
Robot Block-Based Programming

Teaching children how to program an interactive
robot using a block-based programming language

Robin van der Wal
Jannelie de Vries
Luka Miljak
Marcel Kuipers

Bachelor’s Thesis
Computer Science
Delft University of Technology

1

This report is under embargo from July 2017 until
February 2018

Delft University of Technology

Bachelor end project

Robot Block-based Programming

Final Report

Authors:

Robin van der Wal

Jannelie de Vries

Luka Miljak

Marcel Kuipers

July 5, 2017

Bachelor Project Committee
Coach name: Koen Hindriks
Client name: Joost Broekens

Cordinator name: Ir. O.W. Visser

Abstract
Robots play an increasingly large role in society and some material already
exists that allows children to program robots in elementary school. However,
this material often neglects the interactive capabilities of modern robots.

The aim of this project is to teach children how to write interactive programs
for a robot. For this purpose, a NAO robot is used, which is a humanoid
robot with advanced features. Children can use a web interface to create
programs in a Block-Based Programming Language, which is then sent and
processed by the robot in an intelligent manner, using an agent-based sys-
tem.

Over the course of ten weeks, based on research done in the first two weeks, a
web interface and an intelligent agent were developed. The BlocklyKids lan-
guage implements many concepts you would expect from a programming lan-
guage. Using these concepts, children can solve exercises that are presented
to them in the web interface. Testing BlocklyKids in the classroom helped in
the development of the product. The company Interactive Robotics, which
commissioned this project, will further develop this project.

Keywords: block language, elementary school, primary school, robotic pro-
gramming, interactive robotics, Blockly,

1

Preface
This report documents the BlocklyKids project, which was developed for the
course TI3806 - Bachelorproject. This project aims to teach children about
programming robots and the role of robots in society. This report gives an
overview of the development process and the results that were achieved dur-
ing the last ten weeks.

We would like to thank Koen Hindriks and Joost Broekens for their supervi-
sion, advice and enthusiasm. We would also like to thank Ruud de Jong for
the technical support he provided. Finally, we would like to thank the teach-
ers from de Meester van der Brugschool and OBS de Griffioen for letting us
tests the product at their schools.

Robin van der Wal
Jannelie de Vries

Luka Miljak
Marcel Kuipers

Delft, July 5, 2017

2

Contents

1 Introduction 6
1.1 Product description . 6
1.2 Report overview . 6

2 Problem Definition 8
2.1 Company: Interactive Robotics 8
2.2 General problem definition . 8
2.3 Requirements . 9

3 Problem Analysis 12
3.1 Blockly as a framework . 12

3.1.1 Blockly composition 12
3.1.2 Similar use cases . 13

3.2 Learning capabilities of elementary school children 14
3.2.1 Group 3 and 4 . 15
3.2.2 Group 5 and 6 . 15
3.2.3 Group 7 and 8 . 16

3.3 An intelligent and programmable robot 16

4 Software Design 18
4.1 Subsystem Decomposition . 19

4.1.1 TECS Server . 19
4.1.2 Web Client . 19
4.1.3 NAO and NAOConnector 20
4.1.4 EIS Connector . 20
4.1.5 Agent . 20

4.2 Agent design . 21
4.2.1 Eis-connector parser 21
4.2.2 Intelligent feedback system 21

4.3 Blockly Language design . 22
4.3.1 Blocks . 22
4.3.2 Canvas . 23
4.3.3 Toolbox . 23
4.3.4 Dutch naming conventions 23

4.4 Exercise examples . 24
4.4.1 Example exercise for group 3 and 4 24
4.4.2 Example exercise for group 5 and 6 24
4.4.3 Example exercise for group 7 and 8 24

3

4.5 Web interface . 25
4.5.1 Child interface . 25
4.5.2 Teacher interface . 26

4.6 Database . 28
4.7 Message Design . 29

4.7.1 Existing messages . 29
4.7.2 New messages . 30
4.7.3 Sequence diagram of a basic use case 31

5 Software Implementation 32
5.1 Roadmap . 32
5.2 Scrum methodology . 35
5.3 Development tools . 35
5.4 Libraries . 36
5.5 Quality Assurance . 36

5.5.1 Scrum and User Tests 37
5.5.2 Code Tests . 37
5.5.3 Regression Tests . 38
5.5.4 Code Review . 38

6 Evaluation & reflection 39
6.1 State of final product . 39
6.2 SIG feedback . 40

6.2.1 First feedback . 40
6.2.2 Second feedback . 41

6.3 Test coverage . 42
6.3.1 JavaScript . 42
6.3.2 EIS-Connector . 43
6.3.3 GOAL . 43

6.4 User test feedback . 43
6.4.1 First user test . 43
6.4.2 Second user test . 44
6.4.3 Third user test . 44

6.5 Ethical considerations . 44
6.6 Reflection . 45

6.6.1 Understanding of the RIE framework 45
6.6.2 Work rhetoric . 46
6.6.3 Roadmap execution . 46

4

6.6.4 Experience Gained . 46

7 Conclusion 48
7.1 Conclusion on product . 48
7.2 Conclusion on the project . 48
7.3 Suggestions for future development of the BlocklyKids project 49

Appendices 54

A Glossary 55

B Original BebSys product description 56

C Executive infosheet 57

D Research Report 59

E Plan of Action 77

F SIG Review 96

G UserTest Results 98

H Block overview 105

5

1
Introduction

Programming lessons are becoming more and more common in Dutch ele-
mentary schools. Children learn to write programs using a variety of dif-
ferent languages. Many of these languages are Block-Based Programming
languages (BBPLs), which allow the user to create programs by connecting
blocks. With robot technology becoming increasingly more advanced it is
important that kids learn about robots and their role in society in the near
future. BlocklyKids combines learning about programming and robots by
allowing children to program the humanoid NAO robot using a BBPL.

This project was commissioned by the company Interactive Robotics, a Dutch
company which aims to create a robotic interaction engine. Applications of
this engine will be teaching children about interaction with robots, letting
robots give interactive presentations and helping children practice in courses
such as mathematics with robots.

1.1 Product description

The project is composed of a web interface and an intelligent agent.
In the web interface, children can choose an exercise that they need to

solve. Using blocks, the child can create a solution to the exercise and send
it. A teacher can create new exercises and make them available to his or her
pupils.

The agent can interpret solutions in a smart way, let the NAO perform
the requested actions and give feedback on the program.

1.2 Report overview

Chapter 2 gives an description of the problems that needed to be solved for
this project, followed by a number of requirements that the solutions need
to satisfy. In chapter 3 these problems are analyzed in more detail. Chapter

6

4 lists of all the different software components of the product. The software
implementation process over the course of this project is given in chapter 5.
A reflection on development process and the final product can be found in
chapter 6. Finally, in chapter 7, a conclusion of the whole project is given
together with recommendations for further development.

7

2
Problem Definition

This chapter describes the challenges that the team tried to solve during
the project. The chapter starts with describing the company for which this
project is done. Then the general problem definition is given to give an
overview of the challenges. Lastly, the requirements for this project are
stated using MoSCoW.

2.1 Company: Interactive Robotics

Nowadays, robots are quickly becoming more able to assist us. So human-
robot interaction is the next challenge that needs to be solved. For robots
to be able to assist humans in everyday life, they not only need to perform
their task, but also do this in a way that makes sense to humans. Interactive
Robotics is developing a Robot Interaction Engine (RIE), using cognitive
technology to solve this problem.

In order to make this possible, robots need social intelligence to un-
derstand humans, natural interaction capabilities to talk with humans and
robots should be able to adapt to humans. The Robot Interaction En-
gine enables users to quickly develop interactive scenarios for robot appli-
cations. Interactive Robotics’ solutions strive optimal robot-human interac-
tion. Whether it’s a robot host, a care robot, a robot teacher or a robot
teaching assistant.

2.2 General problem definition

Interactive Robotics wants a block-based programming environment for pri-
mary school children to program robots through the robot interaction plat-
form. The aim is to use Blockly [1] as basis. In this project a web-based
interface will be developed to be integrated in the existing platform. Within
the web-based interface, Blockly is used to generate code for a robot pro-

8

gram. This project will also develop code for Prolog facts and rules that
will be interpreted by GOAL [2]. Using this code and the web-based inter-
face, children will be able to program a NAO robot. Key design criterion
are that the project is easily extended to fit needs of different types of users
to program the robot, ranging from young children up to adults and that
the project can be easily integrated in the RIE system. The original project
description is given in Appendix B.

2.3 Requirements

This section will describe the requirements of this project. The requirements
were created in the first two weeks of the project in communication with In-
teractive Robotics. The state of completion at the end of the project on these
requirements is described in section 6.1. The high-level features are defined
using MoSCoW. MoSCoW uses four categories to separate the features by
level of importance.

The categories are:
Must Have: Features that are of high importance. Without those features
there isn’t a product
Should Have: Features that are considered favorable. These features should
be included, but are not necessary for the basic product.
Could Have: Features that are of low importance. When there will be
enough time to implement, these features will be present.
Won’t Have: Features that are of no importance or not doable. These
won’t be implemented. However, these features are free to be implemented
by the company instead.

Must Have

• There has to be a Block based language for grades 3-4, 5-6 and 7-8
(Dutch school system). These languages have to be specially designed
for these grades, based on what the children are able to understand.

• For each grade there has to be at least three exercises to program the
NAO robot. These exercises teach programming in an interactive way.

• There has to be a web environment for children to program the NAO.

9

– The web environment has to contain a canvas where you can make
your program.

– the web environment has to contain a block library specially for
the current assignment or grade level.

– It has to be possible to select a block from the library and drag it
toward the canvas.

– It has to be possible to remove unused blocks from the canvas.

– It has to be possible that the robot executes the program, so the
children are able to see what their program does.

– A child has to be able to go through the program step by step.
So the robot executes a single step of the entire program. When
doing this the current step of the program should be highlighted
on the screen.

– A child has to be able to pause the program.

– A child has to be able to start the program.

– A child has to be able to stop the program.

• There has to be a GOAL agent.

– The GOAL agent has to be able to interpret a given program.

– The GOAL agent has to be able to execute the program and send
tasks to the robot.

Should Have

• GOAL agent

– The Goal agent should be able to get sensor data from the robot.
For example if a sensor is touched, the GOAL agent should receive
this.

– The GOAL agent should be able to process the received sensor
data, either by sending something to the child, or something to
the robot.

– The GOAL agent should be able to execute the given program in
a smart way, for example when it is interrupted, it should explain
the cause to the child.

10

– the GOAL agent should be able to evaluate the solution the child
gave for a certain exercise.

• There should be at least 5 exercises in total per grade (3-4,5-6,7-8).

• It should be possible to save and load partial solutions to exercises, so
the children can continue their exercise another time.

• There should be an environment where teachers can create their own
exercises.

– There should be an environment where teachers choose the blocks
needed for an exercise.

– There should be an environment where teacher can create a pos-
sible solution for the exercise.

– The exercise should be saved.

– Teachers should be able to select exercises for children to work on.

Could Have

• There could be more exercises for each grade (3-4, 5-6, 7-8). In this
way children have more exercises to learn from.

• The block language supports the facial recognition features of the NAO.

• There could be a virtual robot in the web-client. In this way, more
children can learn to program, because less actual robots are needed.

• The Block language and the agent support recognition of objects.

• There could be a monitoring system, that monitors the behavior of the
children and teachers when they use the web-client. The results could
be saved in a database.

Won’t Have

• There won’t be a text editor to program the robot, because the idea of
this project is to create a visual environment for pupils.

• There won’t be any customizable shapes of blocks, because the basic
Blockly blocks should be enough for the NAO actions and creating
additional Blockly functionality and/or blocks is not the focus of this
project.

11

3
Problem Analysis

The problem analysis contains a summary of the research that was done
to create the software design. A more detailed report, that was made at
the start of the project, can be found in appendix D: the research report.
The main research question that is answered in that report is: “How do you
teach children about robotics and programming using the NAO robot and a
BBPL?”. Firstly, because the Blockly [1] library will be used, its capabilities
are examined. The section after that is dedicated to outlining the capabilities
of children from different grades. Lastly, a section is written about the design
principles for an intelligent robot that will interpret the created BBPL.

3.1 Blockly as a framework

The Blockly framework is one of the two core components of the product,
the other being the programmable robot. In this section, the capabilities and
limitations of Blockly are explored. First, the framework itself is examined,
then a few use cases similar to this product are looked at in order to get
a grasp on possible competition and lastly a few limitation of Blockly are
considered. In each category Blockly is evaluated in terms of this project.

3.1.1 Blockly composition

Blockly is an open-source JavaScript library that adds a block-based virtual
code edit environment made by Google [1]. Blockly adds several different
components that are useful for this project. Each component is briefly ex-
plored here.

Firstly, the main function of Blockly is to add a workspace for code edit-
ing. This workspace consists of a toolbox and a work area. The Toolbox
contains the code blocks the user can use. The user can drag multiple blocks
to the work area. blocks can fit into each other, and combining multiple
blocks creates a “program.” There is usually a garbage can where the user

12

can drag blocks to delete them. Blockly allows restrictions on what blocks
the user can use. Blockly already has some predefined blocks that allow for
basic programming.

Secondly, Blockly allows developers to define custom blocks. These cus-
tom blocks can have multiple connections of different types, giving a lot
of freedom in the creation process. The custom blocks can have their own
text, images, and input types. Google has a web-page for creating custom
blocks using the Blockly framework, which facilitates making new blocks [3].
Custom blocks make it possible to adapt the Blockly framework for robotic
programming.

Thirdly, after a user has created a program, this program can be con-
verted to code. Blockly itself supports multiple languages such as JavaScript,
Python, Lua and Dart. Code generation is done by a generator script. This
script has to be defined per code block, including for each new block. This
allows Blockly to generate the type of output that the developer requires.

Finally, after a user has made some process with his or her code blocks,
the code can be saved to XML output. This XML output can then be used
to later reload the process of the user, or for future analysis.

All these features can be used for making a visual BBPL for programming
robots. The workspace and toolbox allow for creating assignments for chil-
dren. Next the custom blocks makes it possible to create blocks with images,
so they are more suitable for young children that might have difficulty read-
ing. Furthermore, the code generation can be made to match the robot
programming interface. Lastly, the saving feature allows for users to keep
track of their process while programming. All in all, these features make
Blockly a suitable framework for this project.

3.1.2 Similar use cases

Blockly has been used before in programming robots in elementary school. In
the article by M. Saleiro, et al. [4], the authors used Blockly in conjunction
with small low-cost robots. These robots were constructed from simple micro-
controllers, a small motor, some sensors and a sender. With the help of
Blockly the authors taught 8 year old children how to program simple actions
and movement for the robots. Using an exercise about robot movement and
a map, the authors were able to successfully teach the children about robotics
and geography.

13

In other research C. Martinez, et al. [5], examined whether it was possible
to teach children of ages 3 to 11 basic programming functions such as condi-
tionals and loops. Here Blockly was used as well to program a simple robot.
They were successful in teaching the basic concepts in the age categories 5 to
11 years old, which is similar to the age range of 6 to 13 used in this project.

While these use cases are similar, they were both done with simple robots.
In this project a NAO will be used. A NAO robot is a complex humanoid
robot. There is an existing Blockly-based programming language for the
NAO called Open Roberta [6]. Open Roberta has an implementation of all
basic features that the NAO comes with. It has blocks for each sensor and
multiple handy blocks such as the “Wait for” block. The programs can be
exported to a NAO for execution.

Open Roberta is excellent for users who are familiar with robots and pro-
gramming. But using it as an educational tool for primary school won’t work
with a robot such as a NAO [7]. Open Roberta is a sandbox that gives all
of the options of the NAO. Options like “get electric current of head yaw”
won’t be used in a classroom. Someone who never programmed before will
likely get lost. Though, there are good parts too. The command blocks are
generic and precise. And the extra image guide for all the NAO sensors clears
up where each sensor is. This makes Open Roberta useful to look at when
examining the capabilities of NAO programming.

Thus there have been multiple successful attempts on teaching robotic pro-
gramming to children of elementary school with Blockly. However, using a
humanoid robot to achieve this task hasn’t been done before in elementary
school.

3.2 Learning capabilities of elementary school children

In 2006 the Dutch government decided on several core goals primary school
students should have reached at the end of grade 8. Next some examples
are given. Dutch language: children should be able to get information from
spoken language. English: students should be able to write simple daily
used English words. Math: students should be able to add, subtract and
multiply. All other goals the government decided primary school student
student should have are stated in ”Het kerndoelenBoekje” [8]. Each school
is able to decide how they teach these goals to their student, but the basic

14

curriculum per school is the same.
However, this means that there is no precise definition of what children

should learn in each grade in elementary school. Interactive robotics re-
quested that this project focused on primary school students and suggested
splitting the primary school grades into three groups based on average age
and capabilities of those groups. In this section, each group is examined on
their learning capabilities and a suggestion on their programming capabilities
is given.

3.2.1 Group 3 and 4

In grades 3 and 4 the students get the basic knowledge needed to learn more
advanced information in the following classes. In grade 3, kids start learning.
They have to sit still and concentrate. The first steps of reading and writing
are made. Kids are able to read one line sentences. They also learn math.
They are able to add and subtract numbers to 20. In grade 4, kids learn
to read consecutive sentences, furthermore they learn basic grammar. Kids
learn multiplication for the numbers below 6.

