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Abstract We study certain overlap coefficients appearing in representation theory of the quantum algebra
Uq(sl2(C)). The overlap coefficients can be identified as products of Askey–Wilson functions, leading to
an algebraic interpretation of the multivariate Askey–Wilson functions introduced by Geronimo and Iliev
[1]. We use the underlying coalgebra structure to derive q-difference equations satisfied by the multivariate
Askey–Wilson functions.

1 Introduction

The Askey–Wilson functions are q-hypergeometric functions generalising the Askey–Wilson polynomials [2].
The latter are the polynomials in x + x−1 that are eigenfunctions of the Askey–Wilson q-difference operator

A(x)(Tq − 1) + A(x−1)(Tq−1 − 1), (1.1)

where (Tq f )(x) = f (qx) and

A(x) = (1 − ax)(1 − bx)(1 − cx)(1 − dx)

(1 − x2)(1 − qx2)
.

Ismail and Rahman [3] obtained explicit eigenfunctions, not necessarily polynomials, of the Askey–Wilson
q-difference operator. The Askey–Wilson function is a specific nonpolynomial eigenfunction which appears
as the kernel in an integral transform due to Koelink and Stokman [4] describing the spectral properties of the
Askey–Wilson q-difference operator. Unitarity of the integral transform implies orthogonality relations for
the Askey–Wilson functions first obtained by Suslov [5,6]. In [7] it is shown that the Askey–Wilson functions
appear as spherical functions on the SU(1, 1) quantum group; other representation theoretic interpretations
are e.g. in double affine Hecke algebras [8] and as 6 j-symbols [9].

Gasper and Rahman [10] introduced multivariate extensions of the Askey–Wilson polynomials, defined
as nested products of univariate Askey–Wilson polynomials, generalising Tratnik’s [11] multivariate Wilson
polynomials. It was then shown by Iliev [12] that the multivariate Askey–Wilson polynomials in N vari-
ables are eigenfunctions of N independent q-difference operators that can be considered as extensions of the
Askey–Wilson q-difference operator (1.1). Moreover, by using a symmetry property the multivariate -Wilson
polynomials were shown to be bispectral. These multivariate polynomials also naturally appear in representa-
tion theory, see e.g. [13–15]. Geronimo and Iliev [1] extended the results from [12] to the level ofAskey–Wilson
functions using analytic continuation, leading to q-difference equations for multivariate Askey–Wilson func-
tions. In this paper we give a representation theoretic interpretation of these multivariate functions and their
q-difference equations.

W. Groenevelt (B)
Technische Universiteit Delft, DIAM, PO Box 5031, 2600 GA Delft, The Netherlands
E-mail: w.g.m.groenevelt@tudelft.nl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40065-025-00581-5&domain=pdf
http://orcid.org/0000-0003-4082-2642


Arab. J. Math.

The organisation of the paper is as follows. In Sect. 2 we introduce the quantum algebra Uq(sl2(C)) and
the representation of the algebra we will use. In Sect. 3 we consider eigenfunctions of two different algebra
elements and compute their overlap coefficients. These coefficients are given in terms of a q-hypergeometric
integral which can be identified as a univariate Askey–Wilson function. By writing the action of the algebra on
the eigenfunctions as operators acting in the spectral variables, we construct q-difference operators for which
the overlap coefficients are eigenfunctions. The q-difference operators are shown to be the Askey–Wilson
q-difference operators. The construction of the Askey–Wilson function is similar to Stokman’s construction
in [16], but the construction of the related q-difference operators is different. Furthermore, the construction
immediately gives a symmetry property of the overlap coefficients which leads to bispectrality of the Askey–
Wilson functions. We briefly also consider simpler versions of the overlap coefficients, which we use to derive
bilateral summation formulas involving 2ϕ1-functions. In Sect. 4 we extend the results from Sect. 3 to a
multivariate setting using the coalgebra structure of Uq(sl2(C)). Similar to the construction of multivariate
Askey–Wilson polynomials in [15] this results in an interpretation of the multivariate Askey–Wilson functions
as overlap coefficients, and leads to a construction of q-difference equations for these functions.

1.1 Notations

Throughout the paper q ∈ (0, 1) is fixed. We use standard notations for q-shifted factorials, θ -functions and
q-hypergeometric functions as in [17]. In particular, q-shifted factorials and theta-functions are defined by

(x; q)n =
n−1∏

j=0

(1 − xq j ), x ∈ C, n ∈ Z≥0 ∪ {∞},

θ(x; q) = (x, q/x; q)∞, x ∈ C
×,

from which it follows that

(qx; q)∞ = 1

1 − x
(x; q)∞, θ(qx; q) = −1

x
θ(x; q). (1.2)

We use the standard shorthand notations

(x1, x2, . . . , xk; q)n =
k∏

j=1

(x j ; q)n,

θ(x1, x2, . . . , xk; q) =
k∏

j=1

θ(x j ; q).

Moreover, ±-symbols in exponents inside q-shifted factorials or theta functions means taking products over
all possible combinations of + and − signs, e.g.

(xy±1z±1; q)∞ = (xyz, xyz−1, xy−1z, xy−1z−1; q)∞.

2 The quantum algebra

The quantum algebra Uq = Uq(sl2(C)) is the unital, associative, complex algebra generated by K , K−1, E ,
and F , subject to the relations

KK−1 = 1 = K−1K ,

K E = qEK , K F = q−1FK ,

EF − FE = K 2 − K−2

q − q−1 .

123



Arab. J. Math.

Uq has a comultiplication � : Uq → Uq ⊗ Uq defined on the generators by

�(K ) = K ⊗ K , �(E) = K ⊗ E + E ⊗ K−1,

�(K−1) = K−1 ⊗ K−1, �(F) = K ⊗ F + F ⊗ K−1.
(2.1)

We equip Uq with the ∗-structure ∗ : Uq → Uq defined on the generators by

K ∗ = K , E∗ = −F, F∗ = −E, (K−1)∗ = K−1,

which corresponds to the real form su(1, 1) of sl2(C).

2.1 Twisted primitive elements

For s, u ∈ C
× we define two twisted primitive elements Ys,u and Ỹs,u by

Ys,u = uq
1
2 EK − u−1q− 1

2 FK + μs(K
2 − 1),

Ỹs,u = uq
1
2 FK−1 − u−1q− 1

2 EK−1 + μs(K
−2 − 1),

(2.2)

where

μs = s + s−1

q−1 − q
.

