
MSc thesis in Geomatics for the Built Environment

Semantic segmentation of point clouds
with the 3D medial axis transform

Giulia Ceccarelli
July 2020

MSc thesis in Geomatics

Semantic segmentation of point clouds
with the 3D medial axis transform

Giulia Ceccarelli

July 2020

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Giulia Ceccarelli: Semantic segmentation of point clouds with the 3D medial axis transform
(2020)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in collaboration with:

3D geoinformation group
Department of Urbanism
Faculty of the Built Environment & Architecture
Delft University of Technology

CycloMedia Technologies
R&D Cluster Data Analytics

Supervisors - TU Delft: Dr. Ravi Peters
MSc Weixiao Gao

Supervisors - CycloMedia: Dr. Bas Boom
MSc Arjen Swart

Co-reader: MSc Zexin Yang

http://creativecommons.org/licenses/by/4.0/

Abstract

A point cloud is a representation of shapes, organized in a 3D irregular structure. Point
clouds are increasingly used in different applications, ranging from architectural preserva-
tion to computer vision. The 3D medial axis transform is a topology preserving, skeleton
representation of shapes. It can be used to decompose an object in meaningful parts and
to describe local and long range information of points in a point cloud.

In the past years, many deep learning methods for point clouds emerged. These are used
for different applications, such as shape classification, object detection or semantic segmen-
tation. In particular, the latter aim to classify each point in the input point cloud in subsets,
based on their semantics.

This research investigates the integration of the 3D medial axis transform (MAT) in two
deep learning methods for point clouds’ semantic segmentation, PointNet++ and Super-
point Graph. In particular, the 3D MAT was used in PointNet++ as a point feature, to give
context to local points. Then, it was used in Superpoint Graph as a geometric descriptor to
partition a point cloud and as a edge feature in the superpoint graph (SPG).

The major findings of this research outline that the 3D MAT can be successfully used in Point-
Net++ as a point feature, improving the overall accuracy and loss values of the algorithm.
Particularly two MAT derived properties used in this research output positive results, radii
and separation angles. These can be combined with point coordinates and RGB informa-
tion to bring additional knowledge on the geometry of the shape, representing its curvature
and thickness. Furthermore, they can be integrated in a simple and effective way, without
increasing computational or time effort in the algorithm.

The analysis carried out in Superpoint Graph depicts that the 3D MAT does not improve the
initial geometric partition. In fact, adding geometric descriptors to the algorithm increases
the difficulty in dividing the point cloud into simple shapes, creating artifacts. Furthermore,
adding MAT information on superedges does not give added value to the SPG graph. The
reason is that the SPG graph and the structuredMAT are different than each other, in practice,
as nodes represent diverse parts in the point cloud.

v

Contents

1 Introduction 1
1.1 Research questions . 2
1.2 Research scope . 3
1.3 Thesis outline . 3

2 Theoretical background 5
2.1 Concepts of neural networks . 5

2.1.1 Evaluation metrics . 5
2.2 Deep learning in point clouds . 7

2.2.1 Applications . 8
2.3 Semantic segmentation in point clouds . 8

2.3.1 Projection networks . 9
2.3.2 Point-wise MLP networks . 9
2.3.3 Graph convolution networks . 12
2.3.4 Point convolution networks . 13

2.4 3D medial axis transform . 14
2.4.1 Definitions of the medial axis transform 14
2.4.2 The unstructured MAT . 15
2.4.3 The structured MAT . 16

3 Methodology 19
3.1 Overview . 19
3.2 Preliminary steps . 21

3.2.1 Analysis of algorithms . 21
3.2.2 3D MAT analysis for data-sets selection 22
3.2.3 Data preprocessing . 24
3.2.4 3D medial axis computation . 26

3.3 Medial axis transform as a feature in deep learning 27
3.3.1 PointNet++ analysis . 28
3.3.2 Using properties of the 3D MAT . 30

3.4 Medial axis transform as a descriptor for a geometric partition 31
3.4.1 Superpoint Graph geometric partition 32
3.4.2 Using properties of the 3D MAT . 32

3.5 Medial axis transform as a graph attribute for graph convolution 34
3.5.1 Superpoint graph and deep learning 34
3.5.2 Using properties of the 3D MAT . 35

3.6 Evaluation . 35

vii

Contents

4 Data-sets and tools 37
4.1 CycloMedia’s internal data-set . 37

4.1.1 SHREC 2020 . 40
4.2 3DOM dataset . 40
4.3 SynthCity dataset . 43
4.4 Tools . 43

5 Results and discussion 47
5.1 Medial axis transform as a feature in deep learning 47

5.1.1 Core experiments . 47
5.1.2 3DOM data-set core experiments . 48
5.1.3 SynthCity data-set core experiments 50
5.1.4 Internal data-set core experiments . 51
5.1.5 Other experiments . 56
5.1.6 SHREC 2020 - bisector angles and spoke vectors 61

5.2 Medial axis transform as a descriptor for a geometric partition 63
5.2.1 3DOM dataset experiments . 64
5.2.2 SynthCity dataset experiments . 70

5.3 Medial axis transform as an attribute for graph convolution 71

6 Conclusions and future work 75
6.1 Research questions . 75

6.1.1 Scientific contributions . 77
6.2 Discussion . 78
6.3 Future work . 78

A Segmented data-sets 81
A.1 3DOM data-set . 81
A.2 SynthCity data-set . 83
A.3 CycloMedia data-set . 86

A.3.1 SHREC data-set . 88

B Deep learning glossary 91
B.1 Concepts of neural networks . 91
B.2 Components of a neural network . 92
B.3 Terminology . 93

C Reproducibility self-assessment 97
C.1 Marks for each of the criteria . 97
C.2 Self-reflection . 98

viii

List of Figures

2.1 Neural network simplified flowchart . 6
2.2 Deep learning in point clouds . 9
2.3 PointNet architecture for semantic segmentation 11
2.4 PointNet++ - multi scale grouping (MSG) and multi resolution grouping (MRG) . 12
2.5 Superpoint Graph - superedge features . 13
2.6 MAT - interior and exterior medial balls of a given shape 14
2.7 MAT - local geometry of the medial atom . 15
2.8 MAT - medial sheets . 16
2.9 MAT - cutting condition into medial clusters 17
2.10 MAT - cutting condition into medial sheets . 17

3.1 Overview of methodology . 20
3.2 Flowchart . 21
3.3 CycloMedia data-set, oriented point cloud . 22
3.4 CycloMedia data-set, 3D MAT . 23
3.5 SynthCity data-set, oriented point cloud . 24
3.6 SynthCity data-set, 3D MAT . 24
3.7 Car SynthCity data-set, oriented point cloud and 3D MAT 25
3.8 Data preprocessing pipeline . 25
3.9 3DOM point cloud . 27
3.10 Unstructured MAT - default parameters . 27
3.11 Unstructured MAT - custom parameters . 27
3.12 Structured MAT - medial bisector . 28
3.13 Structured MAT - separation angle . 28
3.14 PointNet++ structure . 28

4.1 Internal data-set - rgb information . 38
4.2 Internal data-set - density . 38
4.3 Internal data-set - density parameters . 39
4.4 Internal data-set - point cloud . 39
4.5 Internal data-set - SOR filter . 39
4.6 3DOM data-set - density . 41
4.7 3DOM data-set - full point cloud . 42
4.8 3DOM data-set - training set . 42
4.9 3DOM data-set - test set . 42
4.10 3DOM data-set - validation set . 42
4.11 SynthCity data-set - rgb information . 44
4.12 SynthCity data-set - density . 44
4.13 SynthCity data-set - density parameters . 45

ix

List of Figures

5.1 3DOM - train accuracy . 48
5.2 3DOM - train loss . 48
5.3 3DOM - test accuracy . 49
5.4 3DOM - test loss . 49
5.5 3DOM - ground truth . 49
5.6 3DOM - RGB . 49
5.7 3DOM - interior MAT radius . 49
5.8 3DOM - exterior MAT radius . 49
5.9 3DOM - interior MAT separation angle . 50
5.10 3DOM - exterior MAT separation angle . 50
5.11 SynthCity - train accuracy . 51
5.12 SynthCity - train loss . 51
5.13 SynthCity - test accuracy . 51
5.14 SynthCity - test loss . 51
5.15 SynthCity - ground truth . 52
5.16 SynthCity - RGB . 52
5.17 SynthCity - interior MAT radius . 52
5.18 SynthCity - exterior MAT radius . 52
5.19 SynthCity - interior MAT separation angle . 53
5.20 SynthCity - exterior MAT separation angle . 53
5.21 Internal data-set - train acc. 53
5.22 Internal data-set - train loss . 53
5.23 Internal data-set - test acc. 54
5.24 Internal data-set - test loss . 54
5.25 Internal data-set - ground truth . 54
5.26 Internal data-set - RGB . 54
5.27 Internal data-set - interior MAT radius . 55
5.28 Internal data-set - exterior MAT radius . 55
5.29 Internal data-set - interior MAT separation angle 55
5.30 Internal data-set - exterior MAT separation angle 55
5.31 3DOM radius and separation angle - train accuracy 56
5.32 3DOM radius and separation angle - train loss 56
5.33 3DOM radius and separation angle - test accuracy 56
5.34 3DOM radius and separation angle - test loss 56
5.35 3DOM interior radius and separation angle - train accuracy 57
5.36 3DOM interior radius and separation angle - train loss 57
5.37 3DOM interior radius and separation angle - test accuracy 58
5.38 3DOM interior radius and separation angle - test loss 58
5.39 3DOM no RGB - train acc. 58
5.40 3DOM no RGB - train loss . 58
5.41 3DOM no RGB - test accuracy . 59
5.42 3DOM no RGB - test loss . 59
5.43 3DOM Gaussian noise - train accuracy . 60
5.44 3DOM Gaussian noise - train loss . 60
5.45 3DOM Gaussian noise - test accuracy . 60
5.46 3DOM Gaussian noise - test loss . 60
5.47 SHREC data-set - train acc. 61

x

List of Figures

5.48 SHREC data-set - train loss . 61
5.49 SHREC data-set - test acc. 61
5.50 SHREC data-set - test loss . 61
5.51 3DOM - linearity . 65
5.52 3DOM - planarity . 65
5.53 3DOM - scattering . 65
5.54 3DOM - verticality . 65
5.55 3DOM - bisectors as normals . 65
5.56 3DOM - medial bisector 1 . 65
5.57 3DOM - medial bisector 2 . 65
5.58 3DOM - medial bisector 3 . 65
5.59 3DOM - interior radius . 66
5.60 3DOM - exterior radius . 66
5.61 3DOM - interior separation angle . 66
5.62 3DOM - exterior separation angle . 66
5.63 3DOM - default partition . 68
5.64 3DOM - default + MAT partition . 68
5.65 3DOM - default + rad sep in partition . 68
5.66 3DOM - default + rad sep out partition . 68
5.67 3DOM - default + rad in out partition . 68
5.68 3DOM - default + sep in out partition . 68
5.69 3DOM - default + bisector partition . 69
5.70 3DOM - medial axis transform partition . 69
5.71 3DOM - edge weight partition . 69
5.72 3DOM - ground truth . 72
5.73 3DOM - default graph attributes . 72
5.74 3DOM - default, mean MAT attributes . 72
5.75 3DOM - mean MAT attributes . 72
5.76 3DOM - ground truth . 73
5.77 3DOM - default graph attributes . 73
5.78 3DOM - default, max min MAT attributes . 73
5.79 3DOM - max min MAT attributes . 73

A.1 3DOM data-set - ground truth . 81
A.2 3DOM data-set - RGB . 82
A.3 3DOM data-set - MAT-C . 82
A.4 3DOM data-set - MAT-I . 82
A.5 3DOM data-set - MAT-RS . 83
A.6 SynthCity data-set - ground truth . 83
A.7 SynthCity data-set - RGB . 84
A.8 SynthCity data-set - MAT-c . 84
A.9 SynthCity data-set - MAT-i . 85
A.10 SynthCity data-set - MAT-rs . 85
A.11 CycloMedia data-set - ground truth . 86
A.12 CycloMedia data-set - RGB . 86
A.13 CycloMedia data-set - MAT-c . 87
A.14 CycloMedia data-set - MAT-rs . 87

xi

List of Figures

A.15 SHREC data-set - ground truth . 88
A.16 SHREC data-set - RGB . 88
A.17 SHREC data-set - MAT-rs . 89
A.18 SHREC data-set - MAT-sp . 89
A.19 SHREC data-set - MAT-bis . 89

C.1 Reproducibility criteria . 97

xii

List of Tables

3.1 Open source data-sets requirements and motivations 23
3.2 Open source data-sets characteristics . 23
3.3 3DOM dataset unstructured MAT computation parameters 26
3.4 3DOM dataset structured MAT computation parameters 27
3.5 PointNet++ hyperparameters . 30

4.1 Data-sets information . 37
4.2 Internal data-set - reduced classes, weights and occurrences 40
4.3 SHREC data-set - classes . 40
4.4 3DOM data-set - classes . 41
4.5 SynthCity data-set - classes . 43

5.1 Core experiments legend . 48
5.2 3DOM dataset core experiments - OA and IoU 50
5.3 SynthCity dataset core experiments - OA and IoU 52
5.4 CycloMedia internal dataset core experiments - OA and IoU 54
5.5 Only radius and only separation angle experiments - legend 56
5.6 3DOM dataset radius and separation angle experiments - OA and IoU 57
5.7 Interior radius and separation angle experiments - legend 57
5.8 No RGB experiments - legend . 58
5.9 3DOM dataset no RGB experiments - OA and IoU 59
5.10 Gaussian noise experiments legend . 60
5.11 SHREC experiments legend . 61
5.12 SHREC data-set experiments - OA and IoU 62
5.13 3DOM geometric partition experiments - number of parts 64
5.14 3DOM geometric partition experiments - OA and IoU 67
5.15 SynthCity dataset radius and separation angle experimets - number of parts . 70
5.16 SynthCity dataset radius and separation angle experimets - OA and IoU . . . 71
5.17 3DOM mean radii and separation angles - OA and IoU 72
5.18 3DOM max and min radii and separation angles - OA and IoU 73

A.1 Experiments legend . 81

xiii

Acronyms

FPS farthest point sampling . 29
IoU intersection over union . 6
MAT medial axis transform . v
MLP multi layer perceptron . 8
MLS mobile laser scanning . 1
MRG multi resolution grouping . ix
MSG multi scale grouping . ix
OA overall accuracy . 6
SPG superpoint graph . v

xv

1 Introduction

A point cloud is a 3D representation of reality consisting of a set of points and additional
information, such as color and intensity. In the past few years, the growing acquisition
capabilities of instruments led to the increasing availability of point clouds. These are of
high importance in various applications, ranging from architecture, surveying and heritage
preservation to autonomous driving. A practical example comes from CycloMedia Technol-
ogy, where point clouds are the backbone of an online tool for accurate urban analysis and
measurements. To this end, a point cloud must be augmented with semantics.

Different point clouds acquisition techniques exist; mobile laser scanning (MLS) uses a Li-
dar scanner applied on a terrestrial moving platform. The acquisition method determines
the quality of a point cloud, together with factors related to the scanned environment. For
example in a urban location, buildings could not be fully represented due to the presence of
artifacts or moving objects. Additionally, the distribution of objects in the urban environment
influences the distribution and density of points. In fact, closer objects would be represented
by many points; instead those far away would be scarcely represented.

Nowadays, various deep learning methods are emerging for semantic segmentation in point
clouds, which aims to classify each point Pi of a point cloud P between K classes. These
have to consider factors such as points density and artifacts. Furthermore, while deep
learning methods have been widely used for structured inputs, such as images, a point
cloud is an unordered set of points.

This property introduces a number of difficulties; a deep learning architecture that takes
as input n 3D points, must be invariant to n! permutations of the input set in data feeding
order. Furthermore, a point cloud is invariant under certain geometrical transformations,
as rotation and translation. Consequently the deep learning architecture must have the
same properties. Last in a point cloud, points interact in space with a distance metric and
neighboring points form a meaningful subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the interactions among local structures, [Qi
et al., 2016].

To this end, the 3D MAT shows interesting properties. The 3D MAT is a skeleton represen-
tation of shapes, dual to the boundary of an object. This representation models the key
properties of a shape and its topology in an explicit way, [Peters, 2018a]. Thus, the 3D MAT
can be used as a shape descriptor, to organize and structure a point cloud in meaningful
subsets.

The aim of this research is to develop a methodology to integrate the properties of the
3D medial axis transform in a point cloud semantic segmentation deep learning algorithm,
understanding ifMAT information can be exploited to improve results in existing deep learning
methods.

1

1 Introduction

1.1 Research questions

The main goal of this research is to integrate an existing deep learning algorithm with the
3D medial axis transform. This research is based on the previous study Geographical point
cloud modeling with the 3D medial axis transform [Peters, 2018a], that analyzes the con-
struction and application of the 3D medial axis transform for geographical point clouds. This
thesis aims to investigate which information derived from the 3D MAT can be integrated in a
deep learning algorithm for semantic segmentation, improving its results. In [Peters, 2018a]
the 3D MAT is computed for airborne laser scanning point clouds, instead, the focus of this
thesis is on mobile based point clouds. Thus, this thesis also aims to analyze how the 3D
MAT is constructed for these point clouds.

The main research question for this project is:

How can the properties of the 3D medial axis transform be exploited in different deep
learning methods for point cloud semantic segmentation?

The following sub-questions will also be relevant:

– How can the 3D medial axis transform be used to give context to local points in a point
cloud, making the unary classification per point stronger? Which of the 3D medial axis
transform properties are most helpful?

– Can the 3D medial axis transform be used to partition a point cloud into semantically
homogeneous shapes? How can the 3D medial axis transform be used to enrich the
node and edge information in a graph used as input for a graph convolution neural
network?

– Can the 3D medial axis transform be used to improve the accuracy of an existent deep
learning method?

– How important are the construction parameters of the 3D medial axis transform in the
deep learning method?

– How does the performance on the real data-set compare with the one obtained on the
synthetic one?

In order to answer these research questions, a thorough literature research was carried out,
together with the in-depth analysis of the deep learning methods to be integrated with the 3D
MAT. Furthermore, a number of different experiments involving the 3D MAT was performed.
Last, the evaluation of the outcomes was carried out through accuracy and intersection over
union metrics on all data-sets.

2

1.2 Research scope

1.2 Research scope

This research focuses on the analysis of the properties of the 3D MAT under two perspec-
tives. First, it includes the augmentation of a point based deep learning architecture, Point-
Net++ [Qi et al., 2017], with features derived from the 3D MAT. The point wise information
obtained is combined with each point of the algorithm’s input point cloud. This step aims to
study point properties associated with the 3D MAT; thus, deep learning methods that need
a regularization of the input, such as voxelization and 2D images, are not considered.

Second, it covers the study of point and graph properties of the 3D MAT in a graph based
deep learning architecture, Superpoint Graph [Landrieu and Simonovsky, 2017]. In this
algorithm, the 3D MAT information is first used to partition the input point cloud in homo-
geneous parts, defined as superpoints. These are then used to construct a graph where
relations between nodes are defined as superedges. Here, the 3D MAT is used as an ad-
ditional feature to superpoints and superedges. The aim is to investigate whether the 3D
MAT can be used to partition a point cloud and if it can add useful knowledge in a graph
convolution algorithm.

Last, this project focuses on mobile based point clouds, obtained with laser scanning or
dense image matching. The reason for these choices is twofold. First the main point clouds
used in this research are obtained from mobile based Lidar; second the medial axis trans-
form will be more complete as materials such as glass will be represented. Specific studies
on airborne point clouds are out of scope for this research.

1.3 Thesis outline

The next chapters of this thesis are structured as follows,

– Chapter 2 provides a theoretical background on deep learning, its main concepts and
evaluation methods. Furthermore it illustrates deep learning on point clouds, focus-
ing its applications and main methodologies. Last, it illustrates the definitions and
computation procedures of the 3D medial axis transform.

– Chapter 3 outlines the methodology carried out in this research. In particular, it gives
details on the preliminary steps, and the computation parameters for the 3D MAT.
Then it describes the three integration methods studied, in Section 3.3 3D MAT as a
feature, in Section 3.4 3D MAT to partition a point cloud and in Section 3.5 3D MAT as
a graph attribute for graph convolutions. Last, the evaluation procedure is described.

