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[1] Tidal wave propagation can be described analytically by a set of four implicit equations,
i.e., the phase lag equation, the scaling equation, the damping equation, and the celerity
equation. It is demonstrated that this system of equations has an asymptotic solution for an
infinite channel, reflecting the balance between friction and channel convergence.
Subsequently, explicit expressions for the tidal amplitude and velocity amplitude are
derived, which are different from the generally assumed exponential damping equation that
follows from linearizing the friction term. Analysis of the asymptotic behavior demonstrates
that exponential damping of the tidal amplitude is only correct for a frictionless wave or an
ideal estuary (no damping). However, in estuaries with modest damping (near ideal) it
provides a reasonable approximation. In natural estuaries, there is generally a need to take
account of local variability of, e.g., depth and friction, by subdividing the estuary into
multiple reaches. This is illustrated with an example of the Scheldt estuary, which has been
gradually deepened for navigation purpose over the last half century. The analytical model
is used to study the effect of this deepening on the tidal dynamics in the main navigation
channel, demonstrating that the navigation channel will become ‘‘overamplified’’ when it
reaches a depth larger than the critical depth. In the case of overamplification, a further
increase of the depth reduces the amplification until critical convergence (condition for a
frictionless standing wave) is reached asymptotically. Finally, based on the ratio between
the tidal amplitude at the seaward boundary and the asymptotic tidal amplitude, estuaries
can be classified into damped, amplified, or ideal estuaries, which is illustrated with 23 real
estuaries.
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1. Introduction

[2] Knowledge of tidal dynamics is essential to analyze
the effect of human interventions, such as dredging for nav-
igation, fresh water withdrawal, and design of regulation
structures, in estuaries. Analytical tools are invaluable tools
to assess the impact of such interventions as they provide
direct insight in cause-effect relations that are generally
nonlinear. Over time, a range of 1-D analytical solutions of
the tidal dynamics equations have been derived by: Hunt
[1964], Dronkers [1964], Ippen [1966], Jay [1991], Frie-
drichs and Aubrey [1994], Lanzoni and Seminara [1998],
Savenije [1992a, 1998, 2001, 2005, 2012], Prandle [2003],
Savenije and Veling [2005], Souza and Hill [2006], Save-
nije et al. [2008], Friedrichs [2010], Toffolon and Savenije

[2011], Van Rijn [2011], and Cai et al. [2012a]. All these
solutions invariably require certain assumptions on estuary
shape and flow characteristics. In this study, we focus on
analytical solutions for infinite length estuaries (long
coastal plain estuaries), where we may assume that the ratio
of tidal amplitude to velocity amplitude is constant. More-
over, since the 1-D partial differential equations (the St.
Venant equations) are nonlinear, analytical solutions
require some form of linearization. Most researchers linear-
ized the equations by means of perturbation analysis in an
Eulerian framework and linearized the friction term. In
contrast, Savenije [1998] used a Lagrangian approach and
derived a nonlinear damping equation by subtracting high
water (HW) and low water (LW) envelopes that retained
both the quadratic velocity in the numerator and the peri-
odic variation of the hydraulic radius in the denominator.
This method, termed the envelope method, is a quasi-
nonlinear approach because it makes use of a linear har-
monic function to represent the Lagrangian flow velocity,
which is an implicit way of linearization. On the basis of
this quasi-nonlinear approach, Savenije et al. [2008] pro-
vided a fully explicit solution of the tidal hydraulic equa-
tions, by solving the set of four implicit equations for the
velocity scale, the damping, the phase lag, and the wave
celerity.

[3] Recently, Cai et al. [2012a] proposed a general ana-
lytical framework to simulate tidal wave propagation,
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which allowed the comparison of different analytical
approaches, mentioned above and concluded that the main
difference between these models lies in the treatment of the
friction term. It appeared that linear solutions, such as those
by Toffolon and Savenije [2011] or Van Rijn [2011], based
on the classical Lorentz linearization [Lorentz, 1926] for
the friction term, are identical, although they used a differ-
ent solution method. It is shown by Cai et al. [2012a] that a
hybrid combination of the traditional linearized approach
[e.g., Toffolon and Savenije, 2011] and the envelope
method [e.g., Savenije et al., 2008] provides the most accu-
rate predictive results. However, although they provided an
explicit solution for tidal damping, they were not yet able to
write the tidal amplitude and velocity amplitude as explicit
functions of distance. In this paper, we provide a new
explicit solution for the tidal amplitude. Furthermore, we
demonstrate that, in contrast with what is generally believed,
the tidal amplitude has an asymptotic solution. Classical
methods, assuming exponential damping, either lead to an
infinite amplitude (when amplified), or a zero amplitude
(when damped), but here we show that the asymptotic solu-
tion corresponds with the amplitude of an ideal estuary.

[4] The paper is organized as follows. First, a compari-
son between classical solutions and those developed by
Savenije et al. [2008], Toffolon and Savenije [2011], and
Cai et al. [2012a] is presented in section 2. In section 3, a
fully explicit solution of the tidal damping equation is
developed, leading to an explicit equation for the tidal
amplitude. In section 4, the upstream and downstream
asymptotic behavior is explored based on the obtained
explicit solution. In section 5, the model is compared to
observations in the Scheldt estuary, which over the last half
century has been substantially deepening with drastic
implications for the tidal dynamics. The asymptotic solu-
tion is subsequently used to classify 23 real estuaries in the
world. Finally, conclusions are drawn in section 6.

2. Comparison of Models

[5] A conceptual sketch of the geometry of an idealized
tidal channel is presented in Figure 1, together with a sim-
plified picture of the periodic oscillations of water level
and velocity defining the phase lag. We consider a tidal

channel with varying width and depth with a large width to
depth ratio, so that it may be approximated by a rectangular
cross section, and with lateral storage areas, described by
the storage width ratio rS5BS=B, i.e., the ratio between the
storage width BS and the stream width B (see Figure 1).

[6] In alluvial estuaries, the tidally averaged cross-
sectional area A5Bh can be described by an exponential
function [e.g., Savenije, 2005, 2012]:

A5A0 exp ð2x=aÞ; (1)

where x is the longitudinal coordinate directed landward,
A0 is the cross-sectional area at the estuary mouth, h is the
tidal average depth of flow, and a is the convergence length
of the cross-sectional area.

[7] The system is forced by a sinusoidal tidal wave with
a tidal period T and a frequency x52p=T . As the wave
propagates into the estuary, it has a wave celerity c, an
amplitude of the tidal water level variation g, a tidal veloc-
ity amplitude t, and a phase lag e, defined as the phase dif-
ference between high water (HW) and high water slack
(HWS) or between low water (LW) and low water slack
(LWS). For a simple harmonic wave, e5p=22ð/z2/U Þ,
where /z is the phase of water level and /U the phase of
the tidal velocity.

