
Synthetic data for damage assessment in aircraft turbines

Eduard Klein Onstenk1 , Jan van Gemert1 , Burak Yildiz1
1TU Delft

e.

Abstract
This paper discusses possible ways to generate synthetic
data and its use cases for damage assessment in aircraft
turbines. Synthetic data has many advantages such as ex-
act ground truth and scalable data sets. Using SLAM and
SfM, which are 3D construction tools, 3D models can be
constructed from 2D monocular borescope videos. A 3D
reconstruction of parts of the engine allows us to measure
the damage if it exists. But when is the synthetic data
”good”? Using the methods SLAM and SfM synthetic
data could possibly be evaluated by comparing it to real
data. Using Blender, synthetic borescope videos are gen-
erated and the performance of SLAM and SfM on these
videos is compared to the real videos. In general, there
are many different use cases for synthetic data in damage
assessment and there are multiple ways to generate the
right data set. Evaluating synthetic data shows that syn-
thetic data that qualitatively looks closer to real data does
not perform closer when running SfM or SLAM on it.

1 Introduction
The inside of an aircraft engine is difficult to inspect since
the blades of the propeller are often encased by a narrow con-
struction. Yet it is vital that all components of the engine are
in adequate condition to ensure safety for usage of the air-
craft. To permit that technicians are still able to evaluate the
condition of the the engine even on the inside, a borescope is
used. This instrument is slipped into the engine and produces
monocular video data that the technicians can inspect. This is
quite a time consuming and error prone task, especially when
it has to be done often. The risks that occur from this visual
inspection task are identified in [1]. This all stimulated use of
computer vision to aid the technicians.

However, to increase the performance of the used computer
vision technologies data is needed for both evaluation as well
as training purposes. Borescope videos of aircraft engines are
not widely available, which is not uncommon for industrially
applicated videos. More so, little to no ground truth data is
available for these videos. This motivates the use of synthetic
data, to compensate for the gap in data and have readily avail-
able ground truth data from the model. If synthetic data that
behaves similarly to real data from borescope videos of air-
craft engines could be generated then this allows to increase
evaluation abilities of different algorithms their performance
and to generate training data.

Figure 1: Example of borescope inspection scenario. The smaller
braided cylinder follows a possible borescope trajectory, in each po-
sition the respective turbine is rotated to inspect the blades. Obtained
from [26]

As the performance of supervised computer vision meth-
ods is greatly dependant on quality and quantity of data sets,
the academic community has shown great interest in synthet-
ically satisfying the need for more data. It can be used to
simulate conditions which are not found in current data, train
deep learning algorithms, have ground truth available from
the model and to evaluate performance of algorithms. The
research questions this paper aims to answer are:

1. How can synthetic data be created and used for
borescope inspections of aircraft engines?

2. How do SLAM and SfM compare on synthetic
borescope videos of aircraft engines?

Since the research exists of two partially separate questions,
this paper will partly be a literature study and partly experi-
ment with self generated synthetic borescope video data.

This paper is structured as follows. Section 2 ”Back-
ground” will go in depth on the most critical concepts needed
to understand the rest of the paper. After which ”Related
Work” in 3 is used to briefly mention and discuss similar
studies, it is kept brief as a more in depth literature study
follows. Then the ”Methodology” is briefly described in 4. 5
”Synthetic Data” aims to answer the first question through a
literature study, 5.3 motivates use of SLAM and SfM on syn-
thetic data. 6 is used to demonstrate the experimental setup
and results of this research. Then section 7 and 8 will cover
”Responsible Research” and the discussion respectively. Fi-
nally, the conclusion of this paper is presented in section 9
and ”Future Work” is discussed in section 10.
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2 Background
This section is structured as follows. First in section 2.1
the two methods to evaluate on synthetic data are elaborated
upon. Then in the next section 2.2 goes into the feature
matches that the methods described in 2.1 use.

2.1 SLAM & SfM
Both SLAM [21] (Simultaneous Localization And Mapping)
and SfM [20] (Structure from Motion) are algorithms used to
estimate 3D objects from 2D film. However, when the surface
lacks texture or is shiny SLAM and SfM struggle to estimate
a proper 3D model.