– Chapter 4 gives information on the three data-sets used, 3DOM, SynthCity and Cy-
cloMedia’s internal data-set. Then it lists the main tools used in this research.

– Chapter 5 illustrates the results of the main experiments conducted in the three phases
of the research, together with a reflection on the meaning of each output.

– Last, Chapter 6 summarizes the main results obtained and provides critical answers
to the proposed research questions. Then, it lists the main ideas on future work on
related to this field of study.

3

2 Theoretical background

This chapter provides theoretical knowledge on the topics discussed in the later chapters on
this thesis. Section 2.1 gives an overview on the main concepts related to deep learning; it
outlines how a neural network is built and evaluated. Section 2.2 introduces deep learning in
point clouds, its difficulties andmain applications. Section 2.3 proposes an overview of deep
learning methods for semantic segmentation, with a focus on point based and graph based
neural networks. Section 2.4 illustrates the properties of the 3D medial axis transform, its
construction methods and terminology. Topics treated in this Chapter build the foundation
of this study, giving a background on choices made during the course of the research.

2.1 Concepts of neural networks

Deep learning methods are a subset of machine learning ones, characterized by the pres-
ence of layers in which data is processed. These reorganize data in increasingly complex
representations before obtaining a meaningful output. In a deep learning algorithm, the
number of neurons and layers, and their connections define the model or architecture of the
neural network, which is represented by a directed acyclic graph. The architecture’s con-
straints define a mapping from input to output through each neuron, identifying the purpose
of the neural network. Chollet [2017]

A neural network takes an input, passes it through multiple layers and outputs a prediction
based on the combined information of all the layers, as shown in Figure 2.1. A neural net-
work is parametrized by its weights, which define the function of each layer. Thus, learning
means finding the most appropriate weights for each layer. To do so, the difference between
the predicted output and the true values has to be quantified. This is done through a loss
function which outputs a loss score. Last, the values of the weights are updated to minimize
the loss value, through the optimizer. This process occurs iteratively until the desired output
is found.

2.1.1 Evaluation metrics

The final amount of correct predictions of a deep learning algorithm can be quantified
through a confusion matrix. In the confusion matrix, diagonal elements represent the cor-
rectly predicted ones. With respect of each class, non-diagonal row elements are defined
false positives, while column ones are false negatives. The former are incorrectly predicted
due to an error of commission, these elements are assigned to a specific class but belong to

5

2 Theoretical background

Figure 2.1: Neural network simplified flowchart - the input is processed in layers and pro-
duces an result. This is compared with the true values in the loss function, which outputs
the loss score. This is then used to optimize the weights of each layer. [Chollet, 2017]

another. The latter are produced by an error of omission, they refer to elements that should
have been assigned to a class but were erroneously labeled as another.

From the confusion matrix, different evaluation metrics can be computed. Two of these
are the overall accuracy (OA) and the intersection over union (IoU). The overall accuracy is
computed as the sum of the diagonal elements of the confusion matrix, divided by the total
number of elements. This metric gives an overall clue of the performance of the algorithm
for all classes.

OA =
Truepositives

Total

The intersection over union (IoU) is a per class metric that is calculated as the ratio between
the correct predictions, defined as true positives, and the sum between the false positives,
false negatives and true positives. This metric enables the analysis of the results with a
focus on each class, outlying the strengths and weaknesses of the algorithm.

IoU =
TruePositives

TruePositives+ FalseNegatives+ FalsePositives

6

2.2 Deep learning in point clouds

2.2 Deep learning in point clouds

The following paragraph is extracted from [Qi et al., 2016]. A point cloud is a subset of points
from an Euclidean space, which has three main properties.

– Unordered Unlike pixel arrays in images or voxel arrays in volumetric grids, a point
cloud is a set of points without specific order. In other words, a network that consumes
n 3D point sets needs to be invariant to N! permutations of the input set in data feeding
order.

– Interaction among points The points are from a space with a distance metric. It
means that points are not isolated, and neighboring points form a meaningful subset.
Therefore, the model needs to be able to capture local structures from nearby points,
and the combinatorial interactions among local structures.

– Invariance under transformations As a geometric object, the point set is invariant to
certain transformations. For example, rotating and translating points all together does
not prevent a person to understand what the point cloud represents.

The above mentioned are intrinsic properties of point clouds. They have to be considered
as requirements when implementing a point cloud algorithm. For example, this means that
an algorithm should be able to assign the correct labels to the point cloud if all its points
are rotated to a certain angle. Furthermore, additional factors have to be considered when
implementing point clouds’ algorithms, such as:

– Complexity of observed scenes In the scope of this research, point clouds represent
complex urban scenes. The amount of objects that are captured and their variability
in shape and dimension are factors that increase the difficulty when implementing a
point cloud algorithm.

– Occlusion When capturing a point cloud in the urban environment, it is almost impos-
sible to obtain a full representation of objects, such as buildings, due to the presence
of other unwanted elements, for example artifacts, moving objects (pedestrians, cars)
or street furniture. This means that one has to deal with the lack of information when
implementing a point algorithm.

– Irregularity in point distribution When capturing a point cloud using a Laser Scanner,
light beams are sent toward the objects and reflected back to the instrument. This
information is used to compute the distance and angle of objects. The distribution of
objects in the urban environment influences the distribution and density of captured
points. In fact, closer objects would be first hit by the light beam, thus they would be
represented by many points; instead those far away would be scarcely represented.

– Amount of data captured Point clouds representing urban environments are made
of a huge quantity of points. To process them is highly computationally and time de-
manding. One has to develop strategies to reduce the weight of the point cloud without
removing important information.

7

2 Theoretical background

2.2.1 Applications

Deep learning algorithms are used on point clouds for different purposes, each one requires
a different architecture.

3D oversegmentation methods are used to partition the point cloud into simple shapes,
relying on the geometric attributes of neighboring points.

3D shape classification methods are used to classify each point in the point cloud among
a set of classes. Then, these are aggregated to extract a class for the whole point cloud.

Classification: classify the point cloud among class set K.

f : P 7→ k | k ∈ K

3D object detection methods are used to locate a given category of objects in a scene.
Tracking methods aim to estimate the location of these objects in subsequent frames.

Object detection: cluster the point cloud in C parts/object.

f : p 7→ c | p ∈ P, c ∈ C

3D point cloud segmentation methods can refer to semantic and instance segmentation.
The first methods aim to classify the point cloud in subsets based on their semantics; the
second perform semantic segmentation and additionally learn a label for each instance.

Semantic segmentation: classify each point of a point cloud between K classes.

f : p 7→ k | p ∈ P, k ∈ K

Instance segmentation: cluster the point cloud into semantically characterized objects.

f : p 7→ c | p ∈ P, c ∈ C
m : c 7→ k | c ∈ C, k ∈ K

where P = {p1, p2, ..., pn} is the set of n points of the point cloud; C = {c1, c2, ..., cm} is the
set of m objects or parts and K = {k1, k2, ..., kl} is the set of l classes. This research will
focus on semantic segmentation.

2.3 Semantic segmentation in point clouds

Deep learning methods for semantic segmentation can be categorized in four main classes
[Thomas et al., 2019], projection networks, point-wise multi layer perceptron (MLP) networks,
graph convolution networks and point convolution networks.

8

2.3 Semantic segmentation in point clouds

Figure 2.2: Deep learning in point clouds, [Guo et al., 2019]

2.3.1 Projection networks

In projection networks, the input point cloud is projected into a regular grid structure, such
a 2D image or a 3D voxel. Different projection methods to 2D images exist, such as multi-
view and spherical representations. In multi-view methods, the point cloud is rendered in
a set of 2D images from different viewpoints; these encode information such as depth and
normal vectors. Each pixel is then labeled using a 2D segmentation network. [Su et al.,
2015] [Boulch et al., 2017]

Voxel based methods can be divided into dense or sparse representation methods. In the
latter, the point cloud is discretized in a set of occupancy voxels, which are labeled using a
3D convolutional neural network. Finally, each point belonging to the same voxel is assigned
the voxel’s label. [Guo et al., 2019] Different methods exist to produce fine-grained results,
an example is SEGCloud where the voxel predictions are propagated back to the point cloud
using a fully connected network. [Tchapmi et al., 2017] Sparse representation networks
aim to reduce memory and computation inefficiency of the dense methods. An example is
SPLATNet, where the point cloud is projected into a permutohedral sparse lattice. A bilateral
convolution method is applied to occupied parts only; finally, the output is interpolated back
to the point cloud. [Su et al., 2018a]

2.3.2 Point-wise MLP networks

The first point-wise MLP network is PointNet, this algorithm uses a shared MLP on every
point followed by max-pooling on all points. [Thomas et al., 2019] A MLP is a neural network
with multiple fully-connected layers that use nonlinear activation functions to deal with data
which is not linearly separable. [WILDML, 2019] These networks are able to approximate
any continuous function. A max-pooling layer selects the maximum value from a patch of
features. It helps to reduce the dimensionality of a representation by keeping only the most
salient information. [WILDML, 2019]

9

2 Theoretical background

After PointNet, different hierarchical architectures were developed to combine local neigh-
borhood information at different scales. An example is PointNet++. This algorithm applies
PointNet recursively on nested subsets of the input, learning from successively larger re-
gions of the input. [Qi et al., 2017] Another example is PointSIFT [Jiang et al., 2018], where
the SIFT module joins information from eight spatial orientations at multiple scales. [Guo
et al., 2019] Last, RandLA-Net proposes a method for processing large point clouds, which
is based on the random selection of points combined with a feature aggregation module to
preserve local geometric information. [Hu et al., 2019]

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet is one of the first algorithms to take as input a point cloud and to output class labels
or semantic segment labels per point. "Its basic idea is to learn a spatial encoding of each
point and then aggregate all individual point features to a global point cloud signature." [Qi
et al., 2017] A spatial encoding is a description of the point’s characteristics using gradi-
ents. In this method, the authors use a symmetric function to identify informative points. A
symmetric function is one that gives an output that is invariant to the order of the input, an
example is the max function. Informative points are those that present the most outstand-
ing characteristics. According to the authors, they correspond to the skeleton of an object
based on to visualization. [Qi et al., 2016] Last, they use a fully connected layer to aggregate
information learned in the network in a global descriptor. A global descriptor summarizes
the information on the full geometry of the point cloud.

In PointNet points are simply represented by their coordinates and extra feature channels
like color and normal vectors. [Qi et al., 2016] The network has three modules. “Input points
are first aligned by a Spatial Transformer Network, independently processed by multi-layer
perceptrons (MLPs), and max-pooled to summarize the shape." [Landrieu and Simonovsky,
2017] Point alignment is used to give the model rigid transformations invariance properties.
To do so, the authors use a mini-network (Spatial Transformer Network) that applies an
affine transformation matrix to the input. The idea is to “to approximate a general function
defined on a point set by applying a symmetric function on transformed elements in the set".
[Qi et al., 2016]

f(x1, ..., xn) ≈ g(h(x1), ..., h(xn))

where h represent a multi layer perceptron and g is a combination of a single variable func-
tion and a max pooling function. [Qi et al., 2016] The max function gives the model permu-
tation invariance properties; it takes as input n vectors and outputs a vector invariant to the
input order. Qi et al. [2016] This is a global feature vector that describes the signature of the
whole input. It is used in classification tasks to train a multi-layer perceptron. In semantic
segmentation tasks, it is fed back to the single points to extract new point features, combin-
ing local and global information. Qi et al. [2016] Figure 2.3 shows PointNet architecture for
semantic segmentation.

10

2.3 Semantic segmentation in point clouds

p0

pn

...

f
(1)
0

f
(1)
n

...

MLP1

MLP1

shared

f
(2)
0

f
(2)
n

...

MLP2

MLP2

shared MAX G

f
(1)
0

f
(1)
n

...

G

G

...

l0

ln

...

MLP3

MLP3

shared

Figure 2: Illustration of the neural architecture of PointNet for semantic Segmentation

Vector Size
P = {p1, · · · , pn} n ⇥ d

F (1) = {f (1) =1, · · · , f (1) =n} n ⇥ m1

F (2) = {f
(2)
1 , · · · , f (2) =n} n ⇥ m2

G m2

L = {l1, · · · , ln} n ⇥ k

Formally, the operations of PointNet are as follows:

f
(1)
i = MLP1(pi) 8i = 1 · · · n (1)

f
(2)
i = MLP2(f

(1)
i) 8i = 1 · · · n (2)

Gt = maxi

⇣
[f

(2)
i]t

⌘
8t = 1 · · · m2 (3)

li = MLP3([f
(1)
i , G]) 8i = 1 · · · n (4)

The MLPs are a composed of a succession of fully connected layers, batchnorms, and non-
linearity (ReLu). Their input/output size are as follow:

MLP1 : Rd 7! Rm1

MLP2 : Rm1 7! Rm2

MLP3 : Rm1+m2 7! Rk

2.3 Implementation of PointNet

For e�ciency concerns, we want all the point clouds we consider to have the same number of points
npoints. This allows for e�cient parallelization on the GPU, as well as consistency in the density.
As the di↵erent tiles are of di↵erent sizes, we adopt the following strategy:

• If the point cloud has more than npoints, we randomly chose npoints. Only these points will be
processed by PointNet. The labels are propagated to the original point cloud using a nearest
neighbor strategy.

3

Figure 2.3: PointNet architecture for semantic segmentation [Qi et al., 2016] [Landrieu,
2019b]

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

PointNet++ is an extension of PointNet that applies the latter recursively on nested subsets
of the input. This method is based on a hierarchical structure, which is composed by set
abstraction levels made of a sampling layer, a grouping layer and a PointNet layer.

– In the sampling layer, input points are subsampled using farthest point sampling (FSP).
This method chooses a new point which is the farthest from the rest of the points in
the set. [Qi et al., 2017]

– In the grouping layer, the input is a set of points and a set of centroids. The output
are groups of points corresponding to local regions around a given centroid. The
neighbors of a centroid can be found using k-nearest neighbors or ball query search
algorithms. [Qi et al., 2017]

– In the PointNet layer, local regions of points are converted into feature vectors of fixed
length. First, point coordinates are described in relation to the centroid, then PointNet
is used to extract the signature of the local region. [Qi et al., 2017]

Abstraction layers aim to be density adaptive, combining features at different scales accord-
ing to their density. Two methods to group points used in PointNet++ are MSG and MRG,
Figure 2.4:

– MSG consists of a grouping layers with different scales that build around the same
centroid, and concatenating their features in a multi-scale feature.

– MRG is obtained as a combination of feature vectors at different levels. Given a local
region, one feature vector is obtained from the information of all its points. The other
is obtained as a combination of information of overlapping sub-regions.

Last, features have to be applied to all points in the point cloud. Thus the authors make
use of a feature propagation layer based on inverse distance weighted average based on k
nearest neighbors.

11

2 Theoretical background

number of neighboring points. Compared with kNN, ball query’s local neighborhood guarantees
a fixed region scale thus making local region feature more generalizable across space, which is
preferred for tasks requiring local pattern recognition (e.g. semantic point labeling).

PointNet layer. In this layer, the input are N 0 local regions of points with data size N 0⇥K⇥(d+C).
Each local region in the output is abstracted by its centroid and local feature that encodes the centroid’s
neighborhood. Output data size is N 0 ⇥ (d + C 0).

The coordinates of points in a local region are firstly translated into a local frame relative to the
centroid point: x

(j)
i = x

(j)
i � x̂(j) for i = 1, 2, ..., K and j = 1, 2, ..., d where x̂ is the coordinate of

the centroid. We use PointNet [20] as described in Sec. 3.1 as the basic building block for local pattern
learning. By using relative coordinates together with point features we can capture point-to-point
relations in the local region.

3.3 Robust Feature Learning under Non-Uniform Sampling Density

concat

(a) (b)

A or Bconcat

(c)

A B

multi-scale aggregation
cross-level multi-scale aggregation

cross-level adaptive scale selection

Figure 3: (a) Multi-scale
grouping (MSG); (b) Multi-
resolution grouping (MRG).

As discussed earlier, it is common that a point set comes with non-
uniform density in different areas. Such non-uniformity introduces
a significant challenge for point set feature learning. Features learned
in dense data may not generalize to sparsely sampled regions. Con-
sequently, models trained for sparse point cloud may not recognize
fine-grained local structures.

Ideally, we want to inspect as closely as possible into a point set
to capture finest details in densely sampled regions. However, such
close inspect is prohibited at low density areas because local patterns
may be corrupted by the sampling deficiency. In this case, we should
look for larger scale patterns in greater vicinity. To achieve this goal
we propose density adaptive PointNet layers (Fig. 3) that learn to
combine features from regions of different scales when the input sampling density changes. We call
our hierarchical network with density adaptive PointNet layers as PointNet++.

Previously in Sec. 3.2, each abstraction level contains grouping and feature extraction of a single scale.
In PointNet++, each abstraction level extracts multiple scales of local patterns and combine them
intelligently according to local point densities. In terms of grouping local regions and combining
features from different scales, we propose two types of density adaptive layers as listed below.

Multi-scale grouping (MSG). As shown in Fig. 3 (a), a simple but effective way to capture multi-
scale patterns is to apply grouping layers with different scales followed by according PointNets to
extract features of each scale. Features at different scales are concatenated to form a multi-scale
feature.

We train the network to learn an optimized strategy to combine the multi-scale features. This is done
by randomly dropping out input points with a randomized probability for each instance, which we call
random input dropout. Specifically, for each training point set, we choose a dropout ratio ✓ uniformly
sampled from [0, p] where p  1. For each point, we randomly drop a point with probability ✓. In
practice we set p = 0.95 to avoid generating empty point sets. In doing so we present the network
with training sets of various sparsity (induced by ✓) and varying uniformity (induced by randomness
in dropout). During test, we keep all available points.

Multi-resolution grouping (MRG). The MSG approach above is computationally expensive since
it runs local PointNet at large scale neighborhoods for every centroid point. In particular, since the
number of centroid points is usually quite large at the lowest level, the time cost is significant.

Here we propose an alternative approach that avoids such expensive computation but still preserves
the ability to adaptively aggregate information according to the distributional properties of points. In
Fig. 3 (b), features of a region at some level Li is a concatenation of two vectors. One vector (left in
figure) is obtained by summarizing the features at each subregion from the lower level Li�1 using
the set abstraction level. The other vector (right) is the feature that is obtained by directly processing
all raw points in the local region using a single PointNet.

When the density of a local region is low, the first vector may be less reliable than the second vector,
since the subregion in computing the first vector contains even sparser points and suffers more from
sampling deficiency. In such a case, the second vector should be weighted higher. On the other hand,

4

Figure 2.4: PointNet++ - left - multi-scale grouping, right - multi-resolution grouping [Qi et al.,
2017]

2.3.3 Graph convolution networks

Graph convolution networks learn the weights on graph edges instead of points, an example
is Superpoint Graph. Here, first the whole point cloud is partitioned geometrically in simple
shapes (superpoints), which are structured in the Superpoint Graph. Then, a deep learn-
ing architecture is implemented. It consists of PointNets for superpoints embedding and
graph convolutions for contextual segmentation. [Landrieu and Simonovsky, 2017] Other
examples are PyramNet and PointGCR. In the latter, the input point cloud is structured in
a directed acyclic graph, then a similarity matrix is constructed, describing the relations be-
tween points. Last, semantic features are assigned to points using convolution kernels in
the PAN operator. [Kang and Ning, 2019] In PointGCR, an undirected graph is used to learn
information on points along the channel dimension. [Ma et al., 2020]

Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs

This deep learning method represents the state of the art for outdoor and indoor LiDAR
scans, its main aim is to tackle the limitations related to the size of point clouds.

The procedure is split in three steps:

– First, the whole point cloud is partitioned geometrically in simple shapes, defined su-
perpoints, this is an unsupervised step. The resulting superpoints are structured in
a SuperPoint Graph. This is an attributed directed graph where nodes represent the
superpoints, while edges represent their adjacency relationship.

– Superpoints are assumed to be semantically homogeneous. Thus, they are down-
sampled to a maximum 100 points each.