[8] Table 1 presents one consistent theoretical frame-
work for the solution of the one-dimensional hydrodynamic
equations for tidal wave propagation as provided by Cai
et al. [2012a] (based on Toffolon et al. [2006] and Savenije
et al. [2008]). Cai et al. [2012a] showed that different fric-
tion formulations can be used in the envelope method to
arrive at an equal number of analytical solutions. In gen-
eral, the main classes of the solutions are: (1) quasi-
nonlinear solution with nonlinear friction term [Savenije
et al., 2008], (2) modified linear solution with Lorentz’s
linearization [Lorentz, 1926], (3) hybrid solution character-
ized by a weighted average of Lorentz’s linearization, with
weight 1/3, and the nonlinear friction term, with weight 2/3
[Cai et al., 2012a]. And the solutions can be obtained by
solving four implicit equations, i.e., the phase lag equation
(T1), scaling equation (T2), celerity equation (T3), and
damping equation (T4a, T4b, or T4c), where d is the damp-
ing number (a dimensionless description of the

Figure 1. Sketch of the geometry of the idealized tidal channel and notation: tidal oscillations of water
level and velocity and definition of the phase lag e ; definition of the equivalent rectangular cross section
of width B, and of the total width Bs including storage areas; planimetric view of the estuary with storage
areas; lateral view showing instantaneous and tidally averaged depth.
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amplification (d > 0) or damping (d < 0) of the tidal wave
amplitude along the estuary), l the velocity number (the
actual velocity scaled with the frictionless value in a pris-
matic channel), c the estuary shape number (representing
the effect of cross-sectional convergence), v the friction
number (describing the role of the frictional dissipation),
and k the celerity number (the ratio between the theoretical
frictionless celerity in a prismatic channel and the actual
wave celerity). The dimensionless variables of these equa-
tions are presented in Table 2, where c0 is the classical
wave celerity of a frictionless wave in a prismatic channel :

c05

ffiffiffiffiffiffiffiffiffiffiffiffi
gh=rS

q
; (2)

and f is the dimensionless friction factor following from
the envelope method [Savenije, 1998], defined as:

f 5g= K2h
1=3

� �
12 4f=3ð Þ2
h i21

; (3)

where g is the acceleration due to gravity, K is the Manning-
Strickler friction coefficient. The factor 4/3 stems from a
Taylor approximation of the exponent of the hydraulic radius
in the friction term. The analytical solutions for some partic-
ular cases, including: constant cross section (c 5 0), friction-
less channel (v 5 0, both with subcritical convergence
(c < 2) and supercritical convergence (c � 2)) and ideal
estuary (d 5 0), are also presented in Table 1. For a friction-
less or an ideal estuary, all methods are identical.

[9] Savenije et al. [2008] showed that these equations
(corresponding with quasi-nonlinear model in Table 1) can
be solved explicitly, with two families of solutions. The
first family consists of a mixed tidal wave with
0 < e < p=2, while the second family consists of an ‘‘appa-

rently standing’’ wave (e50). Recently, Toffolon and Save-
nije [2011] modified the classical linearized solution for
tidal hydrodynamics in convergent channels by exploiting
an iterative procedure to determine friction and a multi-
reach approach (corresponding with modified linear model
in Table 1). It was demonstrated by Cai et al. [2012a] that
the modified linear model overestimates the tidal damping
while the quasi-nonlinear model underestimates it, and the
hybrid model provides the best predictions when compared
with numerical results. Figure 2 describes the variation of
the main dependent dimensionless parameters as a function
of shape number c and friction number v, obtained with dif-
ferent analytical models. Unlike the discontinuous behavior
(i.e., with two families of solutions) and the transition
toward a standing wave (i.e., the wave celerity approaching
infinity) predicted by Savenije et al. [2008], both linear and
hybrid models provide a continuous solution in the transi-
tion zone of critical convergence [Jay, 1991] where c is
close to 2. This is important since it enables the linear and
hybrid models to be applicable in the zones where conver-
gence exceeds critical convergence.

[10] It is important to note that the two independent vari-
ables c and v depend on the tidally averaged depth h and
tidal amplitude to depth ratio f, respectively. In Figure 2,
we adopted a multireach approach in which the damping
number d is integrated in short reaches over which the estu-
ary shape number c and friction number v are considered
constant. This is done by simple explicit integration of the
linear differential equation over a distance Dx (e.g., 1 km),
leading to tidal amplitude at a distance Dx upstream, which
is repeated for the whole estuary [Savenije et al., 2008]. It
should be noted that similar multireach approaches for the
representation of topography and friction have been com-
monly used in literature [e.g., Jay and Flinchem, 1997;
Toffolon and Savenije, 2011].

[11] The classical analytical solution to tides in infinite
channels assumes the tidal wave to be exponentially
damped (or amplified) as it progresses into the estuary
[e.g., Hunt, 1964; Ippen, 1966; Friedrichs and Aubrey,
1994; Friedrichs, 2010; Van Rijn, 2011], where the tidal
amplitude and velocity amplitude, rewritten in our notation,
are given by:

g 5 g0exp ðxdx=c0Þ; (4)

t 5 t0exp ðxdx=c0Þ; (5)

where g0, t0 represent the tidal amplitude and velocity
amplitude at the estuary mouth, respectively.

Table 1. Analytical Framework for Tidal Wave Propagation [Cai et al., 2012a]

Case Phase lag tan ðeÞ Scaling l Celerity k2 Damping d

General Quasi-nonlinear k=ðc2dÞ (T1) cos ðeÞ=ðc2dÞ (T2) 12dðc2dÞ (T3) c=22vl2=2 (T4a)
Modified linear c=224vl=ð3pkÞ (T4b)
Hybrid c=224vl2=ð9pkÞ2vl2=3 (T4c)

Constant cross section Quasi-nonlinear 2k=d 2cos ðeÞ=d 11d2 2vl2=2

Modified linear 24vl=ð3pkÞ
Hybrid 24vl2=ð9pkÞ2vl2=3

Frictionless (c < 2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=c221

p
1 12c2=4 c=2

Frictionless (c � 2) 0 ðc2
ffiffiffiffiffiffiffiffiffiffiffi
c224

p
Þ=2 0 ðc2

ffiffiffiffiffiffiffiffiffiffiffi
c224

p
Þ=2

Ideal estuary 1=c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð11c2Þ

p
1 0

Table 2. The Definition of Dimensionless Parameters

Dimensionless Parameters

Independent Dependent

Tidal amplitude at the
downstream boundary,
f05g0=h

Velocity number, l5t=ðrSfc0Þ5th=ðrSgc0Þ
Damping number, d5dgc0=ðgdxxÞ

Estuary shape, c5c0=ðxaÞ Celerity number, k5c0=c
Friction number at the

downstream boundary,
v05rSfc0f0=ðxhÞ

Phase lag, e5p=22ð/z2/U Þ
Tidal amplitude, f5g=h
Friction number, v5v0g=g0
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[12] Although widely applied, it can be shown that this
assumption is only valid if the friction number v is constant
along the estuary axis (i.e., v5v0), where v0 is the friction
number calculated at the estuary mouth. This can be seen
from Figure 3, which shows the dimensionless tidal ampli-
tude g� as a function of dimensionless distance x�, using
the quasi-nonlinear method of Savenije et al. [2008], indi-
cated by (Q), modified linear method of Toffolon and Save-
nije [2011], indicated by (M), and hybrid method of Cai
et al. [2012a], indicated by (H). It can be seen that these
solutions only coincide with the classical equation if we
use a constant friction number v (indicated by a, b, and c),
where the definitions of g� and x� are:

g�5g=g0; x�5xx=c0: (6)

[13] It is worth noting that in the modified linear model
the authors also used exponential damping, but that as a
result of the iterative multireach approach with variable
friction, the error made by assuming exponential damping
was small (the linear model being a good first-order
approximation).

