

Delft University of Technology

CIEM5000 - Matrix method in Statics

van Woudenberg, Tom; Rocha, Iuri

Publication date
2025
Document Version
Proof
Citation (APA)
van Woudenberg, T., & Rocha, I. (2025). CIEM5000 - Matrix method in Statics. Delft University of
Technology. https://ciem5000-2025.github.io/book/

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://ciem5000-2025.github.io/book/

Home
Welcome to the submodule on the Matrix Method for Statics, part of Unit 2 of CIEM5000
Course base Structural Engineering at Delft University of Technology.

This TeachBook contains the material for the course.

Course schedule 📅
See the schedule below for the different weeks. Clicking the links will take you to the
relevant content pages.

Week Monday Tuesday Thursday

1 Lecture
1

Workshop 1

2 Lecture
2

Workshop 2, at any moment after
workshop 2: Additional assignments

7 Question hour of all parts of
CIEM5000

8 Question hour of all parts of
CIEM5000

April 18th,
23:59

Hand in report: Graded
assignment

June 20th,
23:59

Hand in report for resit:
Graded assignment

https://ciem5000-2025.github.io/book/lecture1.html
https://ciem5000-2025.github.io/book/lecture1.html
https://ciem5000-2025.github.io/book/workshop1.html
https://ciem5000-2025.github.io/book/lecture2.html
https://ciem5000-2025.github.io/book/lecture2.html
https://ciem5000-2025.github.io/book/workshop2.html
https://ciem5000-2025.github.io/book/additional.html
https://ciem5000-2025.github.io/book/assignment.html
https://ciem5000-2025.github.io/book/assignment.html
https://ciem5000-2025.github.io/book/assignment.html

How to use this TeachBook 📘

Contents
Interactive features

Spot a mistake?

Personalised book

Version

Offline book

This TeachBook combines the course schedule and content. Announcement an grading
results are provided via Brightspace.

Interactive features
This TeachBook includes interactive coding features! Click –> on the top right
corner of interactive page to start up a python-kernel in your browser! Any interactions you
do here are not stored. You can also download those pages as a notebook to apply the
content on your own computer. For the practice exercises this book shows a preview of the
notebooks and py-files. These pages allow you to test the functionality. However, please fork
and clone the assignment to work on it locally from GitHub. This allows you to edit multiple
files simultaneously and save your work.

Spot a mistake?
If you spot any mistakes, you can click on –> , login with a GitHub account and report
your issue. It’ll be solved soon!

 Added in version v2025.0.2: 2025-02-11 10:42

Added html export of book as zip

Live Code

https://github.com/CIEM5000-2025/practice-assignments

Personalised book
If you’d like to make this TeachBook more personal by adding (private or public) annotations
I can recommend the Hypothesis extension. This is only for your own use, I won’t monitor
public post on this platform.

Version
This is the 2024-2025 -version of the TeachBook. Updates during this course are
communicated on the relevant pages and in the changelog. After each of the workshops,
updates will follow containing the solutions to the practice exercises.

Offline book
If you’d like to have an offline version of this book, you can download it by clicking on the
top right corner. Note that some interactive features will not work (for example, the Python
code). You can always download separate pages by clicking the button on any page.

https://web.hypothes.is/start/
https://ciem5000-2025.github.io/book/changelog.html
https://ciem5000-2025.github.io/book/_static/book.zip
https://ciem5000-2025.github.io/book/_static/book.zip

Contact information 💬

Contents
Tom van Woudenberg

Iuri Rocha

This submodule is taught by Tom van Woudenberg and Iuri Rocha. Please contact us if
you’ve any questions, feedback or when you’ve personal circumstances which we should
know.

Tom van Woudenberg
Room 6.45

015-2789739

T.R.vanWoudenberg@tudelft.nl

Iuri Rocha
Room 6.40

015-2781458

I.Rocha@tudelft.nl

https://ciem5000-2025.github.io/book/_images/Tom.jpg
https://ciem5000-2025.github.io/book/_images/Iuri.png
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:T.R.vanWoudenberg%40tudelft.nl
mailto:I.Rocha%40tudelft.nl
mailto:I.Rocha%40tudelft.nl
mailto:I.Rocha%40tudelft.nl
mailto:I.Rocha%40tudelft.nl
mailto:I.Rocha%40tudelft.nl
mailto:I.Rocha%40tudelft.nl
mailto:I.Rocha%40tudelft.nl

Lecture 1

During today’s lesson we’ll get started with the basics of the matrix method: you will be
introduced to the Matrix Method for solving combinations of 1D elements in statics. You’ll
review how we solved single- and multiple-field problems in statics during Q2, and how you
might have solved statically indeterminate structures using the displacement method. We’ll
see how that procedure can be streamlined and optimized for computer code. Following
you’ll be presented the basic concepts of the Matrix Method: Obtaining element stiffness
matrices, local-global transformations, assembly and postprocessing. The lecture will be
finalized by arriving at an abstraction of the Matrix Method that makes it readily
implementable in computer code with the help of Object Oriented Programming (OOP).

This lecture is given by Tom van Woudenberg.

This book shows the full content of the first lecture. The slides of the lecture have the same
content and are available  here

 Changed in version v2025.0.1: before first lecture

Updated lecture slides: moved slides on python packages and updated installation
requirements first workshop

https://ciem5000-2025.github.io/book/_downloads/5a1143f47438f3cc80333b55bc49db9c/Lecture1.pdf

Recap differential equations
for structures

Contents
Solving differential equation of one field by hand

Solving differential equation of one field using SymPy

Solving differential equations of two fields

Solving differential equations of more fields

Equivalence with matrix method

Let’s recap how to solve a structure using differential equations.

Learning objective

We’ll investigate the differences between solving structures with differential equations
and the matrix method. Furthermore, you’ll need differential equations in the matrix
method itself to define some default elements.

Given is a cantilever beam with a distributed load:

Fig. 1 Cantilever beam with distributed load

The differential equation for the Euler-Bernoulli model can be derived leading to:

Kinematic relations:

φ = −
dw
dx

Constitutive relation:

Equilibrium relations:

These relations can be combined into one fourth order differential equation:

This differential equation can be solved directly to solve structures.

Solving differential equation of one field by
hand
This differential equations can be solved by integrating:

The boundary conditions follow from the clamped side at and free end at :

Solving these four equations for the integration constants gives:

κ =
dφ
dx

M = EIκ

dV
dx

= −q

dM
dx

= V

EI
d4w

dx4
= q

V (x) = −qx + C̄1

M(x) = −
qx2

2
+ C̄1x + C̄2

κ(x) = −
qx2

2EI
+

~
C1x +

~
C2

φ(x) = −
qx3

6EI
+

~
C1x

2

2 +
~
C2x +

~
C3

w(x) =
qx4

24EI
+

C1x
3

6 +
C2x

2

2 + C3x + C4

x = 0 x = ℓ

w(0) = 0

φ(0) = 0

M(ℓ) = 0

V (ℓ) = 0

Substituting these constants, a final solution for can be found:

Solving differential equation of one field
using SymPy
The differential equation can also be solved using SymPy:

C1 = −
qℓ
EI

C2 =
qℓ2

2EI

C3 = 0

C4 = 0

w

w(x) =
qx4

24EI
−

qℓx3

6EI
+

qℓ2x2

4EI

import sympy as sym

EI, q, x, L = sym.symbols('EI, q, x, ell')
C_1, C_2, C_3, C_4 = sym.symbols('C_1, C_2, C_3, C_4')

V = -sym.integrate(q,x) + C_1
M = sym.integrate(V,x) + C_2
kappa = M/EI
phi = sym.integrate(kappa,x) + C_3
w = -sym.integrate(phi,x) + C_4
display(w)

−
C1x

3

6EI
−

C2x
2

2EI
− C3x + C4 +

qx4

24EI

eq1 = sym.Eq(w.subs(x,0),0)
eq2 = sym.Eq(phi.subs(x,0),0)
eq3 = sym.Eq(M.subs(x,L),0)
eq4 = sym.Eq(V.subs(x,L),0)
C_sol = sym.solve([eq1, eq2, eq3, eq4], [C_1, C_2, C_3, C_4])
for key in C_sol:
 display(sym.Eq(key, C_sol[key]))

C1 = ℓq

Solving differential equations of two fields
A similar approach can be taken when solving two fields.

Let’s investigate the following structure, consisting of two fields.

Fig. 2 Extension bar with nodal load

As this structure is loaded along its axis, the differential equation for extension is used.

For the first field this gives:

Boundary conditions:

For the second field it gives:

C2 = −
ℓ2q

2

C3 = 0

C4 = 0

w.subs(C_sol)

ℓ2qx2

4EI
−

ℓqx3

6EI
+

qx4

24EI

EA1
d2u1

dx2 = 0

N1 = C1

u1(x) =
C1

EA
x + C2

u1(0) = 0

Boundary conditions:

The two remaining integration constants can be solved by specifying interface conditions:

Solving differential equations of more
fields
The same approach can be taken to tackle problems with more field, like the one below:

Fig. 3 Frame structure with many fields

How many integration constants should be solved for here? How many boundary- and
interface conditions would be needed for that? It gets annoying very quickly as each of these
conditions need to be defined carefully.

EA2
d2

u2

dx
2 = 0

N2 = C3

u2(x) =
C3

EA
x + C4

N2(ℓ1 + ℓ2) = F

u1(ℓ1) = u2(ℓ1)

N1 = N2

Equivalence with matrix method
While both methods segment the structure in different parts, the matrix method applies a
different principle in solving the structure than when directly solving differential equations:
instead of solving for integration constants, nodal displacements are solved for. This shows
big potential because setting up all the boundary- and interface conditions can be tedious
and is problem-specific. The matrix method applies a generic algorithmic approach to
combine all unknown nodal displacements

The similarities and differences are shown in the table below.

Table 2 Equivalence solving differential equations and matrix method

Solving differential equations Matrix method

Segment structure in separate fields Segment structure in mostly repetitive
elements

Define all boundary- and interface
conditions

Define relations in generic algorithmic
manner

Solve for integration constants Solve nodal displacements C1, C2, . . . u1, u2, . . .

Recap displacement method

Contents
Displacements of all parts statically equivalent structure

Solve for displacements

Equivalence with matrix method

In the previous chapter you’ve seen how solving for integration constants because a labour-
intensive process for more complicated structures. A way of circumventing that is solving for
nodal displacements! You might have seen that before when solving statically indeterminate
structures using the displacement method!

Learning objective

We’ll investigate the equivalence between solving structures with the displacement
method and the matrix method.

The displacement method for statically indeterminate structures works by defining a single
nodal displacement of the equivalent statically determinate structure which defines the
displacement of the full structure. The nodal displacement can be solved for by equilibrium
relations of the external forces and the force corresponding to the displacement. Solving this
equation allows you to find the full displacement- and force distribution.

Let’s look at an statically indeterminate example

Fig. 4 Statically indeterminate extension bar

A statically determinate equivalent structure is i.e. the same structure with the middle
connection replaced by a displacement and its corresponding reaction force andu2 F (1)

https://ciem5000-2025.github.io/book/lecture1/recap.html

. This leads to two parts. If , the structure is equivalent to the statically
indeterminate structure.

(1) (2)

Fig. 5 Equivalent statically determinate extension bar if

Displacements of all parts statically
equivalent structure
Due to the nodal load, a constant section force is present in both fields. Using the

constitutive equations , the corresponding displacement can be found. For

the load , the displacement can be calculated using the kinematic, constitutive and
kinematic relations. This leads to as a function of and :

These relations can be rewritten as and in terms of so that the force equilibrium
can be solved for:

Solve for displacements
Using the displacement can now be solved for:

F (2) F (1) = F (2)

F (1) = F (2)

Δℓ =
Nℓ
EA

u2

q

u2 F1 F2

u2 =
ℓ1

EA1
F (1) +

ℓ2
1q

2EA1

u2 = −
ℓ2

EA1
F (2) +

ℓ2
2q

2EA2

F1 F2 u2

F (1) =
EA1

ℓ1
u2 −

ℓ1q
2

F (2) = −
EA2

ℓ2
u2 +

ℓ2q
2

F (1) = F (2) u2

Equivalence with matrix method
The matrix method applies exactly the same principle as the displacement method; both are
solving force equilibrium of nodal forces to find nodal displacements.

However, the displacement method becomes difficult to apply if multiple nodal
displacements are taken into account, as nodal forces have effect on multiple nodal
displacements. Furthermore, the calculation of the displacements of each part can become
tedious because they’re problem-dependent and external forces have to be taken into
account in the full derivation.

The matrix method addresses these issues by splitting the structure in mostly identical
elements for which the force-displacement relations for all potential nodal displacements are
evaluated once and can be reused over and over again. The same approach is taken for
external forces, of which the resulting relations can be added afterwards. Finally, the
calculations are structured in matrices to allow for easy implementation in software.

The similarities and differences are shown in the table below.

EA1

ℓ1

u2 −
ℓ1q

2
= −

EA2

ℓ2

u2 +
ℓ2q

2

(
EA1

ℓ1

+
EA2

ℓ2

)u2 =
ℓ1q

2
+

ℓ2q

2

u2 =

ℓ1q
2 +

ℓ2q
2

EA1

ℓ1
+

EA2

ℓ2

Table 3 Equivalence displacement method and matrix method

Displacement method Matrix method

Convert structure in two statically determinate
parts

Convert structure in mostly identical
elements

Evaluate one nodal displacements for each
parts

Evaluate all free nodal displacements
using standard elements

Solve nodal equilibrium where the two
statically determinate parts are connected

Solve nodal equilibrium in matrix form
Ku = f

Force-displacement relations
single extension element

In the previous chapter you’ve seen how you can solve structure using nodal displacements.
However, the approach was still very problem-dependent. As proposed, the matrix method
solves this by defining a default element which can be solved for a priori.

Learning objective

Let’s define the force-displacement relations for a single element loading in extension
in terms of nodal displacements.

We’ll do that using differential equations. Later you’ll see how to get the same result using
shape functions.

Let’s consider the most simple extension element:

Fig. 6 Single extension element

The same approach is used as in Recap differential equations for structures. However, the
boundary conditions now are defined in terms of unknown nodal displacements:

This results in:

Effectively, we replaced the unknown integration constants by unknown nodal
displacements. However, this will prove to be useful because these nodal displacements

u(0) = u1

u(ℓ) = u2

C1 =
u2 − u1

ℓ

C2 = u1

https://ciem5000-2025.github.io/book/lecture1/displacement.html
https://ciem5000-2025.github.io/book/lecture1/recap.html

have a clear physical meaning and it will allow us to ‘glue’ elements together as other
elements will be connected with the same nodal displacement.

Using our new formulation of unknown, the continuous distributions for the displacement and
section force can be evaluated too:

We’ll combine elements using force equilibrium, therefore, the force at the ends of the
elements are of main interst. The section force is derived above, which is not the same as
the force and defined as positive to the right. For the node on the right, the direction of

 coincides with the positive direction of . However, on the left-hand-side, the sign flips.
Leading to our force-displacement relation:

u(x) = u1(1 −
x

ℓ
) + u2

x

ℓ

N = −
EA

ℓ
u1 +

EA

ℓ
u2

N

F1 F2

N F1

F1 = −N =
EA

ℓ
u1 −

EA

ℓ
u2

F2 = N = −
EA

ℓ
u1 +

EA

ℓ
u2

Combine elements
In the previous chapter you’ve seen how to set up the force-displacement relations for a
single element. However, to solve for complete structures you’ll need to combine multiple
elements.

