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Abstract

In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the
trajectory which costs the least amount of propellant. First some background information as
well as the differences between thrust limited and power limited rockets will be discussed. Then
the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained.
Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found.
Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to
Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets
for these trajectories with the power limited rockets. Here we made this comparison between
a conventional thrust limited rocket with a specific impulse of 455 seconds and the VASIMR
rocket for the power limited rocket. Also the initial mass of both rocket types was taken as
5 · 105 kg. Lastly, we take a look at a gravity assist. Gravity assists can help reduce propellant
use even further. Therefore we will once more look at the trajectory for a power limited rocket
from Earth to Saturn. Only this time we use a gravity assist from Jupiter. Then we can see
if the propellant use is indeed even lower when using the gravity assist. We find that the the
power limited rocket becomes more fuel-efficient as travel time increases. Also using a gravity
assist further reduces propellant consumption.
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Notation

t0 = Initial time [s].

tf = Final time [s].

m(t) = Mass rocket at time t [kg].

m(t0) = Initial mass of the rocket (propellant + payload) [kg].

m(tf ) = Final mass of the rocket (initial mass rocket - propellant). Also known as the payload mass [kg].

g = Earth’s gravitational pull at sea level, 9.81
[m
s2

]
.

Γ = Thrust acceleration
[m
s2

]
.

φ = Flight path angle [rad].

c = Exhaust velocity
[m
s

]
.

P = Engine power [W ].

−ṁ = Mass flow rate

[
kg

s

]
.

R♁ = Radius of the Earth, 6.378 · 106 [m].

M♁ = Mass of the Earth, 5.98 · 1024 [kg].

M� = Mass of the Sun, 1.989 · 1030 [kg].

MX = Mass of Jupiter, 1.89813 · 1027 [kg].

G = Gravitational constant, 6.67408 · 10−11

[
m3

kg · s2

]
.

µ♁ = Standard gravitational parameter of Earth, GM♁ = 3.986004418 · 1014

[
m3

s2

]
.

µ� = Standard gravitational parameter of the Sun, GM� = 1.32712440018 · 1020

[
m3

s2

]
.

µX = Standard gravitational parameter of Jupiter, GMX = 1.26686534 · 1017

[
m3

s2

]
.
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Chapter 1

Introduction

In recent years movies about human spaceflight are booming. Science fiction movies such as
Star Wars [6] or Star Trek [1] are very popular, but also movies that depict humans staying or
living on Mars, e.g. The Martian [7]. However, in reality the only astronomical object besides
the Earth that man has stood foot on, is the Moon. The last manned mission to the Moon
and also beyond a Low Earth Orbit (300 km above the Earth’s surface), was Apollo 17 which
launched in 1972 [10]. These days space agencies such as NASA, National Aeronautics and
Space Administration, have plans to fly to the Red Planet (i.e. Mars) as early as 2030 [24].
Each mission naturally uses rockets. Rockets are a type of propulsion system which we call
anaerobic, meaning without air. Where an airplane uses surrounding air to lift off and extract
oxygen, a rocket moves in a near vacuum. Therefore a rocket needs to carry all its fuel, called
propellant, on board and can only thrust forward by expelling mass. In the last century rockets
mostly relied on chemical reactions to achieve thrust, but today electrical propulsion systems
are seen as key for the new generation of space missions [2].

1.1 Power Limited Rockets

In this thesis we will focus on the electrical propulsion systems which are also known as power
limited rockets [11]. This is because electrical propulsion systems use a certain, fixed, power unit
to achieve thrust. Therefore its thrust is limited by the power available. Chemical propulsion
systems, which are still popular these days, are called thrust limited [11]. This is because they
use chemical reactions to achieve thrust. However, chemical reactions are bound by how quickly
the reactions take place and the amount of energy that is released by them. Therefore they
will be limited by the amount of thrust that can be generated by the chemical reactions. The
most distinguishable feature between these two types of propulsion systems is that chemical
propulsion systems are known for their high thrust capabilities. This is why they are often used
for launch. Meanwhile, electrical propulsion systems are much more economical, meaning the
overall propellant costs are lower. In this thesis we will focus on how to compare these two types
of rocket propulsion systems and which one would be preferable in different types of missions.

1.2 Goal of the Research

The main goal of this thesis will be to find an optimal trajectory for a spacecraft that uses an
electrical propulsion system, depending on its destination. In our case, we have chosen that
instead of thinking of an optimal trajectory as a trajectory which takes the least time, we will
minimize the propellant use. This seems more logical because we could fly at full power to the

3



4 CHAPTER 1. INTRODUCTION

moon and it would take little time, however the fuel costs would be enormous. Because of this,
we will be looking at how the power limited rockets perform when wanting to minimize fuel use.
Would flying to for example Mars take much longer than if we use the conventional, chemical
rockets? Or is the difference not that significant and could power limited rockets be a part of
future spaceflight missions? These are some of the questions we will be looking to answer in this
dissertation.

1.3 Outline of the Thesis

In order to answer the questions from the previous section, we will need to take appropriate
steps. First, we will go a little more in depth into the differences between electrical and chemical
propulsion systems and how we will be able to compare their performances. This will be done
in Chapter 2. In Chapter 3, we will take a look at the mathematics needed to minimize the
fuel costs and look at the case of a homogeneous gravity field, takeoff from the Earth’s surface.
In chapter 4, we will then take a look at an inhomogeneous gravity field and we are interested
in flying to different destinations. We will be looking at flying from a Low Earth Orbit to a
Geostationary Earth Orbit. Furthermore we will also consider the trajectory when flying from
the Earth to Mars and from the Earth to Saturn and compare the overall propellant costs of
these trajectories to the results of chemical propulsion systems. Afterwards in chapter 5, we
will take a look at a flyby. In reality, when a rocket is launched and set to fly to, for example,
Mars or Jupiter, it often uses a flyby or gravity assist from Venus or the Earth in order to save
fuel and reduce flight time. We will look at how the trajectory and most importantly, fuel use,
changes if we use a gravity assist from Jupiter when flying to Saturn. Lastly, in chapter 6, we
will conclude our results and discuss how realistic it is to use power limited rockets and for
what types of missions they could be most likely used. All the used codes and some additional
calculations can be found in the Appendices.



Chapter 2

Overview of Different Rocket Types

2.1 A Brief History of Rockets

The very first rocket dates back to the Greek philosopher Archytas (428 to 347 B.C.) [14].
Although this rocket was not used for outer space, it was the first device which could be called
a rocket. He made a small device which was shaped like a bird. This device was then propelled
by a jet of steam or compressed air [14]. After this, mostly only ‘solid propellant’ rockets were
used. These were rockets that were fueled by gunpowder and originate from China [14]. It was
only in the 16th and 17th century that the foundations of rocket science were laid by Galileo
Galilei and Sir Isaac Newton. However rockets in the 18th and 19th century were mostly used
as weapons in wars. Finally in the 20th century Konstantin Tsiolkovsky (1857-1935), Robert
Goddard (1882-1945) and Hermann Oberth (1894-1989) laid the foundation of spaceflight as
we know it [14]. The former two both came to the conclusion that liquid propellant rockets
were better than solid propellant rockets, with Goddard successfully launching the first liquid
propellant rocket in 1926 [15]. This first liquid propellant rocket was fueled by liquid oxygen and
gasoline. It flew for two and a half seconds, climbed 12.5 meters, and landed 56 meters away.
This may not sound like much of an achievement, but no one had ever successfully built a liquid
propellant rocket before. Since then, mostly liquid propellant rockets were used for missions
such as Sputnik 1, the first ever artificial Earth satellite launched by the USSR on October 4th,
1957 [17]. This rocket used liquid kerosene and oxygen as its propellant.

2.2 Rocket Types

Nowadays there is a wide variety of propulsion systems which can be categorized in two main
categories: chemical propulsion and electrical propulsion. The main difference between these
two is that chemical propulsion systems can achieve higher thrust in shorter periods of time than
electrical propulsion systems [4]. This is the reason why chemical propulsion is mostly used for
launch. Furthermore chemical propulsion systems are capable of making instant velocity changes
whilst electrical propulsion systems need long periods of time to build up speed [4]. However,
there are some electrical propulsion systems which could be very promising. Yet in order to
compare performance capabilities of these rockets we first introduce the term specific impulse,
Isp. Specific impulse is denoted in seconds and represents the amount of thrust the rocket is
able to generate with the weight of propellant, in Newton, expelled during 1 second [19]. It can
be written as Isp = c

g , where c is the exhaust velocity of the propellant and g is the gravitational

acceleration constant at sea level, g = 9.81 m/s2 [4]. Thus a propulsion system with a higher
specific impulse uses the mass of the propellant more efficiently in creating thrust. Still these
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6 CHAPTER 2. OVERVIEW OF DIFFERENT ROCKET TYPES

two main categories can be broken down a bit further. We will be using the book Understanding
Space: an Introduction to Astronautics [4] for the next subsections.

2.2.1 Chemical Propulsion Systems

1. Liquid bipropellant: This rocket type uses two liquid propellants. One is fuel, most com-
monly liquid hydrogen and the other is an oxidizer, usually liquid oxygen. This particular
combination results in a specific impulse around 455 seconds. However one drawback is
that these propellants need to be cooled at hundreds degrees Celsius below zero. This can
be problematic over very long periods of time. Therefore hydrazine and nitrogen tetroxide
are sometimes preferred to be used as they remain stable at room temperature. Although,
the drawback is that the specific impulse of this combination is lower, around 300 seconds.

2. Liquid monopropellant: As its name implies, this rocket uses a single propellant. The
most used monopropellant is by far hydrazine (N2H4). It produces a fairly high Isp, around
230 seconds, however it is still much lower than most liquid bipropellants. Monopropellant
rockets are used for their simplicity and reliability, although for launch vehicles liquid
bipropellant rockets are preferred because of their higher Isp and thrust.

3. Solid propellant: Solid propellant rockets are a bit similar to liquid bipropellant rockets.
They contain a mixture of fuel and oxidizer which is solidified. The most common oxidizer
is ammonium perchlorate and for fuel it mostly uses powdered aluminum. Specific impulse
mostly ranges from 200 to 300 seconds. These rockets are used because of their simplicity
and reliability. However once started, the solid propellant rockets are difficult to stop and
cannot be restarted. Instead they use all their fuel in one go.

2.2.2 Electrical Propulsion Systems

Electrical propulsion systems are known for their high specific impulse, yet their thrust capacities
are mostly very low. Again we can divide the electrical propulsion systems in three subcategories.

1. Electrothermal: These types of rockets are quite similar to chemical liquid propulsion.
Electrothermal rockets operate by using a propellant and heating it before accelerating the
propellant and thus producing thrust. The specific impulse of this type is around 500-1000
seconds.

2. Electromagnetic: Electromagnetic propellant rockets use a flowing electrical current
and magnetic fields for acceleration. There is a wide variety of electromagnetic propulsion
rockets but most of them have an Isp between 1000 and 7000 seconds.

3. Electrostatic: These rockets are also known as ion thrusters. They use an applied electric
field to accelerate an ionized propellant. The most common used propellant is Xenon. Also
the specific impulse of these rockets can be up to 10,000 seconds.

Thus in overview we know:
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Type Isp [s] Thrust [N]

Liquid bipropellant 300 - 460 up to 107

Liquid monopropellant 180 - 250 0.1 - 100
Solid propellant 200 - 300 103 - 107

Electrothermal 500 - 1000 10−2 - 10
Electromagnetic 1000 - 7000 10−3 - 10

Electrostatic 2000 -10,000 10−6 - 10−3

Table 2.1: Overview of the specific impulse as well as thrust of different types of propulsion
systems. [4][19]

2.3 Comparing Chemical and Electrical Propulsion Systems

Now we need a way to compare the performance of chemical propulsion systems to electrical
propulsion systems. As discussed before, in this thesis we will primarily focus on finding the
optimal trajectory for an electrical propulsion system. The optimal trajectory for a chemical
propulsion system has already been found by Walter Hohmann. Walter Hohmann was a German
engineer born on 18th March 1880 in Hardheim, Germany. Hohmann is to this day considered
one of the most important figures in laying the foundation of interplanetary travel as we know
it. In 1925 he published his work ‘Die Erreichbarkeit der Himmelskörper’, The Attainability of
the Heavenly Objects, where he discussed a method to move a spacecraft between two different
orbits in a fuel-efficient way [3]. It is remarkable he was already thinking about this, considering
it would be another 32 years before the first artificial satellite was launched [17]. The method
Hohmann discussed in his publication is nowadays known as the Hohmann Transfer Orbit and
is still used to this day.

2.3.1 Hohmann Transfer Orbit

So what does the Hohmann transfer orbit entail exactly? Well, Hohmann realized early on
that minimizing fuel use would be very important if humankind were ever to travel to another
planet. So the Hohmann Transfer Orbit is the most cost-effective manoeuvre for interplanetary
travel. The basic concept of this manoeuvre is to move a spacecraft from one circular orbit
to another circular orbit. It is assumed in this method that the orbits are in the same plane
and that there are instantaneous velocity changes tangent to the initial and final orbits. This
last assumption means that this manoeuvre can only be used in chemical propulsion systems as
electrical propulsion systems are not capable of instantaneous velocity changes. The manoeuvre
is then carried out in three steps, see figure 2.1.

At first the rocket is in circular orbit 1 with a radius R from the centre of mass, O. Then the
rocket carries out an instantaneous velocity change, ∆v, tangent to the circular orbit resulting
in an elliptical orbit, orbit 2. Then when arriving at the point where orbit 2 and 3 intersect, a
second instantaneous velocity change is made ∆v′, ensuing that the rocket is now in a circular
orbit at radius R′.
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Figure 2.1: Hohmann Transfer Orbit. The rocket produces an instantaneous velocity change,
∆v, to go from orbit 1 into the transfer orbit, orbit 2. When reaching the intersection of orbit
2 and 3, the rocket uses a second instantaneous velocity change, ∆v′, to get into orbit 3. [8]

2.3.2 Rocket Mass for the Hohmann Transfer Orbit

In 1903 the Russian Konstantin Tsiolkovsky published his work where he discussed the use of
the following equation.

∆v = Ispg ln

(
m0

mf

)
.

This equation is since known as ‘Tsiolkovsky’s rocket equation’ [9]. It relates the maximum
change of velocity of a rocket in terms of specific impulse, Isp, standard gravity, g = 9.81, initial
mass of the rocket, m0, and final mass of the rocket, mf . When knowing the ∆v necessary
for the trajectory, the propellant costs can be calculated with Tsiolkovsky’s rocket equation.
However, we first need the means to find the ∆v that is necessary for a trajectory. For this we
need the mechanical energy, which is defined as the potential energy added to the kinetic energy.
So, E = 1

2mv
2 − µm

R . This equation shows the relationship between the spacecraft’s mass, m,
its velocity, v, its position, R, and the standard gravitational parameter of the centre of mass,
µ. Here µ is defined as µ = GM , with M the mass of the centre of mass around which we are
rotating. However, to generalize this equation we do not want to worry about the mass of the
rocket. Therefore we introduce the term specific mechanical energy, which is merely ε = E

m [4].
Thus this means:

ε =
v2

2
− µ

R
.