Thus, children from grade 3 and 4 are able to read simple and small
sentences and will program based on images. A language for grade 3 and 4
should only contain simple blocks with images. These simple blocks are the
basic movements the robot can make, for example, walking, waving, dancing,
standing, sitting etc. It also contains a “for-loop” block for repeating actions,
but no other advanced blocks.

3.2.2 Group 5 and 6

In grade 5, kids learn to write and read longer sentences. Math exercises be-
come a bit more difficult. In grade 6, fractions and divisions are introduced.
Language skills are improved. A programming curriculum [9] is proposed for
Dutch schools. This curriculum gives an insight into what kinds of program-
ming skills should be expected from Grade 5 and 6. Focus is put on abstract
reasoning and problem solving. By now, kids are ready to learn more com-
plex programming concepts. Kids should be able to work with if-statements
in a program.

The basis for grades 3 and 4 is expanded on with new blocks for grades
5 and 6. Most importantly, a switch block is introduced. The previously
mentioned curriculum says that children can be expected to work with if-

15

statements, but in this project the children will work with the sensors of a
robot. The switch block can take different routes depending on what sensor
was touched. Each sensor will be included in another block. This seems to
offer more functionality than a simply if-statement and makes it more clear
that the switch block is for sensors.

The idea of the switch block also allows of the introduction for the “wait
for block”. In the “wait for” block, the robot waits till a condition becomes
true, such as sensor that is touched. The inclusion of the switch and “wait
for” block comes paired with the introduction of boolean expressions. “And”,
“not” and “or” blocks are implemented, but the exercises will not require
extensive usage of these blocks.

3.2.3 Group 7 and 8

In the 7th grade, reading and the Dutch language is even further explored.
Children learn to sum numbers up to 1,000,000. Fractions, decimals, per-
centages, averages and ratios are introduced. The metric system of length,
area, volume and weight is also explained. The 8th grade continues on this;
learning the language becomes more difficult and they explore the bigger
areas in math such as the circumference of a circle.

While grade 3 through 6 children only have the standard “loop x times”
block, grade 7 and 8 should be able to handle the two more complicated
blocks: the “while” block and “until” block. The “while” loop keeps repeat-
ing an action while a certain condition is true, the other keeps repeating an
action until a certain condition is true. The idea is that these children should
be able to create conditional loops as explained in section children learning
capabilities from the research report. Furthermore, the “time” blocks are
introduced. The “time” blocks can be used in a similar manner as sensors in
conditional blocks such as the switch block or “wait for” block.

3.3 An intelligent and programmable robot

When working with interactive robots, it is necessary to design some sort of
“intelligent” behavior. This project uses the NAO, which is a infant-sized
humanoid robot. The NAO will fulfill the roll of the interactive robot. In
this section, interactive robots in the context of working with children are
explored and suggestion is made for the robot.

16

Robots will play an interactive role in society. Exposing children to robots
early will help prepare them for this future. Two robots that were used in
this context are examined.

One of the first robots that were used in an interactive roll with children
was the Robovie [10]. The Robovie was used in children-robot interaction
research at a Japanese elementary school. The robot had basic behavior
such as shaking hands and giving hugs. The robot could also speak, but only
speak and recognize English. The goal of the robot was to teach children
some basic English words. Two exams at the begin and after the two week
test period with the robot, revealed that it did have a positive impact on the
English understanding. The research did not include a control group, but
it showed the possibility of positive effects. The researchers noted that the
interaction and idle movements the robot did were main reasons for children
paying attention to the robot [11].

A more recent example of a robot in an elementary classroom was the
DragonBot. This bot was designed to teach children about nutrition. Over
a 3 week period, children had to socially interact with the robot and present
food items to it. The DragonBot would respond and would prefer healthy
foods in its interactions. After the test period, children took more time to
consider what food to choose and it was shown that the children kept showing
an extremely positive attitude towards the robot [12].

Based on the research above, NAO should be interactive for children to
keep them engaged. There should be a set of idle actions and movement that
occur when the robot is not busy with execution a BPPL program. Further-
more, the NAO should greet children when starting up, be interactive during
the assignments and say goodbye when shutting down. Both works weren’t
able to show how effectively the robots were able to teach the children. Thus
when designing a robot programming teaching system, it is important to
keep testing the system with the users and keep track of progress.

17

4
Software Design

This chapter gives a global overview of the implementation of the product.
The first section gives the subsystem decomposition, giving a global outline of
the different system the product uses. The section “Agent design” goes into
more detail on the EIS-Connector and the GOAL agent, which are mentioned
in the subsystem decomposition. Afterwards, “Blockly Language Design”
gives an overview of some design choices made for creating the BlocklyKids
language. The next section gives a few examples of programming exercises
for the children. Section “Web Interface” gives an overview of how the inter-
face for both the child and the teacher looks like. “Database” gives a short
overview of what client data needs to saved in the server database, so that it
can be loaded another time. Finally, “Message Design” goes into more detail
on what, when and how messages are sent throughout the system.

18

4.1 Subsystem Decomposition

Figure 1: System decomposition of the product.

This section gives a global overview of the underlying system of the product.
The figure above shows how the system is split up into smaller subsystems
and how these subsystems interact with each other. The subsections below
explain the purpose of each of these subsystem.

4.1.1 TECS Server

The TECS Server mainly acts as messaging system between the different
modules of the product. The messages sent and received are Thrift based
[13].

4.1.2 Web Client

The user can interact directly with the web client. The client sends ”GUI
Actions” to the server. Meaning that buttons being pressed or blocks moved
on the screen are immediately sent to the server. Meanwhile, the client also
receives the state of the agent. This way it knows for example what block is
being executed and whether the program has finished. The web client can

19

react to these messages by highlighting the block being executed, locking or
unlocking certain buttons on the screen. The button locking makes it more
clear what actions can be taken during program execution, as examples: a
paused program can’t be paused again and if no program is running the
stopping the program has no effect.

4.1.3 NAO and NAOConnector

The NAO robot can be interacted with by the user. The user can do this
by for instance pressing buttons and activating sensors. The NAO sends
this data to the NAO connector (located on the NAO itself). A few exam-
ples of data being sent is that of the foot bumpers that are pressed or that
the posture of the robot has changed. Some types of sensor data that are
performance-intensive, require that the data is being request. This is in-
cluded in the NAOCommand messages. However, NAOCommand messages
are mostly used to make the robot do certain movements or say a particular
text.

4.1.4 EIS Connector

The EIS connector [14] mainly acts as an intermediate between the GOAL
agent and other modules that want to send message to the agent. In the
scope of the BlocklyKids product, the most complicated operation is parsing
a blockly string that have been sent from the web client. This parsing is not
done in the agent as it’s simply easier to do in Java than in Prolog.

The EIS connector sends messages to the agent as percepts and receives
messages as actions. Actions are usually immediately forwarded to either the
NAO Connector or the Web Client.

4.1.5 Agent

The GOAL agent [2] handles all the complicated logic required to control the
robot. Block programs that have been sent by the user are interpreted here.
Whether actions performed in the agents are forwarded to the NAO or the
Web Client is decided by the EIS Connector.

There are two main reasons why a GOAL agent is used to control the
NAO, rather than just ‘pumping’ Javascript block code into the NAO Con-
nector. First of all, most projects in the Interactive Robotics company use
GOAL as their way of controlling robots. Some projects might even be

20

merged together into one by merging their GOAL agents. Therefore, to en-
sure a product that is easily integrated into the existing RIE framework,
GOAL is a solid choice to run the robot on.

Secondly and more importantly, GOAL is a language specifically designed
for logic based Artificial Intelligence. While it is true that a Blockly program
created by the user is simply executed sequentially, which can easily be done
in a language like Java, the robot always needs to give some form of intelligent
feedback. Examples of such intelligent feedback can be found in section 4.2.2.

4.2 Agent design

This section explains the real purpose of the EIS Connector and why GOAL
has been used instead of a traditional programming language like Java.

4.2.1 Eis-connector parser

As the Subsystem Decomposition section showed, between the Web client
and the GOAL agent there is a Thrift-based server and an EIS Connector.
Because Thrift doesn’t support real complex object, the easiest way to send
a block program to the agent is as a string. This string can be parsed inside
of the EIS (Java) and can then be sent to the GOAL agent. The string sent
from the web client should follow a certain syntax.

Apart from just the block program, other simpler messages are also sent.
The content of these messages can be in JSON and if the EIS detects that
the format of the content is in JSON, this is automatically parsed and sent
to the GOAL agent. This allows for some general messages that don’t need
any additional code in the EIS.

4.2.2 Intelligent feedback system

In this subsection, several points are listed which outline the intelligent feed-
back system of the NAO.

To start with, the NAO shouldn’t always immediately start executing a
program it has received from a child. When a human receives an assignment,
it will first get ready to execute it. So the NAO should only start executing
the program when it is ready and should give feedback before doing so.

Another example is giving reactions to the success of an exercise after
running a program. The robot could give positive feedback when the children

21

succeed in finishing an exercise. The NAO has no facial expressions, but with
the help of its LEDs and body posture it can give a sense of emotion, as can
be read in this paper by M.A. Miskam [15].

Negative feedback when failing an exercise should be avoided and perhaps
an explanation could be given by the NAO. An explanation would mean that
the NAO tries to analyze the reason why it couldn’t continue with a program.
For example, if a program is missing a condition in a “wait for” block, the
NAO will stop executing the program and tell the user that it should fill in a
wait condition in this loop. This allows children to learn how they can create
complete programs that work.

4.3 Blockly Language design

In this section, an overview is given of the design choices for the Blockly
language that were made. These choices are based on the research done
in the research report, this report can be found in appendix D. The design
consists of four parts: the design of the blocks, the design of the canvas in
which the blocks are placed, the design of the toolbox that contains the blocks
and the (Dutch) naming conventions that are used in the language. The total
overview of all blocks created during this project is given in Appendix H.

4.3.1 Blocks

Like with most other BBPLs, blocks have a jigsaw puzzle shape, which is
provided by the Blockly framework [16]. When two blocks fit together, their
connections light up, making it clear that they can connect. Most blocks
contain an image, which shows what the block does. These images were
created using a Photoshop template made in this project. Hovering over the
block will show a tooltip, which helps when the image is not clear enough. For
some blocks, it was not possible to find images that showed the function of the
block, for example the “switch”-block. For these blocks, a brief description
is given on the block, consisting of a few words. Some blocks can contain
multiple other actions, such as the “for-loop”. These blocks are C-shaped,
making clear that blocks can be inserted. Each block is part of a specific
category, which decides its color.

22

4.3.2 Canvas

Blockly allows making some modifications to the canvas on which the blocks
are placed. This canvas contains grid points, allowing blocks to snap to a
location. Dragging the canvas is possible, but it is ensured that the blocks
will not leave the canvas because of this. A garbage can is present, which
allows for the deletion of blocks.

4.3.3 Toolbox

The toolbox allows for the selection of the blocks that need to be dragged
onto the canvas. Because the language contains a large number of blocks,
it was necessary to store the blocks in multiple entries. At first, they were
separated by category, but this still resulted in entries that contained too
many blocks. Because of this, some categories were spread out over multiple
entries. For example, the “action” category is spread out over the“walk
action”, “arm action” and “body action” entry. An entry has the same color
as the blocks it contains.

4.3.4 Dutch naming conventions

The naming used on blocks, toolboxes and tooltips needed to be clear and
understandable for Dutch children. A few other BBPLs exist that support
the Dutch language, some examples can be found at [17]. These language
were used for comparison to see whether terminology exists that is stan-
dard. Since BlocklyKids contains some features that cannot be found in
other BBPLs this could not be done for every piece of text. To make sure
that everything is still clear, children were asked during user tests whether
they understood the more difficult terminology. Because of this feedback,
some difficult words were switched for words that are more understandable.
For example, the name “functioneel” (“functional”) was switched out for
“herhalen” (“repetition”) because it turned out to be more intuitive after
comparison with other languages. User tests showed that “sensoren” (“sen-
sors”) was not a good name, because children did not know what a sensor is.
For this reason, this name was changed to “aanraken” (“touching”).

23

4.4 Exercise examples

One of the deliverables was a set of exercises to use in the system that was
build. This section will show some examples of exercises that were created
for each group. Also an explanation is given for why this exercise was made.

4.4.1 Example exercise for group 3 and 4

For group 3 and 4 an exercise was made called “Head, shoulders, knee and
toe”. In this exercise, the children will need to find the right blocks. Also
they need a for-loop in order to repeat the knee, toe actions. In the song,
this will be repeated too. By using the well-known song as an exercise, the
children know how the end result should look like. Children only need to
link the blocks to the parts of the song. Another way to solve the exercise
is by placing another knee and toe block below the program. Both solutions
are good solutions.

4.4.2 Example exercise for group 5 and 6

For group 5 and 6 an exercise was made called “Sprinkle chocolate sprinkles”.
In this exercise, students need to make a slice of bread and let the robot
sprinkle chocolate sprinkles, a well known Dutch bread spread, over it. This
is an interactive exercise, because the students make something with the
robot together. The robot needs to put its hand forward, the open is hand
and wait for the sprinkles to be put in its hand. When the student put
chocolate sprinkles in its hand, the student should touch the robot hand so
it closes and the the robot will sprinkle the chocolate. This exercise was
created because it is fun, interactive and the students learn to make their
own lunch.

4.4.3 Example exercise for group 7 and 8

For group 7 and 8 an exercise was made called “command the robot”. In
this exercise students need to command the robot with voice commands. The
robot will walk until it hears something. When it is the word left, it will turn
left, when it is the word right, it will turn right. When he hears the word
stop, it will stop. This exercise was created, because it is interactive and the
students are able to command the robot, not only by using blocks, but also
by using their voice.

24

4.5 Web interface

The web interface that was made for this project is primarily for feature
development and user testing. The focus of this project was to build a
programmable robot and an interface to use it. To add to that, the RIE
system was in heavy development at the time of this project. Thus, the
focus of this project was not to integrate it into the existing RIE system.
Instead a temporary web interface build.

This temporary web interface was the basis of the entire project and the
primary testing platform. The website only uses HTML, CSS and JavaScript
as development languages. The style used is a really basic and colorful idea
of how the interface could look like and not much time was invested in the
appearance because the website is only temporary. Nonetheless, it is made
with children in mind as at the start of the project it was planned to have
multiple user tests, thus it should look “fun” for children between ages 6
and 14. The code behind the website is as modular as possible and well
documented, so that integrating the website into the RISE-platform is going
to be easier.

The website contains two main components, the child interface and the
teacher interface, which will be discussed further below.

4.5.1 Child interface

The idea in the entire RIE platform of using it in the classroom is that
the teacher has control over the exercises that the students see. In other
words, the teacher can set an exercise ready and then the students can do
the exercise. This means that the only page students see is the exercise page
itself.

The exercise page contains all the information for a single exercise. It
displays the name of the exercise, its difficulty and a description of what the
student should do. The exercise page only contains relevant blocks to the
exercise, though sometimes it can contain blocks that might not be required
for the correct solution to increase difficulty. Lastly, the page contains a
toolbox with blocks and the workspace were blocks can be created.

The exercise page is the page that sends block programs and to GOAL
agent. The exercise is also responsible for sending the solution of an exer-
cise and the checking mode for the exercise. The exercise page contains a
start, step, pause and stop button. All buttons do exactly what their name

25

describes, as an example the step button steps the program by 1 block, exe-
cuting a single movement for the NAO. The exercise page can be seen in the
following image.

Figure 2: The exercise page for students. This page contains all the infor-
mation for exercises and a workspace to do them in. It also contains start,
step, pause and stop buttons to let the GOAL agent know to execute the
program. The language is in Dutch because the user tests were conducted
with Dutch children. The text is also not the focus here as the image serves
to give an idea of the structure of the exercise page only.

4.5.2 Teacher interface

The teacher web-interface, as said earlier, is for creating and setting up ex-
ercises for students. It consist out of three pages: the “grade / interface”
page, the “select exercise” page and the “create exercise” page. The “grade
/ interface” page holds links to each grade and the “create exercise” page.
The links of grades go the “select exercise” page which loads in the correct
exercises per grade. There are only three HTML documents in total, one for
each page, and loading in exercises is done dynamically. In the next image a
visual representation can be found.

26

Figure 3: The flow diagram of the web-interface. First the teacher can select
a grade level, then the teacher can select exercises for that grade level. After
that the exercise is ready for the students.

The “create exercise” page contains more functions than the other two pages.
At the moment any exercise created is transformed to a JSON object in string
format. This object can later be saved in a database.

The page has the following fields: Blockly workspace, teaching goals,
exercise name, exercise description, exercise checking method and exercise
difficulty. A teacher can use these fields to create an exercise by simply
creating the solution block program in the Blockly workspace. Additional
blocks can be added by dragging them into the workspace and not adding
them to the start block. The exercise page can be seen in figure 4.

27

Figure 4: The “create exercise” page. This page contains all the fields nec-
essary for creating a new exercise. Just as in figure 3 the text of this image
is in Dutch because Dutch teachers used this page in user tests.

4.6 Database

There are several items that require saving inside of the server database. To
make it simple, these items are all compiled to a JSON object. So that it
can easily be inserted and retrieved.

The most complex objects that requires to be saved are Exercises. Ex-
ercises consist of a name, difficulty, appropriate grade, available blocks, the
solution checking mode (either “none”, or “exact”, this decides how the ex-

28

ercise should be compared to the solution), and finally the solution to the
exercise. Apart from exercises, a list of all the blocks needs to be saved as
well.

