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Abstract

We consider the problem of online nonparametric regression for signals of length n
with total variation at most Cn whose observations are contaminated by σ-subgaussian
noise. While there exist many algorithms which achieve optimal performance under the
assumption of independent noise, this work focusses on the less explored general case
of dependent noise. We focus on the Follow-the-Leading-History (FLH) [1] algorithm, a
powerful meta-aggregation method for online learning.

We prove that under mild assumptions of weak long-range dependence, we may ap-
ply FLH to m ≈ log n partitioned data streams to mitigate high correlations. We show
that the resulting algorithm Thinned-FLH (TFLH) achieves the minimax optimal cumu-
lative error rate of Õ(n1/3C

2/3
n ) with high probability, matching the performance in the

independent case up to logarithmic factors. We also conduct a simulation study, which
validates our theoretical findings and demonstrates that TFLH may outperform FLH in
high dependence environments in spite of the data thinning.
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Chapter 1

Introduction

A common objective in statistics is to determine the relationship between some outcomes and predictors.
This can be done in a number of ways, but perhaps the most popular is to assume that there exists some
underlying regression function that best describes the relationship between these two quantities and to in turn
estimate such a function.

In practice, we often only have access to noisy observations and so the standard setup is to assume the data
is generated according to the model

yi = f(xi) + ϵi (1.1)

for i = 1, . . . , n, where f : X → R is the regression function to be estimated, x1, . . . , xn ∈ X ⊆ Rd are the
predictors, and ϵi are the random errors which are typically assumed to be i.i.d. with zero mean.

In this work, we consider online nonparametric regression. In traditional nonparametric regression, we have
access to all the data and estimate our regression function ‘in hindsight’, however in the online setting, data
arrives in a continuous stream, one sample at a time. Specifically, we will consider t = 1, . . . , n rounds during
which we, in succession, make a prediction µ̂t from some convex domain K ⊂ R, receive a noisy output generated
according to the univariate model

yi = θi + Zi, (1.2)

and suffer a loss based on our prediction. Here θ1:n := (θ1, . . . , θn) is the true signal to be estimated and Z1:n

is the noise signal of σ-subgaussian error entries, see Definition 2.1 for a definition of σ-subgaussian random
variables. We see that the formulations of (1.1) and (1.2) are equivalent if we imagine that θ1:n corresponds
to the evaluations of the regression function f on a sorted set of predictors. In a similar vein, our vector of
predictions µ̂1:n describes our estimated regression function.

To evaluate our predictions, we aim to minimise the squared cumulative error (cumulative error) defined by

Rn(µ̂1:n, θ1:n) :=
n∑

t=1

E
(
(µ̂t − θt)

2
)
. (1.3)

In this way, we are in fact in the business of mean estimation. Without any additional constraints, this error
will grow linearly in n. For this reason, we assume that the signal is in some sense regular and is bounded in
total variation. For a real-valued vector θ1:n ∈ Rn, we define the total variation by

TV (θ1:n) :=

n∑
t=2

‖θt − θt−1‖1.

We also assume that there exists some B > 0 such that ‖θt‖1 ≤ B for all 1 ≤ t ≤ n.
This work extends the results obtained by [2, 3] for independent errors to dependent errors. The central

contribution of this thesis is demonstrating that under mild conditions on the decay of dependence, the Follow-
the-Leading-History (FLH) [1] algorithm, when coupled with a data thinning scheme, preserves the minimax
cumulative error rate of Õ(n

1
3C

2
3
n ), where Õ hides a logarithmic factor in n.
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In Chapter 1 we give a detailed description of the problem and review the relevant existing literature, first
independently for both nonparametric regression and online learning, and then their intersection. In Chapter 2
we show that the FLH algorithm attains optimal cumulative error bounds in the independent case. In Chapter 3
we extend these results to the dependent case and show that we still obtain optimal bounds minus an extra
log n

2
3 factor and we conduct a simulation study to empirically review our results in Chapter 4. Finally, we

discuss our results and possible future avenues of research in Chapter 5.

1.1 Nonparametric Regression
Consider the (fixed or random) d-vector of covariates/predictors X ∈ X ⊆ Rd and the outcome/response

Y ∈ R which are distributed according to some unknown distribution P over X × R. It can be shown that the
conditional mean f(X) := EP(Y |X) is the optimal function for predicting Y from X with respect to the mean
squared error [4]. However, because the underlying distribution is unknown to us, we instead estimate this
function using the empirical distribution determined by n observations (x1, y1), . . . , (xn, yn) of our (random)
variables.

Furthermore, because the L2 space is too big to search [4], it is standard practice to also assume that f
belongs to some function class f ∈ F ⊊ L2 which imposes weak regularity conditions on the smoothness and/or
regularity of f . If F may be indexed by some finite dimensional parameter set Θ ⊂ Rp, then we say that F is
a parametric class, consider for example the class of all linear functions of X given by F = {X⊤β : β ∈ Rd}.
Such parametric classes can be very powerful if correctly specified, however they may also fail to accurately
capture the complexities of the underlying relationship and be too restrictive for practical applications. As a
result, more flexible nonparametric classes which do not assume a priori any relationship between the response
and covariate variables have grown in popularity.

Nonparametric regression has been extensively studied and many techniques have been developed to tackle
this problem, perhaps the most classical of which is the class of linear smoothers. Here, smoothing refers to
the attempt to remove higher frequency terms, in this case the error, whilst retaining the low frequencies, in
this case the signal. Linear smoothers can be defined as estimators which are linear functions of the data and
produce fitted values θ̂1:n of the form θ̂1:n = S(λ)y1:n for some smoothing matrix S(λ) ∈ Rn×n depending on
the covariates and a tuning parameter λ. Note that if a data-driven technique such as cross-validation is used
to select the tuning parameter, then we lose this linear relationship. This is because under such a regime,
the tuning parameter becomes a function of the response variable. As a result, the smoothing matrix, which
depends on the tuning parameter, is no longer independent of the response variable and we lose the linear
property.

The advantages of linear smoothers are their mathematical and computational simplicity, however it is
exactly this simplicity which makes them fundamentally limited for estimating functions which have variations
in local smoothness. More precisely, suppose that the underlying regression function f∗ lies in the function class

Fk(C) := {f : TV (f (k)) ≤ C}

for some constant C > 0, where f (k) is the kth weak derivative of f. Then [5] showed that the minimax
cumulative error rate for estimation of f∗ over Fk(C) is Ω(n

1
2k+3 ) and in the same paper they also showed that

linear smoothers have a minimax cumulative error rate of Ω(n
1

2k+2 ). This difference is highly non trivial for our
setting of k = 0, and shows that we can do much better. When we speak of minimax error rates, we refer to
the best possible performance guarantee of an estimator in the worst case scenario.

To improve on linear smothers, we need estimators which recognise and adapt to variations in the smoothness
of the signal from region to region; such estimators are said to be locally adaptive [6] (or spatially adaptive in
the terminology of [5]). [5] developed a method which works in the wavelet domain by nonlinear shrinkage of
the empirical wavelet coefficients. In their paper, they showed that this wavelet shrinkage can be tuned to near
minimax rates over a wide range of smoothness constraints. Around the same time, [6] proposed to use the
l1-norm, defined by ‖θ1:n‖1 :=

∑n
i=1 |θi|, for least squares penalised estimation with a total variation penalty.
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They called the resulting estimators locally adaptive regression splines and showed that they were minimax
optimal over the class of functions of bounded total variation [6].

A relatively new 1-dimensional locally adaptive method is trend filtering. Given a fixed integer r ≥ 1 and a
tuning parameter λ > 0, the rth order trend filtering estimator for θ1:n in the constrained form is given by

θ̂
(r)
λ := argmin

θ∗∈Rn

{
1

2
‖y1:n − θ∗‖2 :

∥∥∥D(r)θ∗
∥∥∥
1
≤ λn1−r

}

where D(0)θ := θ, D(1)θ := (θ2 − θ1, . . . , θn − θn−1), and D(r)θ is recursively defined for r ≥ 2 as D(r)θ :=
D(1)(D(r−1)θ). Then, whereas locally adaptive regression splines seek to perform penalized least square by
penalizing the l1 norm of a given order derivative of the fitted function, trend filtering instead penalises the
absolute kth order discrete derivatives. In this way trend filtering may be viewed as a discrete analog of locally
adaptive regression splines.

Originally proposed by [7] under the name of higher-order TV regularization, the method was later indepen-
dently rediscovered by [8], who coined the term trend filtering. [9] would later study the statistical properties
of the trend filtering method and show that it achieves the optimal cumulative error bound of O(n

1
2k+3 ) for an

optimal choice of tuning parameter. Trend filtering proved so popular that a large body of literature has been
published on its applications to adjacent fields such as functional data analysis, [10], additive models [11], and
graphs [12].

Interestingly, the 0th order trend filtering estimate reduces to 1-dimensional total variation denoising (TVD)
[13], also called the 1-dimension fused LASSO estimator [14]. [15] showed that total variation denoising was
also minimax optimal on a 2D grid when bounded in discrete total variation, see also [16]. [17] identified a
new local minmax/maxmin formula which provides a pointwise definition of the univariate TVD estimator
as a minmax/maxmin of penalized local averages over intervals of varying scales. This local perspective was
then generalized to define a new class of estimators called minmax trend filtering, which use local polynomial
regressions instead of simple averages [17].

There has also been much work done on nonparametric regression for data with dependent errors. [18] showed
that, under the assumption of second-order stationarity of errors, the convergence rates for regression mean
estimates under the assumption of independence still hold if and only

∑
j γ(j) < ∞ where γ(h) = Cov(ϵi, ϵt+h)

is the autocovariance function. In other words, convergence rates established under independence continue to
hold asymptotically if and only if the long-range dependence is sufficiently weak. [19] would later show that
the minimax cumulative error of regression function estimation for error terms with an arbitrary dependence
structure whose second moments are uniformly bounded is no worse than that of i.i.d. Gaussian errors.

Much of the literature in this area involves adapting existing techniques to handle the dependence of errors.
[20] proposed a two-step procedure which works by first nonparametrically estimating the error covariance
matrix and then using this information for a modified regression fit which takes into account the estimated
dependence structure. In a similar vein, [21] estimate the covariance matrix of a locally stationary process with
a smoothly varying trend by way of local linear smoothing and then use this estimator to arrive at consistent
predictors for more general non-stationary time series.

Parallel to these developments, [22] studied Empirical Risk Minimization (ERM) under both dependence of
errors and the presence of heavy-tailed data. [22] extended the ’learning without concentration’ framework (see
[23]) to handle data from strictly stationary and exponentially β-mixing processes, providing probabilistic risk
bounds for ERM with convex loss functions.

It is important to note, however, that many of these results rely on the crucial assumption that the errors,
while potentially dependent on each other, are independent of the covariates. [24] demonstrated that when this
independence is violated, the convergence rate of the least squares estimator can degrade significantly, and no
universal moment condition on the errors alone is sufficient to guarantee rate-optimality.
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1.2 Online Learning

The locally adaptive methods discussed previously provide powerful tools for estimating a function from
a fixed dataset. However, these are inherently batch algorithms, designed to be run only once all data has
been collected. In our setting, data arrives sequentially in a stream, and an estimate must be produced after
each new observation is received. This sequential access to data is the key characteristic of online learning.
Understanding the principles and performance measures of online learning is therefore essential to our work.

A generalisation of the model introduced in [25], online learning for univariate time series in its original form
is formulated as follows. We consider a learner which has access to i = 1 . . . , d experts Ei. Across a series of trials
t = 1, . . . , n, the learner successively receives xt ∈ Rd, the vector of predictions of all experts, makes a prediction
µ̂t, which is some convex combination of expert predictions, and receives the true output yt. Furthermore, the
learner and each expert incur a loss at the end of each trial. It is clear to see that the cumulative loss of the
learner is a poor performance measure, because any convex combination of experts which minimises the loss
may still suffer a ’big’ loss since we make no assumptions on the relationship between xt and yt, and so there
always exists some sequence y1, . . . , yn which is ‘far away’ from any possible choices for µ̂1, . . . , µ̂n. A better
performance measure is to minimise the difference between the cumulative loss of the learner and the loss of
the best expert in hindsight.

Bounds on this difference are referred to as static bounds on the loss because the best expert in hindsight,
the comparator, is time-invariant. Initially, the literature focused mostly on such static bounds, see [26, 27,
28]. However, this definition is limited because it cannot capture a changing environment, similarly to linear
smoothers in the nonparametric regression framework. Indeed, in non-stationary environments where the opti-
mal decision evolves, a static comparator is inadequate, as it fails to capture the potential for different experts
to be locally optimal over different time intervals. [29] partly explored this issue, building on the results from
[28], by considering the difference between the total regret for the best expert in hindsight, which is allowed to
change k times, and a static best predictor.

The work of [29] shows that it can be more appropriate to allow the comparator to evolve with time and
instead consider a sequence of comparators u1, . . . , un - bounds with respect to these sequences are called
shifting bounds. Unlike the static bound, which is only dependent on n, the shifting bound is also dependent
on the choice of comparator sequence. For this reason, it is usually assumed that the comparator sequence is
bounded in total variation (notice the parallels to nonparametric regression). [30] explored shifting bounds for
linear regression using projected mirror descent and introduced methods to lift known static bounds to shifting
bounds. [31] built upon the work of [26, 29] and introduced a generalisation of the fixed-share algorithm, an
algorithm with a novel weight update method, for these shifting bounds under the constraint that the pool of
possible choices of comparators be much smaller than the total number of experts.

In their foundational paper on online convex optimisation, [32] reformulate online learning as a convex
optimisation problem. At each round t = 1, . . . , n the learner in succession makes a prediction µ̂t from some
convex domain Kd ⊂ R and suffers some loss measured by a loss function f : Kd → R. Note the (near)
equivalence of the two formulations of online learning when K is understood as the set of all convex combinations
of expert predictions. In this instance however, the two formulations are subtly different because we consider
only a single unknown cost function whereas we previously considered n data points y1, . . . , yn. To remedy
this, consider instead a sequence of, not necessarily distinct, unknown cost functions f1, . . . , fn : K → R. The
general case where these cost functions are distinct is also called the non-stationary online convex optimisation
problem.