Simply rearranging this equation gives us an expression for the velocity of the rocket at position
R, namely:

v =

√
2
( µ
R

+ ε
)
. (2.1)

From Understanding Space: an Introduction to Astronautics [4] chapters 4 and 6, we know that
the specific mechanical energy is also equal to

ε =
−µ
2a

. (2.2)
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Here a is known as the semi-major axis, which is simply half of the longest diameter of an ellipse.
Note that if we have a circle, the semi-major axis is the same as the radius of the circle. Now we
can calculate the ∆v necessary for the trajectory. This will be carried out in a few steps. First
we will calculate ∆v1 which takes the spacecraft from orbit 1 into the transfer orbit, orbit 2, see
figure 2.1. This ∆v1 is equal to the velocity needed for the spacecraft to enter the transfer orbit
at radius R, minus the velocity of the spacecraft in orbit 1. Furthermore ∆v2 is equal to the
velocity of the spacecraft in orbit 2, minus the velocity of the spacecraft in the transfer orbit at
radius R′. Thus:

∆v1 = |vtransfer at orbit 1 − vorbit 1|,
∆v2 = |vorbit 2 − vtransfer at orbit 2|.

From equation (2.1) we know how to calculate these velocities, hence:

vorbit 1 =

√
2
( µ
R

+ εorbit 1

)
,

vtransfer at orbit 1 =

√
2
( µ
R

+ εtransfer

)
,

vtransfer at orbit 2 =

√
2
( µ
R′

+ εtransfer

)
,

vorbit 2 =

√
2
( µ
R′

+ εorbit 2

)
.

Finally, the total ∆v can be calculated as ∆v = ∆v1 + ∆v2. Then only Tsiolkovsky’s equation
is needed in order to calculate the propellant necessary for the trajectory. Thus we know how to
calculate the propellant costs of a thrust limited rocket which uses a Hohmann Transfer Orbit.
Nevertheless, we are also interested to see how the power limited rockets compare to thrust
limited rockets on flight time. We want to know the time of flight (TOF) of the Hohmann
transfer orbit [4]. This is equal to:

TOF 1 = π

√
a3

transfer

µ
.

Still, because of the extensive differences in rocket types as discussed in the last section, we will
need to make a distinct choice for our chemical rocket which uses a Hohmann transfer orbit and
our power limited rocket for which we will determine the transfer orbit in the next chapters.
Only then can we make a fair comparison.

2.3.3 VASIMR

Now that we know how to calculate the propellant use for chemical propulsion systems, we have
to make some decisions. We choose one specific form of chemical rocket and compare its per-
formance to one specific form of electrical rocket. We have chosen to take a liquid bipropellant
rocket as the chemical rocket as it is the most commonly used in this category. More specifi-
cally we will be using the specifications of a bipropellant rocket using liquid oxygen and liquid
hydrogen, meaning we will assume an Isp of 455 seconds [4]. Moreover, the electrical propulsion
rocket of choice will be the VASIMR rocket. VASIMR stands for: Variable Specific Impulse
Magnetoplasma Rocket and it is a type of electromagnetic thruster. It has an operational power

1In this equation we always use SI-units.
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of around 59 MW and a variable Isp of between 10,000 and 30,000 seconds [23]. Also its thrust
capacities are quite high when comparing it to other types of electrical propulsion. The VASIMR
rockets are seen as the bridge between high Isp and low thrust and low Isp and high thrust. It
takes the best of both worlds. Throughout the entire thesis, these two rockets will be used to
compare chemical propulsion to electrical propulsion.



Chapter 3

The Mathematical Approach

In this chapter we deal with the mathematics needed to be able to calculate an optimal trajectory
for the power limited rockets. In our case, this means finding the most cost-effective trajectory
where we minimize fuel use. In order to minimize the use of fuel for a power limited rocket, we
have to minimize the cost function:

∫ tf
t0

1
2Γ2dt [11]. Later on in this chapter, the derivation of

this function will be discussed. In this equation, Γ is the thrust magnitude of the rocket which
can be varied. But first, we will agree on some assumptions.

3.1 Assumptions

Naturally it would be desirable to create an as realistic trajectory as possible. Though for
the sake of simplicity, some assumptions need to be made. In this section we merely specify
the assumptions that will hold throughout the entire thesis unless otherwise declared. The
assumptions are:

1. The only forces acting on the spacecraft are gravity and thrust. (No atmospheric drag,
solar radiation etc.)

2. All astronomical objects are perfect spheres.

3. Each planet’s orbit around the Sun is perfectly circular.

4. We will be working in a two-dimensional plane.

5. Orbits and the trajectory of the rocket are in the same plane.

3.2 The Cost Function

In the introduction of this chapter the cost function has already been expressed. The derivation
of this cost function will be made using the book Optimal Control with Aerospace Applications
[11], chapter 10. The thrust acceleration, Γ, can be derived from the conservation of momentum:

mΓ = −ṁc (3.1)

Furthermore, power is the energy consumption per unit time. Thus power is:

P = −1

2
ṁc2 (3.2)

11



12 CHAPTER 3. THE MATHEMATICAL APPROACH

Combining these two equations we can derive an expression for the propellant costs.

Γ2

2P
=

ṁ2c2

m2

−2
ṁc2

2

=
−ṁ
m2

=
d

dt

(
1

m

)
.

Thus the propellant costs, which we will call J , will be proportional to

1

m(t0)
− 1

m(tf )
=

∫ tf

t0

Γ2

2P
dt.

In order to maximize the final mass, for a given value of initial mass, the engine needs to run
at maximum power P = Pmax [11]. For this reason, the final cost functional which is used
throughout this thesis is J =

∫ tf
t0

1
2Γ2dt.

3.3 Optimal Control Theory

Now that we have agreed on several assumptions, we need to take a closer look at how to math-
ematically minimize the cost function, J =

∫ tf
t0

1
2Γ2dt. This will be done using the Hamiltonian,

in particular the Hamiltonian of Optimal Control Theory [5] which was developed by Lev Pon-
tryagin (1908 - 1988). The Hamiltonian of optimal control theory can be used to minimize a
function which is subject to several conditions. So for problems that can be written as:

min V =

∫ tf

t0

F (t,x,u)dt,

subject to x′ = f(t,x,u),

x(t0) = given,

x(tf ) = given.

Here F (t,x,u) is the function we want to minimize and u is the steering variable(s). In our
case the steering variables are thrust magnitude, Γ, and thrust direction, given by the angle
φ [5]. Furthermore x′ is known as the equations of motion and x is the vector of the position
and velocity variables. So, x′ will describe the equations of motion of our rocket. Now the
Hamiltonian can be formulated as:

H(t,x,u,λλλ) = F (t,x,u) + λλλf(t,x,u).

Knowing we want to optimize the steering variable(s), u, the Hamiltonian is subject to ∂H
∂u = 0

[5]. Furthermore, when the Hamiltonian is formed, we can write x′ = ∂H

∂λλλ
and λλλ′ = −∂H

∂x .

If xi(tf ) is not given, ergo it is ‘free’, then we use the transversality that its costate variable
λi(tf ) = 0 [5]. When subsequently solving these ordinary differential equations, we finally obtain
the desired trajectory. It is also good to note that if the final time,tf , is not specified (‘free’),
then it must hold that H(tf ) = 0. Lastly whenever the Hamiltonian does not directly depend
on time t, meaning there is no t term in the Hamiltonian, then the Hamiltonian is constant [5].
Proof of this can be found in Appendix A.1.

3.4 Close to Earth’s Surface

In order to further illustrate the use of the Hamiltonian as described in the previous section, we
will look at the case of a homogeneous gravity field. This means we want to find the trajectory
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for a rocket at launch, where we will minimize the cost function mentioned before, J =
∫ tf

0
1
2Γ2dt.

First we need to think about how to describe the motion of the rocket. We are working with
Cartesian coordinates, meaning the position of the rocket is described in x, y and the velocity in
vx, vy.

Figure 3.1: Rocket
launch with thrust magni-
tude Γ and flight path an-
gle φ. [12]

For the equations of motion we will have to look at the derivatives of
x, y, vx, vy. Where we note that the change in velocity for vx depends
on the thrust magnitude, Γ, as well as flight path angle, φ. For vy this
is also the case, except we also have the gravitational acceleration in
the negative y-direction, g. Furthermore, g will be taken as a constant
as we are only interested in takeoff from the Earth’s surface, meaning
the change in g is negligible. This means the motion of the rocket can
be described with:

x′ = vx

y′ = vy

v′x = Γ cos(φ)

v′y = Γ sin(φ)− g

Knowing we want to minimize the cost function mentioned before, this results in the following
Hamiltonian:

H(t) =
1

2
Γ2 + λ1vx + λ2vy + λ3Γ cos(φ) + λ4(Γ sin(φ)− g)

From the Hamiltonian theorem [5] we know that:

x′ =
∂H

∂λ1
, y′ =

∂H

∂λ2
, v′x =

∂H

∂λ3
, v′y =

∂H

∂λ4
,

λ′1 = −∂H
∂x

, λ′2 = −∂H
∂y

, λ′3 = −∂H
∂vx

, λ′4 = −∂H
∂vy

.

In our case the steering-variables which we want to optimize are, as mentioned before, Γ and φ.
This means we solve ∂H

∂Γ = 0 and ∂H
∂φ = 0. This gives us:

cos(φ) =
−λ3√
λ2

3 + λ2
4

, sin(φ) =
−λ4√
λ2

3 + λ2
4

.

We also obtain Γ = −λ3 cos(φ) − λ4 sin(φ) =
√
λ2

3 + λ2
4. After elimination of the steering vari-

ables, our Hamiltonian reduces to:

H(t) = −1

2
(λ2

3 + λ2
4) + λ1vx + λ2vy − gλ4.

And we are left with eight Ordinary Differential Equations, ODEs:

x′ = vx, y′ = vy, v′x = −λ3, v′y = −λ4 − g,
λ′1 = 0, λ′2 = 0, λ′3 = −λ1, λ′4 = −λ2.
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These can easily be solved by hand:

λ1(t) = λ1,

λ2(t) = λ2,

λ3(t) = −λ1t+ c1,

λ4(t) = −λ2t+ d1,

vx(t) =
1

2
λ1t

2 − c1t+ c2,

vy(t) =
1

2
λ2t

2 − d1t− gt+ d2,

x(t) =
1

6
λ1t

3 − 1

2
c1t

2 + c2t+ c3,

y(t) =
1

6
λ2t

3 − 1

2
d1t

2 − 1

2
gt2 + d2t+ d3.

Where c1, c2, c3, d1, d2, d3 are the integration constants. In order to solve these integration con-
stants, we need begin and end conditions. As discussed before, we are only interested in takeoff
of the rocket, from the Earth’s surface. This means that our initial conditions are x(0) = 0,
y(0) = 0, vx(0) = 0, vy(0) = 0. We are interested in flying to an altitude of h kilometres and
to be in orbit around the Earth at this altitude. This means for our end conditions that the
position of x at end time, tf , is free. This means instead of x(tf ) having a given value, we know
that the costate variable belonging to x, λ1 is zero at end time tf . Furthermore, in order to
be in orbit at a given altitude h, we solve that the gravitational force near the Earth’s surface:

Fg = M1 · g, must be equal to the centripetal force: Fc =
M1v

2
x

(R+ h)
. Here M1 is the mass of the

rocket and R denotes the radius Earth. Solving this for vx when the spacecraft is close to the
Earth, meaning R+ h ≈ R, gives: vx =

√
g ·R. Naturally the end condition for y is to be at an

altitude of h kilometres and the end condition for vy(tf ) = 0, because at tf we are in orbit. In
overview:

x(0) = 0, λ1(tf ) = 0,

y(0) = 0, y(tf ) = h,

vx(0) = 0, vx(tf ) =
√
g ·R,

vy(0) = 0, vy(tf ) = 0.

Because tf is free, we have the additional condition that H(tf ) = 0. Solving the equations using
the conditions we obtain:

λ1 = 0, (3.3)

λ2 = −12h

t3f
, (3.4)

λ3 = −
√
g ·R
tf

, (3.5)

λ4(t) = −6h

t2f
+

12ht

t3f
− g, (3.6)
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x(t) =
t2
√
g ·R

2tf
, (3.7)

y(t) =
3ht2

t2f
− 2ht3

t3f
, (3.8)

vx(t) =
t
√
g ·R
tf

, (3.9)

vy(t) =
6ht

t2f
− 6ht2

t3f
. (3.10)

Having derived this, we still want to know what the optimal end time, tf , is depending on the
altitude we are flying to. We can find this using the condition H(tf ) = 0 and knowing H(t) is
constant (Appendix A.1), so H(0) = H(t) = H(tf ) = 0. Using this we obtain:

tf (h) =

√√√√ R

2g

(
1 +

√
1 +

144h2

R2

)
. (3.11)

Using these functions, equations (3.3 - 3.10), we can now plot the trajectory of our spacecraft.
The trajectory of the spacecraft is shown in figure 3.2, where the rocket flies to an altitude of
100 kilometres. This means the end time tf for this trajectory was roughly tf ≈ 806 s.

Figure 3.2: Trajectory of the spacecraft flying to an altitude of 100 kilometres from the Earth’s
surface.
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Figure 3.3: End time tf depending on altitude h.

We also make a figure of the optimum end time, tf , depending on the altitude which we want
to reach. Figure 3.3 shows that the optimal end time almost linearly depends on the altitude,
as h becomes large.

3.4.1 Equation for Payload

Now in order to be able to make a comparison between the propellant mass used when using
a Hohmann Transfer Orbit and the transfer orbit for an electrical propulsion system with the
method as described in the previous sections, we need an expression for the mass of the rocket.
The expression for the mass of the rocket using a Hohmann transfer orbit, has been explained
in section 2.3.2. Nevertheless, we still need an expression for the mass of the rocket using an
electrical propulsion system. For this, remember equations (3.1) and (3.2) from section 3.2.

From equation (3.1), we conclude that the time-dependant exhaust velocity is c =
√
−2P

ṁ .

Furthermore, note that from the previous section we know that Γ =
√
λ2

3 + λ2
4. Combining

equation (3.1) and (3.2) we can eliminate c and we obtain an expression for the mass of the
rocket at time tf which is known as the mass of the payload.

Γ = −ṁ
m

√
−2P

ṁ
=

1

m

√
−2Pṁ =

√
λ2

3 + λ2
4, (3.12)

−2P
ṁ

m2
= λ2

3 + λ2
4, (3.13)

d

dt

(
1

m

)
= − ṁ

m2
=
λ2

3 + λ2
4

2P
, (3.14)

1

m(t0)
=

1

2P

∫ t0

t0

(λ2
3 + λ2

4)dt+ C = C, (3.15)

m(tf ) =
1

1
m(t0) + 1

2P

∫ tf
t0

(λ2
3 + λ2

4)dt
. (3.16)
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Using this equation, we can calculate the mass of the rocket at end time tf . Thus when knowing
the initial mass m(t0), the propellant costs can be calculated. The power of the rocket will be
taken to be equal to 59 MW as we take the specifications of a VASIMR rocket. Additionally
we have to agree on the initial mass of the rocket as it is necessary when calculating the final
mass. The initial mass of the rocket will be taken to be equal to m(t0) = 5 · 105 kg, as this is a
realistic initial mass for a rocket [18]. Using equation (3.16), we can calculate the final mass of
the rocket for the trajectory from figure 3.2.

m(806) =
1

1
5·105

+ 1
2∗59∗106

∫ 806
0

(
−
(√

g·R
806

)2
+
(
− 6h

8062
+ 12ht

8063
− g
)2
dt

) ,
≈ 1.511 · 103 kg.

