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ABSTRACT: The derivation of representative values for geotechnical parameters accounts for the various sources of uncertainty 
which are addressed at different stages of the determination process. A comprehensive flow chart for the determination of 
constitutive model parameters from site tests is proposed. The authors first consider a straightforward methodology to quantify 
the inherent uncertainty of variables measured from a CPT. An automated framework is then applied to merge outcomes from 
several transformation functions into a single combined output. This result can be subsequently updated with expert judgment or 
with direct measurements from laboratory tests using a Bayesian approach. When applied to the friction angle, a reduction of the 
posterior updated representative standard deviation is observed. 

RÉSUMÉ : Le calcul des valeurs représentatives des paramètres géotechniques doit tenir compte des diverses sources d'incertitude 
qui sont abordées à différentes étapes du processus de détermination. Un diagramme de flux complet est proposé pour déterminer les 
paramètres de modèles constitutifs à partir d’essais in-situ. Les auteurs présentent d'abord une méthodologie directe pour quantifier 
l'incertitude intrinsèque des grandeurs mesurées à partir d’un essai CPT. Un système automatisé est ensuite utilisé pour fusionner les 
réponses provenant de plusieurs fonctions de transformation en un résultat unique. Avec une approche Bayésienne, l’expertise de 
l’utilisateur ainsi que des observations directes provenant de tests en laboratoire peuvent servir à mettre à jour le résultat 
précédemment déterminé. Lorsque ce processus est appliqué à l’angle de frottement, on observe une réduction de son écart-type 
représentatif a posteriori. 

 

KEYWORDS: Automated parameter determination (APD); Graph theory; Cone penetration test (CPT); Spatial variation; 
Bayesian updating. 

 

1  INTRODUCTION 

In early stages of a project only limited data is available, mostly 
consisting of a few CPTs in the area. The geotechnical 
parameters are often estimated from existing correlations, 
although the availability and proper selection of correlations can 
be an issue. In later stages of the project more laboratory tests 
and CPTs become available. That will reveal other challenges, 
such as assessing the spatial variation and translating this to a 
representative value used for design. Although codes and 
guidelines exist on this topic (see below), the practical 
application still requires better clarity and guidance. 

Uncertainty in geotechnical parameter selection has been 
addressed for many years (Kulhawy 1992; Phoon 2016; Phoon 
and Kulhawy 1999a; Phoon and Kulhawy 1999b; Schneider and 
Schneider 2012; Uzielli et al. 2006). This first type of uncertainty 
stems from the aleatory nature of soil, in contrast to 
manufactured materials. The geology of the soils may be taken 
into account to reduce this type of uncertainty. The second type 
is the epistemic uncertainty, the safety concepts and 
implementation in design standards (Ching et al. 2020; Hicks and 
Nuttall 2012; Orr 2016; Prästings et al. 2019). Furthermore, the 
complexity of random fields and new insights from numerical 
simulations are also of importance (Elkateb et al. 2003; Hicks et 
al. 2019; Qi and Li 2018; Stuedlein et al. 2012; Tietje et al. 2013; 
Vanmarcke 1977a, 1977b). 

Last but not least, the availability of different kind of site-
specific soil investigations varies from project to project and 
layer to layer, and this generally requires a practical approach. 
Hence there is a gap between the theoretical framework and daily 
project application. 

1.1 Outline 

This paper addresses the geo-statistical challenges engineers are 
often confronted with and shows three ways to close the gap 
between theory and practice. The flow chart presented in Figure 
1 illustrates the challenges and their associated sources of 
uncertainty. For many projects CPTs are the starting point for 
geotechnical parameter selection. The first part (Ch2) addresses 
the inherent variation for a single CPT and how this can be 
related to the Eurocode 7 (EN1997-1 2005). The second part 
(Ch3) addresses the step towards a more systematic and 
transparent application of multiple correlations. Reference is 
made to (Van Berkom 2020; Van Berkom et al. 2022) for a more 
thorough introduction on this topic. The third part (Ch4) shows 
how site-specific laboratory tests can be used together with CPT 
based correlations in a Bayesian approach. The last step, not dealt 
in this paper, is the determination of constitutive model 
parameters from the posterior updated soil properties. 

It is important to distinguish the different sources of 
uncertainty. The statistical uncertainty (1), measurements errors 
(2), inherent uncertainty (3) and transformation uncertainty (4) 
have been previously introduced in (Phoon and Kulhawy 1999a; 
Phoon and Kulhawy 1999b). This is also illustrated in Figure 1. 