Learning objective

You’ll look into how to combine elements to represent a full structure.

Let’s reconsider the extension problem with two fields:

Fig. 7 Extension bar with nodal load

Both elements have the same solution as derived in Force-displacement relations single
extension element. To keep track of the different forces, we’ll use the subscript and for
defining the left- and right-end force of an element, the superscript and to define
the element itself. The nodal displacement are numbered with a subscript , and .

Now, let’s draw free body diagrams of the nodes and the elements itself. The forces acting
on the ends of the elements, act in the opposite direction on the nodes. On node and
additional forces are present: for the reaction force in which is assumed in the positive
direction and for the external force:

Fig. 8 Free body diagrams of nodes and elements

Horizontal equilibrium of each of the nodes gives:

F1 F2

F
(1)

F
(2)

u1 u2 u3

1 3

H 1

F

https://ciem5000-2025.github.io/book/lecture1/single_element.html
https://ciem5000-2025.github.io/book/lecture1/single_element.html
https://ciem5000-2025.github.io/book/lecture1/single_element.html

The algoritmic approach should become visible now!

These equations could also be regarding in a vector formulation. If represents a vector
with all the forces acting on each of the nodes coming from a single element and
represents a vector of all the nodal forces not coming from the elements (the reaction force

 and external force), these equations can be simplified as:

All that’s needed now is to solve our linear set of equations for our unknown nodal
displacements. Luckily the amount of equations equals the amount of unknowns, so you
should have no problem solving this! Take into account that one displacement is already
known: . Without this, the matrix is singular.

However, solving our vector formulation is not trivial. still contains our unknown nodal
displacements hidden inside the vector. Let’s split the vector on the next page to reach our
final form of the matrix method formulation.

∑F1 = 0 ⇒ −
EA1

ℓ1
u1 +

EA1

ℓ1
u2 + H = 0

∑F2 = 0 ⇒
EA1

ℓ1
u1 −

EA1

ℓ1
u2 −

EA2

ℓ2
u2 +

EA2

ℓ2
u3 = 0

∑F3 = 0 ⇒
EA2

ℓ2
u2 −

EA2

ℓ2
u3 + F = 0

f
e

fnodal

H F

−∑
e

f
e + fnodal = 0

∑
e

f
e = fnodal

u1 = 0

f
e

Combine elements using
matrix formulation

Contents
Local stiffness matrix, displacement vector and force vector

Global stiffness matrix, displacement vector and force vector

In the previous chapter you’ve seen how to combine multiple elements to arrive to a linear
system of equation to solve the nodal displacements. However, the nodal displacements
were part of , which doesn’t allow us to solve the vector formulation directly.

Learning objective

You’ll look how to define local and global matrices and vectors of separately: unknown
displacements vector, external force vector and elements stiffness matrices.

Local stiffness matrix, displacement vector
and force vector
In Force-displacement relations single extension element you’ve derived the following two
equations relating the nodal forces and displacements:

These two equations can be rewritten in a matrix formulation:

This can represented as follows too:

f
e

F1 =
EA

ℓ
u1 −

EA

ℓ
u2

F2 = −
EA

ℓ
u1 +

EA

ℓ
u2

EA

ℓ
[] [] = []

1 −1

−1 1

u1

u2

F1

F2

https://ciem5000-2025.github.io/book/lecture1/combine.html
https://ciem5000-2025.github.io/book/lecture1/single_element.html

 is known as the local stiffness matrix, the local displacement vector and the
local force vector.

Global stiffness matrix, displacement
vector and force vector
Now let’s see how to combine multiple elements using our new matrix formulation. In
Combine elements you’ve derived the following three equation relating the nodal
displacements with external forces:

These equation can be represented in a matrix formulation:

This can represented as follows too:

 is known as the global stiffness matrix, the global displacement vector and the glocal
force vector.

As you might see, the local matrices are visible as ‘blocks’ in the global matrix, while the
displacement and force vector are very clean. It seems to be possible to define the global
stiffness matrix directly without manually evaluating the force equilibrium at every node!
You’ll look at that in the next chapter!

K
(e)

u
(e) = f

(e)

K
(e)

u
(e)

f
(e)

∑F1 = 0 ⇒ −
EA1

ℓ1
u1 +

EA1

ℓ1
u2 + H = 0

∑F2 = 0 ⇒
EA1

ℓ1
u1 −

EA1

ℓ1
u2 −

EA2

ℓ2
u2 +

EA2

ℓ2
u3 = 0

∑F3 = 0 ⇒
EA2

ℓ2
u2 −

EA2

ℓ2
u3 + F = 0

=

⎡⎢⎣ EA1

ℓ1
−
EA1

ℓ1
0

−
EA1

ℓ1

EA1

ℓ1
+

EA2

ℓ2
−
EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣H

0

F

⎤⎥⎦Ku = f

K u f

https://ciem5000-2025.github.io/book/lecture1/combine.html

Setting up global equations
directly

Contents
1. Identify degrees of freedom

2. Initialize the system with zeros

3. Assemble stiffness, element by element

4. Apply external loads

5. Apply prescribed displacements

6. Solve for the unknown nodal displacements

Now that you’ve seen the final matrix formulation, let’s set up a procedure to find it directly!

Learning objective

You’ll look into how to setup the global formulation directly

We’ll do that for the same structure as before:

Fig. 9 Extension bar with nodal load

1. Identify degrees of freedom
The nodal displacement are the degrees of freedom. Let’s define all of them, even though
some seem to be fixed:

2. Initialize the system with zeros
As the amount of degrees of freedom is known, the size of our global matrices and vectors
are defined and they can be initialized with zeros:

3. Assemble stiffness, element by element
Now let’s add the local stiffness matrices element by element. We can use the default

stiffness matrix and places its parts in the global stiffness matrix where the

index of the displacement (columns) and forces (rows) match.

Element
The first element links the first and second nodal displacement with the first and second
nodal forces:

=

⎡⎢⎣0 0 0

0 0 0

0 0 0

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣0

0

0

⎤⎥⎦EA

ℓ
[]

1 −1

−1 1

(1)

Element
Now let’s add the second element, linking the second and third nodal displacements with the
second and third nodal forces:

4. Apply external loads
Now, the external loads can be applied. These external loads are called Neumann boundary
conditions. These act directly on our nodes, so can be directly added to the global force
vector. The sign of the forces to be added aligns with the positive direction of the nodal
displacements.

=

⎡⎢⎣ EA1

ℓ1

−
EA1

ℓ1

0

−
EA1

ℓ1

EA1

ℓ1

0

0 0 0

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣0

0

0

⎤⎥⎦(2)

=

⎡⎢⎣ EA1

ℓ1

−
EA1

ℓ1

0

−
EA1

ℓ1

EA1

ℓ1

+
EA2

ℓ2

−
EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣0

0

0

⎤⎥⎦

5. Apply prescribed displacements
Now, the external loads can be applied. These external loads are called Neumann boundary
conditions. These act directly on our nodes, so can be directly added to the global force
vector. The sign of the forces to be added aligns with the positive direction of the nodal
displacements.

The Neumann boundary condition causes a prescribed displacement

However, it also adds a force:

=

⎡⎢⎣ EA1

ℓ1

−
EA1

ℓ1

0

−
EA1

ℓ1

EA1

ℓ1

+
EA2

ℓ2

−
EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣0

0

F

⎤⎥⎦u1 = 0

=

⎡⎢⎣ EA1

ℓ1

−
EA1

ℓ1

0

−
EA1

ℓ1

EA1

ℓ1

+
EA2

ℓ2

−
EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣ 0

u2

u3

⎤⎥⎦ ⎡⎢⎣0

0

F

⎤⎥⎦

H

6. Solve for the unknown nodal
displacements
Finally, we can solve for the unknown nodal displacements. For now, we can solve this
system by only taking into account the second and third row:

This results in:

Later on, we’ll introduce another way of solving the system of equations which allows for
nonzero Dirichlet boundary conditions.

=

⎡⎢⎣ EA1

ℓ1

−
EA1

ℓ1

0

−
EA1

ℓ1

EA1

ℓ1

+
EA2

ℓ2

−
EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣ 0

u2

u3

⎤⎥⎦ ⎡⎢⎣H

0

F

⎤⎥⎦=

⎡⎢⎣ EA1

ℓ1

+
EA2

ℓ2

−
EA2

ℓ2

−
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u2

u3

⎤⎥⎦ ⎡⎢⎣0

F

⎤⎥⎦u2 =
Fℓ1

EA1

u3 =
F (EA1ℓ2 + EA2ℓ1)

EA1 EA2

Implementation in Python

Contents
Setting up global equations with python package

The matrix method is implemented in an (incomplete) python package which you’ll extend in
the workshops and graded assignments.

Learning objective

You’ll look into the structure of the matrix method python package.

The method is broken down as follows:

A list of nodes floating in space with loads and DOFs associated to them

A list of elements defined by linking two nodes together

A constrainer to apply Dirichlet boundary conditions

With this in mind, the python package is set up as an object-oriented code which each of the
items above as a class, containing multiple attributes and functions. The docstring provide
an introduction to the classes, attributes and functions. These will be treated later in the
workshops

The three classes work together: nodes defined with the Node class are an input for the
Element class. The Constrainer takes the nodes defined with the Node class and

constrains specific degree of freedom to comply with Dirichlet boundary conditions.

Node

Coords Loads DOFs

Element

Section Stiffness Nodes

Constrainer

DOFs Values

Fig. 10 Structure of python package

The global stiffness matrix, nodal displacement vector and nodal force vector are not defined
anywhere in each of the classes (only local stiffness matrices are defined in the Element
class). So, these need to defined separately.

Setting up global equations with python
package
The steps provide in the previous page can be implemented using the matrix method
package as follows:

1. Identify degrees of freedom
The Node class automatically keeps track of the amount of degrees of freedom based on
the amount of instances created with that class. For every node it will count 3 degrees of
freedom. So far you’ve only seen one degree of freedom per node, but soon more will
follow!

https://ciem5000-2025.github.io/book/lecture1/directly.html

2. Initialize the system with zeros
As said before, the global stiffness matrix, nodal displacement vector and nodal force vector
are not defined anywhere in each of the classes. Therefore, you’ll to create empty matrices
and vectors yourself in the form of numpy arrays.

3. Assemble stiffness, element by element
The Element class can create a local stiffness matrix based on the Node -instances which
are provided as an input. You’ll need some smart indexing to map the local stiffness matrix
to the correct location of the global stiffness matrix. Again, this is not part of any of the
provided classes.

4. Apply external loads
Loads can be added to the instances of the Node class. Together with the indexing of
degrees of freedom inside these instances, the loads can be mapped to the correct location
in the global nodal force vector.

5. Apply prescribed displacements
The prescribed displacements can be applied using the Constrain class. It allows you to fix
the degrees of freedom, which you’ll need in the next step. It doesn’t take care of the
reaction force belonging to the prescribed displacement.

6. Solve for the unknown nodal displacements
Again, the Constrain class can help you here. As it knows which degrees of freedom are
fixed, it can give you a reduced global stiffness matrix and global nodal force vector which
you can use yourself to solve for the free global nodal displacements

Local stiffness matrix Euler-
Bernoulli element

Contents
Derivation using SymPy

In Force-displacement relations single extension element and Combine elements using
matrix formulation you’ve seen how to derive the local stiffness matrix for a simple extension
element. But can you do the same for other elements?

Learning objective

You’ll look into deriving the local stiffness matrix for the Euler-Bernoulli element.

Previously, the local stiffness matrix for a simple extension element was found as:

The same procedure can be followed for other element, like a combined extension and
Euler-Bernoulli element:

Fig. 11 Combined extension and Euler-Bernoulli element

The amount of degrees of freedom increases, as both ends of the element can translate in
two directions and rotate. However, the approach is exactly the same, leading to the
following element stiffness matrix:

K
(e) =

EA

ℓ
[]1 −1

−1 1

https://ciem5000-2025.github.io/book/lecture1/single_element.html
https://ciem5000-2025.github.io/book/lecture1/matrix.html
https://ciem5000-2025.github.io/book/lecture1/matrix.html

for

Derivation using SymPy
We can make use of software like SymPy, as we did before in Solving differential equation of
one field using SymPy to do the calculations in this derivation:

K
(e) =

⎡⎢⎣ EA
ℓ

0 0 −
EA

ℓ
0 0

0
12EI

ℓ3 −
6EI
ℓ2 0 −

12EI
ℓ3 −

6EI
ℓ2

0 −
6EI
ℓ2

4EI
ℓ

0
6EI
ℓ2

2EI
ℓ

−
EA

ℓ
0 0

EA
ℓ

0 0

0 −
12EI

ℓ3
6EI
ℓ2 0

12EI
ℓ3

6EI
ℓ2

0 −
6EI
ℓ2

2EI
ℓ

0
6EI
ℓ2

4EI
ℓ

⎤⎥⎦u
(e) =

⎡⎢⎣u1

w1

φ1

u2

w2

φ2

⎤⎥⎦import sympy as sym

EI, x, L = sym.symbols('EI, x, L')
w = sym.Function('w')

ODE_bending = sym.Eq(w(x).diff(x, 4) * EI, 0)
display(ODE_bending)

EI
d4

dx4
w(x) = 0

https://ciem5000-2025.github.io/book/lecture1/recap.html#sympy-ode
https://ciem5000-2025.github.io/book/lecture1/recap.html#sympy-ode

w = sym.dsolve(ODE_bending, w(x)).rhs
display(w)

C1 + C2x + C3x
2 + C4x

3

phi = -w.diff(x)
kappa = phi.diff(x)
M = EI * kappa
V = M.diff(x)

w_1, w_2, phi_1, phi_2 = sym.symbols('w_1, w_2, phi_1, phi_2')

eq1 = sym.Eq(w.subs(x,0),w_1)
eq2 = sym.Eq(w.subs(x,L),w_2)
eq3 = sym.Eq(phi.subs(x,0),phi_1)
eq4 = sym.Eq(phi.subs(x,L),phi_2)

sol = sym.solve([eq1, eq2, eq3, eq4], sym.symbols('C1, C2, C3, C4'))
for key in sol:
 display(sym.Eq(key, sol[key]))

C1 = w1

C2 = −ϕ1

C3 =
2Lϕ1 + Lϕ2 − 3w1 + 3w2

L2

C4 =
−Lϕ1 − Lϕ2 + 2w1 − 2w2

L3

F_1_z, F_2_z, T_1_y, T_2_y = sym.symbols('F_1_z, F_2_z, T_1_y, T_2_y')

eq5 = sym.Eq(-V.subs(sol).subs(x,0), F_1_z)
eq6 = sym.Eq(V.subs(sol).subs(x,L), F_2_z)
eq7 = sym.Eq(-M.subs(sol).subs(x,0), T_1_y)
eq8 = sym.Eq(M.subs(sol).subs(x,L), T_2_y)

K_e, f_e = sym.linear_eq_to_matrix([eq5,eq7, eq6, eq8], [w_1, phi_1, w_2, phi_2])
display(K_e)

To use the stiffness matrix without manually copying it over, you can make use of the
lambdify which converts a symbolic SymPy object in a python function. This allows you to

evaluate it for specific numerical values and continue using it in the numerical framework of
the matrix method.