We can see that a lot of fuel has been used. This is argumentative as the gravitational pull of
the Earth is largest at launch, therefore a lot of propellant has to be used in order to lift off.
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Chapter 4

Trajectories in the Solar System

Now that we know the mathematics for finding the optimal trajectory, we apply the method to
finding optimal trajectories in the Solar System. We will focus on three different trajectories.
The first will be flying from a Low Earth Orbit (LEO), to a Geostationary Earth Orbit (GEO).
The second one will be flying from the Earth to Mars and the third one from the Earth to
Saturn. The gravitational pull from the Earth or Sun, whichever we use as centre of mass, will
no longer be constant. This means we are working in an inhomogeneous gravity field, where
the further we are away from the centre of mass, the lower its gravitational pull will be. In the
first part of the chapter we will be working in polar coordinates as they reduce the complexity
of our equations. This means we need to write our equations of motion in polar coordinates
and derive the Hamiltonian in the same way as discussed in the previous chapter. After we
have derived the Hamiltonian and acquired our ODEs, we can take a look at the three different
trajectories. To conclude this chapter, we will take look at comparing the propellant use of the
three trajectories to the propellant use of the Hohmann Transfer Orbits.

4.1 Polar Coordinates

The first step into obtaining the trajectories is writing the equations of motion in polar coordi-
nates. We have chosen to work in polar coordinates as they reduce complexity of the equations.
This now means we no longer have the equations of motion in the form of x, y, vx, vy. Instead
we will now look at the radius, r, angle, θ, radial velocity, vr, and tangential velocity, vθ. Figure
4.1a, may give a good rendition of what we mean by these. The figure shows how the rocket
would fly from Earth to Mars with showing what r, θ, vr and vθ are. The same principle holds
if we fly from LEO to GEO or from the Earth to Saturn.

Now in order to acquire the equations of motion, we use Kepler’s law of planetary motion
[4]. Here r = r · r̂ where r is the distance (radius) from centre of mass to the rocket and r̂ is a
unit vector pointing towards the rocket. We can find the equations of motion knowing r′ = v.
This gives us:

r′ = r̂′r + r̂r′, ⇔

v = θ̂̂θ̂θθ′r + r̂r′ = vrr̂ + vθθ̂̂θ̂θ.

19
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(a) ’ (b)

Figure 4.1: On the left the polar coordinates can be seen when flying from the Earth to Mars.
The figure on the right gives a rendition of the thrust vector Γ. [12]

Here θ̂̂θ̂θ is a unit vector, tangent to r̂. Furthermore we also need the acceleration vector:

r′′ =
d

dt

(
vrr̂ + vθθ̂̂θ̂θ

)
,

= v′rr̂ + vrθ̂̂θ̂θθ
′ + v′θθ̂̂θ̂θ + vθ(−r̂θ′),

=

(
v′r −

v2
θ

r

)
r̂ +

(vrvθ
r

+ v′θ

)
θ̂̂θ̂θ.

Using Newton’s second law, we then know that this acceleration vector must be equal to:

r′′ =

(
v′r −

v2
θ

r

)
r̂ +

(vrvθ
r

+ v′θ

)
θ̂̂θ̂θ =
−GM
r2

r̂ + Γ.

Where Γ = (r̂ sin(φ) + θ̂̂θ̂θ cos(φ))Γ, see figure 4.1b. This means we have the equations of
motion as follows:

r′ = vr,

θ′ =
vθ
r
,

v′r =
v2
θ

r
− GM

r2
+ Γ sin(φ),

v′θ = −vrvθ
r

+ Γ cos(φ).

Thus giving us the following Hamiltonian:

H(t) =
1

2
Γ2 + λ1vr + λ2

vθ
r

+ λ3

(
v2
θ

r
− GM

r2
+ Γ sin(φ)

)
+ λ4

(
−vrvθ

r
+ Γ cos(φ)

)
.
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Same as before, we want to optimize (minimize) H, with respect to Γ and φ. Therefore we solve
dH
dφ = 0, giving us:

cos(φ) =
−λ4√
λ2

3 + λ2
4

, sin(φ) =
−λ3√
λ2

3 + λ2
4

.

And dH
dΓ = 0 gives us:

Γ =
λ2

3√
λ2

3 + λ2
4

+
λ2

4√
λ2

3 + λ2
4

=
√
λ2

3 + λ2
4.

Substituting these into the Hamiltonian reduces it to:

H(t) = −1

2
(λ2

3 + λ2
4) + λ1vr + λ2

vθ
r

+ λ3

(
v2
θ

r
− GM

r2

)
− λ4

vrvθ
r
.

Using the same method as we did in the previous chapter, we obtain eight ODEs:

r′ = vr, θ′ =
vθ
r
, v′r = −λ3 +

v2
θ

r
− GM

r2
, v′θ = −λ4 −

vrvθ
r
,

λ′1 = λ2
vθ
r2

+ λ3

(
v2
θ

r2
− 2GM

r3

)
− λ4

vrvθ
r2

, λ′2 = 0, λ′3 = −λ1 + λ4
vθ
r
, λ′4 =

λ2

r
− 2λ3vθ

r
+
λ4vr
r

.

We can no longer solve these differential equations analytically. Therefore we need to numer-
ically solve these equations. The program that has been chosen for this task is Matlab [22].
Furthermore we will be using the built-in command BVP4C [13], which solves boundary value
problems for ordinary differential equations. In order to use this however, we again need certain
begin and end conditions which will depend on the destination. We will be looking at three
different trajectories. As decided in 3.4.1, for every trajectory we will take the initial mass of
the rocket to be equal to m(t0) = 5 · 105 kg.

4.1.1 LEO to GEO

As stated before, for the first trajectory we are interested in flying from a Low Earth Orbit
(LEO), to a Geostationary Earth Orbit (GEO) [4]. A Low Earth Orbit in this case is chosen to
be 300 kilometres above the Earth’s surface. The Earth’s core is chosen as the centre of mass
which means that we want to fly from a radius of 6, 678 km to around 42, 164 km. Furthermore
θ(0) = 0, because we want to launch from a point on the x-axis. Lastly, we choose vr(0) = 0 and

vθ(0) =
√

µ♁
r(0) because we start in a circular orbit at radius r(0). This was calculated by once

more solving Fg = Fc, only we used Fg = µ♁
M1
r(0) instead of Fg = M1 · g as the latter equation

only holds if the rocket is very close to the Earth. Here M1 is again the mass of the rocket. We
also need end conditions as we have eight differential equations to solve. The end conditions for
r is clear, the angle θ is free, therefore λ2(tf ) = 0. From the last section we know that λ′2 = 0,
therefore λ2 = 0 for every t. Lastly we choose that we are again in a circular orbit at r(tf ) and

thus vr(tf ) = 0 and vθ(tf ) =
√

µ♁
r(tf ) . It was chosen that instead of using the unit metres for

distance, we will be using kilometres. For time, we will keep working in the SI-unit, seconds.
All variables such as µ♁, which in SI-units is measured in [m

3

s2
], have naturally been converted

accordingly. So in overview we have the following boundary conditions of the problem:

t0 = 0 [s], r(0) = 6678 [km], θ(0) = 0 [rad], vr(0) = 0
[
km
s

]
, vθ(0) =

√
µ♁
r(0)

[
km
s

]
,

tf = T [s], r(T ) = 42164 [km], λ2(T ) = 0 [rad], vr(T ) = 0
[
km
s

]
, vθ(T ) =

√
µ♁
r(T )

[
km
s

]
.
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In the previous chapter we used the Hamiltonian function and the condition H(T ) = 0, to find
an explicit value for the optimal end time, T , using the equations of our lambdas. However, now
it is not possible to analytically find an expression for our lambdas. Therefore we chose to take
this problem on differently. Instead we varied T and observed how the Hamiltonian and also
end mass, m(tf ) = m(T ), changed depending on the end time used. For our trajectory from
LEO to GEO we obtained the following graph for m(T ):

Figure 4.2: End mass of the rocket when flying from LEO to GEO depending on end time
chosen.

What can be seen from this figure is that the larger the end time was chosen, the higher the
end mass was. Therefore we can conclude that it is most economical to fly for as long as possible.
However, in reality there comes a time where the advantages of mass-saving are outweighed by
the time it takes. Therefore for the sake of making a graph of the trajectory, the end time that
was chosen was to be equal to the end time of the Hohmann Transfer Orbit of this trajectory.
This is equal to:

TOF = π

√√√√√(6678·103+42164·103

2

)3

µ♁
≈ 1.899 · 104 s.

Using this end time, we acquire the trajectory in figure 4.3. In this figure, Earth is denoted by
the blue circle and the black line indicates the trajectory of the spacecraft. Also the LEO orbit
(magenta) and GEO orbit (red) can be seen in the graph. For this trajectory, the payload mass
(end mass) of the spacecraft is m(T ) ≈ 4.70 · 104 kg.
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Figure 4.3: Trajectory when flying from a Low Earth Orbit (magenta dotted line) to a Geo-
stationary Earth Orbit (red dotted line). The circumference of the Earth is denoted by the blue
circle.

4.1.2 Earth to Mars

Now that we know how to fly from a Low Earth Orbit to a Geostationary Earth Orbit, the
equations of motion remain the same. When wanting to fly to a different destination, the only
thing that needs to be altered are the boundary conditions. In this case, we want to start at
Earth orbit and fly to a Mars orbit. Furthermore, the Sun is put at the centre and is also the
centre of mass, whilst the Earth is on the x-axis at r(0) distance from the Sun. For now we still
use kilometres as the unit for distance and seconds as the unit for time. This means we obtain
the following boundary conditions:

t0 = 0 [s], r(0) = 1.496 · 108 [km], θ(0) = 0 [rad], vr(0) = 0
[
km
s

]
, vθ(0) =

√
µ�
r(0)

[
km
s

]
,

tf = T [s], r(T ) = 2.279 · 108 [km], λ2(T ) = 0 [rad], vr(T ) = 0
[
km
s

]
, vθ(T ) =

√
µ�
r(T )

[
km
s

]
.

It is important to note that from now on we will be taking µ�, instead of µ♁ as the Sun is now
the centre of mass. Other than that, we use the same exact method as before. We take several
values of the end time, T , and look for which T , the end mass is largest. This results in the
following graph:
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Figure 4.4: End mass for the trajectory from Earth to Mars, depending on end time.

What is notable when comparing this graph to figure 4.2 from the previous section, is that
in this graph we can clearly see that at around 1 · 107 seconds the gradient starts to decrease
and the end mass seems to converge to 5 · 105 kg, which was the initial mass. However in figure
4.2 this was not the case. This could be because we have not calculated the end mass for a large
enough end time, however the point from which the gradient starts to decrease in figure 4.4, is
much lower than the TOF of the Hohmann Transfer Orbit. This TOF is namely equal to:

TOF = π

√√√√√√
(

1.49598023 · 1011 + 2.279392 · 1011

2

)3

µ�
≈ 2.2366 · 107 s.

But when looking back at figure 4.2, we see that the end mass still is significantly higher if we
would take a higher end time than the TOF for the LEO to GEO trajectory. This difference
is most likely because the gravitational pull from the Earth is much higher when flying from
LEO to GEO than the gravitational pull from the Sun when flying from the Earth to Mars.
Now when taking the TOF of the Hohmann Transfer Orbit as the end time, the trajectory when
flying from the Earth to Mars can be found in figure 4.5. In this graph the Sun is denoted by
the magenta dot, the Earth’s orbit can be seen as the blue dotted line and Mars is denoted by
the red dotted line. The black line is once again the trajectory of the spacecraft. This end time
then corresponds to a payload mass of m(T ) ≈ 4.915 · 105 kg.
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Figure 4.5: Trajectory when flying from an Earth orbit (blue dotted line) to a Mars orbit (red
dotted line) with the Sun (magenta) as the centre of mass.

4.1.3 Earth to Saturn

Lastly we want to take a look at the trajectory when flying from the Earth to Saturn. As before,
the only part that has to be altered are the begin and end conditions, but this time also the
units will be changed. The Sun is the centre of mass and again placed in the origin. Furthermore
the Earth is put on the x-axis at a distance of r(0) from the Sun. Now instead of working in
kilometres and seconds as we did in the previous two sections, we decided to work with gigametres
(i.e. 109 metres) and hours for respectively the units of distance and time. This means that

instead of taking µ� = 1.32712440018·1020 [m
3

s2
], we have µ� =

1.32712440018 · 1020 · (10−9)3

(1/3600)2
≈

1.716065223 Gm3

h2
. Naturally all other variables were also converted accordingly. This results in

the boundary following conditions:

t0 = 0 [h], r(0) = 1.496 · 102 [Gm], θ(0) = 0 [rad], vr(0) = 0
[
Gm
h

]
, vθ(0) =

√
µ�
r(0)

[
Gm
h

]
,

tf = T [h], r(T ) = 1.43353 · 103 [Gm], λ2(T ) = 0 [rad], vr(T ) = 0
[
Gm
h

]
, vθ(T ) =

√
µ�
r(T )

[
Gm
h

]
.

Now we can, again, see how the end mass of the rocket changes depending on the end time.
This results in figure 4.6:
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Figure 4.6: End mass for the trajectory from Earth to Saturn, depending on end time.

From this graph we can surmise that our conclusions from the previous two sections still
hold. Furthermore we note that this graph is very similar to figure 4.4. In this case around
2 · 104 h the gradient starts to decrease and it seems to converge to an end mass of 5 · 105 kg.
Also, we again make a graph of the trajectory where we take the end time as the TOF of the
Hohmann transfer orbit, thus:

TOF = π

√√√√√√
(

1.49598023 · 1011 + 1.43353 · 1012

2

)3

µ�
≈ 1.9205 · 108 s ≈ 53348 h.

Taking this end time, we obtain the trajectory in figure 4.7. Here the Earth’s orbit is seen as
the blue dotted line, Saturn’s orbit can be seen as the red dotted line. The Sun is again denoted
by the magenta dot and the trajectory is denoted by the black line. With this trajectory, the
payload mass of the spacecraft will be equal to m(T ) ≈ 4.904 · 105 kg.
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Figure 4.7: Trajectory when flying from an Earth orbit (blue dotted line) to a Saturn orbit
(red dotted line) with the Sun (magenta) as the centre of mass.

4.2 Comparing to Hohmann Transfer Orbit

Now that we know the propellant costs of the trajectories for power limited rockets, we need to
calculate the propellant costs for our liquid bipropellant rocket that uses a Hohmann Transfer
Orbit. This has been done using section 2.3.2 and with the help of Matlab, a little program was
made that easily calculates the ∆v necessary and uses it to calculate the end mass, m(tf ). The
initial mass was chosen, same as before, to be equal to m(t0) = 5 · 105 kg. The results from this,
as well as the results from the last section, can be seen in overview in the following table:

Table 4.1: Hohmann Transfer Orbit final mass versus VASIMR trajectory final mass using the
same end time.

