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Summary 
 
The growing international air travel demand implies capacity challenges for airports worldwide. 
Conventional baggage handling systems are a critical element of airport operations determining 
the handling capacity of the whole airport. Baggage handling systems are currently unable to 
properly adapt to demand fluctuations in the aviation industry. By investigating the state of the 
art of both baggage handling and transport robot systems, the Baggage Robot Concept is 
introduced, which combines the two systems. The proposed Baggage Robot Concept uses 
autonomous and individual transport robots to make the floor plan and desired capacity of 
airport baggage handling systems more dynamic.  
 

The floor layout of the baggage handling area can be adjusted easily, because the Baggage Robot 
Concept uses electromagnetic induction in the floor of the baggage handling area to charge the 
batteries of the robots. This also means that the charging infrastructure does not constitute any 
obstacle for transport robots in motion. The transport robots can thus transport bags over the 
shortest paths possible between the entrances and exits of the baggage handling system. When a 
number of robots have to perform their transport task simultaneously, there is a risk of collision 
between robots. Two collision avoidance measures are defined to prevent actual collisions: (i.) 
stopping and resuming policy: in case of an imminent side collision, (ii.) turn, (wait) and continue 
policy: in case of an imminent frontal collision.  
 

By invoking the collision avoidance measures when collisions are imminent, deadlocks are 
avoided too. To realize abovementioned elements in the Baggage Robot Concept, a hybrid 
control architecture is identified to be most suitable. The hybrid control is an aggregation of a 
decentralized control architecture necessary to provide the individual robots with decision 
authority and a centralized control architecture necessary to improve the performance of the 
system as a whole. This hybrid control architecture is suitable for the Baggage Robot Concept as 
it increases the robustness, scalability, flexibility and performance of the system.  
 

To evaluate the performance of the Baggage Robot Concept, key performance indicators were 
formulated. When the Baggage Robot Concept performs as well or even better than the 
conventional baggage handling system, the Baggage Robot Concept is found to be a feasible 
addition to or replacement of a conventional baggage handling system. Under the assumption 
that transport robots provide most value in the sorting process, an agent-based simulation model 
is developed to test the performance of the sorting process of this Baggage Robot Concept on a 
medium-sized airport operating in a point-to-point network.  
 

By implementing the Baggage Robot Concept, a step is made in dynamically altering the floor 
plan and desired capacity of airport baggage handling systems. The performance of this Baggage 
Robot Concept has been reflected upon using results from the simulation model. Exact design 
parameters or values for these parameters cannot yet be given due to the limitations of the 
developed simulation model and the lack of reliable data available for a far-future concept. Yet, 
the number of robots and the layout configuration were found to be the most important design 
parameters. The number of robots should be such that the average process time of bags does not 
significantly decrease when introducing an additional robot to the system. The layout should be 
such that the route the robots travel is as short as possible, while at the same time ensuring the 
robots have enough manoeuvre space to reduce the number of possible conflicts. Depending on 
the number of bags to be handled and the arrival pattern of these bags, a different minimum 
number of robots is necessary. When the largest emphasis is put on the performance of the 
Baggage Robot Concept in terms of the percentage of mishandled bags, more robots are needed 
than strictly necessary to handle all incoming bags in time. Depending on the interest of the 
owner of the Baggage Robot Concept, the importance of decisions on acquisition costs or 
performance can shift.  
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Future research should investigate the success of the Baggage Robot Concept as a supplement to 
or a replacement of conventional baggage handling systems. A suggestion for future research is 
to explore the technical feasibility of the proposed robot types. One important starting point can 
be to research the sensing capabilities of the transport robots to gain insight into the technical 
possibilities of these robots. To do so, inspiration can be taken and lessons can be learned from 
innovations in the field of autonomous cars. Although the autonomous car technology is still 
being developed, it can help to improve the individual transport robot systems. In this future 
research, timescale and cost estimations for research and development can help in estimating on 
which timescale the proposed baggage robot concept could be built into a prototype system to 
further test it. 
 

This thesis has been a first exploration in integrating autonomous robot systems in baggage 
handling systems, contributing to future proof and cost efficient airport operations.   
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1. Introduction 
People want to fly. Not only do people want to fly, the air transport industry provides vital 
economic benefits and can be considered the engine of global socio-economic growth (The 
World Bank, 2017). By creating direct and indirect employment, supporting tourism and local 
businesses, and stimulating foreign investment and international trade, the industry is of great 
importance for economic development (ATAG, 2005). When it comes to business and leisure air 
travel, people travel with their belongings which can be checked-in to a flight as well. These 
checked-in belongings – referred to as checked-in baggage – play the central role in this research. 
This chapter starts by exploring the growing air transport industry which leads to the research 
problem as this growth has implications on the capacity of airports.  
 

1.1 Growing Air Travel Demand 
Ever since the first jet airliner took off in 1949, the use of commercial aviation has grown. No 
other major transport mode yet was able to match this growth. The growing demand for air 
travel influences the global economy by making it possible for millions of people and billions of 
dollars’ worth of goods to rapidly move around the world (ATAG, 2005). This research focuses 
on passenger air travel from civil airports.  
 

Data from The World Bank shows the total scheduled traffic carried by all air carriers worldwide, 
both international and domestic. The source for this data is the International Civil Aviation 
Organization, abbreviated to ICAO. The data shows that since 1970, the number of passengers 
carried worldwide has increased from around 310.4 million in 1970 to almost 3.7 billion in 2016. 
In this period, the growth trend has continued with an average of 5.76% per year, with a 
maximum of 16.8% in 2010 and a minimum growth of 0.82% in 1998. The trend upwards is also 
visible in Figure 1, in which a few irregularities are found, explained by the six years that show a 
decrease in the number of passengers carried, with a low of -1.69% in 2002 (The World Bank, 
2017). 

 
Figure 1 - Passengers Carried Worldwide in Civil Aviation, data from (The World Bank, 2017) 

 

Not only the past shows an upward trend in the popularity of air transport as a means of 
travelling, significant growth in the future is also expected. The International Air Transport 
Association (IATA) keeps statistics on airline traffic data. IATA expects the yearly number of air 
travellers to roughly double in the period 2016-2035, from 3.8 to 7.2 billion. In her two-decade 
forecast, IATA presents three possible scenarios. The central scenario – the blue line in Figure 2 
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– foresees the doubling of passengers to 7.2 billion in 2035, under the assumption of an annual 
compound average growth rate (CAGR) of 3.7%. However, a decrease of the CAGR to 2.5% is 
expected if the current trend towards trade protectionism gets stronger and continues in the long 
term. This boils down to 5.8 billion air travellers in 2035 – the green line in Figure 2. The final 
scenario is the opposite of the protectionist scenario. In this scenario – the pink line in Figure 2 -
trade liberalisation is assumed. This scenario implies a growth in demand up to three times the 
2015 level (IATA, 2016). This 20-year forecast shows that growth is expected in every scenario 
and the aviation industry needs to be ready to deal with it.  
 

 
Figure 2 - Forecast Scenarios (IATA, 2016) 

 

The demand for air travel shows a growing trend. However, these yearly total numbers do not 
show variations in demand over time within a year. By looking at variations in demand in the 
course of a year, the challenge of demand management is illustrated. Like all parties in the 
tourism industry, airports have to deal with major fluctuations in demand. Airports popular 
among tourists are more dependent on leisure demand and have to deal with larger differences 
between peak and off-peak periods. The growing popularity of low-cost carriers and the gradual 
shift in holiday preferences to more frequent short breaks flatten the peaky curve of leisure 
demand somewhat.  
 

Figure 3 shows the numbers of passengers (in thousands) handled in the top 30 airports in 
Europe per month in 2016. The peak at most European airports is in the July-September period, 
when all countries have their summer breaks. The changing demand patterns over the months 
are influenced by tourism and the combination of airline and passenger profiles. These 
fluctuations indicate how airport infrastructures are utilised during the year and that handling 
peak flows must be incorporated in the design of these infrastructures. This implies that when 
the airport is able to handle peak flows in peak periods, it also has to deal with the under-
utilisation of the infrastructure during off-peaks, leading to an inefficient operational cost 
structure (Papatheodorou, Graham, & Forsyth, 2016).   
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Figure 3 - Overview of thousand passengers handled in top 30 airports in Europe on a monthly basis. Data from Eurostat 

(Eurostat, n.d.) 

Changing an entire baggage handling system to cope with increasing demand is not an easy job. A 
striking example can be found at Denver International Airport. In the 1990’s the airport realized 
that baggage handling is a critical element in an airport as big as Denver’s (Montealegre & Keil, 
2000). They decided to change the conventional baggage handling system into an automated 
system, which was supposed to be the world’s largest automated airport baggage handling system, 
strengthening Denver’s position as an air transport hub. By automating the baggage handling, the 
turnaround time was to be reduced to only 30 minutes. However, the Denver project became a 
well-known story on how technology projects can go wrong. Denver airport suffered from a 
combination of many failures such as the underestimation of the complexity of the project, a lack 
of planning, poor design, people working on their own part without communicating with other 
relevant parties and a lack of risk management. The lack of knowledge within the construction 
party combined with repeatedly ignored expert advice was the main cause of the project resulting 
in a failure (Calleam Consulting Ltd, 2008).   
 

1.2 Research Problem: Implications of Growing Air Travel Demand 
International air travel demand has been increasing for many years now and forecasts show that 
the growth in air travel will also be substantial in the future (Graham & Metz, 2017). This implies 
challenges for airports worldwide because main airports have difficulties matching their current 
capacity with the ever-increasing air travel demand (Mota & Boosten, 2011; Sun & Schonfeld, 
2015). This is true for growing demand on a yearly basis and also for fluctuating demand on a 
monthly or seasonal basis. At airports worldwide elements such as runways, terminals, air traffic 
control and more need to be expanded to cope with the growing numbers of passengers (IATA, 
2016). One of the critical elements determining the capacity of an airport is the baggage handling 
system (Cavada, Cortés, & Rey, 2017). A traditional baggage handling system, or BHS, consists of 
a complex system of conveyor belts with many connected elements. The rigid nature of these 
conveyor belts makes the system very laborious and lengthy to implement, and also incapable of 
adapting to changing circumstances. It is not an easy job to relocate the capacity of the BHS at 
the airport, neither is it possible to easily scale the systems up or down. This, in combination with 
the long-term uncertainty of demand, makes it impossible for the conventional baggage handling 
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system to properly adapt to the seasonal demand peaks of the aviation industry. Currently, 
baggage handling systems are ‘oversized by design’: they have spare capacity to be able to handle 
growth in passenger numbers and to allow for failures in parts of the system. This prevents the 
need for alterations to the implementation as much as possible, but comes with an undesirable 
cost as a result of having overcapacity for many years. This leads to a need for research that 
focuses on the development of a completely new baggage handling concept at airports, to cope 
with these challenges and to be less dependent on the rigid conveyor belt systems. This new 
baggage handling concept must provide ‘dynamic capacity’ and eliminate as much as possible the 
need to invest in overcapacity that will be not be used for a number of years.  
 

1.2.1 Improving Baggage Handling Systems through Dynamic Capacity Solutions 
The idea for a completely new way of transporting baggage over an airport has been put forward 
by a European research project, called the 2050+ Airport, which is sponsored by the European 
Commission (European Commission, n.d.). The research group envisions a future airport on 
which small robots transport individual baggage items across the airport on a point-to-point 
basis. By doing so, the baggage handling process could become more flexible and simple, but this 
comes at a cost. Taking into consideration the forecasts showing that the growth in air travel will 
also be substantial in the future (Graham & Metz, 2017), the need for research on this concept is 
born. 
 

An example of this new way of transporting baggage that seems interesting to research is the so-
called BagBot concept. BagBot is a concept based on the use of individual transport robots that 
allows a baggage handling system to be implemented in a flexible and scalable way. These robots 
provide point-to-point transport of baggage items and have the benefit that they offer flexibility, 
scalability and (re)prioritization possibilities, due to the autonomous nature of robot units. In this 
concept, the robots replace the conventional conveyor belts in the baggage handling system. 
Applying these robots in a BHS environment should, in theory, enable the BHS to accommodate 
the growth or seasonal needs of an airport. 
 

1.3 Research Goal and Methods  
The situation of growing air travel demand and its implications has led to the urge of finding a 
new way to dynamically alter the capacity of baggage handling systems. This research has the goal 
of investigating the use of autonomous and individual transport robots in baggage handling 
systems. The next sections are concerned with the research questions, the scope, the research 
methodology and methods and ends with the structure of this thesis. 
 

1.3.1 Research Questions 
Following from the research problem, a need for a research that focuses on the feasibility of 
autonomous and individual transport robots concept applied to BHS becomes apparent. 
However, this concept has never been applied to a baggage handling system. This is why the 
main research question is formulated as follows: 
 

In what way is it feasible to dynamically alter the floor plan and desired capacity of airport baggage handling 
systems by making use of autonomous individual transport robots? 

 

To answer this main question, the following sub-questions are formulated: 
1. What is the current state of baggage handling systems and transport robots? 
2. What Key Performance Indicators (KPI’s) are relevant in assessing the capacity and 

continuity of a baggage handling system that makes use of autonomous individual 
transport robots? 

3. How can the autonomous individual transport robot concept be used in baggage handling 
systems? 



5 
 

4. How can the performance of a baggage handling system that makes use of autonomous 
individual transport robots be predicted and evaluated?  

5. What does the performance of a baggage handling system with autonomous individual 
transport robots look like? 
 

To answer the research questions, the scope and research methods need to be made clear.  
 

1.3.2 Scope 
The main research question can be cut into four main parts: In what way is it feasible (1) to 
dynamically alter the floor plan and desired capacity (2) of airport baggage handling 
systems (3) by making use of autonomous individual transport robots (4)?  
These parts delineate the scope of this research.  
 

(1) Feasible: is it technically feasible to implement autonomous individual transport robots in an 
airport baggage handling environment? In other words, is the concept possible and practical in 
this environment? Other feasibility perspectives such as environmental, economic or legal 
feasibility are left out of the scope of this research.  
(2) Dynamically alter the floor plan and desired capacity: this part focuses on the ability of 
the concept to adapt to changing demand in ‘real-time’. If the system is flexible it will be able to 
relocate its capacity in or between airports or scale up or down to adapt to seasonal or event-
related demand peaks. The dimensions of the space in which the baggage handling has to take 
place are considered constant being the size of a medium-sized regional airport, operating in a 
point-to-point network, comparable to Eindhoven Airport in the Netherlands. The fixed space 
size however does not mean that the layout of the floor plan is necessarily fixed. Different floor 
plans and the effect of different floor plans on the performance indicators are considered in this 
research. 
(3) Airport baggage handling systems: currently baggage handling systems on airports are 
complicated systems of conveyor belts with many connected elements, which are complex and 
laborious to implement. A baggage handling system transports checked bags from bag drop-off 
facilities to makeup stations were bags are loaded onto baggage carts that transport the bags to 
aircraft. At some airports, the baggage handling system also transports unloaded bags form 
arriving flights to the baggage reclaim area. This reversed process is not included in this research. 
This research mainly focuses on the sorting task of the baggage handling system and therefore 
puts less emphasis on security screenings and makeup. As the scope is a medium-sized regional 
airport that operates in a point-to-point network, transfer baggage is excluded. Odd-sized 
baggage is also not included in this research, as odd-sized baggage is not handled in the regular 
sorting system but dealt with in a manual process. Only bags that weight less than 32 kilos and 
have dimensions of maximum 100 cm in length, 65 in height and 75 cm in width are considered. 
For the construction of the simulation model, only the sorting element of baggage handling 
systems is modelled. This element is of most interest in this research, as it is assumed that 
transport robots provide most value in the sorting process.  
(4) Autonomous individual transport robots: For the use of individual transport robots, 
autonomous transport robots are the focus. These robots can carry one baggage item at the time 
and only bags or suitcases are considered as baggage items in this research. The degree to which 
it is possible to include autonomy in a baggage handling system that makes use of transport 
robots is discussed in this research.  
 

1.3.3 Research Methodology and its Connection to the Research Questions  
A well-supported design science research methodology as formulated by (Peffers, Tuunanen, 
Rothenberger, & Chatterjee, 2007), helps to structure this research. In their paper the authors 
have outlined their new methodology for information systems, as no methodology existed for 
problems including both IT and organizations. Since their methodology can be applied to 
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research new technologies within existing organizations, it suits this research with its focus on the 
feasibility of a new technology – autonomous transport robots – in an existing environment, the 
baggage handling area of medium-sized regional airports. This section shows how this 
methodology supports the research questions and methods as discussed in section 1.3 and 
section 1.3.4 respectively. 
 

The design science research methodology consists of six steps:  
1. Problem identification and motivation 
2. Definition of the objectives for a solution 
3. Design and development 
4. Demonstration 
5. Evaluation 
6. Communication  

 

These steps are briefly described here. 
 

1. Problem identification and motivation is about identifying a clear problem and motivating 
why this problem is relevant to solve. From section 1.1 it became clear that the demand for 
air travel has been growing in the past and is expected to keep growing in the future. This 
growth, driven by factors such as rising GDPs, reduced air travel costs, globalisation and 
deregulation (ATAG, 2005), has great benefits on different aspects but it also has its 
implications. Section 1.2 describes the main implication that this research is about, which is 
conventional baggage handling systems being ‘oversized by design’ to have spare capacity to 
be able to handle growth in passenger numbers in the future and to allow for failures in parts 
of the system. The undesirable cost as a result of having this overcapacity for many years is 
the motivation to research alternative systems that enable dynamic capacity adjustments. The 
2050+ Airport research project, supported by the European Commission, underlines this 
motivation by proposing to use small transport robots. The first and third research questions 
aim to provide a deep understanding of both conventional baggage handling systems and 
small transport robots to investigate how these transport robots can help in making the 
capacity of baggage handling systems more dynamic.  

2. The second step – definition of the objectives for a solution – follows from the first step. As 
the problem is identified and described, the objectives of the answer to the problem need to 
be defined. In this research, the problem – undesirable overcapacity in conventional baggage 
handling systems for years – will be addressed by the design of a new system – a baggage 
handling system where autonomous and individual transport robots perform the sorting of 
bags. To investigate if this new system is a feasible solution to the research problem, 
objectives, i.e. requirements for this solution need to be identified. The second research 
question is addressed this step.  This question is about the identification of key performance 
indicators useful for assessing the performance of the solution, as well as the identification of 
requirements, both functional and non-functional. The solution system should be able to 
meet these requirements and answer the key performance indicators, while complying with 
the applicable constraints.  

3. The third step – design and development – is about ‘creating the artefact’. The artefact in this 
research is the simulation model of autonomous transport robots performing the sorting task 
in a baggage handling system. This third step includes ‘determining the artefact’s desired 
functionality and its architecture and then creating the actual artefact’ (Peffers et al., 2007). 
For this research, the design and development phase of the simulation model is supported by 
Dam, Nikolic, & Lukszo (2010). The outcome of this step answers the fourth research 
question. 

4. The fourth step – demonstration – concerns the use of the simulation model designed and 
developed in the third step. According to Peffers et al. (2007) demonstration of the solution 
can serve multiple purposes, from proving that the solution works to a more formal 
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evaluation of the developed artefact. In this research, the simulation model will be used to 
demonstrate the use of autonomous and individual transport robots in the sorting process of 
baggage handling at airports. Experiments with this model will show if these robots are useful 
in executing the sorting task and can be a start of proving that deploying these robots can be 
a solution to the problem of having overcapacity for many years.  

5. The fifth step – evaluation – also uses experiments in the simulation model. However, by 
using the key performance indicators formulated in the second research question, an 
evaluation of the solution to the problem can be performed. From running experiments and 
generating performance data from the simulation model, observations and measures can 
show to what extent the autonomous and individual transport robots provide a solution to 
the research problem. An evaluation of the use of autonomous and individual transport 
robots as being a feasible solution to the problem is the outcome of this evaluation step. It is 
also the answer to research question five.  

6. The sixth and final step – communication – is about communicating the research problem, 
the importance of solving the research problem and the developed simulation model 
supporting the solution to the problem. As this research is executed in partial fulfilment of 
the requirements for the degree of Master of Science, this communication step mainly 
involves communicating the research findings and the proposed solution to parties involved 
by means of this master thesis report.  

 

1.3.4 Research Methods 
The research flow diagram depicted in Figure 4 shows the research methods used for answering 
the sub-research questions leading to the answer of the main research question.  
 

To answer the first research question, the conventional baggage handling system needs to be 
investigated thoroughly, as well as the use of transport robots in other industries. The first part – 
investigating the current state of baggage handling systems – will be done by means of literature 
research in combination with conducting an expert interview with a Dutch baggage handler and a 
site visit at a medium-sized regional airport in the Netherlands, Eindhoven Airport. A 
combination of these three research methods leads to a deep understanding of the conventional 
baggage handling system at a medium-sized regional airport.  
 