– Third, a deep learning architecture is implemented. It consists of PointNets for super-
points embedding and graph convolutions for contextual segmentation.

12

2.3 Semantic segmentation in point clouds

The point cloud is described as a set of n 3D points, each characterized by its 3D position
and additionally by color and intensity. For each point, the authors compute a set of features
to describe their neighborhood: linearity, planarity, scattering, verticality. Furthermore, they
compute the elevation of points normalized over the input point cloud. These features are
used to partition the point cloud in simple shapes. Later, the authors identify an additional
set of superedge features to describe their adjacency relationships. They are based on a
symmetric Voronoi adjacency graph, on the size of the superpoint and from its eigenvalues.
Figure 2.5 shows a list of these features and their description.

Feature name Size Description
mean offset 3 meanm2�(S,T) �m

offset deviation 3 stdm2�(S,T) �m

centroid offset 3 meani2S pi �meanj2T pj

length ratio 1 log length (S) /length (T)
surface ratio 1 log surface (S) /surface (T)
volume ratio 1 log volume (S) /volume (T)

point count ratio 1 log |S|/|T |

Table 1: List of df = 13 superedge features characterizing
the adjacency between two superpoints S and T .

points (i.e. set of points) in the rest of this paper.

3.2. Superpoint Graph Construction

In this subsection, we describe how we compute the SPG
as well as its key features. The SPG is a structured represen-
tation of the point cloud, defined as an oriented attributed
graph G = (S, E , F) whose nodes are the set of superpoints
S and edges E (referred to as superedges) represent the ad-
jacency between superpoints. The superedges are annotated
by a set of df features: F 2 RE⇥df characterizing the adja-
cency relationship between superpoints.

We define Gvor = (C, Evor) as the symmetric Voronoi
adjacency graph of the complete input point cloud as de-
fined by [20]. Two superpoints S and T are adjacent if there
is at least one edge in Evor with one end in S and one end in
T :

E =
�
(S, T) 2 S2 | 9 (i, j) 2 Evor \ (S ⇥ T)

. (2)

Important spatial features associated with a superedge
(S, T) are obtained from the set of offsets �(S, T) for edges
in Evor linking both superpoints:

� (S, T) = {(pi � pj) | (i, j) 2 Evor \ (S ⇥ T)} . (3)

Superedge features can also be derived by comparing the
shape and size of the adjacent superpoints. To this end,
we compute |S| as the number of points comprised in a
superpoint S, as well as shape features length (S) = �1,
surface (S) = �1�2, volume (S) = �1�2�3 derived from
the eigenvalues �1, �2, �3 of the covariance of the positions
of the points comprised in each superpoint, sorted by de-
creasing value. In Table 1, we describe a list of the different
superedge features used in this paper. Note that the break
of symmetry in the edge features makes the SPG a directed
graph.

3.3. Superpoint Embedding

The goal of this stage is to compute a descriptor for every
superpoint Si by embedding it into a vector zi of fixed-size
dimensionality dz . Note that each superpoint is embedded

in isolation; contextual information required for its reliable
classification is provided only in the following stage by the
means of graph convolutions.

Several deep learning-based methods have been pro-
posed for this purpose recently. We choose PointNet [39]
for its remarkable simplicity, efficiency, and robustness. In
PointNet, input points are first aligned by a Spatial Trans-
former Network [19], independently processed by multi-
layer perceptrons (MLPs), and finally max-pooled to sum-
marize the shape.

In our case, input shapes are geometrically simple ob-
jects, which can be reliably represented by a small amount
of points and embedded by a rather compact PointNet. This
is important to limit the memory needed when evaluating
many superpoints on current GPUs. In particular, we sub-
sample superpoints on-the-fly down to np = 128 points to
maintain efficient computation in batches and facilitate data
augmentation. Superpoints of less than np points are sam-
pled with replacement, which in principle does not affect
the evaluation of PointNet due to its max-pooling. How-
ever, we observed that including very small superpoints of
less than nminp = 40 points in training harms the overall
performance. Thus, embedding of such superpoints is set
to zero so that their classification relies solely on contextual
information.

In order for PointNet to learn spatial distribution of dif-
ferent shapes, each superpoint is rescaled to unit sphere be-
fore embedding. Points are represented by their normal-
ized position p0i, observations oi, and geometric features fi

(since these are already available precomputed from the par-
titioning step). Furthermore, the original metric diameter of
the superpoint is concatenated as an additional feature after
PointNet max-pooling in order to stay covariant with shape
sizes.

3.4. Contextual Segmentation

The final stage of the pipeline is to classify each su-
perpoint Si based on its embedding zi and its local sur-
roundings within the SPG. Graph convolutions are naturally
suited to this task. In this section, we explain the propaga-
tion model of our system.

Our approach builds on the ideas from Gated Graph
Neural Networks [30] and Edge-Conditioned Convolutions
(ECC) [45]. The general idea is that superpoints refine their
embedding according to pieces of information passed along
superedges. Concretely, each superpoint Si maintains its
state hidden in a Gated Recurrent Unit (GRU) [8]. The hid-
den state is initialized with embedding zi and is then pro-
cessed over several iterations (time steps) t = 1 . . . T . At
each iteration t, a GRU takes its hidden state h

(t)
i and an

incoming message m
(t)
i as input, and computes its new hid-

den state h
(t+1)
i . The incoming message m

(t)
i to superpoint

4

Figure 2.5: Superpoint graph - superedge features [Landrieu and Simonovsky, 2017]

PointNet is then used to learn superpoint embedding, each superpoint is thus scaled to unit
sphere and represented by its normalized position, observation and geometric features of
its elements. Then, its original metric diameter is added as a feature in the max-pooling
step to ensure it is covariant with shape sizes. Last, superpoint embedding and information
on its neighborhood are used in the graph convolution step for segmentation. In this step,
superpoints refine their embedding based on the information of the superedges [Landrieu
and Simonovsky, 2017].

2.3.4 Point convolution networks

Last, point convolution networks use a convolution kernel directly on the point cloud. Con-
volution kernels are linear filters that combine data of local neighborhoods. In point clouds,
neighboring points are not uniquely defined; for each point one has to compute them, usu-
ally through a radius search, and define their influence based on their distance. [TERRA3D,
2019] An example is a point-wise convolutional operator that locates neighboring points in
a kernel cells and convolves them with kernel weights. [Hua et al., 2017] Another example
is KPConv, where convolution weights of points are computed as the Euclidean distance to
kernel points. In this algorithm, the position of kernel points is not fixed, but it is the result of
an optimization problem for the best coverage in a spherical space. [Thomas et al., 2019]

13

2 Theoretical background

2.4 3D medial axis transform

This section is extracted from Geographical point cloud modeling with the 3D medial axis
transform. It aims to give theoretical background on the 3D medial axis transform, pinpoint-
ing what properties can be exploited in a deep learning algorithm for semantic segmenta-
tion.

2.4.1 Definitions of the medial axis transform

The 3Dmedial axis transform is a representation of the shape of an object, dual to its bound-
ary. It is a way to decompose an object into meaningful parts, preserving its mathematical
meaning. The medial axis transform of an object consists of the set of its interior and ex-
terior medial balls, Figure 2.6. The former are inside the object and define its skeleton,
while the latter are outside of the boundary, defining the relation between different objects.
Medial balls are defined by their maximality property; this states that a medial ball can not
be contained by any other medial ball. [Peters, 2018a] Consequently, every medial ball is
tangent to the boundary of a shape in two or more points and it never intersects it, also every
medial ball is empty. A medial atom is a tuple of the center and radius of the same medial
ball, consequently the MAT is the set of all the medial atoms of an object, Figure 2.7. The
atom’s local geometry can quantify the local characteristics of a shape like thickness and
curvature, it makes the interaction between the atom and the corresponding surface points
explicit and can be used to define a local coordinate system. [Peters, 2018a]

Figure 2.6: MAT - interior and exterior medial balls of a given shape

Below the definitions of the main components of the local geometry of the medial axis trans-
form, represented in Figure 2.7:

– medial point: the center of the medial ball

14

2.4 3D medial axis transform

Figure 2.7: MAT - local geometry of the medial atom

– radius: the radius of the medial ball

– medial ball: the medial ball constructed with the medial point and radius

– feature point: the point on the boundary of the object corresponding to the medial point
and radius

– spoke vector: the vector from the medial point to the feature point

– medial bisector: a unit vector that bisects the two spoke vectors

– separation angle: the angle between the spoke vectors

Themedial axis transform has different properties, for example, it is topology preserving; this
means that the 3D MAT has the same number of connected components of the boundary of
the object. Furthermore it is compact, so its components are at most of dimensionality d-1
with respect to the dimensionality of the boundary. Last, it has a hierarchical composition
that enables an easy traversal of its parts. [Peters, 2018a]

2.4.2 The unstructured MAT

The exact computation of the 3D MAT is difficult and computationally expensive [Peters,
2018a]; the fastest approximation method for the 3D MAT is the ball-shrinking algorithm.
This takes an oriented point cloud as input, where points are associated with their normal
vectors, and outputs a set of medial atoms as the MAT approximation. Thus, the output is a
point cloud, called unstructured MAT, in fact its topology and structure are not computed. In
particular, the unstructured MAT corresponds to the set of medial balls, represented by the
medial atoms and attributed by the radius and the feature points. The algorithm takes into
consideration that a medial ball is tangent to the boundary of the object but never intersects
it and that it is always empty. Also, the assumption of the ball shrinking algorithm is that the
center of a medial ball corresponding to a boundary point lies along its normal vector. The
algorithm is initialized with a large medial ball that is iteratively shrunk until it doesn’t contain
other boundary points. [Peters, 2018a]

15

2 Theoretical background

The main factor that influence the output of the algorithm is the normal vectors computation
method. This influences the location of the medial atoms as well as the orientation of the
interior and exterior medial axis. Other factors of high importance are the initial radius of
the medial ball and two heuristic values, the denoise planar value and the denoise preserve
one. The former is of special importance for geographical point clouds as it determines the
degree of interaction between objects. The other elements help increasing the robustness of
the ball-shrinking algorithm by reducing the effects of noise. In fact the medial axis transform
is really sensitive to noise, whose presence can introduce significant distortions. In a noisy
point cloud, the iterations of the ball shrinking algorithm increase, as instability of points
leads to smaller medial balls in the neighborhood of the point. Medial balls constructed on
noisy points present an abnormal separation angle value, compared to the medial balls of
the previous iterations. Thus, the denoise planar and preserve values correspond to two
threshold values that bound the separation angle.

2.4.3 The structured MAT

In the unstructured MAT, the topology and structure are not explicit; however, they can be
computed in a structuration process that leads to the creation of the structured MAT. In
fact, the unstructured MAT can be segmented on the atom geometry using a region growing
algorithm, initialized on random atoms. This process can lead to two outputs, the separation
of the MAT into disjoint parts, called medial clusters, or the separation of the MAT into medial
sheets. To obtain the segmentation into medial clusters, the cutting condition is that medial
balls of atoms in the same medial cluster intersect, while those belonging to different ones
do not, Figure 2.9. To obtain the segmentation into medial sheets, property is that nearby
medial atoms in a medial sheet have similar medial bisectors, Figures 2.8 and 2.10. The
medial bisector is a vector tangent to the medial sheet, which changes greatly on junction
curves or for atoms on different medial sheets.

Figure 2.8: MAT - medial sheets

Last, the structured MAT is a point cloud representing each part or sheet, together with an
adjacency or flip graph describing their connectivity. In the adjacency graph, each node

16

2.4 3D medial axis transform

Figure 2.9: MAT cutting condition into
medial cluster - medial balls of atoms in
the same medial cluster intersect, while
those belonging to different ones do not.

Figure 2.10: MAT cutting condition into
medial sheets - nearby medial atoms in a

medial sheet have similar medial
bisectors.

correspond to a medial sheet, while edges describe the relations between them. Instead
in the flip graph, nodes represent sheets, however edges relate interior and exterior medial
sheets having common feature points.

17

3 Methodology

This chapter summarizes themain steps conducted in this research, with the aim to integrate
the 3D medial axis transform in a deep learning algorithm. These steps are described on a
theoretical and practical level, while the related experiments and results are listed in Chapter
5. First, an overview of the methodology is given in Section 3.1. Section 3.2 describes
the preliminary studies necessary to select the deep learning algorithm and data-sets to
work with. Furthermore it lists the main improvements performed on the data-sets and
describes what are the main parameters for the 3D MAT computation. Section 3.3 outlines
the experiments conducted with the 3D MAT as a feature in the PointNet++ algorithm [Qi
et al., 2017]. Sections 3.4 and 3.5 detail the experiments conducted with the Superpoint
graph algorithm [Landrieu and Simonovsky, 2017]. First, the 3D medial axis was used to
partition a point cloud into simple geometric shapes; second it was used to enrich the nodes
and edges of a graph for graph convolutions. Last, Section 3.6 describes the evaluation
methods used to quantify the quality of the experiments’ outputs.

3.1 Overview

The methodology proposed in this thesis focuses on the integration of the 3D medial axis
transform in a deep learning algorithm. The methodology can be structured into five core
phases, divided in preliminary steps, three MAT integration steps and evaluation steps, as
shown in Figure 3.1.

Four core preliminary steps were needed.

– First, deep learning algorithms for semantic segmentation were analyzed and twowere
selected; these are PointNet++ [Qi et al., 2017] and Superpoint Graph [Landrieu and
Simonovsky, 2017]. They were chosen as their structure should be compatible with
the 3D MAT properties. The first is a point-based algorithm, while the second is a
graph-based one.

– Second, the 3D MAT computation was tested on different data-sets, in order to select
the open source ones to apply the methodology on. Open source data-sets are used
to compare results with those obtained with other deep learning algorithms. These
should be similar to CycloMedia’s data-set and present a defined MAT structure to
enable a clear analysis of the results.

– Third, all data-sets were pre-processed. Pre-processing steps include filtering, sub-
sampling and normal vectors’ computation.

19

3 Methodology

Figure 3.1: Overview of methodology

– Fourth, the unstructured and structured 3D MAT was computed for each point cloud,
following the study of the parameters that influence its construction.

Then, three methodologies were followed to integrate the 3D MAT in the deep learning algo-
rithms.

– First the 3D MAT was used as an extra point feature in PointNet++. Following the
analysis of the algorithm’s structure, its characteristics and hyperparameters, three
core experiments were performed. In each experiment, MAT derived information was
combined with the input point cloud to make the point classification stronger.

– Second, the 3D MAT was used as a geometric descriptor to partition a point cloud in
Superpoint Graph. Here the point cloud is cut into homogeneous shapes, based on
points’ geometric information, prior to be input in the deep learning algorithm. MAT
properties were used in the cutting algorithm with the aim to improve the partition and
make it more similar to the structured MAT.

– Last, the MAT was used as an edge attribute in the SPG. Here two experiments were
performed, using different MAT values which should enrich the graph’s structure.

Finally, the quality of the experiments was quantified using two evaluation metrics, the over-
all accuracy OA and the intersection over union per class IoU. For each experiment, the

20

3.2 Preliminary steps

Figure 3.2: Flowchart

flowchart illustrated in Figure 3.2 was followed. This shows that the 3D MAT was integrated
with a deep learning algorithm, PointNet++ or Superpoint Graph; then each data-set was
trained, tested and evaluated to obtain a prediction. The prediction should quantify how
valuable the MAT integration method is. In particular, for all experiments, the algorithm was
first run with its default configuration. The result was then used as a base line and compared
with the MAT experiments through the OA and IoU metrics.

3.2 Preliminary steps

3.2.1 Analysis of algorithms

Following the literature study, the assessment of existing methods and their characteristics
was performed. Deep learning methods on point clouds follow different strategies to obtain
per point class predictions. In this research, point wise MLP methods (Section 2.3.2) and
graph based networks (Section 2.3.3) seem to be compatible. In fact, the first ones would
incorporate information on the local geometry of the medial atom as a point feature; the sec-
ond ones could exploit the organization of the 3D MAT in medial sheets. For these reasons,
one algorithm for each category was selected. These should outperform other methods,
obtaining state of the art results. Furthermore, they should be well structured and easy to
integrate with additional code. Following these criteria, PointNet++ and Superpoint Graph

21

3 Methodology

were selected. Both algorithms were first tested on the data-set they were implemented for.
Then, supporting functions to read and convert the internal data-set were implemented.

3.2.2 3D MAT analysis for data-sets selection

Additionally in this phase, the visual analysis of the 3D medial axis transform was needed to
identify the characteristics of CycloMedia’s internal dataset and to select the public data-sets
to use in this research.

First, using the software Geoflow1, the 3D MAT was computed on different subsets of Cyclo-
Media’s internal data-set. A complete 360 degrees urban scene was first used; the same
was cut in smaller point clouds and finally in single objects, see Figure 3.3, 3.4. The outputs
show that the 3D medial axis transform is not clearly structured. This is due to the acquisi-
tion method of the point clouds that determines an incomplete representation of objects and
a fast decreasing density of points. Given these results it doesn’t seem feasible to exploit
the graph structure of the 3D MAT, which wouldn’t clearly define objects due to unwanted
edge connections. However, each street object is characterized by a well defined cone, see
Figure 3.4.

Figure 3.3: CycloMedia data-set, oriented point cloud

The same trials were conducted on different public benchmark data-sets. These should
present some of the characteristics listed in Table 3.1. These are linked to two motivations,
the similarity to CycloMedia’s internal data-set and the possibility to clearly identify the MAT
usability.

First, the experiments were conducted with the Paris Lille 3D data-set. [Roynard et al.,
2017] In this data-set objects present holes in correspondence of glass, resulting in an
incomplete 3D MAT. For this reason, the trials were performed again of a synthetic data-set
[Griffiths and Boehm, 2019], Figures 3.5 to 3.7. In this case, the 3D medial axis transform
is rather complete and could provide useful information for the scope of the research. In

1https://github.com/geoflow3d/geoflow

22

3.2 Preliminary steps

Figure 3.4: CycloMedia data-set, 3D MAT

Requirement Motivation
MLS data-set Similarity to CycloMedia’s data-set
Low presence of noise Analysis of MAT usability
Low presence of artifacts Analysis of MAT usability
High points’ density Analysis of MAT usability
Homogeneous points’ density Analysis of MAT usability
Objects’ geometry is fully represented Analysis of MAT usability
Objects’ materials are fully represented Analysis of MAT usability

Table 3.1: Open source data-sets requirements and motivations

these images, the 3D medial axis transform is segmented and colored on an angle based
threshold. Last, the experiments were conducted on the 3DOM data-set, which is a dense
image matching point cloud of a 3D artifact that simulates a urban scenario [Özdemir et al.,
2019]. The trials were meant to analyze the fitness for use of the public data-sets, that lead
to the selection of the SynthCity and the 3DOM ones for this research. Table 3.2 shows the
characteristics of each data-set.

3DOM data-set SynthCity data-set
MLS data-set x
Low presence of noise x x
Low presence of artifacts x
High points’ density x x
Homogeneous points’ density x x
Objects’ geometry is fully represented x
Objects’ materials are fully represented x x

Table 3.2: Open source data-sets characteristics 23

3 Methodology

Figure 3.5: SynthCity data-set, oriented point cloud

Figure 3.6: SynthCity data-set, 3D MAT

3.2.3 Data preprocessing

The second step of this phase of the research was data pre-processing and analysis. In this
section the main procedures carried out are listed; for each data-set only a subset of these
were performed, based on the data-set’s peculiarities.

– Normal vector’s computation and orientation is a crucial pre-processing step as it en-
ables the accurate construction of the 3D MAT and the correct separation between
interior and exterior sheets (Section 2.4.1). This step was carried out in CloudCom-
pare, using the program’s default parameters: plane local surface model, automatic

24

3.2 Preliminary steps

Figure 3.7: Car SynthCity data-set, oriented point cloud and 3D MAT

Figure 3.8: Data preprocessing pipeline

radius of the neighbors and orientation with minimum spanning tree (knn=6). Then,
for each data-set, the computed normal vectors were oriented heuristically to obtain
the best possible fit.

– Subsampling is the process of reducing the number of points in a point cloud. This step
was carried out in CloudCompare with the purpose of reducing the weight of the data-
sets while preserving fine structures. The spatial subsampling method was used; this
involves selecting a the minimum distance between points in the output point cloud.