There are several varying applications for SLAM, ranging
from Unmanned Aerial Vehicles (UAV) to vacuum cleaner
robots. What they all have in common is in its name, the
algorithm strives to simultaneously map and steer the envi-
ronment. Utilizing images to decide location and orientation
in computer vision is captured by the term visual odometry
(VO). For SLAM, this means that whilst a 3D reconstruc-
tion/mapping is made, the algorithm keeps track of the loca-
tion of the view. This is useful for autonomous systems, be-
cause it enables the system to navigate an environment it has
no data of beforehand. [9] proposed a system that showed that
VO can be used for ”pose estimation and dense depth map es-
timation” even from a monocular feed. To ensure a real time
usage of SLAM often algorithms count on estimations, which
emphasizes the use of usability and functionality rather than
precision.

While SfM is used in similar applications and also aims
to localize the view and get 3D points, the main difference
lies in that it does not require real-time. Since SfM can
use all data at once, more exact and denser 3D reconstruc-
tion can be achieved at the cost of needing more processing
power. The relevant results for the scope of this paper that
both methods produce are a 3D point cloud representing the
three-dimensional model and a camera trajectory.

To summarize, a big advantage of SLAM over SfM is that
SLAM can be done real time. This means that this technol-
ogy could speed up the process of borescope inspection of
aircraft engine blades if it works well. SfM however requires
more precision, which is also a trait required for damage as-
sessment. It is exactly this trade-off that decides which algo-
rithm works best for our specific use case. Using synthetic
data we are able to discover which of the two methods works
best under what conditions in borescope videos, which allows
to decide which algorithm to use then.

2.2 Feature Extraction & Matching
Both methods SfM and SLAM require feature extraction and
matching of the extracted features in order to create a 3D
model. From every image in a video a certain set of fea-
tures is extracted, the quantity of which can vary extremely
depending on the quality of the video and the algorithm that
is used. The way SLAM and SfM deal with the extracted
features is a little different, as became clear from section 2.1.
To match features in between frames, SfM could potentially
compare every single feature from every single image to all
other features of all other images. SLAM however, is real

time, which means that every frame can only be compared to
all previously analyzed frames and their features.

The resulting features and matches can then be filtered
in different ways such as removing outliers, depending on
whether you are using SLAM or SfM and what version. The
main algorithms used for feature extraction in this paper are
SuperGlue which is a neural network introduced by [19] and
LoFTR from [24], both further researched in this context by
Huizer in [8]. ORB and SIFT, the last two being the two stan-
dard algorithms used by SLAM and SfM respectively in the
research by Markhorst in [12] and Nonnemaker in[14].

3 Related Work
This research lies in the general space of computer vision,
covering constructing synthetic data sets, visual odometry,
mapping, interest point matching and training neural net-
works using synthetic data. Particularly relevant areas for
the research conducted in this paper include research on gen-
erating and/or using synthetic photo/video data, specifically
monoscopic. As well as is research on damage assessment
from borescope videos of aircraft engines. Furthermore it is
relevant what features make ”good” synthetic data, or how to
scale the amount of data that is generated since many applica-
tions require massive data sets. There is also similar research
conducted by my colleagues who dive into other aspects of
improving computer vision aided borescope video inspection
of aircraft engines. In [14], research is conducted on the per-
formance of SfM on the borescope videos. Research alike but
for SLAM is covered in [12]. Finally [8] researched interest
point detection and matching for shiny and non-textured pro-
peller surfaces and [23] researched how to gain ground truth
data, a problem which is also mentioned throughout this pa-
per.

Both for SLAM as well as SfM research has been con-
ducted on applications of synthetic data for improving the
methods. [27] motivates the creation of a synthetic data set
to keep up with the fast development of SLAM and thus the
need for images and ground truth from different settings. [5]
shows that in their research synthetic data performs in a simi-
lar manner to real data. They use this to evaluate performance
of different algorithms used in steps of SfM using hundreds of
generated data samples, as well as calculating 3D point error
of the maps.

