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Abstract We study certain overlap coefficients appearing in representation theory of the quantum algebra
U, (s1>(C)). The overlap coefficients can be identified as products of Askey—Wilson functions, leading to
an algebraic interpretation of the multivariate Askey—Wilson functions introduced by Geronimo and Iliev
[1]. We use the underlying coalgebra structure to derive g-difference equations satisfied by the multivariate
Askey—Wilson functions.

1 Introduction

The Askey—Wilson functions are g-hypergeometric functions generalising the Askey—Wilson polynomials [2].
The latter are the polynomials in x 4+ x ! that are eigenfunctions of the Askey—Wilson g-difference operator

AT, — 1)+ A(x’l)(Tq_l — 1), (1.1)
where (T, f)(x) = f(gx) and

(1 —ax)(1 —bx)(1 —cx)(1 —dx)
(1 —x2)(1 —gx?) '

Ismail and Rahman [3] obtained explicit eigenfunctions, not necessarily polynomials, of the Askey—Wilson
q-difference operator. The Askey—Wilson function is a specific nonpolynomial eigenfunction which appears
as the kernel in an integral transform due to Koelink and Stokman [4] describing the spectral properties of the
Askey—Wilson g-difference operator. Unitarity of the integral transform implies orthogonality relations for
the Askey—Wilson functions first obtained by Suslov [5,6]. In [7] it is shown that the Askey—Wilson functions
appear as spherical functions on the SU(1, 1) quantum group; other representation theoretic interpretations
are e.g. in double affine Hecke algebras [8] and as 6 j-symbols [9].

Gasper and Rahman [10] introduced multivariate extensions of the Askey—Wilson polynomials, defined
as nested products of univariate Askey—Wilson polynomials, generalising Tratnik’s [11] multivariate Wilson
polynomials. It was then shown by Iliev [12] that the multivariate Askey—Wilson polynomials in N vari-
ables are eigenfunctions of N independent g-difference operators that can be considered as extensions of the
Askey—Wilson g-difference operator (1.1). Moreover, by using a symmetry property the multivariate -Wilson
polynomials were shown to be bispectral. These multivariate polynomials also naturally appear in representa-
tion theory, see e.g. [13—15]. Geronimo and Iliev [1] extended the results from [12] to the level of Askey—Wilson
functions using analytic continuation, leading to g-difference equations for multivariate Askey—Wilson func-
tions. In this paper we give a representation theoretic interpretation of these multivariate functions and their
q-difference equations.
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The organisation of the paper is as follows. In Sect. 2 we introduce the quantum algebra U, (s[>(C)) and
the representation of the algebra we will use. In Sect. 3 we consider eigenfunctions of two different algebra
elements and compute their overlap coefficients. These coefficients are given in terms of a g-hypergeometric
integral which can be identified as a univariate Askey—Wilson function. By writing the action of the algebra on
the eigenfunctions as operators acting in the spectral variables, we construct g-difference operators for which
the overlap coefficients are eigenfunctions. The g-difference operators are shown to be the Askey—Wilson
q-difference operators. The construction of the Askey—Wilson function is similar to Stokman’s construction
in [16], but the construction of the related g-difference operators is different. Furthermore, the construction
immediately gives a symmetry property of the overlap coefficients which leads to bispectrality of the Askey—
Wilson functions. We briefly also consider simpler versions of the overlap coefficients, which we use to derive
bilateral summation formulas involving >¢;-functions. In Sect. 4 we extend the results from Sect. 3 to a
multivariate setting using the coalgebra structure of U, (sl>(C)). Similar to the construction of multivariate
Askey—Wilson polynomials in [15] this results in an interpretation of the multivariate Askey—Wilson functions
as overlap coefficients, and leads to a construction of g-difference equations for these functions.

1.1 Notations

Throughout the paper g € (0, 1) is fixed. We use standard notations for g-shifted factorials, 6-functions and
g-hypergeometric functions as in [17]. In particular, g-shifted factorials and theta-functions are defined by

n—1

i@ = [ (1 =x¢”), x€C.neZzoufoo),
j=0

0(x;q) = (x,q/x;q)o0, x €C*,

from which it follows that

1 1
(qx; @)oo = T (X; @)oo,  0(gx;q) = ——0(x;q). (L.2)
— X X

‘We use the standard shorthand notations

k
(X1, X2, .., Xk @ = H(xj; Dns
j=1

k
O(x1,x2,...,Xk; q) = He(xj; q).
j=1

Moreover, =-symbols in exponents inside g-shifted factorials or theta functions means taking products over
all possible combinations of + and — signs, e.g.

1 _+£1.

eyl Qoo = (iyz, xyz ! xy Tz xy 7!