Trajectory Final mass Hohmann [kg] TOF [s] Final mass VASIMR [kg]

LEO GEO 2.0904 · 105 1.8990 · 104 4.7004 · 104

Earth Mars 1.4280 · 105 2.2366 · 107 4.9153 · 105

Earth Saturn 1.4718 · 104 1.9205 · 108 4.9039 · 105

What we can see from this table is that the VASIMR rocket is better for longer trajecto-
ries. We can clearly see that when flying a short distance such as LEO to GEO, the liquid
bipropellant rocket using liquid oxygen and liquid hydrogen, has around 40% of the initial mass
left. Whilst the VASIMR rocket only has around 9.4% of the initial mass left. When flying a
moderate distance such as from the Earth to Mars, the results of the chemical rocket and the
VASIMR rocket are quite close, with the VASIMR rocket being slightly better. Yet when flying
to very large distances such as from the Earth to Saturn or even further, it is quite clear that
the VASIMR rocket is much more fuel-efficient. This is in accordance with what we expected.
From this we can presume that power limited rockets are suitable for interplanetary or even
interstellar missions.
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Even so, something else we can take a look at is the total energy that is necessary for each
trajectory. For the power limited rockets, this can easily be calculated as E = P · t. Knowing
P = 59 MW and t is equal to the end time, T , the total energy can be calculated. For the

Hohmann Transfer Orbit we use the following formula: E =
m(t0)−m(tf )

2 · c2 as this is the total
combustion energy. Remember that c is the exhaust velocity of the rocket and thus equal to
c = Isp · g, where g = 9.81m

s2
and in section 2.3.3 we had chosen Isp to be equal to 455 seconds.

The energy consumption for each trajectory as well as rocket type can be seen in the following
table:

Table 4.2: Total energy consumption for each trajectory.

Trajectory Hohmann Transfer Orbit [J] VASIMR Trajectory [J]

LEO GEO 2.8984 · 1012 1.1204 · 1012

Earth Mars 3.5583 · 1012 1.3196 · 1015

Earth Saturn 4.8342 · 1012 1.3312 · 1016

It can be seen from this table the energy consumption for the LEO GEO trajectory with the
Hohmann Transfer Orbit is higher than the energy consumption for the VASIMR rocket. For
the other two trajectories, the energy consumption is much lower for the Hohmann Transfer
Orbit than for the VASIMR trajectory. However, something which is interesting to note is
that the energy consumption for the Hohmann Transfer Orbit increases more, the longer the
trajectory is. For the VASIMR rocket on the other hand, the energy consumption also increases,
but the increase is smaller the longer the trajectory is. This means that when the trajectory is
long enough, the VASIMR trajectory will probably at one point start costing less energy than
a Hohmann Transfer Orbit. This again supports the hypothesis that the power limited rockets
are better for deep space missions.



Chapter 5

Trajectory to Saturn using a Gravity
Assist

In this chapter we will be taking a look at a flyby, also known as a gravity assist. Gravity assists
are used for many missions that travel to Jupiter or further planets. They are especially used
because a gravity assist reduces propellant use, as well as flight time [20]. For a gravity assist,
we will need to take the gravitational pull of another planet and not only the gravitational pull
of the Sun, into account. This concept is often referred to as a three-body problem [21]. In
reality, missions often use multiple flybys via several planets. Examples are the Cassini mission
or Voyager 1 and Voyager 2 [20]. For example the Cassini mission used a gravity assist twice
from Venus, once from the Earth and once from Jupiter before flying on to Saturn [16].

Figure 5.1: Gravity assists used by the Cassini mission. [16]

5.1 Gravity Assist: Jupiter

However in our case it would be a bit ambitious to try and recreate this trajectory as we would
need to take into account the gravitational pull of not only Venus, but also from the Earth,
Jupiter and the Sun. In our case we have decided to take a look at a gravity assist from Jupiter
when flying from the Earth to Saturn. Jupiter is the largest planet in our Solar system and
therefore the largest effect can be seen when using its gravitational pull. In the previous chapter
we already have taken a look at the propellant use for the trajectory from the Earth to Saturn
and we are interested in comparing these results to the propellant use when using the flyby.

29



30 CHAPTER 5. TRAJECTORY TO SATURN USING A GRAVITY ASSIST

The concept of a gravity assist is that the spacecraft flies by a planet and uses the gravita-
tional pull of the planet to achieve a higher velocity. The key to understanding why a gravity
assist works, is to consider two different points of view, i.e. reference frames. One of the refer-
ence frames is known as the inertial frame. In this frame the Sun is put at the centre with the
planets rotating around it. But because we are interested in flying by Jupiter, which rotates
around the Sun, we will be working in the rotating reference frame. In this frame, we look at
the planet’s point of view, where Jupiter’s position is fixed. Now when flying by Jupiter in the
rotating reference frame, we only see a perturbation of the trajectory. The planet speeds up on
approach, however it also slows down as it departs. When consequently converting back to the
inertial frame, we can see that the spacecraft indeed gets a velocity boost of the encounter with
Jupiter [20]. This is due to the fact that Jupiter rotates around the Sun.

5.2 Rotating Reference Frame

When working in the rotating reference frame, a few things change for the equations of motion.
We are still working with polar coordinates, however the additional gravitational pull of Jupiter
has to be taken into account, as well as the rotation of Jupiter. This results in the following
equations:

r′ = vr,

θ′ =
vθ
r
,

v′r =
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

r −R cos(θ)

(r2 +R2 − 2rR cos(θ))3/2
− Γ sin(φ),

v′θ = −vθvr
r
− 2Ωvr − µX

R sin(θ)

(r2 +R2 − 2rR cos(θ))3/2
− Γ cos(φ).

In these equations Ω is the angular velocity of Jupiter in unit hours, so Ω = 2π
4332.53·24 . Also, R

is the distance of Jupiter from the Sun and Jupiter is fixed on the x-axis. Because Jupiter will
be seen as a point mass, we will be faced with an additional problem. The spacecraft will want
to fly as close to Jupiter as possible, because then the velocity gain will be highest. However, if
we were to fly infinitely close to Jupiter, then the term (r2 +R2 − 2rR cos(θ)) will approximate
zero. This would cause problems in our program as Matlab will start to divide zero by zero.
Also, in reality we would not fly infinitely close to Jupiter as this would mean we are flying
‘through’ the planet, which would cause us to crash. Therefore, we will need a way to make
sure the spacecraft does not fly too close to Jupiter. The method we have chosen as the most
realistic way to do this, is by adding a friction force. This friction force can be interpreted as a
simulation of Jupiter’s atmosphere. The atmosphere will slow down the spacecraft as it comes
too close to Jupiter. Through this method, the spacecraft will not come too close to Jupiter as
it wants to use Jupiter’s gravitational pull, without being slowed down. This should mean that
the program will not encounter the problems as before.

5.2.1 Simulating Jupiter’s Atmosphere

Now we only need a way to simulate Jupiter’s atmosphere. What we want is to slow down the
spacecraft whenever it comes too close to Jupiter. Thus we will need an additional term in our

equations for vr and vθ. This term was chosen to be: −vCe
−(r−rX)2/D2

. Here C is the drag
coefficient and D is a sphere of influence. This term makes sure that the closer we fly by Jupiter,
the more the spacecraft is slowed down. The drag coefficient C was chosen to be around 0.05
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and initially we wanted to take the radius of Jupiter as its sphere of influence. However, the time
step which we would need to take in Matlab when Jupiter is this size, would result in a time

step of dt =

√
D3

µX
=
√

0.0693

0.0016418575 ≈ 1.6 · 103 s < 1 h. This is not practical in the program as it

would take too much time for each run. This led to the conclusion to take the radius of Jupiter
the same as the Sun’s while still taking the same mass as before. This results in a time step of√

0.73

0.0016418575 ≈ 14 h. Therefore it was chosen to take D = 0.7 Gm as this reduces computation
time.

Thus finally we have our equations of motion, where for the sake of brevity we define b =
|r− rX|=

√
r2 +R2 − 2rR cos(θ).

r′ = vr,

θ′ =
vθ
r
,

v′r =
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

r −R cos(θ)

b3
− Γ sin(φ)− vrCe−b

2/D2
,

v′θ = −vθvr
r
− 2Ωvr − µX

R sin(θ)

b3
− Γ cos(φ)− vθCe−b

2/D2
.

5.3 Effect of Jupiter on the Trajectory

With the equations of motion acquired in the previous section, we can use the Hamiltonian and
obtain our eight ODEs as we did in the previous chapters.

H(t) =
1

2
Γ2 + λ1vr + λ2

vθ
r

+ λ3

(
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

r −R cos(θ)

b3
− Γ sin(φ)

− vrCe−b
2/D2

)
+ λ4

(
−vθvr

r
− 2Ωvr − µX

R sin(θ)

b3
− Γ cos(φ)− vθCe−b

2/D2

)
.

Wanting to optimize Γ and φ we obtain:

cos(φ) =
λ4√
λ2

3 + λ2
4

, sin(φ) =
λ3√
λ2

3 + λ2
4

.

And dH
dΓ = 0 gives us:

Γ =
λ2

3√
λ2

3 + λ2
4

+
λ2

4√
λ2

3 + λ2
4

=
√
λ2

3 + λ2
4.

After elimination, the Hamiltonian reduces to:

H(t) = −1

2
(λ2

3 + λ2
4) + λ1vr + λ2

vθ
r

+ λ3

(
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

r −R cos(θ)

b3
− vrCe−b

2/D2

)
+ λ4

(
−vθvr

r
− 2Ωvr − µX

R sin(θ)

b3
− vθCe−b

2/D2

)
.
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After some calculations, we now have our eight ordinary differential equations:

r′ = vr,

θ′ =
vθ
r
,

v′r =
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

(r −R cos(θ))

b3
− λ3 − vrCe−b

2/D2
,

v′θ = −vθvr
r
− 2Ωvr − µX

(R sin(θ))

b3
− λ4 − vθCe−b

2/D2
,

λ′1 =
λ2vθ
r2
− λ3

(
−
v2
θ

r2
+ Ω2 +

2µ�
r3
−
µX
b3

+
3µX(r −R cos(θ))(2r − 2R cos(θ))

2b5
+
vrC(2r − 2R cos(θ))e−b

2/D2

D2

)

− λ4

(
vθvr
r2

+
3µX(R sin(θ))(2r − 2R cos(θ))

2b5
+
vθC(2r − 2R cos(θ))e−b

2/D2

D2

)
,

λ′2 = −λ3

(
−
µXR sin(θ)

b3
+

3µX(r −R cos(θ))Rr sin(θ)

b5
+

2vrCRr sin(θ)e−b
2/D2

D2

)

− λ4

(
−
µXR cos(θ)

b3
+

3µXR
2r(sin(θ))2

b5
+

2vθCRr sin(θ)e−b
2/D2

D2

)
,

λ′3 = −λ1 − λ4

(
−vθ
r
− 2Ω

)
+ λ3Ce

−b2/D2
,

λ′4 = −λ2

r
− λ3

(
2vθ
r

+ 2Ω

)
+
λ4vr
r

+ λ4Ce
−b2/D2

.

As we stated before, we are interested in flying from the Earth to Saturn with a gravity assist
from Jupiter. As we are solving this with BVP4C, which is a boundary value problem solver, we
cannot specify where we would like to be ‘in between’. Therefore our begin conditions have to
be chosen in such a way that we are indeed flying by Jupiter. This means that instead of taking
the initial angle of our rocket to be equal to zero as we did before, we will now be varying it in
order to see what the effect of Jupiter is on the trajectory. The other begin and end conditions
stay the same as in the last chapter. This means we have:

t0 = 0 [h], r(0) = 1.496 · 102 [Gm], θ(0) = varied [rad], vr(0) = 0 [Gmh ], vθ(0) =
√
µ�r(0) [Gmh ],

tf = T [h], r(T ) = 1.4333 · 103 [Gm], λ2(T ) = 0 [rad], vr(T ) = 0 [Gmh ], vθ(T ) =
√
µ�r(T ) [Gmh ].

Yet, even with the additional friction term whenever we got too close when flying ‘over’
Jupiter, the program started making huge errors. However, something we did succeed in, was
flying ‘underneath’ Jupiter as can be seen in the following graph.
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Figure 5.2: Graph of the trajectory in the rotating reference frame. The Earth’s orbit (blue
dotted line), Saturn’s orbit (red dotted line) and the trajectory (black line) can bee seen. The
Sun is denoted by the red dot in the origin and Jupiter can be seen at a distance R from the
Sun on the x-axis. Around Jupiter its circle of influence can be seen as the blue dashed line.
The spacecraft clearly experiences the gravitational pull of Jupiter inside this circle of influence.

This graph shows the trajectory of the rocket in the rotating reference frame, where we used
the initial angle θ(0) = 0.34π. Jupiter was fixed on the x-axis at a distance R from the Sun.
We can clearly see from this graph that as the spacecraft enters Jupiter’s circle of influence,
it experiences the gravitational pull of Jupiter. This circle of influence was calculated in the
following way [4]:

RSOI ≈ R ·
(
MX
M�

)2/5

= 7.785 · 1011 ·
(

1.898 · 1027

1.989 · 1030

)2/5

≈ 4.81 · 1010 m = 48.1 Gm.

Normally this is called the sphere of influence but as we are working in a two-dimensional plane,
we call it the circle of influence. What is important to note, is that we used an end time of
50,000 hours instead of 53,000 hours as we had in the previous chapter. This was because we had
too many problems with Matlab when taking a larger end time. Using this end time however,
we obtain the following end mass for the trajectory from Earth to Saturn with and without the
gravity assist:

Trajectory End time [h] Payload Mass [kg]

With Gravity Assist 50,000 4.896594 · 105

Without Gravity Assist 50,000 4.893771 · 105

Table 5.1: Payload mass of the trajectory Earth to Saturn with and without a gravity assist.

From this table, we can see that using a gravity assist indeed saves propellant. The difference
is not that significant, only around 280 kilograms of propellant were saved. It can also be seen
from the following graph that the spacecraft indeed got a velocity boost from Jupiter. in this
graph we show the velocity of the rocket using the gravity assist in red and without the gravity
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assist in blue. It can be clearly seen that the spacecraft’s velocity was higher after the encounter
with Jupiter.

Figure 5.3: The velocity of the spacecraft can be seen with and without using a gravity assist.
Around 2.3 · 104 hours, the spacecraft that uses the gravity assist obtains a velocity boost as it
flies by Jupiter.

Also converting figure 5.2 back to the inertial frame, we can see a very small perturbation
in the trajectory of the spacecraft. This can be seen in figure 5.4.

From this we can conclude that using a gravity assist is indeed beneficial when wanting
to save propellant costs. Although we did not succeed in obtaining the desired graph, the
velocity boost when flying underneath Jupiter is still enough to save propellant. When flying
over Jupiter, the velocity boost as well as propellant savings, would likely be a lot higher.

Figure 5.4: The trajectory of the spacecraft as seen in the inertial frame. A small perturbation
in the trajectory can be seen. Again the blue dotted line denotes the Earth’s orbit, the red dotted
line denotes Saturn’s orbit and the trajectory is denoted by the black line. Also the Sun can be
seen as the red dot in the origin.
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5.4 Removing the Singularity

We also thought of an additional way to try to ensure the spacecraft would not have any trouble
flying through Jupiter. The idea was to remove the singularity that we have a in (R, 0), the
point where Jupiter is. Therefore, it was decided that an additional term is necessary to omit
the singularity. This means our final equations of motion are:

r′ = vr,

θ′ =
vθ
r
,

v′r =
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

(r −R cos(θ))(1− e−b2/D2
)

b3
− Γ sin(φ)− vrCe−b

2/D2
,

v′θ = −vθvr
r
− 2Ωvr − µX

(R sin(θ))(1− e−b2/D2
)

b3
− Γ cos(φ)− vθCe−b

2/D2
.