Similarly to the framework of [30], it is clear to see that we cannot hope to choose some µ̂t to minimise
ft(µ̂t), because ft is arbitrary. Instead, [32] defines the now standard performance measure of regret. Regret
can be intuitively understood as the difference between the cumulative loss incurred by an online learner and
the best decision in hindsight, whether that be a single expert or a convex combination of experts. Formally,
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we can define the regret incurred by some algorithm A as

Regretn(A) :=
n∑

t=1

f(µ̂t)− min
y∗∈K

n∑
t=1

ft(y
∗). (1.4)

This is often referred to as the static regret because the best decision in hindsight, the comparator, is time-
invariant and this definition is equivalent to the aforementioned static bound. In their paper, [32] showed that
online gradient descent (OGD) achieves a static regret of O(

√
n) for convex loss functions and [1] later showed

this bound can be improved to O(log n) for the class of strongly convex functions. These bounds were shown
to be minimax optimal by [33]. Furthermore, [1] also showed that for α-exp-concave loss functions, the online
Newton step algorithm achieves a static regret of O

(
d
α log n

)
, where d is the dimensionality of K.

To address the limitations of static regret, [32] compare the learner against a sequence of local minimisers.
This is defined by

Dynamic-Regretn(A) :=

n∑
t=1

f(µ̂t)−
n∑

t=1

ft(y
∗
t ), (1.5)

where y∗t := argminy∈K ft(y), and is called the (worst-case) dynamic regret. A generalisation of (1.5) which is
more analogous to shifting bounds is to use some arbitrary u1, . . . , un ∈ K comparator sequence in place of the
local minimisers, and we denote this general dynamic regret by Dynamic-Regretn(A, u1, . . . , un).

It has been shown that it is not possible to achieve sub-linear worst-case dynamic regret unless we make
further assumptions on the comparator or the function sequence [34, 35]. In their work, [32] define the path
length, the variation of the comparator sequence, by

Pn :=

n∑
t=2

|ut−1 − ut|.

If this value is known in advance, then OGD achieves a dynamic regret of O(
√
n(1 + P ∗

n)) for convex functions
[32, 36], where P ∗

n denotes the path length of the local minimiser sequence. Later [36] showed that, under the
further assumption that all y∗t are in the interior of K, this bound can be improved to O(P ∗

n) for convex and
smooth functions. For strongly convex functions and smooth functions, [37] showed that the dynamic regret is
at most O(P ∗

n).
If we assume a bound on the functional variation, defined by

Vn :=

n∑
t=2

max
y∈K

|ft(y)− ft−1(y)|,

and we know this value in advance, then [34] showed that restarted OGD achieves O(n
2
3V

1
3
n ) worst-case dynamic

regret for convex functions. This bound was later improved to O(n
1
3V

1
3
n ) for 1-dimensional square loss using

trend filtering techniques [2].
Note that though Dynamic-Regretn(A, u1, . . . , un) ≤ Dynamic-Regretn(A) it does not mean that the worst-

case dynamic regret is necessarily a better performance metric, because a bound for the worst-case may be very
loose for well-behaved comparator sequences. If Pn is known ahead of time, [32] showed that one may choose
an optimal step size and obtain an O(

√
n(1 + Pn) universal dynamic regret for convex functions. Later, [38]

proposed an online algorithm to search for the optimal step size and obtained the same bound of O(
√

n(1 + Pn))
as with oracle step size tuning, and they furthermore showed that this bound was minimax optimal.

An alternative performance measure proposed by [1] is the adaptive regret which measures the maximum
static regret obtained by a learner over any continuous time interval. Formally

Adaptive-Regretn(A) := sup
I=[r,s]⊆[n]

(
s∑

t=r

f(µ̂t)− min
y∗∈K

s∑
t=r

f(y∗)

)
. (1.6)
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The advantage of adaptive regret over dynamic regret is that it better captures the dynamics of local optimality.
Notice also that since the optimal y∗ for different intervals can be different, the learner is essentially competing
with a changing comparator as in dynamic regret. [1] developed the Follow-the-Leading-History (FLH) algo-
rithm and showed that it obtained O( dα log n) adaptive regret for α-exp-concave functions and O(

√
n log n) for

convex and bounded functions. They also showed that a more computationally efficient version of their algo-
rithm, Advanced Follow-the-Leading-History (AFLH), obtained O( dα log2 n) and O(

√
n log3 n) adaptive regrets

respectively [1]. [39] would later investigative the relationship between adaptive and dynamic regrets and show
that general dynamic regret can be upper bounded by adaptive regret and the functional variation.

The previous results in the online learning literature have all been under the assumption that the learner has
uninhibited access to the true data and/or cost function. [34] analysed settings with noisy feedback of both the
function value and its gradient. They established minimax dynamic regret bounds for OGD with noisy gradient
feedback, O(V

1/3
n n2/3) for convex functions and O(

√
Vnn) for strongly convex functions, demonstrating that

deterministic results may be lifted to random environments.

1.3 Online Nonparametric Regression

The problem considered in this work lies at the intersection of online learning and nonparametric regression,
often called online nonparametric regression. Recall that we do not have access to all our data as in the batch
nonparametric regression framework. Instead, as in the online learning setting, data arrives sequentially, and an
estimate must be made at each step. This sequential protocol presents a significant challenge for many classical
nonparametric methods, such as trend filtering, as refitting such models from scratch after each new observa-
tion is computationally infeasible, especially for large datasets. Therefore, solutions to online nonparametric
regression problems are focused on developing computationally efficient sequential algorithms which may be
iteratively updated while also still retaining the flexibility and adaptivity of their batch counterparts.

When the function class F is infinite-dimensional, as is the case for Hölder or Sobolev spaces, standard
online learning algorithms often struggle because they are designed to work with a finite set of experts. A
natural first solution might be to discretise the function space by taking an ϵ-net and then applying a standard
algorithm to this finite number of experts, such as the Exponentially Weighted Average (EWA) forecaster [40].
This method however, leads to suboptimal regret bounds due to approximation and complexity errors [41].

A breakthrough towards achieving optimal rates came by incorporating the ideas of the chaining technique
[42]. Rather than using a single discretization, chaining involves creating a sequence of refining approximations,
from coarse to fine, and bounding the error by summing the small incremental errors between each level of the
chain. In their non-constructive work, [41, 43] established the minimax rates for online nonparametric regression,
demonstrating that the minimax rates are determined by a sequential analogue of Dudley’s entropy integral [41,
42]. Their work also crucially demonstrated that this rate matches the statistical i.i.d. learning rate whenever
the corresponding sequential and empirical entropies coincide [41]. Building on these theoretical foundations,
[42] designed the first explicit, constructive algorithm based on the chaining technique that achieves these
optimal rates for online regression over Hölder balls. For a Hölder class with regularity β > 1

2 , their algorithm
achieves a regret of O(n

1
2β+1 ), matching the optimal rates derived from statistical learning theory with i.i.d.

data [42]. Notice that for a sequence with bounded total variation, which is the special case of a Hölder class
with β = 1, we arrive at our optimal O(n

1
3 ). While this was a significant step forward, the proposed algorithm

was computationally intensive, requiring the maintenance of exponentially many weights [42].
More recent work has focused on developing computationally efficient algorithms for the class of functions

of bounded total variation. Early progress was made by [2] as they developed the Adaptive Restarting Rule
for Online averaging using Wavelet Shrinkage (ARROWS) policy, an algorithm which works by using moving
averages with an adaptive restart schedule calculated using wavelet shrinkage techniques, see Chapter 4 for
more detail on the algorithm. This was the first polynomial-time algorithm to achieve the optimal cumulative
error bound of Õ(n

1
3C

2
3
n ) in this setting, however the method was restricted to the 1-dimensional setting and

required advance knowledge of the noise σ level. [3] extended the results of [2] to general d-dimensional non-
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stationary nonparametric regression by way of the FLH algorithm, which does not require advanced knowledge
of σ, and showed optimality in this more general setting. The policy ARROWS itself was later generalized in
[44] to forecast sequences with piecewise polynomial structure. The proposed polynomial time policy Adaptive
Vovk Azoury Warmuth (Ada-VAW) forecaster also used wavelets to detect change points and was shown to be
adaptively minimax optimal for sequences which have kth order bounded total variation.

More recently, [45] proposed a computationally efficient algorithm based on chaining trees that achieves
locally adaptive minimax regret, dynamically adjusting its partitioning of the input space to align with local
smoothness variations without prior knowledge of the function’s regularity [45].

A common thread throughout the existing literature on online nonparametric regression, from the founda-
tional theoretical work to the latest efficient and adaptive algorithms, is the underlying assumption that the
noise terms are independent. The performance guarantees for these methods rely on this assumption, leaving
a gap in the literature as to how these methods behave when the errors exhibit temporal dependence. This
thesis confronts this critical gap. We rigorously establish that, under weak assumptions on the error dependence
structure, optimal performance guarantees are still attainable for a computationally efficient online algorithm.



Chapter 2

Preliminaries

This chapter lays the theoretical groundwork for our main contributions in Chapter 3 by investigating the
case of (1.2) with independent errors. Establishing a performance bound in this setting is a crucial first step.
We begin by introducing an oracle estimator an idealised benchmark with access to information unavailable
in practical settings. We then present the FLH algorithm and leverage the oracle’s performance to derive the
minimax upper bound on the cumulative error of the FLH estimates.

The performance guarantees derived in this work are all with respect to the cumulative squared error

Rn(µ̂1:n, θ1:n) :=
n∑

t=1

E
(
(µ̂t − θt)

2
)
.

This choice of metric is deliberate. While regret measures relative performance against a comparator, our goal
aligns with the classical statistical objective of estimation accuracy. The cumulative error provides a direct
measure of the estimator’s accuracy that is, how close our estimates µ̂1:n are to the true underlying signal θ1:n.
This contrasts with metrics common in online learning, such as dynamic or adaptive regret, which quantify
relative performance.

Regret measures how well an algorithm adapts to a data stream compared to a powerful, often clairvoyant,
benchmark. Consequently, in a scenario with a highly erratic signal, an algorithm might achieve low regret
simply because no comparator could have performed well. The metric effectively ’grades on a curve’ by ac-
counting for the problem’s intrinsic difficulty. However, our objective is different. We are not competing against
a benchmark; we are trying to find the relationship between the predictors and covariates. The cumulative
error precisely captures this notion of absolute accuracy, penalizing estimators that are far from the true signal,
irrespective of that signal’s complexity.

2.1 Oracle Forecaster
Let m ≥ 1 and consider the hypothetical forecaster which produces moving averages with at most m restarts.

This forecaster is predicated on a sequence of restart times 1 = t1 ≤ t2 ≤ · · · ≤ tm+1 = n+ 1 defined such that

TV (θti:(ti+1−1)) ≤
TV (θ1:n)

m
(2.1)

for all 1 ≤ i ≤ m. These restart times are used to inform our oracle forecaster so that for all t ∈ {ti+1, . . . , ti+1},
we define the next forecast by

µ̃t := ȳti:(t−1), where ȳti:(t−1) :=
1

t− ti

t−1∑
k=ti

yk. (2.2)

Then the oracle forecasts are the moving average predictions with as restart times t1, . . . , tm+1.
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In Theorem 2.2 we show that this hypothetical forecaster achieves an optimal cumulative error of

Rn(µ̃1:n, θ1:n) ≤ Õ(n
1
3C

2
3
n )

for m ≈ n
1
3C

2
3
n and σ-subgaussian noise terms.

Definition 2.1. Let X be a real valued random variable. X is said to be subgaussian with variance proxy σ2

if E(X) = 0 and

E(eλX) ≤ e
λ2σ2

2

is satisfied for all λ ∈ R. In such cases, we call X σ-subgaussian.

For proving Theorem 2.2, we will need the following lemma about the variance of σ-subgaussian random
variables.

Lemma 2.1. Suppose X is σ-subgaussian. Then Var(X) ≤ σ2.

Proof. Performing Taylor expansion around λ = 0, we have by the Dominated Convergence Theorem that

∞∑
n=0

λn

n!
E(Xn)

DCT
= E(eλX) ≤ e

λ2σ2

2 =

∞∑
n=0

λ2nσ2n

2nn!
.

Hence

1 + λE(X) +
λ2

2
E(X2) ≤ 1 +

λ2σ2

2
+ o(λ2).

Since E(X) = 0, the result follows after dividing by λ2 and letting λ → 0.

We are now ready to prove the error bound on the hypothetical forecaster. The key idea is to decompose the
total cumulative error into the sum of errors within each of the m batches. For each batch, we will separate the
error into a bias component, stemming from the deviation of the signal θt, and a variance component, stemming
from the σ-subgaussian noise. By bounding these components using the total variation constraint (2.1) and
Lemma 2.1, and then summing over all batches, we arrive at the desired result.

Theorem 2.2. [3] Let n,m ≥ 1, σ > 0, and Cn > 0. Let θ1, . . . , θn ∈ R be any sequence such that TV (θ1:n) ≤ Cn

and |θ1| ≤ B. Suppose that 1 = t1 ≤ · · · ≤ tm+1 = n + 1 are defined such that (2.1) is satisfied. Then the
hypothetical forecasts µ̃t defined in (2.2) satisfy

Rn(µ̃1:n, θ1:n) ≤ B2 + TV (θ1:n)
2 +mσ2(1 + log n) +

n

m2
TV (θ1:n)

2.

Proof. Let m ≥ 1 be the total number of batches and number the batches 1, . . . ,m according to the restart
times 1 = t1 ≤ · · · ≤ tm+1 = n+ 1. By (2.1) we have for all 1 ≤ i ≤ m

TV (θti:(ti+1−1)) =

ti+1−1∑
t=ti+1

|θt − θt−1| ≤
TV (θ1:n)

m
≤ Cn

m
.