The second part – investigating the current state of transport robot systems – will be done in a 
similar way. The most important research method here is literature research as transport robot 
systems are implemented in other industries like warehousing and distribution. A site visit to a 
parcel and e-commerce corporation in the Netherlands, an interview with experts from this 
corporation and an interview with an expert from an independent research organisation provide 
the input to finalize the answer to this first research question.   
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Figure 4 - Research Flow Diagram 

 
The second research question is focused on baggage handling systems. Performance indicators 
need to be identified to properly assess the performance, capacity and continuity of a baggage 
handling system. The identification of these key performance indicators will follow from a 
combination of literature research and expert interviews with a baggage handling organization. 
This expert interview focuses on performance indicators of conventional baggage handling 
systems, whereas the literature research will focus on a combination of performance indicators 
for conventional baggage handling systems and transport robot system.  
 

The third research question investigates where in a baggage handling system transport robots can 
be of most value. This will be done by means of site visits and expert interviews at the same 
organizations and with the same people as visited and interviewed for the first research question. 
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Combined with literature research on Automated Guided Vehicles (AGV) – a typical type of 
transport robots – this will lead to a thorough understanding of AGV-systems that are already 
operational, which will help by placing the advancement of the transport robots concept into a 
baggage handling perspective.   
 

Answering the fourth research question starts with a literature research to make a well-founded 
choice for an appropriate simulation method. This method will then be used to simulate the 
autonomous transport robot concept. The development of the simulation model will include an 
elaboration on several relevant algorithms used to correctly represent autonomous transport 
robots in a baggage handling environment.  
 

The fifth and final research question uses the performance indicators as formulated in the second 
research question and the simulation model following from the fourth research question to 
evaluate the autonomous transport robot concept in a baggage handling context.  
 

1.3.5 Thesis Structure  
The structure of this thesis follows from the research methodology elaborated on in section 1.3.3. 
Chapter 2 explores both conventional baggage handling systems and transport robot systems, 
providing context. This chapter attempts to identify where in the baggage handling process 
transport robots can be of most use in resolving the problem of inflexible capacity, 
corresponding to the first step in the design science research methodology – problem 
identification and motivation.  
 

Based on this chapter, a newly designed sorting system for baggage handling is proposed in 
Chapter 3, including the requirements this design should comply with. This chapter corresponds 
with the second step of the methodology – definition of the objectives for a solution – and the 
design part of the third step – design a development.  
 

Chapter 4 builds on the third chapter, as it concerns the development of a simulation model 
which represents the design of a baggage handling system making use of transport robots. This 
chapter corresponds with the development part of the third methodology step – design and 
development.  
 

After the simulation model is developed and verified, Chapter 5 uses the model to demonstrate 
the performance of a baggage handling system that makes use of transport robots by means of 
running experiments with the model. Based on the requirements and performance indicators 
defined in Chapter 3, the performance of the newly designed baggage handling system is 
evaluated. Chapter 5 corresponds with the fourth step in the methodology – demonstration – and 
the fifth step – evaluation.  
 

Chapter 6 marks the final chapter of this thesis. In this chapter, the research questions are 
answered and a critical reflection on the research is included. Based on the results obtained, 
recommendations on future work are put forward. As mentioned earlier, the sixth and final step 
in the methodology – communication – involves communicating the research findings by means 
of this thesis report. 
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2. Baggage Handling and Transport Robot Systems in Practice 
This chapter focuses on the practical situation of conventional baggage handling at airports and 
the use of transport robot systems – AGVs in particular – in other industries such as 
warehousing and container terminals. It represents the first research question on the current state 
of baggage handling systems and transport robot systems.  
 

The first part of this chapter explains conventional baggage handling, to get to a thorough 
understanding of all the processes present in a conventional baggage handling system typical for a 
large hub airport. As this research focuses on the baggage handling system at a medium-sized 
regional airport, a case study on the baggage handling system at a medium-sized regional airport 
in the Netherlands is performed in section 2.1.1. Section 2.1.2 finalizes the baggage handling 
system part of this chapter by elaborating on current developments in these systems.  
 

The second part of this chapter focuses on transport robot systems and AGVs in particular. 
Section 2.2 elaborates on what AGVs are. The most important difference between AGVs and 
autonomous transport robots is the type of control. Section 2.2.1 describes the control of AGVs, 
to help understand the key differences between autonomous robots and AGVs later on. The 
second part of the chapter concludes with an exploration on the use of AGVs in warehouses and 
container terminals in section 2.2.2 and section 2.2.3 respectively. 
 

With a thorough understanding of both baggage handling systems and transport robot systems 
this chapter concludes with a synthesis, combining the flexibility advantage of transport robot 
systems with the inflexibility disadvantage of baggage handling systems.  
 

2.1 Conventional Baggage Handling System in Practice 
The process of baggage handling starts as soon as a passenger checks in his/her baggage item(s) 
at the airport. This can be done simultaneously with checking in for a flight, but this is not 
necessary. Nowadays, more and more people check in for their flight before they arrive at the 
airport, using either a computer or a mobile phone. Another check-in option is to use a self-
service check-in kiosk, present at most airports. When a passenger has obtained a boarding pass, 
and wants to drop off baggage items, the passenger can proceed to a bag drop facility, either at a 
check-in desk (with help of an airline employee) or at a self-service bag drop facility. After 
scanning the boarding pass, a baggage label is printed that must be attached to the baggage item. 
This baggage label – also referred to as baggage tag or luggage ticket – contains information on 
the airline name, flight number and destination airport code and includes a bar code that can be 
read by hand held scanners and scanners that are part of baggage conveyor systems. At the drop 
off, characteristics such as weight and dimensions of the baggage item are registered, but 
information on these characteristics is usually discarded right after the process of checking in. 
This information is therefore not accessible and used in the remainder of the baggage handling 
process. After successfully attaching the label to the baggage items, the baggage items proceed to 
the baggage handling area and the passenger can proceed to the security check. 
 

Once the baggage items reach the baggage handling area of the departure airport, five processes 
take place in order to get the right baggage items on the right aircraft:  

(1) performing security checks on the content of the baggage items 
(2) sorting of baggage items 
(3) loading sorted bags on baggage carts at the makeup stations 
(4) transporting the baggage items to the right aircraft   
(5) loading the baggage items into the aircraft.  

 

In case there is more than one baggage handler present at the departure airport, the baggage label 
shows which ground handler the baggage item is assigned to in the handling process (Swissport, 
personal communication, February 22, 2017).  
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Once the labelled baggage items enter the baggage handling area, the first process is to get them 
cleared by means of security screenings. At most international airports, five screening levels are 
used. With each screening level the inspection becomes more detailed.  

 Level 1 screening consists of an x-ray scanner that automatically examines if the baggage item 
can be cleared or needs further inspection. If the item is cleared after level 1 screening it 
proceeds to the sorting area, if not the item is not cleared and proceeds to screening level 2.  

 Level 2 screening requires a trained human operator examining the x-ray picture taken in 
level 1. If necessary, the operator can make a new x-ray picture to re-examine the content of 
the baggage item. If the operator clears the item, it continues to the sorting area, if not it 
proceeds to screening level 3.  

 At level 3 screening a CTX picture is taken, more detailed than an x-ray picture as the picture 
of the bag is sliced into multiple pieces. The CTX-machine is capable of accepting or 
rejecting a baggage item. In case the machine accepts the item, it continues to the sorting 
area, but when the machine rejects the item a trained operator must analyse the CTX picture.  

 This human inspection of the CTX picture is the screening level 4. If the baggage item does 
not pass the human inspection, the item will be removed from the system and the owner of 
the baggage item is called.  

 Level 5 screening is the manual investigation by a trained human in the presence of the bag’s 
owner (Grigora & Hoede, 2007). 

 

Figure 5 visualises the security screening process and its place in the baggage system as a whole. 
Orange stars indicate the mandatory tracking points for baggage items, resulting from IATA 
Resolution 753. The resolution becomes effective on June 1st, 2018 and is intended to encourage 
airlines to further reduce baggage mishandling (IATA, n.d.).   
 
 

 
 

Figure 5 - The Conventional Baggage Handling System, focus on security screening (Image Author, 2017) 

As soon as the baggage item has cleared the security screening, conveyor belts lead it through a 
tag reader where the baggage label is read. The automated sortation system reads the information 
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on the label and uses it to route the item directly to the correct so-called ‘makeup area’. This 
routing is the sorting process. However, some passengers check their baggage items more than 
three hours before departure. These baggage items are stored in an Early Bag Storage – EBS – 
which is available on most (not all) airports. In traditional baggage handling systems, workers 
have to manually remove the early arrived items from the system and transport them to the EBS. 
This method of relocating baggage items to the EBS has its disadvantages. Manually moving 
baggage items around increases the amount of work related injuries, resulting in a secondary 
effect of higher labour cost. However, it is not just labour costs that increase in a manual system. 
Since the early items are moved and stored manually, managing and tracking these items – 
including ensuring they are properly stored and returned to the sortation system in time – 
becomes the responsibility of the worker. Since workers in baggage handling areas work in shifts, 
accurate handling of early arrived items is complicated and the risk of human error increases. 
Failures in this system of manually keeping track of and transporting baggage items lead to 
greater chances for mishandled baggage, leading to additional cost for the airline (Dadyala, 2013).   
 

If the handling of early arrived bags is done accurately, all early bags are back in the sorting area 
in time. In the sorting area, the conveyor belts constantly receive and release bags to sort 
destinations. Fully automated sorting machines sort the mix of security-cleared baggage items to 
the different destinations assigned to different flights. A 270 degrees infrared sensor on the 
baggage carousel in the sorting area reads the baggage labels and sends the destination 
information to a processor. This processor uses an algorithm that is able to make a decision in 
microseconds to accept or reject a baggage item for the different destination baggage carrousels.  
 

Once the baggage items are sorted by the baggage handling system, a worker uses a manual bar 
code reader to read the destination codes on the baggage items. When the baggage items are 
scanned, a reconciliation system helps the workers to load the bags on wheeled platforms. Then 
the bags can be put on trolleys that take the baggage items to the aircraft or to a storage area. Not 
all airlines and airports use trolleys. Unit load devices (ULDs) are also commonly used for larger 
aircraft. These ULDs can be mechanically loaded and unloaded from the aircraft (Odoni, 1980). 
After the baggage items are inside the aircraft and all corresponding passengers have boarded, the 
aircraft is ready to take off to its destination airport.  
 

At the destination airport, a reversed process takes place, but much simpler. When the aircraft 
arrives at the destination airport, all baggage items are removed from the aircraft and transported 
to the baggage handling system of the airport. In the baggage handling area, the baggage items are 
loaded in a sorting area, where transfer baggage is separated from baggage items that have 
reached their final destination (KLM Ground Services, personal communication, March 13, 
2017). The baggage items that have reached their final destination are transported to the correct 
reclaim belt, which can be accessed by arriving passengers in the reclaim area. These incoming 
baggage items are directly loaded onto the reclaim belt and are therefore no part of the conveyor 
belt system of baggage handling. Transfer baggage is divided into two types, regular transfer 
baggage and transfer baggage with short transfer times. The regular transfer baggage re-enters the 
baggage handling system via the transfer belt. Upon entering the baggage handling system again, 
the baggage items need to undergo security screening again. However, baggage items that have 
been cleared at an airport that is declared safe will not be sent to the next level of security. 
Baggage items that are entering the baggage handling system from other airports will have to pass 
the regular five level security screening process. For transfers with a short transfer time, baggage 
items can be transported tail-to-tail, which means the items are unloaded from the arriving 
aircraft and directly transported and loaded into the connecting aircraft.  
 
For odd-sized baggage items the baggage handling process is different. The term odd-sized refers 
to baggage items that are larger or heavier than normal, like wheelchairs, bicycles, golf bags or 
large music instruments (Schiphol Airport, n.d.). Generally, items are considered odd-sized if they 
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are between 32 and 80 kilos or have dimensions exceeding 100 cm in length, 65 cm in height and 
75 cm in width. These items can’t be handled by conventional baggage handling systems and are 
therefore handled manually. The steps of the baggage handling process are similar but the 
consecutive handling steps take more time. Where regular baggage items are transported to the 
baggage handling area by conveyor belts, odd-sized baggage is transported to this area manually. 
Since not all odd-sized items can be scanned by the automated x-ray or CTX machines because 
of weight or size restrictions, these items are separated and immediately go to the fifth security 
screening level. After the odd-sized item is cleared it is loaded into a unit load device (ULD) to be 
transported to the aircraft.  
 

2.1.1 Baggage Handling Process at a Medium-Sized Regional Airport in Practice 
Field research at a medium-sized regional airport in the Netherlands has provided insight in the 
baggage handling process at such airports operating in a point-to-point network. With regard to 
the baggage handling process at an airport operating in an international hub-and-spoke network 
(as depicted in Figure 5), several differences are identified.  
 

At the regional sized airport studied, bags checked in at check-in counters and bags dropped at 
self-drop-off facilities are gathered at two conveyor belts which enter the baggage handling area. 
After entering, the first difference occurs in the security process of baggage items. Instead of five 
separate security screening levels, regional airports often apply fewer screening levels. The field 
research showed that the security screening has four levels: 

1. Automatic x-ray screening. Since the number of bags handled at a regional sized airport is 
relatively small, there is only one x-ray machine per incoming conveyor belt. 

2. Security staff can manually check the x-ray picture as made by the automatic x-ray 
screening machine in the first level and decide to accept or reject the bag  

3. Security staff can run the bags that were rejected through a separate x-ray machine and 
examine the new picture 

4. If the security staff feels there are suspicious items in the bag they can open the bag and if 
needed they can open the bag in front of the passenger to go through the items together 
with the passenger.  

50 to 60% of all incoming baggage items continue to the sorting process after the first x-ray 
screening, where the x-ray machine automatically decides if the bag is free of suspicious items. 
This implies that 40 to 50% of the incoming bags proceed to the screening levels 2 and 3, where 
the first level x-ray picture is manually examined and a new x-ray picture can be made and 
manually examined by security staff. After this step, the majority of the bags proceeds to the 
sorting process. Roughly 2% of the bags continue to the fourth and final security level where the 
baggage items will be opened by security staff. Security staff can also decide to call the passenger 
and open the bag together so the passenger can give an explanation on the suspiciously looking 
items inside the bag. 
 

In case passengers check-in or drop-off odd-sized baggage items, the odd-sized item needs to be 
placed on a different and separate, wider conveyor belt which enters the baggage handling area. 
At the end of this conveyor belt, a separate x-ray machine is located where security staff performs 
level 3 security screening and, if necessary, level 4. This means that odd-sized baggage skips the 
first two security screening levels and is always manually checked by either examining the x-ray 
picture from the separate x-ray machine or combined with opening the baggage item. After the 
item is cleared, it won’t go into the sorting system but is put in a storage area from where it will 
be manually taken and placed on transportation trolleys when it is time to load the aircraft.  
 
Another difference between the baggage handling as shown in Figure 5 and the similar system at 
a medium-sized regional airport is the presence of transfer baggage. At the second type of 
airport, the baggage handling system does not handle transfer baggage. This implies that the 
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number of baggage items that enters the handling area after drop-off is the same as the number 
that leaves the area for transport to aircraft.  
 

The most important difference between large hub airports and medium-sized regional airports is 
the elapse time of the various processes within the baggage handling area. In general, bags for 
continental flights can be checked in or dropped off between 3 hours and 40 minutes before 
departure. From 40 minutes before departure onwards bags cannot be checked in or dropped 
off. This implies that the process of baggage handling needs to be completed within 40 minutes. 
Within the regional airport studied, the total lead time – from entering the baggage handling area 
until placed on a baggage carts for transport to an aircraft – for non-odd-sized bags on average is 
six minutes in case the bag gets cleared after the first security screening level. This leaves plenty 
of time for the handler to transport the filled trolleys to the aircraft and place the bags into the 
aircraft. In case bags need to go to the second security screening level, one or two minutes need 
to be added to the lead time of six minutes. On average, it takes the handler 10 minutes to handle 
one bag from entering the area to the bag being placed on a baggage cart. In case level three 
screening is required, the lead time can increase greatly, but won’t exceed the 40 minutes granted 
for the process. After the loading of the baggage carts, the bags leave the baggage handling area 
through one exit and head to the right aircraft. The time it takes to transport all bags from the 
handling area to inside the aircraft depends greatly on the position of the aircraft on the platform 
and the number of bags that need to be stacked inside the aircraft.  
 

 
Figure 6 - Baggage Handling Process at a regional P2P airport (Image Author, 2017) 

 

The opposite process – unloading bags from an aircraft and placing them on a reclaim belt at a 
destination airport – takes less time. At medium-sized regional airports the target time for this 
process is less than 15 minutes for loading the first bag on the reclaim belt. The last bag should 
be on the reclaim belt roughly ten minutes after the first bag, so all bags should be on the belt 
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within 25 minutes after opening the aircraft doors. The baggage handling process at a medium-
sized regional airport operating in a point-to-point (P2P) is shown in Figure 6.  
 

The sorting, make up and transport processes can be executed by different handlers within the 
baggage handling area. Big hub airports like Schiphol Airport can have up to five handling parties 
operating in their baggage handling area. However, at the airport under study there is one handler 
that executes all these tasks. The security process is generally executed by a different company 
specialized in security.  
 

2.1.2 Developments in Conventional Baggage Handling Systems 
All around the industry, companies are working on the next generation of airport baggage 
handling. The focus mostly is on making airports ‘greener’, more efficient, more productive, safer 
and more cost-effective. Improvements in baggage handling system play a key role.  
 

From automated sorters to integrated screening solutions for traceability, different parts of the 
conveyor belt based baggage handling system are being improved (Beumer Group, n.d.). But not 
only are elements added or automated in the system, the physical conveyors that are present in 
conventional baggage handling systems are also being optimised to make them more energy 
efficient (Clénet, 2010).  
 

Baggage handling system component manufacturers continue to improve their existing products 
and develop new ones, like loading robots to automatically load bags on transport trolleys or unit 
load devices. This robot loading system has several benefits, the most important of which are 
efficiency improvements, cost reduction, health/ergonomics improvements and savings in space 
consumption. (Grenzebach, n.d.) claims that their loading system increases the throughput per 
baggage handler by a factor of 2.5 to 3.5 and delivers a reduction in operational costs per bag of 
50% or more. For workers, the physical stress is reduced by using these loading robots, resulting 
in reduced indirect personnel cost. Furthermore (Grenzebach, n.d.) states that a  60 to 70% 
reduction in space occupation is possible.  
 
These different developments contribute to more efficient or otherwise improved baggage 
handling systems. Airports that are most likely to benefit from these developments are larger 
airports, handling a large number of bags each day. The large volume of bags handled makes it 
easier to develop a sound financial business case for the required investment. 
 

The next part of this chapter is about the use of automated guided vehicles (AGVs) in practice.  
 

2.2 Transport Robot Systems 
An example of a transport robot system that is used throughout many industrial branches is the 
automated guided vehicles, abbreviated to AGVs (Schulze, Behling, & Buhrs, 2008). Automated 
guided vehicles are defined as:  
 

‘An unmanned, self-propelled vehicle in the nature of a mobile robot has an on-board computer that stores path 
and machine function instructions and activates the drive and steering systems so as to cause the machine to follow a 
desired path.’ (Field & Kasper, 1991) 
 

This driverless transport system is used for moving materials horizontally from one location to 
another. The vehicles that perform the transportation job are part of the automated guided 
vehicle system – AGV system – which consists of multiple parts such as the vehicles itself, the 
transportation network on which these vehicles move, the physical interface between the 
production or storage system and the transportation system, and a central control system.  
 

The vehicles are unmanned and move around the transportation network that connects al 
stationary installations in an area. The physical interface between the production or storage 



17 
 

system and the transportation system are marked by pick-up and delivery points at workstations. 
These points mark the locations where load can be transferred to and from the vehicles. 
Depending on the type of vehicle, the load capacity differs. Load can be for example a container, 
a pallet or a single small package. Containers, pallets or other kinds of unit load devices (ULD) 
can hold multiple individual items. Transportation costs per individual item can be lowered by 
increasing the load. Another advantage of using ULDs is the lesser number of vehicles that are 
required in the system.  
 