– Outliers removal is a way to clean the input data-set, by eliminating those elements of

25

3 Methodology

the point cloud that do not respect a given condition. An example are points that lie at
abnormal distances from the others.

– Cropping the input point cloud into smaller input files was performed to enable a better
comparison between the training and test set and the validation set. This step is im-
portant as the files used in the deep learning algorithm and those used for evaluation
should have similar characteristics, as number of points or represented objects.

– Classes’ imbalanceweighting consists of assigning aweight to each class of a data-set
based on the number of times it is present in the data-set. This can be done through
a bin count of the points in each class, followed by an inverse weighting method. This
makes sure that classes that appear less are not penalized in the deep learning phase.

– Classes’ reduction was needed for strongly imbalanced data-sets. This phase con-
sisted in the identification of the classes most present in the data-set, together with
the classes that could be merged and those that could be eliminated.

3.2.4 3D medial axis computation

In this research, the choice to compute the 3D MAT as a separate step and then using the
output point cloud as input in the deep learning algorithm was made. This is due to the fact
that many variables influence how the MAT can be computed and segmented. Thus, their
study and their visual inspection through the software Geoflow2 are important to obtain the
most suited MAT to a specific data-set. Furthermore, this choice simplifies the later steps of
the methodology, making the integration of the MAT more versatile in different workflows.

The 3D unstructured medial axis was computed for each data-set using first the software’s
default parameters, 3.3. Then different trials were performed in order to reach a satisfactory
result. This should be a clean 3D medial axis transform, where adjacent structures are
related through exterior medial sheets. The parameter mostly modified was the initial radius.
As seen in Figure 3.10, a initial radius set to 200m would lead to an exterior sheet between
the right building and the left tree; this is unwanted because these objects are far from each
other in the point cloud, however their interaction in the MAT would influence their output
features. Instead, the value 40m does not produce sheets between object distant than each
other. The same custom parameters were later tested on the SynthCity and the internal
data-set, resulting satisfactory for all. Thus, they were used in the course of this research.

Default Custom
Denoise planar 0.56 0.60
Denoise preserve 0.35 0.50
Initial radius 200 40

Table 3.3: 3DOM dataset unstructured MAT computation parameters

2https://github.com/geoflow3d/geoflow

26

3.3 Medial axis transform as a feature in deep learning

Figure 3.9: 3DOM point cloud Figure 3.10: Unstructured
MAT - default parameters

Figure 3.11: Unstructured
MAT - custom parameters

Additionally, the structured MAT was computed in the software Geoflow3. The computation
parameters of the region growth algorithms are shown in Table 3.4. In the trials, most pa-
rameters were kept equal or similar to the default ones. The parameter that most influences
the output is the method one. In fact, it selects the cutting method for the structuration; in
particular, "0" refers to the medial bisector, while "1" refers to the separation angle. Figures
3.12 and 3.13 show the former and the latter respectively. The use of the medial bisector
as cutting condition for the structured MAT was chosen in this research (Section 2.4.3).

Default Custom
Ball overlap 1.5 5
Bisector angle 5 5
K 10 10
Method 0 0
Minimum count 10 25
Separation angle 5 10
Shape count 15 15

Table 3.4: 3DOM dataset structured MAT computation parameters

3.3 Medial axis transform as a feature in deep learning

This section describes the procedure followed to integrate the 3D medial axis transform in
the PointNet++ algorithm, enriching the description of each point with information derived
from the MAT.

3https://github.com/geoflow3d/geoflow

27

3 Methodology

Figure 3.12: Structured MAT - medial
bisector

Figure 3.13: Structured MAT - separation
angle

3.3.1 PointNet++ analysis

The first step needed in this phase was the in depth study of the PointNet++ algorithm
structure. The purpose was understanding the main components of the algorithm and con-
sequently identifying the optimal hyperparameters for training each data-set; moreover the
goal was carrying out a training procedure for each data-set to be used as comparison for
the later experiments.

PointNet++ structure

Figure 3.14: PointNet++ structure

As described in 2.3.2, PointNet++ is a point based deep learning architecture for point clouds
semantic segmentation. Its structure is hierarchical and it is composed of set abstraction
layers, with the aim to extract point information at different scales in the point cloud, Figure
3.14. Each set abstraction layer extracts multiple scales of local patterns and combines
them according to local point densities [Qi et al., 2017]. Each set abstraction layer is made
of a sampling layer, a grouping layer and a PointNet layer. In this research, the Pytorch

28

3.3 Medial axis transform as a feature in deep learning

version of PointNet++, written by [Wijmans, 2018], was used. This is composed of four set
abstraction modules that use a MRG method, each divided in:

Set abstraction layers

– 2 query and group modules, the query modules select the centroids of the point cloud
using the farthest point sampling (FPS); then, in the group modules the neighboring
points of each centroid are selected.

– 2 shared MLP, these modules correspond to the PointNet module described in the
literature. They compute the embedding for each centroid at a different scale and
concatenate them in a feature vector. Each MLP is composed by the below sequence
of layers, repeated three times:

– 2D convolution layer

– 2D batch norm layer

– ReLu in place

The set abstraction modules select a small subset of the full point cloud on which the Point-
Net module is used to learn local patterns. These are followed by four feature propagation
modules and a fully connected layer; the former propagates the information learned in the
set abstraction layers to all the points in the point cloud, using an inverse distance weighted
method, the latter is used to derive the point wise predictions.

Feature propagation layers, the below sequence of layers is repeated two times:

– 2D convolution layer

– 2D batch norm layer

– ReLu in place

Fully connected layer:

– 1D convolution layer

– 1D batch norm layer

– ReLu in place

– Droput layer, during training, randomly zeroes some of the elements of the input ten-
sor with probability, in this example 0.5, using samples from a Bernoulli distribution
[Paszke et al., 2019].

– 1D convolution layer

Last, the loss function used in this algorithm is the cross entropy loss, which is a measure
of the difference between two probability distributions for a random variable or set of events.
This function is particularly suited for imbalanced data-sets, as it is possible to input weights
for each class.

29

3 Methodology

PointNet++ hyperparameters

The Pytorch implementation of PointNet++, [Wijmans, 2018], uses nine hyperparameters
that can be modified to tune the deep learning outcome, listed in Table 3.5. Among these
parameters, two were modified in this research, the batch size and the number of points,
while the others were kept constant. The first one regulates the number of batches of the
point cloud that are processed at the same time, while the second determines the number of
points in each batch. Thus, the first one determines on how many points in the point cloud
the deep learning step is applied. In fact, the steps explained in Section 3.3.1 are repeated
for each batch of the point cloud. The second defines the frequency with which the loss
function is applied and consequently the network is optimized.

Hyperparameters
Batch size 1 to 32
Number of points 9000 to 90000
Weight decay 0
Learning rate 0.001
Decay step 20
Batch norm momentum 0.9
Batch norm decay 0.5
Epochs 200

Table 3.5: PointNet++ hyperparameters

3.3.2 Using properties of the 3D MAT

As described in Section 3.2.4, the 3D MAT was computed as a pre-processing step and
integrated with the PointNet++ algorithm as extra point features. Three properties of the MAT
were used, the medial atom point coordinates, the radii and the separation angles related to
each feature point (Section 2.4.1). These could contribute to the algorithm in different ways,
in particular:

– When using the MAT coordinates as input features, the properties that link them to the
surface points are not explicit. However, each surface point is related to two MAT coor-
dinates, whose relative positions to the point strongly depict the geometry surrounding
it. Thus, the assumption is that these properties can be derived in the deep learning
algorithm through the subsequent abstraction of the input data-set.

– Radius and separation angle values introduce a numeric information which is derived
by the MAT coordinates but agnostic to their location. This information defines clear
patterns in the input and can be used to recognize different structures in the data-sets.
The use of MAT properties in deep learning should add knowledge of the neighborhood
of the point, depicting long range structures of the point cloud. In fact, the radii val-
ues puts in relation a surface point with another one not belonging to the immediate
surroundings. Also, the separation angles represent the angle between these distant
surface points, describing the curvature of the surface (Section 2.4.1).

30

3.4 Medial axis transform as a descriptor for a geometric partition

The standard feature information used in PointNet++ to characterize points is xyz coordi-
nates and RGB information of each point. To these, normal vectors information, intensity
and many others can be added. In this research, it was chosen to carry out a training pro-
cedure with xyz and RGB information. This should be used as a comparison to the further
experiments. The MAT information was added in three ways to each data-set; the interior
and exterior MAT coordinates, the MAT interior coordinates and radius and separation angle
were used as features, in addition to coordinates and RGB.

In the Pytorch implemetation of PointNet++ [Wijmans, 2018] , each data-set is modeled in
a Python class. First the input files are read through supporting functions, then the desired
extra feature information is combined with the point cloud, finally the data-set is cut into
chunks of the dimension of the hyperparameter number of points. Each chunk represents
a random subset of the whole point cloud and is processed separately in the deep learning
steps described in Section 3.3.1. Thus, point features derived from the 3D MAT describe the
relation among points that are not represented in the subset. This property is desirable as
it adds an accurate information to the points, although the neighboring relations are lost.

Additionally, specific experiments were carried out on selected inputs. These experiments
were used to get a deeper insight on the PointNet++ algorithm’s functioning and on how the
MAT properties contributed to the results.

– First, training procedures were carried out modifying the batch size and number of
points parameters and adding weights to each class. This procedure was needed to
test the potential of the algorithm for the selected data-sets, avoiding overfitting and
defining the best possible initial configuration.

– Second, extra MAT features were added, for example, radii and separation angles were
used separately to investigate the contribution of each to the final result; later only the
radii and separation angles of the interior MAT were tested.

– Third, different normal vectors’ computation methods were tested, in particular, Ge-
oflow’s default computation method was used.

– Last, a training procedure using radii and separation angles features but excluding
the RGB information was carried out and Gaussian noise was added to the data-set
to investigate its influence on the MAT.

3.4 Medial axis transform as a descriptor for a geometric
partition

This phase of the research focused on the use of the 3D medial axis transform as a ge-
ometric descriptor for the partition of the point cloud. This analysis was carried out on
the algorithm Superpoint Graph [Landrieu and Simonovsky, 2017], in which the partitioned
point cloud is used as input in a deep learning algorithm for semantic segmentation (Sec-
tion 2.3.3). In Section 3.4.1 the analysis of the current partition method used in Superpoint
Graph is presented. In Section 3.4.2 the MAT properties that make it suitable for this purpose
are outlined, together with the experiments conducted; in particular, the use of the 3D MAT

31

3 Methodology

as a geometric feature in the cut-pursuit algorithm and its use as an edge attribute in the
nearest neighbor graph.

3.4.1 Superpoint Graph geometric partition

Superpoint Graph is a graph based deep learning algorithm, which is composed of three
main steps. First the point cloud is partitioned in homogeneous shapes and their relations
are structured in an adjacency graph, the SPG. Second PointNet is used to learn their em-
beddings and last a deep learning algorithm based on graph convolutions is used to perform
contextual segmentation (Section 2.3.3). In this paragraph, the description of the partition
method is presented.

In the algorithm, the input is a point cloud for which the nearest neighbors graph is con-
structed. The nearest neighbor algorithm takes as input two knn values; the first is used to
build the adjacency structure for the minimal partition, while the second refers to the num-
ber of neighbors used to compute the geometric features. The graph edges are weighted
as the inverse of the distance between points, to penalize farther ones. Then the output
neighbors are used as input in the compute_geof function, which computes four geomet-
ric features, linearity, planarity, scattering and verticality. To do so, the covariance matrix
is built for each neighborhood together with its eigen values and eigen vectors. The four
outputs should describe the geometric properties of the points and then be used to par-
tition the point cloud. Thus, these are input in the cut-pursuit algorithm, together with the
nearest neighbor graph information, point neighbors and edge weights, and a regularization
parameter for the minimal partition, which decides the coarseness of the output. [Landrieu
and Simonovsky, 2017] The cut-pursuit algorithm cuts the point cloud into constant con-
nected components, the super points, minimizing the difference between the neighboring
points and the geometric features summed to the regularization parameter times the edges
weights.

argming∈Rdg

∑
i∈C ‖gi − fi‖2 + µ

∑
(i,j)∈Enn

wi,j [gi − gj 6= 0]

Thus, the main factors that can be modified to improve the partition are the number and type
of geometric features, the weights on the edges of the nearest neighbors graph, together
with two knn parameters, and the regularization parameter (µ). In this research, it was
chosen to keep the knn parameters unchanged; also, after a number of trials on the influence
of µ, this value was kept stable.

3.4.2 Using properties of the 3D MAT

The 3D MAT was computed as a pre-processing step, Section 3.2.4, and integrated in the
algorithm in two main ways. First, the local geometry of the medial atoms, in particular radii,
separation angles and medial bisectors, was added to the four default geometric features.
Second, the 3D MAT was segmented into medial sheets; then, the segment information was
used to strengthen the edge relations on the nearest neighbors graph used as input in the
partition. The main intuition is that the local geometry of the medial axis describes the

32

3.4 Medial axis transform as a descriptor for a geometric partition

structure of the point cloud in its proximity but also at a larger scale. Thus, the MAT prop-
erties could be useful in the cut-pursuit algorithm and consequently to the final predictions
of SPG. In fact, improving the geometric partition into homogeneous shape should produce
meaningful superpoints and superedges, thus better overall results.

The main experiments to improve the partition using features, were conducted using the
radius, separation angle andmedial bisector information. The latter is a unit vector parallel to
the direction of the medial sheet, thus points on the samemedial sheet should have a similar
bisector. The radius should add knowledge on the distance between a point and a second
surface point, while the separation angle on the curvature of the surface between them. Both
the interior and exterior radii and separation angles were used in different combinations. In
particular,

– interior and exterior radii and separation angles

– interior radii and separation angles

– exterior radii and separation angles

– interior and exterior radii

– interior and exterior separation angles

The MAT file was read through an helper function and the output was normalized, to be
scaled as SPG’s default geometric features. Then, it was combined with linearity, planarity,
scattering and verticality and input in the cut-pursuit algorithm. In the original algorithm,
verticality is given less importance by doubling the values of the other parameters. In this
thesis, all values were kept equally important to clearly identify the influence of the MAT
descriptors.

Additionally, the MAT was used to enrich the edges of the nearest neighbors graph, which is
used to partition the point cloud. In the original algorithm, the edges weights’ are computed
as the inverse of the distance between a point and its neighbor. In this research, the edges
between points belonging to the same medial sheet was strengthened. The structured MAT
and the superpoints are similar on a theoretical basis; in fact, the medial sheets should
represent a decomposition of the input into simple structures, similarly the superpoint is
constructed as the partition of the input point cloud into simple and homogeneous parts.
Thus, the assumption is that these structures are also similar in practice.

To investigate this hypothesis, the structured MAT was constructed as in Section 3.2.4, then
the sheet identifiers were projected to the input point cloud. This procedure outputs two
point clouds, one with the sheets corresponding to the interior MAT and one with those of
the exterior. The interior MAT corresponds to the skeleton of the objects, while the exterior
defines the relations between different ones. For this reason, the interior sheets were used.
Then, the points belonging to the same superpoint were associated to their medial sheet
value. For each superpoint the mode, or the most frequent occurrence, was calculated, in
order to determine to which medial sheet were they related. Then for each superpoint and
each medial sheet a point count was performed. This value and the mode value were used
to find a similarity metrics between the superpoints and the structured MAT.

Finally, to strengthen the edge weights for neighbors belonging to the same sheet, three
steps were needed. The construction of the structured MAT and association with the input

33

3 Methodology

point cloud are described above. Then, in the nearest neighbor structure, the segment value
corresponding to each neighbor was retrieved. If the point and the neighbor belonged to the
same medial sheet, the relation would be labeled as one and stored in a new array. On the
other hand, if they did not, the relation would be labeled as zero. Then, these values would
be added to the distances in the edge weights count and input in the cut-pursuit algorithm.

To compare the different methods, first the algorithmwas run with its default partition method
and deep learning hyperparameters. Then, the different partitions were used as input in the
algorithm, maintaining its hyperparameters. The goal was to clearly depict the influence of
the partition in the final result.

3.5 Medial axis transform as a graph attribute for graph
convolution

This phase investigates possible improvements related to Superpoint graph algorithm [Lan-
drieu and Simonovsky, 2017]. Here, the properties derived from the 3D medial axis trans-
form were used to compute new super point and super edge features and input to the deep
learning algorithm. As in Section 3.4, the assumption is that the local geometry of the me-
dial atom can be a powerful descriptor of shapes, thus it could improve the overall results of
the deep learning algorithm. In Section 3.5.1 is explained how the super point graph (SPG)
is constructed; in Section 3.5.2 is defined how the MAT was integrated to it.

3.5.1 Superpoint graph and deep learning

After the partition of the point cloud into homogeneous shapes, the Superpoint graph is built.
In this adjacency graph, the nodes represent the homogeneous partitions, or superpoints,
while the edges, or superedges, define the relationships among them. Each node and
edge is enriched with handcrafted attributes. In particular, for the superpoints these are its
centroid, length, surface, volume and point count; for the super edges they are the delta
mean, standard deviation, norm and centroid and the ratio between the lengths, surfaces,
volumes and point counts. Once the graph is constructed, the point cloud is reorganized in
super points and input in the deep learning algorithm.

In the algorithm PointNet is used to learn embeddings on the superpoints. These are associ-
ated with the geometric features used to partition the point cloud, linearity, planarity, vertical-
ity and scattering, together with RGB information, elevation and distance to the center of the
point cloud. Then, contextual segmentation is performed using graph convolutions. Here,
superpoints refine their embeddings based on the features associated with the superedges.
These features are derived from the superpoint and superedge attributes; by default they
are the delta means and standard deviations, the logarithmic ratio between super points’
surfaces, volumes, size and the ratio between centroids.

Furthermore, many deep learning hyperparameters can be modified to tune the learned
output. The most relevant are divided in optimization arguments, model attributes, point
cloud pre-processing, superpoint graph, PointNet parameters. In this research, the choice

34

3.6 Evaluation

to maintain the default hyperparameters was made, to simplify the analysis of the influence
of the 3D MAT.

3.5.2 Using properties of the 3D MAT

The construction of the superpoint graph follows the partition of the point cloud into simple
shapes. Thus, as in Section 3.4, the 3D MAT was computed as a pre-processing step; then
the MAT was input into the compute_spg algorithm, to associate it to the superpoints. Here,
the MAT was used in two main ways; first, the mean interior and exterior radii and separa-
tion angles were combined to the superpoints, while superedges were associated with the
differences between them in two adjacent superpoints. Second, the same procedure was
followed using the minimum and maximum radii and separation angles values. The main
hypothesis is that a superpoint should be characterized by these features, which could thus
enrich the superedges with additional knowledge.

To test these experiments, first a run of the algorithm using its default partition and hyper-
parameters was made. Then the different graph features were tried, keeping the same
partition. The training procedure was carried out using the MAT properties in combination
with the default ones and alone. The purpose was needed to understand how useful this
information is and if it could improve the accuracy of the algorithm.

3.6 Evaluation

In this research, the results of the integration between the 3D medial axis transform and the
deep learning algorithms, PointNet++ and Superpoint graph, can be quantified as the final
amount of correct predictions that these algorithms produce. This amount can be computed
for each input file through a confusion matrix, as described in Section 2.1.1. From the
confusion matrix, two evaluation methods were mainly used to quantify the outputs of the
three main experiments (Sections 3.3, 3.4, 3.5). These are the overall accuracy OA and the
intersection over union IoU. The overall accuracy gives an overall clue of the performance of
the algorithm for all classes. The intersection over union is a per class metric that enables
the analysis of the results with a focus on each class, outlying the strengths and weaknesses
of the algorithm.

35

4 Data-sets and tools

In this chapter, the data-sets and tools used for this research are presented. The first data-
set is an internal set of point clouds from the company CycloMedia Technology, its charac-
teristics and modifications applied during this project are listed in Section 4.1. The others
are open source data-set; they are needed to compare the results outlined in Chapter 3 with
the ones obtained with other deep learning algorithms. The use of these data-sets should
facilitate the analysis of the outputs of the research, limiting the influence of factors that are
present in real-data. The properties of the 3DOM data-set are outlined in Section 4.2, while
those of the SynthCity data-set in Section 4.3. Last, Section 4.4 lists the main tools used
and the main Python libraries.

