the design decision behind choosing HTTP over HTTPS?
Q2 Why are no caching mechanisms used?
Q3 Is versioning not used for a particular reason?
Q4 Is the web API used by other (third-party and or mobile) applications?
Q5 Is the mobile application native to Android or generated with a mobile

development framework?
Q6 Is the mobile application developed by the same team as the web API?
Q6.1 In particular when it is not developed by the same team, how does the

mobile application team learn about the web API changes?
Q7 How frequently are the web API and mobile application updated?
Q8 Have there been problems in the past with breaking changes causing the

mobile application to break?
Q9 Are there automated tests in either the mobile application or web API?



A. Application Behavior

When each of the different types of mutants was applied to
the web API responses, we observed four distinct behaviors
from the mobile applications:

1) Force close — The force close is Android terminology
for applications which crash by throwing uncaught Java
runtime exceptions. Such exceptions are then caught by
the Android platform and the application is force closed.

2) Error message — Showing an error message is a graceful
way of letting the end-user know that something did not
go as expected and what his or her course of action should
be (e.g. try again or check the Internet connectivity).
Some applications show an error message whenever a
number of disturbances afflict the connection to the web
API server. Whenever these error messages are shown,
the robustness criteria is met as the applications do not
crash and it is therefore a preferable behavior to a force
close. However, in the highly dynamic domain of web
APIs where new versions are released regularly and often
without the client developers’ knowledge, we expected
some applications to provide recommendations in the
error messages as to what the end-user should do. This
was never the case and in fact, the end-user is at times
misinformed about the nature of the problem.

3) No indication — By opposition to showing an error
message, some applications silently deal with the mutated
web API response. In some cases the data is partially
loaded, in other cases a clue is provided that the loading
has stopped, but no information is given to the end-user
as to what has happened. By not showing any reaction to
the end-user’s input, the mobile application may induce
confusion. When the application simply does not react
even though the request has been made to the web API
and the mutated web API response has been received, it
is impossible for the end-user to know whether the data
is still being loaded (as in these cases there was also no
visual indication of loading) or whether he or she should
try again to refresh the data.

4) No timeout — timing out is an important part of reporting
a failure. At times however, applications remain indefi-
nitely loading. It is then up to the end-user to decide when
to stop waiting and close the application. Such behavior
indicates that whatever exceptions may have been thrown
are being handled (since the application did not crash) but
are potentially being muffled. Ultimately, the application
never closes the loading screen and fails to provide the
end-user with insight as to what happened.

We now present each of the mutant types and how each of
the behaviors have been observed per mutant.

B. Behaviors Per Mutation Type

1) Field Removal: As explained previously in subsec-
tion II-A we expected field removal mutations to be the
mutations which more faithfully represent a web API evolution
scenario. This particular mutation was applied in a particularly
invasive way (i.e. all the child nodes of each type have been

removed at least once) which coupled with its disruptive nature
(i.e. the message is valid but is missing data) lead us to
expect such mutations to be the most challenging in testing
the robustness of the mobile applications.
Force Close. Our results show that 13 applications out of
the 43 under study (approximately 30%) when faced with
field removal mutations crash with a force close. Using our
approach also allowed us to narrow down on exactly which
fields were causing the applications to crash. In fact, 12 out of
the 13 crashing applications crash with one single field being
removed (the particular field is found following the steps in
Section II-A). The remaining application required two fields to
be removed in order to crash. While we have no metadata for
any of the web API responses, all the 13 crashing applications
allowed for some fields to be removed without crashing.

This result also confirmed our initial expectation. As can be
seen in Table III the field removal mutation is the one which
resulted in the most applications crashing.

Web API ownership may also play a role in hardening
a client application against web API changes. For example,
the NS.nl web API is also used by a third party application
(NL Treinen 2 - NL) which does not crash with field removal
mutations (as opposed to the NS.nl application). When asked
about this, the interviewed developer for the NS.nl application
claimed he was in control of the web API and therefore knew
when the web API would change. Unfortunately the developer
for NL Treinen 2 - NL did not react to our interview request
and we cannot verify our hypothesis.
Error Message. When certain fields were missing from the
web API response, there were 4 out of the 43 applications
which did show error messages. In some cases the error
message is generic (e.g. “connectivity issue”) and not specially
tailored to inform the user on how to proceed.
No Indication. More troubling than showing an incomplete
error message is the behavior displayed by 39 out of the
43 mobile applications under study (n.b. the 39 applications
which show no indication include the 13 which force close).
These applications show no indication of completion or failure
whenever one or more fields of the response are removed.