Similar research was conducted by [13], which aims to an-
swer what makes synthetic data good for learning disparity
and optical flow estimation, which have much overlap with
how SLAM and SfM operate. The paper investigates usage
of synthetic data for both benchmark as well as training pur-
poses. [5; 27] Cover research on synthetic data in combina-
tion with SfM and SLAM, the used techniques differ however
from research in this paper.

Contributions: Throughout the literature there are many
papers that cover creating synthetic data sets, or using syn-
thetic data in order to train or evaluate performance of al-
gorithms. However there is little research on the compari-
son of SLAM versus SfM, especially in context of synthetic
data. This is an interesting topic to research because as ex-
plained in section 2, they both have advantages and disadvan-



tages dependant on the use case. Using synthetic data, their
stronger and weaker points can be researched more exten-
sively, largely due to ground truth knowledge. Furthermore
this paper covers a wider variety of techniques through which
synthetic data can be used to discover damage in aircraft tur-
bines. Finally this paper covers research on evaluating the
performance of synthetic data using the methods SLAM and
SfM.

4 Methodology
The research questions were ”How can synthetic data be
created and used for borescope inspections of aircraft en-
gines?” and ”How do SLAM and SfM compare on syn-
thetic borescope videos of aircraft engines?”. The aim of
the research was to find out how to create synthetic data and
what the possible use cases are, as well as to generate syn-
thetic borescope videos that share similarity to the real data,
such that conclusions can be drawn from testing the algo-
rithms on those synthetic videos. These questions were an-
swered through a combination of literature research followed
by some experiments on self generated synthetic video data.
The experiments compared changes in synthetic data, which
SLAM and SfM were ran on to see the effect of those changes
on the respective methods. The experimental data as a result
from the tests were a mixture of descriptive data to analyze
the difference between methods SLAM and SfM as well as
data resulting from manipulation in variables such as back-
ground light and texture.

A literature study is conducted in section 5. The aim of
this literature study was to answer the first research question
”How can synthetic data be created and used for borescope
inspections of aircraft engines?”. The results can be found in
that section and the discussion, both qualitatively described.
Then the second research question was answered, ”How do
SLAM and SfM compare on synthetic borescope videos of
aircraft engines?” together with the other part of the first re-
search question in the remainder of the paper. To answer
this, the methods were be ran on varying synthetic borescope
videos varying in specifications such as blade texture and
light levels. Their evaluation being mainly qualitative as well,
expressing the differences in performance mainly from what
can be seen from the resulting 3D point clouds, such as spar-
sity and outliers where a denser cloud is mostly associated
with a more accurate model.

All synthetic data was created using the 3D modelling soft-
ware ”Blender” 1, which is a common approach in the field
of computer vision and related work. Using Blender my own
synthetic data set was created to run the experiments on.

Example borescope videos provided by the company ’Aiir’
2 were used to base the synthetic videos off of. As well as the
fan used in my computer and a miniature model of the bottom
of some blades at aiir. These were used because although
they don’t look exactly alike, they are quite similar yet much
simpler and more abstract yet capture the shape of the blades,
which are useful traits in synthetic data.

1Blender open source 3D creation: https://www.blender.org/
2Aiir Innovations: https://aiir.nl/

5 Synthetic Data
In this section the first question of this research is split into the
sub questions: ”How to generate synthetic data?” and ”What
are the use cases for synthetic data?”. These are answered
through a literature research, this is done respectively in sub-
section 5.1 and section 5.2. Then in section 5.3 the exper-
iments (sections 6.1, 6.1 and 6.1) of using methods SLAM
and SfM to evaluate created synthetic data are introduced and
motivated.

5.1 Use Cases
This subsection aims to answer how the created synthetic data
can be used within the context of borescope videos of aircraft
engines. Studying the possible use cases comes first as the
application of the data greatly influences the way it should
be generated. The possible use cases further motivate the re-
search on how to generate synthetic data.