4.7 Message Design

The BlocklyKids project requires messages in order to implement all the
required functionality. There are 3 objects that require state updating: the
NAO, the GOAL agent and the client-side web interface. Each object can
send its own messages. There are two lanes of communication, the first one
is from the web interface, to the GOAL agent and back, and the second one
is from the GOAL agent to the NAO and back. Thus, the NAO and web
interface do not directly communicate with each other. The state of the entire
system is kept within the GOAL agent. This means that the GOAL agent
is the primary entity that sends commands to the web interface and NAO,
the other entities can send requests and precept to the GOAL agent, which
the GOAL agent processes. The GOAL was chosen as centerpiece because it
allows the agent to always hold the true state of the system, which makes it
easier to react to and synchronize state changes from the NAO and the web
interface.

This sub section contains all message related data for extending or main-
taining the BlocklyKids message system. Firstly, messages that already were
created by Interactive Robotics and used in this project are discussed. Sec-
ondly, the new messages are justified. Lastly, a sequence diagram is given of
a basic use case of the Blocky-kids project.

4.7.1 Existing messages

These messages were already in use in other projects at Interactive Robotics.
The two most important of these messages are the gesture message and the
low-level message. The first message is used by the GOAL agent to send
gestures to the NAO. The second message is used to signal the GOAL agent
that it is done with completion. Other messages that were used in this project
were for letting the NAO listen to voice commands.

29

4.7.2 New messages

The new messages can roughly be split into three categories. The first cate-
gory is that of communication between the web client and GOAL agent. Here
are messages for sending over the user created block programs and solutions
to exercises to the goal agent. There is also a message for state updating.
This state message is primarily used by the GOAL agent to let the client
know it should highlight a block or that the agent is done with executing a
program.

The second category of new messages are messages send from the NAO
to the GOAL agent. For the project sensor input and posture information
from the NAO is necessary. The additional information allows programs with
booleans to be created and allow the NAO to stand up and react when it
falls. The touch message covers all contact and tactile sensors of the NAO
[18]. The posture message was only used in this project for when the NAO
is lying on its back or belly, so that the NAO can stand up again [19].

The last category is a bit more special and is only a single message.
During the project, it was noted by Interactive Robotics and their active
development teams that the GOAL agent needs a lot of information from
the outside to function. This includes everything from web client commands
to voice commands. Thus instead of having to listen to all these different
messages a single message was created, this message can be send by different
sources to the GOAL agent. Touch input from the NAO is an example of
such a message. However, because this message was created in the last weeks
before the deadline, it was not feasible to convert all the GOAL agent input
of the BlocklyKids project into this message.

So instead of converting everything last minute, only three messages were
converted to this input message: start, pause and stop. These messages are
sent from the web-client to the GOAL agent and are about the program
execution of user-created programs. The start message starts a program and
the other two messages speak for themselves. These messages are an example
of how the new input message acts, and can be used to implement the other
GOAL input messages similarly.

30

4.7.3 Sequence diagram of a basic use case

Figure 5: A sequence diagram of a basic use case of the Blockly project. In
the image the bright green part is where the agent is executing the program.
Behaviour A is a speech command that tells the user that it received a
program. Behaviour B is the “wave” command, which corresponds to block
B here. Behaviour C is an speech command that acknowledges that the
program has finished executing. When the Highlight messages and the done
message arrive, there is a visual change in the web interface notifying the
user. While this is a very simply program it should still give a clear image
on the messages that are passed around during run time.

This basic use-case considers a user that makes a simple block program of the
block “wave.” The user then executes the program. The user and the NAO
are physical objects here. The web interface and GOAL agent are already
connected and running on a server. The GOAL agent normally also sends
idle gestures to the NAO when the NAO is not executing any user created
program, however these are left out for clarity.

31

5
Software Implementation

In this chapter the roadmap is given that was used during the project. Fur-
thermore, the scrum methodology that was used will be explained. Next
the used development tools and libraries will be given. Finally, the section
Quality assurance will describe how the project teams assures the quality of
the product.

5.1 Roadmap

This section describes a high level planning for items stated in the MoSCoW.

The process is split into several phases. The first phase is the concept phase,
during the first two weeks. During this phase research is done and a plan of
action for this project is created.

Then comes the basic features implementation phase in week 3 to
5. Basic features will be implemented, such as sending the code towards
the GOAL agent and the GOAL agent should be able to send the task to
the NAO. The aim is to have at least finished the must haves from the
deliverables.

Next a more advanced agent is needed, so week 6 to 8 will be the ad-
vanced features implementation phase. In this phase the more advanced
features will be implemented, like dealing with feedback from the NAO and
testing the given solution. The aim is to have at least finished the should
haves from the deliverables and possibly some could haves. In this phase the
final report or in other words thesis is started on.

The last phase is the finalization phase in week 9 to 11. In this phase
the final product needs to be delivered, as well as the final report. Lastly, a
presentation has to be given on the project as a whole.

week 1 (24 April - 28 April) [Concept]
Research report.

32

Research learning capabilities for group 3-4.
Research learning capabilities for group 5-6.
Research learning capabilities for group 7-8.
Create a toolbox to select blocks from.
Create a canvas to make your program.
Implement block deleting from the canvas.

week 2 (1 May - 5 May) [Concept]
Research report.
Plan of action.
Create a Block based language for group 3-4.
Create a Block based language for group 5-6.
Create a Block based language for group 7-8.
3 exercises for group 3-4.
3 exercises for group 5-6.
3 exercises for group 7-8.

week 3 (8 May - 12 May) [Basic features implementation]
GOAL agent which is able to send the actions to the robot.
Basic Ontology based on the blocks available.
Design of basic pipeline with TECS server.
Design template for the robot images used in the blocks in the Blockly in-
terface.

week 4 (15 May - 19 May) [Basic features implementation]
Basic pipeline set up with TECS server:
- GOAL agent which is able to send the actions to the robot.
- GOAL agent which is able to receive feedback from the robot.
- Web client that is able to sent basic programs, single moves, to the GOAL
agent.
- GOAL agent able to sent feedback to the web client.
2 extra exercises for group 3-4.
2 extra exercises for group 5-6.
2 extra exercises for group 7-8.

week 5 (22 May - 26 May) [Basic features implementation]
GOAL agent which is able to send the actions to the robot such as idle ac-
tions, start up and shut down actions.

33

GOAL agent which is able to receive feedback from the robot based on exe-
cution of the robot moves as percepts.
Implement step by step program execution.

week 6 (29 May - 2 June) [Advanced features implementation]
Upload code to SIG.
GOAL agent which is able to send the actions to the robot when a program
is interrupted for basic reasons such as waiting to long on an input task.
GOAL agent which is able to process the sensory data from the robot used
in the program exercises.
Design teacher interface system together with company.
First field test with basic features of robot in a school.
Create proposal for content of the final report.

week 7 (5 June - 9 June) [Advanced features implementation]
Implement teacher interface.
Implement testing solutions given by the child.
Start writing final report, incorporating existing documentation.

week 8 (12 June - 16 June) [Advanced features implementation]
GOAL agent is able to provide feedback on incorrect solutions.
Write content for final report, based on new sections.
Second field test with advanced features such as program evaluation with
robot in a school.

week 9 (19 June - 23 June) [Finalization]
Last field test with finished advanced features such as an feedback system
with robot in a school.
Finalize all code implementations.
Finalize final report.

week 10 (26 June - 30 June) [Finalization]
Deadline final report.
Deadline info sheet.
Upload final code to SIG.
Prepare presentation and demo of presentation.

Week 11 (3 July - 7 July) [Finalization]
Presentation.

34

Upload thesis to repository.
Put library link on BEPsys.

5.2 Scrum methodology

The process of creating the product followed the scrum methodology. Mean-
ing the project is split up into sprints of fixed time, in our case: a week per
sprint. A sprint starts with a sprint planning, where every team member is
assigned a certain set of tasks to fulfill by the end of the week, and ends with
a sprint retrospective, where the team reflects on the progression that week,
in order to improve the next. In between sprints there are also sprint reviews,
where the team meets with the stakeholders in order to receive feedback on
the product. A stand-up meeting happens daily (daily scrum), where each
team member is expected to have an answer to what they have done since
the previous meeting, what they’re planning to do until the next and if they
need any help.

The purpose of scrum is mainly to quickly be able to react to problems
and stay in contact with the stakeholders of the product. For this reason, it
is expected that by the end of each sprint the team can present a working
product, that is an improvement of the product delivered the sprint before.

5.3 Development tools

The following are tools used to aid the team in writing good code throughout
the project:

• NAO - The humanoid robot itself [20].

• NAOqi API - Java API to connect to the NAO [21].

• RIE Framework - Framework specifically made for the Interactive Robotics
company.

• Eclipse - IDE used to write Java and GOAL code [22].

• GOAL - An Eclipse plugin that allows writing code in the GOAL lan-
guage. GOAL is useful as it is a cognitive programming language specif-
ically designed for logic based AI [2].

35

• QUnit - A Javascript framework used to test Javascript code [23]. Much
of the web client contains complicated Javascript code with many po-
tential bugs. Using a testing framework such as QUnit helps bug-
proofing the code.

• Blanket.js - A QUnit extension that shows code coverage for JavaScript
code [24]. The percentage of code covered in the test gives a decent
indication of how extensive those written tests were.

• JIRA Software - Site used to create scrum boards [25].

• Gitlab/Github - Sites that use Git for version control [26] [27].

• Confluence - Site used to organize work documentation [28].

• Maven - A build automation tool primarily used for projects [29].

5.4 Libraries

The following tools are libraries that are mainly used to lower the code vol-
ume. These libraries contain some general functions that then don’t have to
be written again by the development team.

• Blockly - Used to create Blockly programming languages [1].

• jQuery - Library designed to simplify the client-side scripting of HTML
[30]. Throughout this project it has mostly been used to load JSON
files.

• Socket.io - Used to easily send messages to a server [31].

• org.json - A Java library used to parse text in JSON format. This was
mainly used to handle incoming messages with JSON content [32].

5.5 Quality Assurance

This section describes how the project team assures the quality of the prod-
uct. The first section will describe how scrum and user tests will add to this
quality. Second the rules kept during the project about code testing. Then
a part is written about regression test. The final section will describe how
code review was done.

36

5.5.1 Scrum and User Tests

In order to get a high quality product that the stakeholders want, the process
of creating the product follows the Scrum paradigm. This means that at the
end of every week, the team is expected to have a working product to show,
as soon as the implementation phase starts. By doing this, the consumer
can immediately try out the product and provide feedback. This feedback
can then be used to improve the product even further in order to completely
satisfy the customer.

5.5.2 Code Tests

To achieve robust and well-working code, the project team makes use of
automated Unit Testing; meaning that each function will be tested for correct
and incorrect results.

It should be noted that a lot of code can’t be tested for various reasons.
First of all, the complete code base makes use of two different programming
languages: Javascript and GOAL. The latter one, which is used to send cer-
tain instructions to the NAO Robot, is impossible to unit test. Furthermore,
for a lot of parts of the Javascript code, unit tests would be meaningless.
An example would be the interface of the web application, which is mostly
written in Javascript.

For the parts of the Javascript code that are testable, the aim is to achieve
80% of line coverage. This means that when running the tests, at least 80% of
the code lines will be executed. The tool used for unit testing Javascript code
will be the QUnit framework. Code coverage is checked using Blanket.js.

Another type of code tests are end-to-end tests. Rather than testing separate
units of the code, these automated tests are directly based on user stories
and look of the code has the expected behavior of what the original task was.

Unlike with unit tests, GOAL does support end-to-end tests using test2g
files. These test files have simple looking and easy to write tests like “when
the agent thinks it hits a wall, it should stop trying to walk”. In Javascript,
end-to-end tests can be created the same way as unit tests are created, using
the QUnit framework. There exists no way of getting the code coverage of
GOAL programs, because there is currently no tool available for this.

37

5.5.3 Regression Tests

To ensure that the product doesn’t get broken after a week through as an
example old functionality that suddenly doesn’t work anymore, regression
tests are used. The idea is that whenever new functionality is added, included
with unit and end-2-end tests for that functionality, all of the tests of the
old functionality should be run with it as well. This allows the developers
to see if old code broke down due to the new changes and speeds up the
identification of errors in the code base.

5.5.4 Code Review

Automated tests are usually not enough to bug-proof code. One way to
ensure maintainability and reliability of the code, is to do code reviews.
Every time new code is added, it should be reviewed by at least two other
team embers, before it can be merged with the current code base.

38

6
Evaluation & reflection

This chapter will evaluate and reflect on this project. First the state of the
final product is given. Then the feedback gotten from SIG is discussed. Next
the final test coverage of the product is given and explained. The fourth
section will show the user tests results and discuss them. Section five will
consider some ethical issues for this project. In the final section the reflection
on the project is given.

6.1 State of final product

In section 2.3 an overview of all features is given that must, should, could or
wont be implemented. This section will describe the features that are imple-
mented, are not implemented and which features are added to the project.

During this project a Block based language was developed for grades 3-4, 5-6
and 7-8. In order to create this language, new behaviors for the NAO-robot
was created. The blocks that are used in the language contain images to
show what the block does. These images were created with the help of a
Photoshop template created during this project.

With this block language, a total of 5 exercises were created for each
group. The exercises consist of a Word template containing an explanation
and an overview of blocks used. Also the exercises are implemented and
shown on the student interface.

The student interface was also created during the project. Students can
select an exercise, make it, send it to the robot. A student can go through
the program step by step. It is possible to stop a running program. Besides
the student interface, an teacher interface was created. With this interface,
teachers can create an exercise. They can select which blocks should be
visible for this exercise, what the solution should be, create the name of
the exercise. They can enter a student description and teaching goals of
the exercise. The difficulty of the exercises can be indicated. And lastly,

39

the method of solution checking can be selected, which can be exact or no
checking at all.

When a program is send, the generator will generate code for the program.
This code will be send via messages to the EIS-Connector. The messages were
developed during this project. The way these messages are processed by the
EIS-Connector is also implemented during this project. When the connector
processes the code, it will send the blocks and state updates as percepts to
the GOAL agent.

The GOAL-agent developed during this project processes the percepts,
executes the programs by sending behaviors to the robot and gives feedback
when something is wrong within the code. For example, when a block is
missing, the GOAL-agent, will send a feedback message to the robot, so the
robot can give the feedback to the student.

It is also possible for the robot to send feedback to the GOAL agent, for
example, when it falls or when it is waiting too long. Also it can send a
message when a sensor is touched, or a word is recognized.

As described above, a lot of work is done during the project. To link the work
to the MoSCoW, described in section 2.3, This part will give an overview of
what is done from this list.

All the Must haves are implemented in this project. From the should
haves, everything is implemented except evaluating solutions in a smart way.
It is possible to check the solution exact, but there was no time left to create
a smart way of checking a given program with a solution. Also it is not
possible to load partial solutions, because the exercises are small, so saving
and loading is not necessary. None of the could haves are implemented due
to lack of time.

6.2 SIG feedback

In this section the SIG feedback is given and an explanation is given on how
this feedback is processed in the project. The complete and original feedback
is given in Appendix F.

6.2.1 First feedback

The first feedback from SIG gave this project three stars out of five on their
maintenance model. This meant that our code was average maintainable.

40

this project didn’t get an higher score because it scored low on unit size and
unit complexity.

A low score on unit size, meant that a high percentage of the code was
above average long. So to solve this, it was needed to split these part of
code into multiple parts. This would make the code easier to understand
and easier to test. In order to improve the score in unit size, the length of
the methods was reduced by splitting it into multiple methods.

A low score on unit complexity, meant that a high percentage of the code
was above average complex. To solve this problem, also splitting the code
could be a solution. By making the methods smaller, the complexity will
decrease. In order to improve the score in unit complexity, the methods were
split into multiple methods and where possible, we reduced the complexity.

The project also got some positive feedback. The test-code was promising
sufficient, as when the code grows, the test-code should grow with it.

6.2.2 Second feedback

In the second feedback, it was noticed that the score for unit complexity and
the score for unit size increased greatly. So the project learned from the first
feedback. However, the product also got the feedback that the attention for
increasing the maintainability overlooked the testing. So the testing score
did not increase. This feedback was not expected, because the tests were
adapted too. Also a lot of new tests were written and the end test coverage
is over 95%, which is higher than most projects. Due to the refactoring some
code was removed together with the belonging tests. This code was really
complex, so it contained a lot of tests. Due to the refactoring, this code
wasn’t needed, so the tests were removed too.

Moreover the development team did not get the impression that SIG
really looked at the test coverage of the JavaScript code, nor looked at the
GOAL code as the team received no feedback on these parts both evaluation
rounds. The team would have liked feedback on these parts of the product
as well, so that these parts could have been improved, if necessary.

Though, at the end of the second SIG evaluation, SIG did concluded that
the team took into account the feedback of the first round. All in all, the
second feedback round was positive.

41

6.3 Test coverage

This section will give the test coverage for the JavaScript files, the EIS-
Connector and the GOAL agent at the end of the project. Also it will
describe why some parts are not tested.

6.3.1 JavaScript

A big part of the JavaScript files are tested. As seen in figure 6, the total
coverage is 97.45%. There are a few files left out in the coverage, because
they are too closely linked to the HTML pages and the Document Object
Model (DOM) of those pages. Moreover, these files are only temporary and
will probably not be used after integration in the RIE system, thus it was
decided to not test these files. There are other ways to automate testing of
websites, however because the website will be changed during integration in
the RIE system, it would have been wasted work.