Figure 1 includes three other uncertainties. The method 
uncertainty (5) is referring to the uncertainty associated with the 
variation between the methods to derive a geotechnical parameter. 
It applies to the correlations in the context of CPT interpretation, 
but also applies to the choice of laboratory tests performed. This 
differs from the transformation uncertainty which originates 
from the quality of the data-fitting regression analysis. The 
method uncertainty is shown in Figure 1 at the level of derived 
parameter. 

Finally, the stratigraphic uncertainty (6) is referring to the 

‒
‒
‒

‒

‒

‒

‒

‒

‒

‒

−

−

146−157.

−

(2): 143−188.

4565

Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering– Rahman and Jaksa (Eds) 

© 2022 Australian Geomechanics Society, Sydney, Australia, ISBN 978-0-9946261-4-1



 

 

uncertainty in allocating the layers and the model uncertainty (7) 
accounts for the degree of accuracy of a particular constitutive 
model. These are not discussed in this study. 

 

 
Figure 1: flow chart illustrating the geo-statistical challenges associated 
with geotechnical parameter determination. Statistical uncertainty (1), 
measurements errors (2), application of the variance reduction (3). The 
shaded box are topics tackled in this paper. 

 
Figure 2: Left: Soil profile with a mean trend not varying with depth, the 
inherent variability is the empiric standard deviation of the whole data. 
Right: Soil profile with a mean trend varying with the depth, the inherent 
variability is the standard error of the residuals 

2  CPT MEASUREMENTS 

2.1 Inherent variation 

In this section a brief overview has been presented of methods to 
translate the inherent variation to the representative value for a 
single CPT. It has also been shown how the characteristic values 
act as upper and lower bound for the representative value. 

The CPT is a type of in-situ test recording the cone resistance 𝑞𝑞𝑐𝑐, the sleeve friction 𝑓𝑓𝑠𝑠 and the pore water pressure 𝑢𝑢2 as the 
cone is pushed into the ground. These variables are typically 
measured every 2cm, thus providing an almost continuous 
measurement in the vertical direction. This will allow for 
stratification into layers based on a soil behavior type 
classification such as published in (Robertson 2009). 

For the sake of generality, we assume in this paper that the 
variable of interest 𝜃𝜃 is obtained from CPT measurements. We 
focus in this section on the determination of the inherent 
variability of the variable 𝜃𝜃 as defined in (Phoon and Kulhawy 
1999a; Phoon and Kulhawy 1999b). 

In the situation of a single CPT available, only the vertical 
inherent variability of 𝜃𝜃 is studied, that is to say its variability 
over the depth in each layer, see Figure 2. If the profile for 𝜃𝜃 
does not show a trend varying with the depth (left panel), the 
empiric standard deviation 𝑠𝑠 around the mean 𝜃̅𝜃 represents the 
inherent vertical variability of the variable of interest 𝜃𝜃. If the 
profile for 𝜃𝜃 displays an increasing or decreasing trend with the 

depth (right panel), a linear regression function can fit the data 
and the inherent vertical variability is taken as the standard error 
on regression of the residuals. Alternatively, the inherent 
variability is also equal to the empirical standard deviation of the 
detrended profile (Li et al. 2014; Low et al. 2007; Phoon and 
Kulhawy 1999a; Phoon and Kulhawy 1999b). 

2.2 Representative value for a single CPT 

The Eurocode 7 (EN1997-1 2005) prescribes that the 
geotechnical parameters shall be based on results derived from 
laboratory and field tests, complemented by well-established 
experience and that the characteristic value shall be a cautious 
estimate of the parameter. In Clause 2.4.5.2(11) of the Eurocode 
7 it is stated: “If statistical methods are used, the characteristic 
value should be derived such that the calculated probability of a 
worse value governing the occurrence of the limit state under 
consideration is not greater than 5%.” 

In practice both the related terms of characteristic and 
representative are used for calculations and design. In this paper 
the following definitions will be used for both terms: 
• The characteristic value is statistically defined by the 90% 

confidence interval. The characteristic value of the 
population determines the value with 5% confidence level 
or 95% probability of exceedance (PoE). The characteristic 
value of the mean of the population determines the mean 
value with 5% confidence level or 95% probability of 
exceedance. Hence, these are the definitions of a material 
property. 