Zil;‘])oo-

2 The quantum algebra

The quantum algebra U, = U, (sl>(C)) is the unital, associative, complex algebra generated by K, K -1 E,
and F, subject to the relations
KKk '=1=k"'k,
KE =qgEK, KF=q 'FK,
K2 _ K*Z

EF — FE = —
q9-q

@ Springer
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U, has a comultiplication A : U, — U, ® U, defined on the generators by

AK)=K K, AE)=K®E+EQ®K™, o
AKHY=K'®K!, A(F)=KQF+FQK . '
We equip U, with the x-structure * : U, — U, defined on the generators by
K*=K, E*=-F, F*=—-E, (K Y=k,
which corresponds to the real form su(1, 1) of sl (C).
2.1 Twisted primitive elements
For s, u € C* we define two twisted primitive elements Y, and 175,,4 by
You=ug?EK —u~'q 2 FK + i, (K2 = 1), o)
Vow=uq? FK™' —u'g T EK ™" 4 py(K 2 = 1), '
where
K —i—s*l
Hs = — .
q  —4q
We have ~ ~
(Ys’u)* = Yi’ﬁfl and (Ys’u)* = YE’I;—I.
From (2.1) it follows that
AVs) = K> @Y+ Ysu®1,
( s,u) S, u S,u (23)

A(?s,u) = ?s,u & K_2 +1 & 7S,us

so that Y , and 178,,, belong to a left, respectively right, coideal of U;.

2.2 Representations

Let M be the space of meromorphic functions on C*. For A, ¢ € R we define a representation = = ;. of
Uy on M by

[m1.6(K)] (2) = ¢° f (g2).

g I f(2)q) — g HE £ (g)
PRI : (2.4)

1 1, .
g 2T f(gz) — qTTRE f(z/q)
g ' —q

(7, (E) f1(z) =z

[, (F) f1(z) =z

We define an inner product by

1 dz
(f,g>=—2 ./f(z)g*(z)—,
Ty JT Z

with g*(z) = g(Z_l), and where the unit circle T has positive orientation. Let L[; be the subspace of U,
spanned by 1, K, K—!, E and F. Suppose that f, g € M are analytic on the annulus {g < |z| < ¢~'}, then

(m(X)f,8) = (fm(XNg), Xely, 2.5)

which follows from Cauchy’s theorem to shift the path of integration. For X = X --- X with X; € Z/lql the
same property holds for functions f, g that are analytic on the annulus {¢* < |z| < ¢~*}.
The following result, which is proved by direct verification, will be useful later on.

@ Springer
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Lemma 2.1 The assignment
P(K)=K~', 9(Ey=F, 9(F)=E

extends to an involutive algebra isomorphism and coalgebra anti-isomorphism ¥ : Uy, — Uy satisfying

° ﬁ(Ys,u) = ?s,u;
o M (VX)) =rom, _(X)or, X € Uy, where r : M — M is the reflection operator defined by
[rf1(z) = f(1/2).

To end this section let us introduce some convenient notation. The functions we study later on will depend
on (a subset of) the parameters s, u, ¢, v, A and & coming from the twisted primitive elements Y; , and Y; ,,
and the representation 7, .. To simplify notation we let « be the ordered 6-tuple

o =(s,u,t,v,A,¢8).
On such 6-tuples we define an involution %, which corresponds to the U, -involution ¢, by
ol = (t,v,s,u,r, —¢).

If f = f, is a function depending on «, then we denote by f the same function with « replaced by a?;
7= [y . We sometimes use the notation

&= (5,010, ne).

Note that (@) = .

3 Overlap coefficients and univariate Askey—Wilson functions

In this section we consider eigenfunctions of 7 (Y ,) and n(f/;,v) and we identify the overlap coefficients
between the eigenfunctions with Askey—Wilson functions. We show that n(?,,v) acts on the eigenfunctions of
7 (Ys,,) as a g-difference operator in the spectral variable, which leads to a g-difference equation satisfied by
the overlap coefficients.

3.1 Eigenfunctions

We consider eigenfunctions of (Y ;). From the actions of the U/, -generators (2.4) and the definition of ¥
(2.2) it follows that, for f € M,

s+ — quH-ik _ u—1z—1q—1—ix
[7(Y.u) 1(2) = *° e f@*2)
uzg~* fulz g — 5 — 571 3.1
+ - f(@).
q9 " —4q

The eigenvalue equation 7 (Ys ) f = wf now becomes a first-order g>-difference equation, for which the
eigenfunctions can be determined in terms of ¢2-shifted factorials.

Lemma 3.1 Define f, = fr.o by

1—2ikx:t1 2e—ik

L uszq " g2 ool (¥ P uz/s; %)
(uzg="*x*, 5q1 =% Juz; g?)oo

s
(59 , xeCx,

fr@) =

then w(Ys ) fx = (Ux — Ws) fr.

The z-independent factor (sq'~**x*!; g2) is of course not needed for f; to be an eigenfunction and is
only inserted for convenience later on. Note that f; , only depends on the four parameters s, u, A, ¢ of the
6-tuple .

@ Springer
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Proof The eigenvalue equation 7 (Ys ) f = (ux — is) f is equivalent to

sq* 722N\ (1 — xuzg ™) (1 — uzg = /x)
flg*s) = (_ I+ik e ACOR
uz (1 = suzqg'7'*)(1 —sq /uz)
From (1.2) it follows that f is a solution. O

Next we compute the action of 7 (K —1) on the 7 (Y5, )-eigenfunctions f. It will be convenient to use the
notation fx (z) for fy «(z) to stress its dependence on the parameter s.