Improving interest point detection. Many interest point
detection or matching algorithms use a form of neural net-
work [6; 17; 19]. It is known that training neural networks to
be accurate whilst preventing overfitting requires large data
sets, which are difficult to get of borescope videos. In the
context damage assessment of aircraft engines, where preci-
sion is key, manually annotating the data can result in inaccu-
racies. ”Human judgment of interest points is subjective by
nature.” [7], this research shows how different annotators of
interest points select different points. If the data set for train-
ing the neural network gets large multiple annotators would
definitely be needed for real data, which is costly, time con-
suming and inaccurate. Apart from these reasons to use syn-
thetic data, [6] concluded that training on synthetic data does
generalize to real data. How much however needs to be re-
searched (see future work 10). [13] Show in their paper that
diverse data sets generalize well to other data sets and that
specialized data does not. Further research would be required
to decide how specialized the data set to train interest point
detection networks would have to be.

Improving damage detection networks. [2] avoided the
use of neural networks by falling back on other computer vi-
sion approaches to automatically detect damage in aircraft en-
gines. The reason for abstaining from neural networks was
because the required data sets would be too large. [22] Did
use the neural network approach for automatic damage de-
tection and although the two papers use different metrics for
evaluating results, qualitatively the neural networks results
seem to be more accurate. The latter research did not use
synthetic data in training but had experts label the data. This
implies that if synthetic data generalizes well to real data then
the performance could be improved because of a larger data
set. In [10] a more specialized neural network was developed,
specifically for crack detection.

Training personnel. Synthetic data of aircraft engines
could improve the skills that borescope inspectors need. [26]
developed and researched a haptic virtual borescope, which
could be used to train aircraft engine inspectors. Their re-
search on the simulator did indicate however that workload
remains the same and their results only include a slight im-
provement in speed of the inspection process. More suc-
cess was found in further research [25], where an improved



simulator was developed. One experiment concluded that
’constraining camera rotation leads to significantly fewer col-
lisions of the camera with virtual environment surfaces.’.
This in term prevents damage to the tip of the probe of the
borescope. Similar research, [18], uses a virtual reality setup
to teach students how to use a borescope.

Assess performance of algorithms. [27] presents syn-
thetic data which naturally has ground truth available to eval-
uate newly developed visual SLAM methods. Some evalu-
ation criteria for SLAM performance are proposed, relevant
ones for this research include localization error of the camera,
reconstruction error and outlier removal capability. However
their data set is limited to underground garages, thus the set is
not useful for this research. [5] introduces two new methods
for evaluating the performance of SfM. ’Calculating 3D point
error’ and ’comparing SfM as 2D feature noise varies’. Fi-
nally, [11] proposes a synthetic data set for ”evaluation of 3D
reconstruction pipelines” such as SLAM and SfM discussed
in this paper. Although it explains how the set was created, it
is not always clarified why certain decisions are made.

5.2 Generating Synthetic Data
There are multiple tools that allow you to generate synthetic
data. In [5] synthetic data is gathered from an implementation
using the game engine Unity3D. [16] used the same strategy
but another popular game engine, namely Unreal game en-
gine. Their research resulted in a follow up study [28] which
used the same previous technique to improve feature match-
ing on textureless and specular surfaces. Their proposed tool
can be used with multiple publicly accessible game models,
which makes it generally applicable for many applications.

[4] Automatically generates large portions of their data
set using the 3D modelling software tool Blender. [3] used
Blender to extract ground truth data for the open source Sintel
film. This allowed them to render the same scene under dif-
ferent conditions over and over and in term analyze where al-
gorithms to evaluate optical flow fail. Mayer [13], researched
multiple ways to generate data in Blender for training neu-
ral networks to improve optical flow. In [11] Blender is used
to generate data to compare different 3d reconstruction algo-
rithms, similarly to this paper. Comparable software ’Maya’
which is not free to use like Blender is used in research on
optical flow such as [15]. Many of the related research is
focusing on optical flow. This is quite similar as optical flow
also requires feature matching, optical flow uses it to compute
motion, SLAM and SfM focus more on camera movement.