Acquisition Total # # Points # Classes
method point clouds per point cloud

CycloMedia’s dataset MLS 500 3M 82*
SHREC data-set MLS 80 3M 6
3DOM data-set DIM 1 28M 6
SynthCity data-set MLS** 9 15M to 50M 9

*reduced to 17
**simulated

Table 4.1: Data-sets information

4.1 CycloMedia’s internal data-set

CycloMedia’s internal data-set consists of 500 mobile laser scanner point clouds with color
information. Each point cloud represents an urban scene and is made of around 3 million
points; Figure 4.1 shows one example. Each point cloud is obtained with mobile based
Lidar from one car position. Then, a mesh of the point cloud is created and each point is
associated with labels through the corresponding images.

The acquisition method determines the fast decreasing density of points, which is directly
related to the distance of the objects from the car position. Figure 4.2 displays the number of
neighbors of each point in a logarithmic scale, where the maximum is 7160 neighbors in the
red area and the minimum in 1 in the blue areas. Figure 4.3 shows the resulting histogram.
In order to reduce this problem, the point clouds were cleaned using the statistical outlier
removal (SOR) filter [MediaWiki, 2015] in CloudCompare1. The filter computes first the
average distance of each point to its neighbors, considering k nearest neighbors for each.

1https://www.danielgm.net/cc

37

4 Data-sets and tools

Then it rejects the points that are farther than the average distance plus a number of times
the standard deviation. In particular, k was set to two, while the standard deviation to three
[MediaWiki, 2015]. Figures 4.4 and 4.5 show respectively an original point cloud and a
filtered one. It can be seen that the filter keeps well defined structures, while eliminating
those coarsely represented.

Figure 4.1: Internal data-set - rgb information

Figure 4.2: Internal data-set - density of points by number of neighbors, r = 0.2

This data-set is available in .laz format and it is segmented in 82 classes. The 82 classes
represent objects from the urban environment, divided in barriers, flat constructions, struc-
tures, people, marking, nature, objects, traffic lights and vehicles. These classes are meant
for image segmentation: furthermore, the data-set presents a strong classes’ imbalance

38

4.1 CycloMedia’s internal data-set

Figure 4.3: Internal data-set - density parameters

Figure 4.4: Internal data-set - point cloud Figure 4.5: Internal data-set - SOR filter

as point clouds portray a high variety of scenes. For these reasons, the choice to reduce
the number of classes was made; some were merged together and some removed from
the data-set. Finally, 17 classes were obtained, see Table 4.2. As seen in Table 4.2, the
class imbalance is reduced, however the most frequent one appears more than one hun-
dred times more than the lowest one. Additionally, a weight was associated to each class
in PointNet++. For each class, the weight is computed as the ratio between the sum of all
elements and the number of occurrences of one class. The maximum bound for the weights
is set to one hundred, in order to avoid giving an excessive importance to underrepresented
classes.

39

4 Data-sets and tools

Class # Class name Weight Occurrences
1 Traffic light 100.0 212746
2 Billboard 29.8 1704139
3 Traffic sign 24.2 2103593
4 Support pole 16.0 3181278
5 Marking 15.5 3285654
6 Guard rail 25.8 1969373
7 Barrier 1.3 38545352
8 Building 0.3 200766977
9 Road 0.2 240810373
10 Bike lane 3.0 16671057
11 Curb 2.9 17414308
12 Low vegetation 2.0 25534303
13 Parking 1.9 27039516
14 Grass 1.4 37160530
15 Vehicle 1.3 40403381
16 Sidewalk 0.9 58704000
17 High vegetation 0.3 148432903

Table 4.2: Internal data-set - reduced classes, weights and occurrences

4.1.1 SHREC 2020

The SHREC 2020 data-set is a subset of CycloMedia’s internal one, used in the 3D Object
Retrieval 2020 competition2. This data-set is composed by 80 point clouds, split in training
set, 60 point clouds, and test set, 20 point clouds. The data-set is manually labeled in 5
semantic classes, shown in Table 4.3.

Class # Class name
0 Undefined
1 Building
2 Car
3 Ground
4 Pole
5 Vegetation

Table 4.3: SHREC data-set - classes

4.2 3DOM dataset

3DOM is a point cloud data-set obtained through dense image matching. These are ac-
quired in a controlled environment over an ad-hoc 3D artifact that simulates a typical urban

2https://workshop.cgv.tugraz.at/3dor2020/

40

4.2 3DOM dataset

scenario [Özdemir et al., 2019]. The data-set is composed by a reference point cloud, which
is unlabeled and presents around 28 million points, Figure 4.7. From this point cloud, the
training and test set are cut, each is made of around 2 million points, Figures 4.8 and 4.9.
This data-set is labeled into six semantic classes, shown in Table 4.4. Compared to the
other data-sets, it presents a higher resolution of the objects. This data-set was chosen as
objects are fully represented and it can be used to test the experiments with the MAT at its
full potential. Figure 4.6 shows the density of the full data-set in the logarithmic scale; this is
homogeneous through the whole point cloud. In this research, in addition to the training and
test set, a validation set was cut from the full point cloud; this was then manually labeled in
CloudCompare. The whole data-set, training, test and validation sets are shown in Figures
4.7 to 4.10.

Class # Class name
0 Ground
1 Grass
2 Shrub
3 Tree
4 Facade
5 Roof

Table 4.4: 3DOM data-set - classes

Figure 4.6: 3DOM data-set - density of points by number of neighbors, r = 0.2

41

4 Data-sets and tools

Figure 4.7: 3DOM data-set - full point cloud Figure 4.8: 3DOM data-set - training set

Figure 4.9: 3DOM data-set - test set Figure 4.10: 3DOM data-set - validation set

42

4.3 SynthCity dataset

4.3 SynthCity dataset

SynthCity is synthetic mobile laser scanner point cloud with color information, simulating a
Velodyne scanner. It is composed of nine geographical areas, eight for training and one
for testing; these are in .parquet format. The number of points ranges from 15 million to 52
million, for a total of 368 million points. Figure 4.11 shows a cropped area from the data-set.
For the same area, the number of neighbors of each point was computed through Cloud-
Compare, see Figure 4.12, the resulting histogram can be seen in Figure 4.13. Compared to
CycloMedia’s data-set, the maximum number of neighbors is smaller, given a search radius
of 0.2. However, the density of points is more stable in the whole area, which is a desirable
property. The point cloud is segmented in nine semantic classes: road, pavement, ground,
natural ground, tree, building, pole-like, street furniture, car [Griffiths and Boehm, 2019].
This data-set is chosen because it is a mobile scanning data-set and it provides a complete
representation of objects regardless of their material. This is a desirable property when
working with the 3D medial axis transform, which consequently results more complete. In
this research, the SynthCity data-set was subsampled in CloudCompare, setting the mini-
mum distance between points to 0.01m. This process reduced the number of point by 80%,
while preserving fine structures.

Class # Class name
0 Building
1 Car
2 Natural ground
3 Ground
4 Pole like
5 Road
6 Street furniture
7 Tree
8 Pavement

Table 4.5: SynthCity data-set - classes

4.4 Tools

For this project, three categories of tools are needed: point clouds processing and visualiza-
tion tools, medial axis transform tools and programming tools. In particular, CloudCompare3,
Lastools4 and Mapple5 are used to visualize, analyze, convert and export point clouds. Ge-
oflow6 is used to compute and analyze and extract the 3D medial axis transform for the
chosen data-sets. Python is the programming language for the project used in the Pycharm
development platform.

3https://www.danielgm.net/cc
4https://rapidlasso.com/lastools
5https://3d.bk.tudelft.nl/liangliang/software.html
6https://github.com/geoflow3d/geoflow

43

4 Data-sets and tools

Figure 4.11: SynthCity data-set - rgb information

Figure 4.12: SynthCity data-set - density of points by number of neighbors, r = 0.2

The main libraries needed are: PyTorch7, Laspy8, Numpy9, Scipy10 and Parquet11. PyTorch
7https://pytorch.org
8https://pypi.org/project/laspy
9https://numpy.org

10https://www.scipy.org

44

4.4 Tools

Figure 4.13: SynthCity data-set - density parameters

is used for deep learning tasks, Laspy to import and export las and laz files and Numpy is
used to store and manipulate numbers’ arrays. Scipy is needed for linear algebra tasks and
statistics. Additionally format specific readers are needed, such as H5 reader to inspect the
intermediate outputs of the deep learning process. Two open source algorithms are used,
these are the PyTorch implementation of Pointnet++ [Wijmans, 2018] and Superpoint Graph
[Landrieu and Simonovsky, 2017].

11https://pypi.org/project/parquet

45

5 Results and discussion

In this chapter, the main results obtained in the course of this research are presented. Sec-
tion 5.1 outlines the outcomes of the experiments carried out with the PointNet++ algorithm;
these are organized in three core groups which were performed for all the data-sets. The
analysis of the other experiments performed is also presented. Sections 5.2 and 5.3 de-
scribe the experiments conducted with the Superpoint Graph algorithm. In the former, a
visual analysis on the geometric descriptors is made together with the study of the derived
partitions and their influence on the outcome. In the latter, the performances of the algorithm
using different edge descriptors configurations are outlined.

5.1 Medial axis transform as a feature in deep learning

5.1.1 Core experiments

In this section, the main results for the three core experiments are presented. For each
data-set, four graphs are shown; they depict the accuracy and loss values for the training
set and the test set. The x axis represents the number of epochs. In the accuracy graphs,
the accuracy value is between zero and one, where one represents the optimal outcome.
This value is computed as the ratio between the number of correct predictions and the sum
all of the predictions. Instead, in the loss graphs, the loss value of 0 represents the best
result. The cross entropy loss measures the performance of a classification model whose
output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted
probability diverges from the actual label [Fortuner, 2019].

Additionally for each data-set, the two evaluation metrics are presented for all of the experi-
ments. The overall accuracy OA is computed as the above mentioned accuracy for one input
file in the data-set. The intersection over union IoU is a per class metric that is calculated
as the ratio between the correct predictions and the sum between the false positives and
false negatives minus the correct predictions. Results show similar trends for all data-sets;
in general, the use of MAT coordinates as features worsened the overall and per class per-
formances, while the radii and separation angles improved the accuracy and decreased the
loss.

When inputting interior and exterior, or only interior, coordinates the relation between them
and the surface points is not explicit. The assumption is that it could be derived in the
subsequent abstractions of the input data-set. However, not explicit relations and patterns
between coordinates can not be detected by the deep learning algorithm and introduce
artifacts and uncertainty. In fact, although the information derived by the coordinates is
unique, the values used in this form are all different than each other and thus not usable.

47

5 Results and discussion

Instead, the radii and separation angles values give information on the point’s surrounding
geometry in an explicit way and are able to disclosure additional knowledge in the deep
learning algorithm.

Name Features
RGB RGB
MAT-RS RGB, interior and exterior radii and separation angles
MAT-C RGB, interior and exterior MAT coordinates
MAT-I RGB, interior MAT coordinates

Table 5.1: Core experiments legend

5.1.2 3DOM data-set core experiments

The core experiments conducted on the 3DOM data-set show how the radii and separation
angle features can improve the performance of the training process, while the MAT coor-
dinates introduce ambiguity. Figures 5.1 to 5.4 depict the interior and exterior radius and
separation angle curve in blue, named MAT-RS, where these values were added to the RGB
information, see Table 5.1. The default curve is represented in red, named RGB, the MAT
coordinates and the MAT interior coordinates curves in light blue, the first solid while the
second dashed. The MAT-RS curve presents the higher training accuracy and lower loss.
The RGB curve is quite similar to the first one, bigger differences can be seen in the test
accuracy and loss outputs. This proves that the radii and separation angles information lead
to a better generalization of the learned patterns. Last, the MAT-C and MAT-I curves present
similar trends to the above ones in the training data-set, while performing much worse in
the test one, in particular on the loss values. This indicates how the coordinates information
can easily overfit the training data.

A
cc

ur
ac

y

Epochs

Figure 5.1: 3DOM - train accuracy

Lo
ss

Epochs

Figure 5.2: 3DOM - train loss

Table 5.2 gives a deeper insight on the performances of each experiment per class. It can
be seen that all classes intersection over union values increase using radii and separation
angles features and that the grass and shrub classes present the biggest improvement.
Figures 5.6 to 5.10 visualize the values of each feature on the point cloud, giving a clue
on which information could be derived from them. In the RGB spectrum, grass and shrubs
are quite similar; furthermore they do not present a great difference in height, differently

48

5.1 Medial axis transform as a feature in deep learning

A
cc

ur
ac

y

Epochs

Figure 5.3: 3DOM - test accuracy

Lo
ss

Epochs

Figure 5.4: 3DOM - test loss

than trees. Instead, radii and separation angles clearly define these structures, helping
their correct identification. This happens particularly for this data-set, which presents a high
point density.

Figure 5.5: 3DOM - ground truth Figure 5.6: 3DOM - RGB

Figure 5.7: 3DOM - interior MAT radius Figure 5.8: 3DOM - exterior MAT radius

In Table 5.2 can be also observed that all classes’ accuracy strongly decreases when using
the MAT coordinates, except for the roof class. This may happen because the former struc-
tures interact in the exterior MAT, sharing points and consequently properties. Instead, the
roof structures present MAT exterior coordinates that are projected above the point cloud,
thus not interacting with the other classes. An additional evidence of the fact that the inter-
action in the exterior MAT coordinates introduces ambiguity, is in the fact that ground inter-
section over union strongly improves when using only interior MAT coordinates as features.

49

5 Results and discussion

Figure 5.9: 3DOM - interior MAT separation
angle

Figure 5.10: 3DOM - exterior MAT separation
angle

The interior MAT for this class is a set of medial atoms shifted below the ground surface by
the maximum radius of the medial ball. This is because the ground is a planar surface, thus
the medial ball hardly shrinks. Keeping only this information and removing the exterior MAT
is similar to not having this feature, in fact the result is comparable to the one with RGB
only. A similar observation can be made for the grass class. The reason why its accuracy is
decreased may be that this class is prone to be mistaken for the ground one, which presents
a similar structure but is more represented in the data-set.

RGB MAT-C MAT-I MAT-RS

OA 0.86 0.69 0.72 0.91
IoU
Ground 74.48% 59.12% 75.80% 83.98% +9.50
Grass 34.49% 15.40% 14.39% 67.84% +33.35
Shrub 42.78% 22.50% 22.47% 66.52% +23.74
Tree 86.38% 50.27% 50.46% 91.34% +4.96
Facade 88.48% 60.43% 61.91% 89.18% +0.70
Roof 59.94% 57.32% 63.75% 68.59% +8.65

Table 5.2: 3DOM dataset core experiments - overall accuracy and per class intersection
over union

5.1.3 SynthCity data-set core experiments

Similar to the results for the 3DOM data-set, the SynthCity accuracy and loss curves for the
training and test data-sets show that the radii and separation angles information improve the
overall results, Figures 5.11 to 5.14. In this experiment, it can be seen more clearly that the
MAT coordinates easily lead to overfitting in the training set, Figures 5.13, 5.14. Furthermore
it can be observed that the use of MAT interior coordinates introduce ambiguity, but they lead
to a better output than the exterior and interior ones. The reasons can be that adding more
features, 6 rather than 3, could make it harder to extract information that generalize to the
test set, especially if these do not express explicit relations between points. Furthermore

50

5.1 Medial axis transform as a feature in deep learning

the exterior MAT describes the interaction between objects in a geographical point cloud,
which could lead to more uncertainties as seen for the 3DOM data-set. Furthermore, it can
be observed how the MAT coordinates fail to characterize fine structures such as poles and
street furniture, Table 5.4.

A
cc

ur
ac

y

Epochs

Figure 5.11: SynthCity - train accuracy
Lo

ss
Epochs

Figure 5.12: SynthCity - train loss

A
cc

ur
ac

y

Epochs

Figure 5.13: SynthCity - test accuracy

Lo
ss

Epochs

Figure 5.14: SynthCity - test loss

Figures 5.17 to 5.20 show a coarser resolution of the feature values if compared to Figures
5.61 and 5.10. This is due to the lower density of the SynthCity data-set with regards to the
first one and to the fact that fully synthetic point clouds present almost no noise.

For this data-set, the classes intersection over union that present a higher improvement are
the ground and natural ground ones, Table 5.4. This may happen because of the interaction
between the natural ground and the trees, which also present a high improvement. In fact,
it can be seen that the natural ground is always below the trees, thus radii and separation
angles values might be influenced by them. In particular, Figures 5.19 and 5.20 show that
the natural ground presents different separation angle values with respect to the ground. In
fact, the separation angle values are constant (green in both figures) and perturbed only by
the street furniture objects on them, such as pole structures. Instead, the natural ground
exterior separation values vary greatly around trees which cover this class.

5.1.4 Internal data-set core experiments

The core results for the internal data-set follow the same trend as those for the 3DOM and
SynthCity ones. Thus, even with real data, radius and separation angle introduce improve-

51

5 Results and discussion

RGB MAT-C MAT-I MAT-RS

OA 0.94 0.86 0.88 0.96
IoU
Building 97.90% 90.64% 92.04% 98.89% +0.99
Car 71.58% 14.08% 24.27% 78.71% +7.31
Natural ground 84.92% 50.53% 76.10% 93.16% +8.24
Ground 45.49% 8.48% 15.13% 56.82% +11.33
Pole-like 65.72% 0.00% 9.37% 66.84% +1.12
Road 96.41% 83.46% 88.31% 97.99% +1.58
Street furniture 34.50% 0.00% 0.31% 41.03% +6.53
Tree 88.18% 69.98% 74.22% 95.58% +7.40
Pavement 72.04% 65.03% 62.34% 78.83% +6.79

Table 5.3: SynthCity dataset core experimets - overall accuracy and per class intersection
over union

Figure 5.15: SynthCity - ground truth Figure 5.16: SynthCity - RGB

Figure 5.17: SynthCity - interior MAT radius Figure 5.18: SynthCity - exterior MAT radius

52

5.1 Medial axis transform as a feature in deep learning

Figure 5.19: SynthCity - interior MAT
separation angle

Figure 5.20: SynthCity - exterior MAT
separation angle

ments in the accuracy of the algorithm, while the use of coordinates does not. In fact,
Figures 5.21 to 5.24 show that the MAT-C curve for the test set is not smooth, differently
than the RGB and MAT-RS ones. This result is important, as the internal data-set of the
company represents a multitude of locations and street objects. Consequently it presents a
high number of classes and strong class imbalance. Furthermore, it is a real world data-set,
thus re-projection errors, occlusions and varying density are present. For example, a car’s
shadow in an image can be classified as car instead of road.

Table 5.4 shows results for one validation point cloud. These are influenced by different
factors, for example classes that present a 0% intersection over union value might not be
present in the specific file. Furthermore, class imbalance might lead to these outputs; in
fact, it can be noted that the road and high vegetation classes are the most represented
ones and show a greater improvement in IoU.

A
cc

ur
ac

y

Epochs

Figure 5.21: Internal data-set - train acc.

Lo
ss

Epochs

Figure 5.22: Internal data-set - train loss

53

5 Results and discussion

A
cc

ur
ac

y

Epochs

Figure 5.23: Internal data-set - test acc.