[14] An important difference between the classical solu-
tion and the quasi-nonlinear approach is that the latter
results in an equilibrium amplitude as an asymptotic solu-
tion when approaching infinity, whereas the classical solu-
tion approaches zero for a damped wave and infinity for an
amplified wave. This asymptotic solution implies that the
flow adapts itself to the shape of the estuary until it has the
same properties as an ideal estuary, with a constant friction
and tidal amplitude.

[15] The condition of an ideal estuary (no damping) is
easily set by imposing d 5 0, whereafter the relationship

between the friction number v and the shape number c in
the hybrid model becomes (see T4c in Table 1) :

v5c= 8= 9p
ffiffiffiffiffiffiffiffiffiffiffi
11c2

p� �
12= 3 11c2

� �� �n o
: (7)

[16] In the quasi-nonlinear model, this relationship reads
(see T4a in Table 1):

v5cðc211Þ: (8)

[17] Similarly, in the linearized model, it reads (see T4b
in Table 1):

v53pc
ffiffiffiffiffiffiffiffiffiffiffi
c211

p
=8: (9)

[18] It is worth noting that these methods use different
definitions of the dimensionless friction factor f (i.e., equa-
tion 3) incorporated in the friction number v. The Lorentz’s
linearization considers a time-invariant depth in the friction
term, which is the same as taking f 5 0 in (3),

i.e.,f � g=ðK2h
1=3Þ [Toffolon et al., 2006; Toffolon and

Savenije, 2011].
[19] Using the definition of the friction number v (see

Table 2) in equation 7 yields the expression of the asymp-
totic tidal amplitude for the hybrid model [Cai et al.,
2012a]:

ginf 5
29m113

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9m2

1164m2
2

p
32m2

h; (10)

m15rsgc0; (11)
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Figure 2. Main dimensionless parameters : (a) the velocity number l, (b) damping number d, (c) celer-
ity number k, and (d) phase lag e obtained with various analytical relationships as a function of estuary
shape number c for different values of friction number v. The gray symbols represent the ideal estuary
(see Table 1).

CAI AND SAVENIJE: ASYMPTOTIC BEHAVIOR

6110



m25cK2h
4=3

x= 8= 9p
ffiffiffiffiffiffiffiffiffiffiffi
11c2

p� �
12= 3 11c2

� �� �n o
: (12)

[20] For small tidal amplitude to depth ratio (f� 1), so
that f � g=ðK2h

1=3Þ, equation 7 can be simplified whereby
v is linear in f. As a result, equation 10 modifies into:

ginf � m2h=m1: (13)

[21] The relationship found for the quasi-nonlinear
model is similar to equation 13 with only a different
expression for m2:

m25cðc211ÞK2h
4=3

x: (14)

[22] Similarly, the expression of m2 for the linear model
reads:

m253pc
ffiffiffiffiffiffiffiffiffiffiffi
c211

p
K2h

4=3
x=8: (15)

[23] An example of the asymptotic solutions of these
models is given in Figure 4 (the MATLAB scripts are pro-
vided as supporting information). We can see that the three
solutions only differ in the parameter m2 (i.e.,
8
ffiffiffiffiffiffiffiffiffiffiffi
11c2

p
=ð9pÞ12=3 for the quasi-nonlinear model and

p=ð4
ffiffiffiffiffiffiffiffiffiffiffi
11c2

p
Þ11=3 for the modified linear model), result-

ing in a slightly different asymptotic value.

3. Explicit Solution to the Tidal Damping
Equation

[24] In principle, the explicit solution to the tidal damp-
ing equation can be derived for all three analytical models,
i.e., quasi-nonlinear, modified linear, and hybrid models. In

the following, we focus on the hybrid model since it pro-
vides the best predictive results [Cai et al., 2012a]. The
derivation for the other models are summarized in Appen-
dixes A and B.

[25] For an infinite length estuary and assuming that the
freshwater discharge is small compared to tidal discharge,
Cai et al. [2012a] derived an expression for tidal damping
or amplification through the envelope method:

1

g
dg
dx

11
gg

ct sin ðeÞ

	 

5

1

a
2

2

3
f

t

hc

4

3p
1sin eð Þ

	 

; (16)

which is identical to the dimensionless damping equation
(T4c) for d in Table 1.

[26] Until now, the tidal amplitude and velocity ampli-
tude variation along the estuary axis were obtained by step-
wise numerical integration of the damping number d. Here,
we revisit the analytical approach proposed by Cai et al.
[2012a] and derive an explicit analytical solution of the
tidal damping equation, requiring the following assump-
tions: 1. A constant friction factor: f2; 2. a constant phase
lag: e ; 3. a constant wave celerity: c ; 4. a constant depth:
h ; and 5. the velocity amplitude and tidal amplitude are
proportional: 1

t
@t
@x 5 1

g
@g
@x :

[27] The last assumption implies that the ratio of the
velocity amplitude to the tidal amplitude is constant, which
applies to estuaries of infinite length [Savenije et al.,
2008]:

t
g

5
t0

g0

: (17)

[28] This relationship is valid for long coastal plain
estuaries, which was demonstrated to be correct by
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Figure 3. Longitudinal variation of tidal amplitude
obtained with quasi-nonlinear (Q), modified linear (M), and
hybrid (H) models applying constant and variable friction
number for c 5 1, f050:1, K 5 30 m

1=3s21. For comparison,
the three classical solutions have been calculated with the
boundary conditions for d0 corresponding to (a) the quasi-
nonlinear model, (b) the modified linear model, and (c) the
hybrid model.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η* =
η 

/η
0

x*=x ω/c
0

 

 

(Q)

(H)

(M)

(a)

(c)

(b)

Classical solution (a)
Quasi−nonlinear solution (Q)
Asymptotic line obtained with quasi−nonlinear model
Classical solution (b)
Modified linear solution (M)
Asymptotic line obtained with modified linear model
Classical solution (c)
Hybrid solution (H)
Asymptotic line obtained with hybrid model

Figure 4. Longitudinal variation of tidal amplitude
obtained with quasi-nonlinear (Q), modified linear (M), and
hybrid (H) models for c 5 1, f050:1, K 5 30 m

1=3s21. The
black lines represent the corresponding asymptotic lines
obtained with equation 10. The blue lines represent the
classical solutions for the three different boundary condi-
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model, (b) the modified linear model, and (c) the hybrid
model.
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Savenije [1992a, 1993] based on numerical simulations in a
wide range of convergent estuaries. Moreover, as a result
of the multireach approach, e.g., to account for variability
in the geometry, a potential error resulting from this
assumption is small.

[29] To simplify equation 16, two parameters are
introduced:

w511
gg

ct sin e
511

gg0

ct0 sin e
511

1

l2
0

; (18)

b5
2

3
f

t0

hc

4

3p
1sin eð Þ

	 

: (19)

which are constant under the above assumptions. It can be
shown that w � 2 since 0 < l0 � 1 [Savenije et al., 2008],
while b > 0.