• The representative value takes into account the extent of the 
ground volume involved in the limit state, the effects of 
stress, state, time, structure and anisotropy. The 
representative value can be either the characteristic value of 
the population or of the mean, and any value in between. 
Hence, this is the definition of a property at the limit state. 

The characteristic value of the population for the variable 𝜃𝜃 
obtained from 𝑛𝑛 measurements is determined by the prediction 
interval as shown in Eq.1, where 𝑡𝑡𝑛𝑛−10.95  is the Student-t 
distribution with (𝑛𝑛 − 1) degrees of freedom for a value with 
95% probability of exceedance (PoE). The total variance of the 
variable 𝜃𝜃  includes both the sample variance 𝑠𝑠2  and the 
variance of the mean 𝜎𝜎𝜃̅𝜃2, with 𝑠𝑠 being the empirical standard 
deviation (see Eq. 2). The variance of the mean (see Eq. 3) is the 
dispersion of the sample means around the population mean. If 
one is interested in the characteristic value of the mean, the total 
variance reduces to the variance of the mean, which yields to Eq. 
4. This value corresponds to the confidence interval of the mean. 

 𝜃𝜃𝑘𝑘 =  𝜃̅𝜃 − 𝑡𝑡𝑛𝑛−10.95𝜎𝜎𝜃𝜃 (1) 𝜎𝜎𝜃𝜃 =  √𝑠𝑠2 +  𝑠𝑠𝜃̅𝜃2 = 𝑠𝑠 √1 + 1𝑛𝑛 (2) 𝑠𝑠𝜃̅𝜃2 = 𝑠𝑠2/𝑛𝑛 (3) 𝜃𝜃𝑘𝑘,𝑚𝑚 =  𝜃̅𝜃 − 𝑡𝑡𝑛𝑛−10.95𝑠𝑠𝜃̅𝜃 = 𝜃̅𝜃 − 𝑡𝑡𝑛𝑛−10.95 𝑠𝑠 √1𝑛𝑛 (4) 

 
The representative value can be linked to the characteristic 

boundaries (Eq. 1 and 4). In an attempt to do this, the variance 
reduction factor 𝛤𝛤 as defined by Vanmarcke (1977a, 1977b) can 
be applied to the sample variance 𝑠𝑠2 . The reduction is not 
applied to variance of the mean 𝜎𝜎𝜃̅𝜃2  as this is the statistical 
uncertainty related to the sample size. The variance reduction 
factor is equal to 1 in case the scale of fluctuation is equal or 
larger than the failure extent. In case the scale of fluctuation is 
relatively small, the variance reduction factor approaches 0. 

The reduced standard deviation accounts for the variance 
reduction for a specific limit state and soil volume. Hence, the 
term “representative standard deviation” is introduced which 
together with the representative value are related to the 5% 
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confidence level or 95% probability of exceedance (PoE) for the 
associated limit state in the soil volume of interest (see Eq. 5 and 
6). 

 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑠𝑠 √𝛤𝛤2 + 1𝑛𝑛 (5) 𝜃𝜃 𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜃̅𝜃 − 𝑡𝑡𝑛𝑛−10.95 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 (6) 
 
The sampling distance of a CPT is about every 2 cm, whereas 

the vertical scale of fluctuation is typically one order of 
magnitude larger. The high sampling rate allows for an accurate 
determination of the inherent variation by the standard deviation. 

Relating the sample size to the number of measurements per 
layer would give a too high number of samples in Eq.5 for two 
reasons. First because of the correlation between the measured 
properties within the scale of fluctuation. The sample size should 
therefor be estimated based on the layer thickness (D) divided by 
the vertical scale of fluctuation (𝛿𝛿𝑣𝑣). Second because of not only 
the cone resistance but in particular the sleeve friction is 
measured over a larger height, typically 13 cm. As first 
approximation the scale of fluctuation can be set to typically 0.1 
m or the sample size can be set to 10% of the CPT readings per 
layer. 

 𝑛𝑛 =  𝐷𝐷𝛿𝛿𝑣𝑣 (7) 

 
The variance reduction factor is a function of the scale of 

fluctuation in relation to the extent of failure for a certain limit 
state. The scale of fluctuation is dominated by geological 
processes and soil properties whereas the extend of failure is 
dominated by the geometry and structure dimensions. The 
variance reduction factor varies between 1 (maximum value) and 
0. Various theoretical solutions exist in literature (Ching et al. 
2016; Tietje et al. 2013) and a simple approximation is presented 
in Eq.8. 