We have
(Ys,u)

∗ = Ys̄,ū−1 and (Ỹs,u)
∗ = Ỹs̄,ū−1 .

From (2.1) it follows that
�(Ys,u) = K 2 ⊗ Ys,u + Ys,u ⊗ 1,

�(Ỹs,u) = Ỹs,u ⊗ K−2 + 1 ⊗ Ỹs,u,
(2.3)

so that Ys,u and Ỹs,u belong to a left, respectively right, coideal of Uq .

2.2 Representations

Let M be the space of meromorphic functions on C
×. For λ, ε ∈ R we define a representation π = πλ,ε of

Uq on M by [
πλ,ε(K )

]
(z) = qε f (qz),

[πλ,ε(E) f ](z) = z
q− 1

2−iλ−ε f (z/q) − q
1
2+iλ+ε f (qz)

q−1 − q
,

[πλ,ε(F) f ](z) = z−1 q
− 1

2−iλ+ε f (qz) − q
1
2+iλ−ε f (z/q)

q−1 − q
.

(2.4)

We define an inner product by

〈 f, g〉 = 1

2π i

∫

T

f (z)g�(z)
dz

z
,

with g�(z) = g(z−1), and where the unit circle T has positive orientation. Let U1
q be the subspace of Uq

spanned by 1, K , K−1, E and F . Suppose that f, g ∈ M are analytic on the annulus {q ≤ |z| ≤ q−1}, then
〈π(X) f, g〉 = 〈 f, π(X∗)g〉, X ∈ U1

q , (2.5)

which follows from Cauchy’s theorem to shift the path of integration. For X = X1 · · · Xk with Xi ∈ U1
q the

same property holds for functions f, g that are analytic on the annulus {qk ≤ |z| ≤ q−k}.
The following result, which is proved by direct verification, will be useful later on.
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Lemma 2.1 The assignment
ϑ(K ) = K−1, ϑ(E) = F, ϑ(F) = E

extends to an involutive algebra isomorphism and coalgebra anti-isomorphism ϑ : Uq → Uq satisfying

• ϑ(Ys,u) = Ỹs,u;
• πλ,ε(ϑ(X)) = r ◦ πλ,−ε(X) ◦ r , X ∈ Uq , where r : M → M is the reflection operator defined by

[r f ](z) = f (1/z).

To end this section let us introduce some convenient notation. The functions we study later on will depend
on (a subset of) the parameters s, u, t , v, λ and ε coming from the twisted primitive elements Ys,u and Ỹt,v ,
and the representation πλ,ε. To simplify notation we let α be the ordered 6-tuple

α = (s, u, t, v, λ, ε).

On such 6-tuples we define an involution ϑ , which corresponds to the Uq -involution ϑ , by

αϑ = (t, v, s, u, λ,−ε).

If f = fα is a function depending on α, then we denote by f ϑ the same function with α replaced by αϑ ;
f ϑ = fαϑ . We sometimes use the notation

ᾱ = (s̄, ū, t̄, v̄, λ, ε).

Note that (ᾱ)ϑ = αϑ .

3 Overlap coefficients and univariate Askey–Wilson functions

In this section we consider eigenfunctions of π(Ys,u) and π(Ỹt,v) and we identify the overlap coefficients
between the eigenfunctions with Askey–Wilson functions. We show that π(Ỹt,v) acts on the eigenfunctions of
π(Ys,u) as a q-difference operator in the spectral variable, which leads to a q-difference equation satisfied by
the overlap coefficients.

3.1 Eigenfunctions

We consider eigenfunctions of π(Ys,u). From the actions of the Uq -generators (2.4) and the definition of Ys,u
(2.2) it follows that, for f ∈ M,

[π(Ys,u) f ](z) = q2ε
s + s−1 − uzq1+iλ − u−1z−1q−1−iλ

q−1 − q
f (q2z)

+ uzq−iλ + u−1z−1qiλ − s − s−1

q−1 − q
f (z).

(3.1)

The eigenvalue equation π(Ys,u) f = μ f now becomes a first-order q2-difference equation, for which the
eigenfunctions can be determined in terms of q2-shifted factorials.

Lemma 3.1 Define fx = fx,α by

fx (z) = (sq1−2iλx±1, uszq1+iλ; q2)∞θ(q2ε−iλuz/s; q2)
(uzq−iλx±1, sq1−iλ/uz; q2)∞ , x ∈ C

×,

then π(Ys,u) fx = (μx − μs) fx .

The z-independent factor (sq1−2iλx±1; q2)∞ is of course not needed for fx to be an eigenfunction and is
only inserted for convenience later on. Note that fx,α only depends on the four parameters s, u, λ, ε of the
6-tuple α.
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Proof The eigenvalue equation π(Ys,u) f = (μx − μs) f is equivalent to

f (q2z) =
(

− sqiλ−2ε

uz

)
(1 − xuzq−iλ)(1 − uzq−iλ/x)

(1 − suzq1+iλ)(1 − sq−1−iλ/uz)
f (z).

From (1.2) it follows that fx is a solution. 
�
Next we compute the action of π(K−1) on the π(Ys,u)-eigenfunctions fx . It will be convenient to use the

notation fx,s(z) for fx,α(z) to stress its dependence on the parameter s.

Lemma 3.2 The function fx,s satisfies

π(K−1) fx,s = a−(x, s) fxq,s/q + a−(x−1, s) fx/q,s/q

= a+(x, s) fxq,sq + a+(x−1, s) fx/q,sq ,

with a±(x, s) = a±
α (x) given by

a−(x, s) = − xqε

s(1 − x2)
, a+(x, s) = q−ε(1 − sxq1−2iλ)(1 − sxq1+2iλ)

1 − x2
.

Proof We consider the function

gx,s(z) = fx,s(z)

(sq1−2iλx±1; q2)∞ = (uszq1+iλ; q2)∞θ(q2ε−iλuz/s; q2)
(uzq−iλx±1, sq1−iλ/uz; q2)∞ .

This function satisfies

gxq,s/q(z) = − sq1+iλ−2ε(1 − uzxq−1−iλ)

uz(1 − sq−iλ/uz)
gx,s(z/q),

gxq,sq(z) = 1 − uzxq−1−iλ

1 − suzqiλ
gx,s(z/q).