2) Malformed Response: Mutations of the type malformed
response resulted in the same three different behaviors as
the field removal mutation, with an added behavior where
applications failed to timeout.
Force Close. Having one single application crashing upon
receiving a malformed response (namely Wetter.com) is an
indicator that the majority of the applications are accounting

TABLE III
APPLICATION BEHAVIOR VERSUS MUTATION

XXXXXXXMutation
Behavior Force Error Message Timeout No

Close (vs Silent Fail) (vs Indefinitely Indication
Loading)

Field Removal 13/43 4/43 - 39/43
Malformed Response 1/43 12/43 35/43 31/43
Empty Response 1/43 9/43 35/43 34/43
Changing Data Type 3/43 3/43 - 40/43



for the scenario where the document parser fails due to a faulty
document. One other application (Le Parisien) would become
unusable upon facing a malformed response but rather than
force closing, it would report to the user that it cannot continue
and then gracefully close itself.
Error Message. The NS.nl application, when facing a mal-
formed response makes use of the Android native dialog
mechanism to show a message informing the end-user that
it “cannot retrieve data from server”. While certainly better
than crashing or remaining silent about the failure, it is also
an example of a generic message which does not offer an
indication of how the end-user should proceed.
No Indication. While malformed responses are an unmistak-
able case of failure somewhere along the connection with the
web API, it is then surprising that 31 applications (72%) give
no indication of the unrecoverable error or of what is the right
course of action for the end-user.

Also in this category, we found two different types of
applications. In some cases, such as the tramTracker, the
application still attempts to load whatever data is available in
the damaged response (whilst giving no indication that it was
damaged). In contrast, applications such as the Resultats Foot
en Direct load directly onto a screen where if the response is
malformed, nothing is shown. In such a case, the end-user may
be endlessly waiting, expecting the data to be loaded while the
application has in fact silently stopped loading.
No Timeout. Applications which indefinitely stay loading and
never timeout was the most common occurrence when dealing
with malformed responses. Indeed, 8 applications (19%) never
time out and are left stuck in a loading screen.

3) Empty Response: When applying the empty response
mutation, all four behaviors were observed. While other mu-
tations consist of turning the web API responses into crash-
inducing mutants, we expected an empty response to be a
fairly trivial occurrence without serious repercussions.
Force Close. Indeed, while only one application demonstrated
this behavior, it stands to reason that the source code of Tec-
Mundo does not account for empty web API responses. When
presented with an empty web API response, this application
would immediately force close. All the other 42 applications
did not crash when faced with such an empty response.
Error Message. When dealing with an empty response, 9 ap-
plications of those under study did show an error message. Of
special note are 4 of these applications (mobile.de, Resultados
Futbol, Couverts and Trulia) which show a message claiming
that no results were found and that the end-user should change
the search criteria. In fact, all these applications always return
a boilerplate JSON or XML result even in the event no results
had been found. This may then indicate that the application did
not recognize the empty response as a fault. The remaining 5
applications showed generic “network error” messages, with
special attention to the yr.no application. This was the only
application which actually reported an “empty response”.
No Indication. In contrast with the low number of applications
which display an error message, more than two thirds (34 out

of 43) of the applications under study provide no indication
that an empty response has been received from the web
API. More specifically, these mobile applications would stop
loading and never present the user with a message describing
why the loading had stopped and why no data had been loaded.
No Timeout. In part overlapping with the applications which
provide no indication of receiving an empty response, 8 out
of the 43 applications remain indefinitely loading and never
time out. While it is not possible to verify the reason for this
behavior in the applications’ source code due to their closed
source nature, it is likely the affected applications always
expect a reply with content. When the content is not present,
the applications hang until there is content.

In fact, RESTful web APIs may indeed at times reply with
an empty message, for example with HTTP status codes 304
(Not Modified) or 204 (No Content) 9. Although it was not the
case for any of the aforementioned 8 applications, in our study
we experienced web APIs which replied with an empty HTTP
message having a status code of 301 (moved permanently),
indicating that a request should be made to a different URL.

