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Abstract. A digital twin representative of a typical composite stiff-
ened panel is utilized to monitor skin-to-stringer disbonds. A validated
finite element model of the composite panel estimates the longitudinal
strains of the pristine state, at the exact location where integrated fiber
Bragg grating sensors are permanently installed. Experimental strains
are acquired and compared to those provided by the digital twin in order
to reveal the presence of disbonds. The integrated sensor grid is used in
a manner that some sensors identify the load acting on the panel, lever-
aging on the digital twin baseline, whilst the remaining ones are dedi-
cated for diagnostic purposes. Two damaged single-stringer panels are
tested under compression-compression fatigue conditions. Static strains
are received during quasi-static test intervals among the fatigue cycles.
The historical strain data are analyzed in a near real-time manner to
detect and localize the induced damage throughout the test span.

Keywords: Structural health monitoring · Digital twin · Composite
stiffened panels · Fiber Bragg grating sensors

1 Introduction

Engineering communities are progressively adopting the concurrent concepts of
Industry 4.0, Internet-of-Things, towards an overall shift to the digital transfor-
mation [21]. In this technological melting pot, the digital twin (DT) concept,
introduced in the previous decade [8,20], is increasingly finding a wide range
of applications among different industrial sectors [10]. The position paper by
AIAA and AIA thoroughly presents the value of DT in alignment with the
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needs of the aerospace industry [1]. In an attempt to encompass all the doc-
umented definitions, a short one was given: “A DT is a virtual representation
of a connected physical asset”. Beyond that point, a cooperative framework is
occasionally developed to connect the virtual with the physical counterpart [19].
Structural Health Monitoring (SHM) methodologies shall thrive in the existence
of a DT, which provides valuable feedback to the physical asset based on mea-
surements received from the latter. However, the context within a DT is capable
of generalizing its response should be wisely considered [22]. The DT becomes a
powerful tool if further meta-modeling actions are pursued based on a validated
numerical model, e.g. finite element (FE) model. The idea of training offline
meta-models (also referred as surrogate models) with data generated by FE
models is currently gaining spiraling attention [2,4,7,11,12,14,16–18]. Diagnos-
tics, as well as prognostics, are tackled utilizing surrogate models in an attempt
to leverage in-situ sensor measurements and provide near real-time predictions.

The present paper exploits a validated nonlinear FE model of a compos-
ite single-stringer panel (SSP) subjected to uniaxial compression that leads to
the overall buckling of the panel. Damage diagnostics are performed in a man-
ner of comparing strain readings received from the real panel with those of a
pristine baseline, provided by the FE model. The DT concept is adopted such
that exogenous details that affect the SHM (strain) measurements, i.e. compres-
sive load magnitude and the buckling mode shape, are predicted by the pris-
tine FE model. Fiber Bragg grating sensors (FBGs), embedded in a commercial
glass-epoxy fiber-optic sensor (FOS) tape, i.e. SMARTapetm [9] provided by
Smartec S.A., are placed along the two feet of the SSP. The sensor grid is
divided into the reference sensors, aiming to identify the exogenous details, and
the evaluation sensors which are used to assess the presence of skin-to-stringer
damage. The two groups are correlated, as the evaluation sensors rely on the
predictions yielded by the reference sensors in order to properly compare the
experimental strains with the analogous from the pristine DT. The proposed
strain-based methodology leverages on the local redistribution of the strain field

Reference 
sensors

(NR)

Real-time 
data

acquisition

Evaluating 
sensors

(NE)

Online 
stage

k-nn model
n = 1,..,NR-1

m = 1,..,NE

Load & 
buckling mode

Distance 
metric

SSP 
testing

I/O dataPristine
FE model

n = 1,..,NR-1

Damage
detection

Offline stage

presence   localization

Fig. 1. Outlook of the proposed SHM methodology.
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in the proximity of damage [3,14]. We illustrate the scenario of harnessing the
reference sensors, which are placed far from potentially damaged regions, and
their readings may be safely correlated to the pristine FE model. The devel-
oped methodology is treated as a typical supervised classification problem with
models trained from the pristine FE model. The conceptual idea is shown in
Fig. 1.

2 Supervised Baseline Model

In this section, the development of a supervised classification SHM methodology
is described. Training data points are generated by a validated FE model corre-
sponding to the pristine state of the SSP [13,14]. Real-time strains, interrogated
by a reference sensor group, are utilized to associate the recorded strains to a
load level as well as the buckling mode of the SSP before proceeding to the
diagnostic actions.