Diversity matters in training data for neural networks,
meaning that diverse data may perform better as a training set
than specialized data [13]. This research further concludes:
realism is not all, thus the aim of generating synthetic data
should not necessarily be for it to look as realistic as possible.
Order of data fed to neural networks matter and knowledge
of the camera and lens and their flaws improves networks.
According to their paper, this holds for disparity estimation
and optical flow, which could be generalizable interest point
matching from monoscopic video, since these two are closely
related in the field of computer vision.

Mayer further distinguishes three different ways of gener-
ating synthetic data.

• Use existing scene data

• Designing new scenes manually

• Create randomized scenes in procedural manner.

For this paper existing scene data is little to not available.
Thus data is generated by designing new scenes manually.
Once the data is evaluated and it performs similar to real data,
randomized scaling techniques can be applied to create poten-
tially infinite data. The easiest way to do this with the models
from this research would be to use random transformations
of camera angle and positions, with known ground truth data.
Changing actual shapes in the model is harder as this might
influence the performance of the data, more research would
be required to answer this.

5.3 Evaluation using SLAM & SfM

In section 5.2 some of the synthetic data that has been gener-
ated throughout the research has been introduced. However,
how can one tell whether the data is any good? In section
5.1, the idea that synthetic data can be used to assess the per-
formance of some algorithms such as SLAM and SfM is dis-
cussed. A recurring argument in motivating this approach
is that naturally, ground truth comes with the models from
which synthetic videos are generated.

There are several factors that motivate the use of synthetic
data for damage assessment of aircraft engines. First, both
SLAM and SfM require interest point matching yet there are
no public neural networks trained on borescope like videos of
turbines. Neural networks require large amounts of training
data and that is not available. Secondly, synthetic data can aid
us to understand under what circumstances SLAM methods
perform better than SfM methods and vice versa, by making
minor changes to the same models.

The second research question was ”How do SLAM and
SfM compare on synthetic borescope videos of aircraft en-
gines?”. This is not only to find out how well SLAM and
SfM perform on synthetic data, but also to use their respec-
tive performances to compare the synthetic data to real data.
Some research is already available on how SLAM and SfM
compare on real data, [12] and [14] respectively. As its known
what results SLAM and SfM produce under certain circum-
stances, this motivates the approach of using SLAM and SfM
to evaluate the correctness of our synthetic data. If SLAM
and SfM perform similarly on real data as on synthetic, this
could indicate that the synthetic data is ”good”. The motiva-
tion for using both SLAM and SfM is that while both methods
aim to achieve similar results they operate in a different man-
ner. If one performs well on synthetic data by coincidence but
the other does not this could indicate poor performance of the
generated data set.



Figure 2: A metallic material with shiny, textured and less textured
areas. This material will serve as the base material on the next mod-
els, where texture and shininess can be altered.

Figure 3: Example frame of a real borescope video supplied by
Aiir. Although videos differ, this provides insight how synthetic
data should look.

Figure 4: Frame of first version of rotating synthetic data. Highly
reflective surface and little texture.

Figure 5: Frame of second version of rotating synthetic data, much
more texture than most real videos for testing purposes.

6 Experimental Setup & Results
In this chapter first details of the evaluation setup are de-
scribed in section 6.1. Its subsections describe the experi-
ments that were conducted with the models. Then the results
are reported in section 6.2.

6.1 Experimental Setup
Before diving into the experiments in, the basic model ver-
sions are described first, defining their underlying ideas and
the workflow of creating them.

Since the ability to create a 3D model from 2D footage
of an object depends greatly on the texture and shininess on
the surface of that object, first the material for the model was
developed. For the experiment, a shiny material with about
an even distribution of textured and less textured area was
created on a cube. For the first view models the colour of this
material will be kept grey, however for the final model using
this material would have a beige undertone to represent the
real borescope videos supplied by Aiir more.

Then a basic model to apply the material on was developed.
Version 1 has blades shaped as cuboids, as can be seen in 4.
The last version has much more realistically shaped blades,
with curves, based on actual blades. Now that the basic ma-
terial has been developed, the first model is created. For this
research Aiir sent 10 different borescope videos, an example
of a single frame of such a video can be seen in 3. However
the videos are too different to develop a single 3D model that
would be similar to most. The videos differ in camera an-
gle, shape of blades, amount of texture and more. Because of
this, the model with curved blades is modeled similar to the
top section of figure 1, which looks more similar to a fan than
the bottom.