When loaded, the vehicles travel between pick-up and delivery points on paths (Vis, 2006). The 
desired path is usually indicated with targets in the area of operation combined with target 
readers on the vehicle itself, which together form a guidance system for keeping the vehicle on 
the predefined path (Schulze et al., 2008). The combination of all possible predefined paths 
shapes the layout of an AGV system. This layout determines the overall design of a system like a 
manufacturing system or a warehouse order picking system that make use of AGVs in their 
operation. The space utilization of these systems is determined by the layout, which in turn also 
affects the total distance travelled by the vehicles. Another component relevant in determining 
the possible paths and travel distances is the location of the pick-up and drop-off points for 
outward and inward bound items to be transported. By minimizing the total travel distance, 
decisions on the path design and the location of the load pick-up and drop-off points can be 
made (Goetz Jr. & Egbelu, 1990). 
 

2.2.1 Control of Automated Guided Vehicles 
To ensure efficient routing, scheduling and dispatching of vehicles, collision and deadlock 
avoidance, a high level of control is required.  The activities that need to be performed by a 
controller are at least (Vis, 2006): 

 Dispatching of loads to AGVs 

 Selection of route 

 Scheduling of AGVs 

 Dispatching of AGVs to parking locations  
 

The input to the automated guided vehicle system is transportation demand. If there is no 
transportation demand, vehicles are idle at a parking location where they stay until the controller 
assigns a new transportation demand to a vehicle. Once a new transportation demand occurs, a 
vehicle needs to be dispatched to handle the demand. The controller selects a vehicle and assigns 
a route and a schedule for the transportation task. One of the tasks of the controller is to make 
sure that the route and schedule assignment are such that the vehicle can execute the transport 
task without the occurrence of collisions and deadlocks. If the vehicle executed the transport task 
successfully and no new transport demand is present right away, the vehicle can be routed to a 
parking location where it awaits a new task to be assigned to the vehicle by the controller. 
Parking can also be combined with charging the vehicle.  
 

The controller performs these tasks real-time due to the stochastic nature of the transportation 
process which requires control systems to be capable of making real-time decisions (Vis, 2006). 
This real-time control can be employed according to two control principles: decentralized control 
or centralized control. Central control refers to a single control system that simultaneously 
controls all AGVs in the system by allocating transportation jobs to the vehicles. The central 
computer assigns tasks to specific vehicles supported by a complete map of the area and the 
positions of all AGVs present in its memory, with which it continuously communicates.  
 

Centralized control requires less physical links in terms of cables in the transportation area than 
decentralized control requires, which makes the layout easier to alternate or expand, but a more 
powerful computer is necessary to control the system as a whole. In the case of decentralized 
control, substations are present in the area, which are all connected to the central computer 
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through continuous communication loops. Substations provide and control routing directions to 
the vehicles and control collision and deadlock avoidance.  
 

The biggest advantage of decentralized control is the easier testing and troubleshooting. 
However, a disadvantage is that it is challenging to link all the substations and the central 
computer together (Vosniakos & Mamalis, 1990). Central controllers make decisions for the 
system as a whole and are often represented by discrete event systems. Decentralized systems on 
the other hand can be approached as agent-based systems, in which instead of a central controller 
making all the decisions for all vehicles in the system, the individual vehicles decide for 
themselves, leading to adaptive and optionally self-learning systems. Decentralized control is 
mainly suitable for large and complex systems in which many vehicles are present in a limited 
area, potentially leading to much interference between vehicles (Le-Anh & De Koster, 2006).  
  

Next to real-time control, off-line control is also possible. Off-line control however requires 
perfectly predictable transportation requests and accurate information in the system. The origin, 
destination, release time and transportation time of transportation demands have to be known in 
advance so the controller can make decisions on dispatching, routing and schedule in advance to 
make off-line control possible (Vis, 2006). 
 

Within the control of automated guided vehicle systems, decisions have to be made on different 
levels of the decision-making process in the design of such a system. The most important 
decisions in designing an AGV system are  

 the design of the guide path 

 the number of vehicles needed 

 the scheduling of the vehicles 

 the position where vehicles can stand idle 

 battery management 

 the routing of vehicles 

 deadlock resolution.  
 

The design of guide paths is considered a decision on the strategic level in the decision-making 
process since it influences decisions at other levels significantly. The tactical level consists of 
decisions on issues such as the number of vehicles needed in the system, the idle positions and 
battery-charging schemes. Decisions on the scheduling of the vehicles can belong to both the 
tactical and operational level. The operational level addresses decisions on vehicle routing and the 
prevention and resolution of deadlock situations. Decisions on different levels can influence each 
other like the design of the guide path has a direct impact on the number of vehicles that can or 
must be present in the system, which in turn influences the complexity of vehicle scheduling (Le-
Anh & De Koster, 2006).  
 

The design of guide paths on which automated guided vehicles rely is often discussed in literature 
(Gaskins & Tanchoco, 1987);  (Goetz Jr. & Egbelu, 1990);  (Majety & Wang, 1995); (Gourgand, 
Xiao-Chao Sun, & Tchernev, 1995); (Kook, Mook, Yoshimoto, & Hwan, 2002); (Wang & Chang, 
2015). Most authors who addressed guide-path design in their work assume that the layout of the 
area in which the vehicles are operational is fixed, as well as the locations of the pick-up and 
delivery points. This simplifies the design of guide-paths to an optimization problem where the 
total distance travelled between pick-up and delivery points by the vehicles is to be minimized.  
  

According to Le-Anh & De Koster (2006) guide-path systems can be classified by three 
characteristics; flow topology, number of parallel lanes and flow direction. Flow topology 
describes the complexity of the guide-path network. Table  provides an overview of the different 
characteristics of guide-path systems.  
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Table 1 - Guide-path system characteristics 

Flow Topology 

Conventional 
Complicated network with paths, crosses, shortcuts and junctions 
Regularly used in warehouses and distribution centres 

Single Loop 
Simplest case, guide-path system consists of only one single loop 
Used in cross-dock centres 

Tandem 
Several loops grouped together, forming a tandem configuration 
Seen in manufacturing environments with grouped workstations 

Number of Parallel Lanes 

Single Lane A path segment in a network contains one lane 

Multiple Lanes A path segment in a network contains few parallel lanes 

Flow Direction 

Unidirectional Flow Vehicles can travel a lane in only one direction 

Bidirectional Flow Vehicles can travel a lane in both directions 
 

In practice, the guide-path type is selected based on the characteristics of a facility and area and 
the experiences of the person responsible for the design combined with an expert system for 
support, since a clear guideline for guide-path system selection is lacking. After the type is 
chosen, a (mathematical) model can be used to design the most suitable guide-path system for 
the facility (Le-Anh & De Koster, 2006). In their work, Le-Anh & De Koster (2006) provide an 
in-depth overview on and comparison of guide-path design, stating that each guide-path system 
has its own advantages and disadvantages and is suitable for specific applications.  
 

Estimating the number of vehicles needed in an automated guided vehicle system is an important 
decision on the tactical level of the decision-making process and influences the performance of 
AGV systems significantly (Le-Anh & De Koster, 2006). When an existing automated guided 
vehicle is chosen for the operation, factors as reliability and the range of operating speed can’t be 
changed to affect the required number of vehicles. Factors that can be alternated and do affect 
the number of vehicles required are the guide-path layout, the location of load transfer points and 
the vehicle dispatching strategies (Egbelu, 1987).  
 

What also influence the number of vehicles required is the capacity of the vehicles. Before 
calculating or estimating the required number, decisions should be made on the load one vehicle 
can transport. When vehicles with a bigger capacity in terms of load – multi-load capacity 
vehicles – are used instead of single-load capacity vehicles, the amount of vehicles needed in the 
system can be reduced (Le-Anh & De Koster, 2006). With several analytical or calculation-based 
estimation techniques, the number of vehicles required in the system can be determined. In his 
work Egbelu (1987) shows four methods to estimate the number of vehicles by using various 
information sources as input to the analytical models used. Information sources he used are for 
example the expected number of loaded trips between pick-up and delivery stations and the 
number of workstations present in the facility.  
 

His four different methods lead to different results which are mainly caused by factors such as 
how empty trips are estimated and lost time caused by blocking. What Egbelu (1987) does not 
take into account in his methods are dispatching rules. Methods that do take this into account 
tend to provide a more accurate estimation on the number of vehicles required. Dispatching rules 
such as LIFO (Last In First Out) or FIFO (First In First Out) can be combined with other 
analytical approaches such as queuing models, multi-criteria decision modelling and network-flow 
modelling to improve the quality of the estimation (Le-Anh & De Koster, 2006). 
 



20 
 

When the design of an automated guided vehicle system is finished, the next step is to use it. 
Ever since their introduction in 1955 (Müller, 1983) the use of AGV systems has grown 
tremendously. Traditionally the AGV systems were most commonly used in manufacturing 
systems. Nowadays, AGVs are used for the internal and external transport of materials in a 
variety of applications and environments, such as warehouses and container terminals. The 
requirements for AGVs however differ per application. Transporting containers around 
container terminals requires a different AGV capacity than when an AGV is used to transport for 
example pallets or commercial packages in warehouses (Vis, 2006). The use of AGVs in both 
warehouses and container terminals will be elaborated on in the remainder of this chapter.  
 

2.2.2 Automated Guided Vehicles in Warehouses  
Especially in areas where repeating transportations patterns occur, AGVs pay off. Repeating 
transportation patterns can be found in for example industrial environments. An example of 
distribution areas can be found in the world of warehouses with cross docking centres (Vis, 
2006). Warehouses connected to e-commerce operations frequently use AGV systems. E-
commerce means that computers and telecommunication systems are used for conducting 
commercial transactions, which can be done 24 hours a day, 7 days a week (Ritter, 1992). As 
customers can place orders at any time during any day, e-commerce operations have to be 
flexible and need 24/7 operating hours. Having limited space needs, AGVs are a good fit for the 
distribution centres connected to e-commerce operations by eliminating the need for large spaces 
for facilities and reducing the labour intensity for workers significantly (Azadeh, de Koster, & 
Roy, 2017). Conventional warehouse operations require a large space since a lot of space is 
needed for storing items in racks, moving stock through the building, inspecting picked orders 
and allowing trucks to manoeuver and dock. Large e-commerce companies offer customers 
millions of unique items and have to deal with large and variable daily order volumes. In the 
process chain of delivering the right items to the right customers in time, order-picking by 
workers is the most laborious and expensive process. When this process is executed by humans, 
workers have to deal with a repetitive job with poor ergonomics and have to be willing to work 
in shifts which can also be during the night or in weekends. Finding the right people that are 
willing to do this job can be hard, which makes warehousing systems the ideal candidate for 
automation (Azadeh et al., 2017).  
 

In their work, Baker & Halim (2007) refer to a paper of Rowley (2000) where he defines 
warehouse automation as: 
 

“The direct control of handling equipment producing movement and storage of loads without the need for operators 
or drivers” 
 

This definition covers not only the use of automated guided vehicles, but also includes 
equipment as automated storage and retrieval systems and sortation systems with conveyor belts. 
Automation in warehouses helps companies to improve their service and lower their costs, but 
the main motivation for most companies use automation in their warehouses is to accommodate 
future growth (Baker & Halim, 2007). Some warehouses are also combined with distribution 
centres. There are distribution centres that use AGVs to support their order picking process 
without eliminating the need for human workers. In these distribution centres or warehouses 
AGVs support the order picking process by bringing goods to the picker.  
 
These so-called Pick Support AGVs (PS-AGVs) minimize the picker travel time to fill large 
orders (Azadeh et al., 2017). An application of a PS-AGV system can be found in the 
Netherlands at the fulfilment centre of PostNL in Houten. Their PS-AGV system called 
“AutoStore” can be classified as a GridSort system. The AutoStore system consists of AGVs that 
move over an aluminium framework while transporting plastic bins to operator stations. The top 
of the aluminium framework acts as rails in a grid on which the AGVs move but the rest of the 
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framework can be used for the storage of plastic bins. The aluminium framework at the 
fulfilment centre of PostNL is 5.30 meters high and can store and transport 21.000 of these 
plastic bins. The 42 AGVs run on rails at the top of the framework with a maximum speed of 11 
kilometres per hour, which limits them to forward, backward and sideways movements on the 
grid. One AGV can last 20 hours on a full battery and when fully empty, it takes charging stations 
four hours to fully recharge the AGV. It rarely occurs that an AGV runs completely out of 
battery power, since it returns to its charging station – there is one charging station for each 
individual AGV – after being idle for one minute. A benefit is that in this way the AGV is drip-
fed power in the possibly short periods of time that it is at its charging station.  
 

In warehouse operations, the Kiva Mobile Fulfilment System is a well-known example of the use 
of automated guided vehicles. In 2012, Amazon bought the Kiva Systems Company (Business 
Insider UK, 2017). This system uses identical transport robots in so-called pick-pack-and-ship 
warehouses. The Kiva robots are small enough to fit under ‘inventory pods’, which are three-
foot-square shelving units. These pods consist of a stack of trays which are subdivided into bins 
in which goods can be placed. Figure 7 shows how the robots of the Kiva system lift the movable 
storage shelves to bring these shelves with goods to the worker.  
 

 
Figure 7 - Kiva Mobile Fulfilment System (Amberber, 2014) 

 
The overall design goal of the Kiva system is to keep the workers as busy as possible with the 
least amount of hardware, warehouse space and inventory. This requires good resource allocation 
algorithms. However, considering the resource allocation task as one big global optimization 
problem is impractical as resource allocation decisions have to be made real-time and the optimal 
solution also depends on the actual available paths and interactions of the vehicles, which is 
dynamic. Instead of considering global optimization, the allocation assignment problem is 
divided into several assignments: 
 

1. Job assignment: assigning orders to workers at workstations  
2. Pick-task assignment: once the job assignment is done, a robot drives to a pod, picks it up 

and drives to the worker 
3. Replenishment-task assignment: goods in the bins of pods can run out. This assignment 

ensures in which bins in which pods the goods are replenished 
4. Pod Storage: when a worker is done with a pod, the Kiva system selects an open position 

where the robot can park the pod 
 

All movements of goods are done by the robots. This means that workers can stay at the same 
workstation while robots bring the shelving units to them. When a worker is done with an 
inventory pod, the robot stores it in an empty storage location. By moving the inventory to the 
worker instead of the other way around, the productivity of workers increases significantly 
(Wurman, D’Andrea, & Mountz, 2008).  
 

2.2.3 Transport Robots in Container Terminals 
As major seaports become increasingly accessible for deep-sea vessels, the popularity of 
containerization as a mode for maritime shipping and inland transportation rises. At the moment, 
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multiple new deep-sea as well as hinterland automated container terminals are being designed 
worldwide. One of the choices in the design process regards the type of vehicle for container 
transport between seaside and landside. Two commonly used types of vehicles are Automated 
Lift Vehicles (ALVs) and Automated Guided Vehicles (AGVs), depicted in Figure 8 (Roy & De 
Koster, 2014). The performance of a transportation system within terminals that uses either of 
these two types of automated vehicles is studied by (Bae, Choe, Park, & Ryu, 2011). However, 
Roy & De Koster (2014) relax the term ALVs to AGVs. Both types are considered Automated 
Guided Vehicles that can transport only one container at a time, with ALVs having the extra 
property that they are able to self-lift containers.  
 

In non-automated terminals, the transportation process between vessels and inland 
transportation is one of the least efficient and most costly processes. AGV systems can therefore 
provide benefits to both the port and its customers (Haefner & Bieschke, 1998).  
 

AGVs are able to autonomously drive from a certain origin to a certain destination, but need an 
external device that loads and unloads containers from the AGV (Ottjes, Veeke, Duinkerken, 
Rijsenbrij, & Lodewijks, 2007). Therefore, in order to fit AGVs in terminal operations, quay 
crane and stack crane operations need to be synchronized with the AGVs. In Figure 9 a typical 
layout of a container terminal is depicted. AGVs can be used as a horizontal transport mode 
between quay crane operations and stack crane operations. In their model design of container 
terminal operations using AGVs, Roy & De Koster (2014) discuss this coupling between the 
vehicle and quay crane and stack crane operations, resulting in a queuing network model.  

 
Figure 9 - Typical layout of a container terminal (adapted from (Roy & De Koster, 2014)) 

When AGVs are used in a container terminal, all vehicles use the same infrastructure. This makes 
the control of these vehicles essential for the performance of the terminal as a whole. Evers & 

Figure 8 – On the left side an ALV in a container terminal (SAE, 2008) and on the right side an AGV in a container terminal  
(Demag, n.d.) 
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Koppers (1996) studied the horizontal transportation process at a container terminal with 
automated guided vehicles. They describe that although many forms and combinations of control 
exist – e.g. centralized control and decentralized control, both of which can be divided in zones – 
zone control is most frequently used. With zone control, the area in which AGVs operate is 
divided into zones. Each zone is individually controlled for movements within that zone 
however, central control is necessary to interface with other zones in the system. The general rule 
is that within one zone, only one vehicle can be present.   
 

Evers & Koppers (1996) have introduced the ‘semaphore’ concept – abstracted from traffic 
lights – which controls the admission of vehicles into a zone, making sure the number of vehicles 
present in one zone does not exceed a specified maximum. As multiple transportation 
movements will take place simultaneously, many interactions can occur which can make zones 
critical. The authors argue that the complexity of these many interactions can be avoided by using 
distributed control concepts in which the transportation area is segmented in sub-areas or zones, 
combined with the concept of semaphore. It could happen that two or more vehicles want to 
enter the same zone at the same time. Such a situation calls for an ‘access protocol’ or 
dispatching rules to decide which vehicle can enter the zone first. A variety of dispatching rules is 
available. The theory of production control by Vollmann, Berry, & Whybark (1988) suggests 
roughly three dispatching rules that can be detailed and combined: 

1. Random 
2. First-In-First-Out 
3. Priority 

 

Priority can for example be given to a vehicle that travels in the same direction as the predecessor 
– which benefits the throughput – or to the vehicle with the earliest due time, or to vehicles 
having a direction with the smallest queue on the following semaphore. The difficulty with these 
rules in a decentralized control situation is that little to no information on the state of the total 
system is used by the semaphores. These rules can be considered to be local rules. The 
semaphores use the dispatching rules to decide whether or not to allow a vehicle into a zone. To 
make this decision, information may be used from sources such as information on the state of 
the semaphore itself, information on the state of adjacent semaphores, information on the type 
of vehicle, its direction and priority, and information form a supervising area controller. Even 
though the semaphore makes the admission decision on a decentral level it can still use 
information provided by a centralized area controller. The combination of using semaphores and 
dispatching rules in zone control results in a traffic control strategy that has been proven to 
decrease the amount of information needed to control AGVs in a container terminal and to  
increase the performance of the information system controlling the AGVs by the simplicity of 
the strategy.  
 

2.3 Combining Baggage Handling Systems and Automated Guided Vehicles 
Up to 2017, the developments in the world of baggage handling at airports have mainly focused 
on optimizing or improving components of the conventional systems. However, recently 
Vanderlande – one of the world’s biggest material handling and logistics automation companies – 
has launched a new system called FLEET. This system combines baggage handling systems 
discussed in section 2.1 with transport robot systems as discussed in section 2.2. 
  

FLEET uses vehicles that carry one bag at a time through the baggage handling area of an 
airport, as is visible from Figure 10. To route the vehicles through this area, FLEET is based on 
the technology of automated guided vehicles – AGVs. This system of AGVs eliminates the need 
for fixed conveyors and sorting system in a baggage handling area at an airport (Vanderlande, 
2017).  After a passenger drops his/her bag, barcode/RFID scanning takes place. The bag is 
transported into the baggage handling area via a small conveyor belt where it will land on one of 
the autonomous guided vehicles available. The vehicle brings the bag to one of the security 
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screening facilities. As Figure 10Figure 10 shows, the vehicle drops the bag on a small conveyor 
belt so the bag is transported through the x-ray by the conveyor belt and after the bag is scanned 
it lands on the same vehicle again. Depending on the wishes and needs and available space of an 
airport, multiple screening facilities can be used simultaneously, facilitating load balancing and a 
higher throughput. As the screening facilities are not parts of one big system of connected 
conveyor belts but rather are separate screening machines, expansion is easier as it is a matter of 
adding more screening machines in the baggage handling area and applying the same routing 
logic for the vehicles.   
 

 
Figure 10 - Security screening with FLEET 

If a vehicle is not used it can be parked at a central location where it simultaneously can recharge 
its battery. Having such a parking location makes the capacity of the FLEET system scalable. The 
sorting of bags is done automatically, as the robots are routed to the desired output location, 
bringing the bags to the correct makeup station right away. The vehicles transport the bags to 
one of the chutes leading to the different makeup stations. The bags are dropped off the vehicle 
and land on one of these chutes. The chutes end on a small circular conveyor belt at the makeup 
station for the destination the bag needs to go to. This process is unchanged compared to 
conventional baggage handling systems. This final sorting process is visible in Figure 11. 
 