It was possible to test some parts of the navigate file. The rest of this
file, however, could not be tested as it too interacted with the DOM. This
project had a goal of at least 80% coverage, for the JavaScript files, and this
goal was reached, even with the files that couldn’t be tested.

Figure 6: Test coverage of JavaScript files

42

6.3.2 EIS-Connector

The EIS-connector is almost fully tested. The total amount of instructions
are 1271 The amount of instructions that are covered are 1249 the total
amount of missed instructions are 22 . So the total coverage is 98.27 %. For
this project, a total of at least 80% test coverage was needed. With 98.26%
this goal was reached.

6.3.3 GOAL

In this project, there were no test2g files generated for the GOAL agent. This
was because, the GOAL agent needs the client side and the robot side to work
with it. In order to test the GOAL agent, smoke tests were created on the
client side. These tests contained all behaviors, sensors, timers, logical blocks
and functional blocks. By sending these to the GOAL agent, it was possible
to check if the blocks works properly, if the messages were send correctly, if
the GOAL agent processes the blocks in the right way and if the robot gives
the right feedback.

Besides these smoke tests, the GOAL agent was also tested manually by
sending some programs to the GOAL agent. Also during this project several
user tests were done. Not only to test if the product was what the students
wanted, but also to check if everything works properly. The results of these
user tests can be found in the next section.

6.4 User test feedback

In this section, the feedback and notes from the user tests are summarized.
The complete results are shown in appendix G.

6.4.1 First user test

During the first user test, a lot of students asked if the robot was able to do the
dab. Sadly the robot couldn’t do this, so this was implemented afterwards.
Also it was noticed that group 3/4 should have access to the speech block,
because they are able to type some words and they really like it when the
robot pronounces their names. Even when it didn’t pronounce it the way it
should. In the stay alive module, the robot sometimes scratches his head.
This was a weird movement, and the students asked a lot of questions about
this. So maybe this behavior should be removed from the stay alive module.

43

Finally during this test it was noticed that the students don’t even care about
the exercise explanations, the students don’t look at it and just start trying
some blocks.

6.4.2 Second user test

During the second user test it was noticed that students still don’t read the
exercise explanation even when it is on the screen they are working on. Next
time, there shouldn’t be any explanation, so the students have to read the
exercise. Also the menu item ‘sensoren’ is not clear for the students. This
should be changed to ‘aanraken’, which is the Dutch word for touching. This
name was chosen because all the sensors used are touch-based.

6.4.3 Third user test

During the third user test, it was noticed that if you don’t give any expla-
nation, the students will read the the exercise. But for group 3, the text
was too small. This should be made bigger. Also some bugs were found.
Listening to a word, when no word is given, will cause the agent to keep lis-
tening to nothing. Another bug that was found, is that the agent sometimes
terminates randomly. These bugs should be fixed.

6.5 Ethical considerations

When teaching kids there is always a number of ethical considerations. In
this subchapter three ethical aspects relevant to this project are outlined:
pedagogical responsibility, security and privacy.

Though it can be achieved in a multitude of ways, a teacher always needs to
fulfill its pedagogical responsibility. Curriculum design plays a very impor-
tant role in this [33]. The material developed for this project prescribes a
programming curriculum and therefore puts a restriction on what material
is taught and how material is taught. Thus, it is important that the product
provides enough flexibility for the teacher and has the approval of teachers.

Flexibility is guaranteed by allowing teachers to create their own exercises.
For this purpose, a teacher interface was created with the wishes of teachers
in mind. Testing the teacher interface was also part of the user tests. Lastly,
adding new blocks and exercises is possible.

44

Ensuring that the product is in line with pedagogical principles was
achieved by actively involving teachers in the user tests and talking with
them about the product. Furthermore, other teaching materials were used
as a reference.

Another ethical consideration is safety. The moving parts of the NAO might
pinch a finger and might leave a mark. To add to that, the NAO is quite
heavy, the danger exists that it falls off a table onto a child, which could
cause injuries.

To prevent children’s fingers getting pinched exercises that require a lot
physical contact with the NAO are intentionally avoided. For instance, no
exercises exist that require the child to pick up or hug the robot. Teachers
should be informed of these hazards and will need to take them into account
when designing exercises. Reading the safety guide [34] should be done as
well.

Teachers need to be instructed not to put the NAO on a (small) table
when exercises that require walk actions are done.

The issue of privacy is also relevant in this project. Though it is not yet
implemented, eventually data will be stored regarding progress and other
statistics. When eventually these functionalities are implemented it will need
to be ensured that the personal data is encrypted.

6.6 Reflection

This subsection reflects on the project in the ten weeks that the group has
worked on it. The aspects that are reflected one, are the company’s RIE
framework, the work rhetoric, the execution of the roadmap, and finally, the
experience gained from this project.

6.6.1 Understanding of the RIE framework

During the start of the project, the RIE framework was a big unknown to all
team members and was largely undocumented. The third and fourth week
of the project was mainly used to get an understanding of the framework.
During these weeks, no team member managed to fully understand the re-
quired knowledge. However, as a collective group, this was no problem. Some
members knew how to connect to the robot, while others knew how to send
messages from the web client to the server. It’s safe to say that the group

45

was very dependent on each other. As the project progressed, everyone got
on an understanding of the most important parts of the framework.

6.6.2 Work rhetoric

Thanks to the scrum methodology, all the group member always knew what
to do and what the state of the project was at the time. The Sprint Planning
however always caused large, but mutual discussions on what to do, what not
to do, and especially how to do it. While the discussion sometimes became a
little heated, each of these discussions resulted in a good compromise, where
the best ideas of each member always got incorporated.

Looking at each individual’s work, there is barely anything to complain
about. Sprint items always got done on time. If not, there was always a good
explanation and usually there was always another team member to take over
a task of someone who can’t finish it. Everybody contributed roughly the
same amount and there were no issues with the amount of work somebody
did within the group.

6.6.3 Roadmap execution

The roadmap, as defined in the previous section, was mostly followed as
planned. Obviously it cannot be expected from any group that their project
time-line completely matches their planned roadmap. During the first few
weeks, the project proceeded almost exactly as planned. The few weeks after
that, some tasks that had been planned for the weeks after, have been done
in previous weeks. During the final weeks, the process slowed down a little
as the result from user tests came in and the planning had to be adjusted
accordingly. Thus, apart from the tasks that already had been specified in
those week, some extra tasks came in. This was not problem however, as it
compensated for the previous weeks going so fast.

6.6.4 Experience Gained

Working full-time on a project for ten weeks gave the group members quite
a lot of experience. This will be divided into technical and social experience
below.

Technical

46

There are many different programming languages that have been used in
the project: JavaScript, HTML, CSS, Java, Prolog and GOAL. Of these
programming languages, only Java has already been used a lot by the group
members, the other languages were only briefly touched upon in a one or two
courses before. Everyone gained some form of experience in all of the used
languages.

TECS and Thrift messaging are also new concepts, these messages follow
the publisher-subscribe design pattern. This pattern was new to the team,
but this pattern certainly showed that it’s very practical and easy to use in
future projects.

This project also gave a lot of insight in how to make software for robots.
The NAO robot in particular. Two ways used to program the NAO were
Choreograph (an IDE specially developed for the NAO) and using the NAOqi
API with Java. Choreograph was mostly used to define behaviors for the
NAO. The NAOqi API was used to send and receive information from the
server and get the NAO to do something with them. The experience gained
here will certainly help with any future development for the NAO.

Google’s Blockly framework was also new to all the team members. This
framework shows great promise in any product requiring the user to program
for the first time. Creating blocks and using these blocks to generate code
is an experience of its own. Interpreting this generated code is also its own
thing that relates much to concepts of programming languages.

Social

While all group members have done projects in the past for Bachelor Com-
puter Science, none of these project were full-time. Scrum has been used in
the past projects, but its was never as useful as in this project. Apart from
scrum, not much more social experience has been gained, that hasn’t been
done so already in previous projects such as working together in a team and
having fruitful discussions.

47

7
Conclusion

In this section, a conclusion is given on the product and the project. After
that, a number of suggestions is given on how the product could be improved.

7.1 Conclusion on product

The results of this project are quite satisfactory. Functionality-wise the deliv-
ered product far exceeds the project description that was posted on BepSys.
All must-haves and nearly all should-haves that were devised using MoSCoW
have been implemented in the product. A lot of feedback from the user tests
was processed and integrated into the project. A number of improvements
can still be made, which will be discussed later in this section. All in all, the
product is ready for integration into the RIE system.

7.2 Conclusion on the project

The goal of this project was to create a platform with which children in
elementary school can write interactive programs for an intelligent robot.
The project has achieved this goal by providing a web interface for creating
and solving exercises, as well as an intelligent agent that can interpret these
programs. Over the course of ten weeks a lot was learned. Two weeks of
research resulted in a lot knowledge and allowed for the planning of the rest
of the project. During the following eight weeks the product was developed.
Some changes were made in the RIE platform to implement all requested fea-
tures, which required independence and taking the initiative. The delivered
product met the specified requirements and even exceeded them. The deliv-
ered product met and exceeded the requirements specified in initial product
description. In conclusion, the project was very successful and will be a
valuable addition to the RIE platform.

48

7.3 Suggestions for future development of the Block-
lyKids project

In the last section of this report, the BlocklyKids team will give a few points
where future development can be done on the system. In the first two points,
the GOAL agent of the BlocklyKids team is considered, in the third point
variable blocks are discussed and finally a suggestion is made on expanding
the functionality of the project to high school students.

Firstly, integration into the RIE platform always has been a key design crite-
rion and the GOAL agent is no exception. The team was challenged multiple
times to come up with some ideas for connecting the different goal agents
such as the arithmetic robot, the presentation bot and the programmable
robot. One of the team’s idea is listed here. The basic gist is that there
should be one main GOAL agent that can do the basic things such as talk
and do gestures. Then for each functionality there should be a module, or a
group of modules, that will be loaded when a specific goal agent is requested.
Creating this main GOAL agent, or loading in different modules was outside
of the scope of the project and not the main focus. Though, in the future, it
would prevent having a separate GOAL agent for each functionality that is
added to the RIE platform, increasing maintainability for the RIE platform

Secondly, the presentation bot agent is very similar to the BlocklyKids agent.
The BlocklyKids agent misses the noise detection and polling modules, but
these can easily be added again. In another project at Interactive Robotics
a Blockly based programming interface was made for the presentation bot.
This interface already contains all the blocks needed for the presentation bot.
To add to that the presentation bot at the moment needs an extra parser
and interpreter step, that could be avoided using the agent that was created
in this project.

Thus the presentation agent could be converted to the programming
agent. This would be done in the following steps: 1) adopt the BlocklyKids
generator in the web interface of the presentation bot, 2) write custom gen-
erator code for a Blockly block in the presentation interface and 3) handling
the blocks generated in the BlocklyKids GOAL agent during block execution
the same way that it is done now in the presentation bot. Doing this for
every block in the presentation interface would be enough. And an added
advantage is that the presentation bot can then use all actions and function-

49

ality of the BlocklyKids bot.

Thirdly, according to research done in the research report, children of in grade
7 and 8 of primary school are able to understand variables with types such as
boolean, integers and doubles. This subject of variables was discussed many
times during the project, but there was no time in the end to implement this
feature correctly and robustly in the project. The team estimated that it
would require 2 weeks of development time to get this feature in. This would
have taken away from other features like sensor input, intelligent feedback
on user created programs and system robustness. Adding this feature would
not require any large changes to the GOAL agent, as it was constructed from
the ground up with variables in mind. And so, for future development this
should probably be the first feature that developers should concentrate on.

Lastly, the programmable robot was made for primary school, however the
robot could perhaps also be used in high school. The entire suite of blocks
made in this project should be used together with new blocks that will be
created specifically for high school students. Developers of this feature should
definitely include variables. To expand on that, the NAO has many advanced
sensors not used for primary school, such as the sonar, facial recognition and
electric current of different NAO parts. These sensors are implemented in
Open Roberta and developers could take a look at that software to gain an
idea on how to implement the advanced sensors. With variables and all the
capabilities of a the NAO at hand, the programmable robot should be ready
for high school students.

50

References
[1] Apache Software Foundation, “Blockly,”

https://developers.google.com/blockly/, [Software].

[2] goal, “The goal agent programming language,” https://goalapl.
atlassian.net/wiki/display/GOAL/, accessed: 2017-06-26.

[3] P. in het PO, “Blockly developer tools,” https://blockly-
demo.appspot.com/static/demos/blockfactory/index.html, 2017,
accessed: 2017-05-01.

[4] M. Saleiro, B. Carmo, J. M. Rodrigues, and J. H. du Buf, “A low-
cost classroom-oriented educational robotics system,” in International
Conference on Social Robotics. Springer, 2013, pp. 74–83.

[5] C. Martinez, M. J. Gomez, and L. Benotti, “A comparison of preschool
and elementary school children learning computer science concepts
through a multilanguage robot programming platform,” in Proceedings
of the 2015 ACM Conference on Innovation and Technology in Com-
puter Science Education. ACM, 2015, pp. 159–164.

[6] Fraunhofer IAIS, “open-roberta,” https://lab.open-roberta.org/, [Soft-
ware].

[7] B. Jost, M. Ketterl, R. Budde, and T. Leimbach, “Graphical program-
ming environments for educational robots: Open roberta-yet another
one?” in Multimedia (ISM), 2014 IEEE International Symposium on.
IEEE, 2014, pp. 381–386.

[8] ministerie van Onderwijs Cultuur en Wetenschap, “Kerndoelenboekje,”
apr 2016.

[9] P. in het PO, “Programmeren in het po,” kn.nu/leerlijnprogrammeren,
2016, accessed: 2017-04-26.

[10] H. Ishiguro, T. Ono, M. Imai, T. Maeda, T. Kanda, and R. Nakatsu,
“Robovie: an interactive humanoid robot,” Industrial robot: An inter-
national journal, vol. 28, no. 6, pp. 498–504, 2001.

[11] T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro, “Interactive robots
as social partners and peer tutors for children: A field trial,” Human-
computer interaction, vol. 19, no. 1, pp. 61–84, 2004.

51

https://goalapl.atlassian.net/wiki/display/GOAL/
https://goalapl.atlassian.net/wiki/display/GOAL/

[12] E. Short, K. Swift-Spong, J. Greczek, A. Ramachandran, A. Litoiu,
E. C. Grigore, D. Feil-Seifer, S. Shuster, J. J. Lee, S. Huang et al., “How
to train your dragonbot: Socially assistive robots for teaching children
about nutrition through play,” in Robot and Human Interactive Com-
munication, 2014 RO-MAN: The 23rd IEEE International Symposium
on. IEEE, 2014, pp. 924–929.

[13] C. Buerckert, “Thrift eventbased communications system,” http://tecs.
dfki.de/tecs/, accessed: 2017-06-26.

[14] T. E. team, “Environment interface standard,” https://goalapl.
atlassian.net/wiki/display/EIS/, accessed: 2017-06-26.

[15] M. A. Miskam, S. Shamsuddin, H. Yussof, A. R. Omar, and M. Z.
Muda, “Programming platform for nao robot in cognitive interaction ap-
plications,” in Robotics and Manufacturing Automation (ROMA), 2014
IEEE International Symposium on. IEEE, 2014, pp. 141–146.

[16] N. Fraser, “Ten things we’ve learned from blockly,” in Blocks and Beyond
Workshop (Blocks and Beyond), 2015 IEEE. IEEE, 2015, pp. 49–50.

[17] Codekinderen, “Codekinderen,” www.codekinderen.nl, accessed: 2017-
06-22.

[18] “Nao software 1.14.5 documentation,” 2012, accessed: 2017-05-01.
[Online]. Available: http://doc.aldebaran.com/1-14/family/nao h25/
contact-sensors h25.html

[19] “Aldebaran documentation alrobotposture,” 2012, accessed: 2017-05-
01. [Online]. Available: http://doc.aldebaran.com/2-1/naoqi/motion/
alrobotposture.html

[20] S. Robotics, “Nao,” https://www.ald.softbankrobotics.com/en/
cool-robots/nao, accessed: 2017-06-26.

[21] A. Robotics, “Naoqi,” http://doc.aldebaran.com/2-1/naoqi/, accessed:
2017-06-26.

[22] Eclipse, “Eclipse,” https://eclipse.org/, accessed: 2017-06-26.

[23] J. Resig, “Qunit,” https://qunitjs.com/, accessed: 2017-06-26.

52

http://tecs.dfki.de/tecs/
http://tecs.dfki.de/tecs/
https://goalapl.atlassian.net/wiki/display/EIS/
https://goalapl.atlassian.net/wiki/display/EIS/
www.codekinderen.nl
http://doc.aldebaran.com/1-14/family/nao_h25/contact-sensors_h25.html
http://doc.aldebaran.com/1-14/family/nao_h25/contact-sensors_h25.html
http://doc.aldebaran.com/2-1/naoqi/motion/alrobotposture.html
http://doc.aldebaran.com/2-1/naoqi/motion/alrobotposture.html
https://www.ald.softbankrobotics.com/en/cool-robots/nao
https://www.ald.softbankrobotics.com/en/cool-robots/nao
http://doc.aldebaran.com/2-1/naoqi/
https://eclipse.org/
https://qunitjs.com/

[24] A. Seville, “Blanket.js,” http://blanketjs.org/, accessed: 2017-06-26.