Fix a batch i. Using that µ̃t = ȳtk:(t−1) for t ∈ {tk + 1, . . . , tk+1} for all 1 ≤ k ≤ m, the cumulative error within
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this batch can be written as

Ri :=

ti+1−1∑
t=ti

E
[
(µ̃t − θt)

2
]

= E
[
(µ̃ti − θti)

2
]
+

ti+1−1∑
t=ti+1

E
[
(µ̃t − θt)

2
]

= E
[
(ȳti−1:(ti−1) − θti)

2
]
+

ti+1−1∑
t=ti+1

E
[
(ȳti:(t−1) − θt)

2
]

= E
[
(θ̄ti−1:(ti−1) + Z̄ti−1:(ti−1) − θti)

2
]
+

ti+1−1∑
t=ti+1

E
[
(θ̄ti:(t−1) + Z̄ti:(ti+1−1) − θt)

2
]

since yt = θt + Zt. Rewriting, we have

Ri = E
[
(θ̄ti−1:(ti−1) + Z̄ti−1:(ti−1) − θti)

2
]
+

ti+1−1∑
t=ti+1

E
[
(θ̄ti:(t−1) + Z̄ti:(t−1) − θt)

2
]

= (θ̄ti−1:(ti−1) − θti)
2 + 2(θ̄ti−1:(ti−1) − θti)E

(
Z̄ti−1:(ti−1)

)
+ E

(
Z̄2
ti−1:(ti−1)

)
+

ti+1−1∑
t=ti+1

[
(θ̄ti:(t−1) − θt)

2 + 2(θ̄ti:(t−1) − θt)E
(
Z̄ti:(ti−1)

)
+ E

(
Z̄2
ti:(t−1)

)]

= (θ̄ti−1:(ti−1) − θti)
2 + E

(
Z̄2
ti−1:(ti−1)

)
+

ti+1−1∑
t=ti+1

[
(θ̄ti:(t−1) − θt)

2 + E
(
Z̄2
ti:(t−1)

)]
since Zt are i.i.d. with E(Zt) = 0. Then, since Zt are σ-subgaussian, we have

Ri = (θ̄ti−1:(ti−1) − θti)
2 + E

(
Z̄2
ti−1:(ti−1)

)
+

ti+1−1∑
t=ti+1

[
(θ̄ti:(t−1) − θt)

2 + E
(
Z̄2
ti:(t−1)

)]

= (θ̄ti−1:(ti−1) − θti)
2 +

1

(ti − ti−1)2

ti−1∑
k=ti−1

E
(
Z2
t

)
+

ti+1−1∑
t=ti+1

(θ̄ti:(t−1) − θt)
2 +

1

(t− ti)2

t−1∑
k=ti

E
(
Z2
t

)
≤ (θ̄ti−1:(ti−1) − θti)

2 +
σ2

ti − ti−1
+

ti+1−1∑
t=ti+1

[
(θ̄ti:(t−1) − θt)

2 +
σ2

t− ti

]
where the last line follows from Lemma 2.1. Denoting θ0 = 0 and summing over all batches gives the upper-
bound on the cumulative error

Rn(µ̃1:n, θ1:n) :=
m∑
i=1

Ri ≤
m∑
i=1

(θ̄ti−1:(ti−1) − θti)
2 +

σ2

ti − ti−1
+

ti+1−1∑
t=ti+1

(
(θ̄ti:(t−1) − θt)

2 +
σ2

t− ti

)
≤ |θ1|2 +

(
m∑
i=2

∣∣θ̄ti−1:(ti−1) − θti
∣∣)2

+
m∑
i=1

 σ2

ti − ti−1
+

ti+1−1∑
t=ti+1

(
(θ̄ti:(t−1) − θt)

2 +
σ2

t− ti

)
= |θ1|2 +

(
m∑
i=2

∣∣θ̄ti−1:(ti−1) − θti
∣∣)2

+

m∑
i=1

ti+1−1∑
t=ti+1

(θ̄ti:(t−1) − θt)
2 +

ti+1∑
t=ti+1

σ2

t− ti

 .
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Isolating the last term, we see that

m∑
i=1

ti+1∑
t=ti+1

σ2

t− ti
= σ2

m∑
i=1

ti+1−ti∑
k=1

1

k
= σ2

m∑
i=1

[
1 +

ti+1−ti∑
k=2

1

k

]
= σ2

m∑
i=1

[
1 +

ti+1−ti∑
k=2

∫ k

k−1

1

k
dx

]

≤ σ2
m∑
i=1

[
1 +

ti+1−ti∑
k=2

∫ k

k−1

1

x
dx

]
= σ2

m∑
i=1

[
1 +

∫ ti+1−ti

1

1

x
dx

]

= σ2
m∑
i=1

1 + log (ti+1 − ti) ≤ σ2
m∑
i=1

1 + log n = mσ2(1 + log n).

We also see for the second and third terms that

∣∣θ̄ti:(t−1) − θt
∣∣ =

∣∣∣∣∣∣ 1

t− ti

t−1∑
k=ti

θk − θt

∣∣∣∣∣∣ ≤ 1

t− ti

t−1∑
k=ti

|θk − θt| ≤ max
k∈{ti,...,t−1}

|θk − θt|

= max
k∈{ti,...,t−1}

∣∣∣∣∣
t−1∑
l=k

θl − θl+1

∣∣∣∣∣ ≤ max
k∈{ti,...,t−1}

t−1∑
l=k

|θl − θl+1| =
t−1∑
k=ti

|θk − θk+1|.

Filling back in, we have

Rn(µ̃1:n, θ1:n) ≤ |θ1|2 +

(
m∑
i=2

∣∣θ̄ti−1:(ti−1) − θti
∣∣)2

+

m∑
i=1

ti+1−1∑
t=ti+1

(θ̄ti:(t−1) − θt)
2 +

ti+1∑
t=ti+1

σ2

t− ti


≤ B2 +

 m∑
i=2

ti−1∑
k=ti−1

|θk − θk+1|

2

+
m∑
i=1

ti+1−1∑
t=ti+1

 t−1∑
k=ti

|θk − θk+1|

2

+mσ2(1 + log n)

≤ B2 +

(
m∑
i=2

Cn

m

)2

+
m∑
i=1

ti+1−1∑
t=ti+1

(
Cn

m

)2

+mσ2(1 + log n)

= B2 +

(
m− 1

m
Cn

)2

+
C2
n

m2

m∑
i=1

(ti+1 − (ti + 1)) +mσ2(1 + log n)

≤ B2 + C2
n +

C2
n

m2
(ti+1 − (ti + 1)) +mσ2(1 + log n)

≤ B2 + C2
n +

nC2
n

m2
+mσ2(1 + log n).

By the first-order optimality condition, we find that this bound is minimised for

∂

∂m

(
B2 + C2

n +
nC2

n

m2
+mσ2(1 + log n)

)
= − 2n

m3
C2
n + σ2(1 + log n) = 0 ⇔ m =

(
2nC2

n

σ2(1 + log n)

) 1
3

.

Finally, this choice for m yields

Rn(µ̃1:n, θ1:n) ≤ B2 + C2
n +

3

2
2
3

n
1
3C

2
3
n σ

4
3 (1 + log n)

2
3 .

Thus, Theorem 2.2 establishes a the theoretical benchmark for the optimal rate of convergence, Õ(n
1
3C

2
3
n )

However, this oracle is predicated on knowing the optimal restart times t1, . . . , tm+1 in advance, a condition
that cannot be met in a true online setting. This motivates the central challenge of the next section: designing
a practical algorithm that can adaptively learn these restart points and achieve a comparable performance
guarantee.
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2.2 Follow-the-Leading-History
The challenge in the practical application of this oracle forecaster is to efficiently compute the restart times

1 = t1, . . . , tm+1 = n + 1 which satisfy (2.1). The problem is that if we want to preserve the benefits of an
online approach, we cannot simply use the naive approach of checking all possible choices of t1, . . . , tm+1 after
the fact, never mind that this would be very computationally expensive. This is precisely the challenge that
the Follow-the-Leading-History (FLH) algorithm is designed to address.

Any online algorithm which makes use of moving averages must then also compute the restart times in an
online fashion. This can be accomplished in a number of ways, such as change-point methods for example,
however the simplest way is to just not do it directly. Instead, we may combine the predictions of many
moving averages with different look-back windows, this is called meta-aggregation. By running multiple simple
forecasters in parallel, each corresponding to a different potential restart time, a meta-aggregation algorithm
such as FLH can dynamically learn to favour the best-performing expert(s) at any given moment thereby gaining
the ability to adapt to shifts in the data’s underlying structure.

At its core, FLH is an online meta-aggregation algorithm that combines and manages the weights of multiple
online learning algorithms, or experts. Each expert is assigned a corresponding weight which is iteratively
updated at the end of each round with exponential reweighting. By viewing each potential start time k as a
separate expert, FLH provides a mechanism for adaptively learning the best optimal restart times t1, . . . , tm in
an online fashion, thereby mimicking the behaviour of our clairvoyant oracle.

Algorithm 1 Follow-the-Leading-History [3, 1]
Input: black box algorithm A, learning parameter α > 0

1: Init: Weight vector v0 = (v
(1)
0 , . . . , v

(n)
0 ) = (0, . . . , 0)

2: for t = 1, . . . , n do
3: Start a new instance of algorithm A denoted by At and assign the weights v

(t)
t = 1

t and v̂
(t)
t = 1

t .
4: Normalise the weight of each expert i ∈ {1, . . . , t− 2} so that

v̂
(i)
t =

(
1− 1

t− 1

)
v
(i)
t∑t−2

j=1 v
(j)
t

(2.3)

and update v̂
(t−1)
t = v̂

(t−1)
t−1 .

5: Receive the prediction µ̂
(i)
t from each black box algorithm Ai, i ∈ {1, . . . , t− 1}.

6: Predict

µ̂t =
t−1∑
i=1

v̂
(i)
t µ̂

(i)
t . (2.4)

and observe yt ∈ R.
7: Set v

(t)
t+1 = v

(t)
t and update the weights for each i ∈ {1, . . . , t− 1}

v
(i)
t+1 = v

(i)
t exp

(
−αft(µ̂

(i)
t )
)
.

At each round t = 1, . . . , n, the algorithm carries out a series of steps to achieve its goal of forecasting. At
step 3, a new base online algorithm At is created for the data starting from the same round t, and is assigned
a weight of 1

t . Crucially, this expert ignores earlier observations and focuses exclusively on minimizing static
regret over its own time segment. These experts are combined using an exponentially weighted average, whose
weights are calculated in step 4, calculated in step 5 and step 6 to produce the final prediction. Afterwards,
the weights are updated in step 7 and the loop restarts.

There is one key difference between the formulation of Algorithm 1 and that which may be found in [1].
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This difference is a result of the black box algorithm A. We have kept this notation for generality, however in
this work the black box algorithm Ak refers to a moving average with the ’start’ of its look back window set
at t = k. Observe then that at t = 1, while we have indeed initialised A1, it has no data on which it may
make a prediction. As a consequence, we have a pool of only k − 1 moving averages to combine at time step
t = k. This has a knock-on effect and changes the manner in which we perform the normalisation step. As a
result, the specific details of the algorithm formulation are changed, but the ‘spirit’ of FLH is not. For clarity,
Example 2.1 walks through the first 3 iterations of the algorithm in explicit detail and the sceptic reader is
furthermore referred to Appendix C.

Example 2.1. For t = 1, we do

1. We initialise A1 with weights v
(1)
1 = 1

1 = 1 and v̂
(1)
1 = 1. We have 0 experts for predictions.

2. We have no weights to normalise and no update to perform.

3. We receive no predictions from any experts.

4. Since we received no expert prediction, we do not make any prediction. We observe y1.

5. We update v
(1)
2 = v

(1)
1 = 1.

For t = 2, we do

1. We initialise A2 with weights v
(2)
2 = 1

2 and v̂
(2)
2 = 1

2 . We have 1 expert for predictions {A1}.

2. We have no weights to normalise. We perform the update v̂
(1)
2 = v̂

(1)
1 = 1.

3. We receive prediction µ̂
(1)
2 = y1 from A1.

4. We predict µ̂2 = v̂
(1)
2 µ̂

(1)
2 = y1. We observe y2.

5. We perform weight updates v
(2)
3 = v

(2)
2 = 1

2 and update

v
(1)
3 = v

(1)
2 exp

(
−α

(
y2 − µ̂

(1)
2

)2)
= exp

(
−α (y2 − y1)

2
)
.

For t = 3, we do

1. We initialise A3 with weights v
(3)
3 = 1

3 and v̂
(3)
3 = 1

3 . We have 2 experts for predictions {A1,A2}.

2. We perform the update v̂
(2)
3 = v̂

(2)
2 = 1

2 . We normalise

v̂
(1)
3 =

(
1− 1

3− 1

)
v
(1)
3

v
(1)
3

=
1

2

3. We receive prediction µ̂
(1)
3 = y1+y2

2 from A1 and µ̂
(2)
3 = y2 from A2.

4. We predict µ̂3 = v̂
(1)
3 µ̂

(1)
3 + v̂

(2)
3 µ̂

(2)
3 = y1+y2

4 + y2
2 = y1+3y2

4 . We observe y3.

5. We perform weight update v
(3)
4 = v

(3)
3 = 1

3 . We also perform updates

v
(1)
4 = v

(1)
3 exp

(
−α

(
y3 − µ̂

(1)
3

)2)
= exp

(
−α

((
y3 −

y1 + y2
2

)2

+ (y2 − y1)
2

))
and

v
(2)
4 = v

(2)
3 exp

(
−α

(
y3 − µ̂

(2)
3

)2)
=

1

2
exp

(
−α (y3 − y2)

2
)
.
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2.2.1 α-exp-concave Loss Functions

Note that Algorithm 1 is designed to only work for the class of α-exp-concave loss functions. We say a
function f is α-exp-concave if e−αf is a concave function for some choice of α > 0. There exists a version of
Algorithm 1 which is suitable for general convex loss functions - the key difference is that instead of predicting
a convex combinations of expert predictions, we choose one single expert for prediction according to some
probability vector vt - however, we may use the formulation for α-exp-concave loss functions because of the
results of Lemma 2.3.

Lemma 2.3. For 1 ≤ t ≤ n, define yt = θt+Zt where |θt| ≤ B for some B > 0 and Zt are σ-subgaussian random
variables. Let 0 < δ < 1. For all 1 ≤ t ≤ n, the mapping y 7→ e−α(y−yt)2 restricted to D =

[
− 1√

2α
+ yt,

1√
2α

+ yt

]
is concave with α = C′

log 2n
δ

for some C ′ > 0.