 𝛤𝛤2 =  𝛿𝛿𝑣𝑣𝐷𝐷  (8) 

 
It is interesting to note that both terms within the square root 

of Eq.5 are basically very similar. Although these equations can 
simply be applied to each layer of one CPT, the complexity 
comes with the determination of the (indirect) geotechnical 
parameters. 

In case the limit state involves a global failure in one layer 
where all variations are levelled out in the vertical direction, the 
representative value can be based on the characteristic estimate 
of the mean. This is in fact an upper bound approach as the only 
uncertainty that remains is the uncertainty of the mean, related to 
the sample size (Eq.5). Setting the representative value equal to 
the characteristic value of the mean is a reasonable assumption 
for a single CPT as it only considers the averaging of the inherent 
variation, not of the transformation uncertainty. 

Recent random finite element method (RFEM) simulations by 
(Hicks et al. 2019) confirms that the representative value is 
indeed bounded by the characteristic values 𝜃𝜃𝑘𝑘 < 𝜃𝜃 𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜃𝜃𝑘𝑘,𝑚𝑚, 
hence, for local failures and low variance reduction the 
representative can be set to the characteristic value. It also 
showed for the underlying distribution that the equivalent mean 
is reduced too. This could well be explained by the fact that, 
despite the averaging process, the limit state is also governed by 
the weakest path. Reduction of the representative mean is not 
common practice in engineering. For semi-probabilistic design 
this would imply that the representative value is likely to be 
lower than the characteristic value of the mean. For probabilistic 
design this means that the average should be reduced. 

Care should be taken when the limit state involves multiple 
layers. In a multilayer stratification the height of a single layer is 
limited allowing for less variance reduction, in particular when 

the vertical scale of fluctuation and the layer thickness are similar. 
Limit states involving multiple layers tend to move more towards 
a serial system compared to limit states in single layer which are 
dominated by a parallel system. Unique soil parameters like the 
friction angle of subsequent layers are likely not correlated, while 
state parameters such as the pre-overburden stress are likely 
correlated. Hence, parameters like the undrained shear strength 
are semi correlated between the layers. 

3  FROM MEASUREMENTS TO DESIGN PARAMETERS 

3.1 An automated framework for parameter determination 

In this section the step after performing CPT tests has been 
presented. For each CPT parameter, both the mean and 
representative standard deviation related to the inherent variation 
in each layer are used as input parameters This is combined in 
the APD framework with the transformation uncertainties for 
each correlation. The outcome is a set of geotechnical parameters, 
each with a probability density function. 

The necessary design parameters for numerical analysis are 
not directly measured by in-situ tests. The usage of 
transformation functions is required to translate the measured 
variable 𝜃𝜃  into the design property that will be used by the 
engineer. Most of these transformation functions are correlations 
obtained from a regression analysis based on empirical data, and 
therefore introduce an additional source of uncertainty (Phoon 
and Kulhawy 1999a; Phoon and Kulhawy 1999b). Many 
correlations have been proposed in the geotechnical engineering 
literature to derive soil properties and parameters of constitutive 
models; the outcome for the design parameters may vary 
significantly depending on which correlation is used. Several of 
these transformation models can be used successively in series, 
which makes the determination of the design parameters even 
more intricate. A proof of concept has been proposed by van 
Berkom (Van Berkom 2020; Van Berkom et al. 2022) to create 
system generating paths between the measured variables of a 
CPT and the desired design properties, based on a given set of 
correlations. This system called Automatic Parameter 
Determination (ADP) introduced by Brinkgreve (2019) is based 
on elements from “graph theory” and enables the visualization of 
the different paths and the calculation of the destination 
parameter for each of these paths. 

A conceptual example of the graph generated by APD is 
displayed in Figure 5. A distinction is made between the source 
nodes of the graph 𝜃𝜃1 and 𝜃𝜃2 which usually correspond to the 
measured variables from in-situ tests ( 𝑞𝑞𝑐𝑐 , 𝑓𝑓𝑠𝑠 , )), and the 
intermediate and destination nodes 𝜔𝜔1  and 𝜔𝜔2  that represent 
the soil properties obtained from the correlations (i.e. friction 
angle  𝜑𝜑, …  ). This simple case shows two different paths or 
possibilities to derive the parameter 𝜔𝜔1, and 3 paths to derive the 
final design parameter 𝜔𝜔2. 