[25] Atlassian, “Jira,” https://www.atlassian.com/software/jira, accessed:
2017-06-26.

[26] GitHub, “Github,” https://github.com/, accessed: 2017-06-26.

[27] GitLab, “Gitlab,” https://about.gitlab.com/, accessed: 2017-06-26.

[28] Atlassian, “Confluence,” https://www.atlassian.com/software/
confluence, accessed: 2017-06-26.

[29] Apache, “Maven,” https://maven.apache.org/, accessed: 2017-06-26.

[30] jQuery, “jquery,” https://jquery.com/, accessed: 2017-06-26.

[31] socket.io, “socket.io,” https://socket.io/, accessed: 2017-06-26.

[32] org.json, “org.json,” https://mvnrepository.com/artifact/org.json/json,
accessed: 2017-06-26.

[33] G. J. Posner and A. N. Rudnitsky, Course design: A guide to curriculum
development for teachers. ERIC, 1994.

[34] Safety Guide, http://doc.aldebaran.com/2-
1/ downloads/nao safetyguide 2017 en fr sp pt de it nl.pdf, 2017
(accessed June 26, 2017).

53

http://blanketjs.org/
https://www.atlassian.com/software/jira
https://github.com/
https://about.gitlab.com/
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/confluence
https://maven.apache.org/
https://jquery.com/
https://socket.io/
https://mvnrepository.com/artifact/org.json/json

Appendices

54

A
Glossary

This is a glossary of all the used terms within the report that might require
additional explanation.

BBPL: Block-Based programming language

GOAL: Programming language for programming rational agents

Scrum: An iterative and incremental software development framework

RIE: Robot Interaction Engine. A system that is developed by Interactive
Robotics.

BlocklyKids: Name of the product that was developed for this project.

TECS: Thrift Eventbased Communication System. System that used for
message passing.

Interactive Robotics: The company that commissioned this project.

NAO: Autonomous, humanoid, programmable robot developed by Alde-
baran Robotics.

Agent: Autonomous entity that senses and act upon its environment.

Elementary school: Dutch elementary schools were visited during the
user tests and the product is aimed at Dutch children. All references to
grades and schools are specifically about the Dutch school system.

Prolog: General-purpose logical programming language.

Blockly: Client-side JavaScript library for creating visual block program-
ming languages and editors.

55

B
Original BebSys product

description
Below is the original product description that was on BEPsys, the bachelor
end product website for Computer Science.

We are developing a block-based programming environment for children to
program robots through our own robot interaction platform. We aim to use
blockly as basis. Students will develop a web-based interface to be integrated
in our existing platform and within that web-based interface use blockly to
generate code for our propitiatory robot script. If time permist, students will
also develop the code generation for prolog facts that will be interpreted by
GOAL (interpretation by GOAL not part of the assingment). Key design
criterion is that we can easily extend the work of the students to fit needs
of different types of users to program the robot, ranging from young to old
children and even up to adults.

56

C
Executive infosheet

On the next page the executive infosheet can be found. This infosheet is an
extremely compact representation of the entire project. The infosheet also
contains the roles of the members within the project and contact informa-
tion.

57

Executive Infosheet

Title of the project: Robot Block-Based Programming
Name of the client organization: Interactive Robotics
Date of the final presentation: 28-06-2017

Description: Robots play an increasingly important role in society. To teach children in elementary school
about programming and robots, a Block-Based Programming Language was developed that allows children
to write interactive programs and send them to a NAO robot. This robot then interprets these programs in
an intelligent manner.

Since Interactive Robotics is still a young company, working in its code base was quite challenging. Good
time management and communication with the client was important. Some independence was also required
when it was necessary to extend the functionality of the system.

The Scrum methodology was used for the development process. A clear role distribution helped pull the
project forward. Holding daily meetings kept all members on the same wavelength and allowed for quick
detection and resolution of problems.

The main deliverables are a web interface and an intelligent agent. The web interface allows you to create
and solve programming exercises, while the agent interprets the program. Children can use the product to
write interactive programs for the NAO robot. The agent has some intelligent behavior and can, for instance,
give feedback on weird or incorrect code.

The product is ready for integration within Interactive Robotics’ system, the RIE-system. The imple-
mented agent can be extended so that it can be combined with other RIE-projects, requiring only one agent
to be maintained. Moreover, the language can be extended to also create exercises for high school students.

Members of the project team:

Name: Jannelie de Vries
Interests: Robotics, Teaching
Roles & contribution: Lead Tester, Developer

Name: Marcel Kuipers
Interests: Robotics, Agent Design
Roles & contribution: Product Owner, Developer

Name: Luka Miljak
Interests: Logic-based Programming, Agent Design
Roles & contribution: Lead Programmer,
Lead Presenter, Developer

Name: Robin van der Wal
Interests: Architecture Design, Front-end Development
Roles & contribution: Scrum Master, Report Master,
developer

Client and coach information
Client name: Joost Broekens
Client affiliation: Interactive Robotics

Coach name: Koen Hindriks
Coach affiliation: TU Delft, Department of Intelligent Systems, Interactive Intelligence

Contact
Contact person 1: Koen Hindriks, k.v.hindriks@tudelft.nl
Contact person 2: Marcel Kuipers, m.e.kuipers@tudelft.nl

The final report for this project can be found at: http://repository.tudelft.nl

D
Research Report

On the next few pages the research report can be found. The research report
is a summarization of all the research that was done in the first two weeks
of the project.

59

Delft University of Technology

Bachelor end project

Block based programming language for the Nao

Research Report Robot
Block-based Programming

Authors

Robin van der Wal

Jannelie de Vries

Luka Miljak

Marcel Kuipers

June 22, 2017

Contents

1 Introduction 2

2 Environments for teaching robotics and/or programming 2
2.1 scratchJr . 3
2.2 Scratch . 3
2.3 Alice . 3
2.4 Choreographe . 3
2.5 LEGO Mindstorms . 3
2.6 Open Roberta . 4

3 Capabilities of Blockly 4
3.1 Blockly composition . 4
3.2 Similar use cases . 5
3.3 Working with Blockly . 6

4 Design choices of block based languages 7
4.1 Blocks . 7
4.2 Layout . 8

5 Children learning capabilities 9
5.1 Children of grade 3 and 4 . 9
5.2 Children of grade 5 and 6 . 10
5.3 Children of grade 7 and 8 . 10

6 Design of an intelligent agent 11
6.1 Intelligent agents in the context of children 12
6.2 Translating BBPL programs into intelligent behavior 13

7 Conclusion 13

1

1 Introduction

This report aims to investigate what is important when designing a Block-
based programming language (BBPL) for children. The BBPL that will be
created for this project will allow users to create interactive programs for the
NAO robot. Not only the design of the language, but also the behavior of the
robot is considered. In the last 15 years have elementary schools started to
introduce concepts of programming and computer science to their students
and a need for teaching methods exists. Since children that are learning to
program have very different needs than adults [1], creating a programming
language must be done with their needs in mind.

This project was commissioned by the company Interactive Robotics, a Dutch
company which aims to create a robotic interaction engine. One of the appli-
cations of this engine will be teaching children about interaction with robots.
For this, it is necessary to provide a framework in which this interaction is
intuitive and easy to learn. Many important aspects of this topic are ad-
dressed in this paper.

The main question that is answered is: ”How do you teach children about
robotics and programming using the NAO robot and a BBPL?”. This ques-
tion will be answered by first looking at previous work done in the field of
teaching robotics and/or programming. Then, because the Blockly library
will be used, its capabilities are examined. After that, design principles for
BBPLs are considered. The section after that is dedicated to outlining the
capabilities of children from different grades. Then, a section is written about
the design principles for an intelligent agent that will interpret the created
BBPL. Finally, the conclusion of the paper is given.

2 Environments for teaching robotics and/or

programming

It is useful to take a look at previously made efforts to teach robotics and pro-
gramming using BBPLs. Many such projects exist, with different purposes
aimed at different age categories.

2

2.1 scratchJr

This language aims to teach kids age 5-7 to program. Program code is written
from left to right rather than from top to bottom [2]. Text blocks contain an
image and optionally a number. The blocks do not contain any text. The
most “advanced” action is a for-loop. The language contains specific “start
blocks” that decide when a script is executed. This can happen when a sprite
is touched or when the block itself is pressed.

2.2 Scratch

This is an extended version of the scratchJr language. It is aimed at kids
of age 8 and up [3]. Unlike scratchJr does execute from top to bottom. It
contains most of the mathematical and logical operations you would expect
from a programming language. It is used in elementary schools in the United
States. The environment is quite limited, with a focus on logic. The usage
of multiple objects is introduced by allowing the starting character, a cat, to
clone itself.

2.3 Alice

This language is quite advanced and is aimed at high school students that
will soon start their first Computer Science classes [4]. It allows users to
create videos and games. It allows the creation of multiple items of differ-
ent types, making the language sort of an introduction to Object Oriented
Programming.

2.4 Choreographe

This is a programming environment for the NAO robot [5]. Its complexity
makes it difficult to use as a learning tool for kids. It is a useful language
to look at, as it shows the capabilities of the NAO robot. Its design, with
blocks and lines that represent connections between blocks, allow for very
complex applications, which are outside of the scope of this project.

2.5 LEGO Mindstorms

LEGO Mindstorms allows the building of robots from LEGO blocks and al-
lows you to program them. Multiple languages exist for this purpose, includ-

3

ing some graphical ones, like RXC Code and ROBOLAB. LEGO Mindstorms
is a very popular tool in schools to teach about programming [6].

2.6 Open Roberta

This is a Blockly-based language to program the NAO robot in, that aims
to teach children around age 10 to 16 [7]. It has some advanced functional-
ities, such as function specification and variables. Also, there are extensive
possibilities to detect sensor input.

3 Capabilities of Blockly

The Blockly framework is one of the two core components of the product. In
this chapter, the capabilities and limitations of Blockly are explored. First,
the framework itself is examined, then a few use cases similar to this product
are looked at in order to get a grasp on possible competition and lastly a few
limitation of Blockly are considered. In each category Blockly is evaluated
in terms of this project.

3.1 Blockly composition

Blockly is an open-source JavaScript library that adds a block-based virtual
code edit environment made by Google [8]. Blockly adds several different
components that are useful for this project. Each component is briefly ex-
plored here.

Firstly, the main function of Blockly is to add a workspace for code edit-
ing. This workspace consists of a toolbox and a work area. The Toolbox
contains the code Blocks the user can use. The user can drag multiple blocks
to the work area. Blocks can fit into each other, and combining multiple
blocks creates a “program.” There is usually a bin where the user can drag
blocks to delete them. Blockly allows restrictions on what blocks the user
can use. Blockly already has some predefined blocks that allow for basic
programming.

Secondly, Blockly allows developers to define custom Blocks. These cus-
tom blocks can have multiple connections of different types, giving a lot
of freedom in the creation process. The custom blocks can have their own
text, images, and input types. Google has a web-page for creating custom

4

Blocks using the Blockly framework, which facilitates making new blocks [9].
Custom blocks make it possible to adapt the Blockly framework in robotic
programming.

Thirdly, after a user has created a program, this program can be con-
verted to code. Blockly itself supports multiple languages such as JavaScript,
Python, Lua and Dart. Code generation is done by a generator script. This
script has to be defined per code Block, including for each new Block. This
allows Blockly to generate the type of output that the developer requires.

Finally, after a user has made some process with his or her code Blocks,
the code can be saved to an XML output. This XML output can then be
used to later reload the process of the user, or for future analysis.

All these features can be used for making a visual BBPL for programming
robots. The workspace and toolbox allow for creating assignments for chil-
dren. Next the custom blocks makes it possible to create blocks with images,
so they are more suitable for young children that might have difficulty read-
ing. Furthermore, the code generation can be made to match the robot
programming interface. Lastly, the saving feature allows for users to keep
track of their process while programming. All in all, these features make
Blockly a suitable framework for this project.

3.2 Similar use cases

Blockly has been used before in programming robots in elementary school. In
the article by M. Saleiro, et al. [10], the authors used Blockly in conjunction
with small low-cost robots. These robots were constructed from simple micro-
controllers, a small motor, some sensors and a sender. With the help of
Blockly the authors taught 8 year old children how to program simple actions
and movement for the robots. Using an exercise about robot movement and
a map, the authors were able to successfully teach the children about robotics
and geography.

In other research C. Martinez, et al. [11], examined whether it was pos-
sible to teach children of ages 3 to 11 basic programming functions such as
conditionals and loops. Here Blockly was used as well to program a simple
robot. They were successful in teaching the basic concepts in the age cate-
gories 5 to 11 years old, which is similar to the age range of 6 to 13 used in
this project.

5

While these use cases are similar, they were both done with simple robots.
In this project a NAO will be used. A NAO robot is a complex humanoid
robot. There is a Blockly-based programming language for the NAO: Open
Roberta. Open Roberta has an implementation of all basic features that the
NAO comes with. It has blocks for each sensor and multiple handy blocks
such as the “Wait for” block. The programs can be exported to a NAO for
execution.

Open Roberta is very good for users who are familiar with robots and
programming. But using it as an educational tool for primary school won’t
work. Open Roberta is a sandbox that gives all of the options of the NAO.
Options like “get electric current of head yaw” won’t be used in a classroom.
Someone who never programmed before will likely get lost. Though, there
are good parts too. The command blocks are generic and precise. And the
extra image guide for all the NAO sensors clears up where each sensor is.
This makes Open Roberta useful to look at when examining the capabilities
of NAO programming.

Thus there have been multiple successful attempts on teaching robotic pro-
gramming to children of elementary school with Blockly. There However,
using a humanoid robot to achieve this task hasn’t been done before in ele-
mentary school.

3.3 Working with Blockly

Blockly is highly customizable, but there are a few notes one must pay atten-
tion to when using framework. The most important one is that the framework
itself is not a language, as it is stated on the Blockly website [12]. As a result,
just using the Blockly framework is not enough. The robotic programming
language has to be created separately from Blockly and only then Blocky can
be used to create robot programs. The extra time this process takes should
be accounted for.

Furthermore, a feature that is often missed in Blockly is the ability to
customize Block shapes. The shapes are predefined in the Blockly library as
Scalable Vector Graphics. It is possible to edit these SVG definitions. But,
due to time constraints, this project will employ the standard Blockly shapes
as the focus of this project is teaching children robotic programming and not
creating the perfect looking Blocks. Nonetheless, these two restrictions do
not prevent the Blockly framework from being useful.

6

4 Design choices of block based languages

There are already a lot of BBPLs in existence. A few examples of these lan-
guages have been mentioned in section 2. This section researches the design
choices that are made for several BBPL. This section considers the follow-
ing languages: Scratch [13], scratchJr [14] and open-roberta [15]. Blockly
is also considered, although it is not a language, but a framework to create
languages. Since all the languages above are all based on the Blockly frame-
work, some general guidelines are still included. This section considers the
blocks used for the developer tool, to create new blocks [12]. Each language
made choices in their design. This section will describe some different design
choices that these languages made.

4.1 Blocks

Languages that use the Blockly framework have different design principles.
But one thing all these languages have in common, is that the blocks are
based on jigsaw puzzles so that the blocks fit nicely together. This makes it
clear for users how the different blocks fit together. Some languages have an
extra way of showing which blocks fit together, by highlighting the ends from
other blocks to which the selected block can connect to. This is an effective
way of showing the possibilities of how the blocks can be connected [16].

Images are sufficient enough in explaining the behavior of simple blocks.
This helps young children that might not be able to read yet. When you
hover over the blocks a textual explanation is given. In this way, an extra
explanation is given, when the image is not clear enough for the user. For
more advanced blocks, additional text is displayed on the block itself when
an image is not sufficient enough to deduce the meaning of the block. Blocks
such as if-then-else statements or loops always have a C-shape. An example
of such a block as used by Blockly [12] is given in figure 1. In this way it is
clear that blocks inside this shape belong to the block around it. The inside
of these advanced blocks should have a puzzle shape, in order to make clear
what other blocks are available to be put inside it. A study done by Blockly
researchers [16] showed that there is a trade off to be made: the lower part of
the C-shape can either have a puzzle shape or not. When it has such a shape,
it becomes more clear which blocks fit, but it is not immediately clear that
multiple blocks can fit between the C-shape. When the lower part doesn’t

7

Figure 1: C-shape block from Blockly [12].

have such a shape, it may not be as clear which blocks fit, but it is clear
that multiple blocks can put in between the C-shape. scratchJr [14] chose to
have a puzzle shape at the end, but Blocky chose to not have such a shape
and solve the vagueness by making the ends highlighted when a shape can
fit under it.

There are multiple ways for a block to ask for input. You can ask input next
to the block or inside the block. An example of these blocks is given in figure
2. On the left a block is shown where the input is expected outside the block,
while on the right a block is shown where the input is expected inside the
block. Both blocks are from open-Roberta.

Figure 2: left is a block asking for input next to the block, right is a block
asking for input inside the block. Both blocks are from open-Roberta [15].

4.2 Layout

The layouts of the above mentioned languages are different, but also have
some similarities. Every language has a toolbox and when clicked the blocks
available will show up, either above, below or next to this toolbox. The
available blocks, are split into categories and with the use of the toolbox,
you can choose the different categories. Each category has its own color and
the blocks have the color matching their category.