Lemma 3.2 The function fy s satisfies
ﬂ(K_])fx,s =a (x, S)fxq,s/q + a_(x_l ) s)fx/q,s/q
=at(x, ) frg.sq + a+(x_1, ) fx/q.5q

with a*(x, s) = agf(x) given by

xqt
s(1—x2)’

Proof We consider the function

q—s(l _ qul_zi)\.)(l _ qu1+2i)»)
1 —x2 ’

a (x,s) = — at(x,s) =

fr.s(2) _ (uszq' gD eof(q % M uz/s; q%)
l—ZiAx:l:l; qZ)oo (uzq—ikx:tl’ Sql_“‘/uz; qz)oo

8x.,s () = Gq

This function satisfies ) i
1+1A—2£(] —l—tA)

sq —uzxq

gxq,s/q(z) = - gx,s(Z/Q)y

uz(l —sq=*/uz)
1—ik

1 —uzxqg™
i gx,s(Z/Q)~

Z =
gxq,sq( ) 1— suzq
From g, s = g,-1 ; we obtain similar expressions for g./4,s/4 and gx /4,54 by replacing x by x~!. From a direct
calculation it then follows that

1 _qu+2ik/s 1— q1+2ik/xs

g2 (g) = 8wl (2) + 2 8x/as/a (@),

l_xsq1+2i)» 1—SC]1+2M/X
8x.s(2/q) = vgxq,sq(z) + ng/q,sq(zy
Note that )
L qu+21A/s fxq,s/q
8xq.5/q 1 — xq P25 (sq 2L, g2)
1-2ix Jxq.5q
grquq = (1 — sxq' 72"y —
xq.59 (sql—zmxil; qz)oo
then the result follows from f, = f,-1. O

Combining the two actions of 7 (K ~1) on Jx.s it follows that 7 (K ~2) acts as a qz—difference operator in
xon frs.

Corollary 3.3 The function f, satisfies

(K2 fr = A frge + B fr + AT fr 2,
where A = Ay and B = By are given by
x(1— qulizi)t)(l _ qu1+2i)\.)
s(1 = x2)(1 = gx?)
B(x) = —A(x) — A(1/x).

A(x) = —

@ Springer
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Proof This follows from Lemma 3.2 using
A(x) =a” (xq,sq)a™ (x,s),
B(x) =a (1/xq,sq)at(x,s) +a (xq,sq)a* (1/x,s),
anda™ (1/xq,sq) = —a™ (xq, sq). O

Applying Lemma 3.2 twice it follows that 77 (K ~2) can also be realized as a difference operator acting in
x and s. This result will be useful in Sect. 4 where we consider difference operators in a multivariate setting.

Corollary 3.4 The function f s satisfies
n(K_z)fx,s = A_(-x)fxqz,s/qz + B_(x)fx,s/q2 + A_(x_l)f)c/qz,s/q2
= A+(x)fxq2,s42 + B+(x)fx‘sq2 + A+(x_l)fx/q2‘sq2,

where AT = Aaﬂf and B = Bf are given by

2 242
_ x
AT() = 2q 2,27
sc(1 —x2)(1 — g“x*)
2e
B~ (x) = q

s2(1 = x2/g®) (1 = 1/x2¢%)’

and ) ) ) ]

q725(1 o qulizm)(l o qu3721)\)(1 _ qu1+2”‘)(l o qu3+2z)»)
(I =x2)(1 —g%x?)

q—2£—1(q—1 +q)(1 _ squ—ZiA)(l _ Sql—Zik/x)(l —SXqH_ZM)(l _ Sq1+2ik/x)

(I =x2/g®)(1 = 1/x2q?) '

AT(x) =

’

Bt(x) =

Proof This follows from Lemma 3.2 using
A*(x) = a*(x,)a* (xq, sg*")
and
BE(x) = a®(x, s)ai(l/xq, sqil) + ai(l/x, s)ai(x/q, sqil).
Writing this out and simplifying gives the expressions given in the lemma. O

Eigenfunctions of 71(17 ;.v) can be obtained from the eigenfunctions of 7 (Ys ). By applying Lemma 2.1 to
(3.1), or by direct verification, it follows that

s 1y lggm ik g i
g ' —q
v lzg* 4oz g~ — !

T —q f @),

(7(Y,0) f1(z) = ¢ fz/g)

+

which is essentially equation (3.1) with (s, u, €, z) replaced by (¢, v, —¢, 2. Using Lemma 2.1 it follows
that fx“? = rfy o»» Where r is the reflection operator, is an eigenfunction of 7 (¥; ,):
ﬂk,s(?t,v)(rfx,aﬂ) = (r o n)u,—é‘(yt,v*l))fx,aﬁ = (Mx - /“l/f)rfx,aﬁ .

Lemma 3.5 The function

fr,ﬁ(z) B (tqleiAx:tl’ lUC]lJri)”/Z; qZ)OOQ(vquSfiA/tZ; q2)
x - (vq—ikxil/z’ tqu_i}‘/v; 612)0<>

. s 0 LU
satisfies T(Yy ) fr© = (Ux — (o) fo' -

Slightly abusing notation we will omit 7 in our notation and write f? = fxr’ﬁ.

@ Springer
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3.2 Overlap coefficients: Askey—Wilson functions

Let us write fxﬁ =rf,.a»,then fxﬁ is an eigenfunction of n(?,-,l—,) for eigenvalue (1, — u;.
Definition 3.6 LetO < |ux], [u/x], [vy|, [v/y] < g%and0 < |s/ul, |t/v] < g. Wedefine ® (x, y) = ®q(x, y)

to be the overlap coefficient between f, and fy? ,1.e

o, y) = (fer 7).
The following symmetry property of ® is immediate from the definition.
Proposition 3.7 @, (x, y) = $gz0 (¥, X)

First we will derive difference equations for ®. We show that we can write the action of Yt ;-1on fyasa
difference operator in x. Then the symmetry property of Proposition 3.7 1mmed1ately leads to a correspondlng
difference operator in y. Since we already know the actions of Yy, and K ~2 on f,, it suffices to express Y, -

in terms of Y, , and K~ 2.

qu/v —v/uq

~ _ vqg/u —u/v _
Yt,v_l = ) 2 2YSu+¥YsuK 2
qg ~—q q - — 32)
@'+ +t) - @utu/)s+s7H ‘
+ qu — q2 (K™= —1).