Lo
ss

Epochs

Figure 5.24: Internal data-set - test loss

RGB MAT-C MAT-RS

OA 0.24 0.01 0.49
IoU
Traffic light 0.00% 0.00% 0.00%
Billboard 0.77% 0.00% 1.25% +0.48
Traffic sign 4.17% 0.00% 4.45% +0.28
Support pole 6.26% 1.42% 7.61% +1.35
Marking 14.34% 0.00% 13.75% -0.59
Guard rail 0.00% 0.00% 0.00%
Barrier 2.72% 0.00% 3.50% +0.78
Building 0.00% 0.00% 0.01% +0.01
Road 22.21% 0.00% 56.29% +34.08
Bike lane 0.00% 0.00% 0.00%
Curb 3.99% 0.00% 8.91% +4.92
Low vegetation 1.61% 0.00% 3.25% +1.64
Parking 0.00% 0.00% 0.00%
Grass 0.00% 0.00% 0.00%
Vehicle 5.75% 0.00% 8.28% +2.53
Sidewalk 0.00% 0.00% 0.00%
High vegetation 49.03% 0.00% 61.67% +12.64

Table 5.4: CycloMedia internal dataset core experimets - overall accuracy and per class
intersection over union

Figure 5.25: Internal data-set - ground truth Figure 5.26: Internal data-set - RGB

54

5.1 Medial axis transform as a feature in deep learning

Figure 5.27: Internal data-set - interior MAT
radius

Figure 5.28: Internal data-set - exterior MAT
radius

Figure 5.29: Internal data-set - interior MAT
separation angle

Figure 5.30: Internal data-set - exterior MAT
separation angle

55

5 Results and discussion

5.1.5 Other experiments

This section aims to summarize a selection of additional experiments that presented the
most significant results. These were used to obtain a deeper knowledge on the influence
of the MAT properties on the results of Section 5.1.1 and gain more insights on other factors
that may be of interest.

3DOM - only radius and only separation angle

Name Features
MAT-RS RGB, interior and exterior radii and separation angles
MAT-R RGB, interior and exterior radii
MAT-S RGB, interior and exterior separation angles

Table 5.5: Only radius and only separation angle experiments - legend

A
cc

ur
ac

y

Epochs

Figure 5.31: 3DOM radius and
separation angle - train accuracy

Lo
ss

Epochs

Figure 5.32: 3DOM radius and
separation angle - train loss

A
cc

ur
ac

y

Epochs

Figure 5.33: 3DOM radius and
separation angle - test accuracy

Lo
ss

Epochs

Figure 5.34: 3DOM radius and
separation angle - test loss

As shown in Section 5.1.1 the radii and separation angles add useful per point information,
increasing overall accuracy and per class results. Here, a further investigation was carried
out to understand whether one of these factors contributed more to the result, and if so which
one. In Figures 5.31 to 5.34 can be seen that the performance of the radius and separation

56

5.1 Medial axis transform as a feature in deep learning

RGB MAT-R MAT-S MAT-RS

OA 0.86 0.90 0.88 0.91
IoU
Ground 74.48% 82.76% 79.11% 83.98%
Grass 34.49% 64.09% 42.53% 67.84%
Shrub 42.78% 58.88% 53.20% 66.52%
Tree 86.38% 90.31% 86.92% 91.34%
Facade 88.48% 89.19% 87.72% 89.18%
Roof 59.94% 65.81% 66.79% 68.59%

Table 5.6: 3DOM dataset radius and separation angle experiments - overall accuracy and
per class intersection over union

angle together (blue filled line - MAT-RS) is almost equal to that of the radius alone (dotted
line - MAT-R). Instead, the separation angle alone performs slightly worse. Thus, it can
be concluded that the radius information is more valuable than the separation angle one.
However, the separation angle alone can still improve the outcome of the training procedure
with respect to the use of xyz and RGB only, see Table 5.6.

3DOM - interior radius and separation angle

Name Features
MAT-RS RGB, interior and exterior radii and separation angles
MAT-RS-I RGB, interior radii and separation angles

Table 5.7: Interior radius and separation angle experiments - legend

A
cc

ur
ac

y

Epochs

Figure 5.35: 3DOM interior radius and
separation angle - train accuracy

Lo
ss

Epochs

Figure 5.36: 3DOM interior radius and
separation angle - train loss

Another experiment conducted on the use of radii and separation angles information is rep-
resented in Figures 5.35 to 5.38. Here the attention was drawn to the difference in results
when using interior and exterior MAT information or only interior ones. It can be noticed here
that the graphs’ curves show almost identical results. This shows that the interior radii and

57

5 Results and discussion

A
cc

ur
ac

y

Epochs

Figure 5.37: 3DOM interior radius and
separation angle - test accuracy

Lo
ss

Epochs

Figure 5.38: 3DOM interior radius and
separation angle - test loss

separation angle would be enough to improve the outputs of the deep learning procedure.

3DOM - no RGB information

Name Features
RGB RGB
MAT-RS-RGB RGB, interior and exterior radii and separation angles
MAT-RS Interior and exterior radii and separation angles

Table 5.8: No RGB experiments - legend

A
cc

ur
ac

y

Epochs

Figure 5.39: 3DOM no RGB - train acc.

Lo
ss

Epochs

Figure 5.40: 3DOM no RGB - train loss

Figures 5.39 to 5.42 show a comparison between the RGB curves using xyz and RGB as
features, the MAT-RS-RGB curves in blue (xyz, RGB and interior and exterior radii and sep-
aration angles as features) and the MAT-RS curves in yellow (xyz and interior and exterior
radii and separation angle as features). This experiment was useful to understand to which
extent the MAT information could be exploited. In fact, it can be seen that if they are used
together with the RGB information, results improve; however, when RGB is not used, out-
comes present a significant difference. Thus, it can be concluded that these features can
not substitute the RGB values, but they can be successfully used in addition to it.

58

5.1 Medial axis transform as a feature in deep learning

A
cc

ur
ac

y

Epochs

Figure 5.41: 3DOM no RGB - test accuracy

Lo
ss

Epochs

Figure 5.42: 3DOM no RGB - test loss

RGB MAT-RS MAT-RS-RGB

OA 0.86 0.69 0.91
IoU
Ground 74.48% 57.73% 83.98%
Grass 34.49% 17.70% 67.84%
Shrub 42.78% 10.84% 66.52%
Tree 86.38% 58.79% 91.34%
Facade 88.48% 59.73% 89.18%
Roof 59.94% 44.05% 68.59%

Table 5.9: 3DOM dataset no RGB experiments - overall accuracy and per class
intersection over union

59

5 Results and discussion

3DOM - Gaussian noise

Name Features
RGB RGB
RGB RGB + Gaussian noise
MAT-RS RGB, interior and exterior radii and separation angles
MAT-RS-NOISE RGB, interior and exterior radii and separation angles + Gaussian noise

Table 5.10: Gaussian noise experiments legend

A
cc

ur
ac

y

Epochs

Figure 5.43: 3DOM Gaussian noise -
train accuracy

Lo
ss

Epochs

Figure 5.44: 3DOM Gaussian noise -
train loss

A
cc

ur
ac

y

Epochs

Figure 5.45: 3DOM Gaussian noise -
test accuracy

Lo
ss

Epochs

Figure 5.46: 3DOM Gaussian noise -
test loss

Figures 5.43 to 5.46 show the performance of the training procedure using the default pa-
rameters in red and the radius and separation angle in blue; furthermore it displays the
outcomes obtained with the same features, in light blue and pink, on the data-set modified
with Gaussian noise. Gaussian noise is statistical noise having a probability density function
(PDF) equal to that of the normal distribution [Wikipedia, 2020]. It was added to the data-
set using the software Mapple1, with a standard deviation of one. The graphs show how
noise influence the usability of the MAT information; in fact the results for the noisy data-set
overlap with those of the clean data-set using the default features. This happens because

1https://3d.bk.tudelft.nl/liangliang/software.html

60

5.1 Medial axis transform as a feature in deep learning

the medial balls constructed for this data-set are over shrunk, leading to a set of values that
are almost identical for the full data-set. As these features are so similar, they don’t add
any information, thus the MAT-RS-NOISE curves become equal to the RGB ones. Instead
RGB values are not subject to noise since they are not a geometric information, thus the
RGB-NOISE and the RGB performances are similar.

5.1.6 SHREC 2020 - bisector angles and spoke vectors

Name Features
RGB RGB
MAT-RS RGB, interior and exterior radii and separation angles
MAT-SP RGB, interior spoke vectors
MAT-BIS RGB, bisector angles

Table 5.11: SHREC experiments legend

A
cc

ur
ac

y

Epochs

Figure 5.47: SHREC data-set - train acc.

Lo
ss

Epochs

Figure 5.48: SHREC data-set - train loss

A
cc

ur
ac

y

Epochs

Figure 5.49: SHREC data-set - test acc.

Lo
ss

Epochs

Figure 5.50: SHREC data-set - test loss

61

5 Results and discussion

RGB MAT-RS MAT-SP MAT-BIS

OA 0.84 0.89 0.87 0.84

IoU
Undefined 08.63% 09.71% 13.94% 09.22% +5.31
Building 24.39% 54.49% 43.22% 38.64% +30.10
Car 13.68% 22.22% 28.05% 22.25% +14.37
Ground 88.10% 95.76% 94.65% 92.98% +7.66
Pole 00.00% 00.00% 00.00% 00.00%
Vegetation 73.85% 79.34% 76.10% 69.00% +5.49

Table 5.12: SHREC data-set spoke vectors and bisector angles experiments experiments -
overall accuracy and per class intersection over union

Figures 5.47 to 5.50 show training and test accuracy and loss for experiments conducted
with the SHREC2020 data-set. These are meant to investigate how PointNet++ algorithm
performs on a lager subset of CycloMedia’s internal data-set and to test different MAT prop-
erties as features.

In general, the experiments conducted demonstrate that PointNet++’s performance increases
greatly for the SHREC data-set, with respect to the behavior shown in Section 5.1.4. This
happens because the data-set is composed by more point clouds, which are segmented in
fewer classes. Furthermore, the data-set does not present significant labeling errors, as it
was manually labeled. However, the data-set still has a high decreasing density of points
and class imbalance. The latter does not seem to affect results greatly, as OA and IoU
values for most classes are sufficient, see Table 5.12. Instead, the former leads to the high
difficulty to recognize poles in the data-set, see Table 5.12.

Three trials were conducted, see Table 5.11. First, only RGB values were used as features,
in order to set a comparison basis. Then, these were combined with interior and exterior
radii and separation angles, interior spoke vectors or bisector angles. Results displayed in
Figures 5.47 to 5.50 and in Table 5.12 demonstrate that all MAT values improve the perfor-
mance of the PointNet++ algorithm. In particular, MAT-RS and MAT-SP experiments present
overlapping curves and similar overall accuracy values. This result is expected, as spoke
vectors represent the vector from the medial point to the feature point, disclosing similar
information to radii and separation angles, see Section 2.4. The building class presents the
highest grow in IoU value, followed by the car and ground ones. As can be seen in Figures
5.27 and 5.29 interior radii and separation angles clearly distinguish horizontal classes from
vertical or scattered ones. Buildings, ground and vegetation IoU values grow in the MAT-RS
experiment, while car and undefined IoU values improve in the spoke vector one. Instead,
the MAT-BIS does not improve any class the most, however it presents a steeper curve com-
pared to the other trials. Thus, this experiment could lead to better results compared to other
experiments, if the algorithm runs for more epochs.

62

5.2 Medial axis transform as a descriptor for a geometric partition

5.2 Medial axis transform as a descriptor for a geometric
partition

In this section, the main outcomes for the experiments are presented, using the MAT to
partition a point cloud. The partitioned point cloud is then used to create the superpoint
graph and input to a graph convolution deep learning algorithm. The experiments refer to
the 3DOM and SynthCity data-sets, the reason is that these data-sets have more suitable
properties for a graph convolution method, compared to the internal data-set used in the
Section 5.1. In fact, the computation of the MAT results more complete and accurate as
these data-sets present less noise, have an homogeneous density of points and objects
are fully represented.

The analysis of the four geometric descriptors used in the SPG algorithm is outlined; these
are linearity, planarity, scattering and verticality. These are then compared to the radii,
separation angles and the medial bisectors; the goal is to understand how characteristic a
descriptor is and how similar they are among each others. Furthermore, the numerical and
visual comparison between the partitionmethodologies is presented. Last, the outputs of the
deep learning algorithm are commented. These refer to training procedures with 10 epochs
and default hyperparameters. Thus, the results may be subject to change if modifications
in the deep learning hyperparameters are made. In this analysis, first the default partition
was computed; this should serve as comparison basis for the following experiments. The
partitioned point cloud was then input to the deep learning algorithm. Then, the partitions
using the MAT information were computed and fed to the deep learning algorithm using the
same parameters to the default partition; this choice enabled the comparison between the
trials and the quantification of the influence of the partition on the overall results.

The experiments on the synthetic data-sets show dissimilar results. In general,

– Introducing new features in the cut-pursuit algorithm increases the number of homo-
geneous parts identified.

– In the 3DOM data-set the growth is higher; instead the results are more stable in the
Synthcity data-set.

– The medial bisector results diverge greatly if compared to the other trials with the
3DOM data-set, differently than the SynthCity data-set.

– A bigger number of segments does not automatically produce a worse result, as more
parts could lead to a more accurate segmentation.

– A bigger number of segments leads to a higher computational demand, which is not
a desirable result.

– The introduction of descriptors associated with the exterior MAT produces a confused
and non-reliable segmentation.

– The medial bisector and the interior radii and separation angle values define the shape
of objects.

– In general the training procedure using the default graph and produces more accurate
outputs.

63

5 Results and discussion

5.2.1 3DOM dataset experiments

For all the trials with the 3DOM data-set, the regularization strength was set to 0.1, an ex-
ception was made for trial 7, where the medial bisector was used. Here the regularization
strength was fixed at 0.4. This is because keeping the regularization constant, the number
of parts would increase by around 50 times if compared to the default configuration. Thus,
the experiments with the medial bisector should not be compared with the others on a quan-
tity basis. The experiments show that, keeping the regularization parameter constant, the
number of parts identified by the cut-pursuit algorithm grows when MAT information is added
(Table 5.13). Only the change in edge weight reduces the number of parts for all point
clouds. It can be observed that the highest increase in number of parts occurs in trial 2
for most point clouds, where the exterior and interior radii and separation angles are added
to the default values. Furthermore it can be seen how the same information, without the
default values, produces a much smaller number of segments. Thus, an elevated number
of descriptors creates difficulties in the minimization process of the cut-pursuit algorithm.

Default and
1 2 3 4 5 6 7 8 9

default MAT rad
sep in

rad
sep
out

rad in
out

sep in
out

bisector MAT edge
weight

train1 642 1502 1212 1269 1661 869 646* 893 595
train2 709 1620 1651 1187 1782 943 844* 708 504
eval1 632 1831 1200 1220 1578 719 670* 946 528
eval2 765 1757 1109 1282 1626 1075 997* 701 556
val1 1685 3511 2300 2467 3084 1539 2218* 1689 1334
*experiments with the medial bisector were conducted setting the regularization pa-
rameter to 0.4

Table 5.13: 3DOM geometric partition experiments - number of parts

Feature descriptors

Figures 5.51 to 5.62 show the geometric descriptors used in this phase of the research. In
particular, Figures 5.51 to 5.54 depict linearity, planarity, scattering and verticality; Figures
5.55 to 5.58 show the bisector angle, first the three values are visualized together as normal
vectors, then each value is shown alone. Last Figures 5.59 to 5.62 show the radii and
separation angles. In Figures 5.51 to 5.54 can be seen how the four default descriptors
describe objects. In the first three images the difference between roofs and ground or grass
classes is minimal; only verticality helps to recognize them, if the roof has a slope. This
might not be important in the partition phase, where adjacent simple structures should be
separated from each other. However, the four descriptors are later used to compute the
superpoint attributes and are input in PointNet as features. Thus this might influence the
results at a later stage.

64

5.2 Medial axis transform as a descriptor for a geometric partition

Figure 5.51: 3DOM - linearity Figure 5.52: 3DOM - planarity

Figure 5.53: 3DOM - scattering Figure 5.54: 3DOM - verticality

Figure 5.55: 3DOM - bisectors as normals Figure 5.56: 3DOM - medial bisector 1

Figure 5.57: 3DOM - medial bisector 2 Figure 5.58: 3DOM - medial bisector 3

65

5 Results and discussion

Figure 5.59: 3DOM - interior radius Figure 5.60: 3DOM - exterior radius

Figure 5.61: 3DOM - interior separation
angle

Figure 5.62: 3DOM - exterior separation
angle

Partitioning

For all twelve descriptors can be observed how they give importance to small structures in
the buildings’ facades. This happens because of how the data-set is created, dense image
matching, and consequently because of its high resolution. In particular, in Figures 5.63
to 5.70 can be observed how small structures can influence the partition. This problematic
factor could be decreased by changing the MAT denoise values.

Also looking at Figures 5.8 and 5.10, it can be observed that the exterior radii and separation
angles values creates incorrect divisions between the horizontal classes, grass and ground.
In fact these values quantify the relation and influence between objects in the point cloud.
For this reason, they might not be suited for the task of geometric partition. In Table 5.14
can be seen that the experiment where only exterior values were used produced the worst
overall accuracy of all.

Figures 5.63 to 5.70 show the different partitions results. In general, all fail to recognize
simple and homogeneous structures. For example, in Figure 5.63 the left side of the building
is considered as one part; instead, its two sides should be separated. Figure 5.69 shows
that the medial bisector well captures the different simple shapes. However this information
introduces ambiguity in parts of the roof. As mentioned above, the exterior MAT information
create incorrect partitions, Figures 5.66 to 5.68. Last Figure 5.71 shows a partition similar
to the default one; here however the different edge strength penalized the creation of small
parts, and thus simplified the final result.

66

5.2 Medial axis transform as a descriptor for a geometric partition

Semantic segmentation

Table 5.14 gives an overview of the results of the deep learning procedure for the different
trials. These aim to be a mean of comparison between different partition methods having
homogeneous ground conditions, such as deep learning hyperparameters. However, the
content of Table 5.14 could be different if, for each trial, the best hyperparameters were se-
lected. Furthermore, the random factors that might occur in the training procedures and the
small number of epochs may also influence the results. These factors should be taken into
consideration when critically reading this table. It can be seen how the default configuration
produces better overall accuracy (OA) results, while trial 5 produces the most homogeneos
IoU per class results, while having the second best OA results. For most experiments, it can
be observed that per class outputs are hardly balanced. In fact, sufficient results for one
kind of objects produce almost zero IoU in the remaining classes. This can be seen in trial
1, in the grass class, in trial 2 in the shrub class and so on. The fact that this peculiarity is
present in almost all trials should mean that it is not associated with the integration of the
MAT or the partition method.

Default and
1 2 3 4 5 6 7 8 9
default MAT rad

sep in
rad
sep
out

rad in
out

sep in
out

bisector MAT edge
weight

OA 74.36 64.78 62.57 23.53 71.53 64.65 67.25* 65.27 66.51

IoU
Ground 47.48 30.89 29.97 30.89 30.95 36.96 59.66* 21.41 55.01
Grass 02.68 43.67 16.51 20.82 49.88 02.54 00.02* 36.67 19.27
Shrub 28.89 01.55 42.48 07.06 37.37 49.32 57.51* 00.12 36.70
Tree 66.78 66.46 67.37 29.85 71.00 17.93 64.13* 00.29 52.09
Facade 79.01 28.24 48.54 02.31 58.46 30.75 67.64* 39.48 63.25
Tree 51.74 21.54 00.63 13.40 42.23 44.23 03.08* 48.41 00.04
*experiments with the medial bisector were conducted setting the regularization pa-
rameter to 0.4
Results shown in this table are in %

Table 5.14: 3DOM geometric partition experiments - overall accuracy and intersection over
union

67

5 Results and discussion

Figure 5.63: 3DOM - default partition Figure 5.64: 3DOM - default + MAT partition

Figure 5.65: 3DOM - default + rad sep in
partition

Figure 5.66: 3DOM - default + rad sep out
partition

Figure 5.67: 3DOM - default + rad in out
partition

Figure 5.68: 3DOM - default + sep in out
partition

68

5.2 Medial axis transform as a descriptor for a geometric partition

Figure 5.69: 3DOM - default + bisector
partition

Figure 5.70: 3DOM - medial axis transform
partition

Figure 5.71: 3DOM - edge weight partition

69

5 Results and discussion

5.2.2 SynthCity dataset experiments

Table 5.15 shows the number of parts, or superpoints, for each point cloud in the SynthCity
data-set, setting the regularization strength parameter to 0.4. Experiments conducted on
this data-set present different outputs with respect to those carried on with the 3DOM data-
set, see Section 5.2.1. Here, the medial bisector led to an increase of the number of parts
by a factor of 2 to 3, for this reason it was kept constant in the experiments. Instead, it
led to and increase by a factor of 50 for the 3DOM data-set. Furthermore, in general the
number of parts remained stable for all experiments, while it decreased for all point clouds
using only MAT derived information. Last, modifying the edge weight did not lead to fewer
superpoints, instead, the number slightly increased. The reason for these differences could
be associated with the peculiarities of the two data-sets. In fact, the SynthCity data-set
presents a more regular and more sparse distribution of points. This is because the data-
set simulates a Velodyne scanner, thus angles of objects are sharper and surfaces are
smoother than those of the 3DOM data-set. For these reasons, the information added to
the cut-pursuit algorithm does not change the number of parts greatly.

