Cooperative heuristic multi-agent planning

Mathijs de Weerdt, Hans Tonino and Cees Witteveen

Delft University of Technology
Faculty of Information Technology and Systems
TRAIL
P.O.Box 356, 2600 AJ Delft, The Netherlands
e-mail: {M.M.deWeerdt,J.F.M.Tonino,C.Witteveen}@Qits.tudelft.nl

Abstract

In a previous BNAIC paper [10] we introduced a resource-based frame-
work for representing plans. Using this framework we developed a polyno-
mial algorithm for plan merging, a process in which agents combine their
plans to save actions and resources. In this paper we will use the framework
to study cooperative heuristic multi-agent planning. During the construction
of their plans, the agents use a heuristic function inspired by the FF planner
([3])- At any time in the process of planning the agents may exchange avail-
able resources, or they may request an agent to produce a missing resource.
The latter feature is enabled by an advertising mechanism: Any agent com-
municates to the other agents which resources it can, in principle, produce
using a plan scheme stored in its knowledge base. The planning algorithm
presented in this paper is sound but not complete: It might fail to find a
plan in cases a valid plan does exist.

1 Introduction

Multi-agent planning is a very active research area, as can be derived from overviews
of multi-agent planning approaches by, e.g., Durfee [1] and Mali [5]. However, most
of the research in this field focuses on either finding an assignment of tasks to the
participating agents (cf. [4, 7, 8]) or on cooperation once complete plans have
been constructed, called plan merging [2, 9, 12]. In this paper we will consider an
extension of this latter work where planning and cooperation is fully integrated:
cooperative heuristic multi-agent planning.

In previous work [6, 10, 11], we have developed a framework for multi-agent
planning using an explicit representation of resources, skills and goals in a multi-
agent environment. This framework was used in a plan merging algorithm, where
complete plans were merged. In this paper, the agents have to actually compute a
plan from scratch. They do so by employing a heuristic function to guide the search
process. This procedure is obtained from the FF planner [3]. Our contribution is
to use this procedure in the setting of cooperative planning. At any time during
the planning process, the agents may exchange unused resources by selling them to
or buying them from each other. Another extension is that agents may advertise
resources they do not actually have at a certain moment, but know how to produce
these by using a plan scheme. So, if during a planning process an agent needs a

certain resource, it can either try to buy the missing resource from an agent, or
request an agent which advertises that particular kind of resource. In the latter
case, the advertising agent will answer whether it is able to produce the requested
resource. As a side effect of this mechanism, inactive agents can be triggered by
other agents to become active and produce resources for them. The procedure
described above is not complete: Due to the heuristic function used and the fact
it doesn’t back-track, it might fail to find a solution in cases one does exist.

As already mentioned, we will use our action and resource planning formalism
(ARPF) (see, e.g., [9, 10, 11]).! Therefore, in Section 2 we will briefly summarize
this framework. Then, in Section 3 we will present our cooperative heuristic multi-
agent planning algorithm. We conclude the paper with a discussion and some ideas
for future work.

2 The action resource planning formalism (ARPF)

The framework we will discuss is built up from three primitive notions: resources,
actions and goals. Resources are the objects consumed and produced by actions,
while goals are descriptions of resources we want to have.

Resources and resource schemes A (ground) resource is denoted by a ground
atomic formula p(¢; : s1,t2 : $2,...,t, :) in some language £. The terms s; are
the attribute types of the resource type p with attribute values t;. As an example,
take the resource airplane(747 : id, AMS : loc), referring to an object of type
airplane with identification 747 at location Amsterdam. Resource schemes are
non-ground atomic formulas used to denote arbitrary resources that are ground
instances of it. For example, airplane(x : id, AMS : loc) is a resource scheme
denoting an arbitrary airplane at Amsterdam.