From gx,s = gx−1,s we obtain similar expressions for gx/q,s/q and gx/q,sq by replacing x by x−1. From a direct
calculation it then follows that

q1+2iλ−2εgx,s(z/q) = 1 − xq1+2iλ/s

1 − x2
gxq,s/q(z) + 1 − q1+2iλ/xs

1 − x−2 gx/q,s/q(z),

gx,s(z/q) = 1 − xsq1+2iλ

1 − x2
gxq,sq(z) + 1 − sq1+2iλ/x

1 − x−2 gx/q,sq(z).

Note that

gxq,s/q = − xq1+2iλ/s

1 − xq1+2iλ/s

fxq,s/q

(sq1−2iλx±1; q2)∞ ,

gxq,sq = (1 − sxq1−2iλ)
fxq,sq

(sq1−2iλx±1; q2)∞ ,

then the result follows from fx = fx−1 . 
�
Combining the two actions of π(K−1) on fx,s it follows that π(K−2) acts as a q2-difference operator in

x on fx,s .

Corollary 3.3 The function fx satisfies

π(K−2) fx = A(x) fxq2 + B(x) fx + A(x−1) fx/q2 ,

where A = Aα and B = Bα are given by

A(x) = − x(1 − sxq1−2iλ)(1 − sxq1+2iλ)

s(1 − x2)(1 − q2x2)
,

B(x) = −A(x) − A(1/x).
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Proof This follows from Lemma 3.2 using

A(x) = a−(xq, sq)a+(x, s),

B(x) = a−(1/xq, sq)a+(x, s) + a−(xq, sq)a+(1/x, s),

and a−(1/xq, sq) = −a−(xq, sq). 
�
Applying Lemma 3.2 twice it follows that π(K−2) can also be realized as a difference operator acting in

x and s. This result will be useful in Sect. 4 where we consider difference operators in a multivariate setting.

Corollary 3.4 The function fx,s satisfies

π(K−2) fx,s = A−(x) fxq2,s/q2 + B−(x) fx,s/q2 + A−(x−1) fx/q2,s/q2

= A+(x) fxq2,sq2 + B+(x) fx,sq2 + A+(x−1) fx/q2,sq2 ,

where A± = A±
α and B± = B±

α are given by

A−(x) = x2q2+2ε

s2(1 − x2)(1 − q2x2)
,

B−(x) = q2ε

s2(1 − x2/q2)(1 − 1/x2q2)
,

and

A+(x) = q−2ε(1 − sxq1−2iλ)(1 − sxq3−2iλ)(1 − sxq1+2iλ)(1 − sxq3+2iλ)

(1 − x2)(1 − q2x2)
,

B+(x) = q−2ε−1(q−1 + q)(1 − sxq1−2iλ)(1 − sq1−2iλ/x)(1 − sxq1+2iλ)(1 − sq1+2iλ/x)

(1 − x2/q2)(1 − 1/x2q2)
.

Proof This follows from Lemma 3.2 using

A±(x) = a±(x, s)a±(xq, sq±1)

and
B±(x) = a±(x, s)a±(1/xq, sq±1) + a±(1/x, s)a±(x/q, sq±1).

Writing this out and simplifying gives the expressions given in the lemma. 
�
Eigenfunctions of π(Ỹt,v) can be obtained from the eigenfunctions of π(Ys,u). By applying Lemma 2.1 to

(3.1), or by direct verification, it follows that

[π(Ỹt,v) f ](z) = q−2ε t + t−1 − v−1zq−1−iλ − vz−1q1+iλ

q−1 − q
f (z/q2)

+ v−1zqiλ + vz−1q−iλ − t − t−1

q−1 − q
f (z),

which is essentially equation (3.1) with (s, u, ε, z) replaced by (t, v, −ε, z−1). Using Lemma 2.1 it follows
that f r,ϑx = r fx,αϑ , where r is the reflection operator, is an eigenfunction of π(Ỹt,v):

πλ,ε(Ỹt,v)(r fx,αϑ ) = (r ◦ πλ,−ε(Yt,v−1)) fx,αϑ = (μx − μt )r fx,αϑ .

Lemma 3.5 The function

f r,ϑx (z) = (tq1−2iλx±1, tvq1+iλ/z; q2)∞θ(vq−2ε−iλ/t z; q2)
(vq−iλx±1/z, t zq1−iλ/v; q2)∞

satisfies π(Ỹt,v) f
r,ϑ
x = (μx − μt ) f

r,ϑ
x .

Slightly abusing notation we will omit r in our notation and write f ϑ
x = f r,ϑx .
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3.2 Overlap coefficients: Askey–Wilson functions

Let us write f̄ ϑ
x = r fx,ᾱϑ , then f̄ ϑ

x is an eigenfunction of π(Ỹt̄,v̄) for eigenvalue μx − μt̄ .

Definition 3.6 Let 0 < |ux |, |u/x |, |vy|, |v/y| ≤ q2 and 0 < |s/u|, |t/v| ≤ q .Wedefine�(x, y) = �α(x, y)
to be the overlap coefficient between fx and f̄ ϑ

ȳ , i.e.

�(x, y) =
〈
fx , f̄ ϑ

ȳ

〉
.

The following symmetry property of � is immediate from the definition.

Proposition 3.7 �α(x, y) = �ᾱϑ (ȳ, x̄)

First we will derive difference equations for �. We show that we can write the action of Ỹt̄,v̄−1 on fx as a
difference operator in x . Then the symmetry property of Proposition 3.7 immediately leads to a corresponding
difference operator in y. Since we already know the actions of Ys,u and K−2 on fx , it suffices to express Ỹt,v−1

in terms of Ys,u and K−2:

Ỹt,v−1 = qu/v − v/uq

q−2 − q2
K−2Ys,u + vq/u − u/vq

q−2 − q2
Ys,uK

−2

+ (q−1 + q)(t + t−1) − (v/u + u/v)(s + s−1)

q−2 − q2
(K−2 − 1).

(3.2)

For v = 1 this is [15, Lemma 4.3] and the proof, which we have included in the appendix, is the same. It will
be convenient to introduce parameters a, b, c, d corresponding to the 6-tuple α by

(a, b, c, d) = (sq1−2iλ, sq1+2iλ, vtq/u, vq/ut), (3.3)

Note that
(aϑ, bϑ, cϑ , dϑ) = (tq1−2iλ, tq1+2iλ, usq/v, uq/vs). (3.4)

Proposition 3.8 The function fx satisfies

π(Ỹt,v−1) fx = A(x) fxq2 + B(x) fx + A(x−1) fx/q2 , (3.5)

with A = Aα and B = Bα given by

A(x) = 1

q−1 − q

(1 − ax)(1 − bx)(1 − cx)(1 − dx)

(q2/dϑ) (1 − x2)(1 − q2x2)
,

B(x) = q2/dϑ + dϑ/q2

q−1 − q
− μt − A(x) − A(x−1).