 
 

 
Figure 5: Simple example of a graph generated by APD. The green round 
nodes representing the parameters are distinguished from the rectangular 
blue nodes representing the transformation functions. 

𝑞𝑞𝑐𝑐 𝑓𝑓𝑠𝑠 𝑢𝑢2

𝜃𝜃 𝜃𝜃
𝜃𝜃 𝜃𝜃𝑠𝑠 𝜃̅𝜃 𝜃𝜃𝜃𝜃

•

•

𝜃𝜃𝑛𝑛 𝑡𝑡𝑛𝑛−10.95(𝑛𝑛 − 1)𝜃𝜃 𝑠𝑠2𝜎𝜎𝜃̅𝜃2 𝑠𝑠

𝜃𝜃𝑘𝑘 =  𝜃̅𝜃 − 𝑡𝑡𝑛𝑛−10.95𝜎𝜎𝜃𝜃𝜎𝜎𝜃𝜃 =  √𝑠𝑠2 +  𝑠𝑠𝜃̅𝜃2 = 𝑠𝑠 √1 + 1𝑛𝑛𝑠𝑠𝜃̅𝜃2 = 𝑠𝑠2/𝑛𝑛𝜃𝜃𝑘𝑘,𝑚𝑚 =  𝜃̅𝜃 − 𝑡𝑡𝑛𝑛−10.95𝑠𝑠𝜃̅𝜃 = 𝜃̅𝜃 − 𝑡𝑡𝑛𝑛−10.95 𝑠𝑠 √1𝑛𝑛
𝛤𝛤 𝑠𝑠2𝜎𝜎𝜃̅𝜃2
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3.2 Input of the framework 

The APD framework requires a set of correlations and 
parameters to generate the graph and the paths. These 
correlations must come from a thorough review of the literature 
and should be appropriate to the case study site considered by the 
engineer. Considerations like the type of soil or the state of 
consolidation are of importance. In order to perform calculations 
and propagate them through the network, a mean value and a 
standard deviation must be introduced for every source 
parameter of the graph. These two statistics are in practice 
directly derived from the CPT profiles according to the method 
proposed in Eq.1-6 (single CPT). Combining the inherent and 
transformation uncertainty as well as the propagation of the 
uncertainty through the system is implemented by the First Order 
Second Moment (FOSM) method. FSOM relies on the 
linearization of the transformation function using Taylor-series 
expansion. Phoon and Kulhawy (1999a); (Phoon and Kulhawy 
1999b) explain thoroughly how this principle is applied to 
various geotechnical correlations. 

3.3 Output of the framework 

The mean value and standard deviation for every path of the 
design parameter are returned as outputs of the APD system. 
Based on this information and using an appropriate probability 
distribution (PDF), the user of the system could select the 
characteristic value that he judges most suitable. An alternative 
automatic method consists in merging the several contributing 
distributions into a single combined distribution. As an example, 
the 3 paths to derive the parameter 𝜔𝜔2  from the network in 
Figure 5 are represented by the three contributing distributions 
displayed in Figure 6. 

 
Figure 6: Three contributing normal distribution are combined into a 
single averaged distribution. The smaller arrow directly relates to the 
inherent and transformation uncertainty of one path, while the larger 
arrow accounts for the method uncertainty related to the variety of all 
correlations (paths). The red arrow illustrates the combined uncertainty 
of the proposed method. 

The combined mean is obtained from a weighted average of 
the means of each contributing path. The weights are defined as 
the normalized inverse variance of each path, and the sum of the 
weights is 1. 

 𝑥̅𝑥 = ∑ 𝑤𝑤𝑥𝑥,𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖=1  (9) 𝑤𝑤𝑥𝑥,𝑖𝑖 = 1𝜎𝜎𝑥𝑥,𝑖𝑖2∑ 1𝜎𝜎𝑥𝑥,𝑖𝑖2𝑚𝑚𝑖𝑖=1  (10)  
The combined variance is calculated following the 

“Propagation method” introduced by (Dormann et al. 2018), 
which considers the Mean Square Error of the combined mean. 
Propagation allows the contributing models to be biased but 
assumes that the averaged prediction x̅  defined in Eq.9 is an 
unbiased estimator of the true value. This hypothesis is 
reasonable for bi-directional bias, that is to say a situation where 

the individual predictions are spread equally around the true 
value. Conversely, a uni-directional bias situation would occur 
when contributing models would consistently underestimate or 
overestimate the true value. Furthermore it is assumed that all the 
paths are mutually independent (Hauth 2020). The averaged 
variance consisting of a bias term and weighted variance term 
becomes then: 

 𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) = (∑ 𝑤𝑤𝑥𝑥,𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑚𝑚𝑖𝑖=1 )2 + (∑ 𝑤𝑤𝑥𝑥,𝑖𝑖2𝜎𝜎𝑥𝑥,𝑖𝑖2𝑚𝑚𝑖𝑖=1 ) (11)  
This combined variance accounts for the method uncertainty 

as well as the inherent and transformation uncertainties. In 
contrast with the contributing distributions which comprise only 
the last two sources and for which the respective variances are 
summed up, the combined distribution incorporates the method 
uncertainty in a different manner. Its contribution is not summed 
to the other sources but is instead included in the weighted 
averaging process. For simplification purposes, the weights are 
defined as the normalized inverse variance of each path, and all 
the probability densities are assumed normally distributed. 

It is worth noting that the approach adopted to combine 
distributions is quite general and not restricted to CPT-based 
outcomes. The same Propagation method can be applied for 
distributions coming from different type of laboratory tests, to 
account for the variability between the different types of tests. 

4  COMBINING CPT CORRELATION AND LOCAL DATA 

Although CPT based parameter determination is powerful and 
provides significant more measurements that often acquainted by 
laboratory tests, one still need to consider that the correlations 
can be biased for the specific site and have a limited range of 
application. In the occasion where some data is available the 
challenge is how to combine this with the derived values from 
correlations, such as by APD. This will be shown below. 

In case site specific laboratory test data on parameter X is 
available one can combine these measurements with the results 
from APD. This is particularly useful in case of few 
measurements with a relative high variation. The prior density 
distribution is based on APD and follows a normal distribution 𝑁𝑁(𝜇𝜇𝑋𝑋,1, 𝑠𝑠𝑋𝑋,1). The standard deviation of the mean is in line with 
Eq. 3 defined as 𝑠𝑠𝑋̅𝑋,1 = 𝑠𝑠𝑋𝑋,1/√𝑛𝑛1     where 𝑛𝑛1 is the number of 
paths (i.e., correlations). Expert judgment can be used 
alternatively as prior knowledge. 

The likelihood PDF is obtained from 𝑛𝑛2  direct 
measurements and follows a normal distribution 𝑁𝑁(𝜇𝜇𝑋𝑋,2, 𝑠𝑠𝑋𝑋,2). 
The use of Bayes' theorem enables the updating of the prior 
distribution into a posterior distribution based on the information 
provided by the likelihood. 

The posterior mean 𝜇̂𝜇𝑋̅𝑋, posterior standard deviation of the 
mean 𝑠̂𝑠𝑋̅𝑋, posterior of the sample standard deviation 𝑠̂𝑠𝑋𝑋, and the 
posterior standard deviation 𝜎̂𝜎𝑋𝑋 are presented in Eq. 12 to Eq.15: 

 𝜇̂𝜇𝑋̅𝑋 = 𝜇𝜇𝑋𝑋,1∙𝑠𝑠𝑋𝑋,22/𝑛𝑛2+𝜇𝜇𝑋𝑋,2∙𝑠𝑠𝑋̅𝑋,12𝑠𝑠𝑋̅𝑋,12+𝑠𝑠𝑋𝑋,22/𝑛𝑛2  (12) 𝑠̂𝑠𝑋̅𝑋 = √ 𝑠𝑠𝑋̅𝑋,12∙𝑠𝑠𝑋𝑋,22/𝑛𝑛2𝑠𝑠𝑋̅𝑋,12+𝑠𝑠𝑋𝑋,22/𝑛𝑛2 (13) 𝑠̂𝑠𝑋𝑋 = √ 𝑠𝑠𝑋𝑋,12∙𝑠𝑠𝑋𝑋,22𝑠𝑠𝑋𝑋,12+𝑠𝑠𝑋𝑋,22 (14) 𝜎̂𝜎𝑋𝑋 =  √𝑠̂𝑠𝑋𝑋2 +  𝑠̂𝑠𝑋̅𝑋2 (15)  
The Eq.12 and Eq.13 originate from (Tang 1971) and have 