 
Figure 11 - FLEET's final sorting process 
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The use of these individual vehicles has several benefits such as flexibility and scalability, as it is 
easy to add or remove a number of vehicles from the baggage handling area depending on the 
capacity need. Next to that, the system is more sustainable than the traditional baggage handling 
systems with conveyor belts. Vanderlande claims that the vehicles used in their FLEET system 
require half of the energy of traditional systems and are designed to be recycled. Conventional 
baggage handling systems take up a significant amount of space in the baggage handling area. 
Transport robots are compact and can therefore handle more bags per cubic metre than the 
conventional system. The floor area saved can be used for other activities.  
 

Next to capacity, sustainability and floor space benefits, an important benefit is resilience. In 
contrast to a conventional baggage handling system with conveyor belts – where a single bag that 
gets stuck can jam the entire conveyor belt and hence the entire baggage system – a system with 
individual transport robots is more resilient. In case a vehicle fails, other vehicles can bypass it 
and only one bag – the bag on the failing vehicle – is affected. This bypass possibility improves 
the operational continuity. The use of AGVs is efficient not only on an operational level, but it 
also relates costs to the actual bag volume handled (Vanderlande, 2017). 
 

As can be concluded from this this chapter and Vanderlande’s innovative FLEET system, there 
is a need for baggage handling systems that are not so dependent on spacious and laborious 
baggage handling systems that consist of many connected conveyor belts. The inflexibility of 
such systems can cause capacity problems when demand changes or develops differently than 
anticipated at the time of system design. Transport robot systems, particularly the widely used 
AGVs, have proven themselves as being suitable to achieve more flexibility in capacity and floor 
space needs in for example warehouses and container terminals. Vanderlande has combined the 
two systems into their FLEET system, using automated guided vehicle technology in a baggage 
handling area at airports.  
 

2.4 Conclusion: Towards Autonomy in Baggage Handling  
As mentioned, the FLEET system uses AGVs. The definition of Field & Kasper (1991) explicitly 
states that Automated Guided Vehicle systems follow path instructions. The on-board computer 
drives and steers the vehicle so it follows a desired path, following the path instructions. In these 
AGV systems this predefined path is considered free of obstacles so the vehicles can move from 
one point to another point following a desired path, without being interrupted. However, when 
an unexpected obstacle appears on the desired path, an AGV will stop in front of this obstacle. 
Other vehicles that follow the same desired path as the stopped vehicle will then encounter the 
stopped vehicle and will stop as well, resulting in a line of vehicles standing still behind the 
obstacle until the obstacle is removed. As paths are predefined, the line will continue to increase 
in length, which could result in an undesirable deadlock situation.  
 

The FLEET system using AGVs is dependent on predefined paths that the transport robots 
follow. In case an unexpected obstacle appears on this predefined path the vehicles are not able 
to recalculate an alternative route themselves. A central system is required to assign the vehicle 
that has stopped in front of the obstacle to a different path. 
 

To further explore the usefulness of individual transport robots, this research proposes a new 
concept where transport robots are used for baggage handling at airports. A concept like FLEET 
provides benefits when it comes to eliminating the need for fixed conveyors and sorting systems 
in a baggage handling area at an airport. This results in a more flexible and scalable baggage 
handling system, which is desirable to better cope with future changes in demand. However, 
opposed to the FLEET system that uses AGVs, this new concept uses transport robots that can 
autonomously determine the path they take to a makeup station, while being able to reroute real-
time in case an unexpected obstacle – which can be another transport robot – appears to be 
blocking the route that was initially calculated.  
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Using these autonomous robots, the transport system is no longer dependent on grid-like 
structures present in AGV systems. This makes the transport system more adaptable and scalable 
than both AGV and conventional baggage handling systems. By eliminating the dependency on 
grid-like structures, this new concept can adjust to changes within an airport faster and easier. In 
the case of AGVs, the area where the transport robots will drive is mapped on this grid-like 
structure and paths are defined before the system is operational. When the area changes – for 
example when the baggage handling area is expanded or construction or maintenance work 
occupies part of the floor space in the area – all paths affected have to be redesigned centrally. 
With individual transport robots that are able to autonomously calculate their desired path real-
time, such a central redesign of paths is not necessary. The vehicles themselves take the changed 
area into consideration when determining the proper path between two locations in the area.  
 

Another advantage of autonomous transport robots compared to AGV or conventional baggage 
handling systems is the fault tolerance. Both AGV and conventional baggage handling systems 
have the weakness of having a low fault tolerance as both systems have a central unit, which 
implies a single point of failure. A single point of failure means that the entire system will come 
to a complete standstill when a single component or part of the system fails. In case the central 
unit of an AGV system fails, the whole system fails, making the system suffer from a lack of 
robustness (Khamis, Hussein, & Elmogy, 2014). A system with autonomous transport robots 
that (partly) uses decentralized control has a higher fault tolerance as it is not dependent on a 
central unit. The system as a whole is therefore less sensitive to the loss of this central unit. The 
absence of a central unit also eliminates the issues of scalability, flexibility and adaptability 
(Mauro, 2017).  
 

Earlier practical and academic work discussed in this chapter provides an insight in how 
conventional baggage handling systems work and which benefits individual transport robots – 
AGVs in particular – can provide for systems with a transport task. By using individual transport 
robots in baggage handling areas of airports, a more adaptable, scalable and robust baggage 
handling system can be realized, especially when the individual transport robots are able to 
autonomously decide on preferred paths real-time. This research proposes a new concept of 
baggage handling with (autonomous) individual transport robots. This new concept is elaborated 
on in the next chapter. 
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3. The Baggage Robot Concept Description 
This chapter concerns the use of autonomous transport robots in baggage handling system. In 
the previous chapter both baggage handling systems and transport robots systems were 
discussed. This chapter combines the two into a new concept: the baggage robot concept. First, a 
synthesis of the previous chapter tries to identify the usefulness of transport robots in baggage 
handling systems, followed by a section in which a rough idea is given on what this concept 
entails. Following from that, the most important elements in this concept are discussed in more 
detail. After the concept and the most important elements in it are made clear, requirements and 
constraints for this new baggage robot system follow as well as the key performance indicators 
that are defined to judge the performance of the baggage robot concept.  
 

3.1 A Synthesis: Usefulness of Transport Robots in Baggage Handling Systems 
The conventional baggage handling system at airports described in Chapter 2 uses a complex 
network of conveyor belts to transport bags from drop-off to the exit of the baggage handling 
area. Through this network of conveyor belts – sketched in Figure 12 – bags are transported 
through different levels of security and placed on a large sorter belt. Sorting machines connected 
to this large sorter belt sort the mix of security-cleared baggage to different makeup stations, 
corresponding to different locations. The result of this sorting process is that bags are sorted to a 
certain destination baggage carrousel at a makeup station, from where workers can load the bags 
from this carrousel onto baggage carts that are used to transport a batch of bags to an aircraft.  
 

 
Figure 12- Conveyor belts in a conventional baggage handling system. (Image author, based on (Mehta, 2014)) 

Security screening machines are large and heavy and very hard to relocate once installed. This 
means that bags have to come to the security screening machines to be scanned instead of the 
other way around. An implication of these large and heavy machines being practically unmovable 
is that bags always have to travel to the same locations – where the machines are located - right 
after they are dropped off. Conveyor belts are considered the most convenient way to transport 
these bags from drop-off to the different security processes.   
 

The second process the bags undergo is sorting. As can be seen from a rough sketch visible in 
Figure 12, a system of fixed and connected conveyor belts occupies a lot of space. The space in 
the middle can be considered wasted as it can’t be reached from outside the conveyor belt 
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network, unless the chutes to the makeup process are located in this middle area. This however 
requires the circular conveyor belt to be located higher than the makeup stations so the bags can 
leave the circular conveyor belt to be moved to a makeup station via a chute. Next to the sorting 
function, this central circular conveyor belt also functions as a buffer for early checked bags. 
However, this buffer is not of infinite size but limited to the size of this circular conveyor belt. 
Expanding this belt increases the capacity of the sorting system and buffer function, but this 
upscaling can’t be done seamlessly or easily due to the rigid nature of conveyor belt systems and 
the need for a partial redesign of the routing rules. During the sorting process, bags are routed to 
one of the destination makeup stations where they reach a dead end in the conveyor belt system 
or the end of a chute. The use of conveyor belts or chutes to transport bags from the sorting 
process into the makeup area is considered to be non-problematic as bags reach a dead end there. 
 

The disadvantage of using conveyor belts seems most present in the sorting process of the 
baggage handling chain. It is therefore assumed that the use of an alternative to a conveyor belt 
system will be most beneficial in the sorting process. This research is therefore focused on the 
sorting process within the baggage handling area at medium-sized regional airports, operating in a 
point-to-point network. The sorting process is an important part of the entire baggage handling 
chain and the location of this process is visualized in Figure 13. 
 

 

Figure 13 - Passenger and Bag Flows in the conventional baggage handling system 

The Chapter 2 conclusion is that a more flexible baggage handling system can be realized by 
using individual transport robots in baggage handling areas of airports, especially when these 
transport robots are able to autonomously decide on their preferred paths real-time.  
 

This chapter elaborates on the use of these new individual transport robots, specifically in the 
sorting process. As these robots are ‘more intelligent’ in finding paths through the area, they are 
assumed equally to more useful than AGVs in sorting processes.  If the concept proves to be 
useful in the sorting process, use of these robots can be extended to other processes in baggage 
handling, including transportation of checked bags from drop off to security. This however 
requires future research.  
 

3.2 The Baggage Robot Concept 
The main purpose of a baggage handling system in an airport is to transport checked bags from 
bag drop off facilities to makeup stations, where the bags are loaded on baggage carts that bring 
them to the aircraft. The baggage robot concept serves the same purpose. By using individual 
transport robots that autonomously and real-time decide on their preferred paths, bags are 
transported between the bag drop facilities and makeup stations, replacing the complex system of 
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conveyor belts that is currently used. Fixed machines such as the different security screening 
machines can stay at their original location and the transport robots are used to transport bags to, 
between and from these machines. A rough sketch visible in Figure 14 shows the difference 
between a conventional baggage handling system and the baggage robot concept. The conveyor 
belts in the security screening and sorting process are removed. The orange lines indicate the 
shortest paths between the security screening layers and three makeup stations. These orange 
lines do not indicate paths that the robots have to take, as robots can freely move in the baggage 
handling area. The lines rather indicate possible paths to provide the reader an understanding. 
The black and orange squares in the right sketch of the baggage robot concept indicate the 
individual transport robots moving in the area.  
 

 
Figure 14 – Difference between conventional BHS and baggage robot concept 

The robots can bring bags to and pick up bags from the security screening machines in a similar 
way as depicted in Figure 10, placing the bags on a small conveyor belt that goes through the 
security screening machine and pick it up after the screening is completed. The robots do not go 
through the machines. Once the bags are cleared in the security screening process they continue 
to the sorting process.   
 

During the sorting process in a baggage handling system, bags need to be transported, from the 
area where bags are security checked to one of the makeup stations in the baggage handling 
facility. By using individual transport robots instead of conveyor belts, bags can be transported to 
the correct makeup station directly. By taking the bag straight to the makeup station it needs be 
delivered to, the robots fulfil the transport and sorting task simultaneously.  
 

As each individual robot has a battery, a charging facility is needed to charge these batteries. The 
battery charging is done by inductive charging. Inductive charging positions can be anywhere in 
the area. The sketch indicates a charging area (in green) with multiple charging positions. The 
green lines show paths that robots can but don’t have to take to these charging positions after 
having delivered the bag they were carrying at one of the makeup stations. The charging area 
serves a double function as it can also function as storage area. The same drip-feeding technology 
of AGVs can be applied here. Robots can be drip-fed while standing idle in the charging and 
storing area, making sure the battery is continuously being charged during idleness. Robots that 
have completed a transport job, i.e. have picked up a bag from a bag drop facility and unloaded 
the bag at the correct makeup station, can take on a new transport job as long as their battery is 
sufficiently charged to complete another transport job.  
 

In order to execute the sorting and transportation task described above, elements such as the 
layout of the system, the way in which robots find their way through the baggage handling area 
without colliding into other robots and the way in which this system as a whole is controlled need 
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to be made explicit. The next section describes the most important elements in this baggage 
robot concept. 
 

3.3 Elements of the Baggage Robot concept 
The previous section concerned the baggage robot concept in general. This section focuses on 
the most important elements in this baggage robot system. It is important that these elements are 
designed in such a way that the system as a whole can perform its transportation and sorting task. 
These elements are layout configuration and charging, the control of the system and the routing 
of the transport robots. Two elements that are included and are linked to routing are collision 
avoidance and deadlock resolution.  
 

As the baggage robot concept is a system with multiple robots that operate in the same 
environment, it’s considered a multi-robot system (MRS). In the last decade multi-robot systems 
have become an important area of research in robotics due to the challenging nature and many 
potential applications (U. Lima & M. Custódio, 2005). The existing knowledge on these multi-
robot systems are used to design the elements discussed in this section.  
 

3.3.1 Layout Configuration and Charging   
The layout of a baggage handling area in which individual transport robots transport bags from 
the drop off point to a makeup station can be adjusted easily. The robots are not dependent on a 
lot of fixed infrastructure. The only element they need in order to remain operational is a place 
where they can charge their battery. As mentioned in section 3.2, charging is done by inductive 
charging. Inductive charging uses an electromagnetic field to transfer energy and therefore does 
not require any cables. By integrating electromagnetic induction in the floor of the baggage 
handling area, the charging infrastructure does not result in any obstacles for transport robots in 
motion. The location of charging positions can differ per baggage handling area, depending on 
the original layout of the area when a baggage robot system is integrated in an existing baggage 
handling area. Alternatively, it can be decided upon during the design phase of a new baggage 
handling area.  
 

 
Figure 15 - Inductive Charging in Fleet 

Vanderlande’s FLEET system also uses inductive charging. Figure 15 shows how FLEET AGVs 
charge. The charging area also functions as a storage area for robots. As the image shows, the 
charging infrastructure itself does not cause any obstacles, but robots charging themselves can 
form an obstacle to other robots. By keeping this in mind, locating the combined storage and 
charging area on the sides of the baggage handling area causes the least inconvenience for robots 
in motion, driving from one end of the baggage handling area to the other end.  

As the baggage handling area is not open 24 hours a day as at a regular medium-sized regional 
airport check-in and bag drop is only possible in a specific time slot that can change from country 
to country and from airport to airport. In the Netherlands for example, passengers can drop their 
bags from 05:00 to approximately 22:20 due to flight restrictions during the night. This means 
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that in this specific case, transport robots don’t have to be operational between 22:20 and 05:00. 
The robots can use these nightly hours to fully charge themselves. The first batch of incoming 
bags in the morning can be handled by fully charged robots. During operational use their battery 
level decreases. When this level drops below a set threshold, the robot needs to proceed to a 
charging position and charge until the battery level at least exceeds the threshold.  

Depending on the number of robots in the system, the number and the arrival pattern of bags 
that enter the baggage handling system, charging strategies might be of importance. When the 
number of bags that enters the baggage handling system in the time frame baggage drop-off is 
allowed equals the number of robots in the system, each robot only has to transport one bag a 
day. As all robots start the day with a fully charged battery and transporting one bag does not 
consume 100% of the battery level, additional charging strategies are not necessary. However 
when there are fewer robots than incoming bags, some or all robots have to perform two or 
more transport tasks a day. Depending on the arrival pattern of bags, additional charging 
strategies might be relevant. For example at an airport that has only three flights a day and these 
flights are scheduled in such a way that the bag drop time frames do not overlap and the time 
between these flights is enough for a robot to fully charge its battery, the number of robots 
necessary can be reduced to the maximum number needed to handle the largest flight. Charging 
strategies are also dependent on technical specifications of the transport robots such as charging 
rates and battery consumption rates. All factors influencing charging strategies can differ by 
airport and should therefore be determined case by case. 
 

3.3.2 Control   
One of the most important considerations in the design of a new transport robot system is the 
control architecture, in particular the technique used to coordinate the motions of the individual 
vehicles (Mas & Kitts, 2010). In multi-robot systems, the design of the overall control 
architecture for the individual transport robots influences the robustness and scalability of the 
system (Parker, 2009). Parker (2009) distinguishes the four most commonly researched 
architectures for multi-robot systems, being: 
1. centralized architectures 
2. hierarchical architectures 
3. decentralized architectures 
4. hybrid architectures 
 

(1) Centralized architectures use one central unit that coordinates all individual robots. However, 
such control architecture is rarely used in practice as having one central unit is risky in terms of 
robustness; there is a single point of failure in this architecture. Next to this vulnerability, real-
time communication is considered challenging. In a centralized architecture, all individual robots 
need to communicate their state to the central unit, which needs to translate these individual 
states into a central state and act accordingly. This communication loop between all individual 
robots and the central unit however takes time and a high frequency of this communication is 
necessary to realize real-time control. This makes real-time control in centralized architectures 
difficult. Centralized control architectures are found to be best suitable for systems in which the 
central control unit is able to oversee all the individual robots in the system and send the same 
instructions to all these robots simultaneously (Parker, 2009). An important condition here is that 
the individual robots in the system strictly follow the instructions of the central control unit and 
are not allowed to deviate. 
 

(2) In hierarchical architectures the control perspective is that of an individual robot. Each robot 
keeps an eye on the states and actions of a small group of other robots. This small group 
oversees another, smaller, group and so on until there are no groups left to oversee but one 
individual robot. This individual robot does not keep an eye on anyone else as everyone else in 
the system is already overseen. This left over robot simply has to do its own job, without minding 
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other robots. All other robots have control over other robots in the system. This type of 
architecture is easier to scale than centralized architectures and does not have a single point of 
failure. However it does have a disadvantage, being the recovery of failures of robots high in the 
control hierarchy (Parker, 2009). 
 

(3) Decentralized control architectures do not depend on one central control unit. Instead, each 
individual robot takes actions based only on knowledge they get or retrieve from their direct and 
local environment. Unlike in centralized and hierarchical architectures, the individual robots in a 
decentralized control architecture are not controlling anyone but themselves, making them 
responsible for themselves only. The downside to this individualistic perspective is that global 
knowledge of the system is missing (Parker, 2009). The incorporation of high-level goals for the 
system as a whole is therefore problematic, as these goals have to be incorporated into the local 
control of each individual robot. This may lead to optimal local solutions that deliver sub-optimal 
global outcomes. Decentralized control architectures however are the most commonly used 
control architectures in multi-robot systems.  
 

(4) Hybrid control architectures combine the local control of decentralized control architectures 
with higher-level control approaches. This architecture benefits from the robustness provided by 
the decentralized control architecture that eliminates the single point of failure and from the 
ability to influence the actions of all individual robots that centralized control architectures 
provide. Many multi-robot systems use of hybrid control architectures (Parker, 2009). 
 

Robots in the baggage robot concept are considered to be autonomous. They have some control 
over their state and behaviour and are able to react to actions of robots in their proximity. A 
decentralized control architecture therefore seems most suitable as this architecture provides the 
individual robots with decision authority. However, to obtain a system that is capable of avoiding 
collisions and resolving deadlocks when they occur, some centralized control aspects need to be 
incorporated to improve the performance of the system as a whole. The hybrid control 
architecture provides a combination of decentralized and centralized control, making it suitable 
for the baggage robot concept as it increases the robustness, scalability, flexibility and 
performance of the system.  
 

3.3.3 Routing  
As this research focuses on the sorting process specifically, it is assumed that all bags that arrive 
at the sorting area are cleared in the security process. In order for bags to arrive at a makeup 
station that corresponds to the destination the bag needs to end up at, individual and 
autonomous transport robots have to transport the bags through the sorting area. For passengers 
it is important that their bags are loaded into the same aircraft as themselves and in time. To 
create as much slack time as possible in the sorting and other processes of baggage handling, the 
preferred path bags travel between the entrance and exit of the sorting area is the shortest path. 
Figure 16 shows the shortest and direct paths or routes that can be used to transport bags in a 
hypothetical sorting area with m entrances and n exits.  

 
 

 

 

 

 

 

 Figure 16 - Bag routes (left) and robot routes (right) 



33 
 

 
As bags cannot move themselves, they depend on robots for their transport. As robots do not 
exit the sorting system when they unload a bag at a makeup station, they also need paths or a 
route back to the entrance to pick up new bags. These return trips can be interrupted when the 
robot runs low on battery power. In that case, the robot needs to go to one of the storage and 
charging area positions (marked with a green circle in Figure 16) until it is sufficiently charged 
and can continue to one of the m entrances. The location of the storage and charging positions or 
areas depends on the chosen layout; Figure 16 only serves as an example. When there are no 
incoming bags, robots can use this same storage and charging area to stand idle and drip-feed 
their battery, until bags start coming in again. The paths or routes a robot can take therefore 
differ from the paths or routes bags preferably take in the sorting system and are visible on the 
right in Figure 16. Robots can transport bags from the entrance to the exit of the sorting area by 
taking the shortest path. These trips, where robots are transporting bags, are more important 
timewise than the empty return trips. 
 