Proof From (3.2), Lemma 3.1 and Corollary 3.3 it follows that π(Ỹt,v−1) acts as (3.5) on fx with

A(x) = A(x)

q−2 − q2

(
(uq/v − v/uq)(μx − μs) + (vq/u − u/vq)(μxq2 − μs)

+ (q−1 + q)(t + t−1) − (v/u + u/v)(s + s−1)
)

= − u

vxq

(1 − vqx/ut)(1 − vqtx/u)

q−1 − q
A(x)

and

B(x) = B(x)

q−2 − q2

(
(uq/v − v/uq + vq/u − u/vq)(μx − μs)

+ B(x) − 1

q−2 − q2

(
(q−1 + q)(t + t−1) − (v/u + u/v)(s + s−1)

)

= (t + t−1)(B(x) − 1)

q−1 − q
+ (u/v + v/u)((s + s−1) − (x + x−1)B(x))

q−2 − q2
.
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A calculation shows that

B(x) = svq/u + u/svq − t − 1/t

q−1 − q
− A(x) − A(x−1).

Rewriting this in terms of the parameters (3.3) proves the proposition. 
�
Nowwe are ready to show that the overlap coefficient� is an eigenfunction of theAskey–Wilson difference

operator (1.1).

Theorem 3.9 The overlap coefficient �(x, y) satisfies

(μy − μt )�(x, y) = A(x)�(q2x, y) + B(x)�(x, y) + A(x−1)�(x/q2, y),

(μx − μs)�(x, y) = Aϑ(y)�(x, q2y) + Bϑ(y)�(x, y) + Aϑ(y−1)�(x, y/q2),

with A(x) and B(x) from Proposition 3.8.

Proof Using Lemma 3.5 we obtain

(μy − μt )〈 fx , f̄ ϑ
ȳ 〉 = 〈 fx , π(Ỹt̄,v̄) f̄

ϑ
ȳ 〉 = 〈π(Ỹt,v−1) fx , f̄ ϑ

ȳ 〉.
Note that this is allowed, since the given conditions ensure that the integrand is analytic on the annulus
{q2 ≤ |z| ≤ q−2}. By Proposition 3.8 this is the first stated q2-difference equation. The second q2-difference
equation follows from the first using the symmetry from Proposition 3.7 and observing thatAᾱϑ (ȳ) = Aϑ(y)
and Bᾱϑ (ȳ) = Bϑ(y). 
�

Explicitly �(x, y) is given by the q-hypergeometric integral

�α(x, y) = (sq1−2iλx±1, tq1+2iλy±1; q2)∞
× 1

2π i

∫

C
(uszq1+iλ, tvzq1−iλ; q2)∞θ(uzq2ε−iλ/s, vzq−2ε+iλ/t; q2)

(uzq−iλx±1, sq1−iλ/uz, vzqiλy±1, tq1+iλ/vz; q2)∞
dz

z
,

(3.6)

where C = T. We can get rid of the conditions on s, u, t, v, x, y from Definition 3.6 by replacing the contour
T by a deformation C of T such that the poles u−1sq1−iλqZ≥0 , v−1tq1+iλqZ≥0 are inside C, and the poles
u−1qiλx±1q−Z≥0 , v−1q−iλy±1q−Z≥0 are outside C.

We show that� is a multiple of an Askey–Wilson function [4]. For convenience we assume s, t, u, v ∈ R
×.

In this case we have a = b for the Askey–Wilson parameters (3.3). Let us now introduce the Askey–Wilson
function. Assume that A, B,C, D are parameters satisfying A = B and C, D ∈ R. Define dual parameters
Ã, B̃, C̃, D̃ by

Ã = √
ABCD/q, B̃ = AB/ Ã, C̃ = AC/ Ã, D̃ = AD/ Ã. (3.7)

The Askey–Wilson function with parameters A, B,C, D is defined by

ψγ (x; A, B,C, D |q) = (AB, AC; q)∞
(q/AD; q)∞

4ϕ3

(
Ax, A/x, Ãγ, Ã/γ

AB, AC, AD
; q, q

)

+ (Ax±1, Ãγ ±1, qB/D, qC/D; q)∞
(qx±1/D, qγ ±1/D̃, AD/q; q)∞

4ϕ3

(
qx/D, q/Dx, qγ /D̃, q/D̃γ

qB/D, qC/D, q2/AD
; q, q

)
. (3.8)

The Askey–Wilson function (3.8) is normalized slightly different compared to [4]. Using Bailey’s transforma-
tion [17, (III.36)] ψγ (x) can also be written as a multiple of a very-well-poised 8ϕ7-series,

ψγ (x; A, B,C, D |q) = (AB, AC, BC, Aq/D, q Aγ x±1/D̃; q)∞
( Ã B̃C̃, qγ /D̃, Ãq/D̃, qx±1/D; q)∞

× 8W7
(
Ã B̃C̃γ /q; Ax, A/x, Ãγ, B̃γ, C̃γ ; q, q/D̃γ

)
,

for |D̃γ | > q . In [18, Section 5.5] it is shown that ψγ (x) can be expressed as a q-hypergeometric integral,

ψγ (x) = (q, Ax±1, Ãγ ±1; q)∞
θ(1/ν, q/ADν; q)

1

2π i

∫

C
(ABz, ACz; q)∞θ(ADνz, z/ν; q)

(Azx±1, Ãzγ ±1, 1/z, q/ADz; q)∞
dz

z
, (3.9)

where C is a deformation of the unit circle with positive orientation, such that the poles qZ≥0 and (AD/q)qZ≥0

are inside C and the poles (x±1/A)q−Z≥0 and (γ ±1/ Ã)q−Z≥0 are outside C, and ν ∈ C
× can be chosen

arbitrarily.
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Theorem 3.10 The overlap coefficient �(x, y) can be expressed as an Askey–Wilson function by

�(x, y) = (bϑ y±1; q2)∞θ(1/κ, adκ; q2)
(q2, q2y±1/dϑ ; q2)∞ ψy(x; a, b, c, d |q2),

where
(a, b, c, d, κ) = (sq1−2iλ, sq1+2iλ, tvq/u, qv/ut, q−1−2ε+2iλ). (3.10)

Proof In the integral (3.6) for � we substitute z �→ (sq1−iλ/u)w then

�α(x, y) = (sq1−2iλx±1, tq1+2iλy±1)∞

× 1

2π i

∫

(u/sq)T

(s2q2w, stvq2−2iλw/u; q2)∞θ(wq1+2ε−2iλ, svq1−2εw/ut)

(sq1−2iλwx±1, svqwy±1/u, 1/w, utq2iλ/svw; q2)∞
dw

w
.