⎡⎢⎣ 12EI
L3 − 6EI

L2 − 12EI
L3 − 6EI

L2

− 6EI
L2

4EI
L

6EI
L2

2EI
L

− 12EI
L3

6EI
L2

12EI
L3

6EI
L2

− 6EI
L2

2EI
L

6EI
L2

4EI
L

⎤⎥⎦K = sym.lambdify((L, EI), K_e)
print(K.__doc__)

Created with lambdify. Signature:

func(L, EI)

Expression:

Matrix([[12*EI/L**3, -6*EI/L**2, -12*EI/L**3, -6*EI/L**2], [-6*EI/L**2,...

Source code:

def _lambdifygenerated(L, EI):
 return array([[12*EI/L**3, -6*EI/L**2, -12*EI/L**3, -6*EI/L**2], [-6*EI/L**2, 4*EI/L,

Imported modules:

print('Example of K with L=5 and EI=1000:\n',K(5,1000))

Example of K with L=5 and EI=1000:
 [[96. -240. -96. -240.]
 [-240. 800. 240. 400.]
 [-96. 240. 96. 240.]
 [-240. 400. 240. 800.]]

Transformations

Contents
Transformations

Transformation for an arbitrary vector

Up until now we didn’t care about the orientation of elements. Actually, all elements had
exactly the same orientation. But how do deal with elements in a different orientation?

Learning objective

You’ll look into how to transform elements from a local to global orientation

The stiffness matrix is defined in a local coordinate system following an element’s
orientation. This is useful because it allows us to reuse that same stiffness matrix and again
without the need to rederive it. However, during assembly, when combining multiple
elements, it would be useful to have them all in the same coordinate system, the global one.
After solving for displacements in the global coordinate system, it might be needed to
transform back to the local coordinate system to get expression for continuous
displacements and section forces.

We’ll be using a -coordinate system as the differential equations are derived using
those axes. This is different than in most finite-element-implementations and in most cases
not in bar with international standards.

x − z

For an arbitrary vector with two components, the transformation matrix can be derived by
comparing the vector’s components in the local () and global () coordinate
system:

x

z

x

z

vx

vz v

vx

vz

α

The relations between the components can be found using geometry:

v

vx̄, vz̄ vx, vz

x

z

x

z

vx

vz v

vx

vz

α

vx co
s α vz si

n α

vz cos α
vx sin α

Leading to:

This can be rewwritten in matrix form as:

And the inverse relation:

vx̄ = vx cos α − vz sin α

vz̄ = vx sin α + vz cos α

[]= []

R

[]vx̄

vz̄

cos α − sin α

sin α cos α

vx

vz

[]= []

RT

[]vx

vz

cos α sin α

− sin α cos α

vx̄

vz̄

Transformation for a complete element
To transform a complete element, the displacements of both endpoints have to be
transformed, while the rotations are independent of the element orientation:

Resulting in:

Transformation for stiffness matrix
Using the known transformation for the first-order tensors and the transformation matrix
for the second-order tensor can be derived:

So

=

T

⎡⎢⎣ ū1

w̄1

φ̄1

ū2

w̄2

φ̄2

⎤⎥⎦ ⎡⎢⎣cos α − sin α 0 0 0 0

sin α cos α 0 0 0 0

0 0 1 0 0 0

0 0 0 cos α − sin α 0

0 0 0 sin α cos α 0

0 0 0 0 0 1

⎤⎥⎦

⎡⎢⎣u1

w1

φ1

u2

w2

φ2

⎤⎥⎦ū = Tu

f̄ = Tf

u = T
T

ū

f = T
T

f̄

u f

K

K̄ū = f̄

K̄Tu = Tf

T
T

K̄Tu = T
T

Tf

Ku = f

K = T
T

K̄T

Workshop 1

This pages shows a preview of the assignment including its solution. Please fork
and clone the assignment to work on it locally from GitHub

During today’s workshop you’ll implement and check missing components, and solve a
complicated frame.

 Added in version v2025.1.0: After workshop 1

Solutions workshop 1 in downloads

Attention

https://github.com/CIEM5000-2025/practice-assignments

Implementation

Contents
1. The Node class

2. The Element class

3. The Constrainer class

4. Full implementation extension bar

5. Full implementation bending beam

This page shows a preview of the assignment. Please fork and clone the
assignment to work on it locally from GitHub

In this notebook you will implement the matrix method and check it with some sanity checks.

Our matrix method implementation is now completely stored in a local package, consisting
of three classes. If you need a refresher on how to code with Classes and Objects, refer to
the section on Object Oriented Programming in the MUDE-book, with additionally
programming assignment 1.7

 Added in version v2025.1.0: After workshop 1

Solutions workshop 1 in text and downloads

 Changed in version v2025.0.3: 2025-02-10 13:33, before workshop 1

Fixed typo in Exercise 2.6

import numpy as np
import matplotlib as plt
import matrixmethod as mm
%config InlineBackend.figure_formats = ['svg']

Attention

https://github.com/CIEM5000-2025/practice-assignments
https://mude.citg.tudelft.nl/2024/book/external/learn-programming/book/python/oop/classes.html
https://mude.citg.tudelft.nl/2024/files/Week_1_7/PA_1_7_classy_distributions.html

1. The Node class
This class is stored in ./matrixmethod/node.py

The purpose of this class is to store node information and keep track of the total number of
DOFs of the problem. Note the automatic bookkeeping we introduce in __init__ . This
simple but efficient way of keeping track of which DOFs belong to which nodes will make life
much easier when we need to assemble matrices from multiple elements. The Node class
doesn’t need any modification.

To test whether you understand how the class works, create two nodes on
coordinates (,) and (,) and print the string representation of both nodes. The
clear function is called to restart the node and DOF counters. Make sure this is

done whenever you start solving a new problem.

2. The Element class
This class is stored in ./matrixmethod/elements.py

This class keeps track of each element in the model, including:

Cross-section properties

Element orientation (for coordinate system transformations)

Which Nodes make up each element, and in turn (with help of the Node class) which
DOFs belong to each element

0 0 3 4

mm.Node.clear()

node1 #= mm.Node(YOUR CODE HERE

print(node1)
#YOUR CODE HERE

Exercise (Workshop 1 - 1.1)

Hint

Solution to Exercise (Workshop 1 - 1.1)

https://ciem5000-2025.github.io/book/matrixmethod/node.html
https://ciem5000-2025.github.io/book/matrixmethod/elements.html

Apart from bookkeeping element data, the other main task of this class is to provide the
element stiffness matrix in the global coordinate system (for subsequent assembly) and
postprocess element-level fields. For now we keep postprocessing for next week and focus
only on getting the correct stiffness matrix.

Here the class describes an element combining extension and Euler-Bernoulli bending. A
similar (or inherited) class could also be implemented for different element types (e.g. shear
beam, Timoshenko beam, cable elements, etc). Here we also keep it simple by assuming
elements are all arranged in a 2D plane.

However, the implementation is incomplete:

The transformation matrix is missing in __init__ , which is given in Transformations.
Make sure you take into account that a positive with a positive gives a negative
angle . Make use of numpy.arctan2 to return the angle between and ,

numpy.arctan returns an angle between and , and therefore cannot

distinguish between all four quadrants.

The correct stiffness matrix for this extension-bending element coordinate system is
missing in stiffness . You can derive the stiffness matrix yourself using pen and paper,
SymPy or Maple, or copy the given stiffness matrix from Local stiffness matrix Euler-
Bernoulli element.

We keep the functions which add a distributed load and compute the moments /
displacements untouched for this week. Next week we’ll implement those as well.

Add the missing pieces to the code in ./matrixmethod/elements.py , before you
perform the checks below. Do you specify your stiffness matrix in the global or
local coordinate system?

Whenever you make changes to your code in the ./matrixmethod/ folder, you need to
reimport those. Instead of restarting the kernel, we use some magic ipython commands. Run
the cell below once. Consequently, whenever you save your changes in one of the .py -
files, it’s automatically reloaded.

Δz Δx

α −π π

−
π

2 −
π

2

%load_ext autoreload
%autoreload 2

Exercise (Workshop 1 - 2.1)

Solution to Exercise (Workshop 1 - 2.1)

https://ciem5000-2025.github.io/book/lecture1/transformations.html
https://ciem5000-2025.github.io/book/lecture1/other_elements.html
https://ciem5000-2025.github.io/book/lecture1/other_elements.html

Note that in this online book, you cannot make changes to multiple files
simultaneously. These instructions are only applicable when you’re working on this
assignment locally; please fork and clone the assignment to work on it locally from
GitHub.

First, let’s check the stiffness matrix for a beam which doesn’t require rotation.
Create a horizontal element with length and and print both the
transformation matrix and the stiffness matrix.

Do the matrices match with what you’d expect?

Now, create a vertical element with length and and print the
transformation and stiffness matrix.

Do the matrices match with what you’d expect?

2 EI = 4

mm.Node.clear()
mm.Element.clear()

#YOUR CODE HERE

elem #= mm.Element(#YOUR CODE HERE

section = {}
section['EI'] #= YOUR CODE HERE
elem.set_section(section)

print(elem.T)
print(elem.stiffness())

2 EI = 4

#YOUR CODE HERE

Error

Exercise (Workshop 1 - 2.2)

Solution to Exercise (Workshop 1 - 2.2)

Exercise (Workshop 1 - 2.3)

https://github.com/CIEM5000-2025/practice-assignments

Now, create an element rotated in with length and print the transformation
matrix.

Do the matrices match with what you’d expect?

Now, create an element rotated in with length and print the transformation
matrix.

Do the matrices match with what you’d expect?

120∘ 2

#YOUR CODE HERE

60∘ 2

#YOUR CODE HERE

Solution to Exercise (Workshop 1 - 2.3)

Exercise (Workshop 1 - 2.4)

Solution to Exercise (Workshop 1 - 2.4)

Exercise (Workshop 1 - 2.5)

Solution to Exercise (Workshop 1 - 2.5)

For the previous element, a global displacement vector is given.

What would be the local displacement vector ?

Check your answer using pen and paper. Tip: make a drawing instead of doing all
the algebra.

3. The Constrainer class
This class is stored in ./matrixmethod/constrainer.py

This small class keeps track of which DOFs have prescribed displacements and takes care
of applying these constraints to the global and . For now we keep it simple and assume
all constraints fix the DOF values to zero. Next week we will deal with non-zero prescribed
values.

However, the implementation is incomplete:

The constrain function is incomplete, which should mimic the process of striking
rows/columns of constrained DOFs and reduce the size of the system to be solved.
Remember that Constrainer stores which DOFs are constrained in self.dofs , so all
the others should be free. After gathering the free DOFs in an array, you will need to
select the correct blocks of and . For the stiffness matrix you will need the np.ix_()
helper function (check its documentation here)

We keep the function which calculates supports reaction untouched for this week. Next
week we’ll implement that one as well.

u
(e) =

⎡⎢⎣ 0

0

0

√3

1

0

⎤⎥⎦ū
(e)

#YOUR CODE HERE

K f

K f

Exercise (Workshop 1 - 2.6)

Solution to Exercise (Workshop 1 - 2.6)

https://ciem5000-2025.github.io/book/matrixmethod/constrainer.html
https://numpy.org/doc/stable/reference/generated/numpy.ix_.html

Add the missing pieces to the code, before you perform the check below

Take the inclined element of exercise 2.5 and a bending stiffness of . What
happens if you invert ? Now fix all degrees of freedom of the first node. What
happens when you invert your ‘constrained’ ? Are the dimensions of the
‘constrained’ correct?

4. Full implementation extension bar
Having made our implementations, we now check them with two simple examples that serve
as sanity checks. The first is a simple bar undergoing extension:

With , and .

Use the code blocks below to set up and solve this problem using the classes above. The
steps to follow are outlined below and short explanations/hints are given. Once you have a

1

K

K

K

#YOUR CODE HERE

con = mm.Constrainer()

#YOUR CODE HERE

f = np.zeros (6) #empty load vector
Kff, Fff = con.constrain(K, F)
print(np.shape(np.linalg.inv(Kff)))

EA = 1000 F = 100 L = 1

Exercise (Workshop 1 - 3.1)

Solution to Exercise (Workshop 1 - 3.1)

Exercise (Workshop 1 - 3.2)

Solution to Exercise (Workshop 1 - 3.2)

https://raw.githubusercontent.com/ibcmrocha/public/main/extpointload.png

solution for the horizontal displacement of the node at the right end of the bar, compare it to
the analytical solution you obtained in the first half of the course.

Create two nodes here. You can store them on a list or simply create them as
two separate objects (e.g. node1 and node2).

Here we only have a single element, so there is no need to store it in a list yet.
You are also going to need a dict defining the cross-section of the element.

Let’s define the boundary conditions. We create an instance of the Constrainer
class to deal with prescribed displacements. Take a look at its functions and inform
if Node 1 is fully fixed.

You also need to pass the load on to Node 2. Check the member functions of
Node to infer how that should be done.

mm.Node.clear()
mm.Element.clear()

#YOUR CODE HERE

#YOUR CODE HERE

F

#YOUR CODE HERE

Exercise (Workshop 1 - 4.1)

Solution to Exercise (Workshop 1 - 4.1)

Exercise (Workshop 1 - 4.2)

Solution to Exercise (Workshop 1 - 4.2)

Exercise (Workshop 1 - 4.3)

Now assemble the global stiffness matrix and force vector. Since we only have one
element, there is no real assembly to be performed other than getting the stiffness
matrix of the single element and storing the load at Node 2 in the correct positions
of .

Constrain the problem and solve for nodal displacements.

Finally, compare the displacement at the end of the bar with the one coming from
the ODE solution. Note that since our element is already suitable for frames
combining extension and bending, has three entries. Which one is the entry that
matters to us here? Did your solutions match? If so, that is a sign your
implementation is correct. Can you use the function full_disp to obtain a vector of
all displacements?

f

#YOUR CODE HERE

#YOUR CODE HERE

u

#EVENTUALLY YOUR CODE HERE

Solution to Exercise (Workshop 1 - 4.3)

Exercise (Workshop 1 - 4.4)

Solution to Exercise (Workshop 1 - 4.4)

Exercise (Workshop 1 - 4.5)

Solution to Exercise (Workshop 1 - 4.5)

Exercise (Workshop 1 - 4.6)

Solution to Exercise (Workshop 1 - 4.6)

5. Full implementation bending beam
In the first example above we tested our model under extension. But that does not really
guarantee it will behave correctly in bending. That is the goal of this second sanity check.
Let’s solve the following problem:

Choose appropriate values yourself

When setting up and solving your model, note that we are now interested in
displacements, our load is now vertical and the cross-section property driving our
deformation is now . Good luck!