This should mean it is no longer a problem to fly ‘through’ Jupiter as it makes sure that when we
are flying through Jupiter, the acceleration becomes finite. However, as it is still more realistic
if the rocket would not fly that close to Jupiter, we keep the equations for the atmospheric drag
in our equations of motion.

Using these new equations of motion, we derived the Hamiltonian once more as well as the
differential equations. For the Hamiltonian we obtained:

H(t) =
1

2
Γ2 + λ1vr + λ2

vθ
r

+ λ3

(
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

(r −R cos(θ))(1− e−b2/D2
)

b3
− Γ sin(φ)

− vrCe−b
2/D2

)
+ λ4

(
−vθvr

r
− 2Ωvr − µX

(R sin(θ))(1− e−b2/D2
)

b3
− Γ cos(φ)− vθCe−b

2/D2

)
.

In the same way as in the previous section we know that:

cos(φ) =
λ4√
λ2

3 + λ2
4

, sin(φ) =
λ3√
λ2

3 + λ2
4

.

And also:

Γ =
λ2

3√
λ2

3 + λ2
4

+
λ2

4√
λ2

3 + λ2
4

=
√
λ2

3 + λ2
4.

After elimination, the Hamiltonian reduces to:

H(t) = −1

2
(λ2

3 + λ2
4) + λ1vr + λ2

vθ
r

+ λ3

(
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

(r −R cos(θ))(1− e−b2/D2
)

b3
− vrCe−b

2/D2

)

+ λ4

(
−vθvr

r
− 2Ωvr − µX

(R sin(θ))(1− e−b2/D2
)

b3
− vθCe−b

2/D2

)
.
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Now the eight ODEs are as follows:

r′ = vr,

θ′ =
vθ
r
,

v′r =
v2
θ

r
+ 2vθΩ + Ω2r −

µ�
r2
− µX

(r −R cos(θ))(1− e−b2/D2
)

b3
− λ3 − vrCe−b

2/D2
,

v′θ = −vθvr
r
− 2Ωvr − µX

(R sin(θ))(1− e−b2/D2
)

b3
− λ4 − vθCe−b

2/D2
,

λ′1 =
λ2vθ
r2
− λ3

(
−
v2
θ

r2
+ Ω2 +

2µ�
r3
−
µX(1− e−b2/D2

)

b3
+

3µX(r −R cos(θ))(2r − 2R cos(θ))(1− e−b2/D2
)

2b5

−
µX(r −R cos(θ))(2r − 2R cos(θ))e−b

2/D2

b3 ·D2
+
vrC(2r − 2R cos(θ))e−b

2/D2

D2

)

− λ4

(
vθvr
r2

+
3µX(R sin(θ))(1− e−b2/D2

)(2r − 2R cos(θ))

2b5
−
µXR sin(θ)(2r − 2R cos(θ))e−b

2/D2

b3 ·D2

+
vθC(2r − 2R cos(θ))e−b

2/D2

D2

)
,

λ′2 = −λ3

(
−
µXR sin(θ)(1− e−b2/D2

)

b3
+

3µX(r −R cos(θ))Rr sin(θ)(1− e−b2/D2
)

b5

−
2µX(r −R cos(θ))Rr sin(θ)e−b

2/D2

b3 ·D2
+

2vrCRr sin(θ)e−b
2/D2

D2

)

− λ4

(
−
µXR cos(θ)(1− e−b2/D2

)

b3
+

3µXR
2r(sin(θ))2(1− e−b2/D2

)

b5
−

2µXR
2(sin(θ))2re−b

2/D2

b3 ·D2

+
2vθCRr sin(θ)e−b

2/D2

D2

)
,

λ′3 = −λ1 − λ4

(
−vθ
r
− 2Ω

)
+ λ3Ce

−b2/D2
,

λ′4 = −λ2

r
− λ3

(
2vθ
r

+ 2Ω

)
+
λ4vr
r

+ λ4Ce
−b2/D2

.

With these equations and the same boundary conditions as in the previous section, we tried to
make a graph where we are flying ‘over’ Jupiter. Sadly enough, we were not successful. The
most likely explanation is that the problem is very sensitive to the initial conditions. Even a
very small alteration in the begin angle θ(0) has a very large impact. Therefore the optimal
trajectory cannot be found. Still we did manage to get some results in the previous section
where we could see that using a gravity assist is beneficial. This is in accordance with what one
would expect.



Chapter 6

Conclusion and Recommendations

In this thesis the goal was to find the most cost-effective trajectory for a power limited rocket.
The power limited rocket of choice was the VASIMR rocket. In order to make an estimation
of how cost-effective the trajectory was, we compared it to the most cost-effective trajectory of
the thrust limited rocket. Therefore we first explained how the optimal trajectory of the thrust
limited rocket is found. This uses two instantaneous velocity boosts to go from one circular
orbit to another and is called the Hohmann Transfer Orbit. Furthermore, using the Tsiolkovsky
rocket equation, we calculated the propellant costs for the Hohmann Transfer Orbit. Where
we used the characteristics of the liquid bipropellant rocket using liquid oxygen and liquid hy-
drogen. Thus we used a specific impulse of 455 seconds. Then using Optimal Control Theory
we calculated the optimal trajectory for the power limited rockets. After deriving the function
for the mass of the rocket, we could also calculate the propellant costs for this trajectory. We
looked at three different trajectories. The trajectory from a Low Earth Orbit to a Geostationary
Earth Orbit, the trajectory from Earth to Mars and the trajectory from Earth to Saturn. After
calculating the propellant costs for both types of rockets we could clearly see that the power
limited rockets are suited for missions that cover great distances, such as interplanetary or even
interstellar missions. When calculating the total energy for each trajectory, we also came to
this conclusion. Additionally we calculated the end mass of the rocket for various different end
times. From this we concluded that the power limited rocket becomes more fuel-efficient as
travel time increases. But in order to make a comparison between the power and thrust limited
rockets, we used the same end time for both. As the time of flight of the Hohmann Transfer
Orbit is fixed, this end time was chosen. However, one thing that should be noted is that we did
not take some things into account. For example when flying from the Earth to Saturn or from
the Earth to Mars, we only took the gravitational pull of the Sun into account. For a realistic
conclusion, the gravitational pull of the Earth as well as Saturn should be taken into account.
This may show that the power limited rockets simply have too little thrust capabilities in order
to get away from the Earth in the first place. Realistically, spaceflight missions will always need
thrust limited rockets for the first stage of liftoff from the Earth as they can achieve enough
thrust to get away from the Earth. This is also because of the atmospheric drag of the Earth,
something we also did not take into account.

The last subject which was discussed in this thesis was the use of a gravity assist. We
were interested to see if the gravity assist had a positive outcome on the cost-effectiveness of
the trajectory. In reality they are commonly used for space missions with destinations beyond
Mars. Therefore we took a second look at the Earth to Saturn trajectory where we used a
gravity assist from Jupiter. This means that we not only took the gravitational pull of the Sun
into account, but also of Jupiter. When flying close to Jupiter, we expected to see a peak in
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the velocity of our rocket as it got a velocity boost. We were not able find the exact optimal
trajectory. We came to the conclusion that the problems we encountered were due to the fact
that the spacecraft would fly too close by Jupiter as Jupiter was seen as a point-mass in the
program. This caused problems as Matlab would try to divide zero by zero. Therefore we
decided that we needed a friction force in order to make sure the spacecraft did not come too
close to Jupiter. We did this by simulating Jupiter’s atmosphere. The closer the spacecraft
came to Jupiter’s centre, the more it would be slowed down. As the program was written in
such way that the most cost-effective trajectory would be found, this helped to make sure the
spacecraft did not come too close. Doing this, we obtained a graph where we flew ‘underneath’
Jupiter and its gravitational pull could clearly be seen as it perturbed the trajectory. Also from
this we could see that the end mass of the rocket was slightly higher than when the trajectory
was done without a gravity assist. Additionally we indeed saw that the rocket got a velocity
boost after flying past Jupiter. However, we were not able to fly ‘over’ Jupiter. This would most
likely result in a much higher velocity boost as well as save much more propellant. Therefore
we tried to remove the singularity in Jupiter all-together. Unfortunately, this seemed to help
little as we still got big errors whenever we tried to fly close to Jupiter. Even after removing the
singularities in the differential equations, introducing smooth friction force as well as making the
time steps sufficiently small, the system of differential equations remains too unstable. Small
changes in the initial conditions have very large outcomes on the trajectory. This led to the
conclusion that the optimal trajectory cannot be found.

To surmise, we can conclude that power limited rockets will most likely be recommended for
interplanetary or even interstellar missions. Because of their low thrust capabilities they need
a long time to built up speed, but they are very economical for long distances. Using a gravity
assist will also most likely be beneficial when wanting to minimize propellant costs.
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Appendix A

Derivations

A.1 Hamiltonian is Constant

We want to show that the Hamiltonian is constant. In order to show this we merely have to
show that dH

dt = 0. For this we only assume that H does not directly depend on t, thus ∂H
∂t = 0.

Now if we want to show dH
dt = 0, we show:

dH

dt
=
∂H

∂t
+
∂H

∂x
ẋ +

∂H

∂λλλ
λ̇̇λ̇λ+

∂H

∂Γ
Γ̇ +

∂H

∂φ
φ̇,

= 0 +
∂H

∂x

∂H

∂λλλ
+
∂H

∂λλλ
· −∂H

∂x
+
∂H

∂Γ
· 0 +

∂H

∂φ
· 0,

= 0.

And thus from this we can conclude that the Hamiltonian is constant.
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Appendix B

Matlab Code

B.1 Close to Earth’s Surface

c l e a r a l l
format long
h = 100∗10ˆ3; % Alt i tude to which we are f l y i n g [m]
R = 6378∗10ˆ3; % Radius o f the Earth [m]
g = 9 . 8 1 ; % The Earth ’ s g r a v i t a t i o n a l pu l l at sea l e v e l [m/ s ˆ2 ]
T = sqr t ( R/(2∗g ) ∗(1+ sq r t (1+(144∗h . ˆ2 ) /Rˆ2) ) ) ; % Calcu la te optimal end time T f o r g iven a l t i t u d e [ s ]
t = 0 : 1 :T;
f o r i = 1 : l ength ( t )

x ( i ) = ( sq r t ( g∗R)∗ t ( i ) ˆ2) /(2∗T) ;
y ( i ) = (3∗h∗ t ( i ) ˆ2) /Tˆ2 (2∗h∗ t ( i ) ˆ3) /Tˆ3 ;
vx ( i ) = ( sq r t ( g∗(R+h) )∗ t ( i ) ) /T;
vy ( i ) = (6∗h∗ t ( i ) ) /Tˆ2 ( 6∗ h∗ t ( i ) ˆ2) /Tˆ3 ;

end
f i g u r e (1 )
p lo t (x , y ) ; x l ab e l ( ’ x [m] ’ ) ; y l ab e l ( ’ y [m] ’ )

c l e a r a l l
format long
R = 6378∗10ˆ3; % Radius o f the Earth [m]
g = 9 . 8 1 ; % The Earth ’ s g r a v i t a t i o n a l pu l l at sea l e v e l [m/ s ˆ2 ]
h = 100∗10ˆ3: 500 : 36∗10ˆ6; % Alt i tude as a range to see how optimal end time changes [m]
f o r i = 1 : l ength (h)

T( i ) = sq r t ( R/(2∗g ) ∗(1+ sq r t (1+(144∗h( i ) . ˆ 2 ) /Rˆ2) ) ) ;
end
p lo t (h ,T) ; x l ab e l ( ’h [m] ’ ) ; y l ab e l ( ’ t f [ s ] ’ )

B.2 Hohmann Transfer Orbit

f unc t i on [ v ] = de l tav ( mu, eps i l on , r )
%ca l c u l a t i n g the v e l o c i t y depending on the o rb i t and energy
v = sqr t (2∗(mu/ r + ep s i l o n ) ) ;

end

func t i on [ t rans ] = ep s i l o n ( mu, a )
% Ca l cu l a t e s the s p e c i f i c mechanical energy , us ing a given standard
% g r a v i t a t i o n a l parameter and semi major ax i s .

t rans = mu/(2∗a ) ;
end

func t i on [ m ] = mass ( deltav , i sp , m0 )
%Cac lu la t ing the mass at time t f . Formula was der ived from Tsiolkovsky ’ s rocket equat ion .
g = 9 . 8 1 ;
m = m0/( exp ( de l tav /( i sp ∗g ) ) ) ;

end

format long

%% LEO GEO
%Calcu la t e s the t o t a l de l t a v nece s sa ry f o r the t r a j e c t o r y LEO to GEO. Al l
%un i t s are SI un i t s .
muA = 3.986 e14 ; LEO = 6678 e3 ; GEO = 6378 e3+35786e3 ;
e1 = ep s i l o n (muA,LEO) ;
e t rans = ep s i l o n (muA, (GEO+LEO) /2) ;
e2 = ep s i l o n (muA,GEO) ;
v l eo = de l tav (muA, e1 ,LEO) ;
vtrans = de l tav (muA, etrans ,LEO) ;
vtrans1 = de l tav (muA, etrans ,GEO) ;
vgeo = de l tav (muA, e2 ,GEO) ;
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vtot1 = abs ( vtrans v l eo )+abs ( vgeo vtrans1 ) ;

%% EARTH MARS
%Calcu l a t e s the t o t a l de l t a v nece s sa ry f o r the t r a j e c t o r y Earth to Mars . Al l
%un i t s are SI un i t s .
muS = 1.32712440018 e20 ; r ea r th = 1.49598023 e11 ; rmars = 2.279392 e11 ;
e2 = ep s i l o n (muS, r ea r th ) ;
e t rans2 = ep s i l o n (muS, ( r ea r th+rmars ) /2) ;
e3 = ep s i l o n (muS, rmars ) ;
vearth = de l tav (muS, e2 , r ea r th ) ;
vtrans2 = de l tav (muS, etrans2 , r ea r th ) ;
vtrans3 = de l tav (muS, etrans2 , rmars ) ;
vmars = de l tav (muS, e3 , rmars ) ;
vtot2 = abs ( vtrans2 vearth )+abs ( vmars vtrans3 ) ;

%% EARTH SATURN
%Calcu la t e s the t o t a l de l t a v nece s sa ry f o r the t r a j e c t o r y Earth to Saturn . Al l
%un i t s are SI un i t s .
muS = 1.32712440018 e20 ; r ea r th = 1.49598023 e11 ; r s a t = 1.43353 e12 ;
e4 = ep s i l o n (muS, r ea r th ) ;
e t rans3 = ep s i l o n (muS, ( r ea r th+r sa t ) /2) ;
e5 = ep s i l o n (muS, r s a t ) ;
vearth = de l tav (muS, e4 , r ea r th ) ;
vtrans4 = de l tav (muS, etrans3 , r ea r th ) ;
vtrans5 = de l tav (muS, etrans3 , r s a t ) ;
vsat = de l tav (muS, e5 , r s a t ) ;
vtot3 = abs ( vtrans4 vearth )+abs ( vsat vtrans5 ) ;

