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Abstract. We present two dimensional numerical simulations of circulation induced

by a heat island in an unbounded domain. The flow is thermally stratified in the vertical

direction. Boussinesq equations in a closed domain are used to describe the flow variables.

For this problem, very elongated computational domains have to be used in order to obtain

accurate solutions. A term, whose effect is to smoothly damp the convective terms in a

layer close to the vertical boundaries, is introduced in the temperature equation. Therefore,

shorter domains can be considered. This method is investigated through the numerical

simulations of stationary solutions at Rayleigh number Ra = 105 and 2.5 × 105. Time

periodic solutions at Ra = 5 × 105 and 106 are also reported and analyzed.

1 INTRODUCTION

In this paper we present numerical simulations of a particular type of thermal fluid flow.
Namely, we are concerned with the so-called heat island flows1, i.e. fluid flows where nat-
ural convection is generated by a local variation of temperature thus inducing Buoyancy
effect. This phenomenon is generally created in the presence of heat stratification that sta-
bilizes the fluid flow. The present model is generally used to study environment problem
such as urban heat island1.

For this problem, the flow circulation mainly occurs in an area surrounding the heat
island. The combined effects of the gravity force and of the vertical stratification tend
to push the flow down to the ground. Simultaneously, the heat island perturbation gen-
erates an ascending flow circulation. As a consequence of these opposite forces, thermal
perturbations are propagated in the horizontal direction at long distance far from the
heated element. Therefore, very elongated domains have to be used in order to accurately
compute the temperature deviation from the stratified profile. Despite the increase of
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computational resources, the direct simulation of such flows in large domains remains a
real challenge. In order to reduce the size of the computational domain, a modified tem-
perature equation is proposed here: convective terms are smoothly reduced with respect
to the horizontal distance from the heat island in an area close to the domain boundaries.

In the next section, the physical problem and the set of equations that govern the fluid
flow are described. The equations are written in non dimensional form so that the system
depends on two parameters: the Rayleigh number and the vertical stratification param-
eter. The Section 3 is devoted to the numerical approximation. The time discretization
is achieved with a second-order projection scheme to solve the velocity and pressure from
which the computation of the potential temperature is decoupled. Second-order centered
finite difference on a staggered grid are applied for the space discretization. The use
of a centered scheme to discretize the nonlinear term coupled with a projection method
provides a kinetic energy conservative scheme in the absence of viscous terms in the
Navier-Stokes equation. Therefore, no artificial diffusion is introduced in the discretized
system. Then, a truncated temperature equation, whose aim is to reduce the length of the
computational domain, is described. The efficiency of this procedure is shown through
the numerical simulation of the stationary solution at Rayleigh number Ra = 105 and for
a spatial resolution h = 1/32. At Ra = 2.5× 105 a stationary solution is computed while
time periodic solutions are obtained at Ra = 5 × 105 and Ra = 106. These results re-
ported and analyzed in the last section are preliminary results for the heat island problem
considered in this paper.

2 THE SETTING OF THE PROBLEM

2.1 Description of the physical problem

We consider a fluid in the half plane {x? = (x?, y?) ∈ � 2; y? > 0}. Here and in the
sequel the superscript ? is used to denote physical variables. The fluid is initially at rest
and is thermally stratified in the vertical direction, namely

u? = 0 and T ? = T0 + αs y
? at t = 0, (1)

where T0 > 0 is the potential temperature at the ground and αs > 0 is the thermal
stratification coefficient. A constant and uniform temperature T1 > 0 is applied on a
source-line Q? = (−δ/2, δ/2) on the horizontal axis (see Figure 1).

This local thermal perturbation generates under convective effects a thermal plume.
The combined effects of the gravity force and of the vertical stratification limit the de-
velopment of flow structures in the vertical direction. Therefore, it seems reasonable to
bound from above the region where the fluid flow is studied. A constant temperature
deduced from (1) is applied at the top boundary. The heat island perturbation induces
an ascending flow circulation. As a consequence of these opposite forces, thermal pertur-
bations are propagated in the horizontal direction at long distance far from the heated
element. We choose hereafter to handle this difficulty by using bounded computational
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Figure 1: Heat island perturbation

domains which are very elongated in the horizontal direction. An appropriate design of
the behaviour of the solution close to these boundaries is proposed in Section 3.

2.2 The governing equations

We consider a flow in a two dimensional bounded domain Ω? = (−L?/2, L?/2)×(0, H?)
described by the Navier-Stokes equations under the Boussinesq approximation, as shown
on Figure 2. Velocity u? = (u?, v?), pressure p?, density ρ? and potential temperature T ?

satisfy:

∂u?

∂t
− ν∆u? + ∇ · (u? ⊗ u?) +

∇p?

ρ0
= −ρ

?

ρ0
g e2, (2)

∇ · u? = 0, (3)

∂T ?