Create nodes

Create element

w

EI

mm.Node.clear()
mm.Element.clear()

#YOUR CODE HERE

#YOUR CODE HERE

Exercise (Workshop 1 - 5.1)

Solution to Exercise (Workshop 1 - 5.1)

Exercise (Workshop 1 - 5.2)

Solution to Exercise (Workshop 1 - 5.2)

https://raw.githubusercontent.com/ibcmrocha/public/main/cantilever.png

Set boundary conditions

Assemble the system of equations.

Constrain the problem and solve for nodal displacements

Check with the analytical solution

Did your solutions match? If so, your implementation is correct!

#YOUR CODE HERE

#YOUR CODE HERE

#YOUR CODE HERE

#EVENTUALLY YOUR CODE HERE

Exercise (Workshop 1 - 5.3)

Solution to Exercise (Workshop 1 - 5.3)

Exercise (Workshop 1 - 5.4)

Solution to Exercise (Workshop 1 - 5.4)

Exercise (Workshop 1 - 5.5)

Solution to Exercise (Workshop 1 - 5.5)

Exercise (Workshop 1 - 5.6)

Solution to Exercise (Workshop 1 - 5.5)

Apply

Contents
Vierendeel frame

This page shows a preview of the assignment. Please fork and clone the
assignment to work on it locally from GitHub

In this notebook you will work on a homework assignment involving a Vierendeel frame.

Our matrix method implementation is now completely stored in a local package, consisting
of three classes.

 Added in version v2025.1.0: After workshop 1

Solutions workshop 1 in text and downloads

Attention

https://github.com/CIEM5000-2025/practice-assignments

Vierendeel frame

With:

In the first half of this course last quarter, you have learned that the deformation of
Vierendeel frames (an example of which is shown above) can be obtained in a simplified
way by assuming the global deformation can be described by a shear beam with equivalent
stiffness given by:

h = 1

b = 1

EIr = 10000

EIk = 1000

EA = 1 ⋅ 1010

H = 100

k =
24

h(h

EIk

+
b

EIr

)

https://raw.githubusercontent.com/ibcmrocha/public/main/vierendeel.png

Now that you have the tools to solve the original frame problem using the Matrix
Method, your task in this assignment is to investigate the validity of this equivalent
shear beam model.

Note that the checks only had a single element. For this model you need to obtain
 and of all elements and add them to the correct locations in the global

stiffness matrix and force vector. To do that, make use of the global_dofs function
of the Element class and the np.ix_ Numpy utility function. (Tip: refer back to what
you did in the constrain function).

Once you have a solution, use SymPy / Maple / pen and paper to solve a shear
beam problem with the equivalent stiffness given above (It is very similar to the
simple extension problem above) and compare the horizontal displacement at the
point of application of for the two models.

Investigate how the two models compare for different values of , ranging from
very small (e.g.) to very large (e.g.). What explains the behavior
you observe?

K f

H

EA

1 ⋅ 10
−5

1 ⋅ 10
10

import numpy as np
import matplotlib as plt
import matrixmethod as mm
%config InlineBackend.figure_formats = ['svg']

mm.Node.clear()
mm.Element.clear()

#YOUR CODE HERE

global_k #= np.zeros(YOUR CODE HERE
global_f #= np.zeros(YOUR CODE HERE

for elem in elems:
 elmat = elem#.YOUR CODE HERE
 idofs = elem#.YOUR CODE HERE

 #YOUR CODE HERE

for node in nodes:
 #YOUR CODE HERE

Exercise (Workshop 1 - Apply)

#YOUR CODE HERE

#provided in case you want to solve the shear beam problem using SymPy
import sympy as sym
x, k, L, H = sym.symbols('x, k, L, H')
w = sym.Function('w')

ODE_shear = #YOUR CODE HERE

Solution to Exercise (Workshop 1 - Apply)

Lecture 2

During today’s lesson you’ll wrap up the discussion on the Matrix Method for statics and
implement in code some new content. You’ll be given the last theoretical details of the
method, including how to consider element loads, non-zero Dirichlet boundary conditions
and postprocessing for support reactions and element fields.

This lecture is given by Iuri Rocha.

This book shows the full content of the first lecture. The slides of the lecture have the same
content and are available  here

 Changed in version v2025.1.1: after second leture

Updated lecture slides: fixed typo and removed example

https://ciem5000-2025.github.io/book/_downloads/835bdd84157752bbc04ab3165c090e08/Lecture2.pdf

Element loads

Contents
Force-displacement relations using differential equations

Combine elements

Force-displacement relations using conservation of work

Example

As the matrix method is a discrete approach, nodal loads were treated with ease. However,
what to do with continuous loads or loads which are not applied at the nodes?

Learning objective

You’ll look into how to model element loads using differential equations and
conservation of work and how these are combined in the matrix formulation.

Force-displacement relations using
differential equations
As before, we can derive the force-displacement relations of a single extension element.
However, now let’s include the loads, for example a continuous load

Fig. 12 Single extension element with distributed load

The same approach is used as in Recap differential equations for structures. This results in:

q

q

C1 =
qℓ

2EA
+

u2 − u1

ℓ

C2 = u1

https://ciem5000-2025.github.io/book/lecture1/single_element.html
https://ciem5000-2025.github.io/book/lecture1/recap.html

The continuous distributions for the displacement and section force can be evaluated too:

These are extended results in comparison to before

Combine elements
As before, we can glue elements together by applying nodal equilibrium:

This leads to:

or in matrix notation:

Effectively, we converted the continuous load to an equivalent nodal load.

This influences the nodal equilibrium (in the global coordinate system) too:

This means that we can calculate all the equivalent nodal loads separately and add them to
the nodal loads. Please note that all these forces should be in the global coordinate system:

u(x) =
q

2EA
(ℓx − x2) + u1 (1 −

x
ℓ
) + u2

x
ℓ

N(x) =
q
2 (ℓ − 2x) −

EA
ℓ

u1 +
EA

ℓ
u2

F1 = −N =
EA

ℓ
u1 −

EA
ℓ

u2 −
qℓ
2

F2 = N = −
EA

ℓ
u1 +

EA
ℓ

u2 −
qℓ
2

EA

ℓ
[] [] − = []1 −1

−1 1

u1

u2

⎡⎢⎣ qℓ
2

qℓ
2

⎤⎥⎦ F1

F2

−∑
e

f
e + fnodal = 0

−∑
e

(K
e
u

e − f
e
eq) + fnodal = 0

∑
e

f
e = fnodal +∑

e

f
e
eq

feq = TTf̄eq

https://ciem5000-2025.github.io/book/lecture1/single_element.html

Force-displacement relations using
conservation of work

Point load
Let’s consider another example in which the application of the differential equations are not
trivial: we’ll introduce a discontinuous force in the form of a point load halfway the element.
We’ll compare this with the same element loaded by vertical forces and bending moments at
the ends:

Fig. 13 Single extension element with point load halfway in comparison to element loaded
by vertical forces and bending moments at the ends

The conservation of work states that the work done by the force should be equal to the
force done by the forces , , and : =

To ease the calculation, we’ll split the displacement in four cubic shape functions (cubic is
justified because with a cubic displacement function is found). Each shape function
will have a displacement of in direction of each of the four edge forces (, , and

):

Fig. 14 Four shape functions

P

P

F
eq
1 F

eq

2 T
eq
1 T

eq

2
WP Weq

q = 0

1 w1 φ1 w2

φ2

The shape functions have the following function:

Consequently, the work can be splitted in four independent terms easing the
calculation, which can be compared to the same terms in .

The work performed by the edge forces equals:

The work performed by (under the same displacement) is:

Enforcing and isolating terms gives:

In the local coordinate system.

Distributed load
The same can be done for a distributed load:

w(x) = (
2x3

ℓ3
−

3x2

ℓ2
+ 1)

s1

w1 + (−
x3

ℓ2
+

2x2

ℓ
− x)

s2

φ1 + (−
2x3

ℓ3
+

3x2

ℓ2
)

s3

w2 +

  

Weq

WP

Weq = F
eq
1 w1 + T

eq
1 φ1 + F

eq
2 w2 + T

eq

2 φ2

P

WP = P w(ℓ

2
) = P s1 (

ℓ

2
) w1 + P s2 (

ℓ

2
) φ1 + P s3 (

ℓ

2
) w2 + P s4 (

ℓ

2
) φ

WF = Wq

feq = =

⎡⎢⎣F
eq
1

T
eq
1

F
eq
2

T
eq

2

⎤⎥⎦ ⎡⎢⎣ P
2

−
Pℓ
8

P
2

Pℓ
8

⎤⎥⎦Wq = ∫
ℓ

q w(x)dx = ∫
ℓ

q s1(x)dx w1 + ∫
ℓ

q s2(x)dx φ1 + ∫
ℓ

q s3(x)dx w2 + ∫
ℓ

q s4

Leading to:

Example
Let us use what we have just learned on a simple example:

This example has the same two-element bar model as in Setting up global equations
directly, so the unconstrained stiffness matrix is unchanged:

Both supports will introduce a support reaction in the form of a Neumann boundary
condition:

feq = =

⎡⎢⎣F
eq
1

T
eq
1

F
eq
2

T
eq
2

⎤⎥⎦ ⎡⎢⎣ qℓ
2

−
qℓ2

12

qℓ
2

qℓ2

12

⎤⎥⎦⎡⎢⎣ EA1

ℓ1
−

EA1

ℓ1
0

−
EA1

ℓ1

EA1

ℓ1
+

EA2

ℓ2
−

EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦

https://ciem5000-2025.github.io/book/lecture1/directly.html
https://ciem5000-2025.github.io/book/lecture1/directly.html

H

H

The distributed load can be added directly as equivalent load vector to the global force
vector as the local coordinate system aligns with the global coordinate system. Doing so for
both elements leads to:

=

⎡⎢⎣ EA1

ℓ1
−

EA1

ℓ1
0

−
EA1

ℓ1

EA1

ℓ1
+

EA2

ℓ2
−

EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣H1

0

H3

⎤⎥⎦feq

=

⎡⎢⎣ EA1

ℓ1
−

EA1

ℓ1
0

−
EA1

ℓ1

EA1

ℓ1
+

EA2

ℓ2
−

EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣ H1 +
qℓ1

2

qℓ1

2 +
qℓ2

2

H3 +
qℓ2

2

⎤⎥⎦

Non-zero Dirichlet boundary
conditions

Contents
Static condensation

Size-preserving approach

Example

In Setting up global equations directly we defined how to handle Dirichlet boundary
conditions which enforce a displacement of by striking the corresponding row/column in
the final system. However, this approach doesn’t work with nonzero displacements.

Learning objective

You’ll look into how to model non-zero Dirichlet boundary conditions using static
condensation and a size-preserving approach

Static condensation
To apply nonzero constraints we can partition the system:

With subscript for the free degrees of freedom and the subscript for the constraint
degrees of freedom.

The unknown free displacements can now be solved for:

0

[] [] = []
Kff Kfc

Kcf Kcc

uf

uc

ff

fc

f c

Kffuf + Kfcuc = ff

uf = K
−1
ff (ff − Kfcuc)

https://ciem5000-2025.github.io/book/lecture1/directly.html

Furthermore, this allows us to solve for the support reactions, which are, among the other
terms from nodal and equivalent loads, part of :

However, this approach can be annoying to code because reordering the system costs
computation time and the gains when inverting the stiffness matrix are very limited.

Size-preserving approach
An alternative approach is to modify the equations such that the system is not reordered and
the size is preserved. This can be done by replacing the line which includes the non-zero
Dirichlet boundary condition with the boundary conditions itself, i.e. for a system of 3
equations:

The boundary condition can be inserted:

Which can be further simplified to:

Example
Let us use what we have just learned on a simple example:

fc

fc = Kcfuf + Kccuc

=
⎡⎢⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣f1

f2

f3

⎤⎥⎦u2 = Δ2

=
⎡⎢⎣K11 K12 K13

0 1 0

K31 K32 K33

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣ f1

Δ2

f3

⎤⎥⎦=
⎡⎢⎣K11 0 K13

0 1 0

K31 0 K33

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣f1 − K12 Δ2

Δ2

f3 − K32 Δ2

⎤⎥⎦

This example has the same two-element bar model as in Setting up global equations directly
and Element loads, so the stiffness matrix is unchanged, including the support reactions:

Static condensation
Our constrained degrees of freedom are and , while is free:

This gives:

Partitioning the stiffness matrix leads to:

=

⎡⎢⎣ EA1

ℓ1
−

EA1

ℓ1
0

−
EA1

ℓ1

EA1

ℓ1
+

EA2

ℓ2
−

EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣ H1 +
qℓ1

2

qℓ1

2
+

qℓ2

2

H3 +
qℓ2

2

⎤⎥⎦u1 u3 u2

uf = u2

uc = []u1

u3

ff =
qℓ1

2
+

qℓ2

2

fc =
⎡⎢⎣H1 +

qℓ1

2

H3 +
qℓ2

2

⎤⎥⎦

https://ciem5000-2025.github.io/book/lecture1/directly.html
https://ciem5000-2025.github.io/book/lecture2/element_loads.html

with:

Now, the unknown (including only) can be solved for using the equations provided in
Static condensation.

Size-preserving approach
Now let’s apply the alternative approach. First, let’s set the :

No terms are added to the force vector as this enforced displacement is .

Let’s continue with the displacement :

=

⎡⎢⎣ EA1

ℓ1
+

EA2

ℓ2
−

EA1

ℓ1
−

EA2

ℓ2

−
EA1

ℓ1

EA1

ℓ1
0

−
EA2

ℓ2
0

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u2

0

ū

⎤⎥⎦ ⎡⎢⎣ qℓ1

2
+

qℓ2

2

H1 +
qℓ1

2

H3 +
qℓ2

2

⎤⎥⎦Kff =
EA1

ℓ1
+

EA2

ℓ2

Kfc = []−
EA1

ℓ1
−

EA2

ℓ2

Kcf =

⎡⎢⎣−
EA1

ℓ1

−
EA2

ℓ2

⎤⎥⎦Kcc =

⎡⎢⎣ EA1

ℓ1
0

0
EA2

ℓ2

⎤⎥⎦uf u2

u1 = 0

=

⎡⎢⎣1 0 0

0
EA1

ℓ1
+

EA2

ℓ2
−

EA2

ℓ2

0 −
EA2

ℓ2

EA2

ℓ2

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣ 0

qℓ1

2
+

qℓ2

2

H3 +
qℓ2

2

⎤⎥⎦0

u3 = ū

Now, a term is added to the force vector, as wasn’t equal to 0 (and now it is).

This matrix equation can now be solved for .

=

⎡⎢⎣1 0 0

0
EA1

ℓ1
+

EA2

ℓ2
0

0 0 1

⎤⎥⎦⎡⎢⎣u1

u2

u3

⎤⎥⎦ ⎡⎢⎣ 0

qℓ1

2
+

qℓ2

2
−

EA2

ℓ2
ū

ū

⎤⎥⎦K23

u

Postprocessing for continuum
fields

Up until now, we’ve only looked at discrete results: nodal displacement and support
reactions. However, these results can be used to obtain the continuum field.

Learning objective

You’ll look into how to postprocess discrete results to obtain continuum results.