Then the result follows from comparing this to the integral representation (3.9) of the Askey–Wilson function
with

(A, B,C, D, ν) = (sq1−2iλ, sq1+2iλ, tvq/u, qv/ut, q−1−2ε+2iλ) = (a, b, c, d, κ),

and using Ã = suq/v = q2/dϑ . 
�
Remark 3.11 (i) The representation parameter ε appears only in the parameters κ , so we see from the

expression for � in Theorem 3.10 that ε only appears in the multiplicative constant in front of the
Askey–Wilson function.

(ii) The duality property of the Askey–Wilson function as given in [4, (3.4)] states that the Askey–Wilson
function is invariant under interchanging the variables x and γ up to an involution on the parameters
A, B,C, D;

ψγ (x; A, B,C, D |q) = ψx (γ ; Ã, B̃, C̃, D̃ |q). (3.11)

The symmetry property of Proposition 3.7 is very similar, but it is not the same identity. Note that we
have

(aϑ, bϑ, cϑ , dϑ) = (ac/ã, bc/ã, ab/ã, q2/ã) (3.12)

where ã = √
abcd/q2. To obtain the duality (3.11) from the identity in Proposition 3.7 we need to apply

the following symmetries of the Askey–Wilson function:

ψγ (x; A, B,C, D |q) = ψγ (x; A,C, B, D |q)

= (Ax±1, Ãγ ±1; q)∞
(qx±1/D, qγ ±1/D̃; q)∞

ψγ (x; q/D, B,C, A |q)

= (C̃γ ±1; q)∞
(qγ ±1/D̃; q)∞

ψγ (x; B, A,C, D |q).

(3.13)

The first two identities are immediate from (3.8), the third identity is proved in [18, Proposition 5.27].

3.3 Overlap coefficients: Little q-Jacobi functions

We can also calculate overlap coefficients between the eigenfunctions fx of Ys,u and eigenfunctions of K . The
eigenfunction of K are the functions en : M → C given by

en(z) = zn, n ∈ Z.

Using (2.4) it is clear that π(K )en = qn+εen .

Definition 3.12 Let 0 < |ux |, |u/x | ≤ q2 and 0 < |s/u| ≤ q . For n ∈ Z we define φ(x, n) = φα(x, n) to be
the overlap coefficient between fx and en , i.e.

φ(x; n) = 〈 fx , en〉.
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The overlap coefficient is given explicitly by

φ(x, n) = 1

2π i

∫

T

(sq1−2iλx±1, uszq1+iλ; q2)∞θ(q2ε−iλuz/s; q2)
(uzq−iλx±1, sq1−iλ/uz; q2)∞ z−n−1 dz. (3.14)

Note that this is just the Fourier coefficient of fx ; fx (eiθ ) = ∑
n φ(x, n)einθ . The next result shows that

φ(x, n) is a multiple of a 2ϕ1-function, which can be recognised as a little q-Jacobi function, which is defined
by

ϕγ (w; A, B; q) = 2ϕ1

(
Aγ, A/γ

AB
; q, −w

)
, w ∈ C\[1,∞).

Here we use the one-valued analytic continuation of the 2ϕ1-function, see [17, §4.3].

Proposition 3.13 φ(x, n) is given in terms of a 2ϕ1-function by

φ(x, n) = τ n
(ab; q2)∞θ(1/κ; q2)

(q2; q2)∞ 2ϕ1

(
ax, a/x

ab
; q2, κq2−2n

)
,

with (a, b, κ, τ ) = (sq1−2iλ, sq1+2iλ, q−1+2iλ−2ε, uqiλ−1/s).

Proof We use the following integral representation of the 2ϕ1-function, see [19, Section 7],

1

2π i

∫

C
(t1z; q)∞θ(μz/t2; q)

(t2/z, t3z, t4z; q)∞
dz

z
= (t1t2; q)∞θ(μ; q)

(q, t2t3, t2t4; q)∞
2ϕ1

(
t2t3, t2t4
t1t2

; q,
q

μ

)
,

where C is a deformation of the positively oriented unit circle including the poles t2qZ≥0 and excluding the
poles t−1

3 q−Z≥0 and t−1
4 q−Z≥0 . In (3.14) we substitute z �→ (u−1qiλ)z, then we recognize the above integral

representation with q replaced by q2 and

(t1, t2, t3, t4, μ) = (sq1+2iλ, sq1−2iλ, x, x−1, q1−2iλ+2ε+2n).

The result then follows from using θ -function identities θ(x; q) = θ(q/x; q) and θ(qkx; q) =
(−x)−kq− 1

2 k(k−1)θ(x; q), k ∈ Z. 
�
The Fourier expansion fx = ∑

n φ(x, n)en leads to the following identity, which is a special case of a
generating function from [20, Lemma 3.3].

Corollary 3.14 Under the conditions of Definition 3.12,

∑

n∈Z
2ϕ1

(
ax, a/x

ab
; q2, κq2−2n

)
t−n = (q2, ax±1, ab/t; q2)∞θ(1/tκ; q2)

(ab, ax±1/t, t; q2)∞θ(1/κ; q2) ,

with a, b, κ as in Proposition 3.13 and t = 1/τ z = sq1−iλ/uz.

Let us also consider the overlap coefficient between f ϑ
x and ren = e−n ,

φϑ(x, n) = 〈 f ϑ
x , e−n〉 = 1

2π i

∫

T

(tq1−2iλx±1, tvq1+iλ/z; q2)∞θ(vq−2ε−iλ/t z; q2)
(vq−iλx±1/z, ztq1−iλ/v; q2)∞ zn−1 dz,

Using the substitution z �→ z−1 we immediately see that

φϑ(x, n) = φαϑ (x, n),

(as was already implied by the notation). So φϑ can be expressed as a 2ϕ1-function by

φϑ(x, n) = (τϑ)n
(aϑbϑ ; q2)∞θ(1/κϑ ; q2)

(q2; q2)∞ 2ϕ1

(
aϑ x, aϑ/x

aϑbϑ
; q2, κϑq2−2n

)

= (τϑ)n
(cq2/d; q2)∞θ(κ̄q2; q2)

(q2; q2)∞ 2ϕ1

(
acx/ã, ac/xã

cq2/d
; q2, q−2n/κ̄

)
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using (3.12) and κϑ = 1/q2κ̄ . Parseval’s identity 〈 fx , f̄ ϑ
ȳ 〉 = ∑

n〈 fx , en〉〈en, f̄ ϑ
ȳ 〉, which is written in terms

of the overlap coefficients as
∑

n

φα(x, n)φᾱϑ (ȳ, −n) = �α(x, y),

then leads to the following summation formula for 2ϕ1-functions.