∂t
− κ∆T ? + ∇ · (u? T ?) = 0, (4)

u?(x, t = 0) = 0, T ?(x, t = 0) = T ?
0 (x), (5)

where ν is the kinematic viscosity, κ is the thermal conductivity and g is the gravity
acceleration. In (2), e2 denotes the unit vector of coordinates (0, 1).
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Figure 2: Computational domain

For these type of flows, the effect of pressure fluctuations on density are neglected.
Compressibility is expressed in terms of the temperature variations, with respect to a
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reference state (T0, ρ0), by a dilation equation

ρ? = ρ0 (1 − β (T ? − T0)), (6)

where β is a thermal expansion coefficient. The system (2)-(6) is supplemented with
boundary conditions namely, for all t? > 0, we have

u?(x?, t?) = 0 on Γ? = ∂Ω?, (7)

T ?(x?, t?) = T0 + αs y
? on Γ?, (8)

T ?(x?, t?) = T0 + T1 on Γ?
Q = {x? ∈ Γ?; y? = 0, x? ∈ Q?}, (9)

where T1 > 0 is the temperature of the heat island. These boundary conditions are
acceptable only if the domain lengths L? and H? are large enough compared to size of the
heated element δ. Indeed, the boundary values should not affect the flow in the central
region of the computational domain, that is in the neighbourhood of the plate Q?.

The system (2-6) is normalized by using as reference variables, the temperature T1, the
size δ of the heat island and a velocity Ur =

√
g β δ T1. In terms of the non dimensional

variable x = x?/δ, the domain and heated plate respectively read Ω = (−L/2, L/2) ×
(0, H), where L = L?/δ and H = H?/δ, and Q = (−1/2, 1/2). The non-dimensional
variables

u =
u?

Ur

, θ =
T ? − (T0 + αs y

?)

T1

and p =
(p? + ρ0 g y

?)

ρ0 U2
r

− αs

2 δ T1

y?2 (10)

satisfy in Ω and for t = Ur

δ
t? > 0 the following system

∂u

∂t
−
√

Pr

Ra
∆u + ∇ · (u ⊗ u) + ∇p = θ e2, (11)

∇ · u = 0, (12)

∂θ

∂t
− 1√

RaPr
∆θ + ∇ · (u θ) + α v = 0, (13)

where α =
αs δ

?

T1
. The non dimensional form of the boundary conditions (7-9) reads

u(x, t) = 0 on Γ = ∂Ω, (14)

θ(x, t) = 1 on ΓQ = {x ∈ Γ; y = 0, x ∈ Q}, (15)

θ(x, t) = 0 on Γ\ΓQ. (16)

In order to avoid the presence of singularities at the edges of the heated element Q, the
temperature boundary condition at the bottom of the domain (15-16) is regularized and
is replaced by

θ(x, t) = θ0(x) on Γ0 = Γ ∩ {x = 0}, (17)

θ(x, t) = 0 on Γ\Γ0, (18)
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with

θ0(x) =
1

2

(

1 − tanh
(2|x| + 1

2ε

)

)

.

The parameter ε > 0 was set to ε = 2.5 × 10−2 in the numerical simulations presented in
Section 4.

The Prandtl Pr and Rayleigh Ra numbers are defined by

Pr =
ν

κ
and Ra =

g β δ3 T1

νκ
.

The Prandtl number is set to Pr = 0.71, which corresponds to air. The system (11-13)
depends on two parameters: the Rayleigh number and the non dimensional stratification
coefficient α. Note that θ defined by (10) represents the temperature variation from the
vertical stratified profile.

3 NUMERICAL APPROXIMATION

3.1 Time discretization

The natural convection problem (11-13) is solved in two steps, which decouple the
computation of the temperature and of the velocity-pressure unknowns. A second-order
projection scheme2 is applied to (11,12) in order to compute velocity and pressure. Let us
consider that (uj, θj, pj) are known for j ≤ k, the computation of (uk+1, pk+1) is achieved
in two steps. The first (prediction) step consists in

ũk+1 − uk

δt
−
√

Pr

Ra
∆

(

ũk+1 + uk

2

)

+ ∇pk =
1

2

(

3 θk − θk−1
)

e2

−1

2
∇ ·
(

3uk ⊗ uk − uk−1 ⊗ uk−1
)

,

ũk+1 = 0 on Γ,

(19)

and is followed by a projection (correction) step

uk+1 − ũk+1

δt
+

1

2
∇(pk+1 − pk) = 0,

∇ · uk+1 = 0, uk+1 · n = 0 on Γ.

(20)

Finally, the temperature variation θk+1 is solution of

θk+1 − θk

δt
− 1√

RaPr
∆

(

θk+1 + θk

2

)

=−1

2
∇ ·
(

3uk θk − uk−1 θk−1
)

−α
2

(

3 vk − vk−1
)

θk+1 = θ0(x) on Γ0 and θk+1 = 0 on Γ\Γ0.