Essentially, the results of Lemma 2.3 imply that that squared loss ft(y) = (y − yt)
2 belongs to the class of

α-exp-concave loss functions with probability 1−δ for any t = 1, . . . , n. As a result, we may use the formulation
of Algorithm 1 for α-exp-concave functions in our problem setting. The proof of Lemma 2.3 may be split into
2 additional lemmas and a final argument.

Lemma 2.4. Suppose X is σ-subgaussian. Then

P (X > t) ≤ e−
t2

2σ2 .

Proof. By Markov’s inequality, we have for any s > 0

P(X > t) = P
(
esX > est

)
≤ E(esX)

est
≤ e

s2σ2

2
−st.

By the first-order optimality condition, this bound is minimised for s = t
σ2 and the result follows.

Lemma 2.5. Let y1, . . . , yn be defined as in Lemma 2.3. Then for all 0 < δ < 1, there exists some C > 0 such
that

P

(
max
1≤t≤n

|yt| ≤ C

√
log

2n

δ

)
= 1− δ.

Proof. Since |yt| = |θt + Zt| ≤ |θt|+ |Zt| ≤ B + |Zt|, we have

P
(
max
1≤t≤n

|yt| > K

)
= P

(
max
1≤t≤n

|Zt| > K −B

)
= P

(
max

1≤t≤2n
Zt > K −B

)
(Zn+i := −Zi for i = 1, . . . , n)

≤
2n∑
t=1

P (Zt > K −B) ≤ 2n exp

(
−(K −B)2

2σ2

)

where the last inequality is Lemma 2.4 applied to each identically distributed Zt. Setting 2n exp
(
− (K−B)2

2σ2

)
= δ

and solving for K, we find that K = B +
√

2σ2 log 2n
δ ≤ C

√
log 2n

δ . Now, we may divide by
√
log 2n

δ to find
that

B√
log 2n

δ

+
√
2σ2 ≤ C.

The left hand side is maximised as log 2n
δ → log 2, hence the result is obtained for C = B√

log 2
+
√
2σ2.
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Proof of Lemma 2.3. The mapping y 7→ e−α(y−yt)2 is concave if d2

dy2
e−α(y−yt)2 ≤ 0. Then, since

d2

dy2
e−α(y−yt)2 = −2αe−α(y−yt)2(1− 2α(y − yt)

2),

we see that this is satisfied for |y − yt| ≤ 1√
2α
. Restricting y to

[
− 1√

2α
+ yt,

1√
2α

+ yt

]
, we see that

− 1√
2α

= − 1√
2α

+ yt − yt ≤ y − yt ≤
1√
2α

+ yt − yt =
1√
2α

.

Deriving α, by Lemma 2.5 we have for all 1 ≤ t ≤ n that

|y − yt| ≤ 2C

√
log

2n

δ
≤ 1√

2α
⇒ α =

1

8C2 log 2n
δ

with probability 1− δ, which completes the proof.

2.2.2 Performance Guarantees

In their paper in which they first introduce FLH, [1] show that it has quite strong adaptive regret guarantees.
For our purposes however, we are only interested in the adaptive regret achieved by any black box algorithm
Ar. For completeness, we include the statement and and adapt their proof to the formulation of Algorithm 1.

Lemma 2.6. [1] Let 1 ≤ r ≤ s ≤ n with r, s ∈ N. For any I = [r + 1, s], the regret incurred by FLH in I with
respect to Ar, is at most 2

α(ln r + ln |I|).

We will require an additional lemma for the proof of Lemma 2.6.

Lemma 2.7. [1] Define p̂
(i)
t :=

v̂
(i)
t e−αft(µ̂

(i)
t )∑t−1

j=1 v̂
(j)
t e−αft(µ̂

(j)
t )

for any i = 1, . . . , t − 1. For any α-exp-concave loss function

ft, we have
ft(µ̂t)− ft(µ̂

(t−1)
t ) ≤ 1

α

(
log p̂

(t−1)
t + log (t− 1)

)
(2.5)

and for any i ∈ {3, 4 . . . , t− 2}, we also have

ft(µ̂t)− ft(µ̂
(i)
t ) ≤ 1

α

(
log p̂

(i)
t + log p̂

(i)
t−1 +

2

t

)
. (2.6)

Proof. By the α-exp-concavity of ft, we have

e−αft(µ̂t) = e
−αft

(∑t−1
j=1 v̂

(j)
t µ̂

(j)
t

)
≥

t−1∑
j=1

v̂
(j)
t e−αf(µ̂

(j)
t )

⇔ft(µ̂t) ≤
1

α
log

t−1∑
j=1

v̂
(j)
t e−αft(µ̂

(j)
t ).

Hence

ft(µ̂t)− ft(µ̂
(i)
t ) ≤ 1

α

log e−αft(µ̂
(i)
t ) − log

t−1∑
j=1

v̂
(j)
t e−αft(µ̂

(j)
t )


=

1

α
log

 e−αft(µ̂
(i)
t )∑t−1

j=1 v̂
(j)
t e−αft(µ̂

(j)
t )


=

1

α
log

 1

v̂
(i)
t

v̂
(i)
t e−αft(µ̂

(i)
t )∑t−1

j=1 v̂
(j)
t e−αft(µ̂

(j)
t )

 =
1

α
log

p̂
(i)
t

v̂
(i)
t

.
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Now, we have by definition that v̂
(t−1)
t = v̂

(t−1)
t−1 = 1

t−1 , hence log v̂
(t−1)
t = − log (t− 1) and we see that for

i = t− 1

ft(µ̂t)− ft(µ̂
(t−1)
t ) ≤ 1

α
log

p̂
(t−1)
t

v̂
(t−1)
t

=
1

α

(
log p̂

(t−1)
t + log (t− 1)

)
which proves (2.5). We also have for any i ∈ {3, 4, . . . , t− 2}, by definition, that

v̂
(i)
t =

(
1− 1

t− 1

)
v
(i)
t∑t−2

j=1 v
(j)
t

=

(
1− 1

t− 1

)
v
(i)
t−1e

−αft−1(µ̂
(i)
t−1)∑t−2

j=1 v
(j)
t−1e

−αft−1(µ̂
(j)
t−1)

=

(
1− 1

t− 1

)
v̂
(i)
t−1e

−αft−1(µ̂
(i)
t−1)∑t−2

j=1 v̂
(j)
t−1e

−αft−1(µ̂
(j)
t−1)

=

(
1− 1

t− 1

)
p̂
(i)
t−1,

and hence
log v̂

(i)
t = log p̂

(i)
t + log

(
1− 1

t− 1

)
≥ log p̂

(i)
t − 2

t
.

Filling in, we see that

ft(µ̂t)− ft(µ̂
(i)
t ) ≤ 1

α
log

p̂
(i)
t

v̂
(i)
t

≤ 1

α

(
log p̂

(i)
t − log p̂

(i)
t−1 +

2

t

)
.

Proof of Lemma 2.6. We have
s∑

t=r+1

ft(µ̂t)− ft(µ̂
(r)
t ) = fr+1(µ̂r+1)− fr+1(µ̂

(r)
r+1) +

s∑
t=r+2

ft(µ̂t)− ft(µ̂
(r)
t )

≤ 1

α

(
log p̂

(r)
r+1 + log r +

s∑
t=r+2

(
log p̂

(r)
t − log p̂

(r)
t−1 +

2

t

))

=
1

α

(
log r + log p̂(r)s +

s∑
t=r+2

2

t

)

where the second inequality follows from (2.5) and (2.6), and the last equality is because of the telescoping sum.
It is clear to see that p̂(r)s ≤ 1, because of the normalisation constant, and so log p̂

(r)
s ≤ 0. Zooming in on the

last term, we use a similar integral trick as in the proof of Theorem 2.2 to show that
∑s

t=r+2
2
t ≤ 2 log (s− r) =

2 log |I|. Filling in, we obtain
s∑

t=r

ft(µ̂t)− ft(µ̂
(r)
t ) ≤ 1

α

(
log r + log p̂(r)s +

s∑
t=r+2

2

t

)

≤ 1

α
(log r + 2 log |I|) ≤ 2

α
(log r + log |I|) .

Finally, we arrive at our main result. In Theorem 2.8, we show that Algorithm 1 with moving averages as
sub-routines does indeed achieve a cumulative error of optimal order with independent σ-subgaussian terms.

Theorem 2.8. [3] For 1 ≤ t ≤ n, define yt = θt+Zt where Zt are independent σ-subgaussian random variables.
Let θ1, . . . , θn ∈ R be such that TV (θ1:n) ≤ Cn and furthermore assume that |θt| ≤ B for all t ≥ 1. If moving
average predictions are used as sub-routine of Algorithm 1, the cumulative error is upper-bounded as

Rn(µ̂1:n, θ1:n) ≤ O(n
1
3C

2
3
n (log n)

2)

with probability 1− δ for 0 < δ < 1.
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Proof. By lemma 2.5, for all 1 ≤ t ≤ n, each |yt| = |yt + δt| is bounded by C
√

log 2n
δ with probability 1−δ. Then

by Lemma 2.3, we see that the mapping y 7→ (y − yt)
2 is α-exp-concave with α = C′

log 2n
δ

with high probability.
Define t1, . . . , tm as in Theorem 2.2. Applying Lemma 2.6 with r = ti and s = ti+1 − 1, we see that

ti+1−1∑
t=ti

(µ̂t − yt)
2 − (µ̂

(ti)
t − yt)

2 ≤ 2

α
(log ti + log (ti+1 − 1− ti)) ≤

4 log n

α
≤ O((log n)2).

Note that the subroutines in Algorithm 1 are moving averages i.e. µ̂
(ti)
t = ȳti:(t−1). Hence, we can use (2.2) and

that we have m restart times to sum over i = 1, . . . , n and obtain

n∑
t=1

(µ̂t − yt)
2 − (µ̃t − yt)

2 ≤
m∑
i=1

ti+1−1∑
t=ti

(µ̂t − yt)
2 − (µ̂

(ti)
t − yt)

2

≤ O(m(log n)2).

Now, because Zt = yt − θt, we have

Rn(µ̂1:n, θ1:n) :=
n∑

t=1

E
(
(µ̂t − θt)

2
)
=

n∑
t=1

E
(
(µ̂t − yt + yt − θt)

2
)

=

n∑
t=1

E
(
(µ̂t − yt)

2 + (yt − θt)
2 + 2(µ̂t − yt)(yt − θt)

)
=

n∑
t=1

E
(
(µ̂t − yt)

2 + (yt − θt)
2 − 2yt(yt − θt)

)
+ E (2µ̂t(yt − θt))

Ind.
=

n∑
t=1

E
(
(µ̂t − yt)

2 − (yt − θt)
2 + 2(yt − θt)

2 − 2yt(yt − θt)
)
+ 2E (µ̂t)E (yt − θt)

=

n∑
t=1

E
(
(µ̂t − yt)

2 − (yt − θt)
2 + 2(yt − θt)

2 − 2yt(yt − θt)
)
+ E (2θt(yt − θt))

where the last equality uses that E(yt − θt) = E(Zt) = 0. Continuing,

=
n∑

t=1

E
(
(µ̂t − yt)

2 − (yt − θt)
2 + 2(yt − θt)

2 + 2(θt − yt)(yt − θt)
)

=
n∑

t=1

E
(
(µ̂t − yt)

2 − (yt − θt)
2
)

=

n∑
t=1

E
(
(µ̂t − yt)

2 − (µ̃t − θt)
2 + (µ̃t − θt)

2 − (yt − θt)
2
)

=
n∑

t=1

E
(
(µ̂t − yt)

2 − (µ̃t − θt)
2
)
+ E

(
(µ̃t − θt)

2 − (yt − θt)
2
)

≤ O(m(log n)2) +

n∑
t=1

E
(
(µ̃t − θt)

2 − (yt − θt)
2
)
.
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Isolating the second term, we have
n∑

t=1

E
(
(µ̃t − θt)

2 − (yt − θt)
2
)
=

n∑
t=1

E
(
µ̃2
t − 2µ̃2

t yt + y2t − (y2t − 2ytθt + θ2t )
)

=
n∑

t=1

E
(
µ̃2
t + 2yt(θt − µ̃t)− θ2t

)
=

n∑
t=1

E
(
µ̃2
t + 2(θt + Zt)(θt − µ̃t)− θ2t

)
=

n∑
t=1

E
(
µ̃2
t − 2µ̃tθt + θ2t

)
+ 2 (E (Ztθt) + E (Ztµ̃t))

=

n∑
t=1

E
(
(µ̃t − θt)

2
)

where the last equality holds because Zt is independent from θt and µ̃t, and E(Zt) = 0. Then we we have by
Theorem 2.2 that

Rn(µ̂1:n, θ1:n) ≤ O(m(log n)2) +
n∑

t=1

E
(
(µ̃t − θt)

2 − (yt − θt)
2
)

= O(m(log n)2) +Rn(µ̃1:n, θ1:n)

≤ O(m(log n)2) +O(n
1
3C

2
3
n ) = O(n

1
3C

2
3
n (log n)

2)

where we let m ≈ n
1
3C

2
3
n - the optimal m found in Theorem 2.2.



Chapter 3

Extension to Dependant Data

The results of Chapter 2 are all under the assumption that the error terms are independent, σ-subgaussian
variables. In this chapter, we drop the assumption of strict independence and show that cumulative error
achieved by FLH with moving averages as sub-routines for this more general case is the optimal Õ(n

1
3C

2
3
n ). Our

plan of attack will be to adapt the proof of Theorem 2.8 to take into account dependent errors and for this we
will need a considerable amount of machinery.

First, we introduce a formal dependence framework based on causal representations and physical dependence
measures, allowing us to construct an m-dependent process that approximates the original error sequence.
Second, we establish the stability of the FLH algorithm, proving that small perturbations in the input data result
in controllably small changes in the output predictions. Finally, we introduce a Thinned-FLH (TFLH) scheme
that leverages the approximated m-dependent structure to achieve near-optimal performance by balancing the
approximation error against the statistical error from using less data.

3.1 Dependence Structure

The first step is to translate the dependent case into the independent case. We could perhaps choose to
use the naive approach and construct independent copies of each Zt. Then we indeed obtain an independent
sequence, however at the cost of large approximation errors because we essentially approximate all sources of
randomness in our model. Instead, if we make the reasonable assumption that errors which are ‘close’ to each
other will be more dependent than errors that are ‘far’ apart, we can try and construct a sequence in which
errors which are sufficiently ‘far’ apart are independent. This is formally called m-dependence.