%% Calcu la t ing the end mass o f the rocket
% Here an i n i t i a l mass o f 2 e6 kg i s chosen as we l l as a s p e c i f i c impulse o f
% 455 s , t h i s value corresponds to tak ing a l i q u i d b i p r op e l l a n t rocket
% us ing l i q u i d oxygen and l i q u i d hydrogen .
m0 = 5e5 ; i s p = 455 ;
mass1 = mass ( vtot1 , i sp ,m0)
mass2 = mass ( vtot2 , i sp ,m0)
mass3 = mass ( vtot3 , i sp ,m0)

%% TIME OF FLIGHTS
% The t o t a l time o f f l i g h t f o r each o rb i t i s c a l cu l a t ed .
t o f 1 = pi ∗ sq r t ( ( ( (LEO+GEO) /2) ˆ3) /muA)
to f 2 = pi ∗ sq r t ( ( ( ( r ea r th+rmars ) /2) ˆ3) /muS)
to f 3 = pi ∗ sq r t ( ( ( ( r ea r th+r sa t ) /2) ˆ3) /muS)

B.3 LEO GEO

f unc t i on [ r e s ] = bcs ( ya , yb )
% Boundary cond i t i on s
h = 300 ; % I n i t i a l a l t i t u d e [km]
rea r th = 6378; % Radius o f the Earth [km]
mu = 3.986004418 e5 ; % Standard g r a v i t a t i o n a l parameter o f the Earth [kmˆ3/ s ˆ2 ]
r0 = h+rear th ; % LEO rad ius [km]
re ind = rear th +35786; % GEO rad ius [km]

r e s = [ ya (1) ( r0 )
ya (2)
ya (3)
ya (4) sq r t (mu/( r0 ) )
yb (1) ( re ind )
yb (3)
yb (4) sq r t (mu/( re ind ) )
yb (6)
] ;

end

func t i on [ xprime ] = D( tau , x )
% These are the d i f f e r e n t i a l equat ions where x can be read as x =
% ( r , theta , vr , vtheta , lambda1 , lambda2 , lambda3 , lambda4 )
mu = 3.986004418 e5 ; % Standard g r a v i t a t i o n a l parameter o f the Earth [kmˆ3/ s ˆ2 ]
xprime = [ x (3) ;

x (4) /x (1) ;
x (7)+(x (4) ˆ2/x (1) mu/(x (1) ˆ2) ) ;
x (8) x (3) ∗x (4) /x (1) ;

x (7) ∗ ( ( x (4) ˆ2) /(x (1) ˆ2) 2∗mu/(x (1) ˆ3) ) x (8) ∗x (3) ∗x (4) /(x (1) ˆ2) ;
0 ;
x (5)+x (8) ∗x (4) /x (1) ;
2∗ x (7) ∗x (4) /x (1)+x (8) ∗x (3) /x (1)
] ;

end

c l e a r a l l ; c l o s e a l l ; c l c ;
% Main program f o r the t r a j e c t o r y LEO to GEO
h = 300 ; % I n i t i a l a l t i t u d e [km]
rea r th = 6378; % Radius o f the Earth [km]
mu = 3.986004418 e5 ; % Standard g r a v i t a t i o n a l parameter o f the Earth [kmˆ3/ s ˆ2 ]
r0 = h+rear th ; % LEO rad ius [km]
re ind = rear th +35786; % GEO rad ius [km]

opt ion = bvpset ( ’Nmax ’ ,10000 , ’ RelTol ’ ,1 e 1 1 ) ;
Teind = 19000; % End time [ s ]
Nt = 1000; % Number o f s t ep s in each i n t e r v a l
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Tin i t = 500 ; % I n i t i a l time [ s ]
tau = l i n spa c e (0 , Tinit , Nt) ;
y i n i t = [ r0 0 0 sq r t (mu/ r0 ) 0 0 0 0 ] ; % I n i t i a l guess
s o l i n i t = bvp in i t ( tau , y i n i t ) ;
s o l = bvp4c (@D, @bcs , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;
Tl s t = [2∗ Tin i t : T in i t : Teind ] ;
f o r T=Tlst

T
tau = l i n spa c e (0 ,T, Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D, @bcs , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

end
tau = l i n spa c e (0 , Teind , Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D, @bcs , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

tau2 = l i n spa c e (0 ,T,5∗Nt) ;
f o r q = 1 :8

Z2(q , : ) = sp l i n e ( tau , Z(q , : ) , tau2 ) ;
end
tau = tau2 ;
Z = Z2 ;
time = tau ;
f i g u r e (1 )
p lo t (Z ( 1 , : ) .∗ cos (Z ( 2 , : ) ) , Z ( 1 , : ) .∗ s i n (Z ( 2 , : ) ) , ’ k ’ )
x l ab e l ( ’x d i r e c t i o n [km] ’ )
y l ab e l ( ’y d i r e c t i o n [km] ’ )
ax i s equal
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rearth , ’ Color ’ , ’b ’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , re ind , ’ Color ’ , ’ r ’ , ’ L i n e s t y l e ’ , ’ : ’ , ’ Linewidth ’ , 0 . 9 )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , r0 , ’ Color ’ , ’m’ , ’ L i n e s t y l e ’ , ’ : ’ , ’ Linewidth ’ , 0 . 9 )
f i g u r e (2 )
subplot (2 , 3 , 1 )
p lo t ( time , Z ( 1 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ r [km] ’ ) ;
subplot (2 , 3 , 2 )
p lo t ( time , Z ( 2 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ theta ’ ) ;
subplot (2 , 3 , 3 )
p lo t ( time , Z ( 3 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ vr [km/ s ] ’ ) ;
subplot (2 , 3 , 4 )
p lo t ( time , Z ( 4 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ vtheta [km/ s ] ’ ) ;
subplot (2 , 3 , 5 )
p lo t ( time , Z ( 7 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ l 3 [km/ s ˆ2 ] ’ ) ;
subplot (2 , 3 , 6 )
p lo t ( time , Z ( 8 , : ) ) ; x l ab e l ( ’ time ’ ) ; y l ab e l ( ’ l 4 [km/ s ˆ2 ] ’ ) ;
Y = Z ( 7 , : ) . ˆ2 + Z ( 8 , : ) . ˆ 2 ;
Eindmassa = 1/(1/m0 + trapz ( tau ,Y) /(2∗P) ) ;
%%
f i g u r e (3 )
p lo t (Z ( 1 , : ) .∗ cos (Z ( 2 , : ) ) , Z ( 1 , : ) .∗ s i n (Z ( 2 , : ) ) )
ax i s equal
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rearth , ’ Color ’ , ’b ’ )
hold on
f o r k=1: l ength ( time )

p lo t (Z(1 , k ) .∗ cos (Z(2 , k ) ) , Z(1 , k ) .∗ s i n (Z(2 , k ) ) , ’ or ’ , ’ MarkerSize ’ ,5 , ’ MarkerFaceColor ’ , ’ r ’ ) ;
pause ( . 0 0 1 )

end

func t i on [ Eindmassa ] = minverbruik (Teind , Tinit , Nt)
% Ca lcu la t ing the end mass o f the rocket depending on end time , Teind . I f
% statements were used as the program sometimes had d i f f i c u l t i e s with
% accuracy .
mu = 3.986004418 e5 ; % Standard g r a v i t a t i o n a l parameter o f the Sun [kmˆ3/ s ˆ2 ]
h = 300 ; % I n i t i a l a l t i t u d e [km]
rea r th = 6378; % Radius o f the Earth [km]
r0 = h+rear th ; % LEO rad ius [km]
re ind = rear th +35786; % GEO rad ius [km]
m0 = 5e5 ; % I n i t i a l mass o f the rocket [ kg ]
P = 59 ; % Power o f the rocket [ kg kmˆ2/ s ˆ3 ]

opt ion = bvpset ( ’Nmax ’ ,10000 , ’ RelTol ’ ,1 e 1 1 ) ;
tau = l i n spa c e (0 , Tinit , Nt) ;
y i n i t = [ r0 0 0 sq r t (mu/ r0 ) 0 0 0 0 ] ;
s o l i n i t = bvp in i t ( tau , y i n i t ) ;
s o l = bvp4c (@D, @bcs , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

i f Teind<=25000
Tlst = 2∗Tin i t : T in i t : Teind ;

e l s e i f Teind<=39000
Tlst = [2∗ Tin i t : T in i t :25000 , 25050 :50 :26000 , 27000: T in i t : Teind ] ;

e l s e i f Teind<=52000
Tlst = [2∗ Tin i t : T in i t :25000 , 25050 :50 :26000 , 27000: T in i t :39000 , 39960 ,41000: T in i t : Teind ] ;

e l s e i f Teind<=66000
Tlst = [2∗ Tin i t : T in i t :25000 , 25050 :50 :26000 , 27000: T in i t :39000 , 39960 ,41000: T in i t

:52000 ,52960 ,53570 ,54600 ,55000 : T in i t : Teind ] ;
e l s e i f Teind<=80000

Tlst = [2∗ Tin i t : T in i t :25000 , 25050 :50 :26000 , 27000: T in i t :39000 , 39960 ,41000: T in i t
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: 52000 ,52960 ,53570 ,54600 ,55000 : T in i t : 66000 , 68000 : 500 : Teind ] ;
e l s e i f Teind<=92000

Tlst = [2∗ Tin i t : T in i t :25000 , 25050 :50 :26000 , 27000: T in i t :39000 , 39960 ,41000: T in i t
:52000 ,52960 ,53570 ,54600 ,55000 : T in i t : 66000 ,68000 :500 :80000 , 80200 , 82000: T in i t : Teind ] ;

e l s e i f Teind<=100000
Tlst = [2∗ Tin i t : T in i t :25000 , 25050 :50 :26000 , 27000: T in i t :39000 , 39960 ,41000: T in i t

:52000 ,52960 ,53570 ,54600 ,55000 : T in i t : 66000 ,68000 :500 :80000 , 80200 , 82000: T in i t :92000 ,
93500 ,94500 , 96000: T in i t : Teind ] ;

f o r T=Tlst
tau = l i n spa c e (0 ,T, Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D, @bcs , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

end

tau = l i n spa c e (0 , Teind , Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D, @bcs , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

tau2 = l i n spa c e (0 , Teind ,5∗Nt) ;
f o r q = 1 :8

Z2(q , : ) = sp l i n e ( tau , Z(q , : ) , tau2 ) ;
end
tau = tau2 ;
Z = Z2 ;
Y = Z ( 7 , : ) . ˆ2 + Z ( 8 , : ) . ˆ 2 ;

Eindmassa = 1/(1/m0 + trapz ( tau ,Y) /(2∗P) ) ;
end

c l e a r a l l ; c l o s e a l l ; c l c ;
% Use the func t i on minverbruik , to c a l c u l a t e the end mass f o r mul t ip l e end
% times .
Nt = 1000;
l s t =10000:10000:140000;
T in i t = 1000;
stap =1;
Use = ze ro s ( l ength ( l s t ) ,1 ) ;
f o r i = l s t

Use ( stap )= minverbruik ( i , Tinit , Nt) ;
stap = stap + 1

end

f i g u r e (1 )
p lo t ( l s t , Use ) ; x l ab e l ( ’End Time [ s ] ’ ) ; y l ab e l ( ’End Mass [ kg ] ’ ) ;

B.4 Earth Mars

f unc t i on [ r e s ] = bcs2 ( ya , yb )
% Boundary cond i t i on s
r0 = 1.496 e8 ; % Distance Sun to Earth [km]
rend = 2.279 e8 ; % Distance Sun to Mars [km]
mu = 1.32712440018 e11 ; % Standard g r a v i t a t i o n a l parameter o f the Sun [kmˆ3/ s ˆ2 ]
r e s = [ ya (1) ( r0 )

ya (2)
ya (3)
ya (4) sq r t (mu/( r0 ) )
yb (1) rend
yb (3)
yb (4) sq r t (mu/ rend )
yb (6)
] ;

end

func t i on [ xprime ] = D2( tau , x )
% These are the d i f f e r e n t i a l equat ions where x can be read as x =
% ( r , theta , vr , vtheta , lambda1 , lambda2 , lambda3 , lambda4 )
mu = 1.32712440018 e11 ; %Standard g r a v i t a t i o n a l parameter o f the Sun in kmˆ3/ s ˆ2
xprime = [ x (3) ;

x (4) /x (1) ;
x (7)+(x (4) ˆ2/x (1) mu/(x (1) ˆ2) ) ;
x (8) x (3) ∗x (4) /x (1) ;

x (7) ∗ ( ( x (4) ˆ2) /(x (1) ˆ2) 2∗mu/(x (1) ˆ3) ) x (8) ∗x (3) ∗x (4) /(x (1) ˆ2) ;
0 ;
x (5)+x (8) ∗x (4) /x (1) ;
2∗ x (7) ∗x (4) /x (1)+x (8) ∗x (3) /x (1)
] ;

end

c l e a r a l l ; c l o s e a l l ; c l c ;
% Main program f o r the t r a j e c t o r y Earth to Mars
r ea r th = 6378; % Radius o f the Earth [km]
rsun = 6.957 e5 ; % Radius o f the Sun [km]
r0 = 1.496 e8 ; % Distance Sun to Earth [km]
rend = 2.279 e8 ; % Distance Sun to Mars [km]
mu = 1.32712440018 e11 ; % Standard g r a v i t a t i o n a l parameter o f the Sun [kmˆ3/ s ˆ2 ]

opt ion = bvpset ( ’Nmax ’ ,10000 , ’ RelTol ’ ,10 e 1 3 ) ;
Tend = 2.23 e7 ; % End time [ s ]
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Nt = 1000; % Number o f s t ep s in each i n t e r v a l
T in i t = 1e6 ; % I n i t i a l time [ s ]
tau = l i n spa c e (0 , Tinit , Nt) ;
y i n i t = [ r0 0 0 sq r t (mu/ r0 ) 0 0 0 0 ] ; % I n i t i a l guess
s o l i n i t = bvp in i t ( tau , y i n i t ) ;
s o l = bvp4c (@D2, @bcs2 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

f o r T=2∗Tin i t : T in i t : f l o o r (Tend/Tin i t )∗Tin i t
T
tau = l i n spa c e (0 ,T, Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D2, @bcs2 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

end

tau = l i n spa c e (0 ,Tend , Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D2, @bcs2 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