Semantic segmentation

Table 5.16 gives an overview of the results of the deep learning procedure for a subset of the
trials listed above. These were selected because they were judged more meaningful than
the others, they aim to be a mean of comparison between different partition methods having
homogeneous ground conditions, such as deep learning hyperparameters. Outputs are
similar to those of the 3DOM data-set, see Section 5.2.1. In fact, the default configuration
produces a better overall accuracy value and the best IoU results for the building, car, street
furniture and tree classes. TheMAT trial produces the best results for natural ground, ground,
pole-like and road classes. However, most classes present very similar IoU values, thus
these results can not be interpreted as an improvement related to the MAT information.

Default and
1 2 3 4 5 6 7 8 9

default MAT rad - sep rad - sep rad sep bisector MAT edge
in out in out in out weight

area1 656 755 663 627 671 686 1575 426 701
area2 840 991 838 963 941 833 2176 565 981
area3 770 1017 866 783 996 853 1735 676 896
area4 832 875 859 930 1001 946 2001 548 912
area5 1064 1212 1220 1251 1237 497 2661 693 1172
area6 886 1202 963 1077 956 589 3053 791 969
area7 501 493 481 496 507 789 472 348 499
area8 472 382 467 512 550 1121 684 337 525
area9 557 780 674 742 740 506 1220 536 639

Table 5.15: SynthCity dataset radius and separation angle experimets - number of parts

70

5.3 Medial axis transform as an attribute for graph convolution

Default and
1 2 7 9

default MAT bisector edge weight

OA 89.04% 85.28% 85.84% 80.71%

IoU
Building 97.75% 96.36% 92.14% 94.81%
Car 66.37% 56.16% 42.47% 38.17%
Natural ground 00.20% 44.38% 01.83% 01.46%
Ground 06.76% 12.20% 11.39% 03.90%
Pole-like 42.52% 48.16% 01.04% 24.77%
Road 41.53% 46.56% 00.00% 41.52%
Street furniture 29.59% 15.87% 00.00% 18.20%
Tree 98.34% 96.69% 66.00% 94.80%
Pavement 00.04% 00.00% 00.00% 00.00%

Table 5.16: SynthCity dataset radius and separation angle experimets - overall accuracy
and per class intersection over union

5.3 Medial axis transform as an attribute for graph
convolution

In this section, the experiments to modify the superedge information to be used for graph
convolution are presented. In particular, two main researches were performed, using the
mean radius and separation angle or using their maximum and minimum values for each
superpoint. In both procedures, the values were pre-computed and read by the partition
algorithm. Then, the indices of the points that were part of each superpoint were retrieved,
and the mean or the maximum and minimum values were computed. These were then
added as nodes attributes in the SPG graph. Last, for each pair of superpoints, the differ-
ence between their node attributes was computed and associated with the corresponding
edge features.

Tables 5.17 and 5.18 show the results for each trial. On the left column, those obtained
using the default partition method and the default graph attributes are displayed. For each
point cloud, the partition was computed twice and the resulting superpoints appear only
slightly different than each other. However, results of the training process vary greatly for
each class, as seen in Figures 5.73 and 5.77. This fact introduces uncertainty on the validity
of the experiments. Figures 5.73 to 5.75 and Figures 5.77 to 5.79 outline also how results
vary in each trial, while overall accuracy values are really similar than each other. Looking
at Tables 5.17 and 5.18 and Figures 5.76 to 5.79, it can not be concluded that the different
MAT edge attributes fully determine the outputs obtained.

71

5 Results and discussion

Default and
1 2 3

default mean rad sep mean rad sep

OA 74.36% 70.12% 74.04%

IoU
Ground 47.48% 35.70% 29.40%
Grass 02.68% 20.97% 15.62%
Shrub 28.89% 60.32% 22.53%
Tree 66.78% 69.54% 70.86%
Facade 79.01% 43.78% 27.53%
Roof 51.74% 10.23% 62.69%

Table 5.17: 3DOM graph attributes mean radii and separation angles - overall accuracy
and intersection over union

Figure 5.72: 3DOM - ground truth Figure 5.73: 3DOM - default graph attributes

Figure 5.74: 3DOM - default graph attributes
+ mean radii and separation angles

Figure 5.75: 3DOM - mean radii and
separation angles graph attributes

72

5.3 Medial axis transform as an attribute for graph convolution

Default and
1 2 3

default max min rad sep max min rad sep

OA 72.64% 73.64% 72.77%

IoU
Ground 71.68% 53.63% 23.87%
Grass 00.11% 00.00% 00.08%
Shrub 05.62% 18.99% 37.53%
Tree 50.05% 47.52% 62.47%
Facade 69.48% 72.18% 33.28%
Roof 01.09% 28.69% 00.00%

Table 5.18: 3DOM graph attributes maximum and minimum radii and separation angles -
overall accuracy and intersection over union

Figure 5.76: 3DOM - ground truth Figure 5.77: 3DOM - default graph attributes

Figure 5.78: 3DOM - default graph attributes
+ maximum and minimum radii and

separation angles

Figure 5.79: 3DOM - maximum and
minimum radii and separation angles

graph attributes

73

6 Conclusions and future work

This chapter summarizes the main outputs of this thesis. In Section 6.1 the answers to the
research questions proposed in Chapter 1 are given, then the main scientific contributions
of this research are listed in Section 6.1.1. Finally, a discussion on the improvements on the
methodology which could be performed in the coming month is outlined in Section 6.2.

6.1 Research questions

To conclude this thesis, the research questions proposed in Chapter 1 are answered. First,
the subquestions are considered, finally a general conclusion is given by answering the
main research question.

How can the 3D medial axis transform be used to give context to local points in a point
cloud, making the unary classification per point stronger?

The 3D medial axis transform can be used to give context to local points if integrated as
an extra feature in a deep learning algorithm. In this research, radii, separation angles and
MAT coordinates were employed. They were added to the algorithm PointNet++ in different
combinations, first interior and exterior radii and separation angles were used together, then
the 3D MAT coordinates and the interior MAT coordinates were used. Only the radii and
separation angles experiments proved to be useful to improve the results for all of the tested
data-sets, while the MAT coordinates introduced ambiguity in the algorithm. Furthermore,
medial bisectors and spoke vectors were integrated in PointNet++ and tested on one data-
set. The use of these information proved to improve OA and IoU in the experiment. Thus,
radii, separation angles, medial bisectors and spoke vectors can make the classification per
point stronger.

Which of the 3D medial axis transform properties are most helpful?

The radii, separation angles, medial bisectors and spoke vectors values derived from the 3D
MAT can be integrated in a deep learning algorithm. Experiments conducted in this research
show that radii and separation angles can be successfully used together as extra point fea-
tures. However, radii information proved to be more suited than the separation angles’ one.
In fact, using the former alone would increase the accuracy while lessening the loss value
more, if compared to the separation angles. Furthermore, it was shown that the interior MAT
information can be used alone or combined with the exterior one, producing almost equal
results. Furthermore, spoke vectors values and bisector angles were used in two separate
training procedures. Spoke vectors output almost equal results to radii and separation an-
gles. Instead medial bisectors produced slightly worse results, that however improved at

75

6 Conclusions and future work

a faster pace. Thus, all MAT information tested demonstrated to improve OA and IoU in the
experiments of this research. In particular, interior radii properties proved to be helpful.

How can the 3D medial axis transform be used to partition a point cloud into semantically
homogeneous shapes?

The 3D medial axis was used in this research as a geometric descriptor in the algorithm
Superpoint Graph. In particular radii, separation angles, medial bisectors and medial sheet
values were integrated in the cut-pursuit algorithm. The first three were used as geometric
descriptors; the latter was used to make the SPG more similar to the 3D MAT, strengthening
relations between points belonging to the same medial sheet. Theoretically, these should
improve the partition into homogeneous shapes, and consequently the overall results of
the deep learning algorithm. However, results presented in this research do not show any
improvement in the partition.

How can the 3D medial axis transform be used to enrich the node and edge information
in a graph used as input for a graph convolution neural network?

In this research, the 3D MAT was used to enrich superpoints and superedges of the SPG,
using the default SPG graph. The procedure included two experiments, associating the
mean radii and separation angles to the superpoint or their maximum and minimum values.
Then for both experiments, the superedge features would be computed as the difference of
this information in adjacent superpoints. Results of this research do not enable to draw final
conclusions on this topic. In fact, MAT information can result ambiguous if associated with
the SPG. This is because the two graphs present theoretical similarities but not practical
ones. Thus MAT information does not add valuable insights if associated with the default
SPG.

Can the 3D medial axis transform be used to improve the accuracy of an existent deep
learning method?

Yes, it can be used to improve the accuracy of an existing deep learning algorithm. The
experiments conducted with PointNet++ show that results for the three data-sets used in
this research improve when adding radii and separation angles as extra features in the
deep learning algorithm. For all data-sets, OA and IoU values improve for all classes. In
particular, for the 3DOM data-set, IoU values increase from 34.49% to 67.84% for grass and
from 42.78% to 66.52% for shrubs. For the SynthCity data-set, IoU values increase from
45.49% to 56.82% for ground and from 84.92% to 93.16% for natural ground. Last for the
internal data-set they increase from 22.21% to 56.29% for road.

How important are the construction parameters of the 3D medial axis transform in the
deep learning method?

When computing the unstructured and structured MAT many parameters need to be taken in
consideration. The initial radius, denoise planar and denoise preserve values can influence
the cleanness and the degree of relation between objects in a geographical point cloud.
Furthermore, the segmentation configuration can structure the MAT based on the medial
bisector, separation angle or ball overlap. Thus, analyzing the MAT for different point clouds
and understanding the best configuration for each, is relevant in the final usability of the 3D
MAT.

76

6.1 Research questions

How does the performance on the real data-set compare with the one obtained on the
synthetic one?

Experiments conducted in PointNet++, where the MAT was used as an extra point feature,
were tested on CycloMedia’s internal data-set. Results show similar trends to those of the
SynthCity and 3DOM data-set. In fact, adding the MAT radii and separation angles showed
an improvement in the overall results. In general however, results present a much lower
accuracy and higher loss. This is because of the characteristics of this data-set, such as
fast decreasing point density and high variance in represented scenes and objects.

How can the properties of the 3D medial axis transform be exploited in different deep
learning methods for point cloud semantic segmentation?

In this research, the main MAT properties used in a deep learning algorithm were the radii,
separation angles, medial bisectors and medial sheets. These values were used in three
main ways, in two algorithms PointNet++ [Qi et al., 2017] and Superpoint Graph [Landrieu
and Simonovsky, 2017]. Results of the experiments show that the radii and separations
angles’ values can be successfully integrated as point features in a deep learning algorithm.
Instead, it should not be added as geometric descriptor in the cut-pursuit algorithm or used
to enrich the edge relations of the SPG, if the graph does not present a similar structure to
that of the MAT.

6.1.1 Scientific contributions

The main scientific contributions of this research are:

– I proved that the 3D medial axis transform can be successfully integrated in a point-
based deep learning algorithm as an extra feature. In particular, two MAT properties
linked to the geometry of the medial atom were recognized as valuable, the radius
and separation angle. These can make the classification of the point stronger, without
introducing redundancy, without slowing the algorithm or adding computational effort.

– I demonstrated that radius and separation angle values can be successfully used for
three different types of data-set, a dense image matching data-set of a urban model,
a synthetic data-set simulating a mobile laser scanner and one of real data captured
with mobile laser scanner.

– I proved that radii and separation angles values improve the IoU outputs for all types
of semantic classes. In particular they can be used for horizontal classes, such as
ground, shrubs and grass, where the RGB information is not as distinctive.

77

6 Conclusions and future work

6.2 Discussion

The analysis and experiments conducted in this research propose a simple and effective
way to integrate the MAT values as features in a point-based deep learning algorithm. Fur-
thermore, they proved that adding the MAT values as geometric descriptors does not improve
the geometric partition of the point cloud. Finally, they showed that enriching the superpoints
and superedges in the SPG does not lead to better segmentation results.

To analyze the outputs of this research, one has to consider different factors that influence
them. These concern 3D MAT computation and deep learning hyperparameters setting.
The former include the characteristics of data-sets used, the normal vectors estimation and
orientation methodologies and the number of parameters for the MAT computation. The latter
determine the quality of the segmentation algorithm.

Noise is a factor that highly influences the usability of the 3D MAT. Data-sets used in this
research don’t present high Gaussian noise, thus the impact of the MAT integration can be
quantified. However, results might be lessmeaningful if input data-sets present strong noise.
The acquisition method is another data-sets’ characteristics that influences the usability of
the 3D MAT. Dense image matching point clouds present smoother angles between points
with respect to Lidar point clouds; this factor could lead to faulty segments in the structured
MAT. The computation and reorientation of normal vectors also has an impact on the final
MAT quality. In fact, normal vectors’ orientation determine the distinction between interior
and exterior MAT and the quality of the MAT structuration.

Last, different parameters are used to construct and structure the 3D MAT; these should be
chosen based on the characteristics of the data-sets. Similarly, many hyperparameters can
be modified to tune the deep learning outcome. In this research, MAT parameters and deep
learning hyperparameters were set and used throughout the course of the study. Visual
analysis was fundamental in choosing the MAT parameters, while many trial runs were nec-
essary to tune the deep learning outcome. Additionally, normal vectors were computed and
reoriented manually for each data-set, to ensure the quality of the results. Methods used in
this thesis are time consuming and thus not optimal for a real life application.

6.3 Future work

The 3D medial axis transform proved to add valuable information in a point-wise deep learn-
ing method for different data-sets. Future research for this topic can be pursued in three
directions.

Analysis of different types of data-sets This research focused on the use of two mobile
based laser scanner data-sets and one complete urban model, obtained with dense image
matching. As acquisition methods influence the output of the research, the use of the 3D
MAT on aerial based data-sets could be further analyzed.

Automatic parameters section per data-set In this study, the MAT construction and struc-
turation parameters were chosen and investigated visually. These determine the degree
of interaction between objects, cleanness and sheets characteristics in the MAT. Data-sets

78

6.3 Future work

present different sensitivity to the above parameters, based on what they represent and
their density. The automatic selection of MAT parameters based on data-sets characteristics
could facilitate the integration of the MAT for large data-sets.

Analysis of deep learning outcomes In this research, overall accuracy and intersection
over union metrics were used to quantify the outputs obtained. Deeper analysis on the
influence of the MAT on deep learning algorithms could lead to better understanding of the
results and enhancements in the integration of the MAT. The analysis could be obtained with
feature baseline attribution methods. These quantify the importance of each feature within
the layers of the network, choosing one hyperparameter as a baseline in a gradient based
approach.

Furthermore, the analysis of the SPG algorithm outlined two additional research directions
on this algorithm.

Use of MAT adjacency as SPG In this research, MAT sheets were used as superpoints in
the SPG algorithm and their adjacency was computed using the 3D Delaunay triangulation.
However, the MAT graph presents an adjacency structure that differs from the above one.
Adjacency information of the MAT sheets could be used to define the Superpoint graph. In
order to maintain the structure of the SPG algorithm, where each point is associated to only
one superpoint, this could be done in three ways. First, one could use either the interior or
the exterior adjacency; however this would lead to the loss of valuable information. Second,
one could duplicate points in the original point cloud; however this would cause extra com-
putational effort. Last, one could use the MAT point cloud directly as input of the algorithm.
In this way, each point would be uniquely related to a segment, without losing interior or
exterior information.

Direct use of MAT point cloud In this study, the boundary point cloud was used as input
in the SPG algorithm. MAT values such as radii, separation angles and segment ids were
associated with the input points, leading to the use of only interior segment ids of the struc-
tured MAT. In a future research, the MAT point cloud could be input in the algorithm. This
choice would enable the use of interior and exterior information simultaneously; furthermore,
it would lead to a straightforward use of the MAT adjacency information to construct the Su-
perpoint graph. In this implementation, labels of the boundary point cloud could be first
associated with the MAT ones and later aggregated back on the original point cloud.

79

A Segmented data-sets

In this appendix, results of the experiments detailed in Sections 3.3 and 5.1 are shown. In
particular, for each data-set the outputs are visualized on one point cloud and commented.

Name Features
RGB RGB
MAT-RS RGB, interior and exterior radii and separation angles
MAT-C RGB, interior and exterior MAT coordinates
MAT-I RGB, interior MAT coordinates
MAT-SP RGB, interior spoke vectors
MAT-BIS RGB, bisector angles

Table A.1: Experiments legend

A.1 3DOM data-set

Figure A.1: 3DOM data-set - ground truth

Figures A.2 to A.5 display the outputs of the PointNet++ algorithm, where the 3D medial
axis transform was integrated as a feature. Figure A.1 represents the ground truth labeled
point cloud. Figure A.2 shows results using RGB values as features. Here, it can be seen
that roofs are wrongly labeled as ground, in blue, while the shrub class and the grass one
are often mistaken. Figures A.3 and A.4 outline that the use of coordinates as features
introduces ambiguity in the algorithm. In the left side of the point cloud, it can be observed

81

A Segmented data-sets

Figure A.2: 3DOM data-set - RGB

Figure A.3: 3DOM data-set - MAT-C

Figure A.4: 3DOM data-set - MAT-I

82

A.2 SynthCity data-set

Figure A.5: 3DOM data-set - MAT-RS

that grass, shrub and tree classes are identified as buildings. Last, Figure A.5 shows the
output of radii and separation angles as features. In the pictures, it can be observed how
the identification of grass and shrub classes is cleaner; furthermore roof points are well
classified.

A.2 SynthCity data-set

Figure A.6: SynthCity data-set - ground truth

Figures A.7 to A.10 display the results for the SynthCity data-set. Figure A.6 represents the
point cloud labeled with ground truth values. Figures A.7 and A.10 display similar results;
in the first, only RGB values were used, instead in the second radii and separation angles
information were integrated in the algorithm. Also Figures A.8 and A.9 show similar outputs.

83

A Segmented data-sets

Figure A.7: SynthCity data-set - RGB

Figure A.8: SynthCity data-set - MAT-c

Here, it can be seen that using the MAT exterior and interior, or only interior, coordinates led
to the wrong classification of the natural ground class, which was labeled as pavement, in
red. Furthermore, street furniture objects and trees were labeled as buildings, in blue.

84

A.2 SynthCity data-set

Figure A.9: SynthCity data-set - MAT-i

Figure A.10: SynthCity data-set - MAT-rs

85

A Segmented data-sets

A.3 CycloMedia data-set

Figure A.11: CycloMedia data-set - ground truth

Figure A.12: CycloMedia data-set - RGB

Figures A.12 to A.14 show the outputs of experiments conducted with a subset of Cyclo-
Media’s internal data-set. Figure A.1 represents the ground truth labeled point cloud. In
general, results are affected by the high variability of objects represented and of points’
density. It can be observed how classes are not identified smoothly, but often adjacent
points present different labels. In Figure A.12, it can be seen that the algorithm could hardly
detect buildings and the main horizontal class, the road class. Instead, Figure A.14 depicts
how radii and separation angles could improve the classification of the road class, while de-
tecting zebra-crossings and curbs. Last, in all the images it can be seen that many vertical
elements are labeled as a support pole, in pink. In particular, the use of MAT coordinates led
to the classification of the full point cloud in one class.

86

A.3 CycloMedia data-set

Figure A.13: CycloMedia data-set - MAT-c

Figure A.14: CycloMedia data-set - MAT-rs

87

A Segmented data-sets

A.3.1 SHREC data-set

Figure A.15: SHREC data-set - ground truth

Figure A.16: SHREC data-set - RGB

Figures A.16 to A.19 display results of the experiments conducted with the SHREC data-
set. Here, radii and separation angles were tested, furthermore interior spoke vectors and
bisector angles were integrated as features. As the data-set is labeled in fewer classes,
results are better than those presented for the CycloMedia’s data-set. Figure A.16 shows
results using RGB values as features. As in the experiments shown above, points are not
smoothly classified. Instead, in Figures A.17 to A.19 improvements can be observed. In
fact, MAT derived information helped classify nearby points with the same label. As can be
seen in the images, the three experiments present similar outputs, proving that all three
information are valuable.