Definition 3.1. Let (Xt)t∈Z be a stochastic process. We say (Xt)t∈Z is m-dependant if for all k ∈ Z the joint
stochastic variables (Xt)t≤k are independent of the joint stochastic variables (Xt)t≥k+m.

To transform (Zt)t≥1 into an m-dependent process, we need a way to isolate and manipulate sources of
interdependencies. To do this, we represent the error process as a causal function of independent and identically
distributed innovations. This causal representation is known as the Bernoulli shift model.

Definition 3.2. Let ϵt
iid∼ U(0, 1) and g : R∞ → R be a measurable function. Then Zt is said to be a causal

Bernoulli shift model if
Zt := g(ϵt, ϵt−1, . . . ) (3.1)

Notice that setting the distribution ϵt ∼ U(0, 1) is not a restriction because ϵt can be transformed to any
distribution of choice using the quantile transform.

Lemma 3.1. Let U ∼ U(0, 1) and let X be a random variable with the distribution function FX . Then
F−1
X (U)

d
= X.
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Proof. Let Y = F−1
X (U), then

FY (y) = P(Y ≤ y) = P(F−1
X (U) ≤ y) = P(U ≤ FX(y)) = FX(y).

Let Zt be defined as according to (3.1). It is clear to see that Zt+m is dependent on Zt through the
ϵt, ϵt−1, . . . terms. It follows that we can transform (Zt)t≥1 into an m-dependant process by strategically
introducing independent copies of ϵt. Let ϵ

(t)
k be an independent, identically distributed copy of ϵk assigned

uniquely to Zt. Define Z
(m)
t as a copy of Zt, defined such that all (ϵk)k≥m are replaced by (ϵ

(t)
k )k≥m. Then Z

(m)
t

can be written according to the formulation of (3.1) as

Z
(m)
t = g(ϵt, . . . , ϵt−m+1, ϵ

(t)
t−m, ϵ

(t)
t−m−1, . . . ) (3.2)

We see that that Z(m)
t is now independent of Z(m)

t+m. Indeed, it is clear to see that (Z(m)
t )t≤k are now independent

of (Z(m)
t )t≥k+m so that (Z

(m)
t )t∈Z is an m-dependant process.

We have now constructed (Z
(m)
t )t∈Z so that any interdependence are originating solely from the first m terms

of any given Z
(m)
t , because each Z

(m)
t has its own unique set of independent copies. However, this approach

introduces an approximation error and we use the physical dependence measure to control for this error.
To define the physical dependence measure, we first introduce some useful notation. Let (ϵ′k)k∈Z be inde-

pendent copies of (ϵk)k∈Z. Then we may define the vectors

ϵk = (ϵk, ϵk−1, . . . ),

ϵ′k,h = (ϵk, . . . , ϵk−h+1, ϵ
′
k−h, ϵk−h−1, . . . ),

ϵ∗k,h = (ϵk, . . . , ϵk−h+1, ϵ
′
k−h, ϵ

′
k−h−1, . . . ),

ϵ
∗,(t)
k,h = (ϵk, . . . , ϵk−h+1, ϵ

(t)
k−h, ϵ

(t)
k−h−1, . . . ).

We see that ϵ′k,h replaces only a single ϵh by an independent copy whereas ϵ∗k,h replaces all random seeds more
than h lags in the past by independent copies. Finally, ϵ∗,(t)k,h denotes the instance in which all random seeds more
than h lags in the past have been replaced by the unique independent copies assigned to Zt. In this notation,
we would write (3.1) as Zt = g(ϵt) and (3.2) as Z

(m)
t = g(ϵ

∗,(t)
t,m ).

Definition 3.3. Let p ≥ 1. Let (Xt)t∈Z be a stochastic process defined as in (3.1) such that E (|Xt|p) < ∞. Let
ϵ′t−h be an independent, identically distributed copy of ϵt−h. Then we define the physical dependence measure
of Xt as

δp(h) = δXt,p(h) :=
∥∥g(ϵ′t,h)− g(ϵt)

∥∥
Lp = E

(∣∣g(ϵ′t,h)− g(ϵt)
∣∣p) 1

p .

Now, setting ϵ
∗,(t)
k,∞ := ϵk, we can express the difference Z

(m)
t − Zt as telescoping sum. Then∥∥∥Z(m)

t − Zt

∥∥∥
Lp

=
∥∥∥g(ϵ∗,(t)t,m )− g(ϵt)

∥∥∥
Lp

=
∥∥∥g(ϵ∗,(t)t,m )− g(ϵ

∗,(t)
t,m+1) + g(ϵ

∗,(t)
t,m+1)− g(ϵt)

∥∥∥
Lp

=

∥∥∥∥∥
∞∑
l=0

g(ϵ
∗,(t)
t,m+k)− g(ϵ

∗,(t)
t,m+k+1)

∥∥∥∥∥
Lp

≤
∞∑
l=0

∥∥∥g(ϵ∗,(t)t,m+l)− g(ϵ
∗,(t)
t,m+l+1)

∥∥∥
Lp

=
∞∑

l=m

δZt,p(l) =: ∆p(m)

In essence, ∆p(m) here represents an upper bound on the approximation error we introduce by creating
the m-dependent process (Z

(m)
t )t≥1. By truncating the dependencies beyond lag m, we are effectively ignoring
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the influence of all random shocks from ϵt−m, ϵt−m−1, . . . and so on. ∆p(m) provides a measure of the total
effect of this simplification, capturing the cumulative dependence of Zt on its entire distant history beyond a
certain point. A small ∆p(m) would imply that the approximation Z

(m)
t is close to the original process Zt, as

the influence of the distant past is negligible.
We have now constructed an m-dependent, identical in distribution sequence of errors and can control the

approximation errors by imposing some decaying assumption on the physical dependence measure. The next
step necessarily is to take a detour and investigate what effects these approximations have on the vector of
estimators produced by Algorithm 1.

3.2 Stability of Algorithm 1
In this section, we will investigate the stability of algorithm 1. That is, we will prove that if we use two

vectors of data which are in some sense ‘close’ to each other, then so must the vectors of predictions obtained
also be ‘close’.

Let us drop any assumptions on the framework of our data and instead let y1:n = (y1, . . . , yn) be arbitrary
data. Now denote by y∗1:n = (y∗1, . . . , y

∗
n) the vector of independent copies of our data. We can formalise this

idea of data which is ‘close’ to our original data by assuming that there exists some finite Dn > 0 such that

‖y1:n − y∗1:n‖∞ := sup
1≤i≤n

|yi − y∗i | < Dn.

Note that Dn necessarily increases by some rate proportional to n as n increases.
Denote now by µ̂1:n(y1:n) = (µ̂1(y1:n), . . . , µ̂n(y1:n)) the vector of weighted estimators produced by Algo-

rithm 1 at each round with respect to the input data y1:n. For our algorithm to be considered stable, we want to
show that the difference between µ̂1:n(y1:n) and µ̂1:n(y

∗
1:n) may be bounded by the difference between y1:n and

y∗1:n. In this way, as long as the data is sufficiently similar, so too must the predictions produced by Algorithm 1
be.

The following theorem is the main result of this section.

Theorem 3.2. There exists some L > 0 depending on n2 log n such that

‖µ̂1:n(y1:n)− µ̂1:n(y
∗
1:n)‖∞ ≤ L‖y1:n − y∗1:n‖∞

where L = 8αn(1 + n log n)max{‖y1:n‖∞, ‖y1:n‖∞}(‖y1:n‖∞ + ‖y∗1:n‖∞) + 1.

To prove this statement, we will first need a lemma on the expert weights. It can be shown that the difference
between the normalised weights belonging to Algorithm 1 with respect to either y1:n or y∗1:n, as defined in (2.3),
can be bounded in the 1-norm. For this, we denote the vector of normalised weights used for prediction in (2.4) by
v̂t(y1:n) := (v̂

(1)
t (y1:n), . . . , v̂

(t−1)
t (y1:n)). Then also we have analogously vt(y1:n) := (v

(1)
t (y1:n), . . . , v

(t−1)
t (y1:n)).

Lemma 3.3. For all t = 1, . . . , n we have

‖v̂t(y1:n)− v̂t(y
∗
1:n)‖1 ≤ 8αt(1 + log t)‖y1:n − y∗1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞)

Proof. Note that

v
(i)
t (y1:n) = v

(i)
t−1(y1:n) exp

(
−αft−1(µ̂

(i)
t−1(y1:n))

)
= v

(i)
t−2(y1:n) exp

(
−αft−2(µ̂

(i)
t−2(y1:n))

)
exp

(
−αft−1(µ̂

(i)
t−1(y1:n))

)
= . . .

= v
(i)
i+1(y1:n) exp

(
−α

t−1∑
k=i+1

fk(µ̂
(i)
k (y1:n))

)
= v

(i)
i (y1:n) exp

(
−α

t−1∑
k=i+1

fk(µ̂
(i)
k (y1:n))

)

=
1

i
exp

(
−α

t−1∑
k=i+1

fk(µ̂
(i)
k (y1:n))

)
.
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Hence

∣∣∣v(i)t (y1:n)− v
(i)
t (y∗1:n)

∣∣∣ = 1

i

∣∣∣∣∣exp
(
−α

t−1∑
k=i+1

fk(µ̂
(i)
k (y1:n))

)
− exp

(
−α

t−1∑
k=i+1

fk(µ̂
(i)
k (y∗1:n))

)∣∣∣∣∣.
Let h(x) = e−αx and suppose without loss of generality that a :=

∑t−1
k=i+1 fk(µ̂

(i)
k (y1:n)) ≤

∑t−1
k=i+1 fk(µ̂

(i)
k (y∗1:n)) :=

b. Then by the mean value theorem, there exists some ζ ∈ [a, b] such that

|h(a)− h(b)| =
∣∣h′(ζ) (b− a)

∣∣ = |αh(ζ) (b− a)| ≤ α|b− a|

where the last inequality follows from the positiveness of a and b, and thus ζ ≥ 0. This in turn implies h(ζ) ≤ 1,
since α > 0. Filling in, we can write

∣∣∣v(i)t (y1:n)− v
(i)
t (y∗1:n)

∣∣∣ ≤ α

i

∣∣∣∣∣
t−1∑

k=i+1

fk(µ̂
(i)
k (y∗1:n))−

t−1∑
k=i+1

fk(µ̂
(i)
k (y1:n))

∣∣∣∣∣
=

α

i

t−1∑
k=i+1

∣∣∣∣∣∣
(
yk −

1

k − (i+ 1)

k−1∑
s=i+1

ys

)2

−

(
y∗k −

1

k − (i+ 1)

k−1∑
s=i+1

y∗s

)2
∣∣∣∣∣∣.

Set ak := yk− 1
k−(i+1)

∑k−1
s=i+1 ys and bk := y∗k−

1
k−(i+1)

∑k−1
s=i+1 y

∗
s , then we can write

∣∣a2k − b2k
∣∣ = |ak − bk||ak + bk|

where

|ak − bk| =

∣∣∣∣∣yk − 1

k − (i+ 1)

k−1∑
s=i+1

ys −

(
y∗k −

1

k − (i+ 1)

k−1∑
s=i+1

y∗s

)∣∣∣∣∣
=

∣∣∣∣∣yk − y∗k −
1

k − (i+ 1)

k−1∑
s=i+1

ys − y∗s

∣∣∣∣∣ ≤ 2‖y1:n − y∗1:n‖∞.

and also |ak + bk| ≤ |ak|+ |bk| ≤ 2‖y1:n‖∞ + 2‖y∗1:n‖∞. Filling back in, we see that

∣∣∣v(i)t (y1:n)− v
(i)
t (y∗1:n)

∣∣∣ ≤ 4α
t− (i+ 1)

i
‖y1:n − y∗1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞)

≤ 4α
t− i

i
‖y1:n − y∗1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞)

Taking the l1 norm

‖vt(y1:n)− vt(y
∗
1:n)‖1 ≤

t−1∑
i=1

4α
t− i

i
‖y1:n − y∗1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞)

= 4α‖y1:n − y∗1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞)
t−1∑
i=1

t− i

i

and by a similar integral trick as in the proof of Theorem 2.2, we see that
∑t−1

i=1
t−i
i ≤ 1 + t log t. Hence

‖vt(y1:n)− vt(y
∗
1:n)‖1 ≤ 4α(1 + t log t)‖y1:n − y∗1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞).
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Note that this is a bound on the unnormalised weights and we now handle the normalisation. We see that

∣∣∣v̂(i)t (y1:n)− v̂
(i)
t (y∗1:n)

∣∣∣ = ∣∣∣∣∣ v
(i)
t (y1:n)∑t−1

j=1 v
(j)
t (y1:n)

− v
(i)
t (y∗1:n)∑t−1

j=1 v
(j)
t (y∗1:n)

∣∣∣∣∣
=

∣∣∣∣∣ v
(i)
t (y1:n)

‖vt(y1:n)‖1
− v

(i)
t (y∗1:n)

‖vt(y∗1:n)‖1

∣∣∣∣∣
≤

∣∣∣∣∣v(i)t (y1:n)− v
(i)
t (y∗1:n)

‖vt(y1:n)‖1
+ v

(i)
t (y∗1:n)

(
1

‖vt(y1:n)‖1
− 1

‖vt(y∗1:n)‖1

)∣∣∣∣∣
≤

∣∣∣∣∣v(i)t (y1:n)− v
(i)
t (y∗1:n)

‖vt(y1:n)‖1
+ v

(i)
t (y∗1:n)

(
‖vt(y∗1:n)‖1 − ‖vt(y1:n)‖1
‖vt(y1:n)‖1‖vt(y∗1:n)‖1

)∣∣∣∣∣.
Taking the 1 norm of the inequality and using that ‖vt(y1:n)‖1 ≥ 1

t , we see by the reverse triangle inequality
that

‖v̂t(y1:n)− v̂t(y
∗
1:n)‖1 ≤

∥∥∥∥vt(y1:n)− vt(y
∗
1:n)

‖vt(y1:n)‖1
+ vt(y

∗
1:n)

(
‖vt(y∗1:n)‖1 − ‖vt(y1:n)‖1
‖vt(y1:n)‖1‖vt(y∗1:n)‖1

)∥∥∥∥
1

≤
‖vt(y1:n)− vt(y

∗
1:n)‖1

‖vt(y1:n)‖1
+

‖vt(y1:n)− vt(y
∗
1:n)‖1

‖vt(y1:n)‖1
≤ 2t‖vt(y1:n)− vt(y

∗
1:n)‖1

≤ 8αt(1 + t log t)‖y1:n − y∗1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞).