Next to the toolbox is the canvas where the different blocks can be dragged,
dropped and connected to each other. An important difference between

8

scratchJr. and Scratch, is that scratchJr connects the blocks in a horizontal
way, while Scratch connects the block vertically [14]. Because the blocks
can be quite wide, a vertical approach seems better. However it was shown
that young beginning programmers find it easier to understand horizontal
programming. Once they have a little experience, the vertical programming
way is not a problem [17].

When programming, sometimes the wrong block is placed and it should be
removed. In scratchJr there is no way of deleting the block, other than
dragging it out of the screen, while Blockly [8] has a garbage can where you
can drag your blocks into.

5 Children learning capabilities

In 2006 the Dutch government decided on several core goals primary school
students should have reached at the end of grade 8. Some example are, For
The Dutch language: children should be able to get information from spoken
language. For English, they should be able to write simple daily used English
words. For math they should be able to add, subtract and multiply. All other
goals the government decided primary school student student should have are
stated in ”Het kerndoelenBoekje” [18]. Each school is able to decide how they
teach these goals to their student, but the basic curriculum per school is the
same.

5.1 Children of grade 3 and 4

In grade 3 and 4 the students get the basic knowledge needed to learn more
advanced information in the following classes.
In grade 3, kids start learning. They have to sit still and concentrate. The
first steps of reading and writing are made. Kids are able to read one line
sentences. They also learn math. They are able to add and subtract numbers
to 20. In grade 4, kids learn to read consecutive sentences, furthermore they
learn basic grammar. Kids learn multiplication for the numbers below 6.

There is already a curriculum for primary school children in the Netherlands
for programming [19]. Per grade, there are multiple lessons available, for
either unplugged exercises, where no robot is used and exercises where a
robot is used. These exercise have simple sentences explaining the task. The

9

exercises with a robot have simple task, like go one step forward, turn to the
left etc. The block and or buttons don’t show any text, but have a picture
explaining what it means.

5.2 Children of grade 5 and 6

In grade 5, kids learn to write and read longer sentences. Math exercises be-
come a bit more difficult. In grade 6, fractions and divisions are introduced.
Language skills are improved.

In [20], a programming curriculum is proposed for Dutch schools. This cur-
riculum gives an insight into what kinds of programming skills should be
expected from Grade 5 and 6. Focus is put on abstract reasoning and prob-
lem solving. By now, kids are ready to learn more complex programming
concepts. Kids should be able to work with if-statements in a program.
Also, they need to be aware of the concepts of ”functions” and ”variables”.

Programming languages such as Scratch become accessible to kids, though
some of its advanced features might still be too complex. These languages
allow complex behavior without the definition of functions and variables.
Scratch also introduces more complex concept, such as concurrency, in a
soft and safe manner. The design of the language still needs to prevent the
occurrence of error messages. Early forms of boolean logic are understood.
Actions that make use of text fields can be used. Typing numbers is also
possible, making arithmetic expressions possible.

5.3 Children of grade 7 and 8

In the 7th grade, reading and the Dutch language is even further explored.
Children learn to sum numbers up to 1,000,000. Fractions, decimals, per-
centages, averages and ratios are introduced. The metric system of length,
area, volume and weight is also explained. The 8th grade continues on this;
learning the language becomes more difficult and they explore the bigger ar-
eas in math such as the circumference of a circle.

In a paper Maya Sartazemi, et al, compared two programming languages for
a LEGO robot and did experiments with 3rd year junior high school students
in Greece [21]. These students are approximately 13-14 years old, slightly

10

older than the target group discussed in this section. However, using inter-
polation with the information from the experiment and with what is stated
above on grade 5 and 6 can give insight on the difficulty level for grade 7
and 8. The experiments made use of the programming languages ROBOLAB
and Not Quite C. Since this paper is mainly in the context of block-based
programming, it would be fitting to only include the results of ROBOLAB.
While ROBOLAB isn’t exactly Block-Based like Blockly, it has a similar
graphical concepts.

One of the first exercises in the experiment was to program the Lego ve-
hicle to move forward for 4 seconds, to stop for 2 seconds and then to move
in the opposite direction for 4 seconds. 83% of the students had a correct
answer (of the 91% who actually tried the exercise). This implies that these
student understand simple actions like moving forward, rotating and using
time as parameter. Another exercise that was done very well by most student
(92% of 96%) is to produce an audio signal every second, for a total of ten
times. It can be concluded that loops are also a concept that is understood.
The other exercise shows competence towards if, then, else statements.

The proposed programming curriculum [20] suggests that for grade 7 and 8,
children learn how to use repetitions in combination with conditions. Chil-
dren should also learn to come up with conditions (if, then, else statements)
themselves. Functions are learned to be combined with parameters and vari-
ables. Variables should be learned to be used in abstract situations.

This curriculum should however not be used as a standard for what the
children know. First of all, the children may just have started learning about
these things, so they may not know things like functions with parameters yet.
Secondly, programming is not an actual course in the primary education yet.
So most children who will start playing with the robot, are programming for
the first time. The proposed curriculum assumes that children from grade 7
and 8 can do the things children from 5 and 6 learned, which is not true if
the school just started adopting the curriculum.

6 Design of an intelligent agent

When working with interactive robots, it is necessary to design some sort of
“intelligent” behavior. This project will use the NAO, which is a infant-sized
humanoid robot. The NAO will fulfill the roll of the interactive robot. First,

11

through other examples with interactive robots with children, some base line
actions for the NAO are proposed. Secondly, it is examined how the NAO
should interpret the BBPL programs the children create.

6.1 Intelligent agents in the context of children

Robots will play an interactive role in society. Exposing children to robots
early will help prepare them for this future. Two robots that were used in
this context are examined.

One of the first robots that were used in an interactive roll with children
was the Robovie [22]. The Robovie was used in children-robot interaction
research at a Japanese elementary school. The robot had basic behavior
such as shaking hands and giving hugs. The robot could also speak, but only
speak and recognize English. The goal of the robot was to teach children
some basic English words. Two exams at the begin and after the two week
test period with the robot, revealed that it did have a positive impact on the
English understanding. The research did not include a control group, but
it showed the possibility of positive effects. The researchers noted that the
interaction and idle movements the robot did were main reasons for children
paying attention to the robot [23].

A more recent example of a robot in an elementary classroom was the
DragonBot. This bot was designed to teach children about nutrition. Over
a 3 week period, children had to socially interact with the robot and present
food items to it. The DragonBot would respond and would prefer healthy
foods in its interactions. After the test period, children took more time to
consider what food to choose and it was shown that the children kept showing
an extremely positive attitude towards the robot [24].

Based on the research above, NAO should be interactive for children to
keep them engaged. There should be a set of idle actions and movement that
occur when the robot is not busy with execution a BPPL program. Further-
more, the NAO should greet children when starting up, be interactive during
the assignments and say goodbye when shutting down. Both works weren’t
able to show how effectively the robots were able to teach the children. Thus
when designing a robot programming teaching system, it is important to
keep testing the system with the users and keep track of progress.

12

6.2 Translating BBPL programs into intelligent be-
havior

In this project, the programs created using the BBPL will not be directly
translated into machine code. Instead, an intelligent agent needs to interpret
it and perform actions in a human-like manner. The works in the previous
section both mentioned that it is important that for the robot to be inter-
active in order to keep the children interested. An agent is better suited for
this as it can adapt autonomously based on the situation, see the following
scenarios for examples:

Firstly, the NAO shouldn’t always immediately start executing a program
it has received from a child. When a human receives an assignment, it will
first get ready to execute it. So the NAO should only start executing the
program when it is ready and should give feedback before doing so.

Another example is giving reactions to the success of an exercise after
running a program. The robot could give positive feedback when the children
succeed in finishing an exercise. The NAO has no facial expressions, but with
the help of its LEDs and body posture it can give a sense of emotion, as can
be read in this paper by M.A. Miskam [25].

Negative feedback when failing an exercise should be avoided and perhaps
an explanation could be given by the NAO. An explanation would mean that
the NAO tries to analyze the reason why it couldn’t continue with a program.
For example, if the program said that the NAO has to move forward, but
something is in the way, then the robot stops the program and tells the child.

7 Conclusion

Many BBPLs already exist, for different purposes and age categories. Some
are aimed at young children and some are used for programming robots.
Blockly provides a lot of possibilities for creating a BBPL in the context of
this project. This is mainly due to its high customizability, although some
changes are very difficult to implement. Many different design considerations
exist, such as how blocks connect, the shapes of blocks, the usage of colors and
the layout of the menu. The learning capabilities of children are documented,
allowing for the categorization of programming concepts that they can be
brought into contact with. Research on Human-Robot Interaction provides
some ideas on how to design an intelligent agent. All in all, this report

13

provides enough information to design a BBPL and a NAO robot agent in
order to teach children about robotics and programming.

References

[1] V. Barr and C. Stephenson, “Bringing computational thinking to k-12:
what is involved and what is the role of the computer science education
community?” Acm Inroads, vol. 2, no. 1, pp. 48–54, 2011.

[2] A. Strawhacker, M. Lee, C. Caine, and M. Bers, “Scratchjr demo: A
coding language for kindergarten,” in Proceedings of the 14th Interna-
tional Conference on Interaction Design and Children. ACM, 2015, pp.
414–417.

[3] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, 2009.

[4] S. Cooper, “The design of alice,” ACM Transactions on Computing Ed-
ucation (TOCE), vol. 10, no. 4, p. 15, 2010.

[5] S. Krivanec, A. Petrácková, T. Thi, P. Linh, and D. Pruša, “Nao robot
applications developed in choregraphe environment,” Czech Technical
University Faculty of Electrical Engineering Department of Cybernetics,
2010.

[6] A. J. Hirst, J. Johnson, M. Petre, B. A. Price, and M. Richards, “What
is the best programming environment/language for teaching robotics
using lego mindstorms?” Artificial LIfe and Robotics, vol. 7, no. 3, pp.
124–131, 2003.

[7] B. Jost, M. Ketterl, R. Budde, and T. Leimbach, “Graphical program-
ming environments for educational robots: Open roberta-yet another
one?” in Multimedia (ISM), 2014 IEEE International Symposium on.
IEEE, 2014, pp. 381–386.

[8] Apache Software Foundation, “Blockly,”
https://developers.google.com/blockly/, [Software].

14

[9] P. in het PO, “Blockly developer tools,” https://blockly-
demo.appspot.com/static/demos/blockfactory/index.html, 2017,
accessed: 2017-05-01.

[10] M. Saleiro, B. Carmo, J. M. Rodrigues, and J. H. du Buf, “A low-
cost classroom-oriented educational robotics system,” in International
Conference on Social Robotics. Springer, 2013, pp. 74–83.

[11] C. Martinez, M. J. Gomez, and L. Benotti, “A comparison of preschool
and elementary school children learning computer science concepts
through a multilanguage robot programming platform,” in Proceedings
of the 2015 ACM Conference on Innovation and Technology in Com-
puter Science Education. ACM, 2015, pp. 159–164.

[12] Google, “Blockly for developers,” https://developers.google.com/blockly/,
2016, accessed: 2017-05-02.

[13] Lifelong Kindergarten Group, “Scratch,” https://scratch.mit.edu/,
[Software].

[14] Code-to-Learn Foundation, “Scratch-jr,”
http://www.scratchjr.org/index.html, [Software].

[15] Fraunhofer IAIS, “open-roberta,” https://lab.open-roberta.org/, [Soft-
ware].

[16] N. Fraser, “Ten things we’ve learned from blockly,” in Blocks and Beyond
Workshop (Blocks and Beyond), 2015 IEEE. IEEE, 2015, pp. 49–50.

[17] M. M. Lab, “Scratch google = next generation of programming blocks
for kids,” Medium, May 2016.

[18] ministerie van Onderwijs Cultuur en Wetenschap, “Kerndoelenboekje,”
apr 2016.

[19] K. redactie, “Codekinderen,” http://www.codekinderen.nl/, 2015, ac-
cesed on: 26-04-2017.

[20] P. in het PO, “Programmeren in het po,” kn.nu/leerlijnprogrammeren,
2016, accessed: 2017-04-26.

15

[21] M. Sartatzemi, V. Dagdilelis, and K. Kagani, “Teaching introductory
programming concepts with lego mindstorms in greek high schools: a
two-year experience,” in Service Robot Applications. InTech, 2008.

[22] H. Ishiguro, T. Ono, M. Imai, T. Maeda, T. Kanda, and R. Nakatsu,
“Robovie: an interactive humanoid robot,” Industrial robot: An inter-
national journal, vol. 28, no. 6, pp. 498–504, 2001.

[23] T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro, “Interactive robots
as social partners and peer tutors for children: A field trial,” Human-
computer interaction, vol. 19, no. 1, pp. 61–84, 2004.

[24] E. Short, K. Swift-Spong, J. Greczek, A. Ramachandran, A. Litoiu,
E. C. Grigore, D. Feil-Seifer, S. Shuster, J. J. Lee, S. Huang et al., “How
to train your dragonbot: Socially assistive robots for teaching children
about nutrition through play,” in Robot and Human Interactive Com-
munication, 2014 RO-MAN: The 23rd IEEE International Symposium
on. IEEE, 2014, pp. 924–929.

[25] M. A. Miskam, S. Shamsuddin, H. Yussof, A. R. Omar, and M. Z.
Muda, “Programming platform for nao robot in cognitive interaction ap-
plications,” in Robotics and Manufacturing Automation (ROMA), 2014
IEEE International Symposium on. IEEE, 2014, pp. 141–146.

16

E
Plan of Action

On the next few pages the plan of action can be found. The plan of action is,
as the name says, a proposal on how to complete the project on time, with
as many features as possible. The plan of action is based on the research
report found in appendix D.

77

DELFT UNIVERSITY OF TECHNOLOGY

BACHELOR END PROJECT

BLOCK BASED PROGRAMMING LANGUAGE FOR THE NAO

Plan of Action Robot Block-based
Programming

Authors

Robin van der Wal

Jannelie de Vries

Luka Miljak

Marcel Kuipers

June 22, 2017

Contents

1 Introduction 2

2 Deliverables 2

3 Road map project 5

4 Design guidelines of block based languages 8
4.1 Blocks . 8
4.2 Layout . 9
4.3 Creating exercises . 9

5 Proposal of Block based language for Robot programming 10
5.1 Children of grade 3 and 4 10
5.2 Children of grade 5 and 6 10
5.3 Children of grade 7 and 8 11

6 Provisionary System Decomposition 12
6.1 Subsystem Decomposition 12
6.2 This Project’s Focus . 14

7 Quality Assurance 14
7.1 Scrum and User Tests . 15
7.2 Code Tests . 15
7.3 Regression Tests . 16
7.4 Code Review . 16

8 Definition of Done 16
8.1 Backlog Items . 16
8.2 Sprint . 17
8.3 Releases . 17

1

1 Introduction

This document contains the plan of action for the BEP (bachelor end project).
In this project, a Block-Based Programming Language (BBPL) for the NAO
robot will be created with the intention of teaching children about robotics
and programming. The NAO robot is different from most other robots in
that it has a humanoid shape and has many possibilities for interaction.
Therefore, the design of interaction and intelligent behavior play a big role
in this project.

This project was commissioned by the company Interactive Robotics, a
Dutch company which aims to create a robotic interaction engine. One
of the applications of this engine will be teaching children about interac-
tion with robots. For this, it is necessary to provide a framework in which
this interaction is intuitive and easy to learn. In this document it is outlined
how this will be done for this particular project.

Firstly, a section is designated to giving an overview of all the deliverables
of the project, which will be presented using the MoSCoW method. After
that, the design decisions for the BBPL are discussed. This is followed by a
proposal of the contents of the language, per grade. For grade 3-4, 5-6 and
7-8, it is explained and justified what programming concepts will be intro-
duced and in what sorts of contexts they will be used. Then, a road map
will be drawn, showing the planning of the project. A provisionary system
decomposition can be found after that. This section contains a small ex-
planation of each component in the project. The document finishes with a
section on Quality Assurance.

2 Deliverables

This section will describe the deliverables of this project. The high-level
features will be defined using MoSCoW. MoSCoW uses four categories to
separate the features by level of importance. The categories are:
Must Have: Features that are of high importance. With those features
there isn’t a product
Should Have: Features that are considered favorable. These features should
be included, but are not necessary for the basic product.

2

Could Have: Features that are of low importance. When there will be
enough time to implement, these features will be present.
Won’t Have: Features that are of no importance or not doable. These won’t
be implemented. However, these features are free to be implemented by
the company instead. If such an item is created by the company then it
should be integrated in the project.

Must Have

• There has to be a Block based language for grades 3-4, 5-6 and 7-8
(Dutch school system). These languages have to be specially designed
for these grades, based on what the children are able to understand.

• For each grade there has to be at least three exercises to program the
NAO robot. These exercises teach programming in an interactive way.

• There has to be a web environment for children to program the NAO.

– The web environment has to contain a canvas where you can
make your program.

– the web environment has to contain a block library specially for
the current assignment or grade level.

– It has to be possible to select a block from the library and drag it
toward the canvas.

– It has to be possible to remove unused blocks from the canvas.

– It has to be possible that the robot executes the program, so the
children are able to see what their program does.

– A child has to be able to go through the program step by step.
So the robot executes a single step of the entire program. When
doing this the current step of the program should be highlighted
on the screen.

– A child has to be able to pause the program.

– A child has to be able to start the program.

– A child has to be able to stop the program.

• There has to be a GOAL agent.

– The GOAL agent has to be able to interpret a given program.

3

– The GOAL agent has to be able to execute the program and send
tasks to the robot.