88

A.3 CycloMedia data-set

Figure A.17: SHREC data-set - MAT-rs

Figure A.18: SHREC data-set - MAT-sp

Figure A.19: SHREC data-set - MAT-bis

89

B Deep learning glossary

B.1 Concepts of neural networks

Layers and architectures Each layer is composed of multiple neurons; these are the ba-
sic unit of a neural network. The neuron is modeled after the brain’s biological neuron; it
can take multiple inputs, it applies a function to them and produces an output. The out-
put can be then processed by another neuron or it can represent the final prediction of the
architecture.

A neural network is composed of different layers (Figure ??). These are:

– Input layer: it contains the input. Each neuron in this layer corresponds to an attribute
of the data-set, an attribute is a quality of the data-set.

– Hidden layer: it processes the data through different activation functions. An activation
function is used to model complex relationships between features. A Neural Network
can contain one or more hidden layers, these can be fully connected or rely only on a
subset of the previous neurons’ outputs. A fully connected layer is one that takes as
input the output of all neurons in the previous layer.

– Output layer: it is the final layer in the network, which contains the prediction of the
model. A model is a data structure that stores a representation of a data-set.

Weights Within a neural network, the connections between all the elements are called
synapses (lines in Figure ??). They carry the weights which are applied to each element
that “passes" on them. The weights are scalar values that can amplify or reduce the impor-
tance of a given neuron. Updating the weights is the main way in which a neural network
learns.

Biases Biases are scalar values associated with the input of the neural network. These val-
ues guarantee the activation of a neuron for each layer even if their signal is weak [Patterson
and Gibson, 2017]. Like weights, they are updated during the training process.

Activation functions Activation functions model how data, weights and biases are com-
bined to derive a more complex representation of the input. In hidden layers, activation
functions propagate the output of one layer to the next one, thus each neuron in the neural
network applies an activation function to its input. Activation functions are used to introduce
non-linearity to the model.

Loss functions Loss functions determine the quality of the model’s output. The loss func-
tion computes a distance metric between the predicted values and the true ones, called loss
value. The loss value is used in the optimization process, which consists in minimizing the
distance, or error, between the above.

91

B Deep learning glossary

Optimizers Optimizers determine how the neural network is updated based on the output
of the loss function.They use the loss value to update of weights and biases in the network
applying the backpropagation algorithm.

Hyperparameters In neural networks, parameters used to improve the quality and speed
in training are called hyperparameters. They control the optimization function, making sure
that the model does not overfit or underfit the data and that it learns its structure quickly
[Patterson and Gibson, 2017].

B.2 Components of a neural network

Architectures

Convolutional Neural Network uses convolutions to extract features from local regions of
an input. Most CNNs contain a combination of convolutional, pooling and affine layers.
[WILDML, 2019]

Multi Layer Perceptron is a Feedforward Neural Network with multiple fully-connected layers
that use nonlinear activation functions to deal with data which is not linearly separable.
[WILDML, 2019]

Recurrent Neural Network: it models sequential interactions through a hidden state, or mem-
ory. At each time step, an RNN calculates a new hidden state based on the current input
and the previous hidden state. The term “recurrent” stems from the facts that at each step
the same parameters are used and the network performs the same calculations based on
different inputs. [WILDML, 2019]

Spatial Transformer Network: it applies spatial transformations, such as affine and projective
transformations to crop out and scale-normalize the appropriate region of the input. [?]

Layers

Affine layer: it is a fully-connected layer in a neural network. It means that each neuron in
the previous layer is connected to each neuron in the current layer. WILDML [2019]

Batch norm layer normalizes the incoming activations and outputs a new batch where the
mean equals 0 and standard deviation equals 1. It subtracts the mean and divides by the
standard deviation of the batch. A batch is a subset of the input. [Fortuner, 2019]

Convolution layer applies convolution to its input. A convolution is a linear operation that
involves multiplication of weight (kernel/filter) with the input. [Fortuner, 2019]

Dropout layer takes the output of the previous layer’s activations and randomly sets a certain
fraction (dropout rate) of the activations to 0, cancelling or ‘dropping’ them out. [Fortuner,
2019]

Max-pooling layer selects the maximum value from a patch of features. Pooling layers help
to reduce the dimensionality of a representation by keeping only the most salient informa-
tion.

Activation functions

92

B.3 Terminology

Linear a straight line function where activation is proportional to input.

ReLu (Rectified Linear Units), its formula is max(0, Z). Where Z is the weighted input of a
neuron.

Sigmoid takes a real value as input and outputs another value between 0 and 1, its formula
is S(Z) = 1

1+e−Z . Where Z is the weighted input of a neuron.

Softmax calculates the probabilities distribution of the event over ‘n’ different events. In other
words, this function will calculate the probabilities of each target class over all possible target
classes.

Loss functions

Cross-entropy loss, or log loss measures the performance of a classification model whose
output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted
probability diverges from the actual label.

Optimizers

Adaptive Moment Estimation (ADAM) computes adaptive learning rates for each parame-
ter.

– First, it computes the exponentially weighted average of past gradients.

– Second, it computes the exponentially weighted average of the squares of past gradi-
ents.

– Third, these averages have a bias towards zero and to counteract this a bias correction
is applied.

– Lastly, the parameters are updated using the information from the calculated averages.

Hyperparameters

Learning rate is a coefficient that is multiplied with the error gradient during the optimization
process. It determines how much the parameters are adjusted, in fact a small learning rate
lead to a slow optimization while large ones lead to larger updates.

Regularization helps prevent overfitting by controlling the weights in the neural network. It
is represented by the greek letter lambda.

Momentum prevents the model to get stuck in local minima.

B.3 Terminology

Accuracy percentage of correct predictions made by the model.

Attribute a quality describing an observation (e.g. color, size, weight). In Excel terms, these
are column headers.

Bias metric the average difference between your predictions and the correct value for that
observation.

93

B Deep learning glossary

Bias term allow models to represent patterns that do not pass through the origin.

Categorical variables variables with a discrete set of possible values. Can be ordinal or
nominal.

Classification threshold the lowest probability value at which we’re comfortable asserting
a positive classification.

Confusion matrix table that describes the performance of a classification model by group-
ing predictions into 4 categories.

– True positives: correctly predicted positive outputs.

– True negatives: correctly predicted negative outputs.

– False positives: incorrectly predicted positive outputs.

– False negatives: incorrectly predicted negative outputs.

Continuous variables variables with a range of possible values defined by a number scale.

Convergence a state reached during the training of a model when the loss changes very
little between each iteration.

Embedding it maps an input representation, such as a word or sentence, into a vector.

Encoder a stack of several recurrent units where each accepts a single element of the input
sequence, collects information for that element and propagates it forward.

Epochan epoch describes the number of times the algorithm sees the entire data set.

Feature with respect to a dataset, a feature represents an attribute and value combination.
Color is an attribute. Color is blue is a feature. In Excel terms, features are similar to cells.

Feature vector a list of features describing an observation with multiple attributes.

Gradient the slope of our cost function at our current parameter values.

Instance a data point, row, or sample in a dataset. Another term for observation.

Label the “answer” portion of an observation in supervised learning.

Model a data structure that stores a representation of a dataset (weights and biases). Mod-
els are created/learned when you train an algorithm on a dataset.

Normalization restriction of the values of weights in regression to avoid overfitting and
improving computation speed.

Noise any irrelevant information or randomness in a dataset which obscures the underlying
pattern.

Observation a data point, row, or sample in a dataset. Another term for instance.

Outlier an observation that deviates significantly from other observations in the dataset.

Overfitting it occurs when your model learns the training data too well and incorporates
details and noise specific to your dataset.A model is overfitting when it performs great on
your training/validation set, but poorly on your test set.

94

B.3 Terminology

Parameters they are properties of training data learned by training a machine learning
model or classifier. They are adjusted using optimization algorithms and unique to each
experiment. Examples of parameters include: weights in an artificial neural network.

Precision is the percentage of true guesses that were actually correct.

Recall it measures how “sensitive” the classifier is at detecting positive instances. In other
words, for all the true observations in our sample, how many were found.

Regularization it is a technique utilized to combat the overfitting problem. This is achieved
by adding a complexity term to the loss function that gives a bigger loss for more complex
models.

Test Set a set of observations used at the end of model training and validation to assess
the predictive power of your model. It is used to assess how generalizable is the model to
unseen data.

Training Set a set of observations used to generate machine learning models.

Underfitting it occurs when your model over-generalizes and fails to incorporate relevant
variations in your data that would give your model more predictive power. A model is under-
fitting when it performs poorly on both training and test sets.

Validation Set a set of observations used during model training to provide feedback on how
well the current parameters generalize beyond the training set. If training error decreases
but validation error increases, the model is likely overfitting and you should pause training.

95

C Reproducibility self-assessment

C.1 Marks for each of the criteria

Figure C.1: Reproducibility criteria

Criteria for reproducible research:

– Input data: 2

– Pre-processing: 1

– Methods: 1

– Computational environment: 0

– Results: 1

97

C Reproducibility self-assessment

C.2 Self-reflection

The experiments and analyses of this study were performed in collaboration with the com-
pany CycloMedia Technology. Information related to part of the input data or the computa-
tional environment can not be publicly available. In particular,

– Input data: in this research, three data-sets were used. The 3DOM data-set is avail-
able online on request, while the SynthCity data-set is downloadable through a non
permanent website. The SHREC data-set, a subset of CycloMedia’s internal data-set,
is available online and downloadable through a non permanent website. The remain-
ing part of CycloMedia’s internal data-set is not public.

– Pre-processing: data-sets pre-processing methods are documented with text and
workflow descriptions. Most of the methods were performed through CloudCompare.
Data readers and conversions written in Python are not publicly available.

– Methods: he source code of the deep learning algorithms used in this research is avail-
able online onGitHub; themodifications to the algorithms are documented through text
and workflow descriptions.

– Computational environment: this thesis was carried out using CycloMedia’s tools and
servers, thus the computational environment is not reproducible. Python libraries and
software used are documented.

– Results: due to the constraints of the above criteria, results are only understandable
and documented through text, graphs and summary information.

98

Bibliography

Bishop, C. (2006). Pattern recognition and machine learning. Springer.

Boost (2015). Boost C++ Libraries. http://www.boost.org/. Last accessed 2015-06-30.

Boulch, A., Saux, B. L., and Audebert, N. (2017). Unstructured point cloud semantic labeling
using deep segmentation networks. In 3DOR.

Che, E., Jung, J., and Olsen, M. (2019). Object Recognition, Segmentation, and Classi-
fication of Mobile Laser Scanning Point Clouds: A State of the Art Review. Sensors,
19.

Chollet, F. (2017). Deep Learning with Python. Manning.

Coursera (2019). Machine Learning.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T. A., and Nießner, M.
(2017). ScanNet: Richly-annotated 3d Reconstructions of Indoor Scenes. CoRR,
abs/1702.04405.

Docs, R. t. (2019). Machine Learning Glossary.

Fortuner, B. (2019). Machine learning glossary.

Golovinskiy, A., Kim, V. G., and Funkhouser, T. (2009). Shape-based Recognition of 3d Point
Clouds in Urban Environments. International Conference on Computer Vision (ICCV).

Graham, B., Engelcke, M., and van der Maaten, L. (2017). 3d semantic segmentation with
submanifold sparse convolutional networks. CoRR, abs/1711.10275.

Griffiths, D. and Boehm, J. (2019). Synthcity: A large scale synthetic point cloud. CoRR,
abs/1907.04758.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun, M. (2019). Deep learning for
3d point clouds: A survey.

Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schindler, K., and Pollefeys, M. (2017).
Semantic3d.net: A new Large-scale Point Cloud Classification Benchmark. CoRR,
abs/1704.03847.

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., and Markham, A. (2019).
Randla-net: Efficient semantic segmentation of large-scale point clouds.

Hua, B., Tran, M., and Yeung, S. (2017). Point-wise convolutional neural network. CoRR,
abs/1712.05245.

Huang, J. and You, S. (2016). Point Cloud Labeling using 3d Convolutional Neural Network.

99

http://www.boost.org/

Bibliography

Jatavallabhula, K. M., Smith, E., Lafleche, J.-F., Tsang, C. F., Rozantsev, A., Chen, W.,
Xiang, T., Lebaredian, R., and Fidler, S. (2019). Kaolin: A pytorch library for accelerating
3d deep learning research.

Jiang, M., Wu, Y., and Lu, C. (2018). Pointsift: A sift-like network module for 3d point cloud
semantic segmentation. CoRR, abs/1807.00652.

Kang, Z. and Ning, L. (2019). Pyramnet: Point cloud pyramid attention network and graph
embedding module for classification and segmentation. CoRR, abs/1906.03299.

Landrieu, L. (2019a). Deep Learning for 3D Point Cloud Semantic Segmentation.

Landrieu, L. (2019b). Implementing pointnet on aerial lidar data.

Landrieu, L. (2019c). Implementing PointNet on Aerial LiDAR Data.

Landrieu, L. and Boussaha, M. (2019). Point cloud oversegmentation with graph-structured
deep metric learning. CoRR, abs/1904.02113.

Landrieu, L. and Simonovsky, M. (2017). Large-scale Point Cloud Semantic Segmentation
with Superpoint Graphs. CoRR, abs/1711.09869.

Li, J., Chen, B. M., and Lee, G. H. (2018a). So-net: Self-organizing network for point cloud
analysis. CoRR, abs/1803.04249.

Li, Y., Bu, R., Sun, M., and Chen, B. (2018b). Pointcnn. CoRR, abs/1801.07791.

Liu, Y., Fan, B., Xiang, S., and Pan, C. (2019). Relation-shape convolutional neural network
for point cloud analysis. CoRR, abs/1904.07601.

Ma, Y., Guo, Y., Liu, H., Lei, Y., and Wen, G. (2020). Global context reasoning for semantic
segmentation of 3d point clouds. In 2020 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 2920–2929.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
SherryMoore, DerekMurray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng (2015). TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems.

MediaWiki (2015). Sor filter.

NVIDIA (2019). Deep learning glossary.

Özdemir, E., Toschi, I., and Remondino, F. (2019). A multi-purpose benchmark for pho-
togrammetric urban 3d reconstruction in a controlled environment. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-
1/W2:53–60.

100

Bibliography

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Py-
torch: An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Patterson, J. and Gibson, A. (2017). Deep Learning: A Practitioner’s Approach. O’Reilly
Media, Inc., 1st edition.

Peters, R. (2018a). Geographical point cloud modelling with the 3D medial axis transform.
PhD thesis, Delft University of Technology. ISBN: 978-94-6186-899-2.

Peters, R. (2018b). masbcpp.

Peters, R. (2018c). skel3d.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2016). PointNet: Deep Learning on Point Sets
for 3d Classification and Segmentation. CoRR, abs/1612.00593.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. CoRR, abs/1706.02413.

Roynard, X., Deschaud, J., and Goulette, F. (2017). Paris-lille-3d: a large and high-quality
ground truth urban point cloud dataset for automatic segmentation and classification.
CoRR, abs/1712.00032.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice Hall
Press, USA, 3rd edition.

Schmohl, S. and Sörgel, U. (2019). Submanifold sparse convolutional networks for semantic
segmentation of large-scale als point clouds. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-2/W5:77–84.

Sharma, S. (2017). Epoch vs Batch Size vs Iterations.

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M., and Kautz, J. (2018a).
Splatnet: Sparse lattice networks for point cloud processing. CoRR, abs/1802.08275.

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.-H., and Kautz,
J. (2018b). Splatnet: Sparse lattice networks for point cloud processing. cite
arxiv:1802.08275Comment: Camera-ready, accepted to CVPR 2018 (oral); video sum-
mary: https://www.youtube.com/watch?v=5Lbg4l-t-DU.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. (2015). Multi-view convolutional
neural networks for 3d shape recognition. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 945–953.

Tchapmi, L. P., Choy, C. B., Armeni, I., Gwak, J., and Savarese, S. (2017). Segcloud:
Semantic segmentation of 3d point clouds. CoRR, abs/1710.07563.

TERRA3D (2019). A convolution operator for point clouds.

Thomas, H., Qi, C. R., Deschaud, J., Marcotegui, B., Goulette, F., and Guibas, L. J. (2019).
Kpconv: Flexible and deformable convolution for point clouds. CoRR, abs/1904.08889.

Tsang, S.-H. (2019). Review: STN — Spatial Transformer Network (Image Classification).

101

Bibliography

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2018a).
Dynamic Graph CNN for Learning on Point Clouds. CoRR, abs/1801.07829.

Wang, Z., Zhang, L., Zhang, L., Li, R., Zheng, Y., and Zhu, Z. (2018b). A Deep Neural Net-
work With Spatial Pooling (DNNSP) for 3-D Point Cloud Classification. IEEE Transactions
on Geoscience and Remote Sensing, PP:1–11.

Wijmans, E. (2018). Pointnet++ pytorch.

Wikipedia (2019). Deep Learning.

Wikipedia (2020). Gaussian noise — wikipedia, the free encyclopedia.

WILDML (2019). Deep Learning Glossary.

WILDML (2019). Deep learning glossary.

Xia, S. and Wang, R. (2018). Extraction of residential building instances in suburban ar-
eas from mobile LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing,
144:453–468.

Yang, Z., Jiang, W., Xu, B., Zhu, Q., Jiang, S., andHuang, W. (2017). A Convolutional Neural
Network-Based 3d Semantic Labeling Method for ALS Point Clouds. Remote Sensing,
9:936.

102

To my supervisors, Ravi, Weixiao, Bas and Arjen, for the discussions, insights and time.

To my "geomatics" friends, for sharing desperation and laughter over this two years.

To the CycloMedia team, for welcoming me in a great work environment.

To Francesco, for the long hours on the phone and the short trips.

To my parents and family, for the unconditional support.

To Sarah, for being there for me, in Delft and Haarlem.

To Tania, for sharing our meals and our cultures.

To everyone who has been there with me.

Thank you, dankjewel, ευχαριστω’, grazie!

Giulia

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Helvetica.

	Introduction
	Research questions
	Research scope
	Thesis outline

	Theoretical background
	Concepts of neural networks
	Evaluation metrics

	Deep learning in point clouds
	Applications

	Semantic segmentation in point clouds
	Projection networks
	Point-wise MLP networks
	Graph convolution networks
	Point convolution networks

	3D medial axis transform
	Definitions of the medial axis transform
	The unstructured MAT
	The structured MAT

	Methodology
	Overview
	Preliminary steps
	Analysis of algorithms
	3D MAT analysis for data-sets selection
	Data preprocessing
	3D medial axis computation

	Medial axis transform as a feature in deep learning
	PointNet++ analysis
	Using properties of the 3D MAT

	Medial axis transform as a descriptor for a geometric partition
	Superpoint Graph geometric partition
	Using properties of the 3D MAT

	Medial axis transform as a graph attribute for graph convolution
	Superpoint graph and deep learning
	Using properties of the 3D MAT

	Evaluation

	Data-sets and tools
	CycloMedia's internal data-set
	SHREC 2020

	3DOM dataset
	SynthCity dataset
	Tools

	Results and discussion
	Medial axis transform as a feature in deep learning
	Core experiments
	3DOM data-set core experiments
	SynthCity data-set core experiments
	Internal data-set core experiments
	Other experiments
	SHREC 2020 - bisector angles and spoke vectors

	Medial axis transform as a descriptor for a geometric partition
	3DOM dataset experiments
	SynthCity dataset experiments

	Medial axis transform as an attribute for graph convolution

	Conclusions and future work
	Research questions
	Scientific contributions

	Discussion
	Future work

	Segmented data-sets
	3DOM data-set
	SynthCity data-set
	CycloMedia data-set
	SHREC data-set

	Deep learning glossary
	Concepts of neural networks
	Components of a neural network
	Terminology

	Reproducibility self-assessment
	Marks for each of the criteria
	Self-reflection