Proof of Theorem 3.2. Assume without loss of generality that ‖y1:n‖∞ ≤ ‖y∗1:n‖∞. For any t = 1, . . . , n

|µ̂t(y1:n)− µ̂t(y
∗
1:n)| =

∣∣∣∣∣
t−1∑
i=1

v̂
(i)
t (y1:n)µ̂

(i)
t (y1:n)− v̂

(i)
t (y∗1:n)µ̂

(i)
t (y∗1:n)

∣∣∣∣∣
=

∣∣∣∣∣
t−1∑
i=1

(v̂
(i)
t (y1:n)− v̂

(i)
t (y∗1:n))µ̂

(i)
t (y1:n) + v̂

(i)
t (y∗1:n)(µ̂

(i)
t (y1:n)− µ̂

(i)
t (y∗1:n))

∣∣∣∣∣.
Since µ̂

(i)
t denotes an averaging scheme, we see that

∣∣∣µ̂(i)
t (y1:n) + µ̂

(i)
t (y∗1:n)

∣∣∣ =
∣∣∣∣∣∣ 1

t− ti

t∑
k=ti+1

yk − y∗k

∣∣∣∣∣∣ ≤ 1

t− ti

t∑
k=ti+1

|yk − y∗k|

≤ 1

t− ti

t∑
k=ti+1

‖y1:n − y∗1:n‖∞ = ‖y1:n − y∗1:n‖∞.

Then, because v̂
(i)
t are normalised weights, clearly

∑t−1
i=1 |v̂

(i)
t (y∗1:n)| = 1. We also see that

∣∣∣µ̂(i)
t (y1:n)

∣∣∣ =
∣∣∣∣∣∣ 1

t− ti

t−1∑
k=ti

yk

∣∣∣∣∣∣ ≤ 1

t− ti

t−1∑
k=ti

|yk| ≤
1

t− ti

t−1∑
k=ti

‖y1:n‖∞ = ‖y1:n‖∞.
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Hence, using the triangle inequality

|µ̂t(y1:n)− µ̂t(y
∗
1:n)| ≤

∣∣∣∣∣
t−1∑
i=1

(v̂
(i)
t (y1:n)− v̂

(i)
t (y∗1:n))µ̂

(i)
t (y1:n) + v̂

(i)
t (y∗1:n)(µ̂

(i)
t (y1:n) + µ̂

(i)
t (y∗1:n))

∣∣∣∣∣
≤

t−1∑
i=1

∣∣∣v̂(i)t (y1:n)− v̂
(i)
t (y∗1:n)

∣∣∣∣∣∣µ̂(i)
t (y1:n)

∣∣∣+ ∣∣∣v̂(i)t (y∗1:n)
∣∣∣∣∣∣µ̂(i)

t (y1:n) + µ̂
(i)
t (y∗1:n)

∣∣∣
≤ ‖y1:n‖∞

t−1∑
i=1

∣∣∣v̂(i)t (y1:n)− v̂
(i)
t (y∗1:n)

∣∣∣+ ‖y1:n − y∗1:n‖∞

≤ 8αt(1 + t log t)‖y1:n − y∗1:n‖∞‖y1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞) + ‖y1:n − y∗1:n‖∞

where the last inequality follows from Lemma 3.3. Finally

‖µ̂1:n(y1:n)− µ̂1:n(y
∗
1:n)‖∞ ≤ 8αn(1 + n log n)‖y1:n − y∗1:n‖∞‖y1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖∞) + ‖y1:n − y∗1:n‖∞.

(3.3)

Setting L = 8αn(1 + n log n)‖y1:n‖∞(‖y1:n‖∞ + ‖y∗1:n‖) + 1 completes the proof.

3.3 Performance Guarantees with Dependent Errors

Having established the stability of the FLH algorithm which ensures that small perturbations in the input
data lead to correspondingly small changes in the output predictions we now return to our model framework.
Then, because the errors are the only source of randomness, we may define data which is close to yt and
m-dependent, in the m-dependence notation, by

y
(m)
t := θt + Z

(m)
t

where Z
(m)
t is defined as in (3.2).

Then, using this notation, we may adapt the results of Theorem 3.2 to our data model.

Corollary 3.4. For 1 ≤ t ≤ n, define yt = θt + Zt where |θt| ≤ B for some B > 0 and Zt are σ-subgaussian
random variables. Let 0 < δ < 1. Then∥∥∥µ̂1:n(y1:n)− µ̂1:n(y

(m)
1:n )

∥∥∥
∞

≤ OP(n
2+ 1

p log n∆p(m))

with probability 1− δ.

Proof. Recall that Lemma 2.5 implies that both ‖y1:n‖∞ and
∥∥∥y(m)

1:m

∥∥∥
∞

are bounded by C
√
log 2n

δ with prob-
ability 1 − δ for some 0 < δ < 1. Recall also that we have chosen α = 1

8C2 log 2n
δ

in Lemma 2.3 so that the

mapping y 7→ e−α(y−yt)2 is α-exp-concave with probability 1− δ. Then (3.3) can be rewritten as∥∥∥µ̂1:n(y1:n)− µ̂1:n(y
(m)
1:n )

∥∥∥
∞

≤ 8αn(1 + n log n)
∥∥∥y1:n − y

(m)
1:n

∥∥∥
∞
‖y1:n‖∞(‖y1:n‖∞ +

∥∥∥y(m)
1:n

∥∥∥
∞
) +

∥∥∥y1:n − y
(m)
1:n

∥∥∥
∞

≤ 1

C2 log 2n
δ

n(1 + n log n)2C2 log
2n

δ

∥∥∥y1:n − y
(m)
1:n

∥∥∥
∞

+
∥∥∥y1:n − y

(m)
1:n

∥∥∥
∞

= 2n(1 + n log n)
∥∥∥y1:n − y

(m)
1:n

∥∥∥
∞

+
∥∥∥y1:n − y

(m)
1:n

∥∥∥
∞

≤ O(n2 log n
∥∥∥y1:n − y

(m)
1:n

∥∥∥
∞
).
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We have by Markov’s inequality that

P
(
max
1≤t≤n

|yt| > K

)
≤

n∑
t=1

P (|yt| > K) ≤
n∑

t=1

‖yt‖pLp

Kp
≤ n

Kp
max
1≤t≤n

‖yt‖pLp .

Hence max1≤t≤n

∥∥∥yt − y
(m)
t

∥∥∥
Lp

= max1≤t≤n

∥∥∥Zt − Z
(m)
t

∥∥∥
Lp

≤ ∆p(m) implies

n2 log n
∥∥∥yt − y(m)

∥∥∥
∞

≤ OP(n
2+ 1

p log n∆p(m)) (3.4)

which completes the proof.

In order to exploit the m-dependence structure we have just created, we first need to partition the data into
m rows R1, . . . , Rm like so:

R1 y1 ym+1 · · · ylm+1

R2 y2 ym+2 · · · . . .
... . . . . . . · · · yn

Rm ym y2m · · ·
The idea is that we may run multiple parallel instances of FLH on each, now independent, row of data. Let us
formalise this.

Denote by ( n
m)i := b n

mc+ 1{⌊ n
m
⌋+i≤n}, then each row can be concisely defined as Ri := (ykm+i)

( n
m
)i

k=0 and we
may exploit the m-dependence structure to create

R
(m)
i :=

(
y
(m)
km+i

)( n
m
)i

k=0

where each R
(m)
i is an independent row of data.

We want to use R
(m)
1 , . . . , R

(m)
m for predictions. A naive approach is to simply use the ‘most recent indepen-

dently observed’ row for prediction. That is, we predict µ̂t using Algorithm 1 with Ri as input data where i is
chosen so that yt−m ∈ Ri. This allows us to exploit the independence properties of R(m)

1 , . . . , R
(m)
m and that yt

is independent of y(m)
t−m. Let us formalise this. We can define µ̂1:n(R1:m) element wise by

µ̂t(R1:m) := µ̂j(Ri)

for all t = 1, . . . , n where j and i are the unique j ∈ Z and i ∈ {1, . . . ,m} such that t = jm+ i.

Algorithm 2 Thinned-Follow-the-Leading-History (TFLH)
Input: Black box algorithm A, learning parameter α > 0, number of bins m

1: Init: m independent instances of the FLH algorithm, FLH1, . . . ,FLHm, each with learning parameter α
and black box algorithm A

2: for t = 1, . . . , n do
3: Determine the active bin index j = (t− 1) (mod m)
4: Obtain prediction µ̂t from instance FLHj

5: Instance FLHj observes yt

The draw-back to Algorithm 2 is that we are in effect thinning our data, and thus have less data on which to
make our predictions. For this reason, we should expect to see some sort of difference in performance between
this scheme and the independent case, however we see in Theorem 3.5 that this difference is quite small and
does not stop us from achieving the optimal cumulative error rate.

We are now ready to prove the main result of this work. The core idea of the proof will be to use a similar
argument as in the proof of Theorem 2.8, except this time the forecaster against which we compares ourselves
is the one obtained under the independent case regime.
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Theorem 3.5. Let n,m ≥ 1, σ > 0, and Cn > 0. Let θ1, . . . , θn ∈ R be any sequence such that TV (θ1:n) ≤ Cn

and |θ1| ≤ B. For 1 ≤ t ≤ n, let yt = θt + Zt where Zt are dependent identically distributed random variables
defined according to (3.1) which are furthermore σ-subgaussian. Suppose ∆p(m) = O(e−cm) for some c > 0
and p > 2. If moving average predictions are used as sub-routines of Algorithm 2, then

Rn(µ̂1:n(R1:m), θ1:n) ≤ O(n
1
3 (log n)2+

2
3C

2
3
n ).

Proof. We can rewrite

Rn(µ̂1:n(R1:m), θ1:n) =
n∑

t=1

E
(
(µ̂t(R1:m)− θt)

2
)

=

( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(Ri)− θj)

2
)

=

( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ) + µ̂j(R

(m)
i )− θj)

2
)

( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ) + µ̂j(R

(m)
i )− θj)

2
)

=

( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ))2

)
+ E

(
(µ̂j(R

(m)
i )− θj)

2
)

+ 2E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ))(µ̂j(R

(m)
i )− θj)

)
.

We can handle the first term by Theorem 3.2, the second term by Theorem 2.8, and the cross term by Cauchy-
Schwartz like so

Rn(µ̂1:n(R1:m), θ1:n) =

( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ))2

)
+ E

(
(µ̂j(R

(m)
i )− θj)

2
)

+ 2E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ))(µ̂j(R

(m)
i )− θj)

)
≤OP

(( n

m

)2+ 1
p
log n∆p(m)

)
+O

(( n

m

) 1
3
mC

2
3
n (log n)

2

)

+ 2

( n
m
)i∑

j=1

m∑
i=1

√
E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ))2

)
E
(
(µ̂j(R

(m)
i )− θj)2

)
≤OP

(( n

m

)2+ 1
p
log n∆p(m)

)
+O

(( n

m

) 1
3
mC

2
3
n (log n)

2

)
.

+ 2

√√√√√( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ))2

)√√√√√( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(R

(m)
i )− θj)2

)

≤OP

(( n

m

)2+ 1
p
log n∆p(m)

)
+O

(( n

m

) 1
3
mC

2
3
n (log n)

2

)

+ 2max


( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(Ri)− µ̂j(R

(m)
i ))2

)
,

( n
m
)i∑

j=1

m∑
i=1

E
(
(µ̂j(R

(m)
i )− θj)

2
) .
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Then, we obtain

Rn(µ̂1:n(R1:m), θ1:n) ≤OP

(( n

m

)2+ 1
p
log n∆p(m)

)
+O

(
n

1
3m

2
3C

2
3
n (log n)

2

)
.

Finally, by the assumption on ∆p(m), we obtain

Rn(µ̂1:n(R1:m), θ1:n) ≤OP

(( n

m

)2+ 1
p
e−cm log n

)
+O

(
n

1
3m

2
3C

2
3
n (log n)

2

)
.

It remains to optimise this bound with respect to m. We can do this by solving( n

m

)2+ 1
p
e−cm log n =

( n

m

) 1
3
mC

2
3
n (log n)

2 (3.5)

with respect to m.
The final bound consists of two terms: an approximation error from using m-dependent data, which decreases

exponentially with m, and a statistical error from data thinning, which increases polynomially with m. To
optimize the bound, we must choose m to balance these competing terms. Let us try to express m as the ansatz
m := b log n for some b > 0 and consider how (3.5) behaves asymptomatically. Filling this ansatz in, (3.5) can
be reduced to

n
2+ 1

p
−cb

(log n)
−1− 1

p = n
1
3 (log n)2+

2
3C

2
3
n

where we omit the constant terms. For b >
2+ 1

p

c , the left hand side vanishes as n → ∞. Conversely, for all
choices b < 1

pc , the left hand side grows faster than n2(log n)
−1− 1

p . However, notice that the asymptotic order

of magnitude of the right hand side is independent of b. Then for m = b log n, where b >
2+ 1

p

c , we find that

Rn(µ̂1:n(R1:m), θ1:n) ≤O
(
n

1
3 (log n)2+

2
3C

2
3
n

)
.



Chapter 4

Simulation Study

In this chapter we evaluate the results of Chapter 2 and Chapter 3 empirically in a simulation study. To do
this, we compare the theoretical bounds against our algorithm and ARROWS [2].