For v = 1 this is [15, Lemma 4.3] and the proof, which we have included in the appendix, is the same. It will
be convenient to introduce parameters a, b, ¢, d corresponding to the 6-tuple o by

(a,b,c,d) = (sq'72* sq" ¥ viq/u, vq ut), (3.3)

Note that . ,
@’,b?,c%,d% = (tql_z’)‘, tqH'Z’)‘, usq /v, uq/vs). (3.4)

Proposition 3.8 The function f, satisfies
7Y, y-1) fr = AR frg2 + BE) fr + Ax ™) /02, (3.5)
with A = Ay and B = B, given by
Ax) = 11 (1 —ax)(1 —bx)(1 —cx)(1 — dx)’
g ' —q  (q*/d”) (1 —xH)(1 — g*x?)
qZ/Z—if Sy - A — A,

Proof From (3.2), Lemma 3.1 and Corollary 3.3 it follows that N(i,vfl) acts as (3.5) on f, with

A(x)
AW) = 5 (/v = 0/ug) e = o) + 0/ = u/vg) 132 = 1)

Bx) =

+ (q_1 +q)( + = - (w/u+u/v)(s + s_l))

__u (1 - vqx/u_tl)(l — vth/u)A(x)
vxq q9 " —4q

and
B
B(x) = ﬁ((uq/v —v/ug +vg/u —u/vg)(py — Ws)

+%(( T+ = /u+u/v)s 45T ))

q q?

_ G+ z—')(B(x) -1 (u/v +v/u)((s+sH = x+x"HB(x))
g~ —q g2 —q? '

@ Springer
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A calculation shows that

svq/u+u/svg—t — 1/t
' —q

Rewriting this in terms of the parameters (3.3) proves the proposition. O

B(x) = — A@x) — Ax7h.

Now we are ready to show that the overlap coefficient ® is an eigenfunction of the Askey—Wilson difference
operator (1.1).

Theorem 3.9 The overlap coefficient ® (x, y) satisfies

(y = )P, y) = AD) P (g x, y) + B D (x, y) + A~ H@(x /g, ),

(x = )@ (x, y) = A (NP (x, ¢°y) + B (D (x, ) + A (v Hd(x, /g,
with A(x) and B(x) from Proposition 3.8.
Proof Using Lemma 3.5 we obtain

(y = 1) fur ) = (fo. 7 (G ) 1) = (0¥, o) feo )
Note that this is allowed, since the given conditions ensure that the integrand is analytic on the annulus
{g? < |z| < ¢~2}. By Proposition 3.8 this is the first stated ¢>-difference equation. The second ¢>-difference
equation follows from the first using the symmetry from Proposition 3.7 and observing that m = A%(y)
and Byo () = BY (y). O
Explicitly ®(x, y) is given by the g-hypergeometric integral
Dy (x, y) = (sq "2 xEL g T2 pEL 02y
1 (uszq "™, 1vzg =% g oob (uzq? i /s, vzg =26+ /1; ¢?) d2 (3.6)

2wi —idxEl sql=ik jyz vzgityEL tg1 ik Jyz: )0 7

2mi Je (uzq

where C = T. We can get rid of the conditions on s, u, #, v, x, y from Definition 3.6 by replacing the contour

T by a deformation C of T such that the poles ulsq'=q%=0 v~l1g' T ¢%=0 are inside C, and the poles
u=lghxFlg=2=0 y=lg=ityF5=2=0 are outside C.

We show that & is a multiple of an Askey—Wilson function [4]. For convenience we assume s, ¢, u, v € R*.

In this case we have a = b for the Askey—Wilson parameters (3. 3). Let us now introduce the Askey—Wilson

function. Assume that A, B, C, D are parameters satisfying A = B and C, D € R. Define dual parameters
A,B,C,Dby

= /ABCD/q, B=ABJ/A, C=AC/A, D=AD/A. (3.7)
The Askey—Wilson function with parameters A, B, C, D is defined by
(AB,AC: ¢)oo Ax, A/x, Ay, Ay
@/AD; 9)os *P° ( AB AC,AD T )
(Ax*!, Ay*' qB/D, qC/D; ¢)oo qx/D.q/Dx.qy/D,q/Dy
(@x=1/D.qy*1/D. AD/q: )os ( ¢B/D.qC/D.¢*/AD ) |
The Askey—Wilson function (3.8) is normalized slightly different compared to [4]. Using Bailey’s transforma-
tion [17, (II1.36)] ¥, (x) can also be written as a multiple of a very-well-poised gg7-series,
(AB, AC, BC, Aq/D, qAyx*'/D; ¢)w
(ABC.qy/D., Aq/D, qx*'/D; q)oo
x §W7 (ABCy/q; Ax, A/x, Ay, By,Cy:q.q/Dy).