After solving for discrete nodal displacements, we can use the expressions derived in Force-
displacement relations single extension element and Element loads to obtain continuous
results. Remember than the nodal displacements are in the global coordinate system, which
needs to be converted back into the local coordinate systems () to use the derived
expressions.

If you want to create a figure which combines the internal forces / displacements of multiple
elements, you need the results in the global coordinate system again. In the provided
package, this is implemented with a boolean operation global_c in the class elements.py
function plot_moment_diagram and plot_displaced . For example, the frame treated in
Workshop 1 - Apply:

ū
e

= Tu
e

https://ciem5000-2025.github.io/book/lecture1/single_element.html
https://ciem5000-2025.github.io/book/lecture1/single_element.html
https://ciem5000-2025.github.io/book/lecture2/element_loads.html
https://ciem5000-2025.github.io/book/workshop1/Workshop_1_Apply.html
https://raw.githubusercontent.com/ibcmrocha/public/main/vierendeel.png

gives the following displaced shape:

Show code cell source

Show code cell source

Show code cell source

Finite element method vs.
Matrix Method

Contents
Equivalence with matrix method

Example with finite element method

Example with matrix method

You’ve seen the finite element method before, which could be used to solve similar
problems. But what are the differences?

Learning objective

We’ll investigate the differences and equivalence between solving structures with the
finite element method and the matrix method.

Equivalence with matrix method
Although the two method can give the same results, the methods are different.

The matrix method solves the strong from of the differential equation, as derived in Force-
displacement relations single extension element. The finite element method solves the weak
form by multiplying the strong form by a test function [MUDETatSAfDUoTechnology24b]. In
doing so, the choice for the shape function of the test-functions and approximate solution
matters. The two methods end up with the same solution if the “approximation” assumed by
FEM (linear shape functions for extension, cubic for bending) turn out to be the exact ODE
solution.

This page reuses content from MUDE Teachers and the Student Army from Delft
University of Technology [MUDETatSAfDUoTechnology24a]. Find out more here.

https://ciem5000-2025.github.io/book/lecture1/single_element.html
https://ciem5000-2025.github.io/book/lecture1/single_element.html
https://ciem5000-2025.github.io/book/references.html#id4
https://ciem5000-2025.github.io/book/references.html#id3
https://ciem5000-2025.github.io/book/credits.html#external-resources

In terms of global and local coordinate systems, there’s an additional difference. Where the
matrix method solves the nodal displacements and support reactions globally, using locally
derived force-displacement relations. On the contrary, the finite element method solves the
weak form globally with shape functions defined globally.

Finally, the matrix method has limitations. It turns out to be impossible to glue element
through equilibrium for twodimensional elements. Furthermore, exact solution for the
differential equations, required for defining the local stiffness matrix, generally do not exist
for twodimensional elements.

Example with finite element method
Let’s consider the examples from Recap displacement method:

Fig. 15 Statically indeterminate extension bar

We’ll apply the finite element method by using the matrix implementation from MUDE
[MUDETatSAfDUoTechnology24a]. We use linear shape functions:

 and . For this specific

example, this matches the linear normal force distribution, leading to similar results:

Table 4 Equivalence finite element- and matrix method

Finite element method Matrix method

Solves weak form Solves the strong form

Solves everything globally Solves discrete solution globally, with locally
derived equations

Generally applicable to differential
equations

Only applicable for 1D elements

Na(x) =
xb − x

xb − xa
=

xb − x

Δx
Nb(x) =

x − xa

xb − xa
=

x − xa

Δx

https://ciem5000-2025.github.io/book/lecture1/displacement.html
https://mude.citg.tudelft.nl/2024/book/fem/matrix.html
https://ciem5000-2025.github.io/book/references.html#id3

Example with matrix method
Applying the matrix method (including implementations you’ll implement during Workshop 2)
yields the same result:

Which is the same result (not true in general).

Show code cell content

Show code cell content

Show code cell source

x, u = simulate(2)
print(u[1])

0.01125

Show code cell content

Show code cell source

print(u_free[0])

0.01125

https://ciem5000-2025.github.io/book/workshop2.html

Example - 3D frame with
torsion

Contents
Defining new element

Reduce bending element for tractability

Identify degrees of freedom

Assemble stiffness, element by element

Apply external loads

Complete system of equations

Solving boundary conditions

Postprocessing moments element

This page shows an example for a threedimensional frame (with onedimensional elements),
loaded in torsion. This requires defining a new element, but the approach is identical to what
we’ve seen before.

The following numerical values can be used:

(1)

EI = 1000 kNm2

GIt = 800 kNm2

ℓ = 2 m

T = 4 kNm

Defining new element
In this problem, all nodes only rotate around the -axis; there’s no translation or rotation in
another direction. For element and this introduces torsion in the elements. The
model for torsional elements has been treated before in Week 2.2, Unit 2, Lecture 6 of this
course [HansWfDUoTechnology24]:

Fig. 16 Torsional element from Hans Welleman from Delft University of Technology
[HansWfDUoTechnology24]

he differential equation for the this element can be derived leading to:

Kinematic relations:

Constitutive relation:

Equilibrium relations:

These relations can be combined into one second order differential equation:

This looks identical (with for , for and for) to our results from the extension
element, therefore, we can directly write down the stiffness matrix and (equivalent) force
vector directly:

q = 6 kN/m

m = 2 kNm/m

y

(3) (4)

θ =
dφx

dx

Mt = GIt θ
dMt

dx
= −m

GIt
d2φx

dx2
= −m

m q GIt EA φ u

https://brightspace.tudelft.nl/d2l/le/content/680476/viewContent/3826607/View
https://brightspace.tudelft.nl/d2l/le/content/680476/viewContent/3826607/View
https://ciem5000-2025.github.io/book/references.html#id5
https://ciem5000-2025.github.io/book/references.html#id5
https://ciem5000-2025.github.io/book/lecture2/element_loads.html
https://ciem5000-2025.github.io/book/lecture2/element_loads.html

As our torsional elements and are identical, we get:

And for element an additional equivalent force vector due to the element load:

Reduce bending element for tractability
Element and will bend in this case. However, no forces act in the local -direction.
This allows us to reduce the element defined in Local stiffness matrix Euler-Bernoulli
element:

This gives for our numerical values:

GIt

ℓ
[] [] = [] +

1 −1

−1 1

φ1

φ2

T1

T2

⎡⎢⎣m ℓ
2

m ℓ
2

⎤⎥⎦(3) (4)

K
(3) = K

(4) = []400 −400

−400 400

(4)

f
(4)
eq = []2

2

(1) (2) x

K
(e)

bending =

⎡⎢⎣ 12EI

ℓ3 −
6EI

ℓ2 −
12EI

ℓ3 −
6EI

ℓ2

−
6EI

ℓ2
4EI

ℓ
6EI

ℓ2
2EI

ℓ

−
12EI

ℓ3
6EI

ℓ2
12EI

ℓ3
6EI

ℓ2

−
6EI

ℓ2

2EI
ℓ

6EI

ℓ2

4EI
ℓ

⎤⎥⎦K
(1) = K

(2) = []2000 1000

1000 2000

f
(2)
eq = []−2

2

https://ciem5000-2025.github.io/book/lecture1/other_elements.html
https://ciem5000-2025.github.io/book/lecture1/other_elements.html

Identify degrees of freedom
As mentioned before, all nodes only rotate around the -axis; there’s no translation or
rotation in another direction. Therefore, the degrees of freedom are:

With being specifically .

Assemble stiffness, element by element
As all elements use the same orientation for the degrees of freedom, no transformation are
required. Note that this requires:

Defining element from to

Defining element from to

Defining element from to

Defining element from to

Or all the other way around. Otherwise, the rotations at node and do not match.

Element
The first element links the first and second nodal displacement with the first and second
nodal forces:

y

⎡⎢⎣φ1

φ2

φ3

φ4

φ5

⎤⎥⎦φ φy

(1) 1 2

(2) 2 3

(3) 2 4

(4) 3 5

2 3

(1)

Element
The second element links the second and third nodal displacement with the second and
third nodal forces:

Element
The third element links the second and fourth nodal displacement with the second and fourth
nodal forces:

K =

⎡⎢⎣2000 1000 0 0 0

1000 2000 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎦(2)

K =

⎡⎢⎣2000 1000 0 0 0

1000 4000 1000 0 0

0 1000 2000 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎦(3)

Element
The fourth element links the third and fifth nodal displacement with the third and fifth nodal
forces:

Apply external loads

Nodal loads
Now, let’s add the external loads, starting with the nodal load at :

K =

⎡⎢⎣2000 1000 0 0 0

1000 4400 1000 −400 0

0 1000 2000 0 0

0 −400 0 400 0

0 0 0 0 0

⎤⎥⎦(4)

K =

⎡⎢⎣2000 1000 0 0 0

1000 4400 1000 −400 0

0 1000 2400 0 −400

0 −400 0 400 0

0 0 −400 0 400

⎤⎥⎦2

f =

⎡⎢⎣0

4

0

0

0

⎤⎥⎦

Equivalent nodal loads
Let’s add the equivalent nodal loads from the continuous elements loads too:

Boundary loads
And finally, let’s add the forces from the Neumann boundary conditions:

Complete system of equations
Now, we found the complete system of equations:

Solving boundary conditions
As we’ve no non-zero boundary conditions, we can apply the row-striking technique of
lecture 1, which leads to:

f =

⎡⎢⎣0

2

4

0

2

⎤⎥⎦f =

⎡⎢⎣ Mt,1

2

4

Mt,4

2 + Mt,5

⎤⎥⎦ =

⎡⎢⎣2000 1000 0 0 0

1000 4400 1000 −400 0

0 1000 2400 0 −400

0 −400 0 400 0

0 0 −400 0 400

⎤⎥⎦⎡⎢⎣φ1

φ2

φ3

φ4

φ5

⎤⎥⎦ ⎡⎢⎣ Mt,1

2

4

Mt,4

2 + Mt,5

⎤⎥⎦

https://ciem5000-2025.github.io/book/lecture1/directly.html
https://ciem5000-2025.github.io/book/lecture1/directly.html

Solving this system of equations gives:

The support reactions can be found by inserting these into our original system of equations
and solving for the rows containing the support reactions:

Note that to calculate the element load should be taken into account! This gives:

Postprocessing moments element
The continuum displacement field of element can be described by the shape function:

This gives:

[] [] = []4400 1000

1000 2400

φ2

φ3

2

4

φ2 ≈ 1 ⋅ 10−4

φ3 ≈ 1.6 ⋅ 10−3

=
⎡⎢⎣2000 1000 0 0 0

0 −400 0 400 0

0 0 −400 0 400

⎤⎥⎦⎡⎢⎣ 0

1 ⋅ 10−4

1.6 ⋅ 10−3

0

0

⎤⎥⎦ ⎡⎢⎣ M1

Mt,4

2 + Mt,5

⎤⎥⎦Mt,4

M1 ≈ 0.1 kNm

Mt,4 ≈ −0.033 kNm

Mt,5 ≈ −2.7 kNm

(1)
(1)

w (x) = (−
x3

ℓ2
+

x2

ℓ
)φ2

This is a linear distribution, with values at and :

The value at has indeed the same absolute value as the support reactions. The sign
is different because is defined in the global coordinate system and is defined
from our agreements on positive internal moments (leading to positive stresses at the
positive -side.)

φ (x) = −
dw (x)

dx
= (

3x2

ℓ2
−

2x

ℓ
)φ2

κ (x) =
dφ (x)

dx
= (

6x

ℓ2
−

2

ℓ
)φ2

M (x) = EIκ = EI (
6x

ℓ2
−

2

ℓ
)φ2

x = 0 x = ℓ

M (0) ≈ −0.1 kNm

M (2) ≈ 0.2kNm

x = 0

M1 M (0)

z

Workshop 2

This pages shows a preview of the assignment including its solution. Please fork
and clone the assignment to work on it locally from GitHub

During today’s workshop you’ll extend your implementation of the matrix method.

 Added in version v2025.2.0: After workshop 2

Solutions workshop 2 in downloads

Attention

https://github.com/CIEM5000-2025/practice-assignments

Implementation

Contents
1. The Node class

2. The Element class

3. The Constrainer class

This page shows a preview of the assignment. Please fork and clone the
assignment to work on it locally from GitHub

In this notebook you will continue to implement the matrix method and check it with some
sanity checks.

Check whether your implementation of last week was correct using the provided
solution

 Added in version v2025.2.0: After workshop 2

Solutions workshop 2 in text and downloads

import numpy as np
import matplotlib as plt
import matrixmethod as mm
%config InlineBackend.figure_formats = ['svg']

%load_ext autoreload
%autoreload 2

Attention

Exercise (0)

https://github.com/CIEM5000-2025/practice-assignments

1. The Node class
The Node class from last week is unchanged and complete

2. The Element class
The implementation is incomplete:

The function add_distributed_load should compute the equivalent load vector for a
constant load in and direction (we’ll ignore a distributed moment load now) and
moves those loads to the nodes belonging to the element. Remember to use the
add_load function of the Node class to store the equivalent loads (remember we have

two nodes per element). Also keep local/global transformations in mind and store
self.q = q for later use;

The function bending_moments receives the nodal displacements of the element in the
global coordinate system (u_global) and uses it to compute the value of the bending
moment at num_points equally-spaced points along the element length. Keep
local/global transformations in mind and use the ODE approach in SymPy / Maple / pen
and paper to compute an expression for . Do the same for for in the function
full_displacement .

Add the missing pieces to the code, before you perform the checks below.

Having made your implementations, it is now time to verify the first addition of your code
with a simple sanity check. We would like to solve the following simply-supported beam:

Choose appropriate values yourself.

q x̄ z̄

M w

Exercise (Workshop 2 - 2.1)

Solution to Exercise (Workshop 2 - 2.1)

https://raw.githubusercontent.com/ibcmrocha/public/main/ssbeam.png

Use the code blocks below to set up this problem. After you’ve added the load,
print the element using print(YOUR ELEMENT) . Do the shown values for the nodal
loads correspond with what you’d expect?

Now solve the nodal displacements. Once you are done, compare the rotation at
the right end of the beam. Does it match a solution you already know?

Calculate the bending moment at midspan and plot the moment distribution using
plot_moment_diagram . Do the values and shape match with what you’d expect?

#YOUR CODE HERE

print(#YOUR ELEMENT HERE

#YOUR CODE HERE

u_elem = con.full_disp(#YOUR CODE HERE)
#YOUR CODE HERE

Exercise (Workshop 2 - 2.2)

Solution to Exercise (Workshop 2 - 2.2)

Exercise (Workshop 2 - 2.3)

Solution to Exercise (Workshop 2 - 2.3)

Exercise (Workshop 2 - 2.4)

Solution to Exercise (Workshop 2 - 2.4)

Calculate the deflection at midspan and plot the deflected structure using
plot_displaced . Do the values and shape match with what you’d expect?

3. The Constrainer class
We’re going to expand our Constrainer class, but the implementation is incomplete:

The constrainer class should be able to handle non-zero boundary conditions too.
constrain should be adapted to do so + the docstring of the class itself. Furthermore,

the assert statement of fix_dof should be removed.