[30] Substitution of equations (17–19) into equation 16
leads to:

dg�

dx
5

g�

wa
12abg�ð Þ: (20)

[31] It can be seen from equation 20 that convergence
and friction are in balance if g�51=ðabÞ, which is the case
of an ideal estuary where there is no tidal damping or
amplification. In fact, there are two situations where there
is no damping. The first one is the trivial situation where
g�50, and the other is where g�51=ðabÞ.

[32] With g�051 at x 5 0, integration yields an explicit
solution for the tidal amplitude:

g�5
1

ab1 12abð Þexp ½2x=ðwaÞ�5
g�inf

12ð12g�inf Þexp ½2x=ðwaÞ� ;

(21)

where the infinite tidal amplitude g�inf 51=ðabÞ and the
damping scale wa are constants.

[33] Introducing the dimensionless parameters used in
Table 2, equation 21 can be rewritten as:

g�5
c=½8v0l0k=ð9pÞ12v0l

2
0k

2=3�
12f12c=½8v0l0k=ð9pÞ12v0l

2
0k

2=3�gexp ½2cl2
0x�=ð11l2

0Þ�
:

(22)

[34] Subsequently, the solutions of tidal amplitude g and
velocity amplitude t are:

g5g0g
�; (23)

t5
rSc0l0

h
g5

rSc0l0

h
g0g

�; (24)

where equation 24 has been obtained from the definition of
the velocity number in Table 2.

[35] Figure 5 presents the computed tidal amplitude
along the estuary for the case of modest convergence
(c 5 0.5) resulting in a damped tidal wave, and for the case
of strong convergence (c 5 2), resulting in an amplified
wave. The drawn lines correspond with the new explicit
equation 22 whereas the dashed lines correspond with the
classical exponential equation 4. It can be seen clearly that

the two approaches have the same asymptote at x�50, but
that the difference lies in the asymptote when x�

approaches infinity. With equation 4 the tidal amplitude
approaches zero for a damped wave and infinity for an
amplified wave, whereas equation 22 has an asymptotic
tidal amplitude that reflects the balance between friction
and channel convergence. However, for an estuary with
constant cross-section (i.e., c 5 0 without channel conver-
gence) equation 22 is no longer applicable, but continuous
damping leads to an asymptote of g�inf 50.

4. Asymptotic Behavior of the Damping
Equation

4.1. Upstream Asymptotic Behavior

[36] In the asymptotic situation with no river discharge,
the infinite dimensionless tidal amplitude g�inf reads:

g�inf 5
1

ab
5c= 8v0l0k= 9pð Þ12v0l

2
0k

2=3
� �

5c= 8v0lIkI= 9pð Þ12v0l
2
I k

2
I =3

� �
5

vI

v0

;

(25)

where the last step in (25) follows from using the expres-
sions for v in equation 7 and for l0 and k of an ideal estuary
[Cai et al., 2012a]:

l2
I 5

1

11c2
; kI 51; (26)

where the subscript I stands for the ideal estuary. This
implies that in the upstream asymptotic situation the ampli-
tude tends to an ideal estuary with constant amplitude. If
g�inf > 1 (or vI > v0, ab < 1), then the estuary is amplified;
if g�inf < 1 (or vI < v0, ab > 1), then it is damped; and if
g�inf 51 (or vI5v0, ab51), the estuary is ideal.

[37] Using (7) for v of an ideal estuary, the amplitude
then becomes:
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γ =0.5  equation (22)
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γ =0.5  equation (4)

γ =2  equation (4)
Asymptotic tidal amplitude

Figure 5. Comparison of longitudinal tidal amplitude
between the proposed explicit equation 22 and the classical
equation 4, for strong (c 5 2) and modest (c 5 0.5) conver-
gence with f050:1, K 5 30 m

1=3s21.
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ginf 5
vI

v0

g05
c= 8=ð9p

ffiffiffiffiffiffiffiffiffiffiffi
11c2

p
Þ12=½3ð11c2Þ�

n o
v0

g0

5
x
c0

h
2

rSf
c= 8=ð9p

ffiffiffiffiffiffiffiffiffiffiffi
11c2

p
Þ12=½3ð11c2Þ�

n o
;

(27)

or

finf 5
h

a

1

rsf 8=ð9p
ffiffiffiffiffiffiffiffiffiffiffi
11c2

p
Þ12=½3ð11c2Þ�

n o ; (28)

which is an expression that only depends on the geometry
and the friction, and is independent on the boundary condi-
tions. The caveat is that the equation applies to long (infi-
nite) estuaries where we may assume that 1

t
@t
@x 5 1

g
@g
@x. We

can see that in deep convergent estuaries (with large c), this
can lead to a large equilibrium amplitude. Equation 27 is
the same as equation 13 for small value of f, where equa-

tion 3 is reduced to f � g=ðK2h
1=3Þ. Using the scaling

equation (T2) in Table 1 together with (26) yields the
expression for the asymptotic velocity amplitude:

tinf 5
h

a

c0

f 8=ð9pÞ12=½3
ffiffiffiffiffiffiffiffiffiffiffi
11c2

p
�

n o : (29)

[38] It is interesting to note that if an estuary is long
enough, the system will adjust itself until the condition of
the ideal estuary is achieved. This is an indication that the
ideal estuary is the energetically stable state of an estuary
to which the forces of nature converge. Also note that the
variables in these equations are all independent variables
related to the geometry and the friction, and hence that the
asymptotic state is independent of the tidal forcing.

4.2. Downstream Asymptotic Behavior

[39] Near the estuary mouth, we can also look at the
asymptotic behavior. To what extent is the damping expo-
nential? We can approach the longitudinal damping/ampli-
fication of the tidal amplitude by a Taylor series:

g� � g�01
dg�0
dx

x1
d2g�0
dx2

x2

2
1:::: (30)

[40] On the basis of (20) we can determine the second
derivative of g� :

d2g�

dx2
5

1

wað Þ2
2a2b2g�323abg�21g�
� �

: (31)

[41] Substitution of (20) and (31) into (30) with g�051
yields:

g� � 11ð12abÞ x

wa
1

1

2
ð2a2b223ab11Þ x

wa

� �2

1:::: (32)

[42] In a region close enough to the mouth where
x < wa, we can see that the damping or amplification
behaves as a linear function of x. If ab is very small, then

the slope is 1=ðwaÞ. For large values of ab, the gradient
becomes negative and the steeper it gets, the less linear the
behavior. A small value of ab occurs in deep and strongly
converging estuaries, which are generally amplified.
Hence, we see that amplification is often linear, as is the
case in the Scheldt [Savenije, 2001]. The region where
amplification is linear may extend over quite some distance
into the estuary. The nonlinear effect only becomes appa-
rent when we move further upstream. In contrast, we see
that the process of damping is never linear but closer to an
exponential function.