As discussed in section 5.2, there exist multiple ways to
generate synthetic data. For the experiments conducted in
this research, the manual modelling approach [13] was cho-
sen as models could precisely be constructed to be similar to
a specific borescope video. All rendered videos result in a
1280x720 display resolution, with 30 fps.

A frame from the first synthetically generated video is
shown in figure 4. The aim for this video was for the footage
to be much more abstract than the real borescope videos. An
assumption was that a monotone pink background would re-
sult in less wrongful matches in the background. The model
is similar to a watermill, which was easy to create and still
looks a lot like the aircraft engine. The blades are cuboid,
reflective, metallic like and don’t have a lot of texture.

After the feature extraction failed from figure 4, figure 5
was created which from the same model, but has a lot more
texture on the blades and much more convenient lighting.
Since feature extraction was done with a colourless back-
ground, the background is changed to gray instead of pink.

Now a more complex model is constructed 6c, where the
shape of the blades is much more similar to that found on
a turbine or a fan 6b. As was clear in 6c, the lighting con-
ditions are now much more similar to that of real borescope
videos, that have a light at the tip right next to the camera. 6a
shows how this is achieved, namely by having a cone shaped
area light in the same spot pointed in the same direction as



(a) Final comparison model light and camera
setup. Shows how the synthetic video data was
captured.

(b) Final comparison model close-up
blades. Provides a better understanding
of how the blades are shaped in the final
model.

(c) Final model gray background single frame.
Average texture and lighting, as described in
experiment 3.

(a) (b) (c) (d)

the camera view. This creates the same round light spot sur-
rounded by shadow that can be found in some of the real
borescope videos.

Experiment 1: shape of blades
The first experiment aims to tell how much impact the shape
of the propeller blade has on the resulting model. This is to
see whether more abstract models get similar results as more
complex models when running SLAM or SfM on them. To
analyze this, the models with cuboid shaped blades are 3D
reconstructed using both SLAM and SfM. The same goes for
the new model with curved blades. The only difference be-
tween the two models is the shape of the blades. The texture,
lighting and background remain the same for both. The back-
ground is monotone gray. Then the level of texture is altered
by varying the roughness of the noise texture.

Experiment 2: different textures background
Then the next experiment analyzes the influence of the back-
ground in a borescope video. For this experiment the goal is
too to analyze whether data more similar to real data also per-
forms more similar under SLAM and SfM. To do this the fi-
nal model was used with 4 additional textures as background,
added onto a plane. Frames from this batch are shown in
[a;b;c;d] above. Apart from the background the videos are
exactly the same. The first background is a noise texture
from Blender. This is a colourful and blurry background. The
second is a simple checker background with white and gray,
containing sharp lines and lots of corners. The third back-
ground is the Voronoi texture, containing multiple colours
and straight lines, but lots of different random angles. Fi-
nally the last model has a background texture which is the
same texture as on the blade, which is more similar to real
borescope videos.

Experiment 3: lighting, texture and speed
The final experiment aims to answer how SLAM and SfM
perform on synthetic data when making minor adjustments to

the data. The three variables that are altered are the amount
of light, the amount of texture and the speed of the rotation
of the blades. From (6b, 6a), a batch of 7 videos was created,
all three seconds long such that testing fit within time frame
of this research. The videos differed in three aspects, namely
texture on the blades, lighting conditions and speed of rotat-
ing blades. The texture on the blades was altered by changing
the roughness of the texture between 0.5, 0.75 and 1.0. The
light was changed by altering the power of the lamp, low-
est level being 500 Watt, medium 1000 Watt and high being
1500 Watt. Finally the rotary speed of the blades was 90, 120
or 150 degrees per 10 seconds. Whilst differing one setting,
the other two are always on the median value, resulting in 7
videos.