If Var and Term denote the sets of all variables and all terms, respectively,
then a resource r is said to be an instance of the resource scheme rs if a ground
substitution 6 : Var — Term exists such that rs@ = r. If we have a set Rs of
resource schemes, we would also like to know whether a given set R of resources
satisfies Rs, i.e., whether R is a typical set of resources of the schemes denoted by
Rs. Here we have to be careful: it is not sufficient to have a substitution 6 such
that Rsf = R, since an individual resource cannot be used to satisfy more than one
resource scheme. So, for each rs € Rs we have to find a single resource r € R as an
instance of rs, such that each resource is used at most once. This is accomplished
by using resource-identity preserving ground substitutions, ip-ground substitutions
for short: A substitution § is said to be ip-ground w.r.t. Rs, if rs; # rsy implies
r810 # 1820 for every rsy,rsy € Rs.?

A set of resources R satisfies a set Rs of resource schemes, denoted by R = Rs,
if there exists a substitution 6 ip-ground w.r.t. Rs such that Rs§ C R. To indicate
the substitution 6 explicitly, we write R =y Rs.

INote that in the original work ‘actions’ were called ‘skills’. We have chosen to rename these,
because of their closeness to the ‘actions’ used in the AI planning literature.

2Hence, an ip-ground substitution w.r.t. Rs gives rise to an injection Rs — R. Note that if
0 is an ip-substitution then |Rs| = |Rs6)|.

Goals and actions In general, an agent does not care about obtaining a specific
(unique) resource g as a goal, but only about a resource having some specific
properties. So, we will conceive an individual goal g as a resource scheme. This
allows us to use R |= Gs to express that the resource set R satisfies the set of
goal schemes G's.> Suppose we are given some set of resources R and we want
to obtain some set of resources R’ satisfying a given set of goal schemes Gs. To
transform the set R into this set R’, we introduce actions as (elementary) resource
consumption and resource production processes. Such an action is a rule of the
form d : Rs' < Rs. Here, d is the name of the action (deed), and Rs’ is a set of
resource schemes containing only variables that occur in the resource scheme Rs,
i.e., var(Rs') C var(Rs).4

Intuitively, the meaning of an action d is as follows: whenever there is a set of
resources R and an ip-ground substitution 6 such that R |=y Rs, the elements Rs6
of the set R are consumed by d and a set of resources Rs'6 will be produced. We
denote by in(d) = Rs the set of input resource schemes and by out(d) = Rs' the
set of output resource schemes of d. If § is known we say that df is an instantiation
of an action, that is a rule R' + R where both R and R’ are sets of resources, not
sets of resource schemes.

For some applications it is very important to take the costs of actions into
account. In a multi-agent setting, these costs are used to determine the price of
resources that are sold. We denote the costs of an action d by costs(d) € Z and
we also overload this function to denote the costs of a resource: costs(r).

Let D be some set of actions. We say that R’ can be produced from R wusing
D, written as R Fp R/, if there exist an action d : Rs' < Rs in D, resource sets
R and R, and a substitution # ip-ground w.r.t. Rs U Rs', such that (i) R =¢ Rs,
and (ii) R' = (R— Rsf) URs'0, i.e., the resources Rsf consumed by d are removed
from R, while the resources Rs'§ produced by d are added to the remaining set of
resources. The reflexive-transitive reduction of Fp is denoted by 7.

Plans Most of the time, we will have to combine actions to produce resources
that satisfy a certain goal scheme. More specifically, such actions will have to
be combined in a partial order, allowing input resources to be transformed to a
set of output resources satisfying the goals specified. Such a partially ordered set
of instantiations of actions, transforming input resources into output resources is
called a plan.® Tt turns out to be very useful to define the underlying graph gr(P)
of a plan P.

Definition 1 Let P be a plan containing a set D of instantiated actions. Let
R = gep (in(d) U out(d)) be the set of resources occurring in P. Then, the plan
graph gr(P) of P is the bipartite directed acyclic graph (DU R, A), where A =
{(r,d) | r € in(d), d € D} U {(d,r) | r € out(d), d € D}, i.e., the set of all arcs
connecting resources to actions using or producing these resources. Furthermore,

3Tn general, we might want goals to meet certain constraints. How this can be handled using
ARPF is discussed elsewhere, e.g., in [11].