2.1 Intuition

The composite SSP is imposed to extensive compressive loads which lead to
buckling of the panel. The particular SSP, as previewed in Fig. 2a, is already
studied and a FE model has been verified in our previous works [15]. Experi-
mental observations accompanied by the numerical model revealed the buckling
behavior of the structure. More specifically, the buckling shape is majorly con-
trolled by the first mode shape, i.e. forming one half-wave. However, it is probable
that the panel buckles towards one direction or the exact opposite, as shown in
Fig. 2b,c. Henceforth we consider Mode 0 the buckling condition under which
regions with positive coordinates along the x -axis present negative out-of-plane

FOS
tape

a) b) c) d)

x
z

Fig. 2. a) Preview of the sensorized composite SSP. Simulated pristine strain field
along the stringer flange for buckling b) Mode 0, c) Mode 1 and d) visualization of
strain modification in the vicinity of skin-to-stringer damage.
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displacements along the y-axis. Thus, the strain distributions along the stringer
feet present a distinct behavior in accordance with the mode shape. Supplemen-
tary, it can be clearly noticed that the skin/stringer delamination (Fig. 2d) only
disturbs the strain field in its vicinity.

2.2 Feature Extraction

In Fig. 3a the sensor grid used in this study is schematically depicted along with
the numerical strains at the reference sensor locations for the two modes. The
blue plus signs represent the s= 5 reference sensors (R1, ..., R5) whilst the red
ones denote the evaluation sensors (E1, ..., E5). In Fig. 3b the simulated strains
at the location of the reference sensors are plotted for both of the buckling modes.
It can be observed that a distinct correlation among the strains of consecutive
sensors is met, based on which mode is considered. In Fig. 3c a comprehensive
three-dimensional view of the consecutive strains is depicted per mode with
respect to the load. The strain pairs (εRn

, εRn+1) follow a distinct path per mode
and diverging in the post-buckling regime as long the load magnitude increases.
Thus, these quantities constitute a mode-sensitive feature. Conclusively, test
observations will be lying closer to the path of the corresponding mode shape
as well as to a distinct load magnitude as may be visualized with the example
observations (gray crosses indicate the projections of the test data) of Fig. 3c.
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Fig. 3. a) Schematic representation of the sensor grid, b) simulated strains of the
reference sensors per buckling mode and c) feature space including the effect of load.

2.3 k-Nearest Neighbors Models

One of the most common distance-based classification algorithms is the k -nearest
neighbors (k -NN). The algorithm classifies an example point based on the most
common assigned labels among its k -nearest neighbors. Training data points are
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received by the pristine FE model and we construct input-output {Xn, Yn} pairs
as follows:

Xn =
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, n = 1, ..., s − 1 (1)

Totally, n = s−1 1-NN models are trained with strain pairs generated by the FE
model at every sensing location; the first N rows of the input matrix correspond
to strains belonging to Mode 0 whereas the remaining ones to Mode 1. The out-
put vector assigns an integer load label to the strain pairs, which corresponds to
N subdivisions of the compressive load magnitude within the range [0,70] kN. It
becomes apparent that the more produced training data, the more accurate clas-
sification of observations are conducted. In our case we utilize N= 100 scenarios
equally distributed along [0,70] kN. The nature of the simulated strains is deter-
ministic but the FE strains will be contaminated with Gaussian noise in order
to include stochasticity in the training data. Here, the simulated strains, per
sensing location, are contaminated with zero-mean Gaussian noise and variance
which corresponds to real fluctuations per sensor readings. A resultant sample
with 1000 strains per load label is constructed. The methodology is implemented
in Matlab environment utilizing the integrated k -NN classifier. The final load
estimation is predicted as the average from all the predictions made by the s−1
models.

3 Damage Diagnostics

3.1 Novelty Detection

As described previously, the evaluation sensors are dedicated to monitor the pres-
ence of damage by comparing real-time strain readings with the pristine baseline
given by the FE model. In the first step, the algorithm returns load estimations
as a product of classification. Then, the strain samples of the evaluation sensors,
which correspond to the predicted load, are used as the pristine baseline, and
the Mahalanobis distance (MD) between the observation and the sample is esti-
mated. The latter is evaluated throughout the test span for any new observation
is received by the FBGs. Readings coming from sensors close to damage are
discriminated by the pristine state if the MD exceeds a statistically-determined
threshold. A cross-validation set of observations is received from the reference
sensors of SSP-1, where no damage exists, and the MDs are estimated. The
observations are made at four different load levels in the post-buckling regime,
i.e. −35, −39, −45, and −50 kN. The threshold derives from the top bound of
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the empirical cumulative distribution function of the previously calculated MDs
assuming 95% confidence intervals. By doing so, we incorporate the intrinsic
error between the FE model and the real test in the threshold determination.