4) Changing Data Type: Due to the lack of metadata on all
the web API responses, it is impossible to know with certainty
whenever a field is of the numeric or string type. Nonetheless,
with the exception of the timeout issues, our mutated web API
responses were able to cause all of the other aforementioned
behaviors (force close, error message and no indication).
Force Close. Through the use of the changing data type
mutation, 3 applications crashed. While we were not able to
investigate the exception being thrown, it is possibly related
to the parsing of the message and to a type mismatch between
Java’s statically typed variables and the field values being
parsed into the wrong types.
Error Message. The changing data type mutation resulted in
only 3 applications actually showing an error message. Out
of the 3 applications, none provided an error message which
offered an explanation or solution for the problem.
No Indication. As with the other faults, some of the mobile
applications silently fail without informing the end-user about
the fault. In fact, 40 out of the 43 applications did not report
an error even when the data would not load (in which case
we were certain to have disrupted the loading of the data).

C. Data Caching
One way for client developers to build in resilience against

unexpected changes in the web API response (e.g. due to
communication errors) is to make use of a local data cache.
In our investigation we encountered a number of mobile apps
that would not initially attempt to load the mutated data. This
was due to the fact that because the data had just successfully
been loaded (from our first execution, probing for a testable
action), the data would be stored in cache.

This led us to investigate how many of the mobile appli-
cations under study were making use of caching. The results
of this investigation can be observed in Table I and show that
the majority (32 out of 43 applications) do not use caching.

9REST Patterns, HTTP Status Codes — http://bit.ly/restpatterns



D. Versioning

In previous work [10] we highlighted the importance of
versions in the web API context. Especially when the client
developers have no control over when changes happen to the
web API behavior, versioning that behavior allows the client
developers to know what behavior to expect from a particular
web API. Versioning, either in the URL (e.g. www.weather.
com/v1/report) or through variations of semantic versioning
(as demonstrated by OZSale), allows client developers to know
when to expect changes. Indeed, in the case of OZsale, the web
API currently at version 3.4 is guaranteed to not introduce
breaking changes in all the minor versions of the 3.X release.

It is then surprising how such a high percentage of mobile
applications make use of the web API without any form of
versioning (58%). When a non-versioned web API introduces
changes, all the clients which have not yet migrated to the
latest version will be interacting with a changed web API,
which may not be compatible. Evidence of a scenario where
this would potentially happen would it not be for versioning
comes from one of the interviewed developers. The developer
interviewed in the context of the OZsale application claimed
that indeed, some end-users do not update their mobile appli-
cations and that 5% of their user-base (of 100,000∼500,000
users according to the Google Play Store) was still using their
mobile application’s very first version.

E. Developer Interviews

We conclude our study with the findings gathered from in-
terviewing the three participants in our study. In the paragraphs
below we refer to the questions shown in Table II.

Insecure HTTP. Referring to question Q1 regarding the
design decision of using HTTP over HTTPS, an intriguing
finding of our study is how such a large number of mobile
applications (indeed, all the 43 under study) still make use of
insecure HTTP. Data sent over HTTP allows for the data to
be both eavesdropped upon and, indeed, tampered with in the
same fashion as is performed in this study. When confronted
with this question, one of the developers claimed he did not
in fact know why their web API was using HTTP because the
web API is developed by a different team. According to the
developer their mobile application does make use of HTTPS
for login and payment interactions.

Caching. While all the interviewed developers perceive
caching (question Q2) as a useful mechanism to reduce
network usage, specifically the developer of the NS.nl appli-
cation raised a concern about the necessity for “fresh data”.
Indeed, this application provides information on the Dutch
train departure and arrival times which are at times susceptible
to delays. It is thus crucial to always display the latest data.

Another interviewee (the mobile software architect for
OZSale) justified the lack of caching as it being a lower
priority requirement. While such a feature is already present
in the iOS version of the mobile application, at the time
the Android version started being developed “the libraries
available for caching in the Android platform were not yet

mature enough”. The iOS application goes a step further and
makes all of the data available for offline browsing.

Also the developer responsible for the web API at Trivago
stated that caching would in fact stay in the way of the mobile
application’s performance for their specific case. Caching
would require the mobile application to keep track of which
data it has available and only request the delta between what
it already has and the results it still needs to fetch. To do
so with caching and without state would make for chatty
communications. The mobile application would have, with
every request, to report what it already has in cache and what it
requires. Trivago contains a more pragmatic approach where
sessions (i.e. stateful exchanges) are used which allows the
cache to be on the server-side and thus lower the chattiness
which is desirable for both performance and data usage.