[43] It is interesting to compare the above Taylor series
with the Taylor series of the classical exponential damping
equation 4. We can develop the exponential equation in a
Taylor series as well (making use of (20)):

g� � 11 12abð Þ x

wa
1

1

2
12abð Þ2 x

wa

� �2

1:::: (33)

[44] We can then see that the first two terms are the
same, but that the higher-order terms are different. Figure 6
compares the factors of the second-order terms. We can see
from Figure 6 that the two expressions are only the same in
two situations: the ideal estuary (where ab51) and the fric-
tionless wave (where ab50). The first case is trivial,
because in the ideal case there is no damping, while the
second case is an unrealistic case. As a result, the exponen-
tial damping assumption is only acceptable if the estuary is
near ideal (almost no damping or amplification), or has
very low friction. In the next section, we shall show that in
real estuaries the use of the classical equation can lead to
substantial errors.

5. Results

5.1. Accounting for Local Variability

[45] The depth, celerity, phase lag, and friction of an
estuary are seldom considered constant along the estuary
axis. To follow along-channel variations of the estuary
geometry or friction, we can split the channel into a series
of reaches with different (but constant) friction, phase lag,
celerity, depth, etc. [e.g., Souza and Hill, 2006; Savenije
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f(aβ)=2a2β2−3aβ+1 from equation (31)

f(aβ)=(1−aβ)2 from equation (32)

Figure 6. Comparison of the Taylor expansion between
the new (32) and the classical (33) damping equations.
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et al., 2008; Toffolon and Savenije, 2011; Cai et al.,
2012a]. Since we derived the explicitly analytical solution
for tidal propagation based on only the seaward boundary
condition, it can be readily applied in a multireach model
moving the origin of the axis for every reach.

[46] For given geometry, friction and tidal amplitude at
the seaward boundary g0, we are able to compute the shape
number c and the friction number at the estuary mouth v0.
We thereby assume constant values of l, k, e within each
reach (calculated at the origin of each reach), which can be
computed by solving the set of equations in Cai et al.
[2012a]. Unlike Cai et al. [2012a] who solved the longitu-
dinal tidal amplitude by numerical integration of the damp-
ing number d over a length step Dx, we calculate the tidal
amplitude variation along the estuary axis directly from the
new equation 22. The use of the explicit equation 22 leads
to an updated tidal amplitude g1 (hence friction number v1)
at a distance interval Dx (e.g., 1 km) upstream, which is
repeated for the whole estuary.

[47] For the case of negligible river discharge, it is cus-
tomary that classical studies [e.g., Hunt, 1964; Ippen,
1966; Friedrichs and Aubrey, 1994; Friedrichs, 2010; Van
Rijn, 2011] use the exponential function (4) to describe the
longitudinal variation of the tidal amplitude along the estu-
ary axis. It is important to note that in these studies the
damping number, the celerity number, and the phase lag
are assumed to be constant for the entire estuary reach. The
two undetermined parameters (i.e., the Manning-Strickler
friction coefficient K and the storage width ratio rS) are
subsequently calibrated by comparing the computed results
against observations of tidal amplitude and travel time of
the tidal wave. While the damping/amplification is sensi-
tive to both friction and storage width ratio, the wave celer-
ity is specifically sensitive to the rS. The method presented
here differs from these earlier studies in that we derive
local solutions depending on the local tidal amplitude to
depth ratio f, which enables the model to take account of
along-channel variations of the estuary geometry (e.g., the
depth and the storage width ratio) or the friction. The whole
estuary can be divided into multiple reaches of length Dx
(e.g., 1 km) with constant depth and friction while the vari-
able tidal amplitude is obtained by the explicit equation 22.
The same method can be applied using the classical linear
solutions [see, for instance, Toffolon and Savenije, 2011].

[48] Incorporating the new explicit equation 22 into a
multireach approach with Dx51 km, the Hybrid model
[Cai et al., 2012a] has been applied to the Scheldt estuary.
The total length of the estuary is about 180 km from the
estuary mouth at Vlissingen to the estuary head near Gent
(closed by a weir). The annual observations of tidal ampli-
tude and travel time at HW and LW along the Scheldt
between 1955 and 2006 have been used to calibrate and
verify the model. The cross-sectional area of the estuary

can be well represented by an exponential function (1) with
a convergence length a 5 27 km in the seaward part (0–90
km) and a 5 18 km (90–180 km) in the upstream part [see
also Horrevoets et al., 2004]. The reduction of the conver-
gence length is due to the shallowing, whereby the
upstream part has experienced less dredging. Until 90 km
from the estuary mouth (x 5 0 km, Vlissingen) it is
observed that the flow depth is approximately constant,
while more landward the depth gradually reduces (until
about 3 m) as the estuary becomes more riverine in charac-
ter. Table 3 presents the geometric and flow characteristics
as well as the calibrated parameters, including the storage
width ratio rS and Manning-Strickler coefficient K on
which the computation is based. During the examined
period (1955–2006), according to the cross-sectional sur-
vey, the annually averaged depth of the seaward part
(x 5 0–90 km) was deepened from 10.5 to 12.3 m.

[49] In Figures 7 and 8, the analytically computed tidal
amplitudes are compared with the observations along the
Scheldt estuary. We can see that the correspondence with
observed values is good, both in the seaward part (x 5 0–90
km) where the depth is close to constant and in the land-
ward part (x 5 90–180 km) where the depth gradually
reduces. The model fits the observations with constant val-
ues of Manning-Strickler coefficient, i.e., 39 m

1=3s21 in the
seaward part and 20 m

1=3s21 in the landward part, respec-
tively (see Table 3). It is worth noting that the calibrated
friction coefficient in the upstream part is rather small
(K 5 20 m

1=3s21, hence big friction), which is due to the
neglect of river discharge in the equations. The neglect of
river discharge can be compensated by increasing the fric-
tion [Cai et al., 2012b]. Further work will be needed to
include the effect of river discharge in this model.

[50] To demonstrate the practical importance of the pro-
posed multireach method, Figure 9 compares the perform-
ance of two analytical models (both with fine (#1, #2) and
coarse (#3, #4) discretization) applied to the Scheldt estu-
ary, compared against annual observations of tidal ampli-
tude and travel time for HW and LW in 2000 (the Matlab
scripts are provided as supporting information). The mod-
els #1 and #2 use a multireach approach with a small length
step Dx51 km, #1 adopting the explicit equation 22 and #2
the exponential damping equation 4 for the tidal amplitude,
respectively. Models #3 and #4 use a large length step (i.e.,
90 km in the seaward part x 5 0–90 km and 30 km in the
upstream part x 5 90–180 km), making use of the explicit
equation 22 and the exponential damping equation 4,
respectively. The damping number d in the exponential
equation 4 was estimated by the hybrid model of Cai et al.
[2012a]. All models use the same roughness values as pre-
sented in Table 3. It can be seen from Figure 9 that the per-
formance of model #1 and model #2 is almost identical for
small length step, which indicates that equation 4 is a good

Table 3. Parameters Used for Analytical Models in the Scheldt Estuary (1955–2006)

Reach (km)
Convergence

Length, a (km)
Averaged

Depth, h (m)
Tidal Amplitude at
Vlissingen, g0 (m)

Storage Width
Ratio, rS

Manning-Strickler
Coefficient, K (m

1=3s21)

0–90 27 10.5–12.3 1.87–1.96 1.5–1.9 39
90–180 18 5.4–6 1.3–1.5 20
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first-order approximation of the proposed explicit equation
22 as long as Dx is small. For the model of #3, the corre-
spondence with observed tidal amplitude is surprisingly
good even using large length steps. The reason why the fit
is not perfect is because in #3 f is rather constant, whereas
it is f dependent to cater for the tidal depth variability in
the denominator of the friction term. In model #3 we have
to assume that f remains constant over a reach. Model #4 is
less accurate for larger length steps. This is because the
new method has asymptotic values both for amplified and
damped conditions, whereas the classical method tends to
infinity for an amplified wave and to zero for a damped
wave. For the travel times, the methods do not differ much.
It is worth noting that model #4 can be made to fit observa-
tions, but only by adjusting the roughness values for the
different reaches. It would have required a larger roughness
coefficient in the downstream part and a smaller roughness
in the upstream part to fit the observations.