tau2 = l i n spa c e (0 ,T,5∗Nt) ;
f o r q = 1 :8

Z2(q , : ) = sp l i n e ( tau , Z(q , : ) , tau2 ) ;
end
tau = tau2 ;
Z = Z2 ;
phi = acosd ( Z ( 8 , : ) . / ( sq r t (Z ( 7 , : ) . ˆ2 + Z ( 8 , : ) . ˆ 2 ) ) ) ;
time = tau ;
f i g u r e (1 )
p lo t (Z ( 1 , : ) .∗ cos (Z ( 2 , : ) ) , Z ( 1 , : ) .∗ s i n (Z ( 2 , : ) ) , ’ k ’ )
x l ab e l ( ’x d i r e c t i o n [km] ’ )
y l ab e l ( ’y d i r e c t i o n [km] ’ )
ax i s equal
hold on
v i s c i r c l e s ( [ 0 , r0 ] , rearth , ’ Color ’ , ’b ’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rsun , ’ Color ’ , ’m’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rend , ’ Color ’ , ’ r ’ , ’ L i n e s t y l e ’ , ’ : ’ , ’ Linewidth ’ , 0 . 9 )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , r0 , ’ Color ’ , ’b ’ , ’ L i n e s t y l e ’ , ’ : ’ , ’ Linewidth ’ , 0 . 9 )
f i g u r e (2 )
subplot (2 , 3 , 1 )
p lo t ( time , Z ( 1 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ r [km] ’ ) ;
subplot (2 , 3 , 2 )
p lo t ( time , Z ( 2 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ theta ’ ) ;
subplot (2 , 3 , 3 )
p lo t ( time , Z ( 3 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ vr [km/ s ] ’ ) ;
subplot (2 , 3 , 4 )
p lo t ( time , Z ( 4 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ vtheta [km/ s ] ’ ) ;
subplot (2 , 3 , 5 )
p lo t ( time , Z ( 7 , : ) ) ; x l ab e l ( ’ time [ s ] ’ ) ; y l ab e l ( ’ l 3 [km/ s ˆ2 ] ’ ) ;
subplot (2 , 3 , 6 )
p lo t ( time , Z ( 8 , : ) ) ; x l ab e l ( ’ time ’ ) ; y l ab e l ( ’ l 4 [km/ s ˆ2 ] ’ ) ;
%%
f i g u r e (3 )
p lo t (Z ( 1 , : ) .∗ cos (Z ( 2 , : ) ) , Z ( 1 , : ) .∗ s i n (Z ( 2 , : ) ) )
ax i s equal
hold on
v i s c i r c l e s ( [ 0 , r0 ] , rearth , ’ Color ’ , ’b ’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rsun , ’ Color ’ , ’ r ’ )
f o r k=1: l ength ( time )

p lo t (Z(1 , k ) .∗ cos (Z(2 , k ) ) , Z(1 , k ) .∗ s i n (Z(2 , k ) ) , ’ or ’ , ’ MarkerSize ’ ,5 , ’ MarkerFaceColor ’ , ’ r ’ ) ;
pause ( . 0 0 1 )

end

func t i on [ Eindmassa ] = minverbruikmars (Teind , Tinit , Nt)
% Ca lcu la t ing the end mass o f the rocket depending on end time , Teind .
mu = 1.32712440018 e11 ; % Standard g r a v i t a t i o n a l parameter o f the Sun [kmˆ3/ s ˆ2 ]
r0 = 1.496 e8 ; % Distance Sun to Earth [km]
m0 = 5e5 ; % I n i t i a l mass o f the rocket [ kg ]
P = 59 ; % Power o f the rocket [ kg kmˆ2/ s ˆ3 ]
opt ion = bvpset ( ’Nmax ’ ,100000 , ’ RelTol ’ ,1 e 1 3 ) ;
tau = l i n spa c e (0 , Tinit , Nt) ;
y i n i t = [ r0 0 0 sq r t (mu/ r0 ) 0 0 0 0 ] ;
s o l i n i t = bvp in i t ( tau , y i n i t ) ;
s o l = bvp4c (@D2, @bcs2 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

f o r T=2∗Tin i t : T in i t : f l o o r ( Teind/Tin i t )∗Tin i t
tau = l i n spa c e (0 ,T, Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D2, @bcs2 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

end

tau = l i n spa c e (0 , Teind , Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D2, @bcs2 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;
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tau2 = l i n spa c e (0 , Teind ,5∗Nt) ;
f o r q = 1 :8

Z2(q , : ) = sp l i n e ( tau , Z(q , : ) , tau2 ) ;
end
tau = tau2 ;
Z = Z2 ;
Y = Z ( 7 , : ) . ˆ2 + Z ( 8 , : ) . ˆ 2 ;
Eindmassa = 1/(1/m0 + trapz ( tau ,Y) /(2∗P) ) ;
Hamilton = . 5 . ∗ ( Z ( 7 , : ) . ˆ2 +Z ( 8 , : ) . ˆ 2 ) + Z ( 5 , : ) .∗Z ( 3 , : ) + Z ( 7 , : ) . ∗ ( ( Z ( 4 , : ) . ˆ 2 ) . /Z ( 1 , : ) mu. / (Z ( 1 , : )

. ˆ 2 ) ) Z ( 8 , : ) .∗ (Z ( 3 , : ) .∗Z ( 4 , : ) . /Z ( 1 , : ) ) ;
end

c l e a r a l l ; c l o s e a l l ; c l c ;
% Use the func t i on minverbruik , to c a l c u l a t e the end mass f o r mul t ip l e end
% times .
stap =1;
format long
Nt = 100 ;
l s t =0.1 e7 : 1 e6 : 3 e7 ;
Use = ze ro s ( l ength ( l s t ) ,1 ) ;
f o r i = l s t

[ Use ( stap ) ] = minverbruikmars ( i , Tinit , Nt) ;
stap = stap + 1

end

f i g u r e (1 )
p lo t ( l s t , Use ) ; x l ab e l ( ’End Time [ s ] ’ ) ; y l ab e l ( ’End Mass [ kg ] ’ ) ;

B.5 Earth Saturn

f unc t i on [ r e s ] = bcs4 ( ya , yb )
% Boundary cond i t i on s
r0 = 1.496 e2 ; % Distance Sun to Earth [Gm]
re ind =1.43353 e3 ; % Distance Sun to Saturn [Gm]
mu= 1 .719953 ;
%mu= 1.32712440018 e20 ∗(1 e 9 ) ˆ3/((1/3600) ˆ2) ; % Standard g r a v i t a t i o n a l parameter o f the Sun [Gmˆ3/hˆ2 ]
r e s = [ ya (1) ( r0 )

ya (2)
ya (3)
ya (4) ( sq r t (mu/( r0 ) ) )
yb (1) re ind
yb (3)
yb (4) ( sq r t (mu/( re ind ) ) )
yb (6)
] ;

end

func t i on [ xprime ] = D4( tau , x )
% These are the d i f f e r e n t i a l equat ions where x can be read as x =
% ( r , theta , vr , vtheta , lambda1 , lambda2 , lambda3 , lambda4 )
mu= 1 .719953 ;
%mu= 1.32712440018 e20 ∗(1 e 9 ) ˆ3/((1/3600) ˆ2) ; % Standard g r a v i t a t i o n a l parameter o f the Sun [Gmˆ3/hˆ2 ]
xprime = [ x (3) ;

x (4) /x (1) ;
x (7)+(x (4) ˆ2/x (1) mu/(x (1) ˆ2) ) ;
x (8) x (3) ∗x (4) /x (1) ;

x (7) ∗ ( ( x (4) ˆ2) /(x (1) ˆ2) 2∗mu/(x (1) ˆ3) ) x (8) ∗x (3) ∗x (4) /(x (1) ˆ2) ;
0 ;
x (5)+x (8) ∗x (4) /x (1) ;
2∗ x (7) ∗x (4) /x (1)+x (8) ∗x (3) /x (1)
] ;

end

c l e a r a l l ; c l o s e a l l ; c l c ;
% Main program f o r the t r a j e c t o r y Earth to Mars
rsun = 6.957 e 1 ; % Radius o f the Sun [Gm]
r0 = 1.496 e2 ; % Distance Sun to Earth [Gm]
re ind =1.43353 e3 ; % Distance Sun to Saturn [Gm]
mu= 1 .719953 ;% 1.32712440018 e20 ∗(1 e 9 ) ˆ3/((1/3600) ˆ2) ; % Standard g r a v i t a t i o n a l parameter o f the Sun [

Gmˆ3/hˆ2 ]

opt ion = bvpset ( ’Nmax ’ ,100000 , ’ RelTol ’ ,10 e 1 3 ) ;
Teind = 53000; % End time [ h ]
Nt = 1000; % Number o f s t ep s in each i n t e r v a l
T in i t = 1000; % I n i t i a l time [ h ]
tau = l i n spa c e (0 , Tinit , Nt) ;
y i n i t = [ r0 0 0 sq r t (mu/ r0 ) 0 0 0 0 ] ; % I n i t i a l guess
s o l i n i t = bvp in i t ( tau , y i n i t ) ;
s o l = bvp4c (@D4, @bcs4 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;
i f Teind <= 50000

Tlst = 2∗Tin i t : T in i t : Teind ;
e l s e i f Teind <=80000

Tlst = [2∗ Tin i t : T in i t :52000 , 52005 :5 :52100 , 53000 :500 : Teind ] ;
e l s e i f Teind > 80000

Tlst = [2∗ Tin i t : T in i t :52000 , 52005 :5 :52100 , 53000 :1000 :80000 , 80100 :50 : Teind ] ;
end
f o r T=Tlst

T
tau = l i n spa c e (0 ,T, Nt) ;
s o l i n i t . y = Z ;
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s o l i n i t . x = tau ;
s o l = bvp4c (@D4, @bcs4 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

end

tau = l i n spa c e (0 , Teind , Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D4, @bcs4 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

tau2 = l i n spa c e (0 ,T,5∗Nt) ;
f o r q = 1 :8

Z2(q , : ) = sp l i n e ( tau , Z(q , : ) , tau2 ) ;
end
tau = tau2 ;
Z = Z2 ;
time = tau ;
f i g u r e (1 )
p lo t (Z ( 1 , : ) .∗ cos (Z ( 2 , : ) ) , Z ( 1 , : ) .∗ s i n (Z ( 2 , : ) ) , ’ k ’ )
x l ab e l ( ’x d i r e c t i o n [Gm] ’ )
y l ab e l ( ’y d i r e c t i o n [Gm] ’ )
ax i s equal
hold on
v i s c i r c l e s ( [ 0 , r0 ] , 0 .006378 , ’ Color ’ , ’b ’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rsun , ’ Color ’ , ’m’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , re ind , ’ Color ’ , ’ r ’ , ’ L i n e s t y l e ’ , ’ : ’ , ’ Linewidth ’ , 0 . 9 )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , r0 , ’ Color ’ , ’b ’ , ’ L i n e s t y l e ’ , ’ : ’ , ’ Linewidth ’ , 0 . 9 )
f i g u r e (2 )
subplot (2 , 3 , 1 )
p lo t ( time , Z ( 1 , : ) ) ; x l ab e l ( ’ time [ h ] ’ ) ; y l ab e l ( ’ r [Gm] ’ ) ;
subplot (2 , 3 , 2 )
p lo t ( time , Z ( 2 , : ) ) ; x l ab e l ( ’ time [ h ] ’ ) ; y l ab e l ( ’ theta ’ ) ;
subplot (2 , 3 , 3 )
p lo t ( time , Z ( 3 , : ) ) ; x l ab e l ( ’ time [ h ] ’ ) ; y l ab e l ( ’ vr [Gm/h ] ’ ) ;
subplot (2 , 3 , 4 )
p lo t ( time , Z ( 4 , : ) ) ; x l ab e l ( ’ time [ h ] ’ ) ; y l ab e l ( ’ vtheta [Gm/h ] ’ ) ;
subplot (2 , 3 , 5 )
p lo t ( time , Z ( 7 , : ) ) ; x l ab e l ( ’ time [ h ] ’ ) ; y l ab e l ( ’ l 3 [Gm/hˆ2 ] ’ ) ;
subplot (2 , 3 , 6 )
p lo t ( time , Z ( 8 , : ) ) ; x l ab e l ( ’ time [ h ] ’ ) ; y l ab e l ( ’ l 4 [Gm/hˆ2 ] ’ ) ;
%%
f i g u r e (3 )
p lo t (Z ( 1 , : ) .∗ cos (Z ( 2 , : ) ) , Z ( 1 , : ) .∗ s i n (Z ( 2 , : ) ) )
ax i s equal
hold on
v i s c i r c l e s ( [ 0 , r0 ] , 6378e 6 , ’ Color ’ , ’b ’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rsun , ’ Color ’ , ’ r ’ )
f o r k=1: l ength ( time )

p lo t (Z(1 , k ) .∗ cos (Z(2 , k ) ) , Z(1 , k ) .∗ s i n (Z(2 , k ) ) , ’ or ’ , ’ MarkerSize ’ ,5 , ’ MarkerFaceColor ’ , ’ r ’ ) ;
pause ( . 0 0 1 )

end

func t i on [ Eindmassa ] = minverbruiksat (Teind , Tinit , Nt)
% Ca lcu la t ing the end mass o f the rocket depending on end time , Teind . I f
% statements were used as the program sometimes had d i f f i c u l t i e s with
% accuracy .
rsun = 6.957 e 1 ; % Radius o f the Sun [Gm]
r0 = 1.496 e2 ; % Distance Sun to Earth [Gm]
re ind =1.43353 e3 ; % Distance Sun to Saturn [Gm]
mu= 1 .719953 ;% 1.32712440018 e20 ∗(1 e 9 ) ˆ3/((1/3600) ˆ2) ; % Standard g r a v i t a t i o n a l parameter o f the Sun [

Gmˆ3/hˆ2 ]
m0 = 5e5 ; % I n i t i a l mass o f the rocket [ kg ]
P = 59∗46656e 6 ; % Power o f the rocket [ kg Gmˆ2/hˆ3 ]

opt ion = bvpset ( ’Nmax ’ ,100000 , ’ RelTol ’ ,1 e 1 3 ) ;
tau = l i n spa c e (0 , Tinit , Nt) ;
y i n i t = [ r0 0 0 sq r t (mu/ r0 ) 0 0 0 0 ] ;
s o l i n i t = bvp in i t ( tau , y i n i t ) ;
s o l = bvp4c (@D4, @bcs4 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

i f Teind <= 50000
Tlst = 2∗Tin i t : T in i t : Teind ;

e l s e i f Teind <=80000
Tlst = [2∗ Tin i t : T in i t :52000 , 52005 :5 :52100 , 53000 :500 : Teind ] ;

e l s e i f Teind > 80000
Tlst = [2∗ Tin i t : T in i t :52000 , 52005 :5 :52100 , 53000 :1000 :80000 , 80300 :1000 : Teind ] ;

end

f o r T=Tlst
tau = l i n spa c e (0 ,T, Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D4, @bcs4 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

end

tau = l i n spa c e (0 , Teind , Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D4, @bcs4 , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;
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tau2 = l i n spa c e (0 , Teind ,5∗Nt) ;
f o r q = 1 :8

Z2(q , : ) = sp l i n e ( tau , Z(q , : ) , tau2 ) ;
end
tau = tau2 ;
Z = Z2 ;
Y = Z ( 7 , : ) . ˆ2 + Z ( 8 , : ) . ˆ 2 ;

Eindmassa = 1/(1/m0 + trapz ( tau ,Y) /(2∗P) ) ;
end

c l e a r a l l ; c l o s e a l l ; c l c ;
% Use the func t i on minverbruik , to c a l c u l a t e the end mass f o r mul t ip l e end
% times .
stap =1;
format long
Tin i t = 1000;
Nt = 1000;
l s t =5000:5000:80000;
Use = ze ro s ( l ength ( l s t ) ,1 ) ;
f o r i = l s t

[ Use ( stap ) ] = minverbruiksat ( i , Tinit , Nt) ;
stap = stap + 1

end
%%
f i g u r e (1 )
p lo t ( l s t , Use ) ; x l ab e l ( ’End Time [ h ] ’ ) ; y l ab e l ( ’End Mass [ kg ] ’ ) ;