3.3.4 Collision avoidance  
When a number of robots have to perform their transport tasks in the same area, as is the case in 
this baggage robot concept, a risk exists that they collide while moving around. To avoid this risk, 
two basic approaches are possible. The first one relies on centralized control while the second 
approach is hybrid.   
 

The first collision avoidance approach is only applicable for systems that require robots to follow 
a predefined and fixed path like AGV-systems. In such systems robots are not free to decide 
their own path nor can they change the path that has been predefined for them. The central unit 
in such systems can determine these fixed paths for all robots simultaneously in such a way that 
the paths for the robots do not cross at any point. These so-called collision free paths eliminate 
the risk of collisions altogether, but can be inconvenient or impossible for large or complex 
systems (Jäger & Nebel, 2001). Another way to avoid collisions in systems with centralized 
control is the addition of motion controllers in the system that assign initial delays to specific 
robots, making sure that no two or more robots encounter each other at the same location 
(Zhou, Hu, Liu, & Ding, 2017). These two versions of the collision avoidance approach are 
applicable in systems with centralized control. However, as mentioned in section 3.3.2., 
centralized control approaches are not preferred in the baggage robot concept. Using centralized 
control for collision avoidance requires a lot of computational power and a global 
communication network to communicate with all robots in the system.  
 

The second collision avoidance approach can be applied to systems where robots have flexible 
paths and are able to change these paths at any time, like the baggage robot system. The robots 
plan their paths independently. The path they initially plan is collision free, but there is no 
guarantee that this path will remain collision free as all robots in the system are able to change 
their own paths at any time. This may result in paths crossing each other at a certain point in 
time. In such a case, it can happen that robots have already started moving along their path when 
they detect another robot getting close to crossing their path (Zhou et al., 2017). The detection of 
other robots in their proximity is one of the most important abilities of the robots to realize 
collision avoidance. The most effective way to detect other robots close by is by obtaining 
information on the planned paths of these closest robots by means of local communication (Arai, 
1999). To avoid a collision between the robots, re-planning of one of these paths is necessary to 
guarantee collision free paths for both robots involved (Zhou et al., 2017). To decide which 
robot needs to alter its course, a centralized component can be used to coordinate this decision, 
making sure that no collisions will occur.  
 

This form of hybrid control for collision avoidance uses centralized components to achieve 
global coordination by decentralized algorithms and assumes only local communication between 
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pairs of physically close robots. The local communication between the robots allows for more 
adaptive coordination between the robots when planning their paths, supported by a centralized 
component (Jäger & Nebel, 2001).  
 

As has been established in section 3.3.2., the baggage robot concept uses a hybrid control 
architecture. In this architecture, robots can communicate with other robots in their direct 
surroundings, while moving around in the baggage handling area. In this concept, the robots 
move towards their goal – either a bag at an incoming conveyor belt or a makeup station to drop 
the bag or a charging and storage position to stand idle and/or charge – at their maximum speed 
when no objects or other robots block their paths. However, a robot can detect an obstacle – 
which can also be another robot – while moving. When a robot approaches another robot and 
the distance between the robots decreases, it needs to change its current behaviour to avoid 
colliding with the other robot (Arai, 1999). 
 

When two robots approach each other and the distance between them decreases, they exchange 
information on their positions and planned paths. By exchanging this information they detect if 
and if so where they may run into each other on their planned paths. To avoid a collision, the 
robots need to communicate and coordinate their movements (Jäger & Nebel, 2001). Together 
the robots need to decide who gets permission to go and who has to give way to the permitted 
robot. To make this decision, predetermined traffic rules can be used. These rules depend on the 
type of predicted collision.  
 

In his research on multi-robot systems with autonomous robots in a parcel sorting system, 
Mauro (2017) distinguishes two types of collisions for multi-robot systems: side collisions and 
frontal collisions. The traffic rules for these types differ and are also suitable for the baggage 
robot concept due to the similarities in robot type between his and this research. In case of an 
imminent side collision, stopping and resuming policies are used to avoid actual side collisions. In 
case a side collision is imminent between a robot that is transporting a bag and a robot that is 
empty, the robot that is transporting a bag gets priority over the empty robot. The empty robot 
needs to stop moving until the loaded robot has passed. The stopped robot can resume its path 
once the loaded robot has passed completely. When two robots with the same priority are 
threatened by a side collision, priority cannot be decisive and one of the robots will be randomly 
picked to move first. This random picking can be done by the centralized component or the two 
robots negotiate who goes first by for example “pulling straws”. In case of a possible frontal 
collision, Mauro (2017) used a right moving policy to be executed by both robots, regardless of 
the priority. Both robots stop moving forward and instead move one step to the right and then 
re-calculate and resume their new shortest path. Figure 18 shows the movements of the robots in 
case of an imminent frontal collision. The grey arrow in step 3 and 4 indicate the path of the 
robot that have to wait. This research proposes a more relaxed version of the right moving 
policy, being a turn, (wait) and continue policy. Both robots stop moving forward and instead 
move one step to a neighbouring position that is unoccupied and then re-calculate and resume 
their new shortest path. If all neighbouring positions are occupied, robots wait until one of these 
neighbouring positions is vacated again, after which it will resume a shortest path. A right-
moving policy is considered but found to be too constraining as when the position on the right is 
occupied, deadlock is lurking.  
 

To determine when a collision avoidance measure should be invoked, the baggage robot concept 
uses a safety zone for each robot. This safety zone can also be referred to as a safety distance 

𝑑𝑠𝑎𝑓𝑒 between two robots. When the distance between two robots is larger than or equal to the 

safety distance, no possible collision will occur in the near future. When this distance becomes 
smaller and the safety zones start to (partially) overlap, one of the collision avoidance measures is 
invoked to avoid an actual collision, depending on whether the possible imminent collision is a 
side collision or a frontal collision. Figure 17 shows an example of the right moving policy to 
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avoid a frontal collision and Figure 18 shows a stopping and resuming policy where the robot 
coming from south and heading to the north gives priority to the robot moving from west to 
east. In both figures, red marked areas indicate the areas where the safety zones of two robots 
overlap each other. These overlapping areas trigger the collision avoidance measures.    
 

 
Figure 17 - Frontal collision avoidance,  (Image Author, 2017) 

 

 
Figure 18 - Side collision avoidance, grey dotted line indicating the path of the robot that has to wait (Image Author, 2017) 

 

3.3.5 Deadlock resolution   
When robots are able to plan their shortest paths and are able to react to the movements of other 
robots in their proximity, a system with robots that move over paths that are as short as possible 
without colliding into each other is realized. However, when trying to design such a system, it can 
hit a situation where two or more robots get stuck in an impasse, as they are waiting for one 
another to take action. As time continues, this can even lead to a total deadlock situation in which 
all robots are waiting for each other and where no robot is able to change its waiting and 
indecisive state.  Such a deadlock situation is considered undesirable, especially when it lasts a 
long time, leading to a situation where bags are not delivered to their correct makeup station in 
time, resulting in bags being mishandled as they can’t be loaded into the aircraft in time.  
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Systems that have a fully decentralized control approach are dependent on local communication 
between robots as a central unit is missing. Systems that have a fully decentralized control 
approach are dependent on local communication between robots as a central unit is missing. As 
local communication can lead to a deadlock situation in which robots end up in a cycle, some 
form of external intervention is needed to resolve the deadlock. This means a fully decentralized 
approach is not a suitable approach when deadlock resolution is desired.  
 

Deadlocks can occur in many different ways. Usually when a situation occurs in which particular 
robots end up in a cycle where they can’t escape from without external intervention. These 
situations can be caused by certain system conditions. Examples of conditions in which 
deadlocks are hard or impossible to resolve are: 

 If none of the robots has an unaffected free space in its direct neighbourhood where it 
can go to, making it impossible for a robot to plan a new free path as long as all his 
neighbouring positions are occupied and stay occupied 

 When there are too many robots in an area that is too small for all these robots to plan a 
free path and ensure some leeway to reroute 

 When a lot of robots have to go to the same point at roughly the same time. In case of a 
deadlock cycle between two robots, the deadlock situation worsens over time quickly. 

 

The more robots are involved in a deadlock, the harder it gets to resolve the deadlock. That is 
why it is preferred to prevent a deadlock from occurring altogether. The earlier discussed 
centrally defined ‘traffic rules’ can help in avoiding deadlocks from occurring. By invoking the 
collision avoidance measures earlier discussed when collisions are imminent, deadlocks are 
avoided too. As the turn and continue policy is a relaxed version of the right turn policy, robots 
have more neighbouring positions to go to. By adding the possibility to wait one or more time 
steps in this policy, complete and insolvable deadlocks are avoided.   
 

3.4 New System Requirements, Constraints and KPIs 
Before designing a sorting system for baggage handling systems, where the sorting will be 
executed by autonomous and individual transport robots, system requirements need to be 
established. There are two types of requirements to be distinguished; functional and non-
functional requirements. Functional requirements describe the functions that the physical system 
should have in order to function properly. Non-functional requirements on the other hand, help 
to assess the quality of the operational system. Next to meeting these two types of system 
requirements, a system that is newly designed should comply with certain constraints. Constraints 
refer to the limitations on these requirements and the conditions under which the sorting system 
is expected to function. The system requirements and constraints concern the design of the new 
sorting system for baggage handling systems but to measure the performance of this new system, 
key performance indicators have to be established. Key performance indicators measure the 
performance of the system and by doing so, can show gaps between current and desired 
performance (Weber & Thomas, 2005). This section deals with the system requirements, 
constraints and KPIs relevant for a sorting system in a baggage handling system, where the 
sorting is executed by individual and autonomous transport robots.  
 
 

3.4.1. Functional Requirements 
The basic functionalities of a sorting system in a baggage handling context at airports are that the 
system needs to transport bags from the entrance to the exit and that the system needs to sort the 
bags correctly. Within the scope of this research, the first basic functionality entails that the 
system should be able to pick-up bags that are cleared in the previous process, and transport 
them to the start of the next process, the makeup, where bags are loaded into baggage carts that 
will be transported to the aircraft. The second basic functionality is about the sorting. As a bag 
should be loaded into the same aircraft as the passenger it’s associated to, it needs to be 
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transported to a specific makeup station. As passengers can drop-off their bags at any drop-off 
point that is operational, the sorting system should be able to identify to which particular makeup 
station it should sort the bag to.  
 

A passenger that likes to check-in a bag of a certain size and weight can drop this bag at one of the 
airport’s drop-off facilities. At the drop-off facility, a baggage label is attached to the bag, 
indicating amongst other information, the destination airport that the bag needs to be 
transported to. Once the bag is dropped off, it enters the sorting area via a small conveyor belt. 
Upon entering the sorting area, the baggage label is scanned by scanners that identify the 
destination of the bag. After the label is scanned the bag waits for the first available transport 
robot. Once a transport robot reaches the rear end of the drop-off conveyor belts, the robots 
needs to communicate to this conveyor belt that it is ready to receive the bag. Once a bag is loaded 
on one of the transport robots, the robot starts transporting the bag with a certain speed, while 
making sure the bag is supported well to prevent it from falling from the robot while the robot is in 
motion. The transport robot sorts the bag it carries based on the information acquired by the 
system of scanners, so the bag is transported to the correct destination makeup station. While in 
motion, the transport robot uses its battery power. Once it reaches a certain battery level 
threshold it needs to proceed to a charging area, where the battery is recharged by inductive 
charging. If a robot is not needed to perform a transport task, it can remain in or move to a 
combined storing and charging area where it can recharge or stand idle if the battery power level 
is above a threshold. Once the transport robot is idle for a certain amount of time, it can shut 
down to save battery power. If the robot is needed again, the system of scanners triggers the robot 
to activate itself after the scanners scanned the baggage label of an incoming bag and the robot 
should start a new transportation task.   
 

The three main tasks of the autonomous and individual transport robots in this sorting system 
are (1) picking up bags from the drop-off stations to start the sorting process, (2) sorting while 
transporting bags to a chute ending at a correct destination makeup station and (3) dropping bags 
onto chutes that end at a makeup station. 
 

The functional requirements mentioned above are summarized in Table 2. The requirements are 
divided in roughly three sections: the sorting system as a whole, the specific task of transporting 
bags and the requirements for the system when robots are not transporting bags.  
 

Table 2 - Functional Requirements 

 Functional Requirements 

Sorting System 

 

 

 

Transporting Bags 

 

 

 

 

 Communicate with scanners at the entrance belt to trigger robot 
activation and to obtain destination information of a bag 

 Pick-up bags by communicating with the drop-off conveyor belts 
to signal the conveyor belt that it can transfer the bag onto a 
transport robot standing ready  

 Transport bags 

 Handle bags of a certain size and weight 

 Provide support to prevent bags from falling off a 
transport robot 

 Sort bags 

 Drop off bags at chutes ending at a makeup station 
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While not transporting 
bags 

 Temporarily deactivate a robot when it is idle for a certain 
amount of time 

 Send robots to a charging area when the battery power level of a 
robot is under a threshold level 

 Transmit inductive power from charging areas to transport 
robots 

As in this research bags are simplified to standard bags, so no odd-size or heavy bags, the sorting 
system considered handles bags that don’t exceed 32 kilos in weight and have maximum 
dimensions of 100 cm in length, 65 cm in height and 75 cm in width. All types of baggage that do 
not match these weight and size restrictions are considered odd-sized and out of scope.  
 

3.4.2. Non-functional requirements  
Next to functional requirements, non-functional requirements can be identified for the sorting 
system that uses autonomous and individual transport robots. First and foremost, the system 
should provide capacity flexibility to the baggage handling process. The main purpose of replacing 
the static conveyor belts by dynamic transport robots in the sorting system is to make the 
capacity of the sorting system more flexible so the system can adjust to (seasonal) variations in 
demand. Next to adjusting to temporary changes in demand, the system should also provide 
flexibility in expanding when demand is expected to change on the long term. While operational, the 
system should not be over dimensioned, meaning the system is larger than necessary, resulting in 
a low utilization rate. This goes together with the capacity that the system is able to handle given a 
specific configuration in terms of the number of bags sorted and transported per time unit. The 
capacity and utilization rate can be influenced by deficiencies in the system that should be between 
bounds to be acceptable. The system should be resilient when deficiencies occur to maintain 
sufficient uptime for the system to be considered reliable. In case a deficiency does occur, or 
preventive maintenance is needed to prevent severe deficiencies, it should be doable to perform 
maintenance on the system. If human intervention is needed to resolve a deficiency in the 
operation of the system, it should be safe for workers to enter the transport and sorting area and 
do their work. The non-functional requirements stated are summarized in Table 3. 

Table 3 - Non-functional requirements 

 Non-functional Requirements 

Sorting System  Capacity flexibility 

 Expansion flexibility 

 Utilization rate  

 Capacity  

 Deficiency resiliency  

 Reliability  

 Maintainability  

 Safety 

 
In order for the new system to be feasible, it should comply with these non-functional 
requirements in at least the same way as the traditional sorting part of the baggage handling 
system does. Preferably, the new system should comply better with these non-functional 
requirements, meaning for example the capacity should be at least the same but preferably higher 
compared to the traditional sorting system and the system should be equally safe in order to be a 
suitable replacement for the traditional system. Non-functional requirements like investment 
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costs, operational costs and reusability are not within the scope of this research, but are 
important to consider when deciding on researching the concept further with the purpose of 
implementing it in an airport baggage handling environment. This research focuses on the first 
five non-functional requirements. These non-functional requirements – except for expansion 
flexibility – are roughly translated into KPIs, which will be elaborated on in section 3.4.4. The 
expansion flexibility is in the nature of the autonomous and individual transport robot system 
when using a hybrid control approach. The non-functional requirements reliability, 
maintainability and safety are not included in the continuation of this research, but are mentioned 
to give a more complete insight in the non-functional requirements that the baggage robot 
concept as a whole should comply with and not only the sorting process part of the concept.  

3.4.3. Constraints and Basic Conditions 
Constraints refer to the limitations on the functional and non-functional requirements and the 
conditions under which the sorting system is expected to function. It all starts when bags enter 
the sorting area through a maximum number of drop-off facilities, representing the input capacity 
of the system. The bags that enter have to comply with previously stated maximum weight and size 
restrictions in order to be accepted into the sorting system. When bags enter the sorting area, 
individual and autonomous transport robots pick up the entering bags. These robots also have a 
capacity; they can only carry one bag at a time. Depending on the number of robots present in the 
sorting system, the sorting system capacity is determined. This capacity reaches its maximum in a 
situation where all robots are fully charged and operational at the same time. As one robot can 
transport one bag, the capacity of the sorting system equals the number of operational robots 
present in the system. In order for a robot to transport a bag from the entrance of the sorting 
system to the exit where bags are exiting the sorting system and entering the makeup area via a 
chute, it needs to move with a certain speed. As autonomous and individual transport robots are 
currently not yet operational, the maximum speed is based on existing practice of a similar system 
which is operational in a sorting system of a fulfilment centre in the Netherlands. As the goods 
these existing robots transport generally have a significantly smaller weight, a margin is taken for 
the speed of the robots in the new baggage sorting system. Heavy bags up to 32 kilogram each 
need to be transported at the same speed as lighter bags, so the speed is set to 7 kilometres per 
hour. The acceleration and deceleration rates of the transport robots are not included in this 
research as they are considered too detailed for the purpose of this research. When moving with 
this constant speed in the sorting system, the time it takes to reach one of the exits representing 
destinations at the other end of the area also depends on the size and shape of the sorting area. For 
this research, a big open square or rectangular space is considered without obstacles on the floor 
so the robots can move freely from one end to the other end of the area. Different floor shapes 
influence the routes robots can take as well as the risk of collisions between robots. The 
constraints mentioned above are summarized in Table 4Table . 
 

Table 4 - Constraints 

 Constraints 

Sorting System  Input capacity Maximum number of drop-off facilities 

 Bag weight and size Non odd-sized bags 

 Robot capacity One robot can carry one bag at a time 

 Sorting system capacity Equals the number of robots in the system 

 Speed Considered a constant 7 km/h 

 Number of exits Maximum number chutes to makeup areas 

 Size and shape of 
sorting area 

Considered square or rectangular without obstacles 

 
Next to these constraints, the system should also comply with a number of basic conditions for 
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operation. With a number of robots moving across the sorting area, a risk of collisions exist, where 
robots can collide against each other or an object in the sorting area, which is undesirable as it 
can cause damages to robots and bags and can slow the operation down. However, when trying 
to create a situation in which no collisions occur, the system can hit a situation in which all 
individual and operational robots wait for each other to take action, resulting in a deadlock 
situation. In this situation, the system reaches a state in which all robots are waiting for each other 
and where no robot is able to change its waiting and indecisive state. In such a situation, external 
intervention is needed to resolve this situation. A deadlock situation is considered undesirable, 
especially when it lasts long, leading to a situation where bags are not delivered to their correct 
makeup station in time, resulting in bags being mishandled as they can’t be loaded into the 
aircraft in time. Next to these two basic conditions, a third seemingly simpler basic condition can 
be identified. In a sorting process with individual and autonomous transport robots, robots need 
to make sure they have enough battery power to complete a trip. A trip involves moving from 
the charging and storage area to the entrance of the sorting area where they can pick up bags, 
transporting these bags to the correct chute to a makeup station and returning to a charging and 
storage area. Included in this trip can be waiting time if a robot needs to wait for a bag to arrive, 
or when it has to wait to drop the bag at a chute when another robot needs to perform this task 
first. The battery of the robot needs to be sufficiently charged at the start of a trip to complete it. 
The final basic condition therefore formulates that battery power outs of a robot are not allowed 
when it is operational, meaning the robot is not allowed to come to a standstill during a trip due 
to insufficient battery power. The three basic conditions are summarized in Table 5. 