(21)
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3.2 Spatial discretization

Due to the combined effects of the gravity force and of the vertical stratification of
the potential temperature, the flow variables are rapidly smoothed with respect to the
vertical elevation. Therefore, a uniform mesh of size h = H/M can be applied in the
vertical direction, that is yj = j h for j = 0, . . . ,M . The aspect ratio L/H of the
computational domain Ω being much larger than unity, the mesh is chosen non-uniform
in the horizontal direction

xi =
L

2
ϕ(i `) for i = 0, . . . , N,

where ` = L/N and h = H/M . The function ϕ : (0, L) −→ (−1, 1) is defined by

ϕ(x) =
2x− L+ γ1 tanh (γ2x) − γ1 tanh (γ2(L− x))

L+ γ1 tanh (γ2L)
.

The parameters γ1 and γ2 are adjusted so that the horizontal mesh sizes being of the
order of h in the neighbourhood of the heated element Q.

All the terms in the equations (19,20,21) are discretized in space by second-order
centered finite differences. The unknowns are given on a staggered grid3. The discrete
values of the pressure are located at the center of each mesh cellKij = (xi−1, xi)×(yj−1, yj),
those of the vertical velocity and the temperature are located at the middles of the sides
(xi−1, xi) and those of the horizontal velocity are located at the middles of the sides
(yj−1, yj) as shown on Figure 3.

s

Pij

-
Uij

6Vijθij (xi, yj)

(xi, yj−1)

(xi−1, yj)

(xi−1, yj−1)

Figure 3: Staggered cell Kij = (xi−1, xi) × (yj−1, yj).

The boundary conditions for v and θ are enforced at mesh points located on the domain
boundary. As a consequence, the discretization of ∂2θ/∂x2 at the first mesh point away
from the boundary yields modified formulas as

(

∂2θ

∂x2

)

1,j

≈ 2

x3/2 − x0

(

θ3/2,j − θ1/2,j

x3/2 − x1/2

− θ1/2,j − θ0,j

x1/2 − x0

)

where xi+1/2 = xi+xi+1

2
for i = 0, . . . , N − 1. A similar formula is applied at the last

inner point in the horizontal direction, that is xN−1/2. In the vertical direction, the use of
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second-order centered formula and of uniform mesh points allows us to apply a discrete
Fourier transform4 leading to a set of independent and symmetric tridiagonal systems
which can be efficiently solved with the LDLT algorithm.

The conditions for u on the vertical boundaries are enforced at mesh points x0 and xN .
At the top and bottom boundaries, ghost points y−1/2 = −h1/2 and yM+1/2 = H + hM/2
are introduced. Values for u at these ghost points are obtained by applying second-order
extrapolation and by simultaneously enforcing the boundary conditions at y0 and yM . The
discretization of ∂2/∂y2 on the sequence of mesh points y1/2, . . . , yM−1/2 with second-order
centered finite difference also yields a discrete operator which can be easily diagonalized
by applying a discrete Fourier transform4.

3.3 A truncated temperature equation

In order to obtain accurate solutions, the numerical simulation of (19-21) has to be
achieved in long domains with an aspect ratio L/H � 1. Indeed, solutions of (19-21)
have a slow decay with respect to the horizontal distance from the heated plate Q. If L is
not sufficiently large, an artificial boundary layer develops at the vertical boundaries x =
±L/2 whose effect is to deteriorate the accuracy of the computed temperature variation
in the central area of the domain. In order to overcome this difficulty, we modify the
temperature variation equation (13) as follows

∂θ

∂t
− 1√

RaPr
∆θ + ψ(x)

(

∇ · (u θ) + α v
)

= 0, (22)

where

ψ(x) = exp−
( |2x− L|

σL

)p

, σ ∈ (0, 1).

As values for the parameters, σ = 0.9375 and p = 8 were used in the numerical simulations
presented hereafter.

Equation (22) is supplemented with the boundary conditions (17) and (18). The net
effect of the horizontal filtering function ψ is to reduce the convective terms in an area
close to the domain boundaries namely for |x| ≥ σ L. This numerical technique is similar
to the so-called sponge-layer technique used for the numerical simulation of compressible
turbulence5,6. The efficiency of the truncated equation (22) is investigated in the next
section through the numerical simulations of stationary and time periodic solutions of
(11-13).

4 NUMERICAL RESULTS

4.1 Stationary solutions

Stationary solutions are first computed at Ra = 105. The resolution in the neighbour-
hood of the heated plate Q is set to h = 1/32, that is 32 × H uniform mesh points are
used in the vertical direction. In order to obtain an accurate reference solution for this
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resolution, numerical simulations of system (19-21) are performed for increasing values of
the domain length L in the range (160, 6200). The value H = 6 for the domain height is
sufficient to obtain accurate solutions at this resolution and Rayleigh number. A grid of
14000 × 192 mesh points is used for the limit case L = 6200.