Versioning. Two of the three interviewed developers (for
the Trivago and OZsale mobile applications) have versioning
mechanisms implemented in their respective web APIs.

For instance, the Trivago web API makes use of HA-
TEOAS 10 (Hypermedia as the Engine of Application State)
versioning approach. The HATEOAS approach makes use of
HTTP headers (Accept-Type and Content-Type) as a way to
handle versioning and description of the data since it stands
central to being the way a RESTful web API should be
versioned. When asked about why this particular versioning
mechanism was used, the answer was that even though the
Trivago web API is still in its first version, HATEOAS was
chosen as a way to future-proof the evolution of the web API.

The developer of the OZsale application also stressed the
importance of their versioning system. While the data itself
is not versioned (as it happens with HATEOAS), a version
number must be used in the URL to inform the server of which
version of the web API the mobile application requires.

An interesting divide between the two aforementioned de-
velopers is how old versions of the web API are handled. The
Trivago software architect underlined that they try to avoid
maintaining different versions in parallel due to costs, while
the OZsale developer claimed that the different versions were
a core part of their different platforms: while the website was
running on the latest version of the web API, the different
mobile platforms were lagging at least 5 minor versions behind
(all of which were still available and fully functional). A
reason for this was the delay between submitting a new version
of the mobile application to the respective application store
and the application actually being available (e.g. the developer
claimed a 1 week delay in the iOS App Store).

The developer of the NS.nl mobile application claims that
over the course of four years of development, no breaking
changes have been applied to the web API, thus making a
versioning mechanism unnecessary.

Evolution & Communication fragility. Another interest-
ing finding is anecdotal evidence of communication issues
between the different teams involved in the development
process. The developer of the NS.nl application is also the

10Versioning REST Services — http://bit.ly/versioningrestservices



developer of the web API and therefore reported no such
pains. However, the two other interviewed developers relied
on separate teams for the web API development. Indeed, one
of the developers claimed that at least twice in their project,
changes were pushed to the web API which inadvertently
broke backwards compatibility. The result was having a mobile
application which was crashing. This anecdote raises an issue
which is also supported by our analysis of the 43 mobile
applications: not all mobile applications are built with the
consideration that the web API can change at any time.
This was especially relevant as in this very same project,
changes were being pushed daily with breaking changes taking
place every two months highlighting the need for excellent
communication between the mobile teams and the web API
team should these teams not be one and the same (questions
Q4, Q6 and Q6.1).

Integration Testing. While using a static library it is possi-
ble to test it and expect it to behave the same. However, when
using web APIs where the behavior can change due to a simple
patch which fixes what was buggy (but expected) behavior
can cause the mobile application to suddenly misbehave. This
highlights the importance of both positive and negative testing,
that is testing both scenarios which are part of the use cases
as well as unexpected but potential scenarios.

Our empirical data suggests that Çalıklı and Bener’s [25]
observation on confirmation bias regarding testing may indeed
affect some of the studied applications. Indeed, while some of
the applications may have automated tests (which we cannot
confirm due to their closed source nature), they may be
positive tests which “make their program work rather than
breaking the code” as would be the case with negative tests.
In our interviews, we questioned the participants on whether
their application makes use of any kind of testing (Q9). Our
results show that for some of these applications a simple
mutation such as malforming the web API response caused
a crash. Considering the OZsale application as an example,
the interviewed mobile software architect claimed they do
perform automated testing for some bad scenarios which may
potentially happen, this very same application would remain
loading indefinitely when faced with a malformed response.

V. THREATS TO VALIDITY

External validity. Our study which includes 43 applications,
is composed solely of Android applications. Other mobile
platforms which make use of web APIs such as iOS or
Windows Phone should also be explored. Perhaps in some
platforms it is more or less difficult to cause the whole
application to crash. As such, in future work we will perform a
similar study on both the iOS and Windows Phone platforms.

Similarly, our study can only be applied to mobile ap-
plications which make use of the insecure HTTP protocol.
This both limits the number of mobile applications which can
be used. Mobile developers who intentionally chose to use
HTTPS over HTTP are perhaps more conscious regarding the
differences which make web APIs different from the non-web

counterparts. Indeed, without modifying the Android platform
itself, nothing can be done to mitigate this threat.
Internal validity. While our study intercepts and mutates
web API responses and analyzes mobile applications’ reac-
tions to these mutations, we did not consider whether these
mobile applications send failure data back to the respective
software developers for further analysis. Such data, should it
exist, may compliment and aid the debugging task.