Table 5 - Basic Conditions 

 Basic Conditions 

Sorting System  No collisions between robots and robots and objects can occur 

 No long-term deadlock situations can occur 

 No power outs of robots are allowed during trips 

 

3.4.4. Key Performance Indicators and Related Stakeholders 
Key performance indicators make measurable if the use of individual and autonomous transport 
robots complies with the requirements described in section 3.1 and section 3 and constraints 
described and 3.4.3. KPIs are relevant for evaluating the baggage handling system where 
autonomous and individual transport robots are used for the sorting process. The values of the 
KPIs must show a value equal to or better than values for these KPIs in the sorting process of a 
conventional baggage handling system. When this new system performs as well or even better 
than the conventional version, the feasibility is proved, as the performance equals or exceeds the 
conventional version, while the new system provides more flexibility in capacity by using 
individual and autonomous transport robots. Key performance indicators that are relevant in 
measuring the performance of the new sorting system for baggage handling are indicated in Table 
6. 
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Table 6 - Key Performance Indicators 

 Key Performance Indicators Unit Optimal value 

Sorting 
System 

 Average process time of bags [time] 6 minutes 

 Percentage of bags exceeding 
norm time 

[%] 0%-0.02% 

   

 Average number of robots  [#] As low as possible 

 Occupancy rate   

 Percentage of operational time 
while being loaded 

[%] As high as possible 

 Percentage of operational but 
empty trips 

[%] A value as close to 50% as 
possible 

 Percentage of charging time [%] As low as possible 

 Number of conflicts avoided [#] As low as possible 

 
The most important key performance indicators are the average process time and the percentage 
of bags exceeding norm time. The average process time of bags means the time it takes a robot to 
transport a bag from the entrance to the exit of the sorting area. This also includes possible 
waiting time of a robot transporting a bag. Based on existing practice at a medium-sized regional 
airport in the Netherlands, the value of this KPI should not exceed six minutes. As the floor size 
of the sorting system can be adjusted, some slack is allowed for this value. The optimal value for 
this KPI depends on the size of the floor plan but to keep the number of mishandled bags as low 
as in practice; a maximum value of 10 minutes is considered acceptable for this KPI. 
Furthermore, the deviation around the mean value of this KPI can give valuable insights into the 
precision and the accuracy in generating process times, measuring this part of the performance of 
the baggage robot concept.  
 

This average process time is related to the second key performance indicator, the number of bags 
exceeding norm time. Exceeding the norm time means that a bag arrives at a correct makeup station 
too late, and therefore cannot be loaded on the aircraft before departure, resulting in bags being 
marked as mishandled. The percentage of mishandled bags should be as low as possible for a 
baggage handling system to be accepted for operation by ground handling parties and airports – 
depending on the organizational structure of the airport. The unit of this KPI is percentage. 
Following from a case study at a medium-sized regional airport in the Netherlands, 2 out of 
10.000 bags being mishandled is considered acceptable, corresponding to 0.02%. The optimal 
value for this KPI is 0% but values between 0% and 0.02% are considered acceptable.  
 

 
 
When these two KPIs have values that are equal or better than in the sorting process of existing 
baggage handling systems the new concept is considered feasible. Next to these main KPIs, four 
additional key performance indicators can be considered to get a better picture of the 
performance of the new concept.  

Intermezzo: Definition mishandled bags 
A mishandled bag is defined as checked baggage that is delayed, damaged, pilfered, lost or 
stolen  (SITA, n.d.). This research does not consider damaged, pilfered, lost or stolen bags. 
This research uses the term ‘mishandled’ to mark bags that are handled by the baggage 
handling system but arrive at a makeup station too late, which means the bag cannot be loaded 
into the aircraft. This results in a situation in which the bag needs to be sent to the associated 
passenger at a different time or a different way, resulting in a delay. This research assumes bag 
can’t get lost within the baggage handling system.  
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The first is the average number of robots. The number of robots should be sparse. It should be no 
more and no less than the number of robots required for handling checked baggage at peak 
demand. The unit of this KPI is an integer number [0, .., n]. The optimal value of this KPI is the 
least number of robots under the condition that the system complies with all requirements and 
constraints.  

 

Another KPI to be considered is the occupancy rate, which can be split in two sub-KPIs, both 
expressed in percentages. The first sub-KPI of occupancy rate is the percentage of time robots are 
operational and loaded. Robots can be operational and non-operational. Non-operational time 
includes storing and charging time. This KPI shows the percentage of the total time that a robot 
is executing a transport task. A low value of this KPI can indicate several things, including having 
too many robots in the system and inefficient charging strategies. The second sub-KPI of 
occupancy rate is the percentage of operational but empty trips. When a robot is operational, it can be 
either loaded or empty. The percentage of empty trips should be minimal, indicating an efficient 
allocation of robots to bags. An ideal value is 0% but unrealistic, as bags are only transported 
from entrance to exit and not the other way around. A value of 50% therefore shows the 
maximum utilization of robots, representing one loaded trip from entrance to exit and one empty 
trip from the exit back to the entrance to pick up a new bag. A value of 50% however is also 
unrealistic, as robots also need to make trips to the charging and storing area when they run out 
of battery power or are idle for some time during for example the night. A value that comes close 
to this 50% is therefore considered optimal.   
   

The third additional KPI is the percentage of charging time. This KPI refers to charging efficiency. 
The amount of time that a robot spends charging should be as low as possible, still ensuring 
effective operation. The unit of this KPI is percentage and the value should be as low as possible, 
under the condition that the system complies with all the requirements and constraints of the 
system.  
 

The final additional KPI is the number of conflicts avoided. As described earlier, conflicts and 
deadlocks might occur in the system due to decentralized control. However, conflicts can be 
avoided, before escalating to an actual conflict which may lead to system deadlock. The number 
of conflicts that are avoided is a KPI to measure the performance of the new sorting concept and 
should be as low as possible. A low value of this KPI indicates that the configuration of the 
system causes not too many imminent conflicts. However, a low value is not as strict 
requirement, as long as all the potential conflicts are being avoided and does not cause too much 
delay in the transportation process, causing an increase in the percentage of mishandled bags.  
 

All mentioned key performance indicators can be linked to relevant stakeholders in the baggage 
robot concept. The four most relevant stakeholders are airlines, airports, ground handlers and 
passengers. Appendix B shows the results of a stakeholder analysis. In this analysis, an overview 
of the problem formulations on baggage handling systems in general of the different stakeholders 
is provided. By making the interests and objectives of the stakeholders explicit and comparing the 
objectives to the current situation as perceived by the different stakeholders, these problem 
formulations can show a gap.  
 

Appendix B shows several terms used in the stakeholder analysis: interests, desired 
situation/objectives, existing or expected situation and gap, causes and possible solutions. The 
term interest refers to the issues that matter most to the stakeholder when it comes to baggage 
handling systems at airports. Identifying the interest of the different stakeholders helps in 
estimating to what extant certain objectives or solutions will be acceptable for that specific 
stakeholder. The objectives or desired situation describe what the stakeholders wish to achieve 
when it comes to baggage handling systems. Objectives can be used as a measure to judge the 
existing situation, as it can indicate a gap between the objectives or desired situation and the 
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perceived existing or expected situation. Often, this gap can help in making the nature of the 
problem more explicit (Enserink et al., 2010).  
 

As becomes apparent from the stakeholder analysis, all relevant stakeholders wish to have a 
baggage handling system that has an outstanding performance, but the motivation for this wish 
differs. For example airlines wish that baggage handling systems are as flawless as possible to 
reduce their expenses on compensation for lost or delayed bags, while airports don’t want a 
poorly performing baggage handling system to harm their reputation. Ground handlers wish to 
have an outstanding baggage handling system to have an advantageous competitive position in 
tendering processes, while passengers wish their bags are at the right reclaim belt at the right 
destination at the right time to leave the airport carefree. For the airlines, airports and passengers, 
having a baggage handling system that reduces the chances of bags getting mishandled or delayed 
help in fulfilling their wishes. For ground handlers however, this solution is only partially 
fulfilling their wish, as they can obtain an advantage over their competitors in tendering processes 
if they can dynamically alter the capacity of the baggage handling system to minimize the 
operational costs of the system, while guaranteeing accurate performance.  
 

When it comes to the described KPIs, the owner of the baggage handling system is interested in 
all of the seven KPIs. Depending on the formal structure of the airport – which can be different 
for each airport – the baggage handling facilities are owned by a party. The two parties that are 
found to own the infrastructure most often are the airport and the ground handling parties. For 
the other involved stakeholders – passengers and airlines – the most important KPI is the 
percentage of bags exceeding norm time (or the percentage of mishandled bags) and indirectly 
the process time of bags (related to the percentage of mishandled bags) and the average number 
of robots (related to the operational costs for the owner of the system, who passes the costs on, 
eventually resulting in an increase in ticket prices). When it comes to baggage handling systems, 
the most important thing for passengers is that bags are loaded into the same aircraft as the 
accompanying passenger. For airlines this is also the case, but more indirectly as having a high 
percentage of bags exceeding the norm time means the airlines have to compensate the duped 
passengers. All KPIs can be combined with one or more stakeholders: 
 

 Average process time of bags 
o Direct: owner of baggage handling system (airport and/or ground handler) 
o Indirect: airlines and passengers 

 Percentage of bags exceeding norm time 
o Owner of baggage handling system (airport and/or ground handler), airlines and 

passengers  

 Average number of robots 
o Direct: owner of baggage handling system (airport and/or ground handler) 
o Indirect: airlines and passengers 

 Percentage of operational time while being loaded 
o Owner of baggage handling system (airport and/or ground handler) 

 Percentage of operational but empty trips 
o Owner of baggage handling system (airport and/or ground handler) 

 Percentage of charging time 
o Owner of baggage handling system (airport and/or ground handler) 

 Number of conflicts avoided 
o Owner of baggage handling system (airport and/or ground handler) 
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3.5. Conclusion: Towards Testing the Baggage Robot Concept  
The baggage robot concept tries to eliminate the need for conveyor belts in order to make the 
baggage handling system more scalable and dynamic. To research whether or not such a system 
could be feasible, it needs to be build and tested. This chapter identified the most important 
elements of the baggage robot concept, being the floor layout configuration and charging of the 
robots, the control of the system, the routing of the robots within the baggage handling area and 
collision and deadlock avoidance.  
 
Floor layout configurations can differ by altering the locations of the charging and storage 
positions that are used by the robots to charge their battery by means of inductive charging. 
Furthermore, the hybrid control architecture is identified as the most suitable control 
architecture, providing a combination of decentralized and centralized control, making it suitable 
for the baggage robot concept as it increases the robustness, scalability, flexibility and 
performance of the system. The robots in the system are routed through the baggage handling 
area by following individual shortest paths. For collision and deadlock avoidance, two strategies 
are a stopping and resuming policy for imminent side collisions, and a turn, (wait) and continue 
policy for imminent frontal collisions. By invoking these collision avoidance measures, deadlock 
situations are avoided too.  
 
The requirements, constraints and key performance indicators of the baggage robot concept 
described in this chapter are important to investigate the feasibility of the concept. As 
constructing a test setup of this system is laborious and expensive, a simulation model of one of 
the processes of a baggage handling system – the sorting process – is constructed. The next 
chapter involves an argumentation on an appropriate simulation method as well as the simulation 
model building.    
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4. Model Building 
Constructing the real-size test setup of the baggage robot concept is laborious and expensive. 
Using modelling and simulation a low-cost, less time-intensive evaluation of a part of the rough 
design can be performed. In this chapter the use of simulation in a broader sense of airport 
operations is discussed, after which different simulation methods follow. A choice for an 
appropriate simulation method is followed by a roadmap on how to construct a simulation model 
of the baggage robot concept, starting with the conceptualisation of the model. In the remainder 
of the chapter the model building steps are followed, ending with the verification and validation 
of the constructed simulation model.  
 

4.1 Simulation in Airport Operations 
To test and evaluate the feasibility of individual transport robots in a baggage handling 
environment, simulation is an appropriate method. 
 

Smith (1998) defines simulation as: 
 

the process of designing a model of a real or imagined system and conducting experiments with that model. 
 

Simulation is more than making a model; it is about using the model by running simulation 
experiments with it. The main advantage of using simulation models is that it enables analysis of 
effectiveness and predictions of implications of proposed changes to an existing or a new system, 
without actually changing the existing system or building a new system (Wilson, 2005). Changes 
to an existing system or construction of a new system and performing physical experiments on it 
is generally very costly and time consuming. In addition, changing one element of the system 
while keeping other elements constant is often not possible in physical experiments (Robinson, 
1969) 

Simulation … 
There is not just one type of simulation. According to Smith (1998) the two main types of 
simulation are discrete event simulation and continuous simulation. The classification is based on 
the way in which state variables change. When these variables change instantly at certain separate 
points in time, Discrete Event Simulation (DES) is mostly used to model stochastic events and 
variations in processes in complex systems. It is used in many different disciplines (Riley, 2013). 
Where DES uses distinct points in time for changing the state variables, in continuous simulation 
state variables change continuously over time (Smith, 1998). According to Klee (1986), 
continuous simulation is mainly used to simulate the behaviour of complex and dynamic systems, 
which DES can also do. Continuous simulation usually describes such systems using a 
mathematical model or function in which time can be varied. One could state that when the 
system has a nature of variables not changing continuously but in discrete times and by discrete 
steps, a discrete event simulation is best suited to model the system. When a system is 
characterized by continuously changing variables over time, continuous simulation is most 
suitable (Özgün & Barlas, 2009). 
 

However, not only discrete event and continuous simulation are popular methods of simulating 
complex systems behaviour. Another widely used simulation model in different disciplines is a 
model that is able to describe autonomous and individual agents. This type of Agent-Based 
Modelling (ABM) and simulation is used for modelling complex systems, but unlike continuous 
and discrete event simulation, ABM uses autonomous agents that can interact with each other 
and have specific, modelled behaviour (Macal & North, 2010). 

… in Airport Operations 
Existing literature shows that for simulating airport operations in general and baggage handling 
system, two types of simulation are mostly used: 
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1. Discrete Event Simulation 
2. Agent-Based Modelling 

 

Both of them have been briefly discussed. There are multiple studies which can be categorized 
according to their application and type of simulation, see Table 7. 
   
Table 7 - Overview of simulation methods and applications 

Application Discrete Event Simulation Agent-Based Modelling  

Air Cargo Operations (Nsakanda, Turcotte, & Diaby, 
2004) 

(Zhu, Ludema, & van der 
Heijden, 2000) 

Passenger Flows (Guizzi, Murino, & Romano, 
2009; Rauch & Kljajić, 2006) 

(Eilon & Mathewson, 1973; 
Lui, Nanda, & Browne, 1972; 
Schultz & Fricke, 2011) 

Baggage Handling Systems (Johnstone, Le, et al., 2015; 
Johnstone, Creighton, & 
Nahavandi, 2015; Le, Zhang, 
Johnstone, Nahavandi, & 
Creighton, 2012; Savrasovs, 
Medvedev, & Sincova, 2009) 

(Hallenborg & Demazeau, 
2006, 2008) 

 

4.1.1.1 Discrete Event Simulation 
Discrete event simulation is a widely-used method to simulate different aspects of airport 
operations. Existing literature shows the application of DES for analysis and evaluation of air 
cargo operations, passenger flows and baggage handling systems. 
Air cargo operations are considered to be highly complex. There are many interdependent pro- 
cesses involved and cargo comes in a wide variety of commodities. The complexity increases 
when a distinction is made between service types and preferred type of aircraft. The aim of 
Nsakanda et al. (2004) is to develop a (simulation) tool to evaluate and analyse air cargo 
operations. Their decision to apply discrete event simulation is based on a study by Delorme, 
Procter, Swaminathan, & Tillinghast (1992) on the use of simulation for airport cargo operations. 
Nsakanda et al. (2004) used Arena software to develop their model, with shipments as key 
entities being processed in the cargo terminal. The route that these shipments - represented by 
entities - follow is modelled as a random processing route. 
 

Another application of DES in airport operations focuses on passenger flows. Passenger flows 
are everywhere in the terminal parts of airports. They start when passengers arrive to the check-in 
or bag-drop desk and ends with passengers queuing to board the plane. According to Rauch & 
Kljajić (2006), these passenger flows can be characterized as discrete stochastic processes. In 
combination with the frequent use of discrete event simulation for modelling complex systems 
with infrastructure constraints and limited capacity, DES is found to be a suitable method for 
modelling passenger flows at airports. In their research on using DES for modelling passenger 
flows, Guizzi et al. (2009) use Arena software, with passengers as key entities and check-in desks 
and security checkpoints represented by processes. 
 

Although DES is applied in the airport operations domain on air cargo operations and passenger 
flows, it is mostly used on baggage handling systems. Research articles on this application differ 
in their focus. Johnstone, Creighton, et al. (2015) focus on the locations in baggage handling 
systems where sorting takes place, which can cause bottlenecks. They have used discrete event 
simulation to assess the impact of variations in the physical layout of merge points in the BHS on 
throughput performance. This research focuses on a very specific aspect of BHS, whereas the 
main author in a different research broadens this scope by using discrete event simulation to 
analyse baggage flows in the BHS of an international airport, to identify key factors that can 
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influence the total dwell time of baggage items (Johnstone, Le, et al., 2015). However, Johnstone, 
Le, et al. (2015) are not the only ones who applied DES to the performance of BHS. Le et al. 
(2012) researched a broader aspect of BHS performance, where Johnstone, Le, et al. (2015) 
focussed on dwell time, Le et al. (2012) researched expected BHS-performance using discrete 
event simulation, applying different output measurements like throughput, travel and in- system 
time, and queuing delay to determine the performance of the system as a whole. Next to using 
DES to measure the BHS-performance in its current state, research has been performed on the 
sustainability of these BHSs. Savrasovs et al. (2009) used discrete event simulation to research - 
applying different scenarios - what should be improved or changed in the baggage handling 
systems at Riga Airport when passenger flows increase. In general, one could state that the most 
commonly used application of discrete event simulation in the field of baggage handling systems 
is to analyse the performance of the system and how future-proof the system is. 

4.1.1.2 Agent-Based Modelling 
Agent-Based Modelling (ABM) is a method suitable for modelling different aspects of airport 
operations and modelling passenger flows in particular, since ABM is able to describe individual 
agents that can interact with each other and can be assigned specific behaviour. However, 
existing literature shows that ABM is also used on baggage handling systems and - to a lesser 
extent - air cargo operations. This section elaborates on the use of ABM on airport operations 
processes. 
 

Zhu et al. (2000) define a multi-agent system for modelling air cargo transport. In this case the 
agents do not represent individual human beings, but one agent represents one origin-destination 
flight leg with specific attributes such as capacity and space available on that leg. These agents 
could then communicate and cooperate with each other to assign the cargo on planned 
shipments. 
 

Another application of ABM is in the field of passenger flows. Eilon & Mathewson (1973) use 
ABM to evaluate the design of an airport terminal building where passengers move through. 
Passengers moving through an area like a terminal have to be processed, which takes time, and 
can therefore cause congestion. These authors model passenger flows by including amongst 
others flight schedules, service rates and resources and individual passenger characteristics (Wu & 
Mengersen, 2013). A year earlier, Lui et al. (1972) used the same modelling technique to analyse 
passenger and baggage processes at JFK Airport, New York. In their model, agents did not 
represent individual passengers, but a group of passengers coming from the same flight. These 
groups are characterized on eleven parameters like airline carrier, flight number, group size and 
number of bags for the entire group (Lui et al., 1972). A more recent study by Schultz & Fricke 
(2011) also focused on the outbound passenger process. Contrary to Lui et al. (1972), their agents 
represent individual passengers which are modelled to the detail of motion speed and dynamic 
group behaviour based on walking speed of other agents and density. 
 

Baggage handling systems can also be modelled and simulated with agent-based modelling. 
Hallenborg & Demazeau (2006) explain that baggage items are passive and dependent on the 
elements of the BHS to move. The authors model eight BHS-elements as agents amongst which 
a top loader agent bringing baggage items into the BHS, a divert agent that represents divert 
elements in the BHS that allows multiple routes to be taken and a merge agent merging baggage 
items from two input legs to one output leg. Between these agents, Hallenborg & Demazeau 
(2006) modelled an interaction mechanism to enable them to communicate and perform the 
baggage handling process. In a follow-up study of the same agent design is used, now with 
individual control logic to constantly adapt to the current situation of the neighbouring agent. 
The authors applied their multi-agent system to a real baggage handling system at a big hub in 
Asia (Hallenborg & Demazeau, 2008). Another application of ABM on BHS on a real airport was 
conducted by Cavada et al. (2017). They argued that an analysis of different operating strategies 
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on baggage handling systems must include the elements and agents that are part of the BHS, not 
as isolated elements or agents, but as an integrated whole. In their use of the case of Santiago 
International Airport in Chile, they use microscopic vehicle traffic simulation as a basis in which 
the streets equal the conveyors and the vehicles equal baggage items. This unconventional use of 
microscopic vehicle traffic simulation appeared to be suitable for determining the capacity of this 
airport’s BHS.  
 

4.1.1.3 Strengths of Discrete Event Simulation and Agent-Based Modelling in Airport Operations 
Discrete event simulation is a commonly used method to simulate different kinds of airport 
operation processes because it has specific strengths that are useful for this application. In DES, 
physical and complex systems are reduced to a series of processes, with entities flowing from one 
to another process (Johnstone, Le, et al., 2015). During this flow through different processes, as 
described earlier, the state of these entities only changes at discrete points in time when events 
emerge. For the application of discrete event simulation in airport operations, this discrete 
character is very useful as it resembles the true nature of passenger or bag flows processes, which 
are discrete and stochastic processes (Rauch & Kljajić, 2006). Combined with the frequent use of 
DES for modelling complex systems with limited infrastructural capacity, processes like baggage 
handling processes in airport operations are very well suited for discrete event simulation (Rauch 
& Kljajić, 2006).  
 