Yy (x;A,B,C,D|q) =

(3.8)

Yy (x; A, B,C,D|q) =

for |Dy| > g.In [18, Section 5.5] it is shown that ¥, (x) can be expressed as a g-hypergeometric integral,

(q,Axil,Xyil;q)ooL/ (ABz, ACz; )l (ADVZ, 2/v; ) dz

0(1/v,q/ADv;q) 2mi Jo (AzxE!, Azy*!, 1/2,q/ADzZ; )0 2

"//y(x) =

Z=o

where C is a deformation of the unit circle with positive orientation, such that the poles ¢%=0 and (AD/q)q
are inside C and the poles (x*!'/A)g=%20 and (yil/A)q’Z>O are outside C, and v € C* can be chosen
arbitrarily.
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Theorem 3.10 The overlap coefficient ®(x, y) can be expressed as an Askey—Wilson function by

b yE %) 0001 /i, adic; ¢*)
(g%, ¢>y*'/d”; ¢*) o

d(x,y) = Yy(x;a, b, c,d|q?),

where _ _ '
(a,b,c,d, k) = (sq" 75, sq" 2" tvg fu, qujut, g~ 17N, (3.10)

Proof In the integral (3.6) for ® we substitute z — (sq¢'~**/u)w then

<I>a(x, y) — (sql—2i)\‘x:i:17 tq1+2iky:|:1)oo
1 (s2q2w, Stvq2—2ikw/u; q2)009(wq1+28—2ik’ qul_28w/uf) dw
X — : . —
2mi (sq' 2 wxEl suqwyE! Ju, 1/w, utq?* /svw; ¢%) oo w

(u/sq)T
Then the result follows from comparing this to the integral representation (3.9) of the Askey—Wilson function
with
(A,B.C,D,v) = (sq' >, sq" ™" tvq/u, qujut, ¢~ 7> = (a.b,c.d, k),

andusingZ:suq/v:qz/dﬁ. O
Remark 3.11 (i) The representation parameter ¢ appears only in the parameters x, so we see from the

expression for @ in Theorem 3.10 that ¢ only appears in the multiplicative constant in front of the

Askey—Wilson function.

(i1) The duality property of the Askey—Wilson function as given in [4, (3.4)] states that the Askey—Wilson
function is invariant under interchanging the variables x and y up to an involution on the parameters
A,B,C, D, o

¥y (x; A, B,C,D|q) = ¥:(y; A, B, C, D). 3.11)

The symmetry property of Proposition 3.7 is very similar, but it is not the same identity. Note that we
have
@’,b”,¢”,d%) = (ac/a, be)a, ab/a, g% |a) (3.12)

where a = \/m . To obtain the duality (3.11) from the identity in Proposition 3.7 we need to apply
the following symmetries of the Askey—Wilson function:
Vy(x; A, B,C,D|q) =Y, (x; A, C, B, D|q)
AL Ay e
(@D qyF D @)oo
CyH s
 (qvF /D oo

The first two identities are immediate from (3.8), the third identity is proved in [18, Proposition 5.27].

Vy(x;q/D, B,C, Alq) (3.13)

Yy (x; B,A,C, D|q).

3.3 Overlap coefficients: Little g-Jacobi functions

We can also calculate overlap coefficients between the eigenfunctions fy of Ys , and eigenfunctions of K. The
eigenfunction of K are the functions ¢, : M — C given by

en(z) =27", nez.
Using (2.4) it is clear that 7(K)e, = ¢"e,.

Definition 3.12 Let 0 < |ux|, |u/x| < g?>and 0 < |s/u| < g. For n € Z we define ¢ (x, n) = ¢ (x, n) to be
the overlap coefficient between f, and e,, i.e.

¢(xin) = (fx,en).
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The overlap coefficient is given explicitly by

l—2i)in]

¢(x7 n) _ L (Sq , usqu“‘; qZ)OOQ(qu—iAuZ/S; q2) Z—n—l de.

27i Jr (uzg=*x*1, sq1 = Juz; g%) oo

(3.14)

Note that this is just the Fourier coefficient of fy; fy (€' = Yo Px, n)e'"? . The next result shows that
¢ (x, n) is a multiple of a ,¢;-function, which can be recognised as a little g-Jacobi function, which is defined
by

Ay, A
yAB/y ;q,—w), w € C\[1, c0).

Here we use the one-valued analytic continuation of the »¢-function, see [17, §4.3].

¢y (w; A, B; q) = 291 (

Proposition 3.13 ¢ (x, n) is given in terms of a 21 -function by

L @b; gHsb(1/x; %) ax,a/x 5 5 4,
@ e a0 ’

¢(x,n)=rt

with (a’ b, K, 'E) — (sql—Zik, Sq1+2ik, q—l+2ik—28’ uqik—l/s)'

Proof We use the following integral representation of the »¢1-function, see [19, Section 7],

L/ (1125 @)oot (n2/ 12 q) dz (11123 @)oot (145 4) (l2t3,t2t4. 1)
2mi Jo (/262,142 Qe 2 (q, 0213, 22143 @)oo no )’

where C is a deformation of the positively oriented unit circle including the poles ,¢%=0 and excluding the
poles 5 1g=%20 and ty lq_Zzo. In (3.14) we substitute z > (u~'¢"*)z, then we recognize the above integral
representation with ¢ replaced by ¢2 and

(t1, b, 13, ta, ) = (sq ' T2* 5q! 20 x x~1, gl -2iA42e42ny
The result1 then follows from using O-function identities 0(x;q) = 6(g/x;q) and O(¢*x;q) =
(—x)*g= Do (x; q), k € Z. q

The Fourier expansion fy = ), ¢(x, n)e, leads to the following identity, which is a special case of a
generating function from [20, Lemma 3.3].