Should Have

• GOAL agent

– The Goal agent should be able to get sensor data from the robot.
For example if a sensor is touched, the GOAL agent should re-
ceive this.

– The GOAL agent should be able to process the received sensor
data, either by sending something to the child, or something to
the robot.

– The GOAL agent should be able to execute the given program in
a smart way, for example when it is interrupted, it should explain
the cause to the child.

– the GOAL agent should be able to evaluate the solution the child
gave for a certain exercise.

• There should be at least 5 exercises in total per grade (3-4,5-6,7-8).

• It should be possible to save and load partial solutions to exercises,
so the children can continue their exercise another time.

• There should be an environment where teachers can create their own
exercises.

– There should be an environment where teachers choose the blocks
needed for an exercise.

– There should be an environment where teacher can create a pos-
sible solution for the exercise.

– The exercise should be saved.

– Teachers should be able to select exercises for children to work
on.

Could Have

• There could be more exercises for each grade (3-4, 5-6, 7-8). In this
way children have more exercises to learn from.

4

• The block language supports the facial recognition features of the
NAO.

• There could be a virtual robot in the web-client. In this way, more
children can learn to program, because less actual robots are needed.

• The Block language and the agent support recognition of objects.

• There could be a monitoring system, that monitors the behavior of
the children and teachers when they use the web-client. The results
could be saved in a database.

Won’t Have

• There won’t be new moves for the NAO, because there is no access to
the right tools or the cloud system.

• There won’t be a text editor to program the robot, because the idea
of this project is to create a visual environment for pupils.

• There won’t be any customizable shapes of blocks, because the basic
Blockly blocks should be enough for the NAO actions and creating
additional Blockly functionality and/or blocks is not the focus of this
project.

3 Road map project

This section describes a high level planning for items stated in section 2.

The process is split into several phases. The first phase is the concept
phase, during the first two weeks. During this phase research is done and
a plan of action for this project is created.

Then comes the basic features implementation phase in week 3 to 5.
Basic features will be implemented, such as sending the code towards the
GOAL agent and the GOAL agent should be able to send the task to the
NAO. The aim is to have at least finished the must haves from the deliver-
ables.

Next a more advanced agent is needed, so week 6 to 8 will be the ad-
vanced features implementation phase. In this phase the more advanced

5

features will be implemented, like dealing with feedback from the NAO and
testing the given solution. The aim is to have at least finished the should
haves from the deliverables and possibly some could haves. In this phase
the final report or in other words thesis is started on.

The last phase is the finalization phase in week 9 to 11. In this phase
the final product needs to be delivered, as well as the final report. Lastly, a
presentation has to be given on the project as a whole.

week 1 (24 April - 28 April) [Concept]
Research report.
Research learning capabilities for group 3-4.
Research learning capabilities for group 5-6.
Research learning capabilities for group 7-8.
Create a toolbox to select blocks from.
Create a canvas to make your program.
Implement block deleting from the canvas.

week 2 (1 May - 5 May) [Concept]
Research report.
Plan of action.
Create a Block based language for group 3-4.
Create a Block based language for group 5-6.
Create a Block based language for group 7-8.
3 exercises for group 3-4.
3 exercises for group 5-6.
3 exercises for group 7-8.

week 3 (8 May - 12 May) [Basic features implementation]
GOAL agent which is able to send the actions to the robot.
Basic Ontology based on the blocks available.
Design of basic pipeline with TECS server.
Design template for the robot images used in the blocks in the Blockly
interface.

week 4 (15 May - 19 May) [Basic features implementation]
Basic pipeline set up with TECS server:
- GOAL agent which is able to send the actions to the robot.

6

- GOAL agent which is able to receive feedback from the robot.
- Web client that is able to sent basic programs, single moves, to the GOAL
agent.
- GOAL agent able to sent feedback to the web client.
2 extra exercises for group 3-4.
2 extra exercises for group 5-6.
2 extra exercises for group 7-8.

week 5 (22 May - 26 May) [Basic features implementation]
GOAL agent which is able to send the actions to the robot such as idle
actions, start up and shut down actions.
GOAL agent which is able to receive feedback from the robot based on
execution of the robot moves as percepts.
Implement step by step program execution.

week 6 (29 May - 2 June) [Advanced features implementation]
Upload code to SIG.
GOAL agent which is able to send the actions to the robot when a program
is interrupted for basic reasons such as waiting to long on an input task.
GOAL agent which is able to process the sensory data from the robot used
in the program exercises.
Design teacher interface system together with company.
First field test with basic features of robot in a school.
Create proposal for content of the final report.

week 7 (5 June - 9 June) [Advanced features implementation]
Implement teacher interface.
Implement testing solutions given by the child.
Start writing final report, incorporating existing documentation.

week 8 (12 June - 16 June) [Advanced features implementation]
GOAL agent is able to provide feedback on incorrect solutions.
Write content for final report, based on new sections.
Second field test with advanced features such as program evaluation with
robot in a school.

week 9 (19 June - 23 June) [Finalization]
Last field test with finished advanced features such as an feedback system
with robot in a school.

7

Finalize all code implementations.
Finalize final report.

week 10 (26 June - 30 June) [Finalization]
Deadline final report.
Deadline info sheet.
Upload final code to SIG.
Prepare presentation and demo of presentation.

Week 11 (3 July - 7 July) [Finalization]
Presentation.
Upload thesis to repository.
Put library link on BEPsys.

4 Design guidelines of block based languages

As shown in the research report in section design choices of block based
languages, there are multiple block bases languages and each has made
their own design choices. This section will combine those design choices
into the design guidelines that will be used for the project.

4.1 Blocks

The languages described in section design choices of block based languages
from the research report all had jigsaw puzzle shaped blocks in order to
make it clear the pieces fit together. This will be the same in this design. To
make it even more clear, the design of this project will contain highlighted
ends for the pieces where the block fits when the block is nearby.

For a simple block, the design of this project will contain images, so chil-
dren who are not able to read, still can understand the meaning of a block.
When hovering over a block a textual explanation will be given. For more
advanced blocks, text is displayed on it when an image is not sufficient
enough. Blocks such as “if, else” statements or loops will use the C-shape
as used by Blockly [1], without the puzzle shape at the bottom of the state-
ment input.

This design, when an input is needed, will have the input inside the shape

8

as used by Open-Roberta [2]. In this way it is clear for which the input is
needed.

4.2 Layout

The layout of this design will contain a toolbox with the blocks on the side
of the canvas. The toolbox will contain different categories depending on
the type of blocks used. For example, an action block or logic block. The
blocks have the same color as the toolbox item it belongs to.

From the toolbox you can drag and drop your block onto the canvas. the
blocks are connected vertically. This design does contain horizontal con-
nection for inputs needed for certain blocks, such as the “if” block. There
will be an trashcan in the right bottom corner, so blocks can be deleted if
needed. The canvas will be partly fixed, so it is not possible to drag blocks
outside the canvas. In this way children cannot lose their blocks. The most
important part of the design of our canvas is that it will always contain a
start block. So children know where to start programming. It is possible to
move this block, but it can’t be removed.

4.3 Creating exercises

A teacher might want to create his or her own exercises, in order to make
the allow changes to the proposed curriculum. In order to make this pos-
sible, the web-page should contain a special page for teachers, where they
can create there own exercises. It should be possible to select the blocks
available during the exercise and a possible solution should be given to
check whether or not the given solution is correct. These exercises should
be savable.

An exercise should contain a grade label. This label shows if this exercise is
meant for children from grade 3-4 or grade 5-6 or grade 7-8. The exercise
should contain a title, explaining the goal of the exercise. It should contain
the blocks needed for the exercise and it should contain an explanation or
step by step guide to execute the task. The most important part is that
there should be at least one solution in order to check if the given solution
is correct.

9

5 Proposal of Block based language for Robot
programming

Based on sections 4 and from the research report section children learning
capabilities, a proposal is made for block based programming languages for
grades 3-4, 5-6 and 7-8.

5.1 Children of grade 3 and 4

In the research report section children learning capabilities it was shown
that children from grade 3 and 4 are able to read simple and small sen-
tences and will program based on images. In this report in section 4, cer-
tain design guidelines were made. In this section it was decided to split the
blocks based on their category and give them colors accordingly.

A language for grade 3 and 4 should only contain simple blocks with im-
ages. These simple blocks are the basic movements the robot can make, for
example, walking, waving, dancing, standing, sitting etc. It also contains a
block for looping certain block, but no other advanced blocks.

An example of an exercise could be to program the robot to dance the
“head, shoulders, knee and toe” dance. the child can do this exercise by
simply putting the blocks needed for these actions after each other. If the
exercise is finished, the child can dance with the robot.

5.2 Children of grade 5 and 6

Reading, writing and problem solving skills have improved greatly. New
blocks for grades 5 and 6 are introduced. Most importantly, the if-statement
is introduced (but not the if-else-statement).

The inclusion of the if-statement comes paired with the introduction of
boolean expressions. “And”, “not” and “or” blocks are implemented, but
the exercises will not require extensive usage of these blocks. Example
usage would be a simple exercise such as “If the left AND right shoulder
are touched, let NAO walk forward for 2 seconds.”

Movements made by the robot become customizable. Where grades 3 and 4

10

would have separate actions “raise left hand” and “raise right hand”, grades
5 and 6 get one action called “raise hand”. This action will have a drop-
down menu that allows you to choose the hand that needs to be raised. For
the action “move forward”, it will be possible to define how much the robot
will walk forward.

A bigger focus is put on interactivity. Blocks that make use of the sensors
of the robot make this possible. An example exercise for this age category
would be a clapping game. In this exercise, the robot needs to first put up
his left hand and wait until it touched. After that, he needs to put up his
right hand and wait until that one is touched. This process can then repeat.

5.3 Children of grade 7 and 8

It’s safe to say that everything that the grade 5 and 6 children get, the grade
7 and 8 children will also get, plus some more. While grade 5 and 6 and
3 and 4 children have an easy to understand block like “loop x times,” the
grade 7 and 8 will get two more complicated blocks: the while block and
until block. The while loop keeps repeating an action while a certain con-
dition is true, the other keeps repeating an action until a certain condition
is true. The idea is that these children should be able to create condi-
tional loops as explained in section children learning capabilities from the
research report.

Another block is the “if-then-else block.” While 5 and 6 graders do get
access to “if, then blocks,” the else statement is something new that will be
included and allows for more interesting exercises.

An exercise could be to program the NAO to keep walking forward and
using voice recognition to listen to the words left, right, or stop. This re-
quires the student to make use of the until loop block.

Variables have been considered as a possibility to grades 7 and 8 be-
cause the proposed programming curriculum [3] wants these groups to
use variables in abstract situations. However, since this curriculum as-
sumes that the idea of variables have already been taught in grades 5
and 6, which isn’t currently the case. Therefore variables would have to
be explained from scratch and unlike most other blocks, they aren’t self-
explanatory. Thus the proposal for grades 7 and 8 is that there won’t be
any variables.

Furthermore, the Blockly language should be mostly self-explanatory,

11

and variables is not a concept that can be used without prior instructions.
Therefore variables are not included in this language. Because of the ex-
clusion of variables, every arithmetic operation becomes obsolete as well.
This is a shame, as seventh and eighth graders are actually able to do basic
math. In the future, this project might be extended with variables. Thus
the pipeline design will include the ability to use at least global variables.

6 Provisionary System Decomposition

This section gives an overview of the design goals and the software archi-
tecture. As the project goes forward and the code base gets larger, this
section will expand over time.

6.1 Subsystem Decomposition

The system has been divided into several subsystems. These systems are
shown in figure 1.

Please note that is a current in place system decomposition. It may
change if required.

• Child Web Interface
The web Interface of the child is the client-side part of the web appli-
cation. From here the child can send information to the server (such
as their created Blockly program).

• Teacher Web Interface
The web interface of the teacher will be kept separate from the child
interface. This is done so that the teacher can do things like create
their own exercises. Like the child interface, the teacher interface will
send information to the server.

• TECS Server
The server receives information from the clients through the inter-
net. Information sent by children can be directly be sent to the GOAL
Agent through an EIS connector. The server itself uses a Thrift Event-
based Communication System (TECS). Furthermore, the server is re-
sponsible for connecting the GOAL agent to the NAO Robot.

12

Figure 1: System decomposition of the project. The users interact with a
web interface which send information to the server. Actions from the child
propagate to the GOAL agent, which sends instruction to the NAO robot
through the server. The robot in turn sends percepts from the environment
to the GOAL agent. Teachers can create new exercises which are saved in
a database with the help of the TECS server.

13

• GOAL Agent
The GOAL agent is responsible for deciding what instructions to give
the NAO Robot (usually based on information received by the client
and robot). The agent sends instruction to the robot (through the
server) which then sends instruction to the NAO. The agent runs on
the server itself and communicates with it through an EIS connector.

• NAO Robot
The NAO is in direct contact with the clients (children and/or teacher).
It receives instructions from the server (originating from the GOAL
agent), which it executes and in turn sends perceptions from the en-
vironment back to the server (which will continue towards the agent).

6.2 This Project’s Focus

The system architecture is complicated, but this project won’t focus on all
of the parts. The following are the parts of the system that are a main focus
in this project:

• Child Web Interface

• Teacher Web Interface

• GOAL Agent

• Messages sent between the web interface and the server.

• Instructions sent by the GOAL agent to the server.

Any other items depicted in figure 1 are not goals of this project. Yet they’re
still included in the system decomposition, as they still play an essential
part in the project.

7 Quality Assurance

This section describes how the project team assures the quality of the prod-
uct.

14

7.1 Scrum and User Tests

In order to get a high quality product that the consumer wants, the process
of creating the product follows the Scrum paradigm. This means that at
the end of every week, the team is expected to have a working product
to show, as soon as the implementation phase starts. By doing this, the
consumer can immediately try out the product and provide feedback. This
feedback can then be used to improve the product even further in order to
completely satisfy the customer.

7.2 Code Tests

To achieve robust and well-working code, the project team makes use of
automated Unit Testing; meaning that functions of the code will be kept
separate and then those functions will be tested for correct results.

It should be noted that a lot of code can’t be tested for various reasons.
First of all, the complete code base makes use of two different programming
languages: Javascript and GOAL. The latter one, which is used to send cer-
tain instructions to the NAO Robot, is impossible to unit test. Furthermore,
for a lot of parts of the Javascript code, unit tests would be meaningless.
An example would be the interface of the web application, which is mostly
written in Javascript.

For the parts of the Javascript code that are testable, the aim is to
achieve 80% of line coverage. This means that when running the tests,
at least 80% of the code lines will be executed. The tool used for unit
testing Javascript code will be the Jasmine framework. Code coverage is
checked using Blanket.js.

Another type of code tests are end-to-end tests. Rather than testing sep-
arate units of the code, these automated tests are directly based on user
stories and look of the code has the expected behavior of what the original
task was.

Unlike with unit tests, GOAL does support end-to-end tests using test2g
files. These test files have simple looking and easy to write tests like “when
the agent thinks it hits a wall, it should stop trying to walk”. In Javascript,
end-to-end tests can be created the same way as unit tests are created, using
the Jasmine framework. There exists no way of getting the code coverage
of GOAL programs, simply because the language is not built for it.

15

7.3 Regression Tests

To ensure that the product doesn’t get broken after a week because of
old functionality that suddenly doesn’t work anymore, regression tests are
used. The idea is that whenever new functionality is added included with
unit and e2e tests for that functionality, all of the tests of the old function-
ality should be run with it as well.

7.4 Code Review

Automated tests are usually not enough to bug-proof code. One way to
ensure maintainablity and reliability of the code, is to do code reviews.
Every time new code is added, it should be reviewed by at least two other
team embers, before it can be merged with the current code base.

8 Definition of Done

This section shows all item that need to be checked before a backlog item,
sprint or release can be considered done. These checks are mostly based
on the quality assurance.

8.1 Backlog Items

A backlog item is done when:

• Code properly satisfies the user story defined in the Backlog item.

• Code has been tested appropriately. In the case of Javascript, ap-
propriate e2e and unit tests should be written in QUnit. The code
coverage, generated by Blanket.js should be at least 80% unless the
code isn’t testable. In the case of GOAL, appropriate e2e tests should
be written in a test2g file.

• Code should contain clear comments, clear enough so other team
members reading it will quickly understand what the code does.

• Code may not contain any warnings caused by any software engineer-
ing tool disclosed in the group agreements.

16

• Code has been reviewed by at least two other team members. Re-
viewers should keep all the above items in mind when reviewing and
request changes to the code if there is a flaw.

• Large non-code tasks such as external documentation should be re-
viewed by all team members.

• Small non-controversial tasks with an estimated time smaller than a
hour don’t have to be reviewed. Unless they require a pull request.

8.2 Sprint

A sprint is done when:

• When the deadline of that sprint has been reached. All tasks and user
stories from the finished sprint will be added to the next sprint during
the sprint planning meeting.

• A new release has been created.

8.3 Releases

A release is done when:

• All features that should be present in that release have been tested to
be working.

• All relevant documentation has been added to the release.

References

[1] Apache Software Foundation, “Blockly,”
https://developers.google.com/blockly/, [Software].

[2] Fraunhofer IAIS, “open-roberta,” https://lab.open-roberta.org/, [Soft-
ware].

[3] P. in het PO, “Programmeren in het po,” kn.nu/leerlijnprogrammeren,
2016, accessed: 2017-04-26.

17

F
SIG Review

This section shows the feedback the team got from SIG. The feedback is
given in Dutch, this is not translated in order to keep the original feedback
intact.