5.2. Overamplification Induced by Deepening

[51] The tidal amplitude along the Scheldt estuary can be
well simulated by the analytical model, which suggests that
the analytical solution presented in this paper is a very power-
ful instrument to assess the possible influence of human inter-
ference in the estuarine system, such as dredging and
deepening of navigation channels. During the past century,
the navigation channel to the Port of Antwerp in Belgium was

deepened several times and at present it is maintained by
annual dredging. Due to the effect of depth increase, the tidal
amplitude and wave celerity have greatly increased over the
last half century. However, tidal amplification is not a
straightforward function of depth. There appears to be a criti-
cal depth, which causes maximum amplification, beyond
which the amplification is reduced as the wave gradually
assumes the properties of a standing wave. To minimize the
environmental impacts of tidal wave amplification, we need
to fully understand the nonlinear relationship between deep-
ening and tidal amplification. The new analytical equation 22
is an excellent tool for this. Since they provide direct insight
into the threshold, the asymptotic value, and the functional
relationship that governs amplification.

[52] To evaluate the effect of deepening on tidal dynam-
ics in the Scheldt estuary, various computations have been
made under different depths (ranging from 5 to 25 m) using
the proposed hybrid analytical model and the 1-D numeri-
cal model (as described in Toffolon et al. [2006]) with the
same tidal amplitude at the seaward boundary (1.9 m corre-
sponding with the annual average tidal amplitude between
1955 and 2006) and fixed storage width ratio of 1.6 (esti-
mated by fitting the average annual tidal observations dur-
ing 1955–2006). Figure 10 shows the effect of deepening
on the tidal damping/amplification ratio (g=g0) at different
locations along the primary navigation channel (0–90 km).
We can see that the analytically computed values are in
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Figure 7. Comparison between the analytically computed tidal amplitude and measurements in the
seaward part (0–90 km) of the Scheldt estuary at different locations.
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good agreement with the measured tidal amplification ratio
at the different stations. The results of the numerical model
are also shown in Figure 10. In general, the correspondence
between the analytical model and the numerical model is
good, although the analytical results are slightly overesti-
mated for averaged depth between 12 and 18 m and more
so in the upstream part. This is due to the deformation of
the wave which the analytical model does not consider.
The analytical model shows that tidal damping (g=g0 < 1)
occurs for a depth smaller than about 7 m due to the domi-
nant effect of friction, while the wave becomes amplified
(g=g0 > 1) for a depth larger than 7 m when the conver-
gence is stronger than friction. We can demonstrate that a
depth increase only leads to increased amplification (larger
g=g0) until a maximum value is reached at a critical depth
hcritical defined by the condition

@g

@h
50: (34)

[53] For the quasi-nonlinear model, this condition for
maximum amplification is similar to the one defined by
Savenije et al. [2008] as the threshold for the critical con-
vergence at which the tide switches from mixed wave to
the ‘‘apparently standing’’ wave (the wave is not a for-
mally standing wave generated by the superimposition of
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Figure 8. Comparison between the analytically computed tidal amplitude and measurements in the
upstream part (90–180 km) of the Scheldt estuary at different locations.
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Figure 9. Comparison between different analytical mod-
els and observations: (a) tidal amplitude and (b) travel time
at HW and LW in the Scheldt estuary observed in 2000.
Models #1 (using equation 22) and #2 (using equation 4)
make use of multireach approach with small length step
Dx51 km, while models #3 (using equation 22) and #4
(using (4)) use large length steps Dx590 km (in the sea-
ward part x 5 0–90 km) and 30 km (in the landward part
x 5 90–180 km).
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incident and reflected waves ; rather it is an incident
wave that mimics a standing wave having a phase differ-
ence of 90� between water level and velocity and a wave
celerity tending to infinity). Rewriting their equation
(44a) for the critical shape number cc as a function of
hcritical leads to :

hcritical5rSc2
cx

2a2=g; cc5
1

3v
ðm1=2211ð24v212Þ=m1Þ;

m15

	
108v41288v2281

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
432v2ðv222Þ2ð27v224Þ

q 
1=3

:

(35)

[54] This value based on critical convergence rather than
on the critical depth defined by (34) provides a slightly
smaller value of hcritical. It is worth noting that the system
flips suddenly to a frictionless standing wave after reaching
maximum amplification (i.e., h � hcritical) due to the dis-
continuous transition to a standing wave predicted by Save-
nije et al. [2008].

[55] It is worth noting that the critical convergence
defined by Jay [1991] is the rate at which the topographic
convergence is balanced by the effect of acceleration,
where the estuary shape number c 5 2, which is the same
value as obtained by our hybrid model for a frictionless
wave system.

[56] The tidal amplification ratio reduces for a depth
larger than the critical depth, i.e., about 15 m for the main
navigational channel. And it can be seen from Figure 10
that the maximum amplification increases in landward
direction, from about 1.1 in Terneuzen to 1.7 in Schelle.
Cai et al. [2012a] classified estuaries having a depth h >
hcritical as ‘‘overamplified,’’ where increasing the depth
reduces the tidal amplification. The same phenomenon of
‘‘overamplification’’ was observed by Van Rijn [2011]
using an energy-based method, which in fact is identical to
the linear solution. Instead of using a multireach implemen-
tation (as described by section 5.1), Van Rijn [2011]
obtained the longitudinal tidal amplitude by applying the
exponential equation 4.

[57] Since the hybrid model consists of four implicit
equations (see Table 1), the reaction of tidal wave propaga-
tion to the deepening cannot be observed directly from
these equations. To illustrate the effect of deepening in the
Scheldt estuary (0–90 km), we present the trajectory of the
four main dimensionless parameters as function of aver-
aged depth (5 � h � 25 m) in Figure 11. We can see that
the velocity number and the damping number increase until
a maximum value is reached. A further increase of the
depth reduces the tidal amplification (both tidal amplitude
and velocity amplitude) until critical convergence is
reached asymptotically, where the celerity number and the
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Figure 10. Observed tidal amplification ratio as function of averaged depth along the primary naviga-
tion channel in the Scheldt estuary, compared to the amplification computed with the hybrid model (con-
tinuous lines) and the 1-D numerical model (dashed lines).
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phase lag approach zero (see Figures 11c and 11d), corre-
sponding with a frictionless standing wave system. For the
case of critical convergence, the solutions are identical to
those obtained by the Savenije et al. [2008] for the second
family of solution (‘‘apparently standing’’ wave) and the
solutions are completely determined by the convergence
alone, i.e.,

k5e50; l5d5ðc2
ffiffiffiffiffiffiffiffiffiffiffi
c224

p
Þ=2: (36)

[58] When the estuary shape number c goes to infinity
(e.g., h approaches infinity), we can see that both l and d
approach zero asymptotically. From a physical point of
view, we can derive from the dimensional damping equa-
tion 16 that if depth is increased (hence friction becomes
smaller), the friction term on the right-hand side, i.e.,
2f t½4=ð3pÞ1sin ðeÞ�=ð3hcÞ, becomes smaller, leading to
more amplification. However, the term contained in the
parenthesis on the left-hand side, i.e.,
11gg=ðctsin ðeÞÞ5111=l2, becomes larger with increas-
ing depth, leading to less amplification. The term 1/l2

reflects the ratio of gravity to acceleration and only
becomes dominant for small values of l. The maximum
amplification stems from the trade off between these terms.