Another threat to validity stems from potentially long time-
outs (e.g., several minutes) when reacting to mutated web API
responses. In such case an application could potentially lead
to a misclassified application. While a threat, unnecessarily
long timeouts would also potentially hinder the usage of such
applications for end-users.
Reliability validity. Our mutation analysis approach requires
human intervention when capturing a standard web API re-
sponse and replacing the response with its mutated counterpart.
This raises a possible reliability threat. We mitigate it by
starting with a slightly mutated response (e.g., changed string)
whilst maintaining its validity as a means to ensure that the
mutated response is indeed being loaded.

VI. RELATED WORK

Li et al. [21] highlight the evolution challenges of web
APIs over statically linked APIs and provide a set of potential
changes which web APIs may implement. They analyze what
are common changes applied to web APIs and propose the
creation of a tool for automated client migration.

McDonnell et al. study API stability and adoption in the
Android ecosystem and have found that, despite the added
benefits of newer versions of APIs, developers tend to be slow
in adopting the newer versions [26], thus further highlighting
the awareness required when web API changes are inevitable.

An interesting non-peer reviewed work in this field is a sur-
vey [27] conducted on the pains of web API integration which
presents many complaints from web API client developers.

Daigneau focuses on the brittleness of web APIs and pro-
poses to refrain from creating signatures with long parameter
lists [28]. Daigneau further states that long parameter lists
“[...] signal the underlying framework to impose a strict
ordering of parameters which, in turn, increases client-service
coupling and makes it more difficult to evolve the client and
service at different rates.”

VII. CONCLUSION

In this paper we perform a study on the impact that changes
to web API behavior can have on mobile applications. Our
contributions are:
• An approach using mutation analysis for simulating un-

expected responses from web APIs.
• A study on how 43 high profile mobile applications react

to a set of predefined mutations in web API responses.
• Insight on caching and versioning approaches of some of

the web APIs under study.
• An interview with three developers of some of the studied

mobile applications.



Referring back to our research questions proposed in the
introduction, we set out to find how robust mobile applications
are when facing unexpected responses from web APIs.

In order to address [RQ1] which asks “how robust are
mobile apps when the web APIs being used return unexpected
responses?”, we use mutation analysis. Mutation analysis
presents a structured approach to simulate web APIs afflicted
either by failure or by changes caused by software evolution.
Our results present a mixed answer to this question. Indeed,
most of the mobile applications studied are fairly robust to
mutations in the web API response as seen by only 30% of
the applications studied crashing through the field removal
mutation. Nonetheless, all but one of the applications can be
crashed through the removal of one single field which presents
a serious concern for some web API client developers. Less
serious but also worrying is how for all the mutations, more
than half of the applications silently hide the faulty web API
response. This behavior should be made more informative and
user-friendly, which can be achieved through better under-
standing potential changes to web APIs.

Also [RQ2] which asks “have web API client developers
developed resilience against changes in or failure of the
web API?” is answered with mixed results. Some of the
applications studied make use of state of the art approaches
(e.g. the HATEOAS versioning) to ensure a smooth evolution
of their web API client, where others do not use versioning
altogether (which as reported in previous work [10] may cause
long-term pains) and allow the application to crash. The need
for this resilience exists also outside of the source code. One
of the interviewed developers raised concerns with inter-team
communication, highlighting the need for clear and concise
documentation from web API providers to client developers.

Our main research question asks “how well-prepared are
Android mobile applications with regard to changes in re-
sponse messages from the web API”. We conclude that while
the majority of the studied applications are capable of dealing
with such changes without major issues, some applications still
use web APIs as if their behavior can be expected to never
change, which as we have seen does not always happen. Rather
than trying to generalize the results for all the web API clients,
our goal is rather to raise awareness to the fact that amongst
some of the most popular Android applications, a fair share
still allow their web APIs to significantly affect their behavior.

Future work. We aim to extend our investigation to paid
mobile applications and other platforms (e.g. iOS) as we want
to understand whether the underlying platform provides more
or less support for web API integration.

Another aspect worth investigating is whether the
owner/creator of the web API influences client developers to
use validity checks to the web API response.

REFERENCES

[1] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in Proc. Int’l Conf.
on Software Maintenance (ICSM). IEEE CS, 2012, pp. 378–387.