4That is, every action is range-restricted.

5For formal details, we refer to [11].

the set of input resources in(P) of plan P is defined by {r |Ad € D - (d,r) € A}
and the set of output resources out(P) by {r |Ad € D - (r,d) € A}.

In the sequel, we will simply identify a plan with its plan graph. Let R be
some (initial) set of ground resources, and let Gs be a goal scheme. We say that
P is a plan for Gs using R if (i) in(P) C R, i.e., the set of input resources of P is
contained in the initial set, and (i) out(P) = Gs, i.e., the set of output resources
of P satisfies the goal scheme Gs.

3 Forward heuristic cooperative planning

This section describes an algorithm that facilitates cooperative planning in a multi-
agent system, based on the ARPF. We use a forward heuristic planner for each
agent. This heuristic is similar to the one used in Fast Forward (FF, see [3]). We
assume the agents are able to communicate for cooperation, but each agent is free
to decide to what extent. Communication is implemented by offering superfluous
resources to each other, and by offering resources that one agent is prepared to
produce especially for another (services).

Suppose that we have a set of agents, and that each agent has some initial
resources, a goal scheme, a set of actions to represent the abilities of the agent, a
set of plan schemes that represent services (plans to produce resources for other
agents), and a way of communicating. The problem to be solved by multi-agent
planning is to find a plan for each agent to satisfy all its goals, starting from the
initial resources, and to determine additional goals for each agent to represent the
selling of a resource to another.

Planning We propose the following method. The plan is constructed bottom-up:
Starting with the initial set of resources, actions are added to the plan. Once an
action has been added it may not be removed again. This form of planning is called
forward planning. In the multi-agent environment forward planning ensures that
agents will not have to withdraw previously made commitments. The disadvantage
of forward planning is that sometimes the agent may end up in a ‘dead end’, i.e.,
that it has constructed a plan that can not (be extended to) attain its goals.

The choice of which action to add next is made using a heuristic function. The
heuristic function determines the cost of achieving the goal from the current state.
A state is the result of a partial plan P, i.e., the set of resources R = out(P) that
has not been consumed by actions. To determine the heuristic value of a state,
we use the approach proposed by Hoffmann et al. [3]. We assume each action also
reproduces each of its input resources. In other words, the actions do not consume
their input. Under this assumption a next action towards attaining the goals can
be chosen in polynomial time. The sequence chosen within the heuristic is called
a heuristic plan. Formally, the heuristic can be defined as follows:

Definition 2 The heuristic value of a state R to attain a set of goals Gs using

- 2Ol 0
. \ 1
Oie :

Figure 1: A situation with two agents, One and Two, that are ready to transport
light weight goods and persons. Each agent has its own transport network.

the actions D that can be done by the agent is defined as

’ if RI=Gs
> if D=0
mingq|gep, in(d)c R} (cost(d)

+h(D —{d}, RU out(d), Gs)) otherwise

h(D,R,G) =

To obtain this minimum a sequence of actions d € D is chosen. This sequence is
called the heuristic plan, denoted by PHP-R.G),

Selling resources Each agent may offer resources for sale on a blackboard.
These offers are updated each time an action has been added to its plan. We
allow agents only to offer two kinds of resources: First, resources (€ R) , which
they already have produced and don’t expect to need themselves, that is, resources
that are not used in their own heuristic plan. And second, resources that represent
certain services. The agent should be able to produce these resources on request,
for example by using one of its plan schemes.

To determine the prices of resources offered, we need to develop a price mech-
anism. The price should be related to the costs of producing the resource, and it
may be lower for resources that are superfluous than for services.