[59] In Figure 12, we present the analytical values of the
velocity amplitude and tidal amplitude as well as their cor-
responding dimensionless numbers (velocity number and
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Figure 11. Trajectories of the main dimensionless parameters as function of averaged depth in the
Scheldt estuary (0–90 km, red segments) in: (a) velocity number diagram, (b) damping number diagram,
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Figure 12. (a) The velocity amplitude as well as the
velocity number and (b) the tidal amplitude along with the
damping number as function of averaged depth at Bath
(x 5 50 km) in the Scheldt estuary.
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Table 4. Characteristic Values of Alluvial Estuaries and Classification

Number Estuarya T (h) g0ðmÞ hðmÞ a (km) K (m
1=3 s21) f c ab ginf (m) tinf ðm=s Þ Type

1 Bristol Channel 12.4 2.6 45 65 33 0.06 2.3 0.1 25.09 12.16 Amplified
2 Columbia 12.4 1 10 25 38 0.1 2.81 0.22 4.63 1.54 Amplified
3 Deltaware 12.5 0.64 5.8 40 51 0.11 1.35 0.68 0.94 0.47 Amplified
4 Elbe 12.4 2 10 42 43 0.2 1.68 0.76 2.64 2.68 Amplified
5 Fraser 12.4 1.5 9 215 31 0.17 0.31 17.16 0.09 0.13 Damped
6 Gironde 12.4 2.3 10 44 38 0.23 1.6 1.16 1.99 2.4 Close to ideal
7 Hudson 12.4 0.69 9.2 140 67 0.08 0.48 0.96 0.72 0.46 Close to ideal
8 Ord 12 2.5 4 15.2 50 0.63 2.83 1.46 1.71 2.23 Damped
9 Outer Bay of Fundy 12.4 2.1 60 230 33 0.04 0.75 0.21 9.91 6.73 Amplified
10 Potomac 12.4 0.65 6 54 56 0.11 1.01 0.91 0.71 0.42 Close to ideal
11 Scheldt 12.4 1.9 11 27 39 0.17 2.16 0.56 3.39 3.23 Amplified
12 Severn 12.4 3 15 41 40 0.2 2.1 0.48 6.24 6.51 Amplified
13 St. Lawrence 12.4 2.5 70 183 44 0.04 1.02 0.09 28.88 18.95 Amplified
14 Tees 12 1.5 7.5 5.5 36 0.2 10.72 0.28 5.44 0.87 Amplified
15 Thames 12.3 2.7 8.9 24 51 0.3 2.32 0.69 3.92 5.21 Amplified
16 Gambia 12.4 0.62 8.7 121 64 0.07 0.48 1.21 0.51 0.35 Damped
17 Pungue 12.4 3 4.3 20 33 0.7 2.11 5.42 0.55 1.18 Damped
18 Lalang 12.4 1.5 10.6 217 70 0.14 0.33 2.31 0.65 0.89 Damped
19 Tha Chin 12.4 1.2 5.3 87 50 0.23 0.56 6.95 0.17 0.26 Damped
20 Incomati 12.4 1.35 3 42 63 0.45 0.75 10.62 0.13 0.3 Damped
21 Limpopo 12.4 0.55 7 50 43 0.08 1.18 0.73 0.75 0.32 Amplified
22 Maputo 12.4 1.4 3.6 16 70 0.39 2.41 0.87 1.61 1.56 Close to ideal
23 Chao Phya 12.4 0.9 8 109 51 0.11 0.51 2.95 0.31 0.31 Damped

aData are modified from Cai et al. [2012a].

0 1 2 3
0

1

2

3
Scheldt

η* =
η 

/η
0

0 0.5 1 1.5
0

1

2

3
Thames

η* =
η 

/η
0

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
Pungue

x*=x ω/c
0

η* =
η 

/η
0

 

 
Analytical
Asymptotic
Observed

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

x*=x ω/c
0

Lalang

η* =
η 

/η
0

a)

c)

b)

d)

a)

c)

b)

d)

a)

c)

b)

d)

a)

c)

b)

d)

Figure 13. Observed and computed longitudinal variation of tidal amplitude in selected estuaries ((a)
Scheldt ; (b) Thames; (c) Pungue; (d) Lalang). The red dashed line represents the asymptotic tidal ampli-
tude obtained with equation 27 as a function of the locally observed geometry.
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damping number) as a function of the averaged depth at
Bath (x 5 50 km). As the depth increases, both the velocity
amplitude and tidal amplitude increase until a maximum
value is reached at critical depth. The critical depth for the
velocity amplitude and the velocity number are about 12 m,
while the critical depth for the tidal amplitude is about 15
m, which is slightly smaller than the critical depth of the
damping number at 16 m depth. These differences follow
directly from the definitions of d and l as function of depth
(see Table 2).

5.3. Classification of Estuary

[60] The asymptotic tidal amplitudes ginf and velocity
amplitude tinf of a selection of estuaries are shown in Table
4, where ginf is calculated with equation 10 while tinf is
computed with equation 29. Qualitatively, we can deter-
mine whether an estuary is amplified or damped by com-
paring the difference between the tidal amplitude at the
estuary mouth g0 and the asymptotic (or ideal) tidal ampli-
tude ginf . For amplified estuaries where g0 < ginf (ab < 1),
such as Bristol Channel, Columbia, Outer Bay of Fundy,
Scheldt, Severn, St. Lawrence, and Tees, a larger asymp-
totic tidal amplitude ginf and velocity amplitude tinf is
obtained. For damped estuaries where g0 > ginf (ab > 1),

like Fraser, Ord, Gambia, Pungue, Lalang, Tha Chin,
Incomati, and Chao Phya, we can see ginf and tinf achieve
a lower asymptotic value. We can also see that the Gironde,
Hudson, Potomac, and Maputo are very close to ideal
estuaries with ginf � g0 (ab � 1).