The key strength of Agent-Based Modelling is that its focus is not just on individual components 
of a system but rather on the interactions amongst different components. By also modelling these 
interactions, they can be optimized as well. This differs from discrete event simulation where it is 
only possible to optimize one single component or the system as a whole, without taking 
interactions into account. In that sense, ABM is more accurate to model systems where 
interactions play an important role in the performance of the system, like passenger flows where 
passengers interact with each other and adjust their actions as a result of these interactions 
(Cavada et al., 2017). Another strength of ABM for airport operations is mentioned by 
Hallenborg & Demazeau (2006). Their proposal for future work suggests that by using agent-
based modelling, less system specific calibration is required, but would like to see that proven 
more. 
 

4.1.1.4 Weaknesses of Discrete Event Simulation and Agent-Based Modelling in Airport Operations 
Discrete event simulation in airport related processes also has certain downsides. According to 
Riley (2013), a yet unsolved challenge in optimizing DES-models is to exactly determine an 
optimal solution for a model. This inability of DES is even more problematic when there is a big 
feasible solution space. New ways to optimize large scale DES models are still lacking (Riley, 
2013). So, while there is a need for optimization in DES, ways to do so are still missing and big 
solution spaces complicate this even more. Another complication when applying DES in airport 
related processes is that lots of data are required to model the system accurately. Amongst others, 
data on mean process times as well as distribution characteristics such as process time standard 
deviation are needed, taking a lot of time and resources, given the complex nature of airports. 
 

When it comes to using ABM in airport operations, it is less often used than discrete event 
simulation. It seems that DES is the preferred method in this field. The suspicion is that the 
reason for this difference is that on average, ABM is harder to apply to airport operations since 
not only the system needs to be modelled, but also a deep understanding of the interactions 
between model components is required as decision logic also must be included. Hallenborg & 
Demazeau (2008) provide examples of this. This means that all interaction assumptions need to 
be made explicit and more than only the physical system needs to be described. 
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4.2 Argumentation for a Simulation Method 
In section 4.1, two simulation methods are described: Discrete Event Simulation and Agent-
Based Modelling. To build a simulation model of a baggage handling system that uses 
autonomous and individual transport robots, a decision needs to be made between these 
simulation methods. The strengths and weaknesses of both methods have been discussed in 
section 1.3.1. The method of choice in this research is Agent-Based Modelling. The most 
important reason for this choice is the autonomous nature of the individual transport robots 
considered. In literature, the single most given reason on using ABM can be paraphrased as that 
agent-based model are able to explicitly model the complexity that arises from individual actions 
and interactions that arise in the real world (Siebers, Macal, Garnett, Buxton, & Pidd, 2010). 
Borshchev & Filippov (2004) point out that a discussion on the exact definition of agents is still 
going on, but he describes some properties that an object should have to be called an agent. 
Amongst these properties are pro- and re-activeness, spatial awareness, ability to learn, social 
ability and intellect. Siebers, Macal, Garnett, Buxton, & Pidd (2010) add that these agents are in 
fact discrete entities ‘that are designed to mimic the behaviour of their real-world counterparts.’  
 

In literature, the single most given reason on using ABM can be paraphrased as that agent-based 
model are able to explicitly model the complexity that arises from individual actions and 
interactions that arise in the real world (Siebers, Macal, Garnett, Buxton, & Pidd, 2010). The 
authors describe for which problems ABM is a suitable method by listing relevant features of 
these problems. When: 

- it is important for individual agents to include (geo-)spatial aspects to their behaviour 
(which enables agents to move over a landscape) 

- it is important that agents are able to learn or adapt 
- agents engage in strategic behaviour and anticipate on the reactions of other agents’ in 

their decision-making process 
- it is important to model agents that cooperate, collude, or form organisations  
- the past is not a predictor for the future (for example in the case of new technologies, like 

autonomous and individual transport robots) 
 

The first feature on (geo-)spatial aspects is underlined by Dubiel & Tsimhoni (2005) who explain 
that ABM is more suitable for simulating the free movement of entities, opposed to DES, as the 
primary limitation of DES is that movements are generalized in the simulation. According to 
Dubiel & Tsimhoni (2005) commercial DES packages require a path between two points in order 
for an entity to move between these points. When one wishes to give agents the freedom to 
move around freely, ABM is more appropriate since every path an agent could take between two 
points should be modelled in order to represent a free moving space. The decisions that are made 
at all these points do not represent autonomous agents since all of the decisions on processes or 
routing must be made by central servers, which could affect the interaction between the agents of 
interest and the other agents and objects that are present in the simulation model (Dubiel & 
Tsimhoni, 2005). 
 

In this research, the focus is on the autonomous and individual transport robots, which drive the 
system as a whole. These robots can be represented as agents having their own set of goals and 
behaviours and their own thread of control. By representing these robots as agents in an agent-
based model, the modelled robots modelled are having the capability of making autonomous 
decisions – the robots are able to take flexible action in reaction to their environment – and the 
ability of showing proactive behaviour. By controlling the system decentralized, each agent has its 
own set of goals and behaviours and its own thread of control (Siebers, Macal, Garnett, Buxton, 
& Pidd, 2010).  
 

As Janssen (2005) describes, agent-based modelling is ‘the computational study of social agents as 
evolving systems of autonomous interacting agents’. This makes ABM suitable for researching 
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the system of autonomous and individual transport robots from a perspective that allows for 
complex and adaptive systems. ABM allows for experimenting with the simulation model to 
explore the effects of different agent attributes, behavioural rules and types of interactions on the 
system on a macro level. In their work, Borshchev & Filippov (2004) describe that agents can 
model ‘objects of very diverse nature and scale’. On the more physical level, pedestrians, cars or 
robot can be modelled as agents in Agent-Based Modelling.  
 

The control of an agent-based model is decentralized. Borshchev & Filippov (2004) describe this 
decentralized type of control as an important feature of ABM. The behaviour can be defined at 
the level of individual agents and the global behaviour, which can be an optimization, emerges as 
a result of the behaviour of all the agents present in the system, each following their own decision 
rules while continuously communicating with each other and the environment.  
 

Opposed to Discrete Event Simulation, Agent-Based Modelling enables the researcher to model 
and explore the interactions between both agents and agents, as agents with the environment. In 
the case of this research, transport robot to transport robot interactions could be modelled and 
explored, as well as the way in which the transport robots interact with their environment, like 
walls, bags and areas. In their interaction with the environment, agents are capable of deriving 
information from this environment, which they use to make form their perception about the 
state of the environment at that moment. Janssen (2005) uses robots as an example in his 
argument that agent-based modelling enables a researcher to research and explore the behaviour 
of adaptive autonomous agents in the physical world. According to Siebers, Macal, Garnett, 
Buxton, & Pidd (2010), agent-based modelling is being applied to the more traditional operations 
front like dynamic supply chains, but only when these operations require that the modelling 
includes dynamic processes that are able to quickly adapt to changing requirements and events on 
a real-time basis. Discrete Event Simulation is not easily able of processing decisions made at 
very small time increments. It can be done, by placing a large amount of decision points 
extremely close to one another and including decision logic in each of these points. Next to this 
being a very laborious process, the results of would be hard to verify and validate (Dubiel & 
Tsimhoni, 2005).  
 

The flexible and autonomous nature of autonomous and individual transport robots can be 
modelled with this method. Wooldridge (2002) explains flexibility of agents as the goal-directed 
nature of agents, combined with their ability to be reactive and their capability of interacting with 
other agents in the system. The goal-directed nature can for example be that agents work to 
maximize their utility and reactivity means as much as the ability of the agents to respond to 
changes in the environment. Agents use the combination of their goal-directed nature and 
attributes for their decision-making process, in which decisions on their actions are made as well 
as how these actions influence the environment (Janssen, 2005). Another useful aspect of ABM is 
that agents are able to interact indirectly. This type of interaction can be used to exchange 
information about possible strategies and knowledge about resources and agreements in an effort 
to solve collective problems (Janssen, 2005). ABM attempts to simulate intelligent and 
autonomous agents as they interact to accomplish a goal in their environment (Dubiel & 
Tsimhoni, 2005).  
 

The limitations of DES and the advantages of ABM combined result in ABM being the preferred 
simulation method. The limitations of DES can be overcome, but it does not make it the most 
suited method of representing autonomous and individual transport robots that have certain 
decision patterns.  
 

 

4.3 Modelling Steps  
The goal of the simulation model is to provide the user of the model with insights into the 
performance of a baggage handling system that uses autonomous and individual transport robots 
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for the sorting job of the system. The modelling steps to develop a correct simulation model are 
shown in Figure 19. The steps are derived from Marion, Scotland, Lawson, & Marion (2008) and 
Maki & Thompson (2005).  
 

 
Figure 19 - Modelling Steps 

Developing a simulation model starts by having a deep understanding of the system to be 
modelled. Since the system to be modelled does not exist in the real world yet but rather an 
advanced combination of two systems – a conventional baggage handling system and an 
autonomous and individual transport robot system – both systems need to be understood. As 
there is no fully autonomous and individual transport robot system in operation to the 
knowledge of the researcher, instead of understanding the autonomous system, an understanding 
of the differences between an AGV system and an autonomous system is necessary. The phase 
of understanding these systems is performed in Chapter 2. The next step is to simplify the 
combination of these complex real-world systems by means of conceptualisation. This 
conceptualisation entails the identification and decomposition of the system to be modelled and 
clear insights into the processes that are relevant in a baggage handling system where the sorting 
process is executed by autonomous and individual transport robots. In the sorting process, 
several strategies play a role, such as choosing a route, choosing dispatching rules, charging 
strategies and strategies to avoid collisions. After all elements that are relevant for accurately 
modelling the system are identified, the conceptualisation can be abstracted in the model 
implementation phase. After implementing the system in software, the simulation model needs to 
be checked by means of verification – is the system built right? – and validation – is the right 
system built? After the simulation model is checked, experiments can be executed with it. Finally, 
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the results of the experiments executed can be analysed to make statements on the feasibility of 
the autonomous and individual transport robot system in a baggage handling environment.  
 
 

4.4 Model Conceptualisation 
The first modelling step concerns the model conceptualisation. This section starts with the scope 
of the model to be built, after which requirements, constraints and assumptions for the 
simulation model are described. After that, the baggage robot system elements are identified and 
the sorting process of the system is decomposed. The section ends with a description on how the 
most important processes in the baggage robot concept as described in section 3.3 will be 
translated into a the simulation model.  
 
 

4.4.1 Model Scope 
In the most aggregated view on baggage handling systems, three main processes that bags have to 
go through in their journey from bag drop-off to loading into the aircraft can be identified: (1) 
security screening, (2) sorting and (3) makeup (and storing) of baggage items. In order for a bag 
to arrive at the security screening, it first needs to enter the baggage handling area. After the 
makeup and storing process, the bags exit the baggage handling area to be loaded into an aircraft. 
Since this research is limited to the size of a regional airport operating in a point-to-point 
network, transfers are not included. If transfers were to be included, transfer bags would be 
reinserted into the system at the security screening process.  
 

In between the key processes of handling baggage, baggage items need to be transported between 
these processes. The four key transport moments are depicted in Figure 20. The conventional 
baggage handling system uses conveyor belts to take care of transporting bags between processes. 
   

 
Figure 20  - Key processes in baggage handling at regional airports operating in a point-to-point network 

This research tries to identify how autonomous and individual transport robots can help in 
dynamically altering the floor plan and desired capacity of baggage handling system. To do so, a 
simulation model is constructed. Simulation models are found valuable in explaining and 
understanding real-world phenomena. Phenomena that are costly or impossible to perform in a 
laboratory, or difficult to collect in field experiments, are especially suited for simulation studies, 
as is the case for the baggage robot concept. However, from a performance concern point of 
view it is impossible and unnecessary to include all elements, amongst which are elements that do 
not have much effect on the system, into the simulation model (Xiang, Kennedy, & Madey, 
2005). The simulation model should at least be able to represent the physical baggage robot 
concept system, to enhance the understanding of the system and to predict and control the 
behaviour of the baggage robots in the system under different circumstances. This is why a clear 
delineation is necessary. As the individual transport robot system can be represented by an agent 
system, key processes from Figure 20 that can be represented by agents are identified.  
 

The processes ‘entering’ and ‘security screening’ can be categorized as being queuing systems 
which can be represented by discrete event models. Since the interest of this research is to 
investigate the potential of agent systems in a baggage handling context, these elements are 
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eliminated from the scope of the simulation model to be build. The hypothesis of this research is 
that the biggest lead time improvements by making use of autonomous and individual transport 
robots can be achieved in the sorting system, which can be categorized as an agent system. The 
processes ‘storing’ and ‘exiting’ are also eliminated from the scope as they are performed by 
either humans or robot arms, which are other types of systems. The key processes that are 
included in the model building are indicated in Figure 21.  
 

 
Figure 21 - Scope of Model 

Now the scope of the model is identified, it’s time to establish to which requirements, constraints 
and assumptions the model needs to comply.  
 
 

4.4.2 Model Requirements, Constraints and Assumptions 
As the simulation model does not include all the possible details and behaviours of a real baggage 
robot concept that is not available yet, some assumptions and abstractions must be made about 
the system for the construction of the model. These assumptions and abstractions however, 
introduce inaccuracies to the simulation model (Xiang et al., 2005). It is good to be aware of the 
presence of inaccuracy as constructing requirements, constraints and assumptions are inevitable 
in the process of building a simulation model to show the idea of the baggage robot concept.  
 

Requirements, constraints and assumptions reduce the complexity of the model. Rather than 
modelling the entire baggage robot concept and its functionalities, the simulation model focuses 
on the development of a proof of concept of the baggage robot concept that is worth further 
research. In the model, the attention is on the path planning of the robots, collision avoidance 
measures and the effect of different layouts on the KPIs of the baggage robot concept. As 
mentioned in the scope, only the sorting part of the baggage handling process is concerned. The 
requirements, constraints and assumptions pointed out below are set around this scope.  
 
Requirements 

 Minimize bag waiting time by locating CS areas as close to the incoming conveyor belts  

 Maximize the reachability of CS area positions by giving each position at least one free 
neighbour to move over 

 
Constraint Unit Value 

 Number of incoming conveyor belts [#] 4 

 Number of makeup stations [#] 4 

 Number of charging and storage positions [#] 96 

 Number of robots [#] 1-96 

 Total floor area [m2] 6080  

 Floor area charging and storage positions [m2] 384 

 Floor area occupied by incoming conveyor 
belts 

[m2] 32 

 Unoccupied floor area [m2] 5664 
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 Bag dimensions [cm x cm] 100 x 75 

 Robot dimensions [cm x cm] 150 x 150 

 Robot speed [m/s] 2 

 Robot capacity [# bags] 1 

 
Assumptions 

 Bags are cleared once they enter the modelled area 

 Arrival pattern according to a normal distribution with a mean of 40 minutes and a 
standard deviation of 30 minutes.  

 The buffer capacity at the conveyor belts that brings the bags to the sorting process area 
is infinite  

 A makeup station can only by used by one destination at a time 

 Robots are homogenous and therefore have identical capabilities  
 

Keeping these requirements, constraints and assumptions in mind, an identification of the system 
to be modelled and the decomposition of this system follow in the next section.  
 
 

4.4.3 System Identification and Decomposition 
By following the structuring method of Dam et al. (2010), the system identification and 
decomposition can be established. This includes an insight into the system elements agents and 
objects. For agents, the actions they can perform that affect their own state or that the agents 
take for communicating with other agents or objects are specified. Finally, a description of the 
environment of the system elements is presented.  
 

After formulating model requirements, constraints and assumptions, the next step towards 
building a simulation model baggage robot concept is deciding on the system composition and 
boundaries. By identifying the internal structure, the baggage robot concept is considered as a 
collection of agents and all of their interactions over time.  What specifically should be identified 
are actors and objects that are represented in the model and the states or properties that these 
actors and objects can have, as well as interactions and flows present in the system. In this 
decomposition phase, agents, objects, their properties and interactions possibly occurring 
baggage robot concept are included.  Dam et al. (2010) describe a structured way to identify and 
decompose the system under study. 
 

In the identification and decomposition process, a distinction is made between agents and 
objects. Agents are recognized by their boundaries, states, behaviours and ability to interact.  
They are capable of making decisions independently; all other entities present are considered to 
be objects. For the baggage robot concept the following agents and objects exist: 
 

System element 

 Robots Agents 

 Bags Objects 

 Incoming conveyor belts Objects 

 Chutes to makeup stations Objects 
 

As mentioned in section 4.2., the exact definition of an agent is still under discussion, but 
properties that are attributed to agents are amongst others pro- and re-activeness, spatial 
awareness and social ability. Robots are therefore the only true agents in this system as they are 
able to act autonomously and react to the actions of other robots in the system. Furthermore 
they are capable of planning and re-planning their own paths while communicating with other 
robots. Bags do not have any of these properties and are therefore classified as objects. However, 
they are not fixed objects as they move over the conveyor belts to enter the system and are 
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transported by robots to the makeup stations. The incoming conveyor belts and the chutes to the 
makeup stations are also system elements classified as objects – as they are incapable of making 
decisions independently – but opposed to bags that are moved through the system, these belts 
and chutes are fixed.  
 

Agents can be described and specified by properties that are regarded as states. Interactions take 
place between agents or between agents and objects. This differs from behaviours, as behaviours 
identify state changes that are caused by or lead to interactions or other state changes (Dam et al., 
2010). The states, interactions and behaviours elaborated on in this section are simplified as 
much as possible, while attempting to not abolish relevant aspects.  
 

The only agents in the baggage robot concept are robots. The properties that describe and 
specify these robots – their states – are simplified to basic internal states. The states a robot can 
be in are the following: 

 Available (battery-level, bag assigned 0, loaded bag 0) 

 Incoming request  

 Arrived at belt  

 Transporting bag  

 Delivered bag 

 En route to a storage and charging position 

 Charging 
 

States changes by tasks as: 

 Pick up an incoming bag at one of the incoming conveyor belts 

 Check destination of bag 

 Drop an incoming bag at one of the chutes to a makeup station 

 Check battery level 
 

Robots have to transport incoming bags from one of the incoming conveyor belts to one of the 
chutes to the makeup stations. Bags arrive at one of the four incoming conveyor belts. These 
conveyor belts transports the bags to the sorting area, where the bags need to wait for a robot to 
pick them up. As bags are static objects, they can’t independently go through the sorting area and 
are dependent on a robot to pick them up. Despite being a static object, bags can have states as 
well. However, they are not able to change these states by performing tasks themselves, as robots 
can. States that a bag can be in are the following: 

 Approaching the conveyor belt 

 On a conveyor belt 

 At the end of a conveyor belt and no robot is assigned yet 

 At the end of a conveyor belt and waiting for pick up by the assigned robot  

 On a robot 

 Delivered to a chute to a makeup station 
 

The states of a bag can only change by the interaction with other system elements. When bags 
arrive at one of the four incoming conveyor belts they have the state ‘approaching the conveyor 
belt’. When it reaches a conveyor belt, it interacts with that conveyor belt and the bag’s status 
changes to ‘on a conveyor belt’. As it moves over this conveyor belt, its state can change twice to 
‘at the end of a conveyor belt and no robot is assigned yet’, meaning the bag is waiting until a 
robot is assigned to the transportation task of transporting that bag to one of the makeup 
stations, or to ‘at the end of a conveyor belt and waiting for pick up by the assigned robot’ when 
it waits to be picked up by the robot it’s assigned to. This last state change happens through 
communication between the bag and a robot. When a robot picks up the bag, it reads the 
destination information on the bag tag of the bag and translates this into one of the four available 
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makeup stations. The exchange of information between the bag and the robot causes the bag to 
change its status to ‘on a robot’ and the robot now knows which makeup station to head to. 
Once the robot drops the bag at one of the makeup stations, communication between the bag 
and the makeup station take place which causes the bag to change its state to ‘delivered to a chute 
to a makeup process’.  
  

The robots continuously interact with each other, bags, the incoming conveyor belts and the 
chutes to the makeup stations. This communication or interaction takes place in an environment. 
This environment contains all the information that is external to agents, but agents can use this 
information when making decisions. The environment contains everything that affects an agent, 
but is not the agent itself (Dam et al., 2010). This means that the environment provides 
exogenous variables that affect the system elements, but the environment cannot be affected by 
these system elements in turn.  
 