Corollary 3.14 Under the conditions of Definition 3.12,

> ax,alx 5 5\ - _ (@ ax*l ab/t; g?)ec0(1/1k; ¢)
=\ ap 4 (ab, ax*1/1,1;¢?)oc0(1 /3 g%)
with a, b,  as in Proposition 3.13 and t = 1/1z = sq' =" Juz.

Let us also consider the overlap coefficient between fx’9 and re, = e_,,

» L L g P E rug 2 g b (vg T 2 q7)
¢ ('x7n) - (fx 7e—n) - . id.+1 1—iA 2 Z dZs
27i Jp (vg= " x= 7z, 2tq" 7" Jv; %) o

1

Using the substitution z — z~ we immediately see that

@7 (x, 1) = oo (x, 1),

(as was already implied by the notation). So ¢” can be expressed as a ¢ -function by

@’b?; ¢®) et (1/x?; g2) a’x,a’ /x _
¢19(x’n) — (Tﬁ)n q 0o / q 201 / ’qz’ Kﬁq2 2n

(@ 4o a’b?
= (7" (cq?/d; ¢¥) b (Kq%; ¢%) acx/a,ac/xa  , _2"/12
@% %00 P\ gz 11
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using (3.12) and k¥ = 1/q%ic. Parseval’s identity ( fv, ff} = ,(fe.en)len, f_}l?), which is written in terms
of the overlap coefficients as

D bulx, M (5, —n) = Pylx, ),

then leads to the following summation formula for > ¢ -functions.

Corollary 3.15 Under the conditions of Definition 3.6 the following summation formula holds:

22901 ax,a/x ka2 acy/a,ac/ya . 4 ﬂ q_z n
ab ) ) Cq2/d ’ ’ K Cld

nez

___(@acboyt/i)obladiiq®) - (ax.a/x.dy.dly o o
(@%/ad, cq?/d, ay=; ¢t (1/k: 42 P\ ab.ac.aa 11

(%, ¢°b/d, ax*") b (adi; %) q’x/d,q*/dx,beyja, be/ya 5
(ab, ad /%, x5 )b (1 2 P\ q2rd. q?crd q*jaa T )

where the parameters a, b, ¢, d, k are given by (3.10) and a = /abcd /q>.

4 Overlap coefficients and multivariate Askey—Wilson functions

In this section we extend the results from Sect. 3 to a multivariate setting using the coalgebra structure of U;,.

We obtain multivariate Askey—Wilson functions as overlap coefficients for representations of &V . We also
show that the multivariate Askey—Wilson functions are simultaneous eigenfunctions of N commuting differ-
ence operators coming from commuting elements in /2. Recall from Remark 3.11 that the representation
parameter ¢ is not important for studying g-difference equations for the Askey—Wilson functions, therefore
we choose ¢ = 0 for all representations 7;_, in this section.

LetN € Z=pand A = (A1, ..., AN) € RV . We consider the representation iy of Z/lfN on M®N given by

=T & @ My,

where 1, ; = 75 0. We use the following notation for iterated coproducts: we define A% o be the identity on
Uy, and for n > 1 we define A" : U, — L{;X)("H) by

A" — (A ® 1®(n—1)) o An—l’
with the convention A ® BY = A.

We consider the following coproducts of the twisted-primitive elements Y , and 171,,,, s,u,t,v e C*: for
j=1,...,N,

YU) = 19W-D @ AT=1(y, ),
YU = AN Y, @ 189D,

These elements commute, see [15, Lemma 5.1]: for j, j' =1,..., N,

YY) = YOV, YY) =YY

4.1 Eigenfunctions

Using the eigenfunction f, of 7y o(Ys,,) from Lemma 3.1 we obtain simultaneous eigenfunctions of ), (Y§;’3),
j=1,..., N. We use the notation f; = f s.,.» to stress dependence on the parameters s,  and A.
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Lemmad.l (i) Forx,z € (C)V let fy = feasu € M®N be given by

N
fx(z) = l_[ ij',x/'+1,u,)uj(zj)9
j=1
with xNy4+1 = s, then _
nk(ngzz)fx Z(MxN,jH — ) fx, j=1,...,N.
(i) Fory,z € (C)N let f)) = fy'9 e M®N bpe given by

JALLLU

N
f;?(z) = l_[ Fyiviciwa; (125,

j=1
with yo = t, then
o (YD) =y —no fy. j=1. N
Proof The proof for (ii) follows by induction using the identities
NT) =AY, + A Tk,
Yo+ (y — )K= Yy 0 + (uy — o).

See also the proof of [15, Proposition 5.5] for details. The proof of (i) follows after applying the involution
and using Lemma 2.1. O

Remark 4.2 The function fy isan ‘eigenfunction’ of the following x-dependent operators: Fori =0, ..., N—1
and j =1,..., N —i we define

Y,Efi,’li) — 1®(N—i_j) ® Aj_](YXN_H_],M) ® 1®i’
then YY) = YUY G for j, j/ = 1,...,N —i, and
VNP _
7T)‘( xX,u )fx - (MXN,J;,‘+1 MXN,i+1)fx~
Note that the x-dependent element Y,(fL{ )
XN4+1 = S, 1.e. it is independent of x.