3.2 Experimental Assessment

The proposed SHM methodology is tested for the case of two SSPs subjected to
block loading compression-compression fatigue [5,6]. The load limits per block
are presented in Table 1. Two test articles, fabricated with material system
IM7/8552, have been subjected to cyclic load using a servohydraulic Instron
8802 test machine with load capacity ±250 kN. SSP-1 includes an artificial dis-
bond (Teflon insert) whilst SSP-2 was impacted with 10 J utilizing an in-house
drop tower apparatus. The nominal damage morphology, as evidenced by in-
situ phased-array ultrasonic inspections, is previewed in Fig. 4 with dotted lines.
Static strains have been received during quasi-static test intervals, in the range
[Pmin,Pmax] every 500 cycles, and the strain at the maximum load was stored
per test to finally form the test set.

Table 1. Characteristics of the block loading fatigue tests.

Panel f(Hz) R-ratio Pmin(kN) Pmax(kN) Test cycles Failure

SSP-1 2 10 −3.5 −35.0 10,000 345,000

−3.9 −39.0 10,000

−4.5 −45.0 10,000

−5.0 −50.0 170,000

−5.5 −55.0 85,000

−6.0 −60.0 60,000

SSP-2 2 10 −4.0 −40.0 10,000 217,000

−4.5 −45.0 177,000

−5.0 −50.0 30,000

4 Results

4.1 Load and Mode Predictions

The collected strain data coming from the reference sensors of each SSP were
treated as test set to evaluate the load acting on the panels as well as the buck-
ling mode shape. The two SSPs buckled with a different shape to each other and
the algorithm efficiently identified the response of the panel. In Fig. 5 the pre-
dicted load is plotted against the groundtruth accompanied by the predictions
made by a regression-based methodology in the companion paper of our work
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Fig. 4. Damage location in the composite panels.

[14]. Beyond the comparison of the predictions, the computational time of each
methodology has been also assessed. The current classification-based methodol-
ogy outperforms the RBFs in terms of computational time and fits well for a
near real-time application.

4.2 Damage Detection

The historical strain data received by the evaluation sensors were utilized for
diagnostic purposes. The first two levels of SHM, i.e. damage presence and
localization, are addressed in the current study. Specifically, damage presence is
detected when the MD exceeds the predefined threshold, as presented in Fig. 6.
For the case of SSP-1, during the early cycles where no significant damage propa-
gation occurred, sensors E1 and E2 efficiently detected the disbond by presenting
values higher than the threshold. The initial size of the rectangle disbond placed
amidst the skin/stringer interface was 30×30 mm2. As the disbond progressively
increases towards E3 and E4, both sensors exhibit an incremental evolution as
the strain field in their vicinity is further affected. On the contrary, sensor E5
was observed to be detached, recording negligible strains during testing, which in
turn led to increased MD values throughout the duration of testing. In the case of
SSP-2, the nominal damaged area, as measured by the phased-array inspection,
was 1398 mm2 spanning in a region underneath E1, E2 and E3. The severity
of the damage in this panel is clearly identified by observing the MDs of sen-
sors E1-E4 presenting values higher than the threshold. Sensor E5 only detected
damage late into the test when the initial damage has significantly propagated.
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SSP-2. c) Average load prediction error vs. the number of training data and d) com-
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5 Concluding Remarks

A supervised classification methodology is proposed for damage diagnostics in
composite stiffened panels. An off-the-self k -nn model was used, trained with
longitudinal strain data solely generated from a validated FE model of the phys-
ical panel. Prior to diagnostics, the methodology identifies the applied load as
well as the shape of the buckling mode that the panel follows. The load predic-
tions were compared to an equivalent methodology proposed by the authors [14]
with respect to the computational burden, showing significant reduction utilizing
the proposed one. Two composite SSPs efficiently verified the current method-
ology; load and buckling mode predictions were found to be in accordance to
the groundtruth and the evaluation sensors detected the presence of damage in
their vicinity.

Funding Information. The work was financially supported by the European Union’s
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