[2] B. Dagenais and M. P. Robillard, “Recommending adaptive changes
for framework evolution,” in Proc. Int’l Conf. on Software Engineering
(ICSE). ACM, 2008, pp. 481–490.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to SOAP,
WSDL, and UDDI,” Internet Computing, vol. 6, no. 2, pp. 86–93, 2002.

[4] S. Vinoski, “Restful web services development checklist,” IEEE Internet
Computing, vol. 12, no. 6, pp. 96–95, 2008.

[5] B. Srivastava, “Composing web apis: State of the art and mobile impli-
cations (tutorial),” in Proc. Int’l Conf. on Mobile Software Engineering
and Systems (MOBILESoft). ACM, 2014, pp. 3–4.

[6] M. M. Lehman and L. A. Belady, Program Evolution: Processes of
Software Change. Academic Press, 1985.

[7] A. Zaidman, M. Pinzger, and A. van Deursen, “Software evolution,” in
Encyclopedia of Software Engineering. Taylor & Francis, 2010, pp.
1127–1137.

[8] D. Dig and R. E. Johnson, “How do APIs evolve? A story of refactoring,”
Journal of Software Maintenance, vol. 18, no. 2, pp. 83–107, 2006.

[9] M. Laitinen, “Object-oriented application frameworks: Problems and
perspectives,” M. Fayad, D. Schmidt, and R. Johnson, Eds. Wiley,
1999, ch. Framework maintenance: Vendor viewpoint, p. 9.

[10] T. Espinha, A. Zaidman, and H.-G. Gross, “Web API growing pains:
Loosely coupled yet strongly tied,” J. Systems and Software, vol. 100,
p. 27–43, 2015.

[11] ——, “Web API growing pains: Stories from client developers and their
code,” in Proc. Conference Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp. 84–93.

[12] C. Pautasso and E. Wilde, “Why is the web loosely coupled? a multi-
faceted metric for service design,” in Proc. Int’l World Wide Web Conf.
(IW3C2). ACM, 2009, pp. 911–920.

[13] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. “big” web services: Making the right architectural decision,” in Proc.
Int’l Conf. on World Wide Web (WWW). ACM, 2008, pp. 805–814.

[14] T. W. Knych and A. Baliga, “Android application development and
testability,” in Proc. Int’l Conf. on Mobile Software Engineering and
Systems (MOBILESoft). ACM, 2014, pp. 37–40.

[15] J. H. Christensen, “Using RESTful web-services and cloud computing
to create next generation mobile applications,” in Proc. Conference
Companion on Object Oriented Programming Systems Languages and
Applications (OOPSLA-companion). ACM, 2009, pp. 627–634.

[16] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web APIs
on the world wide web,” in Proceedings of the European Conference on
Web Services (ECOWS). IEEE, 2010, pp. 107–114.

[17] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44,
1990. [Online]. Available: http://doi.acm.org/10.1145/96267.96279

[18] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[19] W. Xu, J. Offutt, and J. Luo, “Testing web services by XML pertur-
bation,” in Proc. Int’l Symp. Software Reliability Engineering (ISSRE).
IEEE CS, 2005, pp. 10 pp.–266.

[20] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to RESTful
API evolution?” in Service-Oriented Computing, ser. LNCS. Springer,
2014, vol. 8831, pp. 245–259.

[21] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service API
evolution affect clients?” in Int’l Conf. on Web Services (ICWS). IEEE,
2013, pp. 300–307.

[22] J. Martin, A. Arsanjani, P. Tarr, and B. Hailpern, “Web services:
Promises and compromises,” Queue, vol. 1, no. 1, pp. 48–58, 2003.

[23] T. Espinha, “Web API Responses - MOBILESoft 2015,” 01 2015.
[Online]. Available: http://dx.doi.org/10.6084/m9.figshare.1284424

[24] E. Babbie, The practice of social research, 11th edn. Cengage, 2007.
[25] G. Çalıklı and A. Bener, “Influence of confirmation biases of developers

on software quality: an empirical study,” Software Quality Journal,
vol. 21, no. 2, pp. 377–416, 2013.

[26] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability
and adoption in the android ecosystem,” in Proc. Int’l Conf. on Software
Maintenance (ICSM). IEEE CS, 2013, pp. 70–79.

[27] S. Blank (YourTrove), “API integration pain survey results,” 2011, web-
site last visited September 27, 2013. [Online]. Available: https://www.
yourtrove.com/blog/2011/08/11/api-integration-pain-survey-results/

[28] R. Daigneau, Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Addison-Wesley, 2011.