We define for j =1,..., N,

depends only on xy_;+1. In particular Y,(f;j ) = YEQ depends on

K20 = (k)% @ 1890V=1) e y@N.

We can express the action of K=2 () on f as a g-difference operator in x. We first need notation for ¢-difference
operators. Fori =1, ..., N we define

[Ti f1X) = F(X1, -+ ey Ximl, XiG2 Xig1s -+ XN,
and forv = (vy,...,vj) € {—1,0, 1}/ we write

.
T,=T," ---TJ.’.
We will use the g-difference equations from Corollaries 3.3 and 3.4 (with ¢ = 0). To stress dependence on

the parameters s and A, let us write A(x) = A, (x) and B(x) = By 3 (x) for the coefficients of the difference
equation in Corollary 3.3, and similarly Af)\ (x) and Bf)\ (x) for the coefficients in Corollary 3.4. Now for

v=(v,...,v;) € {—1,0, 1} we define

Ao (i) Vi =1,
Ay i(Xi, Xip1) = § Axp 0 (), Vi1 =0,
+

g K)o Vi =1,
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B;-_H’)L’-(xl.)# vi"t‘l = _1$
BV,i(-xi’xi+1) = Bx,url,)»,' ()Ci), Vitl = 07
+ . R
Bxi+|,k,-(x’)’ vit1 = 1.

Here we set vj 41 = 0 forv € {—1,0, 1}/.

Proposition 4.3 For j =1,..., N,

rK 2N = > @O fr

ve{—1,0,1}J
where
(/) L)
@ =[]c;®
i=1
with

/ A [ Vl’ ] b [ 0’
Cl(;]i)(x) — V,l(x, xl+l) Vi #
By i(xi, xiy1), vi =0.

Proof Using Corollary 3.3 to act with 7 (K ~2) in the j-th factor of f, we see that ) (K=2()) fy is equal to

Jj—1
Q 71 (K™ @ (Awy ) DTy + Buyu iy GOI+ Ay, 67T | f
i=1

J—1
=|®m&He Y I | fe
i=1

vje{—1,0,1}

Next act with 7 (K _2) in the (j — 1)-th factor of f, in each term of this sum as follows: apply the +-version
of Corollary 3.4 if T} is applied in the jth-factor of fy and apply the —-version if Tj_1 is applied in the j-th

factor; otherwise apply Corollary 3.3. Then we see that 7 (K=2()) £, is equal to

j-2
Ruk e X et T | g
i=1 vj—1,v;€{—1,0,1}
Continuing in this way gives the result. O
: v : : (N=j.J)
Next we determine how 7 (Y;7)) acts on fy as a g-difference operator in x. We need the elements Yy , ,
J =1,.... N, from Remark 4.2. Since A is an algebra homomorphism it follows from the definitions of
YO YY) K20 and (3.2) that for 7, v € C*
GU) QU = /UG o (i (N—jig) VU VG (N ) -2,
Vi1 = 42— 42 K2 e 70 + =g’ Yau 7K
_ _ _ 4.1)
(@ "+ U+ = fu+u/o)xj +x7)) :
+ - 5 J Jj+1 (K_z’(J) 1,
q9 ~—4

for arbitrary x € (C*)V and u € C*.

Proposition 4.4 For j =1,..., N,

/v +v/w)(xjs + 250 u;) .

o) D= ) CS”(x)vax+< pE

ve{—1,0,1}/
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where
ux; "V (1 = vgx;" Jut)(1 — vgtx!"/u
_vlq ( QI/q_l)(_qql/)v v £ 0,
¢ @) = () %
w/v+v/wyx +x7)+ @+ +17h —o
9 1= 9

g 2—¢2
with C ,(,j ) from Proposition 4.3.

Proof Note that (Y,(Clj/ufj J )) acts on fy as multiplication by py, — Mxjprs and 7y (K ~2()) acts as a q-

difference operator in x1, ..., x; on fy. From (4.1), Proposition 4.3 and Remark 4.2, we see that n(\N(ffv),l ) fx
is a g-difference operator as stated in the proposition with coefficients

) )
Gy (x) = m((qu/v —v/uq)(px; — txjpy) + (Vg /u —u/vq) (o2 — Mxjyy)
@™ Q) = W /) e+ xG)).
Simplifying gives the result. O

4.2 Overlap coefficients: multivariate Askey—Wilson functions

We are now ready to define the overlap coefficient @ (x, y) similar as in Definition 3.6. We define an (N + 4)-
tuple « by
o= (S, U, t,V,Al,...,AN).

We define a pairing depending on & and x, y € (C*)V by

__ (.. NS L3
(f.8)= iV /61 .\ f(2)g"(2) o~ ot

where g*(z) = g(Zl_l, cee Z;,l), and C; is a deformation of the positively oriented unit circle such that the
sequences u_lxj“ql_"k-fqzio, v_lyj,lq”’*-fqzio are inside qZCj, and the sequences u_lqik-fxflq_zio,

—irj ,E

v gt ¥; 1(]_ZEO are outside q_ZCj. Here xy4+1 = s and yg = . Assume that f(z) and g(z) are analytic in

zjon{z e qQCj | -2 <6 <2}for j=1,..., N. Then from applying Cauchy’s theorem it follows that this
pairing satisfies (my (X1X2) f, g) = (f, ma(X5X7)g) for X1, X5 € (Z/{;)@N.
Definition 4.5 For x, y € (C*)V we define

Dy (x, ¥) = (fr, f3)-

It immediately follows from (3.6) that ®4(x, y) can be written as a product of the overlap coefficients
®(x;, y;) which are essentially Askey—Wilson functions, so ®4(x, y) can be considered as a multivariate
Askey—Wilson function. For this multivariate function we have a symmetry property and difference equations
similar to Proposition 3.7 and Theorem 3.9.