The function support_reactions is incomplete. Since the constrainer is always first
going to get constrain called, here we already have access to self.free_dofs .
Together with self.cons_dofs , you should have all you need to compute reactions. Note
that f is also passed as argument. Make sure you take into account the contribution of
equivalent element loads that go directly into the supports without deforming the
structure.

Add the missing pieces to the code and docstring, before you perform the checks
below.

We’re going to verify our implementation. Therefore, we’re going to solve an extension bar,
supported at both ends, with a load .

#YOUR CODE HERE

q

Exercise (Workshop 2 - 2.5)

Solution to Exercise (Workshop 2 - 2.5)

Exercise (Workshop 2 - 3.1)

Solution to Exercise (Workshop 2 - 3.1)

Choose appropriate values yourself.

Can you say on beforehand what will be the displacements? And what will be the
support reactions?

Use the code blocks below to set up and solve this problem and check the required
quantities to make sure your implementation is correct.

Again, we’re going to verify our implementation. Therefore, we’re going solve a beam, with a
load and support displacement for the right support.

Choose appropriate values yourself.

#YOUR CODE HERE

F w̄

Exercise (Workshop 2 - 3.2)

Solution to Exercise (Workshop 2 - 3.2)

https://raw.githubusercontent.com/ibcmrocha/public/main/sanitycheck_3.2.png
https://raw.githubusercontent.com/ibcmrocha/public/main/sanitycheck_3.3_new.png

Use the code blocks below to set up and solve this problem and check the required
quantities to make sure your implementation is correct.

#YOUR CODE HERE

Exercise (Workshop 2 - 3.3)

Solution to Exercise (Workshop 2 - 3.3)

Apply

Contents
Two-element frame

This page shows a preview of the assignment. Please fork and clone the
assignment to work on it locally from GitHub

In this notebook you will solve a 2-element frame at the end of the notebook.

Our matrix method implementation is now completely stored in a local package, consisting
of three classes.

Two-element frame

 Added in version v2025.2.0: After workshop 2

Solutions workshop 2 in text and downloads

Attention

https://github.com/CIEM5000-2025/practice-assignments
https://raw.githubusercontent.com/ibcmrocha/public/main/twoelemframe.png

With:

The final example for the workshops is the two-element frame above. Here you
should make use of all the new code you implemented:

Set up the problem and compute a solution for u_free . Remember to
consider the prescribed horizontal displacement at the right end of the
structure.
Compute and plot bending moment lines for both elements (in the local and
global coordinate systems)
Compute reactions at both supports

EI = 1500

EA = 1000

q = 9

L = 5

φ̄ = 0.15

ū

import numpy as np
import matplotlib as plt
import matrixmethod as mm
%config InlineBackend.figure_formats = ['svg']

#YOUR CODE HERE

for elem in elems:
 u_elem = con.full_disp(#YOUR CODE HERE)[#YOUR CODE HERE.global_dofs()]
 elem.plot_displaced #YOUR CODE HERE

Exercise (Workshop 2 - Apply)

Hint

Solution to Exercise (Workshop 2 - Apply)

Additional assignments

This pages shows a preview of the assignments including their solution. Please
fork and clone the assignment to work on it locally from GitHub

Additional assignments are provided to extend your implementation of the matrix method
and apply it to other structures.

 Added in version v2025.2.0: After workshop 2

Solutions additional assignments in downloads

Attention

https://github.com/CIEM5000-2025/practice-assignments

Beam

This page shows a preview of the assignment. Please fork and clone the
assignment to work on it locally from GitHub

Given is the following beam [HansWfDUoTechnology22]:

With:

 Added in version v2025.2.0: After workshop 2

Solutions additional assignments in text and downloads

l1 = 5.5

l2 = 5.0

EI1 = 5000

EI2 = 8000

q = 6

F = 40

T = 50

Attention

https://github.com/CIEM5000-2025/practice-assignments
https://ciem5000-2025.github.io/book/references.html#id6
https://raw.githubusercontent.com/ibcmrocha/public/main/beam.png

Solve this problem.

import numpy as np
import matplotlib as plt
import matrixmethod as mm
%config InlineBackend.figure_formats = ['svg']

#YOUR_CODE_HERE

Exercise (Beam)

Solution to Exercise (Beam)

Kinked beam

This page shows a preview of the assignment. Please fork and clone the
assignment to work on it locally from GitHub

Given is the following beam [HansWfDUoTechnology22]:

With:

 Added in version v2025.2.0: After workshop 2

Solutions additional assignments in text and downloads

l1 = 4

l2 = 5

l3 = 3

EI = 5000

Attention

https://github.com/CIEM5000-2025/practice-assignments
https://ciem5000-2025.github.io/book/references.html#id6
https://raw.githubusercontent.com/ibcmrocha/public/main/newforce.png

Solve this problem.

EA = 15000

q = 6

F = 40

import numpy as np
import matplotlib as plt
import matrixmethod as mm
%config InlineBackend.figure_formats = ['svg']

#YOUR_CODE_HERE

Exercise (Kinked beam)

Solution to Exercise (Kinked beam)

Frame

This page shows a preview of the assignment. Please fork and clone the
assignment to work on it locally from GitHub

Given is the following beam [HansWfDUoTechnology22]:

With:

 Added in version v2025.2.0: After workshop 2

Solutions additional assignments in text and downloads

EI = 3000

q = 12

EA = ∞

Attention

https://github.com/CIEM5000-2025/practice-assignments
https://ciem5000-2025.github.io/book/references.html#id6
https://raw.githubusercontent.com/ibcmrocha/public/main/framesimpler.png

Solve this problem by simplifying the stiffness matrix first.

import numpy as np
import matplotlib as plt
import matrixmethod as mm
%config InlineBackend.figure_formats = ['svg']

#YOUR_CODE_HERE

Exercise (Frame)

Solution to Exercise (Frame)

Graded assignment

This page shows the graded assignment.

Please open the assignment from GitHub Classroom to work on it locally. The
solution won’t be provided.

When you’ve finished the workshops, you can start with the graded assignment. The
process is very similar to the workshops, but now there’s a deadline and you’re required to
write a report. You’re going to solve the following model for displacements and internal
forces using the Matrix Method.

3
4

3
4

3
4

20 kN/m

11.75 m 11.75 m 11.75 m 11.75 m 4 m

4 m

4 m

4 m

4 m

4 m
500 kN

500 kN

500 kN

0.1 m

EI = 400 MNm2 (except for truss members)
EA = 1.3 GN

Find FBD of this node

This model is based on the bridge crossing the L723 in Walldorf, Germany:

Attention

https://classroom.github.com/a/NIabj19c

Fig. 17 WiWa-Lokal [WiWaLokal17] (Foto: Pfeifer)

First, analyse the model and the questions you’re required to answer:

1. Explain what effect hinges have on the matrix method. The following questions might
help you:

Which deformations would you expect for an element with hinges on both ends?
How about an element with a hinge on one end? What would you expect for ?

Which internal forces would you expect for an element with hinges on both ends?
And how do those forces relate to forces in the global coordinate system? How
about an element with a hinge on one end? What would you expect for ?

Which degrees-of-freedom are relevant for an element with hinges on both ends?

Can you calculate the rotation of hinged nodes? And if so, what is the meaning of
those rotations? Does it matter if a node is connected with a hinge to either one or
all of the neighboring elements?

If degrees of freedom are irrelevant, what would that mean for the size of your K-
matrix? How could you solve it?

Can you reuse the element classes derived before? If yes, which tricks do you
need to make it work? Are those tricks exact and do they mimic physical
behaviour? If not, what new element types do you need? How do the values in
those element types correspond to each other?

Is the stiffness matrix of an element with two hinges contained within the stiffness
matrix of the full element? Is the K matrix of an element with just one hinge
contained within the system matrix of the full element? If not, what are the
differences?

w(x)

M(x)

https://www.wiwa-lokal.de/wp-content/uploads/2017/11/Br%C3%BCcke.jpg
https://ciem5000-2025.github.io/book/references.html#id7

2. Explain in words and math how you adapted/added code and/or procedures to solve
this structure including hinges.

3. Describe alternatives you considered for your implementation in the previous steps.

4. Explain why your sanity checks prove that all of your code implementations are correct.

5. Make a table of all nodal displacement and show the displaced structure in a figure.
Indicate how you identify nodes.

6. Show the moment diagram of the structure in a figure.

7. Provide a figure of a free body diagram of the full structure in which you show all the
forces working on the structure (including support reactions) with numerical values from
your code. This specific figure can be hand drawn.

8. Provide a figure of a free body diagram of the indicated node with numerical values
from your code. This specific figure can be hand drawn. If you implement code for this
in the matrixmethod package, make sure to perform sanity checks.

9. Comment on any potential mistakes you observed in your final answers.

10. If you had the time to expand this Matrix Method with an additional feature, what would
that be?

Then, add potential new implementations to your code in ./matrixmethod/ . Please note that
./matrixmethod/ doesn’t include any solutions from the workshops. If you’ve made new

implementations, provide sanity checks to your implementations in Graded_Implement.ipynb .
Then, solve and postprocess the problem in Graded_Apply.ipynb . Add a report in .pdf or
.md format in which you included answers and reasoning for all the questions. Make sure all

the values/figures you use in the report are solved/created with your code. Except for
question 7 and 8: the free-body-diagrams can be hand-drawn. Furthermore, you’re expected
to provide to logically organise any auxiliary files you may use.

The deadline of the assignment is April 18th, 23:59, although you’re encouraged to finish it
directly after completing workshop 2. Doing so allows you to split the workload evenly.
Commit and push all your files to the provided GitHub Classroom repository to hand in your
assignment. Your latest commit before the deadline in the main branch will be graded.
Incomplete assignments will be graded with a 1. The full solution won’t be provided.

You can take the resit of this assignment in Q4. If you choose to do so, you can improve
your first submission by resubmitting to the same repository. The deadline of the resit is
June 20th, 23:59. For more information, see Learning objectives, activities and assessment
💡.

https://ciem5000-2025.github.io/book/course_information.html
https://ciem5000-2025.github.io/book/course_information.html

__init__.py

This page shows a preview of the matrixmethod package. Please fork and clone
the practice assignments to work on it locally from GitHub

from .node import *
from .elements import *
from .constrainer import *

Attention

https://github.com/CIEM5000-2025/practice-assignments

node.py

This page shows a preview of the matrixmethod package. Please fork and clone
the practice assignments to work on it locally from GitHub

import numpy as np

Attention

https://github.com/CIEM5000-2025/practice-assignments

class Node:
 """
 The Node class is used to store node information and keep track of the total number o
 Degrees of Freedom (DOFs) of the problem. It introduces automatic bookkeeping in its
 initialization, which efficiently keeps track of which DOFs belong to which nodes. Th
 makes it easier to assemble matrices from multiple elements.

 Attributes:
 x (float): The x-coordinate of the node.
 z (float): The z-coordinate of the node.
 p (numpy.array): The load vector of the node.
 dofs (list): The Degrees of Freedom associated with the node.

 Methods:
 clear(): Clears the counting of degrees of freedom and number of nodes.
 __init__(x, z): The constructor for Node class.
 add_load(p): Adds the given loads to the node.
 get_coords(): Returns the coordinates of the node.
 __str__(): Returns a string representation of the node.
 """
 ndof = 0
 nn = 0

 def clear():
 """
 Clears the counting of degrees of freedom and number of nodes.

 This method resets the class-level counters for degrees of freedom and number of
 It should be used when you want to start a new problem from scratch.
 """
 Node.ndof = 0
 Node.nn = 0

 def __init__ (self, x, z):
 """
 The constructor for Node class.

 Parameters:
 x (float): The x-coordinate of the node.
 z (float): The z-coordinate of the node.
 p (numpy.array): The load vector of the node.
 dofs (list): The Degrees of Freedom (u (in direction of x), w (in direct
 """

 self.x = x
 self.z = z
 self.p = np.zeros(3)

 self.dofs = [Node.ndof, Node.ndof+1, Node.ndof+2]

 Node.ndof += 3
 Node.nn += 1

 def add_load (self, p):
 """
 Adds the given loads to the node.

 The load is a vector p, which includes the load in the x and y direction and a mo
 These loads are added to the existing loads of the node.

 Parameters:
 p (numpy.array): A vector containing the load in the x direction, the load in
 and the moment.

 """
 self.p += p

 def get_coords(self):
 """
 Returns the coordinates of the node.

 Returns:
 numpy.array: An array containing the x and z coordinates of the node.
 """
 return np.array([self.x, self.z])

 def __str__(self):
 """
 Returns a string representation of the node.

 Returns:
 str: A string representation of the node.
 """
 return f"This node has:\n - x coordinate={self.x},\n - z coordinate={self.z},\n -

elements.py

This page shows a preview of the matrixmethod package. Please fork and clone
the practice assignments to work on it locally from GitHub

After each workshop, the solution will be added to this preview and to the GitHub-
repository

 Added in version v2025.2.0: After workshop 2

Solutions workshop 2 and additional assignments in text and downloads

 Added in version v2025.1.0: After workshop 1

Solutions workshop 1 in text and downloads

import numpy as np
import matplotlib.pyplot as plt

Attention

https://github.com/CIEM5000-2025/practice-assignments
https://github.com/CIEM5000-2025/practice-assignments
https://github.com/CIEM5000-2025/practice-assignments

class Element:
 """
 The Element class keeps track of each element in the model, including cross-section p
 element orientation (for coordinate system transformations), and the nodes that make
 With the help of the Node class, it also keeps track of which Degrees of Freedom (DOF

 This class is responsible for providing the element stiffness matrix in the global co
 (for subsequent assembly) and postprocessing element-level fields.

 This class describes an element combining extension and Euler-Bernoulli bending. A si
 class could also be implemented for different element types (e.g., shear beam, Timosh
 For simplicity, it is assumed that elements are all arranged in a 2D plane.

 Attributes:
 node1 (Node): The first node of the element.
 node2 (Node): The second node of the element.
 EA (float): The axial stiffness of the element.
 EI (float): The flexural stiffness of the element.

 Methods:
 clear(): Clears the counting of elements.
 __init__(self, nodes): Initializes an Element object.
 set_section(self, props): Sets the section properties of the element.
 global_dofs(self): Returns the global degrees of freedom associated with the elem
 stiffness(self): Calculate the stiffness matrix of the element.
 add_distributed_load(self, q): Adds a distributed load to the element.
 bending_moments(self, u_global, num_points=2): Calculate the bending moments alon
 full_displacement(self, u_global, num_points=2): Calculates the displacement alon
 plot_moment_diagram(self, u_elem, num_points=10, global_c=False, scale=1.0): Plot
 plot_displaced(self, u_elem, num_points=10, global_c=False, scale=1.0): Plots the
 __str__(self): Returns a string representation of the Element object.
 """

 ne = 0

 def clear():
 """
 Clears the counting of elements

 This method resets the class-level counters for number of elements.
 It should be used when you want to start a new problem from scratch.
 """
 Element.ne = 0

 def __init__(self, node1, node2):
 """
 Initializes an Element object.

 Parameters:
 - node1 (Node): The first node of the element.
 - node2 (Node): The second node of the element.