Corollary 3.15 Under the conditions of Definition 3.6 the following summation formula holds:

∑

n∈Z
2ϕ1

(
ax, a/x

ab
; q2, κq2−2n

)
2ϕ1

(
acy/ã, ac/yã

cq2/d
; q2, q

2n

κ

)(
q2

ad

)n

= (q2, ac, bcy±1/ã)∞θ(adκ; q2)
(q2/ad, cq2/d, ã y±1; q2)∞θ(1/κ; q2) 4ϕ3

(
ax, a/x, ã y, ã/y

ab, ac, ad
; q2, q2

)

+ (q2, q2b/d, ax±1)∞θ(adκ; q2)
(ab, ad/q2, q2x±1/d)∞θ(1/κ; q2) 4ϕ3

(
q2x/d, q2/dx, bcy/ã, bc/yã

q2b/d, q2c/d, q4/ad
; q2, q2

)
.

where the parameters a, b, c, d, κ are given by (3.10) and ã = √
abcd/q2.

4 Overlap coefficients and multivariate Askey–Wilson functions

In this section we extend the results from Sect. 3 to a multivariate setting using the coalgebra structure of Uq .
We obtain multivariate Askey–Wilson functions as overlap coefficients for representations of U⊗N

q . We also
show that the multivariate Askey–Wilson functions are simultaneous eigenfunctions of N commuting differ-
ence operators coming from commuting elements in U⊗N

q . Recall from Remark 3.11 that the representation
parameter ε is not important for studying q-difference equations for the Askey–Wilson functions, therefore
we choose ε = 0 for all representations πλ,ε in this section.

Let N ∈ Z≥2 and λ = (λ1, . . . , λN ) ∈ R
N . We consider the representation πλ of U⊗N

q onM⊗N given by

πλ = πλ1 ⊗ · · · ⊗ πλN ,

where πλ j = πλ j ,0. We use the following notation for iterated coproducts: we define �0 to be the identity on

Uq , and for n ≥ 1 we define �n : Uq → U⊗(n+1)
q by

�n = (� ⊗ 1⊗(n−1)) ◦ �n−1,

with the convention A ⊗ B0 = A.
We consider the following coproducts of the twisted-primitive elements Ys,u and Ỹt,v , s, u, t, v ∈ C

×: for
j = 1, . . . , N ,

Y( j)
s,u = 1⊗(N− j) ⊗ � j−1(Ys,u),

Ỹ( j)
t,v = � j−1(Ỹt,v) ⊗ 1⊗(N− j).

These elements commute, see [15, Lemma 5.1]: for j, j ′ = 1, . . . , N ,

Y( j)
s,uY

( j ′)
s,u = Y( j ′)

s,u Y
( j)
s,u, Ỹ( j)

t,v Ỹ
( j ′)
t,v = Ỹ( j ′)

t,v Ỹ( j)
t,v .

4.1 Eigenfunctions

Using the eigenfunction fx of πλ,0(Ys,u) from Lemma 3.1 we obtain simultaneous eigenfunctions of πλ(Y
( j)
s,u),

j = 1, . . . , N . We use the notation fx = fx,s,u,λ to stress dependence on the parameters s, u and λ.
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Lemma 4.1 (i) For x, z ∈ (C×)N let fx = fx,λ,s,u ∈ M⊗N be given by

fx(z) =
N∏

j=1

fx j ,x j+1,u,λ j (z j ),

with xN+1 = s, then
πλ(Y

( j)
s,u) fx = (μxN− j+1 − μs) fx, j = 1, . . . , N .

(ii) For y, z ∈ (C×)N let f ϑ
y = f ϑ

y,λ,t,v ∈ M⊗N be given by

f ϑ
y (z) =

N∏

j=1

fy j ,y j−1,v,λ j (1/z j ),

with y0 = t , then
πλ(Ỹ

( j)
t,v ) f ϑ

y = (μy j − μt ) f
ϑ
y , j = 1, . . . , N .

Proof The proof for (ii) follows by induction using the identities

� j (Ỹt,v) = � j−1(1) ⊗ Ỹt,v + � j−1(Ỹt,v) ⊗ K−2,

Ỹt,v + (μy − μt )K
−2 = Ỹy,v + (μy − μt )1.

See also the proof of [15, Proposition 5.5] for details. The proof of (i) follows after applying the involution ϑ
and using Lemma 2.1. 
�
Remark 4.2 The function fx is an ‘eigenfunction’ of the following x-dependent operators: For i = 0, . . . , N−1
and j = 1, . . . , N − i we define

Y(i, j)
x,u = 1⊗(N−i− j) ⊗ � j−1(YxN−i+1,u) ⊗ 1⊗i ,

then Y(i, j)
x,u Y(i, j ′)

x,u = Y(i, j ′)
x,u Y(i, j)

x,u for j, j ′ = 1, . . . , N − i , and

πλ(Y
(i, j)
x,u ) fx = (μxN− j−i+1 − μxN−i+1) fx .

Note that the x-dependent element Y(i, j)
x,u depends only on xN−i+1. In particular Y(0, j)

x,u = Y( j)
s,u depends on

xN+1 = s, i.e. it is independent of x.

We define for j = 1, . . . , N ,

K−2,( j) = (K−2)⊗ j ⊗ 1⊗(N− j) ∈ U⊗N
q .

Wecan express the action ofK−2,( j) on fx as aq-difference operator in x.Wefirst need notation forq-difference
operators. For i = 1, . . . , N we define

[Ti f ](x) = f (x1, . . . , xi−1, xiq
2, xi+1, . . . , xN ),

and for ν = (ν1, . . . , ν j ) ∈ {−1, 0, 1} j we write
Tν = T ν1

1 · · · T ν j
j .