If another agent requests a resource, a goal is added to produce this resource.
If the resource has already been produced, the link between this resource and the
goal can directly be made for example by the introduction of a sell action in the
plan. Otherwise, the requesting agent will have to wait for the resource until it
occurs in the state of the partial plan.

Buy actions On the requesting side, agents can use resources offered by others
by the introduction of a buy action for each resource that is offered. These actions
can be used in the planning process in the same way as the usual actions.

Definition 3 A buy action for a resource r is an action that consumes nothing,
has the costs of the resource r and produces r. So cost(buy,) = cost(r).

buy, : {r} « 0

A formal specification of the method described above can be found in the CooP-
ERATIVEPLANNING Algorithm.5

6Note that it may happen that several agents would like to buy the same offered resource. To
deal with these kinds of situations, we propose the following protocol. The agent whose request

Algorithm COOPERATIVEPLANNING (A)

Input: A set of agents, A, and for each agent a € A its goals G, its initial
resources R,, its possible actions D,, and a set of plan schemes PS,, .

Output: For each agent a, its goals G}, D G, and a plan P, to achieve G,.

begin
for each a € A pardo
G, := Ga, Py = (R4, 0), he := (D4, Ra,G"), and Pl := PMDa:Ra,Go)
repeat
for each a € A pardo
1. if out(P,) £ G!, then
d := PLANSTEP(P,, P* G h,)
if d is valid, actually add d to the plan P,, otherwise exit
2. determine the set of resources F, C out(P,) that are not used in P!
and offer them on the blackboard
3. select the plan schemes PS, that can be executed using F, and offer
all output resources on the blackboard

until all plans P, satisty G,

end

PLANSTEP (P,, P*,G", h,)

h! = o ; select an action d from P! such that in(d) C out(P,)
while h), >= h, and d is valid do

1. R! := result of applying action d to R,

2. hl,:= h(D,, R.,,G,) and P!t := PHPaFa.Ga)

3. if d is a buy action and h!, < h, then

if requesting the corresponding resource failed then
hl =00

4. select an action d from P! such that in(d) C out(P,)
Ph:= P'" and h, = 1/,
return d

Example The following example illustrates how the COOPERATIVEPLANNING
Algorithm should work. Assume we have three companies: One and Two each
have a small airplane (with capacity 2) and rights to land at certain airports (see
Figure 1) and Three is a travel agency without any airplanes, but it does have
many customers that wish to travel. We suppose that One has a goal to get a
passenger from B to C, and Three has also one goal: to get a passenger from B to
E. Two has nothing to do, but offers some services.

One is perfectly able to reach its goal by having its airplane fly from A to C.
By the exchange of free resources, Three can buy capacity from B to C, but the

has first arrived at the seller’s, receives the resource. The other agent receives a message (failed)
that the resource is not available anymore and proceeds with its PLANSTEP.

POne: P'I'hree: P‘I’wo:
flight(C,D), flight(D,C), flight(D.E)
P PE) [flight(E, D), flight(B,D), fIight(D,B)]
p(D)

airplane(D)

flight(C,D) flight(C,D)
1 —
move(C,D)

flight(D,C) flight(D,C) D airplane(C)

airplane(C) flight(B,C) @

drplane(B) flight(A,B) flight(A,B) PO
move(B,C)

airplane(A) P(B) P(B) airplane(D)
Legend

actiona
O offered resources E
bold goal airplane(B) resource
(D) offered services 7 link

Figure 2: The partial plans of agents One, Two and Three during the planning
process. Furthermore, this figure shows the resources and services that are offered
by each agent.

passenger won’t be able to reach E by this exchange alone. Fortunately, company
Two offers many services, such as CD, DC, ED and DE. By buying for example
CD and DE even Three is able to attain its goal. Intermediate states of the plans
during the planning of agents One, Two and Three can be found in Figure 2.
As can be seen from this example, agent Two is activated by agent Three, that
otherwise would not be able to attain its goals.” This is the main contribution of
the algorithm in this paper to the plan merging algorithm [10].