 Attributes:
 - nodes (list): A list of Node objects representing the nodes of the element.
 - L (float): Length of the element.
 - cos (float): Cosine of the element's orientation angle.
 - sin (float): Sine of the element's orientation angle.
 - T (ndarray): Transformation matrix.
 - Tt (ndarray): Transpose of the transformation matrix.

 Returns:
 None
 """

 self.nodes = [node1, node2]

 self.L = np.sqrt((self.nodes[1].x - self.nodes[0].x)**2.0 + (self.nodes[1].z - se

 alpha = np.arctan2 #YOUR CODE HERE

 T = np.zeros((6, 6))

 T[0, 0] = T[1, 1] = T[3, 3] = T[4, 4] #YOUR CODE HERE
 T[0, 1] = T[3, 4] #YOUR CODE HERE
 T[1, 0] = T[4, 3] #YOUR CODE HERE
 T[2, 2] = T[5, 5] #YOUR CODE HERE

 self.T = T
 self.Tt = np.transpose(T)

 self.q = np.array([0,0])
 self.local_element_load = np.array([0,0,0,0,0,0])

 Element.ne += 1

 alpha = np.arctan2(- (self.nodes[1].z - self.nodes[0].z) , (self.nodes[

 T = np.zeros((6, 6))

 T[0, 0] = T[1, 1] = T[3, 3] = T[4, 4] = np.cos(alpha)
 T[0, 1] = T[3, 4] = -np.sin(alpha)
 T[1, 0] = T[4, 3] = np.sin(alpha)
 T[2, 2] = T[5, 5] = 1

Solution to Exercise (Workshop 1 - 2.1)

https://ciem5000-2025.github.io/book/workshop1/Workshop_1_Implement.html#exercise2.1

 def set_section(self, props):
 """
 Sets the section properties of the element.

 Parameters:
 - props (dict): A dictionary containing the section properties.
 The dictionary should have the following keys:
 - 'EA': The axial stiffness of the element.
 - 'EI': The flexural stiffness of the element.

 Returns:
 None
 """
 if 'EA' in props:
 self.EA = props['EA']
 else:
 self.EA = 1.e20
 if 'EI' in props:
 self.EI = props['EI']
 else:
 self.EI = 1.e20

 def global_dofs(self):
 """
 Returns the global degrees of freedom associated with the element.

 Returns:
 numpy.ndarray: Array containing the global degrees of freedom.
 """
 return np.hstack((self.nodes[0].dofs, self.nodes[1].dofs))

 def stiffness(self):
 """
 Calculate the stiffness matrix of the element.

 Returns:
 np.ndarray: The stiffness matrix of the element.
 """
 k = np.zeros((6, 6))

 EA = self.EA
 EI = self.EI
 L = self.L

 #YOUR CODE HERE

 return np.matmul(np.matmul(self.Tt, k), self.T)

 # Extension contribution

 k[0, 0] = k[3, 3] = EA / L
 k[3, 0] = k[0, 3] = -EA / L

 # Bending contribution

 k[1, 1] = k[4, 4] = 12.0 * EI / L / L / L
 k[1, 4] = k[4, 1] = -12.0 * EI / L / L / L
 k[1, 2] = k[2, 1] = k[1, 5] = k[5, 1] = -6.0 * EI / L / L
 k[2, 4] = k[4, 2] = k[4, 5] = k[5, 4] = 6.0 * EI / L / L
 k[2, 2] = k[5, 5] = 4.0 * EI / L
 k[2, 5] = k[5, 2] = 2.0 * EI / L

 return np.matmul(np.matmul(self.Tt, k), self.T)

 def add_distributed_load(self, q):
 """
 Adds a distributed load to the element.

 Parameters:
 q (list): List of distributed load in local x and z direction.

 Returns:
 None
 """

 l = self.L
 self.q = np.array(q)

 self.local_element_load # =[YOUR CODE HERE, , , , ,]

 global_element_load #YOUR CODE HERE

 self.nodes[0].add_load #YOUR CODE HERE
 self.nodes[1].add_load #YOUR CODE HERE

 self.local_element_load = [0.5 * q[0] * l, 0.5 * q[1] * l, -1.0 / 12.0 *

 global_element_load = np.matmul(self.Tt, np.array(local_element_load))

 self.nodes[0].add_load(global_element_load[0:3])
 self.nodes[1].add_load(global_element_load[3:6])

Solution to Exercise (Workshop 1 - 2.1)

Solution to Exercise (Workshop 2 - 2.1)

https://ciem5000-2025.github.io/book/workshop1/Workshop_1_Implement.html#exercise2.1
https://ciem5000-2025.github.io/book/workshop2/Workshop_2_Implement.html#2_exercise2.1

 def bending_moments(self, u_global, num_points=2):
 """
 Calculate the bending moments along the element.

 Parameters:
 - u_global (numpy.ndarray): Global displacement vector.
 - num_points (int): Number of points to evaluate the bending moments. Default is

 Returns:
 - M (numpy.ndarray): Array of bending moments at the specified points.
 """

 l = self.L
 q = self.q[1]
 EI = self.EI

 local_x = np.linspace(0.0, l, num_points)

 local_disp #YOUR CODE HERE

 M #YOUR CODE HERE

 return M

 local_disp = np.matmul(self.T, u_global)

 w_1 = local_disp[1]
 phi_1 = local_disp[2]
 w_2 = local_disp[4]
 phi_2 = local_disp[5]

 M = (-l ** 5.0 * q + 6.0 * l ** 4.0 * q * local_x
 - 6.0 * q * local_x * local_x * l ** 3.0 - 48.0 * (phi_1 + phi_2 /
 + 72.0 * EI * ((phi_1 + phi_2) * local_x + w_1 - w_2) * l - 144.0 *

 return M

Solution to Exercise (Workshop 2 - 2.1)

https://ciem5000-2025.github.io/book/workshop2/Workshop_2_Implement.html#2_exercise2.1

 def full_displacement (self, u_global, num_points=2):
 """
 Calculates the displacement along the element.

 Args:
 u_global (numpy.ndarray): Global displacement vector of the element.
 num_points (int, optional): Number of points to calculate the bending moments

 Returns:
 numpy.ndarray: Array of displacement along the element.
 """
 #YOUR CODE HERE

 u #YOUR CODE HERE
 w #YOUR CODE HERE

 return u, w

 L = self.L
 q = self.q[1]
 q_x = self.q[0]
 EI= self.EI
 EA = self.EA

 x = np.linspace (0.0, L, num_points)

 ul = np.matmul (self.T, u_global)

 u_1 = ul[0]
 w_1 = ul[1]
 phi_1 = ul[2]
 u_2 = ul[3]
 w_2 = ul[4]
 phi_2 = ul[5]

 u = q_x*(-L*x/(2*EA) + x**2/(2*EA)) + u_1*(1 - x/L) + u_2*x/L
 w = phi_1*(-x + 2*x**2/L - x**3/L**2) + phi_2*(x**2/L - x**3/L**2) + q*(

 return u, w

Solution to Exercise (Workshop 2 - 2.1)

https://ciem5000-2025.github.io/book/workshop2/Workshop_2_Implement.html#2_exercise2.1

 def plot_moment_diagram (self, u_elem, num_points=10, global_c=False, scale=1.0):
 """
 Plots the bending moment diagram of the element.

 Args:
 u_global (numpy.ndarray): Global displacement vector of the element.
 num_points (int, optional): Number of points to calculate the bending moments
 global_c (bool, optional): If True, plots the bending moment diagram in the g
 scale (float, optional): Scale factor for the bending moment diagram. Default

 Returns:
 None
 """
 import matplotlib.pyplot as plt

 x = np.linspace (0.0, self.L, num_points)
 M = self.bending_moments (u_elem, num_points)
 xM_local = np.vstack((np.hstack([0,x,x[-1]]),np.hstack([0,M,0])*scale))
 if global_c:
 xM_global = np.matmul(self.Tt[0:2,:2],xM_local)
 xz_start_node = np.vstack((np.ones(num_points+2)*self.nodes[0].x, np.ones(num
 xz_Mlijn = xM_global + xz_start_node
 p = plt.plot(xz_Mlijn[0,:],xz_Mlijn[1,:])
 X0= self.nodes[0].x
 Z0= self.nodes[0].z
 X1= self.nodes[1].x
 Z1= self.nodes[1].z
 plt.plot((X0, X1), (Z0, Z1), color=p[0].get_color())
 plt.axis('off')
 plt.axis('equal')
 else:
 p = plt.plot(xM_local[0,:],xM_local[1,:])
 plt.xlabel ("x")
 plt.ylabel ("M")
 if not plt.gca().yaxis_inverted():
 plt.gca().invert_yaxis()
 plt.gcf().patch.set_alpha(0.0)
 plt.gca().patch.set_alpha(0.0)
 plt.gca().patch.set_alpha(0.0)
 plt.title('Moment line')

 def plot_displaced(self, u_elem, num_points=10, global_c=False, scale=1.0):
 """
 Plots the displacd element.

 Args:
 u_global (numpy.ndarray): Global displacement vector of the element.
 num_points (int, optional): Number of points to calculate the bending moments
 global_c (bool, optional): If True, plots the displacement diagram in the glo
 scale (float, optional): Scale factor for the displacement diagram. Default i

 Returns:
 None
 """

 x = np.linspace (0.0, self.L, num_points)
 u, w = self.full_displacement (u_elem, num_points)
 uw_local = np.vstack((x+u*scale,w*scale))
 if global_c:
 uw_global = np.matmul(self.Tt[:2,:2],uw_local)
 xz_start_node = np.vstack((np.ones(num_points)*self.nodes[0].x, np.ones(num_p
 uw = uw_global + xz_start_node
 p = plt.plot(uw[0,:],uw[1,:])

 X0= self.nodes[0].x
 Z0= self.nodes[0].z
 X1= self.nodes[1].x
 Z1= self.nodes[1].z
 plt.plot((X0, X1), (Z0, Z1), color=p[0].get_color(),alpha=0.3)
 plt.axis('off')
 plt.axis('equal')
 else:
 p = plt.plot(uw_local[0,:],uw_local[1,:])
 plt.plot((0, self.L), (0, 0), color=p[0].get_color(),alpha=0.3)
 if not plt.gca().yaxis_inverted():
 plt.gca().invert_yaxis()
 plt.gcf().patch.set_alpha(0.0)
 plt.gca().patch.set_alpha(0.0)
 plt.gca().patch.set_alpha(0.0)
 plt.title('Displaced structure')

 def plot_numbered_structure(self,beam_number):
 """
 Plots the nodes and elements of the structure with their node and element numbers

 Returns:
 None
 """

 X0= self.nodes[0].x
 Z0= self.nodes[0].z
 X1= self.nodes[1].x
 Z1= self.nodes[1].z
 node_num = []
 node_num.append(self.nodes[0].dofs[0] // 3)
 node_num.append(self.nodes[1].dofs[0] // 3)
 plt.plot((X0, X1), (Z0, Z1), color='black',alpha=0.3)
 for i, node in enumerate(self.nodes):
 plt.text(node.x, node.z, f'[{node.dofs[0] // 3}]', fontsize=12, ha='center',
 plt.text((X0+X1)/2, (Z0+Z1)/2, f'({beam_number})', fontsize=12, ha='center', va='
 if not plt.gca().yaxis_inverted():
 plt.gca().invert_yaxis()
 plt.axis('off')
 plt.axis('equal')
 plt.gcf().patch.set_alpha(0.0)
 plt.gca().patch.set_alpha(0.0)
 plt.gca().patch.set_alpha(0.0)

 def __str__(self):
 """
 Returns a string representation of the Element object.

 The string includes the values of the node1, node2 attributes.
 """
 return f"Element connecting:\nnode #1:\n {self.nodes[0]}\nwith node #2:\n {self.n

Solution to Exercise (Kinked beam)

https://ciem5000-2025.github.io/book/additional/beam_kinked.html#exercise_beam_kinked

class EB_point_load_element (Element):
 """
 The EB_point_load_element class describes an element combining extension and

 Attributes:
 node1 (Node): The first node of the element.
 node2 (Node): The second node of the element.
 EA (float): Axial stiffness of the element.
 EI (float): Bending stiffness of the element.
 F (float): Point load in local z direction.
 L (float): Length of the element.

 Methods:
 add_point_load_halfway(self, F): Adds a point load to the element.
 bending_moments(u_global, num_points=2): Calculates the bending moments
 full_displacement(u_global, num_points=2): Calculates the displacement a

 Inherits from:
 Element: Base class for all structural elements.
 """
 def add_point_load_halfway(self, F):
 """
 Adds a point load to the element.

 Parameters:
 F (float): Point load in local z direction.

 Returns:
 None
 """
 self.F = F
 l = self.L

 el = [0, F / 2, - F * l / 8, 0, F / 2, F * l / 8]

 eg = np.matmul(self.Tt, np.array(el))

 self.nodes[0].add_load(eg[0:3])
 self.nodes[1].add_load(eg[3:6])

 def bending_moments (self, u_global, num_points=2):
 """
 Calculates the bending moments along the element.

 Args:
 u_global (numpy.ndarray): Global displacement vector of the element.
 num_points (int, optional): Number of points to calculate the bendin

 Returns:
 numpy.ndarray: Array of bending moments along the element.
 """
 L = self.L
 F = self.F
 EI= self.EI

 x = np.linspace (0.0, L, num_points)
 M = np.zeros(num_points)

 ul = np.matmul (self.T, u_global)

 w_1 = ul[1]
 phi_1 = ul[2]
 w_2 = ul[4]

 phi_2 = ul[5]

 M = -F*L/8 + F*x/2 + phi_1*(-4*EI/L + 6*EI*x/L**2) + phi_2*(-2*EI/L + 6*
 index_halfway = int(num_points/2)
 M[index_halfway:] += - F*(-L/2 + x[index_halfway:])
 return M

 def full_displacement (self, u_global, num_points=2):
 """
 Calculates the displacement along the element.

 Args:
 u_global (numpy.ndarray): Global displacement vector of the element.
 num_points (int, optional): Number of points to calculate the bendin

 Returns:
 numpy.ndarray: Array of displacement along the element.
 """
 L = self.L
 F = self.F
 q_x = self.q[0]
 EI= self.EI
 EA = self.EA

 x = np.linspace (0.0, L, num_points)

 ul = np.matmul (self.T, u_global)

 u_1 = ul[0]
 w_1 = ul[1]
 phi_1 = ul[2]
 u_2 = ul[3]
 w_2 = ul[4]
 phi_2 = ul[5]

 u = q_x*(-L*x/(2*EA) + x**2/(2*EA)) + u_1*(1 - x/L) + u_2*x/L
 w = phi_1*(-x + 2*x**2/L - x**3/L**2) + phi_2*(x**2/L - x**3/L**2) + w_1
 index_halfway = int(num_points/2)
 w[index_halfway:] += F*(x[index_halfway:] - L/2)**3/(6*EI)
 return u, w

constrainer.py

This page shows a preview of the matrixmethod package. Please fork and clone
the practice assignments to work on it locally from GitHub

After each workshop, the solution will be added to this preview and to the GitHub-
repository

 Added in version v2025.2.0: After workshop 2

Solutions workshop 2 and additional assignments in text and downloads

 Added in version v2025.1.0: After workshop 1

Solutions workshop 1 in text and downloads

import numpy as np

Attention

https://github.com/CIEM5000-2025/practice-assignments
https://github.com/CIEM5000-2025/practice-assignments
https://github.com/CIEM5000-2025/practice-assignments

class Constrainer:
 """
 A class that represents a constrainer for fixing degrees of freedom in a structural a

 Attributes:
 cons_dofs (list): A list of constrained degrees of freedom.
 cons_vals (list): A list of corresponding constraint values.