been widely reused by following authors (Orr 2016; Schneider 
and Schneider 2012). This paper proposes an extension of the 
concept to update the sample standard deviation (Eq. 14, 15). 
These posterior standard deviations are in fact equivalent to the 
“convolution” of the prior and the likelihood distributions, 
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weighted by their respective normalized inverse squared sample 
standard deviation. The convolution, being a linear combination 
of two normal distributions, is also itself a normal distribution 
(Dormann et al. 2018). With this procedure, both the standard 
deviation of the mean 𝑠̂𝑠𝑋̅𝑋 and the standard deviation of the  𝑠̂𝑠𝑋𝑋 
are being updated with the likelihood function. This approach 
slightly differs from (Juang and Zhang 2017) in which only the 
standard deviation of the mean is being updated. 

4.1 Example: Updating the friction angle 
We are interested in the determination of the friction angle based 
on both CPT interpretation and local direct measurements 
obtained on site. The procedure described in section 2 and the 
APD system have been applied to derive the combined 
distribution for the friction angle for 4 different paths as shown 
in Table 1 and Figure 7 (assumed in this example). The average 𝑥̅𝑥 = 38.0, the weighted average 𝑥̅𝑥 = 37.0 results from Eq.9 and 
the combined variance 𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) = 6.91 results from Eq.11. The 
prior distribution parameters are presented in Table 2 and Figure 
7. 
 
Table 1. Example of 4 APD paths. 

Path 𝜇𝜇𝑋𝑋 (°) 𝑠𝑠𝑋𝑋 (°) 𝑤𝑤 bias (°) 

A 34.5 2.0 0.45 3.5 

B 38.9 4.0 0.11 0.9 

C 38.7 2.5 0.29 0.7 

D 39.9 3.5 0.15 1.9 

 

 
Figure 7: Illustration of PDF’s from 4 paths and the combined PDF 
following the “Propagation method”. 

 
Figure 8: The PDF based on the sample standard deviation (Likelihood; 
s), the standard deviation of the mean (Likelihood; sem) and overall 
standard deviation of the distribution (Likelihood; σ). 

Additionally, the friction angle has been obtained from 4 
triaxial tests (38.5°, 39.5°, 40.6°, 35.1°), assumed in this example. 
The likelihood distribution parameters are presented in Table 2 

and shown in Figure 8. The characteristic value of the friction 
angle is derived from Eq. 1 and Eq.2, for the likelihood its value 
is 𝑋𝑋𝑘𝑘 =   𝜇𝜇𝑋𝑋,2 − 2.35 √2.382 + 1.192 = 32.17° . The posterior 
mean value of the friction angle is 𝜇̂𝜇𝑋̅𝑋 = 38.17° , which is in 
between the prior and likelihood value. The posterior standard 
deviation of the mean obtained from Eq.13 is 𝑠̂𝑠𝑋̅𝑋 = 0.54°, which 
is lower than the prior and likelihood value. The posterior sample 
standard deviation obtained from Eq.14 is 𝑠̂𝑠𝑋𝑋 = 1.74°, which is 
also lower than the prior and likelihood value. The posterior 
standard deviation of the friction angle calculated according to 
Eq.15 is 𝜎̂𝜎𝑋𝑋 =  √1.742 + 0.542 = 1.82°. This is the value that 
should be used when performing a full- or semi-probabilistic 
analysis and in reliability-based design. This value of the 
posterior standard deviation includes the statistical uncertainties 
of the mean and the sample of both the correlations and 
laboratory tests. The PDF of the prior, likelihood and posterior 
distribution are illustrated in Figure 9. It is important not to use 
the value from Eq. 13 as this is the posterior standard deviation 
of the mean, which would be unsafe as this is a lower value, see 
Figure 10. 

 

 
Figure 9: The PDF based on the prior distribution (Prior), the sample 
distribution (Likelyhood) and posterior distribution (Posterior). 

 
Figure 10: The posterior PDF based on the standard deviation of the mean 
(Posterior; sem) and the overall standard deviation of the population 
(Posterior; σ). 

 

Table 2. Summary of the statistics for the example of Bayesian updating 
applied to the friction angle. 