B.6 Flyby

f unc t i on [ r e s ] = bcs3 ( ya , yb )
% Boundary cond i t i on s
r0 = 1.496 e2 ; % Distance from the Earth to the Sun [Gm]
re ind =1.43353 e3 ; % Distance from Saturn to the Sun [Gm]
mus= 1.719953 ; % Standard g r a v i t a t i o n a l parameter o f the Sun [Gmˆ3/hˆ2 ]
omega = (2∗ pi ) /(4332 .71∗24) ; % Orb i ta l speed o f Jup i t e r [ rad/h ]
r e s = [ ya (1) ( r0 )

ya (2) ( 0 . 3 4 ) ∗pi
ya (3)
ya (4) ( sq r t (mus/ r0 ) omega∗ r0 )
yb (1) re ind
yb (3)
yb (4) ( sq r t (mus/ re ind ) omega∗ r e ind )
yb (6)
] ;

end

func t i on [ xprime ] = D3( tau , x )
% D i f f e r e n t i a l equat ions in the r o t a t i ng r e f e r e n c e frame
r0 = 1.496 e2 ; % Distance from the Earth to the Sun [Gm]
R = 7.785 e2 ; % Distance from Jup i t e r to the Sun [Gm]
re ind =1.43353 e3 ; % Distance from Saturn to the Sun [Gm]
mus= 1.719953 ; % Standard g r a v i t a t i o n a l parameter o f the Sun [Gmˆ3/hˆ2 ]
muv= 0.0016418575 ; %1.26686534 e17 ∗(1 e 9 ) ˆ(3) /((1/3600) ˆ2) % Standard g r a v i t a t i o n a l parameter Jup i t e r [

Gmˆ3/hˆ2 ]
omega = (2∗ pi ) /(4332 .71∗24) ; % Orb i ta l speed o f Jup i t e r [ rad/h ]
rsun = 6.957 e 1 ; % Radius o f the Sun [Gm]
c1 =0.05; % Drag c o e f f i c i e n t
D = 0 . 7 ; % Radius o f i n f l u e n c e
% D i f f e r e n t i a l equat ions only with Jupiter ’ s atmosphere
a = x (3) ;
b= x (4) /x (1) ;
c= x (7)+x (4) ˆ2/x (1) mus/(x (1) ˆ2)+2∗x (4) ∗omega+omegaˆ2∗x (1) (muv∗(x (1) R∗ cos (x (2) ) ) ) / ( ( x (1)ˆ2+Rˆ2 2∗

R∗x (1) ∗ cos (x (2) ) ) ˆ(3/2) ) x (3) ∗c1∗exp ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) /Dˆ2) ;
d= x (8) x (3) ∗x (4) /x (1) 2∗ omega∗x (3) (muv∗(R∗ s i n (x (2) ) ) ) / ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) ˆ(3/2) ) x (4) ∗

c1∗exp ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) /Dˆ2) ;
e= (x (6) ∗x (4) ) /(x (1) ) ˆ2 + x (7) ∗ ( ( x (4) ˆ2) /(x (1) ˆ2) ( x (3) ∗c1 ∗(2∗x (1) 2∗R∗ cos (x (2) ) )∗exp ( ( x (1)ˆ2+Rˆ2 2∗R

∗x (1) ∗ cos (x (2) ) ) /Dˆ2) ) /Dˆ2 omegaˆ2 2∗mus/(x (1) ˆ3) + muv/(( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) ˆ(3/2)
) (3/2) ∗(muv∗(x (1) R∗ cos (x (2) ) ) ∗(2∗x (1) 2∗R∗ cos (x (2) ) ) ) / ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) ˆ(5/2)
) ) x (8) ∗(x (3) ∗x (4) /x (1) ˆ2 + (x (4) ∗c1 ∗(2∗x (1) 2∗R∗ cos (x (2) ) )∗exp ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) )
/Dˆ2) ) /Dˆ2 + (3/2) ∗(muv∗R∗ s i n (x (2) ) ) ∗(2∗x (1) 2∗R∗ cos (x (2) ) ) / ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) ˆ(5/2)
) ) ;

f= x (7) ∗ ( ( muv∗R∗ s i n (x (2) ) ) / ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) ˆ(3/2) ) + (3∗muv∗(x (1) R∗ cos (x (2) ) )∗R∗x
(1) ∗ s i n (x (2) ) ) / ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) ˆ(5/2) ) + (2∗x (3) ∗c1∗R∗x (1) ∗ s i n (x (2) )∗exp ( ( x (1)ˆ2+
Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) /Dˆ2) ) /Dˆ2) x (8) ∗ ( (muv∗R∗ cos (x (2) ) ) / ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) )
ˆ(3/2) ) + (3∗muv∗(x (1) ∗Rˆ2∗( s i n (x (2) ) ) ˆ2) ) / ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) ˆ(5/2) )+ (2∗x (4) ∗c1∗R∗x
(1) ∗ s i n (x (2) )∗exp ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) /Dˆ2) ) /Dˆ2) ;

g= x (5) x (8) ∗ ( x (4) /x (1) 2∗omega )+x (7) ∗c1∗exp ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2) ) ) /Dˆ2) ;
h= x (6) /x (1) x (7) ∗(2∗x (4) /x (1)+ 2∗omega ) + x (8) ∗x (3) /x (1)+x (8) ∗c1∗exp ( ( x (1)ˆ2+Rˆ2 2∗R∗x (1) ∗ cos (x (2)

) ) /Dˆ2) ;
xprime = [ a ; b ; c ; d ; e ; f ; g ; h ] ;

% D i f f e r e n t i a l equat ions with Jupiter ’ s atmosphere as we l l as s i n g u l a r i t y
% removal

%r = x (1) ; theta = x (2) ; vr = x (3) ; vtheta = x (4) ;
% b = ( r ˆ2 + Rˆ2 2∗R∗ r∗ cos ( theta ) ) ˆ(1/2) ;
% B = ( r R∗ cos ( theta ) ) ;
% Em = exp ( ( bˆ2) /(Dˆ2) ) ;
% a = vr ;
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% k= vtheta / r ;
% c= x (7)+vtheta ˆ2/ r mus/( r ˆ2)+2∗vtheta∗omega+omegaˆ2∗ r ( muv∗B∗ ( 1 Em) ) /(bˆ3) vr∗c1∗Em;
% d= x (8) vr∗vtheta /r 2 ∗ omega∗vr ( ( muv∗R∗ s i n ( theta ) ) ∗ ( 1 Em) ) /(bˆ3) vtheta∗c1∗Em;
% e= (x (6) ∗vtheta ) / r ˆ2 + x (7) ∗ ( ( vtheta ˆ2) /( r ˆ2) ( vr∗c1∗2∗B∗Em)/Dˆ2 omegaˆ2 2∗mus/( r ˆ3) + (muv∗ ( 1

Em) ) /(bˆ3) (3/2) ∗(muv∗B∗2∗B∗ ( 1 Em) ) /(bˆ5) + (muv∗2∗B∗B∗Em) /(bˆ3∗Dˆ2) ) x (8) ∗( vr∗vtheta / r ˆ2 + (
vtheta∗c1∗2∗B∗Em) /(Dˆ2) + (3/2) ∗(muv∗R∗ s i n ( theta ) ∗2∗B∗ ( 1 Em) ) /(bˆ5) (muv∗R∗ s i n ( theta ) ∗2∗B∗Em) /(D
ˆ2∗bˆ3) ) ;

% f= x (7) ∗ ( ( muv∗R∗ s i n ( theta ) ∗ ( 1 Em) ) /bˆ3 + (3∗muv∗B∗R∗ r∗ s i n ( theta ) ∗ ( 1 Em) ) /bˆ5 (2∗muv∗B∗R∗ r∗ s i n (
theta )∗Em) /(bˆ3∗Dˆ2) + (2∗ vr∗c1∗R∗ r∗ s i n ( theta )∗Em)/Dˆ2) x (8) ∗ ( (muv∗R∗ cos ( theta ) ∗ ( 1 Em) ) /(bˆ3) +
(3∗muv∗( r∗Rˆ2∗( s i n ( theta ) ) ˆ2) ∗ ( 1 Em) ) /(bˆ5) (2∗muv∗Rˆ2∗( s i n ( theta ) ) ˆ2∗ r∗Em) /(bˆ3∗Dˆ2)+ (2∗ vtheta∗
c1∗R∗ r∗ s i n ( theta )∗Em)/Dˆ2) ;

% g= x (5) x (8) ∗ ( vtheta / r 2∗omega )+x (7) ∗c1∗Em;
% h= x (6) / r x (7) ∗(2∗ vtheta / r+ 2∗omega ) + x (8) ∗vr/ r+x (8) ∗c1∗Em;
% xprime = [ a ; k ; c ; d ; e ; f ; g ; h ] ;
end

c l e a r a l l ; c l o s e a l l ; c l c ;
format longEng
% Main program f o r the t r a j e c t o r y Earth to Saturn us ing a grav i ty a s s i s t
% from Jup i t e r
r0 = 1.496 e2 ; % Distance from the Earth to the Sun [Gm]
R = 7.785 e2 ; % Distance from Jup i t e r to the Sun [Gm]
re ind =1.43353 e3 ; % Distance from Saturn to the Sun [Gm]
mus= 1.719953 ; % Standard g r a v i t a t i o n a l parameter o f the Sun [Gmˆ3/hˆ2 ]
muv= 0.0016418575 ; % 1.26686534 e17 ∗(1 e 9 ) ˆ(3) /((1/3600) ˆ2) ; % Standard g r a v i t a t i o n a l parameter Jup i t e r

[Gmˆ3/hˆ2 ]
omega = (2∗ pi ) /(4332 .71∗24) ; % Orb i ta l speed o f Jup i t e r [ rad/h ]
m0 = 5e5 ; % I n i t i a l mass o f the rocket [ kg ]
P = 59∗46656e 6 ; % Power o f the rocket [ kg Gmˆ2/hˆ3 ]
rsun = 6.957 e 1 ; % Radius o f the Sun [Gm]
opt ion = bvpset ( ’Nmax ’ ,20000 , ’ RelTol ’ ,10 e 1 3 ) ;
Teind = 50000; % End time [ h ]
Nt = 1000; % Number o f s t ep s
Tin i t = 50 ; % I n i t i a l time [ h ]
tau = l i n spa c e (0 , Tinit , Nt) ;
y i n i t = [ r0 ( 0 . 3 4 ) ∗pi 0 sq r t (mus/ r0 ) omega∗ r0 1e 9 1e 9 1e 7 1e 6 ] ; % I n i t i a l guess
s o l i n i t = bvp in i t ( tau , y i n i t ) ;
s o l = bvp4c (@D3T,@bcs3T , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;
Tl s t = [2∗ Tin i t : T in i t : 49800 , 49805 : 5 : Teind ] ;
%Tlst = [2∗ Tin i t : T in i t :16250 , 16300 :2 :16500 , 16550: 50 : Teind ];% , 49510: 1 : Teind ] ;
%Tlst = [2∗ Tin i t : T in i t :23000 , 23100 :50 :48500 , 48510: 10 :49360 , 49400 :10 : Teind ] ;
f o r T=Tlst %f l o o r ( Teind/Tin i t )∗Tin i t

T
tau = l i n spa c e (0 ,T, Nt) ;
s o l i n i t . y = Z ;
s o l i n i t . x = tau ;
s o l = bvp4c (@D3T,@bcs3T , s o l i n i t , opt ion ) ;
Z = deval ( so l , tau ) ;

end

tau2 = l i n spa c e (0 , Teind ,5∗Nt) ;
f o r q = 1 :8

Z2(q , : ) = sp l i n e ( tau , Z(q , : ) , tau2 ) ;
end
tau = tau2 ;
Z = Z2 ;
time = tau ;
Y = Z ( 7 , : ) . ˆ2 + Z ( 8 , : ) . ˆ 2 ;
Eindmassa = 1/(1/m0 + trapz ( tau ,Y) /(2∗P) )
f i g u r e (1 )
p lo t (Z ( 1 , : ) .∗ cos (Z ( 2 , : )+omega∗ tau ) , Z ( 1 , : ) .∗ s i n (Z ( 2 , : )+omega∗ tau ) , ’ k ’ )
x l ab e l ( ’x d i r e c t i o n [km] ’ )
y l ab e l ( ’y d i r e c t i o n [km] ’ )
ax i s equal
hold on
v i s c i r c l e s ( [ 0 , r0 ] , rsun , ’ Color ’ , ’b ’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rsun , ’ Color ’ , ’ r ’ )
% hold on
% v i s c i r c l e s ( [ 0 , 0 ] , re ind , ’ Color ’ , ’b ’ , ’ L ineSty le ’ , ’ ’ )
hold on
v i s c i r c l e s ( [R, 0 ] , rsun , ’ Color ’ , ’ k ’ )
f i g u r e (2 )
subplot (2 , 3 , 1 )
p lo t ( time , Z ( 1 , : ) ) ; x l ab e l ( ’ time ’ ) ; y l ab e l ( ’ r ’ ) ;
subplot (2 , 3 , 2 )
p lo t ( time , Z ( 2 , : )+omega∗ tau ) ; x l ab e l ( ’ time ’ ) ; y l ab e l ( ’ theta ’ ) ;
subplot (2 , 3 , 3 )
p lo t ( time , Z ( 3 , : ) ) ; x l ab e l ( ’ time ’ ) ; y l ab e l ( ’ vr ’ ) ;
subplot (2 , 3 , 4 )
p lo t ( time , Z ( 4 , : )+omega∗Z ( 1 , : ) ) ; x l ab e l ( ’ time ’ ) ; y l ab e l ( ’ vtheta ’ ) ;
subplot (2 , 3 , 5 )
p lo t ( time , Z ( 7 , : ) ) ; x l ab e l ( ’ time ’ ) ; y l ab e l ( ’ l 3 ’ ) ;
subplot (2 , 3 , 6 )
p lo t ( time , Z ( 8 , : ) ) ; x l ab e l ( ’ time ’ ) ; y l ab e l ( ’ l 4 ’ ) ;
f i g u r e (3 )
p lo t ( time , Z ( 3 , : ) .ˆ2+(Z ( 4 , : )+omega∗Z ( 1 , : ) ) . ˆ2 , ’ r ’ )
hold on
p lo t ( time , (2∗mus . /Z ( 1 , : ) ) , ’ k ’ )
%%
f i g u r e (4 )
p lo t (Z ( 1 , : ) .∗ cos (Z ( 2 , : ) ) , Z ( 1 , : ) .∗ s i n (Z ( 2 , : ) ) ) ;
ax i s equal
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hold on
v i s c i r c l e s ( [ r0 , 0 ] , rsun , ’ Color ’ , ’b ’ )
hold on
v i s c i r c l e s ( [ 0 , 0 ] , rsun , ’ Color ’ , ’ r ’ )
hold on
v i s c i r c l e s ( [R, 0 ] , rsun , ’ Color ’ , ’ k ’ )
hold on
v i s c i r c l e s ( [R, 0 ] , 4 8 . 1 , ’ Color ’ , ’b ’ , ’ L ineSty l e ’ , ’ ’ )
f o r k=1:Nt/100 : l ength ( time )

p lo t (Z(1 , k ) .∗ cos (Z(2 , k ) ) , Z(1 , k ) .∗ s i n (Z(2 , k ) ) , ’ or ’ , ’ MarkerSize ’ ,5 , ’ MarkerFaceColor ’ , ’ r ’ ) ;
pause ( . 0 0 1 )

end
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