6.2 Results
The results of the first experiment show that while the abstract
cuboid shaped blades result in qualitatively good model in
both SLAM and SfM, see Figure 8 for the performance of
SLAM. However for the new model with curved blades, also
using SuperGlue, no model could be created because there
were too little features detected. The result was an empty
point cloud.

The second experiment ran with SuperGlue on which the
real data performs well, also did not succeed in the more com-
plex model with curved blades and more realistic colour and
texture. In table 1, the amount of interest points per frame for
each background are listed as an average over all frames. The
last column indicates what values can be expected on average
if real data were used from the videos supplied by Aiir.

When running the feature extraction and matching algo-
rithm on the batch of 7 videos (for example 6c), SIFT works
great in all instances. However, SuperGlue results in an ex-
tremely low amount of matches, namely 20 per frame. From
this amount no useful model can be generated from either
SLAM or SfM. On real data SIFT works bad and SuperGlue
performs well.



Nonnemaker researched a multi-view stereo method for
SfM, which is ran after running SfM. Using SIFT, it is shown
in figure 8 that although synthetic data does not perform well
in the experiments above, it is possible to create very realistic
models [14].

Figure 8: SfM using SIFT in combination with multi-view stereo
shows that promising 3D models can be constructed from the syn-
thetic data used in the experiments.

Gray Noise Checker Voronoi Metal Real
SuperGlue 312 248 466 428 93 400-800

SIFT 612 560 1420 1254 577 1500
LoFTR 9980 - - - - 5k

Table 1: # of features per frame on average using different back-
grounds. SuperGlue does not detect many features on the synthetic
data

Figure 9: Result SLAM on figure 5

7 Responsible Research
There are a couple of ethical implications that follow from
the research described by this paper. The two largest im-
plications regard safety in using the technology and human
replacement. A couple of use cases for synthetic data were
introduced in section 5.1. One use case is to use synthetic
data to train neural networks. Using synthetic data for train-
ing a neural network requires good validation data, especially
since it is not always what features neural networks pick up

on. It should also focus on having little to no false negatives
as a result, since those are the most dangerous. Another use
case was to evaluate the performance of algorithms such as
SLAM and SfM. Synthetic data could aid evaluation of per-
formance but it should not rely solely on synthetic data, as
a too trusting attitude towards these algorithms without suffi-
cient testing on real data could result in faulty aircraft engines
going unnoticed during checks. Vice versa, conclusions of
the performance of synthetic data evaluated using SLAM and
SfM as a result from the experiments should be interpreted
with care and more research is needed to see how this trans-
lates to performance as a training set for neural networks for
example.

Secondly, one could argue that this research is used to auto-
mate a task that could replace a human. However, improving
borescope video inspection improves safety of people on air-
planes and is merely a tool to aid an inspector. For now the
final responsibility should be at the human level and not the
system level.

Finally, a word on the reproducability of the results of this
paper. The conducted research consists partially of a liter-
ature research and partially of experiments described in 6.
The most important claims from the literature research are all
coupled to references that can be checked by the interested
reader. As for the experiments, one could try to recreate the
synthetic data as I have. All the synthetic data, including the
models, textures and videos used in this research are avail-
able by request. Although the experiments include methods
to quantitatively analyze results, performance is qualitatively
evaluated as well, one might run the same experiments but
conclude something different.

8 Discussion
This research includes three main experiments which results
are discussed in this section. The purpose of experiment 1
was to identify what the influence of the shape of the pro-
peller blade is on the results from SLAM and SfM, which
are qualitatively analyzed by looking at the resulting model.
From the resulting models for both SLAM and SfM it became
clear that it is a lot easier for these methods to reconstruct the
cuboid shaped blades with long straight edges. The synthetic
data with blades with a more curved shape did not perform
well, even when massively increasing the amount of texture
on the blades. Only with SfM using multi-view stereo [14] or
using other feature extraction/matching algorithms, promis-
ing results were found yet this is not consistent with how the
real data behaves. From this its clear that the more abstract
model with cuboid shape is easier to model, but more fur-
ther research is required find out how more similarly behav-
ing synthetic data can be created.