Theorem 4.6 The overlap coefficient ® (x, y) satisfies

N

(i) Pa(x.y) =[] Pxjpruwyjrvr0(xj. ¥)):
j=1

(ii) Pg(x,y) = Dy (3, X), with

i':(xNv""xl)7 S’Z(yN""iyl)1 aﬂ:(t7v1s9u’)\‘N7"'7)\’l);
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(i) For j =1,..., N,

(/v +v/w)(xj41 +x7))
-2 _ qz

iy @a® )= Y GO0l 010 +
ve{—1,0,1}/

Py (x,y), (4.2

n with C,(,j ) from Proposition 4.4.
Proof Identity (ii) follows from the first identity and Proposition 3.7, or directly from writing ®,, explicitly as
an integral. For identity (iii) we assume that the &, x and y are chosen such that f(z) and f;? (z) are analytic
inzjon{z e qQCj | -2 <6 <2}for j =1,..., N. Then the g-difference equations follow from

(o (VD) fe, ) = (oo m YD ),
using Lemma 4.1 and Proposition 4.4. The conditions on &, x and y can be removed again by continuity. O
Clearly, combining identities (ii) and (iii) from Theorem 4.6 gives a difference equation in y for ®(x, y).
Remark 4.7 The Askey—Wilson algebra encodes the bispectral properties of the Askey—Wilson polynomials.
The elements Y; , and Y, together with the Casimir element €2, generate a copy of the Askey—Wilson algebra
in Uy, see [21]. Similarly, for N = 2 the elements Y<j ) ngbz, j = 1,2, and A(2), generate a copy of a rank

v

2 Askey—Wilson algebra [22] in Z/{q®2. It seems likely that Y@ ng,z, j=1,..., N, together with appropriate

t,v°

coproducts of €2 generate a copy of the rank N Askey—Wilson algebra [23]

To end the section, let us summarize the results we have obtained in terms of multivariate Askey—Wilson

functions. We set

XN+l =S, Yo=1, ag=uv/u, aquz')‘f forj=1,...,N,

and write & = (yo, ®p, &1, . .., &N, XN+1)- The multivariate Askey—Wilson functions are given by

N
Gy (x, y) = Oq(x, y) l_[ Yy, (Xj5 gXj110), gXjr1/ej, qotoyj—1, qo/yi-1lg),
j=1

with

O, ) — 1_[ (qejyj-17"5 4Poc0(q /), qaoxj1/yi-15 )
o
=1 (9% qxj+157 ' /20; 4o

Symmetry property: ® satisfies
where & = (xy41, aal,aN, o, a1, )0)-

g-Difference equations: ® satisfies

-1
yity;
g (x, y) =
q9 —q

) (x +Ol_1)(X' +x-_l)
S @IT P, ) + — e S g (x, ),

ve[—1,0,1) —4

where the coefficients C,(,j ) (x) are given explicitly by

(1 = qaox}yih
- 1 ) Vi # 0’
aoq q q

C‘(’])(x) HC(])(x) X
(oo +ag Hx1 +x7 )+ (g7 +q)(t+t‘1)
q—2 _q2
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with

2v;

al 0 1
) 1 21),‘ 1 ) 2\),‘ ) Vi # ) 1)l—}—l — 1,
Yig (L =x ) =g ™)

Vi v +1
x; (1 —qx;" xiy105)

- 2v; 20y’
i (1= x7") (1 = q%x;")

vi #0, vig1 =0,

(1 = gx xin10; ) (1 = ¢x xi105)
2v; 2v;
(1= x50 = g2

; vi #0, vig1 =1,
€)=

1

+2 ’
-x,'2+1(1 _-x,' /qZ)

vi =0, viyp = —1,

xi (1 — qxixi-i-la,-il) (- qxi_lxi—i-la,-il)
xipt(1=x) (1 = g%x?)  xixip (1 —x72) (1 — g2

vi =0, viy1 =0,

(1+g 51— qa,-ilxi+1xiﬂ)
(1 —x/q?)

v; =0, Vi41 = 1.

Recall here that we use the convention v = 0 forv € {—1, 0, l}j .
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5 Appendix

We prove (3.2):

~ qu/v—v/uq  _, vg/u —ujvq -2
Vot == g Kt = o = Youk
R B O D (2 PR
9 °—9q

The proof runs along the same lines as in [15, Lemma 4.3]. We define S, T' € U, by

K2Yg, — Yo, K72

g ' —q

k]

S=K You+u(K?=1), T=

then by the definition of Y , (2.2) it follows that
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Using the definition (2.2) of )7,,1)71 we obtain

% uqg 'T -85 vS+4qT
] = —
My g +g!

then expressing S and T in terms of Y;,, and K ~2 gives the desired expression.
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