We will use the q-difference equations from Corollaries 3.3 and 3.4 (with ε = 0). To stress dependence on
the parameters s and λ, let us write A(x) = As,λ(x) and B(x) = Bs,λ(x) for the coefficients of the difference
equation in Corollary 3.3, and similarly A±

s,λ(x) and B±
s,λ(x) for the coefficients in Corollary 3.4. Now for

ν = (ν1, . . . , ν j ) ∈ {−1, 0, 1} j we define

Aν,i (xi , xi+1) =

⎧
⎪⎨

⎪⎩

A−
xi+1,λi

(xi ), νi+1 = −1,

Axi+1,λi (xi ), νi+1 = 0,
A+
xi+1,λi

(xi ), νi+1 = 1,
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Bν,i (xi , xi+1) =

⎧
⎪⎨

⎪⎩

B−
xi+1,λi

(xi ), νi+1 = −1,

Bxi+1,λi (xi ), νi+1 = 0,
B+
xi+1,λi

(xi ), νi+1 = 1.

Here we set ν j+1 = 0 for ν ∈ {−1, 0, 1} j .
Proposition 4.3 For j = 1, . . . , N,

π(K−2,( j)) fx =
∑

ν∈{−1,0,1} j
C ( j)

ν (x)Tν fx,

where

C ( j)
ν (x) =

j∏

i=1

C ( j)
ν,i (x)

with

C ( j)
ν,i (x) =

{
Aν,i (x

νi
i , xi+1), νi �= 0,

Bν,i (xi , xi+1), νi = 0.

Proof Using Corollary 3.3 to act with π(K−2) in the j-th factor of fx we see that πλ(K−2,( j)) fx is equal to
⎡

⎣
j−1⊗

i=1

πλi (K
−2) ⊗

(
Ax j+1,λ j (x j )Tj + Bx j+1,λ j (x j )Id + Ax j+1,λ j (x

−1
j )T−1

j

)
⎤

⎦ fx

=
⎡

⎣
j−1⊗

i=1

πλi (K
−2) ⊗

∑

ν j∈{−1,0,1}
C ( j)

ν, j T
ν j
j

⎤

⎦ fx .

Next act with π(K−2) in the ( j − 1)-th factor of fx in each term of this sum as follows: apply the +-version
of Corollary 3.4 if Tj is applied in the j th-factor of fx and apply the −-version if T−1

j is applied in the j-th

factor; otherwise apply Corollary 3.3. Then we see that π(K−2,( j)) fx is equal to
⎡

⎣
j−2⊗

i=1

πλi (K
−2) ⊗

∑

ν j−1,ν j∈{−1,0,1}
C ( j)

ν, j−1(x)C ( j)
ν, j (x)T

ν j−1
j−1 T

ν j
j

⎤

⎦ fx .

Continuing in this way gives the result. 
�
Next we determine how π(Ỹ( j)

t,v ) acts on fx as a q-difference operator in x. We need the elementsY(N− j, j)
x,u ,

j = 1, . . . , N , from Remark 4.2. Since � is an algebra homomorphism it follows from the definitions of
Y(N− j, j)
x,u , Ỹ( j)

t,v , K
−2,( j) and (3.2) that for t, v ∈ C

×

Ỹ( j)
t,v−1 = qu/v − v/uq

q−2 − q2
K−2,( j)Y(N− j, j)

x,u + vq/u − u/vq

q−2 − q2
Y(N− j, j)
x,u K−2,( j)

+ (q−1 + q)(t + t−1) − (v/u + u/v)(x j+1 + x−1
j+1)

q−2 − q2
(K−2,( j) − 1),

(4.1)

for arbitrary x ∈ (C×)N and u ∈ C
×.

Proposition 4.4 For j = 1, . . . , N,

πλ(Ỹ
( j)
t,v−1) fx =

∑

ν∈{−1,0,1} j
C( j)

ν (x)Tν fx +
(

(u/v + v/u)(x j+1 + x−1
j+1)

q−2 − q2
− μt

)
fx,
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where

C( j)
ν (x) = C ( j)

ν (x) ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ux−ν1
1

vq

(1 − vqxν1
1 /ut)(1 − vqtxν1

1 /u)

q−1 − q
, ν1 �= 0,

(u/v + v/u)(x1 + x−1
1 ) + (q−1 + q)(t + t−1)

q−2 − q2
, ν1 = 0,

with C ( j)
ν from Proposition 4.3.

Proof Note that πλ(Y
(N− j, j)
x,u ) acts on fx as multiplication by μx1 − μx j+1 , and πλ(K−2,( j)) acts as a q-

difference operator in x1, . . . , x j on fx . From (4.1), Proposition 4.3 and Remark 4.2, we see that π(Ỹ( j)
t,v−1) fx

is a q-difference operator as stated in the proposition with coefficients

C( j)
ν (x) = C ( j)

ν (x)

q−2 − q2

(
(qu/v − v/uq)(μx1 − μx j+1) + (vq/u − u/vq)(μq2ν1 x1 − μx j+1)

+(q−1 + q)(t + t−1) − (v/u + u/v)(x j+1 + x−1
j+1)

)
.

Simplifying gives the result. 
�

4.2 Overlap coefficients: multivariate Askey–Wilson functions

We are now ready to define the overlap coefficient �(x, y) similar as in Definition 3.6. We define an (N + 4)-
tuple α by

α = (s, u, t, v, λ1, . . . , λN ).

We define a pairing depending on α and x, y ∈ (C×)N by

〈 f, g〉 = 1

(2π i)N

∫

C1
· · ·

∫

CN

f (z)g�(z)
dzN
zN

· · · dz1
z1

,

where g�(z) = g(z̄−1
1 , . . . , z̄−1

N ), and C j is a deformation of the positively oriented unit circle such that the
sequences u−1x j+1q1−iλ j qZ≥0 , v−1y j−1q1+iλ j qZ≥0 are inside q2C j , and the sequences u−1qiλ j x±1

j q−Z≥0 ,

v−1q−iλ j y±1
j q−Z≥0 are outside q−2C j . Here xN+1 = s and y0 = t . Assume that f (z) and g(z) are analytic in

z j on {z ∈ qθC j | −2 ≤ θ ≤ 2} for j = 1, . . . , N . Then from applying Cauchy’s theorem it follows that this
pairing satisfies 〈πλ(X1X2) f, g〉 = 〈 f, πλ(X∗

2X
∗
1)g〉 for X1, X2 ∈ (U1

q )⊗N .

Definition 4.5 For x, y ∈ (C×)N we define

�α(x, y) = 〈 fx, f̄ ϑ
ȳ 〉.