From the second experiment, where different backgrounds
were tested, results are both quantitatively and qualitatively
analyzed. Table 1 shows the amount of features different fea-
ture detection algorithms detect on average per frame. Here it
became clear that the synthetic data behaves differently from
the real data. Although LoFTR works a lot better on this data,
that is not what is wanted, as the goal was to have synthetic
data that behaves similarly.



For experiment 3, it also became apparent that for the test
set of 7 videos, SIFT worked great as a feature extraction and
matching tool however SuperGlue did not. This is the oppo-
site in real data, but the test set is the most realistic looking
test set yet. Here further research is also required to find out
why. This could possibly be because the neural network Su-
perGlue takes context more into consideration than texture,
which works great for the real data but does not work on the
test batch [8]. Context lacks, background has no texture and
the only real observations are the blades. The opposite is true
for SIFT, this method works great on textured surfaces but
does not consider context. This could explain why it would
work so well on 6c.

Because in general the results were not good, there was
little reason to use quantitative methods to analyze the results.

In section 5 it was discussed how to generate synthetic data
and what possible use cases are for damage assessment in air-
craft turbines. Four main potential use cases were discussed,
improving interest point detection, improving damage detec-
tion networks, training personnel and assess performance of
algorithms. For the last two, existing literature already shows
benefits. The first two require further research to evaluate
whether there are benefits to using synthetic data.

Then in section 5.2 it was discussed how to generate syn-
thetic data. For the experiments only manual modeling in
Blender was used, however the literature study does cover
other methods that can scale the amount of data generated.
This could prove to be very useful for future research but its
application is outside of the scope of this research.

Limitations The fact that there was no access to aircraft
engine models that were used, for example in the video, was
a limiting factor in creating models.

In section 5.1, multiple use cases from existing literature
were mentioned. However not all were considered when gen-
erating the data. They were left in this research as they help
answer how synthetic data could be applied in the context of
damage assessment from the borescope videos, but creating
synthetic data for these was outside of the scope of this paper.

9 Conclusions
The main research questions of this paper were ”How can
synthetic data be created and used for borescope inspections
of aircraft engines?” and ”How do SLAM and SfM compare
on synthetic borescope videos of aircraft engines”. A litera-
ture study conducted investigated how to create synthetic data
and how this could be used for borescope inspection. Then an
experiment was run aimed to evaluate the quality of self gen-
erated synthetic data.

The literature study found multiple ways to generate syn-
thetic data. The most important findings on generating syn-
thetic data were that synthetic data allows for large test
sets and readily available ground truth data, two valuable
attributes. It was also found that within the context of
borescope inspections of aircraft engines synthetic data has
many different potential use cases, the main potential use
cases being:

• Improving interest point detection
• Improving neural networks

• Training personnel
• Assess performance of algorithms
Finally the methods SLAM and SfM were used to eval-

uate self generated data. Although qualitative and quantita-
tive methods to evaluate synthetic borescope video data com-
pared to real borescope video data were proposed, this re-
search was unable to consistently produce synthetic data that
behaved similar to real data when running SLAM or SfM on
it. Using feature matching and detection algorithms that did
not perform well on real data did show promising results on
the synthetic data, especially after applying multi-view stereo
after creating a model with SfM.

10 Future Work
More research is required on why the more complex synthetic
models did not perform similar to the real data, to properly
conclude the second research question.

There are multiple reasons to develop synthetic data for re-
lated applications. One reason which was only discussed in
a literature study is to train the neural networks for interest
point matching such that they can construct better 3D mod-
els. However, as the used neural networks for interest point
matching used in this project are only public pre-trained test-
ing this on my own synthetic data was outside of the scope
of this project. This would be an interesting application to
do further research on in the future however, specifically to
research what features are extracted from real data by using
more abstract synthetic models.

Another interesting topic to do more research on would
be the use of neural networks for classification of damage
to blades such as the one described in [22]. I am interested
whether these neural networks can be utilized to achieve ac-
curate measurements, instead of merely detecting the dam-
age.
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