F.1 Review 1

De code van het systeem scoort 3 sterren op ons onderhoudbaarheidsmodel,
wat betekent dat de code gemiddeld onderhoudbaar is. De hoogste score is
niet behaald door een lagere scores voor Unit Size en Unit Complexity.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemid-
deld lang is. Het opsplitsen van dit soort methodes in kleinere stukken zorgt
ervoor dat elk onderdeel makkelijker te begrijpen, te testen en daardoor een-
voudiger te onderhouden wordt.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemid-
deld complex is. Ook hier geldt dat het opsplitsen van dit soort methodes
in kleinere stukken ervoor zorgt dat elk onderdeel makkelijker te begrijpen,
makkelijker te testen en daardoor eenvoudiger te onderhouden wordt.

In dit geval komen de meest complexe methoden ook naar voren als de langste
methoden, waardoor het oplossen van het eerste probleem ook dit probleem
zal verhelpen. BlockParser.java scoort op beide gebieden vrij laag. Dit is
natuurlijk ook vrij complexe, low-level logica, waardoor je altijd enige mate
van complexiteit zal hebben. Het valt echter op dat jullie zelf ”from scratch”
een parser hebben geschreven, terwijl te hier ook een library voor zou kunnen
gebruiken. Als je besluit het zelf te doen is het zaak om de complexiteit onder
controle te houden. In de methode parseArgument doen jullie bijvoorbeeld
een lookup, maar omdat dit nu als if/else boom is gemplementeerd ontstaat
onnodige complexiteit.

96

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het
volume van de test-code ook groeien op het moment dat er nieuwe function-
aliteit toegevoegd wordt.

Over het algemeen scoort de code dus gemiddeld, hopelijk lukt het om dit
niveau nog wat te laten stijgen tijdens de rest van de ontwikkelfase.

F.2 Review 2

In de tweede upload zien we dat zowel de omvang van het systeem als de
score voor onderhoudbaarheid is gestegen. Bij Unit Size en Unit Complexity
zien we een sterke verbetering ten opzichte van de eerste upload.

Helaas is deze aandacht voor onderhoudbaarheid ten koste gegaan van het
schrijven van nieuwe testcode. Juist bij refactoring is het belangrijk om tests
te hebben, om te voorkomen dat er dingen stuk gaan tijdens het aanpassen.

Uit deze observaties kunnen we concluderen dat een deel van de aanbevelin-
gen van de vorige evaluatie zijn meegenomen in het ontwikkeltraject.

97

G
UserTest Results

This section shows the results from the three user tests that were done during
this project.

G.1 UserTest 1

The first user test was in Dordrecht at OBS de Griffioen on Tuesday 30 may
2017. We were able to test students in group 6, group 3/4 and group 3.

G.1.1 Results group 6

Group 6 had 33 students. In groups of 3, they were able to try the exercise
’Voor, achter, links en rechts’ and ’Applaus’. When the exercise went well,
they were allowed to let the robot say something. After the test, the students
were asked if they liked it and if the though it was hard to do the exercise.

The students all really liked doing the test. The biggest part of the students
(25/33) found it the most fun to let the robot say something. The rest of
the students (8/33) found it the most fun to let the robot move.

Some (5/33) students did think it was hard to do, but after the explana-
tion they found it easy. The rest of the students (28/33) thought that it was
easy to program the robot.

It was noticed, that the students were so eager to let the robot move, that
they didn’t read the exercise. This caused the exercise to sometimes fail.
Next time there should be more focus on the exercise, so it will be read prop-
erly. It was also noticed that the students really liked the sandbox exercise,
because the students were able to see that the robot can do a lot of move-
ments. Finally a thing that was noticeable was, that not for every student it
was clear that the text on the speech block was click-able and adjustable.

98

G.1.2 Results group 3/4

Group 3/4 had 25 students and in groups of 3 they were allowed to do the
exercise ’Hoofd, schouders, knie en teen’. If this succeeded, they were allowed
to let the robot say their name. After the test, the students were asked if
they liked it and if the though it was hard to do the exercise.

All the students liked the exercise, also they all liked it the most when the
robot said their name. Even when the robot didn’t pronounce it right. Some
students (5/25) did think it was a little hard to connect the blocks, but the
rest of the students(20/25) thought it was easy.

It was noticed that some students wanted to give commands to the robot by
voice, when they saw the robot. Also some students had a hard time handling
the mouse. This caused the exercise to be a little harder. Because sometimes
the blocks were dragged over the whole screen, before it was connected. But
this didn’t caused the children to think that the exercise was harder. Finally
it was noticeable that the students were very happy when the robot did the
exercise right.

G.1.3 Results group 3

Group 3 had 25 students and in groups of 3 they were allowed to do the
exercise ’hoofd, schouders, knie en teen’. When this succeeded, they were
allowed to let the robot say their name.After the test, the students were
asked if they liked it and if the though it was hard to do the exercise.

The students really liked letting the robot say their name. Also each student
(25/25) thought it was easy to program the robot.

Also in this group it was noticeable that some students had a hard time
handling the mouse. Which caused the blocks to go all over the screen.

G.1.4 Overall noticeable things

There were some things, that were noticeable in every group. A lot of stu-
dents asked if the robot could do the dab, which was not possible yet. Also
the students asked why the robot was scratching his head every time he was
in the stay alive module. Apparently this was a weird movement to do when

99

waiting. The students were very excited to program the robot, even before
it was explained what they had to do.

When teachers were asked for something they would like to see, they
wanted to know if the robot could speak multiple languages to make the
language lessons more interesting.

G.1.5 Conclusion

In conclusion, a dab action should be interpret. Also it should be possible
for students in group 3/4 to use the speech block. They are able to type
some words, and really love it when the robot pronounces their name. The
movement where the robot scratches his head during the stay alive module
should be removed. This movement is weird to have in an idle state and
causes students to get distracted.

During the next user test, the focus should be more on th exercise, to
make sure the students read it and the exercise is executed properly.

G.2 UserTest 2

The second user test was in Woudsend at the Meester van der Brugschool
on Monday 12 june 2017. We were able to test students in group 5/6, group
7/8. Also the teachers asked if there could be an demonstration in group 0,
1/2 and 3/4. So in these classes, a small demonstration is given.

G.2.1 Results group 5/6

Group 5/6 had 24 students and in a group of 3 they were allowed to try the
exercise ’Handje klap’. Afterwards they were able to do the sandbox exercise
and create an own program. Afterwards it was asked if the students liked
the exercise and if the thought it was hard to do.

The students all really liked it and the biggest part of the group (18/24) liked
it the most to create an own program for the robot to execute. The rest of
the students (6/24) liked everything the same.

There was own group of students (3/24) who thought it was hard to think
of a new program, but the exercise ’handje klap’ easy. There were two groups
of students (6/24) who didn’t think it was hard, once it was explained what
o do. The rest of the students (3/24) didn’t think it was hard at all.

100

It was noticed that the students really liked the dab movement. Each group
of students used this block in the sandbox exercise and they were enthusiastic
when the robot executed this block. Also the sit down action and the stand
up action was interesting. The students thought it was awesome that the
robot could sit down and stand p all by itself. Finally it was noticed that
a lot of students, when they learned the basics, where trying out a lot in
the sandbox exercise. For example, they stared using sensors and they were
looking trough the whole menu to see what the robot could do.

G.2.2 Results group 7/8

Group 7/8 had 20 students and in a group of 3 they were allowed to try
the exercise ’Sporten’. Afterwards they were able to do the sandbox exercise
and create an own program. Afterwards it was asked if the students liked
the exercise and if the thought it was hard to do.

The students again all liked it really much. Some students (6/20) liked
creating a new program the most. One group (3/20) liked it the most to
see what the robot did when he got the program. The rest of the students
(11/20) liked everything the same.

A big part of the group (12/20) though it was easy, but it should be
explained first. The rest (8/20) thought it was easy.

It was noticeable that students from group 7/8 were faster with trying new
things. After a short explanation and one exercise, they went to the sandbox
and were looking what was possible. They didn’t use sensors in the exercise,
but they did use this in the sandbox exercise. They did ask what ’sensoren’
meant before they started using this, so maybe another name should be
chosen for sensors. After explaining the sensors, the children were able to
use it.

G.2.3 overall noticeable things

The school asked if it was possible to give a demonstration for group 0 1/2
and 3/4. The robot was standing in the middle of the group with the students
around it. A small program was written and the robot started executing. All
the students were happy to see the robot move. In group 3/4 we also showed
how the program was created, but due to lack of time the students were not
able to program the robot themselves.

101

The dab movement is a movement that should stay, every student loves
it. Also sitting down and standing up is appreciated. But after the sit down
action, we should make sure that the robot stands up. Otherwise it falls
down. Still the exercise is not read properly. Maybe this is caused due to the
lack of information, so the students listen to the explanation and then forget
to read. It should be tested during the next user test. This time, the stu-
dents did look at the block explanation. Creating an own exercise was really
appreciated, so the sandbox exercise should stay. Finally the movements in
the stay alive module were now more naturally and the students didn’t get
distracted anymore.

G.2.4 Conclusion

During next user test, we need to let the students read the exercise. The next
user test is at the previous school, so the students know the basics. Maybe
now they read the exercise. The name ’sensoren’ is not clear, so another
name should be chosen. Maybe ’aanraken’ is more clear for the students.

G.3 UserTest 3

The third user test was in Dordrecht at OBS de Griffioen on Thursday 15
June 2017. We were able to test students in group 7, and group 3.

G.3.1 Results group 7

Group 7 had 46 students. In groups of 4, they were able to try the exercise
’Sporten’. When the exercise went well, they were allowed to create an own
program in the sandbox exercise for group 7/8. After the test, the students
were asked if they liked it and if the though it was hard to do the exercise.
Because we wanted the students to read the exercise, we tried to not explain
everything and let them read. This caused the students to read the exercise.

All students liked programming the robot. Most students (32/46) found it the
most fun when the robot did the dab movement. a few students (9/46) found
it the most fun to create a program on their own. The rest of the students
(5/46) liked everything the same. There were some students (12/46) Found
it easy, once they found out where to look. The rest of the students (24/46)
thought the exercise was easy. There were a few students (16/46) who really
read the exercise precise and used this to find out how to program. Some

102

other students (23/46) did read the exercise, but were so enthusiastic, that
they didn’t read it well and made a different solution. The rest (7/46) didn’t
read the exercise at all and just started trying something to let the robot do.

It was noticed that the students really liked the dab action. Every group
used this block during the sandbox exercise. Also the sit down action was
used a lot. The children were often so enthusiastic, that they forgot to read
the exercise properly. But when they read it properly, they were able to
execute it very well.

G.3.2 Results group 3

Group 3 had 23 students. In groups of 4, they were able to try the exercise
’Loop een rondje’. When the exercise went well, they were allowed to create
an own program in the sandbox exercise for group 3/4. After the test, the
students were asked if they liked it and if the though it was hard to do the
exercise. Because this group already used the robot before, we tried to let
them read the exercise instead of explaining the exercise.

All students really liked to program the robot once again. Most students
(16/23) liked the dab behavior the most. Last time they asked if the robot
was able to do this and now they were very happy to see that the robot did
the dab. the rest of the students (7/23) liked everything the same. Every
student (23/23) thought it was easy to program the robot.

It was noticed that when we said that the students needed to read the ex-
ercise, they had a hard time reading it. This was because the letters on the
screen were too small for students from group 3. The names and the layout
of the menu were changed since the last time the students used the robots,
but they were able to find every block. Finally it was noticed that using the
mouse sometimes still was hard for the students, but this didn’t make the
exercise harder according to the students.

G.3.3 Overall noticeable things

There were some things, that were noticeable in every group. The dab action
is really appreciated. Letting the robot listen to voice is also fun to do, but
the robot is not able to recognize every voice. So the children had to work
together to let the robot listen. The text in the exercise explanation is too

103

small for students from group 3.

Also some bugs were found during testing. Sometimes the goal agent termi-
nates randomly. This needs to be fixed. When a free walk block is used and
the robot should listen to a word, but no word is given. The robot will walk
forever. So we need to catch the edge case where there is a block inside, but
no word to listen to.

G.3.4 Conclusion

In conclusion, We need to make sure that the text for the exercises will
become bigger, so it is readable for everyone. The bugs that were found
should be fixed.

104

H
Block overview

This section contains an overview of all blocks in the toolbox. Currently,
blocks are split up into five categories: Basic Action, Sensor Blocks, Func-
tional Blocks, Logical blocks and Timers.

Apart from these categories, it’s important to differentiate between verti-
cal blocks and horizontal blocks. Vertical blocks can be placed below and
above each other, they can be seen as instruction blocks. The two cate-
gories corresponding to vertical blocks are basic action blocks and functional
blocks, where functional blocks are usually more complicated and contain
more blocks in itself. Horizontal blocks don’t execute an action, but rather
return a value. All sensor blocks belong to this category. For example, a
headTouched block returns a Boolean. Logical blocks also return booleans.
Also timers will return a boolean.

105

Basic Action Block

Makes NAO wave its right arm.

Makes NAO touch its head with both hands.

Makes NAO touch its shoulders.

Makes NAO touch its knees.

Makes NAO touch its toes.

Makes NAO raise the given arm.

106

Makes NAO raise its left arm.

Makes NAO raise its right arm.

Makes NAO put both arms forward.

Makes NAO put both arms backwards.

Makes NAO point the left arm to its side.

Makes NAO point the right arm to its side.

107

Makes NAO walk forward until the condition is true.

Makes NAO walk forward one step.

Makes NAO rotate left (90 degrees).

Makes NAO rotate right (90 degrees).

Makes NAO rotate in the given direction,
(90, -90 or 180 degrees respectively).

Makes NAO clap its hands once.

108

Makes NAO open the given Hand.

Makes NAO close the given Hand.

Makes NAO say the given Text.

Makes NAO rotate its hand and move the hand
back and forth as to sprinkle some chocolate.

Makes NAO bow.

Makes NAO stand up (its default position).

109

Makes NAO duck (by bending its knees).

Makes NAO sit down.

Makes NAO dab (moving his arms and head)
and the robot plays some sound

Sensors Blocks

Evaluates to true if the head of the NAO has been touched.

Evaluates to true if the given hand has been touched.

Evaluates to true if the bumper of the given
foot has been pressed.

110

Evaluates to true if the NAO has heard someone
speak the given text.

Evaluates to true if the NAO has any of its sensors touched.

Evaluates to true if the NAO has its sensor touched

Evaluates to true if the NAO has one of its head sensor touched

Functional Blocks

Executes all the blocks inside the block
exactly the given amount of times.

If the condition evaluates to true,
then all statement actions are executed.

111

If the condition evaluates to true,
then all statement actions are executed.

Makes the NAO idle until the given condition evaluates to true.

Keeps executing all blocks inside this block
as long as the condition evaluates to true.

Keeps executing all blocks inside this block
until the condition evaluates to true.

112

Logical Blocks

Evaluates to true if the condition evaluates to false.

Evaluates to true if both the left part
as well as the right part evaluate to true.

Evaluates to true if both the left part
or the right part evaluate to true.

Timers Blocks

Evaluates to true if the timer variable is
less than the given amount of seconds.

Evaluates to true if the timer variable is
greater than the given amount of seconds.

Special Blocks

The start block indicates where the block program starts.
It contains the order of execution.

113

	Introduction
	Product description
	Report overview

	Problem Definition
	Company: Interactive Robotics
	General problem definition
	Requirements

	Problem Analysis
	Blockly as a framework
	Blockly composition
	Similar use cases

	Learning capabilities of elementary school children
	Group 3 and 4
	Group 5 and 6
	Group 7 and 8

	An intelligent and programmable robot

	Software Design
	Subsystem Decomposition
	TECS Server
	Web Client
	NAO and NAOConnector
	EIS Connector
	Agent

	Agent design
	Eis-connector parser
	Intelligent feedback system

	Blockly Language design
	Blocks
	Canvas
	Toolbox
	Dutch naming conventions

	Exercise examples
	Example exercise for group 3 and 4
	Example exercise for group 5 and 6
	Example exercise for group 7 and 8

	Web interface
	Child interface
	Teacher interface

	Database
	Message Design
	Existing messages
	New messages
	Sequence diagram of a basic use case

	Software Implementation
	Roadmap
	Scrum methodology
	Development tools
	Libraries
	Quality Assurance
	Scrum and User Tests
	Code Tests
	Regression Tests
	Code Review

	Evaluation & reflection
	State of final product
	SIG feedback
	First feedback
	Second feedback

	Test coverage
	JavaScript
	EIS-Connector
	GOAL

	User test feedback
	First user test
	Second user test
	Third user test

	Ethical considerations
	Reflection
	Understanding of the RIE framework
	Work rhetoric
	Roadmap execution
	Experience Gained

	Conclusion
	Conclusion on product
	Conclusion on the project
	Suggestions for future development of the BlocklyKids project

	Appendices
	Glossary
	Original BebSys product description
	Executive infosheet
	Research Report
	Plan of Action
	SIG Review
	Review 1
	Review 2

	UserTest Results
	UserTest 1
	Results group 6
	Results group 3/4
	Results group 3
	Overall noticeable things
	Conclusion

	UserTest 2
	Results group 5/6
	Results group 7/8
	overall noticeable things
	Conclusion

	UserTest 3
	Results group 7
	Results group 3
	Overall noticeable things
	Conclusion

	Block overview