 Methods:
 fix_dof: Fixes a degree of freedom at a specific value.
 fix_node: Fixes all degrees of freedom of a node.
 full_disp: Combines the displacements of free and constrained degrees of freedom.
 constrain: Applies the constraints to the stiffness matrix and load vector.
 support_reactions: Calculates the support reactions based on the constrained disp
 """

 def __init__(self):
 """
 Initializes a new instance of the Constrainer class.

 Attributes:
 cons_dofs (list): A list of constrained degrees of freedom.
 cons_vals (list): A list of corresponding constraint values.
 """
 self.cons_dofs = []
 self.cons_vals = []

 def fix_dof (self, node, dof, value = 0):
 """
 Fixes a degree of freedom at a specific value.

 Args:
 node (Node): The node object.
 dof (int): The index of the degree of freedom to fix.
 value (float, optional): The value to fix the degree of freedom at. Defaults
 """
 self.cons_dofs.append(node.dofs[dof])
 assert value == 0, "Only zero values are supported for now."
 self.cons_vals.append(value)

 def fix_node (self, node):
 """
 Fixes all degrees of freedom of a node.

 Args:
 node (Node): The node object.
 """
 for dof in [0,1,2]:
 self.fix_dof (node, dof)

 def full_disp (self,u_free):
 """
 Combines the displacements of free and constrained degrees of freedom.

 Args:
 u_free (numpy.ndarray): The displacements of the free degrees of freedom.

 Returns:
 numpy.ndarray: The combined displacements of all degrees of freedom.
 """
 u_full = np.zeros(len(self.free_dofs) + len(self.cons_dofs))

 u_full[self.free_dofs] = u_free

 u_full[self.cons_dofs] = self.cons_vals

 return u_full

 def constrain (self, k, f):
 """
 Applies the constraints to the stiffness matrix and load vector.

 Args:
 k (numpy.ndarray): The stiffness matrix.
 f (numpy.ndarray): The load vector.

 Returns:
 tuple: A tuple containing the stiffness matrix corresponding to free dofs and
 """
 self.free_dofs = [i for i in range(len(f)) if i not in self.cons_dofs]

 Kff #= k[np.ix_(YOUR CODE HERE)]
 Ff # YOUR CODE HERE

 return Kff, Ff

 self.free_dofs = [i for i in range(len(f)) if i not in self.cons_dofs]

 Kff = k[np.ix_(self.free_dofs,self.free_dofs)]
 Ff = f[self.free_dofs]

 return Kff, Ff

 self.free_dofs = [i for i in range(len(f)) if i not in self.cons_dofs]

 Kff = k[np.ix_(self.free_dofs,self.free_dofs)]
 Kfc = k[np.ix_(self.free_dofs,self.cons_dofs)]
 Ff = f[self.free_dofs]

 return Kff, Ff - np.matmul(Kfc,self.cons_vals)

Solution to Exercise (Workshop 1 - 3.1)

Solution to Exercise (Workshop 2 - 3.1)

https://ciem5000-2025.github.io/book/workshop1/Workshop_1_Implement.html#exercise3.1
https://ciem5000-2025.github.io/book/workshop2/Workshop_2_Implement.html#2_exercise3.1

 def support_reactions (self,k,u_free,f):
 """
 Calculates the support reactions based on the constrained displacements.

 Args:
 k (numpy.ndarray): The stiffness matrix.
 u_free (numpy.ndarray): The displacements of the free degrees of freedom.
 f (numpy.ndarray): The load vector.

 Returns:
 numpy.ndarray: The support reactions.
 """
 #YOUR CODE HERE

 return #YOUR CODE HERE

 Kcf = k[np.ix_(self.cons_dofs,self.free_dofs)]
 Kcc = k[np.ix_(self.cons_dofs,self.cons_dofs)]

 return np.matmul(Kcf,u_free) + np.matmul(Kcc,self.cons_vals) - f[self.co

 def __str__(self):
 """
 Returns a string representation of the Constrainer object.

 Returns:
 str: A string representation of the Constrainer object.
 """
 return f"This constrainer has constrained the degrees of freedom: {self.cons_dofs

Solution to Exercise (Workshop 2 - 3.1)

https://ciem5000-2025.github.io/book/workshop2/Workshop_2_Implement.html#2_exercise3.1

References
[HansWfDUoTechnology22]

[HansWfDUoTechnology24]

[MUDETatSAfDUoTechnology24a]

[MUDETatSAfDUoTechnology24b]

[WiWaLokal17]

Hans Welleman from Delft University of Technology. Cm5
(cie4190) - contents of lectures - lecture material - part 5: matrix method.
https://icozct.tudelft.nl/TUD_CT/CM5/collegestof/, 2022.

Hans Welleman from Delft University of Technology. Lecture 6:
newtonian formulation - create basic 1d-models - week 2 - unit 2 ciem5000.
https://brightspace.tudelft.nl/d2l/le/content/680476/viewContent/3826607/View,
2024.

MUDE Teachers and the Student Army from Delft
University of Technology. Mude book.
https://mude.citg.tudelft.nl/2024/book/fem/matrix.html, 2024.

MUDE Teachers and the Student Army from Delft
University of Technology. Mude book.
https://mude.citg.tudelft.nl/2024/book/fem/weak.html, 2024.

WiWa-Lokal. Walldorf: illumination für die brücke zum industriegebiet.
https://www.wiwa-lokal.de/walldorf-illumination-fuer-die-bruecke-zum-
industriegebiet/, November 2017.

https://icozct.tudelft.nl/TUD_CT/CM5/collegestof/
https://brightspace.tudelft.nl/d2l/le/content/680476/viewContent/3826607/View
https://mude.citg.tudelft.nl/2024/book/fem/matrix.html
https://mude.citg.tudelft.nl/2024/book/fem/weak.html
https://www.wiwa-lokal.de/walldorf-illumination-fuer-die-bruecke-zum-industriegebiet/
https://www.wiwa-lokal.de/walldorf-illumination-fuer-die-bruecke-zum-industriegebiet/

Credits and License

Contents
How the book is made

External resources

You can refer to this book as:

You can refer to individual chapters or pages within this book as:

We anticipate that the content of this book will change significantly. Therefore, we
recommend using the source code directly with the citation above that refers to the GitHub
repository and lists the date and name of the file. Although content will be added over time,
chapter titles and URL’s in this book are expected to remain relatively static. However, we
make no guarantee, so if it is important for you to reference a specific location/commit within
the book.

How the book is made
This book is created using open source tools: it is a JupyterBook that is written using
Markdown and Jupyter notebooks. Additional tooling is used from the TeachBooks initiative
to enhance the editing and reading experience. The files are stored on a public GitHub
repository. The website can be viewed at https://ciem5000-2025.github.io/book/. View the
repository README file or contact the authors for additional information.

Tom van Woudenberg and Iuri Rocha from Delft University of Technology (2025) Matrix

method in statics. https://ciem5000-2025.github.io/book. Source files at  CIEM5000-
2025/book

<Title of Chapter or Page> . In Tom van Woudenberg and Iuri Rocha from Delft
University of Technology (2025) Matrix method in statics. https://ciem5000-
2025.github.io/book/. Source files at  CIEM5000-2025/book: ./book/<path to
file(s)> chapter, accessed date .

https://teachbooks.io/
https://github.com/CIEM5000-2025/book
https://github.com/CIEM5000-2025/book
https://ciem5000-2025.github.io/book/
https://ciem5000-2025.github.io/book
https://github.com/CIEM5000-2025/book
https://github.com/CIEM5000-2025/book
https://ciem5000-2025.github.io/book/
https://ciem5000-2025.github.io/book/
https://github.com/CIEM5000-2025/book:

External resources
Parts of this book are taken from other external resources and reused in various ways. If an
author is not listed on a particular page, it is by the Authors. Page Finite element method vs.
Matrix Method includes code from MUDE Teachers and the Student Army from Delft
University of Technology [MUDETatSAfDUoTechnology24a]. Original content is licensed
under CC BY.

https://ciem5000-2025.github.io/book/lecture2/fem.html
https://ciem5000-2025.github.io/book/lecture2/fem.html
https://ciem5000-2025.github.io/book/references.html#id3

Changelog

Contents
v2025.2.0, 2025-02-20 17:30, after workshop 2

v2025.1.1, 2025-02-18 9:30 after second lecture

v2025.1.0, 2025-02-13 17:30, after workshop 1

v2025.0.3, 2025-02-13 13:33, before workshop 1

v2025.0.2, 2025-02-11 10:42, after first lecture

v2025.0.1, 2025-02-10 15:02, before first lecture

v2025.0.0, start course

This changelog will include all changes, except for minor adjustments like typos.

v2025.2.0, 2025-02-20 17:30, after workshop
2

Added solutions workshop 2 to downloads Activities - Workshop 2

Added solutions workshop 2 to text and downloads Activities - Workshop 2 - Apply

Added solutions workshop 2 to text and downloads Activities - Workshop 2 - Implement

Added solutions additional assignments to downloads Activities - Additional
assignments

Added solutions additional assignments to text and downloads Activities - Additional
assignments - Beam

Added solutions additional assignments to text and downloads Activities - Additional
assignments - Kinked beam

Added solutions additional assignments to text and downloads Activities - Additional
assignments - Frame

Added solutions workshop 2 and additional assignments to downloads matrixmethod
package - __init__.py

Added solutions workshop 2 and additional assignments to downloads matrixmethod
package - node.py

https://ciem5000-2025.github.io/book/workshop2.html
https://ciem5000-2025.github.io/book/workshop2/Workshop_2_Apply.html
https://ciem5000-2025.github.io/book/workshop2/Workshop_2_Implement.html
https://ciem5000-2025.github.io/book/additional.html
https://ciem5000-2025.github.io/book/additional.html
https://ciem5000-2025.github.io/book/additional/beam.html
https://ciem5000-2025.github.io/book/additional/beam.html
https://ciem5000-2025.github.io/book/additional/beam_kinked.html
https://ciem5000-2025.github.io/book/additional/beam_kinked.html
https://ciem5000-2025.github.io/book/additional/frame.html
https://ciem5000-2025.github.io/book/additional/frame.html
https://ciem5000-2025.github.io/book/matrixmethod/__init__.html
https://ciem5000-2025.github.io/book/matrixmethod/__init__.html
https://ciem5000-2025.github.io/book/matrixmethod/node.html
https://ciem5000-2025.github.io/book/matrixmethod/node.html

Added solutions workshop 2 and additional assignments to text and downloads
matrixmethod package - elements.py

Added solutions workshop 2 and additional assignments to text and downloads
matrixmethod package - constrainer.py

See full changelog here

v2025.1.1, 2025-02-18 9:30 after second
lecture

Fixed typo and removed example in lecture slides lecture 2

Fixed various typos

Full changelog here

v2025.1.0, 2025-02-13 17:30, after workshop
1

Added solutions workshop 1 to downloads Activities - Workshop 1

Added solutions workshop 1 to text and downloads Activities - Workshop 1 - Apply

Added solutions workshop 1 to text and downloads Activities - Workshop 1 - Implement

Added solutions workshop 1 to downloads matrixmethod package - __init__.py

Added solutions workshop 1 to downloads matrixmethod package - node.py

Added solutions workshop 1 to text and downloads matrixmethod package -
elements.py

Added solutions workshop 1 to text and downloads matrixmethod package -
constrainer.py

Full changelog

v2025.0.3, 2025-02-13 13:33, before
workshop 1

Fixed typo in Workshop 1 - Exercise 2.6

Full changelog here

https://ciem5000-2025.github.io/book/matrixmethod/elements.html
https://ciem5000-2025.github.io/book/matrixmethod/constrainer.html
https://github.com/CIEM5000-2025/book/releases/tag/v2025.2.0
https://ciem5000-2025.github.io/book/lecture2.html
https://github.com/CIEM5000-2025/book/releases/tag/v2025.1.1
https://ciem5000-2025.github.io/book/workshop1.html
https://ciem5000-2025.github.io/book/workshop1/Workshop_1_Apply.html
https://ciem5000-2025.github.io/book/workshop1/Workshop_1_Implement.html
https://ciem5000-2025.github.io/book/matrixmethod/__init__.html
https://ciem5000-2025.github.io/book/matrixmethod/node.html
https://ciem5000-2025.github.io/book/matrixmethod/elements.html
https://ciem5000-2025.github.io/book/matrixmethod/elements.html
https://ciem5000-2025.github.io/book/matrixmethod/constrainer.html
https://ciem5000-2025.github.io/book/matrixmethod/constrainer.html
https://ciem5000-2025.github.io/book/workshop1/Workshop_1_Implement.html#exercise2.6
https://github.com/CIEM5000-2025/book/releases/tag/v2025.0.3

v2025.0.2, 2025-02-11 10:42, after first
lecture

Added html export of book as a zip to How to use this TeachBook 📘 and most other
pages as additional download.

Fixed various typos

Full changelog here

v2025.0.1, 2025-02-10 15:02, before first
lecture

Updated lecture slides lecture 1: moved slides on python packages and updated
installation requirements first workshop

Fixed various typos

Full changelog here

v2025.0.0, start course
Converted material to interactive book

Separated Activities - additional assignments

Removed hinged beam additional assignment

Added Activities - Lecture 1 - Recap displacement method

New graded assignment

Various improvements to student-experience

https://ciem5000-2025.github.io/book/instructions.html
https://github.com/CIEM5000-2025/book/releases/tag/v2025.0.2
https://ciem5000-2025.github.io/book/lecture1.html
https://github.com/CIEM5000-2025/book/releases/tag/v2025.0.1
https://ciem5000-2025.github.io/book/additional.html
https://ciem5000-2025.github.io/book/lecture1/displacement.html
https://ciem5000-2025.github.io/book/assignment.html

	Home
	Course information
	Course schedule 📅
	How to use this TeachBook 📘
	Contact information 💬

	Lecture 1
	Recap differential equationsfor structures
	Recap displacement method
	Force-displacement relationssingle extension element
	Combine elements
	Combine elements usingmatrix formulation
	Setting up global equationsdirectly
	Implementation in Python
	Local stiffness matrix Euler-Bernoulli element
	Transformations

	Workshop 1
	Implementation
	Apply

	Lecture 2
	Element loads
	Non-zero Dirichlet boundaryconditions
	Postprocessing for continuumﬁelds
	Finite element method vs.Matrix Method
	Example - 3D frame withtorsion

	Workshop 2
	Implementation
	Apply

	Additional assignments
	Beam
	Kinked beam
	Frame
	Graded assignment

	Code
	__init__.py
	node.py
	elements.py
	constrainer.py

	Miscellaneous
	References
	Credits and License
	Changelog