5.4. Application to Real Estuaries

[61] Figures 13 and 14 show longitudinal computations
applied to the Scheldt, Thames, Pungue, Lalang, Tha Chin,
Incomati, Maputo, and Chao Phya estuaries where tidal
damping observations were available. Details on the geo-
metric parameters used for these calculation are shown in
the supporting information. It can be seen from Figures 13
and 14 that the model fits the observed tidal amplitude very
well and the estimated asymptotic tidal amplitude (27) is in
good agreement with the observations. The fact that the
Lalang shows larger amplitude upstream is due to an
increasing depth in the upstream direction [Savenije,
1992b]. On the other hand, the strong upstream damping in
the Scheldt and Thames is due to upstream shallowing. The
jump in the asymptotic value near x�51:7 (Scheldt) and
x�51:3 (Thames) is due to the change of the convergence
length, which generates an almost standing wave over a

Figure 14. Observed and computed longitudinal variation of tidal amplitude in selected estuaries: (a)
Tha Chin; (b) Incomati; (c) Maputo; (d) Chao Phya. The red dashed line represents the asymptotic tidal
amplitude obtained with equation 27 as a function of the locally observed geometry.
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short distance before the depth reduction further upstream
again reduces the asymptotic amplitude.

[62] It is worth noting that the proposed hybrid analytical
model is able to accurately reproduce the main tidal hydro-
dynamics by following along-channel variation of estuarine
sections (e.g., the depth). For instance, Figure 13a shows
the computed and measured tidal amplitude along the
Scheldt estuary, even in the upstream part, where the depth
gradually reduces. We can see that the seaward part (0–90
km) can be classified as amplified, with a large asymptotic
tidal amplitude, while the upstream part (90–180 km) is
significantly damped with a much smaller asymptotic tidal
amplitude.

6. Conclusions

[63] In this study, we have presented fully explicit
expressions for tidal amplitude and velocity amplitude
along the estuary axis. The derived equations provide
direct insight into the hydrodynamics of estuaries. The
solutions depend on two parameters, i.e., the shape num-
ber c and the friction number at the estuary mouth v0.
These simple expressions can be easily incorporated in
the model proposed by Cai et al. [2012a] with a multi-
reach technique, i.e., subdividing the estuary into multiple
reaches. The multireach implementation enables the ana-
lytical model to take account of local variability (e.g., the
depth or friction) and performs much better than the clas-
sical exponential equation 4 applied to the entire estuary
(i.e., single reach).

[64] We have compared the performance between the
classical linear solution and those proposed by Savenije
et al. [2008], Toffolon and Savenije [2011], and Cai et al.
[2012a]. It is found that exponential damping is only valid
when assuming a constant friction number v along the estu-
ary axis, which in fact implies a constant amplitude, and
hence an ideal estuary. The more realistic situation is that
estuaries converge toward an asymptote where the impact
of convergence is balanced by friction.

[65] We have also shown that the upstream asymptotic
state is basically independent of tidal forcing, which indi-
cates that an estuary adjusts the tidal amplitude to the estu-
ary shape until it has the same properties as in an ideal
estuary with spatially constant parameters. For the down-
stream asymptotic behavior of the damping equation, it has
been shown that damping/amplification is linear in a region
close to the estuary mouth, particularly in the case of
amplification, such as in the seaward part of the Scheldt
estuary. The nonlinear effect only becomes significant in
the upper reaches of the estuary. The analysis of the down-
stream asymptotic behavior of tidal damping demonstrates
that the classical exponential damping equation 4 is only
valid when there is almost no damping or amplification
(which is trivial) or for a frictionless wave (which is
unrealistic).

[66] The analytical solutions are compared with half a
century of observations in the Scheldt estuary, which was
substantially deepened over that period. The correspon-
dence with observations is very good. The analytical
model has subsequently been applied to investigate the
effect of further deepening on the tidal dynamics. Interest-
ingly, there is a critical depth beyond which the amplifica-

tion is reduced until critical convergence (frictionless and
standing wave system) is reached asymptotically. Finally,
the asymptotic behavior can be used to classify estuaries
as damped, amplified, or ideal by comparing the tidal
amplitude at the estuary mouth with that of an ideal
estuary.

Appendix A: Derivation of the Explicit Solution to
the Quasi-Nonlinear Tidal Damping Equation

[67] Based on the full nonlinear St. Venant equations,
Savenije [1998, 2001, 2005] determined an analytical
expression for tidal damping by subtracting high water
(HW) and low water (LW) envelopes:

1

g
dg
dx

11
gg

ct sin ðeÞ

	 

5

1

a
2f

t sin ðeÞ
hc

; (A1)

[68] Using the same assumptions made in section 3 and
introducing a new parameter

bQ5
f t0 sin ðeÞ

hc
; (A2)

equation (A1) can be simplified as:

dg�

dx
5

g�

wa
12abQg�
� �

: (A3)

[69] Equation (A3) can be integrated by separation of
variables. Applying the boundary condition g�51 at x 5 0,
integration yields an explicit solution for tidal damping:

g�5
1

abQ1 12abQ

� �
exp ½2x=ðwaÞ�

5
1=ðabQÞ

12½121=ðabQÞ�exp ½2x=ðwaÞ� : (A4)

[70] Introducing the dimensionless parameters defined in
Table 1, equation (A4) can be rewritten as:

g�5
c=ðv0l

2
0k

2Þ
12½12c=ðv0l

2
0k

2Þ�exp ½2cl2
0x�=ð11l2

0Þ�
; (A5)

which gives the asymptotic tidal amplitude
g�inf 5c=ðv0l

2
0k

2Þ when v� goes to infinity.

Appendix B: Derivation of the Explicit Solution to
the Linear Tidal Damping Equation

[71] Cai et al. [2012a] adopted the envelope method
using the usual Lorentz’s linearization for the friction term
and derived the linear tidal damping equation:

1

g
dg
dx

11
gg

ctsin ðeÞ

	 

5

1

a
2

8

3p
f

t

hc
; (B1)

[72] Following the derivation as described in Appendix
A, one can easily obtain the following explicit solution of
the linear tidal damping equation:
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g�5
3pc=ð8v0l0kÞ

12½123pc=ð8v0lkÞ�exp ½2cl2x�=ð11l2
0Þ�
; (B2)

[73] We can see from equation (B2) that g�inf 53pc=
ð8v0lkÞ when x� approaches infinity.

Notation

The following symbols are used in this paper (asterisk
denotes dimensionless variable) :
a convergence length of cross-sectional area.
A tidally averaged cross-sectional area of flow.
A0 tidally averaged cross-sectional area at the

estuary mouth.
B stream width.
Bs storage width.
c wave celerity.
c0 celerity of a frictionless wave in a prismatic

channel.
f friction factor accounting for the difference in

friction at HW and LW.
g acceleration due to gravity.
h tidal average depth.
hcritical critical depth corresponding with maximum

amplification.
K manning-Strickler friction factor.
rS storage width ratio.
T tidal period.
x; x� longitudinal coordinate.
c estuary shape number.
d damping number.
e phase lag between HW and HWS

(or LW and LWS).
f tidal amplitude to depth ratio.
finf asymptotic tidal amplitude to depth ratio.
g; g� tidal amplitude.
g0; g

�
0 tidal amplitude at the seaward boundary.

ginf ; g
�
inf asymptotic tidal amplitude.

/z;/U phase of water level and velocity.
k celerity number.
l velocity number.
l0 velocity number at the seaward boundary.
t tidal velocity amplitude.
t0 tidal velocity amplitude at the seaward

boundary.
tinf asymptotic velocity amplitude.
v friction number.
v0 friction number at the seaward boundary.
x tidal frequency.
Dx length step.
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