Before we begin however, we need to address a key limitation of FLH with respect to its formulation in
Algorithm 1. It may be shown that if the base black box algorithm used in FLH has a running time of V per
round, the total running time for FLH is then O(V n) [1]. This linear growth in complexity stems from the need
to keep track of so many experts and makes large-scale simulations computationally infeasible. To overcome
this limitation, there exists a more computationally efficient variant, the Improved Follow-the-Leading-History
(IFLH) algorithm, which runs in O(V log n) time [1]. However, preliminary simulations showed that the run
time of the standard FLH algorithm was manageable for the time horizons considered in our study. Therefore,
we opted for this implementation to align as closely as possible with the theoretical analysis in the preceding
chapters, leaving the practical implementation of TFLH with an IFLH backbone as a direction for future work.
See Appendix B for more discussion on the IFLH algorithm.

Consider also that there exists a computationally efficient implementation of moving averages with a running
time of O(1). To see this notice that each expert At need only keep track of 2 values: a running sum of the
observations it has seen and a count of how many observations it has seen. Then at each new time step t, the
expert performs two simple operations: it adds the latest observation to its running sum and increments its
count. The prediction is then the sum divided by the count. This update process takes constant time, regardless
of how many data points the expert has already processed.

4.1 ARROWS

We now introduce the algorithm against which we will benchmark FLH. The policy Adaptive Restarting
Rule for Online averaging using Wavelet Shrinkage (ARROWS), a slightly modified version of the soft thresh-
holding estimator introduced in [46], was first proposed by [2] for online forecasting of sequences of length n
whose total variation is bounded. In their paper, the authors showed that the ARROWS policy achieves the
optimal cumulative error bound Õ(n

1
3C

2
3
n ) with high probability. We chose ARROWS because it is also designed

for online nonparametric regression, achieves the optimal cumulative error bound, and runs in polynomial time.
Recall the oracle forecaster introduced Chapter 2, which relied on perfect information of the restart times for

moving average predictions. In FLH, we attempt to learn these restart times indirectly using meta-aggregation
principles; however, ARROWS takes a more direct approach. The core principle of ARROWS is to maintain
an online average of the observed data. In areas of low total variation, this works perfectly well, however this
strategy breaks down when the signal exhibits a sudden change or jump, violating the implicit assumption of
local constancy.

ARROWS determines when to perform a restart in an online fashion by employing a statistical test based on
the discrete Haar wavelet transform. At each time step t, the algorithm considers the segment of observations
in its current averaging window. The observations in the current window are mean-centered and transformed
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into the wavelet domain using the Haar basis. The Haar transform is particularly well-suited for this task as
its coefficients capture localized differences in the signal, which are directly related to its total variation.

The resulting Haar coefficients, which are contaminated by noise, are then denoised using a soft-thresholding
rule. This step, also known as wavelet shrinkage, effectively removes coefficients that are likely to be pure
noise while preserving those that represent the true signal. A weighted l1-norm of the denoised coefficients is
computed. This quantity serves as a lower bound for the total variation of the underlying signal within the
current window. If this lower-bound on the total variation exceeds a predefined threshold (which depends on the
noise level σ), the algorithm concludes that a change point has occurred. It then triggers a restart, discarding
the current averaging window and beginning a new one at the next time step.

This non-linear, data-adaptive restarting mechanism allows ARROWS to approximate the oracle forecaster
that knows the true change points and enables the algorithm to escape the fundamental limitations of linear
forecasters. A significant drawback, however, is that we require knowledge of noise level σ in order to run the
algorithm. A solution to this may be to reserve some data to estimate this value, but this is not ideal. We
however also require advance knowledge of the time horizon n for the soft-thresholding. For the purposes of
this simulation study, we will simply assume that both σ and n are known quantities ahead of time.

To define ARROWS properly we will need to introduce some notation.

• We let tB denote the start time of the current bin.

• We denote by pad0(ytB , . . . , yt) the vector (ytB − ȳtB :t, . . . , yt − ytB :t)
T which is zero-padded at the end

such that it is in Rk for k = 2l where we choose the smallest l ∈ Z for which the relation holds.

• We denote by T : Rk → Rk the element-wise thresholding of a vector with threshold τ := σ
√
β log n. Then

for x ∈ Rk

T (x) = (sign(x1)max{|x1| − τ, 0}, . . . , sign(xk)max{|xk| − τ, 0})⊤.
Here sign : R → {−1, 0, 1} is the sign function defined by sign(z) = (−1)1{z<0} for z ∈ R \ {0} and
sign(0) = 0.

• Let H denote the orthogonal discrete wavelet transform matrix of proper dimensions.

• Let Hx = α1:k = (α1, α2, . . . , αk)
⊤ ∈ Rk be the vector of Haar coefficients. Then the vector (α2, . . . , αk)

⊤

can be viewed as a concatenation of log2 k contiguous blocks represented by α[l], for l = 0, . . . , log2(k)−1.
Each block α[l] then contains 2l coefficients.

Algorithm 3 ARROWS [2]
Input: standard deviation σ > 0, time horizon n, learning parameter β > 24

1: Init: tB = 1, newBin = 1, y0 = 0.
2: for t = 1, . . . , n do
3: if newBin == 1 then
4: Predict µ̂tB

t = yt−1

5: else
6: Predict µ̂tB

t = ȳtB :(t−1)

7: Set newBin = 0, observe yt, and suffer loss ft(x
tB
t )

8: Set ỹ = pad0(ytB , . . . , yt) ∈ Rk

9: Set α1:k = T (Hỹ)

10: if 1√
k

∑log2(k)−1
l=0 2

l
2 ‖α1:k[l]‖1 >

σ√
k

then
11: Set newBin = 1
12: Set tB = t+ 1

As a final remark, we note that there exists a computationally efficient implementation of ARROWS which
reduces the time complexity from O(n2) to O(n log n), see Proposition 10 of [2].
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4.2 Data Generation

In this section, we discuss the method by which the synthetic data sets were generated.

4.2.1 Signal

We consider two regimes for signal generation, taking inspiration from [3]. The first is hard shifting. We
split the signal θ1, . . . , θn into N sections such that ni is the index of the start of section i. Then the value of θt
is constant within each chunk and we start with θ0 = 0. To go between chunks, we take independent samples
ϕ1, . . . , ϕN−1 ∼ N(0, ρ2) for ρ > 0 and set θni = θni−1 + ϕi. Then we find that TV (θ1:n) =

∑n
t=2 |θt − θt−1| =∑N−1

i=2

∣∣θni − θni−1

∣∣ =∑N−1
i=2 |ϕi − ϕi−1|.

The second regime is soft shifting which seeks to emulate a type of random walk where the underlying signal
changes continuously. Here we start at θ1 = 0 and then subsequently set θt = θt−1 + ζt with ζt ∼ N(0, t−η) for
some η > 0. Then we find that TV (θ1:n) =

∑n
t=2 |θt − θt−1| =

∑n
t=2 |ζt|.

4.2.2 Errors

Recall the definition of (3.1). By Lemma 3.1, we may take ϵt
iid∼ N(0, σ2) univariate normal for t = 1, . . . , n.

These will be our independent errors. Now to obtain dependent errors we set

Zt =
1

Lt

t∑
j=1

ϵj
(t− j + 1)p

(4.1)

where Lt :=
√∑t

j=1
1

(t−j+1)2p
is a normalising constant so that Var(Zt) = σ2 for all t = 1, . . . , n. The formulation

of (4.1) yields identically distributed dependent random errors with the crucial property that random variables
which are far apart are ’less’ dependent.

4.3 Results

We present in Figure A.1 and Figure A.2 example data sets generated according to the hard and soft-shift
regimes respectively. We take σ = 1, ρ = 2, η = 0.9, p = 1, and a time horizon of n = 1000. Furthermore, we
take n1 = 100 and ni = 200(i − 1) for all i ≥ 2. This is only done for cosmetic reasons as the total variation
within the first segment is 0, hence the cumulative error bound of Theorem 3.5 would not work in the first
segment.

We averaged the cumulative errors suffered over 15 runs by each algorithm, both in the independent and
dependent setting, to obtain Figure 4.1 and Figure 4.2.
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Figure 4.1: Cumulative squared error of FLH, TFLH, and ARROWS together with the upper bound of order
O(n

1
3C

2
3
n ) for dependent and independent errors in the hard shifting regime. These results are the averages of

15 identical simulations. The hyperparameters chosen were α = 0.1 and β = 24.1.

Figure 4.2: Cumulative squared error of FLH, TFLH, and ARROWS together with the upper bound of order
O(n

1
3C

2
3
n ) for dependent and independent errors in the soft shifting regime. These results are the averages of

15 identical simulations. The hyperparameters chosen were α = 0.1 and β = 24.1.

In the i.i.d. setting (left), FLH performs exceptionally well, however most importantly, the cumulative error
curves of each algorithm grow sub-linearly and closely follow the theoretical Õ(n1/3) rate, confirming their near-
optimality. The performance of TFLH is slightly worse, which is expected because the data thinning approach
is unnecessary in the independent case and results in a smaller effective sample size for each expert.

The standard FLH algorithm, however, performs noticeable worse with dependent noise (right) and here we
see the benefits of the thinning regime. This drop in performance is exaggerated if we increase the dependencies
between errors, for example if we take p = 0.8 in (4.1), as seen in Figure 4.3.
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Figure 4.3: Cumulative squared error of FLH, TFLH, and ARROWS together with the upper bound of order
O(n

1
3C

2
3
n ) for dependent and independent errors in the hard shifting regime. The hyperparameters chosen were

α = 0.1 and β = 24.1.

It is interesting to note, however, that FLH still appears to nonetheless respect the sub-linear cumulative
error bound, indicating that there may be another method by which we may replicate the results of Chapter 3.



Chapter 5

Conclusion and Future Work

This thesis addresses a gap in the literature: the presence of temporal dependence in the error structure of
online nonparametric regression models. While the problem of sequentially estimating a signal with bounded
total variation from noisy observations has been extensively studied, the vast majority of existing literature
operates under the assumption of independent noise. This assumption may fail in real-world applications where
observations are subject to correlated fluctuations. Our work confronts this gap directly, investigating whether
methods that are minimax optimal in the independent setting can be extended to the dependent setting while
retaining their performance guarantees.

The central contribution of this work is the development and analysis of the Thinned-Follow-the-Leading-
History (TFLH) algorithm, a modification of the Follow-the-Leading-History (FLH) algorithm. We began
by reviewing the existing literature for the independent noise setting in Chapter 2 and established that the
FLH algorithm indeed achieves the minimax optimal cumulative error rate of Õ(n1/3C

2/3
n ). Unfortunately,

the proof techniques of Chapter 2 are not directly extendable to the dependent setting when we introduce
interdependencies among the Zt error terms. At a heuristic level, dependencies in the error terms can mislead
the weight-updating mechanism of FLH, degrading its performance.

To overcome this, the TFLH algorithm is introduced as an aggregation of many instances of FLH over
data that has been split into multiple streams. By partitioning the data stream into m ≈ log n independent
sub-streams, we effectively break the short-range correlation structure. The core of our theoretical contribution,
presented in Chapter 3, shows that this approach is not merely a heuristic but a principled method that achieves
statistical optimality. We demonstrated that under mild assumptions on the decay of long-range dependence,
quantified using a physical dependence measure, the TFLH algorithm successfully mitigates the impact of
correlated errors. The main theoretical result of this thesis is that TFLH achieves a cumulative error rate
of Õ(n1/3C

2/3
n ) with high probability, thereby matching the minimax optimal rate for the independent case.

These results are furthermore corroborated in the simulation study conducted in Chapter 4, where we show that
TFLH may even outperform FLH in high-dependence settings, demonstrating empirically that the statistical
error from data thinning may be outweighed by the benefit of mitigating dependence among errors.

Despite these positive results, the findings of this work are only a preliminary step in this field. First, our
analysis relied on a specific causal representation of the dependent noise process and assumptions on the decay of
its physical dependence measure. Future work could explore the performance of TFLH under different, perhaps
more general, dependence frameworks, such as β-mixing conditions as in [22], to broaden the applicability of
the method. Additionally, future research could investigate the properties of TFLH for more general function
classes such as Hölder or Sobolev spaces, as in [40].

Second, while TFLH does achieve the minimax cumulative error bound, the data thinning scheme necessarily
reduces the statistical accuracy of its predictions. There may exist a method to avoid the need for TFLH by
first constructing estimators for the covariance matrix of the errors, as in [20, 21], and running the standard
FLH algorithm with this additional information. The challenges with this method are twofold. First, how do
we iteratively update such a covariance matrix estimate in the online setting? Second, how can this information
best be used in an algorithm that is a meta-aggregation of moving averages?
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Finally, TFLH achieves optimality for a number of partitions m ≈ log n, but the optimal constant scaling
in a finite-sample setting was not deeply investigated. The choice of m represents a crucial trade-off between
mitigating dependence and retaining statistical power, and a more adaptive, data-driven method for select-
ing this parameter could significantly enhance the algorithm’s practical performance. Furthermore, while the
simulation study validated our theoretical claims, it was conducted using the standard FLH algorithm for its
sub-routines. The more computationally efficient IFLH, see Appendix B, which would be necessary for truly
large-scale problems was not investigated. This highlights a gap between the current theoretical proposal and
a fully practical, scalable implementation.

In summary, this thesis has contributed towards a more robust theory of online nonparametric regression. By
demonstrating that optimal performance guarantees may be achieved even in the presence of dependent noise,
we have shown that the power of adaptive online algorithms is not confined to idealized settings. The proposed
TFLH algorithm provides a theoretically and empirically sound method for handling a common feature of real-
world data, paving the way for more reliable and effective sequential estimation in non-stationary environments.
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Appendix A

Plots

Figure A.1: Sample data generated according to the hard shift regime with independent and dependent noise
respectively together with the underlying signal.

Figure A.2: Sample data generated according to the hard shift regime with independent and dependent noise
respectively together with the underlying signal.
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We can visually see that the presence of interdependence within the noise makes prediction of the underlying
signal much more difficult. Take for example the half-way point of Figure A.2 - the signal is not even ’covered’
by the actual data when the errors are dependent.

Now Figure A.3 and Figure A.4 are examples of predictions by the 3 algorithms of interest for the data in
Figure A.1 and Figure A.2.

Figure A.3: Predictions generated according to FLH, TFLH, and ARROWS for data generated according to
the hard shift regime together with the underlying signal.

Figure A.4: Predictions generated according to FLH, TFLH, and ARROWS for data generated according to
the soft shift regime together with the underlying signal.