4 Discussion and future work

In this work we proposed a framework for multi-agent planning based on the ex-
change of resources. We showed how cooperation can be integrated with planning.
The proposed method was illustrated by an example. This work is an extension
of the plan merging approach [10], where resources could be exchanged after each
agent had constructed a plan for itself. The advantage over plan merging is two-
fold: Firstly, agents are not restricted anymore to plans where they produce all
resources they need by themselves (which sometimes may be impossible), but can

"In this example we have omitted the costs of all offered resources due to lack of space. We
have also omitted the identity strings of the resources. Each resource in the figure is unique.

use resources created by others right away. Secondly, agents that are able to pro-
duce certain resources, but do not have any plans exploiting them, can be activated
to do so, when prompted by other agents.

To thoroughly support the proposed method, we need to implement the algo-
rithm and test it using real test cases. Right now we are working on an imple-
mentation. We still need to develop a solid cost mechanism to allow the use of
the proposed algorithm even in competitive environments. Further future work is
to show how to deal with resources with attributes with large or infinite domains.
These resources introduce additional difficulties such as many or even an infinite
number of possible ground actions. This problem may be solved by creating plan
schemes with variables and constraints on these variables instead of ground plans
(see also [11]). Constraint programming should then be used to determine appli-
cable actions in each step of the planning algorithm.

References

[1] E. H. Durfee. Distributed problem solving and planning. In G. Weif, editor, A Modern
Approach to Distributed Artificial Intelligence, chapter 3. Massachusetts Institute of Tech-
nology, 1999.

[2] D. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging. Artificial Intel-
ligence Journal, 57(2-3):143-182, 1992.

[3] J. Hoffmann and B. Nebel. On reasonable and forced goal orderings and their use in an
agenda-driven planning algorithm. Journal of AI Research, 12:338-386, 2000. The FF
Planning System: Fast Plan Generation Through Heuristic Search.

[4] L. Hunsberger and B. J. Grosz. A combinatorial auction for collaborative planning. In
Proceedings of the Fourth International Conference on Multi-Agent Systems (ICMAS-00),
pages 151-158. IEEE Computer Society Press, 2000.

[5] A. Mali and S. Kambhampati. Distributed planning. In The Encyclopaedia of Distributed
Computing. Kluwer Academic Publishers, 1999.

[6] B.-J. Moree, A. Bos, H. Tonino, and C. Witteveen. Cooperation by iterated plan revision. In
Proceedings of the Fourth International Conference on Multi-Agent Systems (ICMAS-00),
2000.

[7] O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation. Arti-
ficial Intelligence, 101(1-2):165-200, May 1998.

[8] W. Walsh and M. Wellman. A market protocol for decentralized task allocation and schedul-
ing with hierarchical dependencies. In Proceedings of the Third International Conference
on Multi-Agent Systems (ICMAS-98), pages 325-332, 1999.

[9] M. M. de Weerdt, A. Bos, H. Tonino, and C. Witteveen. Fusion of plans in a framework with
constraints. In Proceedings of the ISCS Conference on Intelligent Systems and Applications
(ISA-00), pages 393-399, 2000.

[10] M. M. de Weerdt, A. Bos, H. Tonino, and C. Witteveen. Multi-agent cooperation in a plan-
ning framework. In Proceedings of the Twelfth Belgium-Netherlands Artificial Intelligence
Conference (BNAIC-00), pages 53—60, 2000.

[11] M. M. de Weerdt, A. Bos, H. Tonino, and C. Witteveen. A resource logic for multi-agent
plan merging. Accepted by the Annals of Mathematics and Artificial Intelligence, special
issue on Computational Logic on Multi-Agent Systems, 2001.

[12] Q. Yang, D. S. Nau, and J. Hendler. Merging separately generated plans with restricted
interactions. Computational Intelligence, 8(4), November 1992.