It immediately follows from (3.6) that �α(x, y) can be written as a product of the overlap coefficients
�(x j , y j ) which are essentially Askey–Wilson functions, so �α(x, y) can be considered as a multivariate
Askey–Wilson function. For this multivariate function we have a symmetry property and difference equations
similar to Proposition 3.7 and Theorem 3.9.

Theorem 4.6 The overlap coefficient �(x, y) satisfies

(i) �α(x, y) =
N∏

j=1

�x j+1,u,y j−1,v,λ,0(x j , y j );

(ii) �ᾱ(x̄, ȳ) = �αϑ ( ŷ, x̂), with

x̂ = (xN , . . . , x1), ŷ = (yN , . . . , y1), αϑ = (t, v, s, u, λN , . . . , λ1);
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(iii) For j = 1, . . . , N,

μy j�α(x, y) =
∑

ν∈{−1,0,1} j
C( j)

ν (x)[Tν�α( · , y)](x) + (u/v + v/u)(x j+1 + x−1
j+1)

q−2 − q2
�α(x, y), (4.2)

n with C( j)
ν from Proposition 4.4.

Proof Identity (ii) follows from the first identity and Proposition 3.7, or directly from writing �α explicitly as
an integral. For identity (iii) we assume that the α, x and y are chosen such that fx(z) and f ϑ

y (z) are analytic
in z j on {z ∈ qθC j | −2 ≤ θ ≤ 2} for j = 1, . . . , N . Then the q-difference equations follow from

〈πλ(Ỹ
( j)
t,v ) fx, f̄ ϑ

ȳ 〉 = 〈 fx, πλ(Ỹ
( j)
t̄,v̄−1) f̄

ϑ
ȳ 〉,

using Lemma 4.1 and Proposition 4.4. The conditions on α, x and y can be removed again by continuity. 
�
Clearly, combining identities (ii) and (iii) from Theorem 4.6 gives a difference equation in y for �(x, y).

Remark 4.7 The Askey–Wilson algebra encodes the bispectral properties of the Askey–Wilson polynomials.
The elements Yt,v and Ys,u , together with the Casimir element�, generate a copy of the Askey–Wilson algebra

in Uq , see [21]. Similarly, for N = 2 the elements Ỹ( j)
t,v , Y

( j)
s,u , j = 1, 2, and �(�), generate a copy of a rank

2 Askey–Wilson algebra [22] in U⊗2
q . It seems likely that Ỹ( j)

t,v , Y
( j)
s,u , j = 1, . . . , N , together with appropriate

coproducts of � generate a copy of the rank N Askey–Wilson algebra [23].

To end the section, let us summarize the results we have obtained in terms of multivariate Askey–Wilson
functions. We set

xN+1 = s, y0 = t, α0 = v/u, α j = q2iλ j for j = 1, . . . , N ,

and write α = (y0, α0, α1, . . . , αN , xN+1). The multivariate Askey–Wilson functions are given by

�α(x, y) = �α(x, y)
N∏

j=1

ψy j (x j ; qx j+1α j , qx j+1/α j , qα0y j−1, qα0/y j−1|q2),

with

�α(x, y) =
N∏

j=1

(qα j y j−1y
±1
j ; q2)∞θ(q/α j , qα0x j+1/y j−1; q2)
(q2, qx j+1y

±1
j /α0; q2)∞

.

Symmetry property: � satisfies
�ᾱ(x̄, ȳ) = �α̂( ŷ, x̂),

where α̂ = (xN+1, α
−1
0 , αN , . . . , α1, y0).

q-Difference equations: � satisfies

y j + y−1
j

q−1 − q
�α(x, y) =

∑

ν∈{−1,0,1} j
C( j)

ν (x)[Tν�α( · , y)](x) + (α0 + α−1
0 )(x j+1 + x−1

j+1)

q−2 − q2
�α(x, y),

where the coefficients C( j)
ν (x) are given explicitly by

C( j)
ν (x) =

j∏

i=1

C ( j)
ν,i (x) ×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− x−ν1
1

α0q

(1 − qα0x
ν1
1 y±1

0 )

q−1 − q
, ν1 �= 0,

(α0 + α−1
0 )(x1 + x−1

1 ) + (q−1 + q)(t + t−1)

q−2 − q2
, ν1 = 0,
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with

C ( j)
ν,i (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2νii

x2i+1(1 − x2νii )(1 − q2x2νii )
, νi �= 0, νi+1 = −1,

− xνi
i (1 − qxνi

i xi+1α
±1
i )

xi+1(1 − x2νii )(1 − q2x2νii )
, νi �= 0, νi+1 = 0,

(1 − qxνi
i xi+1α

±1
i )(1 − q3xνi

i xi+1α
±1
i )

(1 − x2νii )(1 − q2x2νii )
, νi �= 0, νi+1 = 1,

1

x2i+1(1 − x±2
i /q2)

, νi = 0, νi+1 = −1,

xi (1 − qxi xi+1α
±1
i )

xi+1(1 − x2i )(1 − q2x2i )
+ (1 − qx−1

i xi+1α
±1
i )

xi xi+1(1 − x−2
i )(1 − q2x−2

i )
, νi = 0, νi+1 = 0,

(1 + q−2)(1 − qα±1
i xi+1x

±1
i )

(1 − x±2
i /q2)

, νi = 0, νi+1 = 1.

Recall here that we use the convention ν j+1 = 0 for ν ∈ {−1, 0, 1} j .
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5 Appendix

We prove (3.2):

Ỹt,v−1 = qu/v − v/uq

q−2 − q2
K−2Ys,u + vq/u − u/vq

q−2 − q2
Ys,uK

−2

+ (q−1 + q)(t + t−1) − (v/u + u/v)(s + s−1)

q−2 − q2
(K−2 − 1).

The proof runs along the same lines as in [15, Lemma 4.3]. We define S, T ∈ Uq by

S = K−2Ys,u + μs(K
−2 − 1), T = K−2Ys,u − Ys,uK−2

q−1 − q
,

then by the definition of Ys,u (2.2) it follows that

S = uq− 3
2 EK−1 − u−1q

3
2 FK−1, T = uq− 1

2 EK−1 + q
1
2 u−1FK−1.
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Using the definition (2.2) of Ỹt,v−1 we obtain

Ỹt,v−1 = u

v

q−1T − S

q + q−1 − v

u

S + qT

q + q−1 + μt (K
−2 − 1),

then expressing S and T in terms of Ys,u and K−2 gives the desired expression.
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