Appendix B

Improved Follow-the-Leading-History

Algorithm 4 Improved Follow-the-Leading-History (Updated Raj 2020)
Input: black box algorithm A, learning parameter α > 0

1: Init: Weight vector v0 = (v
(1)
0 , . . . , v

(n)
0 ) = (0, . . . , 0)

2: for t = 1, . . . , n do
3: Start a new instance of algorithm A denoted by At and assign the weights v

(t)
t = 1

t and v̂
(t)
t = 1

t
4: Define τt := t+ 2k where k := min{k ≥ 0 : ck > 0} and t :=

∑∞
i=1 ck2

k

5: Define the set of active experts
St := {1 ≤ i ≤: τi > t− 1} (B.1)

6: Normalise the weight of each expert i ∈ St \ {t} so that

v̂
(i)
t =

v
(i)
t∑

j∈St\{t} v
(j)
t

(B.2)

7: Receive the prediction µ̂
(i)
t from each black box algorithm Ai, i ∈ St \ {t}

8: Predict
µ̂t =

∑
i∈St\{t}

v̂
(i)
t µ̂

(i)
t . (B.3)

and observe yt ∈ R.
9: Set v

(t)
t+1 = v

(t)
t and update the weights for each i ∈ St \ {t}

v
(i)
t+1 = v

(i)
t exp

(
−αft(µ̂

(i)
t )
)
.

The intuition behind why IFLH works is that experts which are close to each other, i.e. starting from very
close time steps, will give very similar predictions and furthermore that the accuracy of any expert decreases as
they move further and further away from the present. As a result, we are often ’double-counting’ and keeping
track of moving averages which are either redundant or reach so far back into the past that they cannot hope
to meaningfully contribute to the final prediction. Then IFLH implements a scheme by which we may prune
the set of active experts at each time step, maintaining only a sparse, strategically chosen subset. The trick to
make this work is that the method by which experts are pruned is deliberately not random, as seen in step 4
and 5 of Algorithm 4. Instead, it is a deterministic process designed to ensure that the set of active experts
remains ’well-spread’ across the history of the data stream. We can see the properties of the pruning process
in Proposition B.1, the proof of which may be found in Appendix B of [1].
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Proposition B.1. [1] Let St be defined as in (B.1). Then St enjoys the following properties:

1. for all s ≥ t, we have [s, (s+ t)/2] ∩ St 6= ∅,

2. for all t = 1, . . . , n we have |St| = O(log n),

3. for all t = 1, . . . , n, we have St+1 \ St = {t}.

As a consequence of this pruning of active experts, the running time of the IFLH algorithm is O(V log n)
[1], a significant improvement that makes large-scale simulations much more feasible. Since we found a O(1)
running time implementation of moving average sub-routines, this gives the algorithm a O(log n) running time.

Note that IFLH is able to sparsify the set of experts whilst still retaining the same regret bounds as FLH.
Indeed if FLH achieves a regret of R(n) over n rounds, then IFLH will have an expected regret of O(R(n) log n),
see [1], Theorem 4.1. That being said, the results of Chapter 2 and Chapter 3 were obtained for FLH and while
the rates may be the same minus a log n factor, experimental results showed that IFLH nonetheless performed
significantly worse than FLH. For these reasons, we will conduct our simulation study using FLH and keep the
time horizon relatively small.
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Equivalence of FLH Formulations

The following is the formulation of the FLH algorithm as it is written in [3].

Algorithm 5 Follow-the-Leading-History (Raj et al., 2020) [3]
Input: black box algorithm A, learning parameter α > 0

1: Init: Weight vector v0 = (v
(1)
0 , . . . , v

(n)
0 ) = (0, . . . , 0)

2: for t = 1, . . . , n do
3: Start a new instance of algorithm A denoted by At and assign the weight v̂

(t)
t = 1

t
4: Normalise the weight of each expert i ∈ {1, . . . , t− 1} so that

v̂
(i)
t =

(
1− 1

t

)
v
(i)
t∑t−1

j=1 v
(j)
t

(C.1)

5: Observe xt and receive the prediction µ̂
(i)
t from each black box algorithm Ai, i ∈ {1, . . . , t− 1}

6: Predict

µ̂t =

t−1∑
i=1

v̂
(i)
t µ̂

(i)
t (C.2)

and observe yt ∈ R
7: Update the weights for each i ∈ {1, . . . , t− 1}

v
(i)
t+1 = v

(i)
t exp

(
−αft(µ̂

(i)
t )
)
= v

(i)
t exp

(
−α(yt − µ̂

(i)
t )2

)
.

It can quickly be shown that the estimator produced by Algorithm 5 is

µ̂R
t =

t−1∑
i=1

v̂
(i)
t µ̂

(i)
t

=

t−1∑
i=1

(
1− 1

t

)
v
(i)
t∑t−1

j=1 v
(j)
t

µ̂
(i)
t

=
t−1∑
i=1

(
1− 1

t

) v
(i)
t−1 exp

(
−α

(
yt−1 − µ̂

(i)
t−1

)2)
∑t−1

j=1 v
(j)
t−1 exp

(
−α

(
yt−1 − µ̂

(j)
t−1

)2) µ̂
(i)
t .

Now there are two issues. The first has to do with how the weights of each expert are initialised. Algorithm 5
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initialises each expert At with the weight v̂
(t)
t = 1

t , but it is the unnormalised v
(t)
t which is updated in step 7 of

the algorithm and then the updated v
(i)
t+1 is used to find the normalised v̂

(i)
t+1. However, there is no initialisation

of v(t)t . Let us examine why this happens.
At round t = k, the algorithm Ak is initialised with hat weight v̂

(k)
k = 1

k . Then in step 5, we see that this
expert does not give us a prediction at this round. This makes sense when we consider that each expert is a
moving average. Then at this round, this expert would just be the average of the current data point, but we
only observe this data point in a later step. If k = 2, then A1 gives us prediction y1 and A2 has no data with
which to predict. Since Ak does not give us a prediction at round t = k, we do not perform the weight update
in step 7 of the algorithm for the weights of Ak.

Now, at round t = k+1, Ak enters the set of active experts from which we receive a prediction and receives
the normalised weight we see in (C.1). However, note the normalisation constant includes the weight v

(k)
k+1, but

the only weight we have initialised for Ak is v̂
(k)
k . So we need to initialise v

(k)
k+1 =

1
k in step 3 at round t = k+1.

The solution to this is to initialise v
(k)
k = 1

k and v̂
(k)
k = 1

k in step 3 for round t = k. Then, in round t = k

we also perform the weight update v
(k)
k+1 = v

(k)
k during step 7. The reason for this redundancy is that we still

require v̂
(k)
k+1 =

1
k+1 for the proof of Lemma 2.7.

The second issue becomes more clear once we examine the original formulation proposed by [1].

Algorithm 6 Follow-the-Leading-History (Hazan and Seshadhri, 2007) [1]
Input: black box algorithm A, learning parameter α > 0

1: Init: A1, . . . ,An instances of A and weight vector v0 = (v
(1)
0 , v

(2)
0 , . . . , v

(n)
0 ) = (1, 0, . . . , 0).

2: for t = 1, . . . , n do
3: Observe xt and receive the prediction µ̂

(i)
t from each black box algorithm Ai, i ∈ {1, . . . , t}

4: Predict µ̂t =
∑t

i=1 v
(i)
t µ̂

(i)
t and observe yt ∈ R

5: Set for each i ∈ {1, . . . , t}

v̂
(i)
t+1 =

v
(i)
t e−αft(µ̂

(i)
t )∑t

j=1 v
(j)
t e−αft(µ̂

(j)
t )

=
v
(i)
t e−α(yt−µ̂

(i)
t )2∑t

j=1 v
(j)
t e−α(yt−µ̂

(j)
t )2

.

6: Set v
(t+1)
t+1 = 1

t+1 and update the weights for each i ∈ {1, . . . , t}

v
(i)
t+1 =

(
1− 1

t+ 1

)
v̂
(i)
t .

It can quickly be shown that the estimator produced Algorithm 6 is

µ̂H
t =

t∑
i=1

v
(i)
t µ̂

(i)
t (C.3)

=

t−1∑
i=1

(
1− 1

t

)
v̂
(i)
t µ̂

(i)
t + v̂

(t)
t µ̂

(y)
t

=

t−1∑
i=1

(
1− 1

t

) v
(i)
t−1 exp

(
−α

(
yt−1 − µ̂

(i)
t−1

)2)
∑t−1

j=1 v
(j)
t−1 exp

(
−α

(
yt−1 − µ̂

(j)
t−1

)2) µ̂
(i)
t +

1

t
µ̂
(t)
t . (C.4)

The key difference between µ̂R
t and µ̂H

t is the last term. Examining why there is this discrepancy reveals the
second issue - the weights v̂(i)t of Algorithm 5 are not actually normalised weights in the sense that

∑t−1
i=1 v̂

(i)
t 6= 1.
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The reason for this is that we have this
(
1− 1

t

)
factor when we normalise v

(i)
t and in the Algorithm 6 this

factor’s purpose is to account for the last term in (C.4) having a weight of 1
t . However we do not use this term

immediately in the same round in Algorithm 5, we have instead t − 1 terms. Instead the defined v̂
(k)
k = 1

k is
first used in round t = k + 1, however it is also then immediately used in the normalisation in this round. So
in fact the sum of our weights at t = k + 1 is off by a term of 1

k .

The solution to this is to rewrite step 4 so that our normalised weights do indeed sum to 1. However before
we do this, we need to add one extra alteration to the algorithm - we add to step 4 that v̂

(t−1)
t = v̂

(t−1)
t−1 = 1

t−1 .
Again, this is another redundant update, however we still require that v̂

(t)
t = 1

t for the proof Lemma 2.7. Now,
(C.1) may be rewritten as

v̂
(i)
t =

(
1− 1

t− 1

)
v
(i)
t∑t−2

j=1 v
(j)
t

for each i ∈ {1, . . . , t− 2}. In this way we see that

t−1∑
i=1

v̂
(i)
t =

t−2∑
i=1

(
1− 1

t− 1

)
v
(i)
t∑t−2

j=1 v
(j)
t

+
1

t− 1
= 1− 1

t− 1
+

1

t− 1
= 1

as required.
It remains to show that the estimator produced by Algorithm 1 is indeed equivalent to the Algorithm 6

estimator. For convenience, we recall Algorithm 1 here.

Algorithm 7 Follow-the-Leading-History [3, 1]
Input: black box algorithm A, learning parameter α > 0

1: Init: Weight vector v0 = (v
(1)
0 , . . . , v

(n)
0 ) = (0, . . . , 0)

2: for t = 1, . . . , n do
3: Start a new instance of algorithm A denoted by At and assign the weights v

(t)
t = 1

t and v̂
(t)
t = 1

t .
4: Normalise the weight of each expert i ∈ {1, . . . , t− 2} so that

v̂
(i)
t =

(
1− 1

t− 1

)
v
(i)
t∑t−2

j=1 v
(j)
t

(C.5)

and update v̂
(t−1)
t = v̂

(t−1)
t−1 .

5: Receive the prediction µ̂
(i)
t from each black box algorithm Ai, i ∈ {1, . . . , t− 1}.

6: Predict

µ̂t =

t−1∑
i=1

v̂
(i)
t µ̂

(i)
t . (C.6)

and observe yt ∈ R.
7: Set v

(t)
t+1 = v

(t)
t and update the weights for each i ∈ {1, . . . , t− 1}

v
(i)
t+1 = v

(i)
t exp

(
−αft(µ̂

(i)
t )
)
.
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Now, it can be quickly show that

µ̂
Rupdated
t =

t−1∑
i=1

v̂(i)µ̂
(i)
t

=

t−2∑
i=1

(
1− 1

t− 1

)
v
(i)
t∑t−2

j=1 v
(j)
t

µ̂
(i)
t + v̂

(t−1)
t µ̂

(t−1)
t

=

t−2∑
i=1

(
1− 1

t− 1

) v
(i)
t−1 exp

(
−α

(
yt−1 − µ̂

(i)
t−1

)2)
∑t−2

j=1 v
(j)
t−1 exp

(
−α

(
yt−1 − µ̂

(j)
t−1

)2) µ̂
(i)
t +

1

t− 1
µ̂
(t−1)
t .

Now, we recall that

µ̂H
t =

t−1∑
i=1

(
1− 1

t

) v
(i)
t−1 exp

(
−α

(
yt−1 − µ̂

(i)
t−1

)2)
∑t−1

j=1 v
(j)
t−1 exp

(
−α

(
yt−1 − µ̂

(j)
t−1

)2) µ̂
(i)
t +

1

t
µ̂
(t)
t .

It seems now that we are back where we stared since µ̂H
t has this extra µ̂

(t)
t term with weight 1

t whereas
µ̂

Rupdated
t assigns the weight 1

t−1 to µ̂
(t−1)
t , and on top of this we have this

(
1− 1

t

)
factor in one and

(
1− 1

t−1

)
in

the other, however these two formulations are now practically equivalent. The crux of the equivalence argument
lies in (C.6) and step 4 of the Algorithm 6, which is (C.3).

We see that Algorithm 6 is using k experts at round t = k, whereas the Algorithm 1 is using k−1 experts for
predictions. This difference is negligible when talking about asymptotic behaviours as we do in our cumulative
error bounds. Furthermore, we are dealing with moving averages. At t = 1, we have not yet observed y1, so A1

cannot make a prediction. Only at t = 2, when we have just observed y1 in the previous round, may A1 make
the prediction µ̂

(1)
2 = y1.

As a result, the amount of experts at round t = k from which we receive a prediction is k and k − 1 for
Algorithm 6 and Algorithm 1 respectively. This then informs the weight of our most recent expert, which is
then either 1

k or 1
k−1 depending on the number of active experts. This is because in Algorithm 6, at round t = 2,

we only receive a prediction from A1, so its weight must be 1
2−1 = 1 - by contrast in Algorithm 6, we receive

predictions from A1 and A2, so the most recent expert, A2, receives the weight 1
2 . Then finally, this ’most

recent’ weight informs our normalisation factor - either
(
1− 1

t

)
or
(
1− 1

t−1

)
for Algorithm 6 and Algorithm 1

respectively. In this way we see that µ̂H
t is just µ̂

Rupdated
t one round later.
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