In order to check the accuracy of the simulated solutions, we compare the values of
the minimum of the temperature variation min θL obtained for different computational
domains (0, L) × (0, 6) with L ∈ [160, 6200]. Figure 4, representing the relative accuracy

|min θL − min θ6200|
|min θ6200|

,

shows that L ≥ 1600 is necessary in order to obtain a h2 accurate approximation of the
reference value min θ6200 = −0.17156 which is reached along the x = 0 axis at elevation
y = 0.85063. When using the truncated temperature equation (22) instead of (21), a h2

accurate approximation, namely −.171521, is obtained for L = 400 on a grid of 2600×192
points. This result demonstrates the efficiency of the truncated temperature equation
which allows to significantly reduce the computational domain length.
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Figure 4: Accuracy of the stationary solution at Ra = 105 as a function of the domain length L. The
dashed line is used to indicate the expected accuracy h2 = 1/322.

A stationary solution is also obtained at Ra = 2.5×105. On Figure 5, the profile of the
temperature variation at the center of the heated plate is shown for Ra = 105 and 2.5×105.
As shown on Figure 6, stationary solutions are symmetric with respect to the horizontal
distance x from the center of the heated plate. The increase of the Rayleigh number
induces lower values for min θ(0, y) and for the elevation where this minimum is reached:
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the flow is pushed down. This phenomenon participates to the loss of symmetry of the
solutions at larger Rayleigh numbers and to the appearance of time evolutive solutions.
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Figure 5: Profile of the temperature variation θ at the center of the heat island, i.e. θ(0, y), for Ra = 105

(solid line) Ra = 2.5× 105 (dashed line).
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Figure 6: Profile of the temperature variation θ at the elevation y = 0.5, i.e. θ(x, 0.5), for Ra = 105

(solid line) Ra = 2.5× 105 (dashed line).
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4.2 Time periodic solutions

At Ra = 106 a time periodic solution is captured. Numerical simulations with the
truncated temperature equation have been performed with L = 320, 400 and 640 in order
to check the accuracy and validity of the results. Characteristic values of the time signal
observed at two different points in the computational domain, namely x1 = (−0.5, 0.5)
and x2 = (0, 0.5), are reported in Table 1. The differences between the values obtained
for L = 400 and 640 are smaller than h2 indicating that convergence with respect to
the domain length is achieved. Clearly, L = 320 is not large enough to obtain accurate
results. The time periodic signal θ(x2, t) is shown on Figure 7.

A time periodic solution is also found at Ra = 5×105 as shown on Figure 8. The value
of the time period is 7.375 and the temperature at point x2 oscillates between a minimum
value of 0.09225 and a maximum value of 0.09974.

This results obtained at the moderate resolution h = 1/32 indicate that a first Hopf
bifurcation for the heat island problem studied in this paper occurs for a Rayleigh number
lying between 2.5 × 105 and 5 × 105.

L = 320 L = 400 L = 640
Time period 14.258 14.265 14.265

min θ(x1, t) 0.07504 0.07443 0.07456
max θ(x1, t) 0.11974 0.11908 0.11920

min θ(x2, t) 0.02421 0.02394 0.02399
max θ(x2, t) 0.07871 0.07847 0.07851

Table 1: Characteristic values of the temporal signal θ(x, t), for t > 10000, at points x1 = (−0.5, 0.5) and
x2 = (0, 0.5) and at Ra = 106.

5 CONCLUSIONS

Two dimensional numerical simulations of flows induced by a heat island perturbation
in an unbounded domain have been performed. The direct computations of the stationary
solution at Ra = 105 and with a resolution h = 1/32 in large domains for L varying
from 160 through 6200 have been used as references in order to show the efficiency of
the truncated temperature equation. This numerical procedure allowing to significantly
reduce the domain length is applied to the numerical simulation of stationary solutions
at Ra = 2.5 × 105. Time periodic solutions have been found for Ra = 5 × 105 and
Ra = 106 indicating that the first Hopf bifurcation occurs for Ra ∈ (2.5 × 105, 5 × 105).
Preliminary results have been reported here and further investigations are needed in order
to accurately detect the critical Rayleigh number corresponding to this bifurcation.
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Figure 7: Time history of the temperature variation θ(x2, t) obtained at Ra = 106 and for L = 400
(dashed line) and L = 640 (solid line).
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Figure 8: Time history of the temperature variation θ(x2, t) obtained at Ra = 5 × 105 and for L = 400.

was parallelized using implicit communications (OPENMP). The number of processors
used simultaneously varies from 4 to 10 depending on the number of mesh points.
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