 𝜇𝜇𝑋𝑋(°) 𝑠𝑠𝑋𝑋(°) 𝑠𝑠𝑠𝑠𝑠𝑠𝑋𝑋(°) 𝜎𝜎𝑋𝑋(°) n t 𝑋𝑋𝑘𝑘(°) 

Prior 37.00 2.55 1.27 2.85 4 2.35 30.31 

Likelihood 38.43 2.38 1.19 2.66 4 2.35 32.17 

Posterior 38.17 1.74 0.54 1.82 4 2.35 33.89 

Posterior 38.17 1.74 0.54 1.82 >> 1.65 35.18 

 
An additional assumption must be made for the characteristic 

value of the posterior as a degree of freedom is required to 
calculate the Student-t statistics; a cautious estimate 
recommended by the authors is the number of observations 𝑛𝑛2 , 
alternatively the number of paths from APD into account, see line 
4 in Table 2. In case the semi-probabilistic design is based on the 
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𝜔𝜔2

𝑥̅𝑥 = ∑ 𝑤𝑤𝑥𝑥,𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖=1  (9) 𝑤𝑤𝑥𝑥,𝑖𝑖 = 1𝜎𝜎𝑥𝑥,𝑖𝑖2∑ 1𝜎𝜎𝑥𝑥,𝑖𝑖2𝑚𝑚𝑖𝑖=1  (10)  
x̅

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) = (∑ 𝑤𝑤𝑥𝑥,𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑚𝑚𝑖𝑖=1 )2 + (∑ 𝑤𝑤𝑥𝑥,𝑖𝑖2𝜎𝜎𝑥𝑥,𝑖𝑖2𝑚𝑚𝑖𝑖=1 ) (11)  

𝑁𝑁(𝜇𝜇𝑋𝑋,1, 𝑠𝑠𝑋𝑋,1) 𝑠𝑠𝑋̅𝑋,1 = 𝑠𝑠𝑋𝑋,1/√𝑛𝑛1     𝑛𝑛1
𝑛𝑛2𝑁𝑁(𝜇𝜇𝑋𝑋,2, 𝑠𝑠𝑋𝑋,2)

𝜇̂𝜇𝑋̅𝑋𝑠̂𝑠𝑋̅𝑋 𝑠̂𝑠𝑋𝑋𝜎̂𝜎𝑋𝑋𝜇̂𝜇𝑋̅𝑋 = 𝜇𝜇𝑋𝑋,1∙𝑠𝑠𝑋𝑋,22/𝑛𝑛2+𝜇𝜇𝑋𝑋,2∙𝑠𝑠𝑋̅𝑋,12𝑠𝑠𝑋̅𝑋,12+𝑠𝑠𝑋𝑋,22/𝑛𝑛2  (12) 𝑠̂𝑠𝑋̅𝑋 = √ 𝑠𝑠𝑋̅𝑋,12∙𝑠𝑠𝑋𝑋,22/𝑛𝑛2𝑠𝑠𝑋̅𝑋,12+𝑠𝑠𝑋𝑋,22/𝑛𝑛2 (13) 𝑠̂𝑠𝑋𝑋 = √ 𝑠𝑠𝑋𝑋,12∙𝑠𝑠𝑋𝑋,22𝑠𝑠𝑋𝑋,12+𝑠𝑠𝑋𝑋,22 (14) 𝜎̂𝜎𝑋𝑋 =  √𝑠̂𝑠𝑋𝑋2 +  𝑠̂𝑠𝑋̅𝑋2 (15)  
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third line in Table 1, using 4 observations, the posterior standard 
deviation for a full-probabilistic design still needs to be 
multiplied with a factor (2.35/1.65) to account for the uncertainty 
in sample size reflected by the Student-t value. 

5  CONCLUSIONS 

This paper addresses the geo-statistical challenges engineers are 
often confronted with and shows three ways to close the gap 
between theory and practice. The flow chart presented in Figure 
1 illustrates these challenges and their associated sources of 
uncertainty. For many projects CPTs are the starting point for 
geotechnical parameter selection. The first part (Ch2) addresses 
the inherent variation in view of random fields. Methods are 
presented to derive the representative value for a single CPT and 
how this can be related to the Eurocode 7 (EN1997-1 2005). The 
second part (Ch3) addresses the step towards a more systematic 
and transparent application of multiple correlations. Although 
this topic is briefly touched, it shows how the inherent and 
transformation uncertainty is combined with the method 
uncertainty. The third part (Ch4) shows how site-specific 
laboratory tests can be used together with CPT based correlations 
in a Bayesian approach. In the example it is shown how it can be 
used to determine the posterior mean and standard deviation used 
in (semi-) probabilistic design. 
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