In the simulation model of the baggage robot concept, the environment provides the following: 

 The locations of the incoming conveyor belts and makeup stations 

 The location of other static pre-defined features such as the outer walls of the area 

 The random distribution of incoming bags across the four incoming conveyor belts 
 

The environment interacts with the system elements, the agents and objects. However, agents 
and objects are not able to interact with the environment directly. Agents – robots here – interact 
with agents and objects alone, meaning robots interact with other robots, bags, the incoming 
conveyor belts and the chutes to the makeup stations. Robots communicate with other robots to 
avoid collisions between each other, they communicate with bags to receive information on their 
destination and with the incoming conveyor belts to receive a transportation task. Finally robots 
communicate with the chutes to the makeup stations to check whether the destination on the bag 
tag of the bag corresponds with the destination of the makeup stations, to ensure the correct 
sorting of bags.  
 

 

4.4.4. Processes in the Baggage Robot Concept Model  
Now the scope of the model, the model requirements, constraints, assumptions and the system 
elements are identified, it’s time to establish who does what and when in the system to show the 
role of individual transport robots in the model. The behaviour of agents in an agent-based 
model can be captured in a story, making clear which agent does what, with whom and when. A 
narrative of how agents in the model act and interact helps in giving insights in how the system 
works. (Dam et al., 2010). The narrative represents a rough outline rather than a detailed 
description of how the agents and objects interact, so only the actions per time tick are roughly 
included in the narrative: 
 

A cleared bag arrives at the entrance of the sorting system where it is picked up by an individual 
transport robot. Once picked up, the destination information located on the baggage label is read 
by the transport robot. With this information, the transport robot proceeds to one of the makeup 
and storage areas present. Each makeup station and storage area represents a destination and the 
transport robots match this destination with the destination of the bag they transport. If there is a 
positive match between a particular makeup station and storage area and a bag, the robot brings 
the bag to this makeup and storage area where it will drop the bag. If there is no match, the robot 
proceeds to a general storage area where all bags that do not yet match with a destination area are 
temporarily stored until the right destination area is available.  
 

Transport robots continuously monitor their battery power. Once their battery reaches a certain 
threshold for minimum required battery, it is no longer allowed to start picking up bags and it 
needs to move to a charging station to recharge. Instead of moving to a location where it is 
needed most when it has no load in the process, it can also proceed to a recharge station. When 
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the transport robot is in an idle state for longer than a certain threshold, it can move itself to a 
robot storage area to wait for work or to a charging station if necessary.  
 

What these roughly described processes do has been described earlier in section 3.3. The 
representation of processes in the model is discussed point by point in the next sections. 
 

4.4.4.1. Control  
As described in section 3.3.2. the preferred control approach for the baggage robot concept as a 
whole is hybrid control. In the simulation model that focuses on the sorting process of the 
baggage robot concept incorporates this type of control. The hybrid control as modelled is 
comparable to a taxi centre. When a person calls the taxi company, it tells the taxi company 
where he or she is and where they want to go. The taxi centre then checks which taxi driver is 
closest to the person requesting a taxi ride and is not occupied yet and sends that closest available 
taxi to the person calling. From that moment, the taxi driver takes over the transportation request 
and plans its route to that person and the route from that person to its desired destination. Once 
the taxi driver dropped the person off, it marks itself as available again so the taxi central knows 
that taxi is available again for a new request. This process is visualized in Figure 22. In this image 
the part where centralized control is used is circled with blue and the decentralized control is 
marked with a green circle. The same logic is applied to the baggage robot concept. When 
sensors detect a bag at the end of an incoming conveyor belt, it sends out a signal to a central 
control unit. This central control unit assigns the closest available and sufficiently charged robot 
to the transportation task of transporting the detected bag to a makeup station (centralized 
control). Once the robot received the task, it independently performs the transportation task, 
while continuously being aware of its environment (decentralized control). While executing the 
transportation tasks, robots have to obey to the ‘traffic rules’ that are centrally defined. This is an 
example of how local communication is combined with central rules. Once the robot delivered 
the bag it drives back to a free storage and charging position and when it is charged enough it 
sends out a signal to the central control unit that it is available again and ready to receive a new 
transportation task. This combination of centralized and decentralized control components in the 
model shows how the hybrid control approach is implemented in the model.  

 
Figure 22 - Taxi Transportation Request (Image Author, 2018) 

 

4.4.4.2. Layout 
The baggage handling area in this research is considered to have fixed dimensions. The location 
of basic elements such as incoming conveyor belts and entrances to makeup stations are fixed as 
well. However, the location where individual transport robots are stored and simultaneously 
charged by means of drip-feeding can be altered. This research considered four layout options 
which are depicted in Figure 23. Green squares indicate the location of the charging and storage 
area. Orange squares show the charging or storage position that is either closest or furthest away 
from the incoming conveyor belts. Grey squares represent the shortest path possible from the 
closest robot charging and storage position to the incoming conveyor belts. Blue squares show 
the shortest path from the charging and storage position that is farthest away from the conveyor 
belts to these conveyor belts. The dotted line indicates the division of the layout in a north and a 
south part. 
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Figure 23 - Four layout configurations 

These are not the only layouts imaginable but rather are designed to demonstrate how the 
location of storage and charging areas affect the performance of the system as a whole. 
Corresponding to the first design requirement – minimizing bag waiting time by locating charging 
and storage areas as close to the incoming conveyor belts as possible – layouts 2 to 4 are chosen. 
The first layout serves as a comparison, to check whether or not positioning the storage and 
charging areas as close to the incoming conveyor belts as possible has a significant influence on 
the waiting time of bags, opposed to the layout where the storage and charging positions are not 
located as close to the belts as possible. 
 

The layout options are numbered one to four. These layouts are integrated in the simulation 
model where the numbers correspond with the following configuration names: 

1. Central areas 
2. Six Vertical Areas 
3. Four Horizontal Areas 
4. Six Horizontal Areas 

For each layout the values for the shortest paths and longest shortest paths to the incoming 
conveyor belts are calculated. The values are visible in Appendix C.1. Belt 1 represents the 
nearest conveyor belt as seen from the perspective of the charging and storing area position. An 
example to illustrate this logic is as follows: in the first configurations where four charging areas 
are located in the outer north and south parts of the baggage handling area, the conveyor belt 
that is closest to the robots located at the northern positions is the most norther conveyor belt. 
This belt is therefore indicated as belt 1. The conveyor belt that is located most south is the 
furthest away from the northern charging and storing positions and is therefore indicated as belt 
4. However, since the layouts are horizontally symmetric, the same logic can be applied to the 
southern charging and storing positions. Both viewpoints result in the exact same value for the 
shortest and longest shortest paths. As expected, the first configuration has the highest values for 
the shortest and longest shortest path – having minimum values of 18 and 33 respectively – as 
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the charging and storage positions are located furthest away from the incoming conveyor belts 
compared to the three other configurations. The values for the shortest and longest shortest 
paths of configuration two and three are almost identical – 5 for the shortest path of both 
layouts, 19 for the longest shortest path of configuration two and 20 for the third configuration. 
The fourth configuration seems to be the best configuration when the aim is to minimize the 
travel time between charging and storage positions and incoming conveyor belts with the 
minimum length for the shortest path being 4 and 15 for the longest shortest path. 
 

4.4.4.3. Charging  
A robot can have several phases. It can stand idle without charging, it can stand idle and charge 
itself, it can drive with a bag loaded onto it and it can drive empty. Each of these statuses can 
have a different effect on the battery level of a robot. Robots continuously monitor their battery 
level. For example robots that have returned from their first transportation job go back to the 
storing and charging area. When it reaches this area the robot evaluates its current battery level. If 
this level is larger than a chosen threshold the robot will change its phase to “available”. When 
this level is below the threshold, it changes its phase to “charging”. A robot with a phase being 
“available” can be signalled by the system to start a transportation job. A robot that is in a 
charging face cannot be called while it is charging. Only when the battery level of that specific 
robot exceeds the set battery level threshold, it will change its phase to “available” and can be 
signalled for a transportation job. 
 

The different rates in which the battery level increases or decreases differs per possible state and 
are showed in Table 8. This section concerns a brief explanation of these values presented. 
 
Table 8 - Values per charging status 

Status Charging rate 

Idle and not charging - 0.0014 % /sec 

Driving without a load - 0.0042 % /sec 

Driving with a load - 0.0056 % / sec 

Idle and charging + 0.0069 % / sec 
 
The underlying assumptions to these values are that a robot should be fully charged within four 
hours and that a battery should last for at least 20 hours when the robot is unused and not 
charging. Furthermore it is assumed that driving without a load requires three times as much 
battery power and driving with a load consumes four times as much battery power compared to 
standing idle.  
 

A threshold is set on the battery percentage for a robot to be allowed to start a new assignment. 
When the battery percentage is lower than the battery percentage required for starting and 
completing the longest path, the robot is not allowed to accept a new transport request for an 
incoming bag. The battery percentage required to start and complete the longest path is 
calculated in Appendix C.2 and set to 0.73%. To allow for some slack and possible unforeseen 
circumstances like encountering a queue on the longest path, the value is increased by ten 
percent, setting the threshold at a rounded level of 0.8%. 
 

4.4.4.4. Transporting bags  
This section describes the main processes of transporting bags with individual transport robots. 
The transport process starts by a robot picking up a bag from the conveyor belts that form the 
entrance of the baggage handling area. When a bag is picked up by a robot, the robot transports 
the bag to one of the makeup stations that correspond with the destination that the bag needs to 
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go to. When it reaches the entrance of a makeup station, the bag is unloaded from the robot and 
placed on a chute that brings the bag to the makeup station.  
 

Picking up bags 
When bags are created, it is assigned a destination randomly which can be either A, B, C or D. As 
on an airport passengers can drop their bag at different drop-off points, the model randomly 
assigns bags to conveyor belts, representing this random behaviour of passengers. The bags are 
created according to an arrival pattern which is assumed to be normally distributed. Appendix F 
shows an arrival pattern that is used based on a busy day at a regional airport in the Netherlands. 
The standard normal distribution can have negative numbers, so for this research the normal 
distribution is cut off so the distribution is not open-ended. An open-ended distribution does not 
fit an arrival pattern for bag drop facilities as bags can only be dropped between two hours and 
40 minutes before the departure of a flight. To be able to track the bags in the model, phases are 
defined for bags. When bags are created their initial phase is “approaching belt”, as they are 
moving towards one of the arbitrarily chosen conveyor belts. When a bag reaches the end of the 
conveyor belt and is in the baggage handling area, it is detected by the system and the system 
sends out a signal to let the robots know that a bag arrived into the area and is requesting to be 
transported to a makeup station. This signal is received by robots that stand idle in the charging 
and storage areas. One of the robots that is closest to the conveyor belt where a bag is waiting 
and has the highest battery level claims the transport request and changes its phase from 
“available” to “incoming request” so it can no longer be called by another bag for a 
transportation job. This robot calculates the shortest path that is possible between its location 
and the location of the bag that is requesting transportation and moves along this path to the bag. 
When the robot reaches the belt, it changes its phase to “arrived at belt” and while it copies 
information stored in the bag tag attached to the bag, about the identity and location the bag 
needs to go to, it sets its loaded bag value to one. As a maximum of one bag is allowed per robot, 
having a value of one means that the robot is loaded and not able to take more bags along. 
Simultaneously with the robot copying information from the bag, the phase of the bag changes to 
“on robot”. This change in status triggers a counter to start counting the time the bag spends on 
a robot. By doing so, information on the performance can be obtained, being the average time 
bags spend on robots for transport. Note that this is not equal to the total time a bag spends in 
the system, as that includes the time that the bag was on the belt and waiting for a robot to pick it 
up.  

Transporting Bags 
When a robot picks up a bag, it inherits the identity of the robot so it knows which bag number it 
is transporting. The bag tag that is attached to the bag during drop-off also includes information 
on the destination where the bag needs to go to. When the bag is dropped off in the time frame 
of two hours to 40 minutes before departure, one of the makeup stations is designated to this 
location. The robot that picks up the bag inherits the bag number but also reads the destination 
from the bag label. The robot is able to translate this destination to one of the make-up stations 
in the baggage handling area. For example, a passenger wants to check in a bag for its flight to 
Berlin and arrives at some time that is between two hours and 40 minutes before the flight 
departs. The baggage handling party responsible for assigning makeup-stations to flights assigned 
makeup-station B to that day’s flight to Berlin. When the robot picks up the passengers bag and 
reads the bag tag it signals that the bag needs to go to Berlin and couples this information to the 
makeup-station assignment. Now the robot knows that it needs to transport the bag that is 
loaded onto him to makeup-station B. Having gathered this information, the robot adjusts its 
makeup station information from empty to B. The same logic is applied to all robots that pick up 
bags, making them able to translate bag destinations to the correct makeup station. As it is not 
possible for passengers to drop their bags more than two hours or less than 40 minutes before 
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the flight departs, all incoming bags can be transported to a makeup station that corresponds 
with their destination. This means that bags don’t have to be stored inside the baggage handling 
area waiting for their makeup station to open, as the corresponding makeup stations are already 
open when bags arrive.  

Unloading bags 
The four different makeup stations that are included in the model all have a unique location. 
When a robot reaches one of these locations, it unloads the bag. As the bag is unloaded, the 
robot sets its phase to “delivered bag” and starts driving back to the charging and storage area. 

4.4.4.5. Routing  
The problem considered is the coordination of the routes which robots take to transport bags in 
the sorting process of a baggage handling system.  As multiple autonomous robots are involved, 
routing coordination is necessary. In other words, the problem considered is the transportation 

of bags between a set of fixed incoming conveyor belts 𝑂 (origin) and fixed entrances to makeup 

stations 𝐷 (destination). The transportation task or sorting of bags to a makeup station can be 

defined as 𝑆𝑜𝑑 ∈ 𝑆(𝑡). For each incoming bag a robot has to be assigned to the transportation 

task of the incoming bag to transport the bag from its incoming conveyor belt 𝑚 ∈ 𝑂 to the 

makeup station that corresponds with the destination the bag needs to be sorted to 𝑛 ∈ 𝐷. For 
each individual transport robot the shortest route from the origin to the destination needs to be 
calculated. These shortest paths are therefore defined from the point of view of the individual 
robots. The objective of this problem is the following: 
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In which the sorting area of the baggage handling system is considered to be an undirected graph 

(𝑉, 𝐴) with source node 𝑂, destination node 𝐷 and cost expressed in distance 𝑑𝑖𝑗 for each edge 

(𝑖, 𝑗) in 𝐴. To find this shortest path, the A* algorithm is used. This algorithm initially was 
designed to improve the path planning of Shakey the Robot, which was the first mobile robot 
that was able to perceive and reason about its surroundings which could include obstacles (SRI 
International, n.d.). A* is found to be a faster version of the well-known Dijkstra algorithm as it 
is a best-first search algorithm. As the Dijkstra algorithm requires more computational power at 
every step in the simulation model, A* is found to be better for simulation purposes.  
 

4.4.4.6. Collision and Deadlock Avoidance 
Sections 3.3.4 and 3.3.5 elaborated on how the robots in the baggage robot concept make sure 
they don’t collide into each other and how they avoid ending up in deadlocks. In the case of an 
imminent side collision one of the robots wait and gives way to the robot with the highest 
priority and when there is no difference in priority, a random one of the involved robots goes 
first. In case of an imminent frontal collision, the involved robots move to an empty position in 
the direct surrounding and recalculate their shortest path. While driving over the shortest path, 
that is calculated using the A* algorithm as described in section 4.4.4.5., robots continuously have 
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to check for new possible collisions. Once a possible collision is detected, the collision avoidance 
measures are invoked, based on the centrally defined ‘traffic rules’.  
 

To avoid a deadlock situation, robots have the ability to communicate with other robots in their 
direct surrounding and one step further. When two robots are in each other’s proximity and want 
to go to the same position at the same time, they communicate before taking a step. In this 
communication step, they exchange information on where they want to go and what their priority 
is. This thinking ahead mechanism of the robots make sure that not more than one robot can 
take the actual step to a position that is desired by more than one robot. This avoids collisions, 
but also deadlocks, as robots are able to think not only one but two steps ahead.  
 
 

4.5 Model Formalisation 
Now the system and corresponding agents, objects and environment have been identified, 
formalizing them is the next step. The concepts identified in the previous section are in a natural 
language and understandable for human beings, but computers have a harder time dealing with 
ambiguity and context dependency. This is why it is relevant to make the concepts to be 
modelled as specific as possible so computers are able to interpret the concepts. In other words, 
the system to be modelled has to be made explicit, formal and computer-understandable (Dam et 
al., 2010). To do so, a precise description of the concepts that play a role in the system is 
formulated in a non-structured list of software data structures, which converts the concepts into 
computer understandable analogues. Two examples of formalisation of the agents and objects 
present in the system are shown in Appendix D. Appendix E shows some examples of pseudo 
codes used to construct the model into the software in a structured way.  
 
 

4.6 Software Implementation 
Section 4.2 concluded that the preferred simulation method to model and simulate the baggage 
robot concept. The software used to implement the model is NetLogo, a java-built agent-based 
programming language. NetLogo provides an environment suitable for the modelling of 
programmable multi-agent systems. The software is open source and free to download. It also 
has the advantage that the software is cross-platform, in runs on Windows, Linux, Mac and other 
major platforms, which makes it possible to run the same model on different platforms without 
altering the code.  NetLogo allows the modeller to provide hundreds or thousands of agents that 
operate independently with instructions. This feature enables the exploration of the connection 
between the behaviour of the individual agents on a micro-level and the overall patterns that arise 
from the interaction between all the agents on a macro-level (Northwestern University, n.d.). A 
user of a simulation model created in NetLogo can quickly and easily explore this system 
behaviour by altering or modifying switches, sliders, choosers and other interface elements.   
 

In NetLogo agents (in NetLogo called ‘turtles’) move around in a two-dimensional world that is 
divided into a grid of patches. These patches have coordinates, as do turtles. However, only 
turtles are able to move and with that they can change their coordinates. Turtles don’t move 
automatically, the observer needs to provide all turtles with commands and reporters so the 
turtles know what to do.     
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Figure 24 - The Baggage Robot Concept in NetLogo. Left: Initial Setup. Right: Agents moving in the baggage handling area 

Figure 24 shows the implementation of the conceptual model in the NetLogo software. On the 
left the initial setup situation of the model is visible, while on the right the model is running. The 
orange and grey squares indicate the robots. For this figure an arbitrary number of robots – 48 – 
are chosen. The four dark grey horizontal lines on the left indicate the incoming conveyor belts, 
the four dark grey squares on the right represent four makeup stations. On the right side of the 
figure bags enter the system through the incoming conveyor belts.  
 

 
Figure 25 - Robots and Bags 

Figure 25 shows how the robots and bags are presented in the NetLogo model. On the left the 
initial setup of a robot is displayed. Once they pick up a bag – bags are displayed in the middle of 
Figure 25 – the visualisation of the robot agent changes, indicated with the right image in the 
figure.  
 

The dimensions of the area displayed in Figure 24 are 20x50 patches. The white area representing 
the space available for the sorting process is 38x40 patches. A patch is assumed to be 2x2 meters, 

which means the area available for the sorting process is equivalent to 6080 m2. The dimensions 
for the bags and robots are 100x75 cm and 150x150 cm respectively. Robots and bags can move 
through the area in discrete time steps, in NetLogo called ‘ticks’. In the implementation of the 
sorting process of the baggage robot concept, each tick represents one second. This means that 
robots can move one patch in one tick, translating that to a real-time robot speed of 2 meters per 
second. To obtain more precision in the representation of time and space, the number of ticks 
that represent one second can be increased or the dimensions that a patch represent can be 
decreased. However, increasing the ticks/seconds ratio requires the model to run for a longer 
time to complete an experiment or run which can be impractical when a solid number of 
experiments or runs are desired. 
 
 

4.7 Model Verification and Validation 
The next modelling process step is the verification and validation of the developed simulation 
model. Verification concerns the question “is the thing built right?”, whereas validation addresses 
the question “is the right thing built?”. This means that verification concerns whether or not the 
model implementation matches the designed system and validation is used to see if the designed 
and constructed model helps to answer a or the research question.  This section is concerned 
with both the verification and validation of the constructed simulation model. 
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4.7.1 Model Verification 
Model verification is a process to check whether the model conceptualisation is implemented 
right in the software used (Xiang et al., 2005). A model needs to be verified before it is used. 
There are several model verification tests that checks if the entities and relationships as 
established in the model conceptualisation phase have been translated into the code of the 
simulation model correctly. The verification phase is especially difficult for agent-based models as 
a large variety and number of agents, agent states and possible interactions are possible (Dam et 
al., 2010).  
 

Dam et al. (2010) describe four main parts of verifying agent-based models: 
1. Recording and tracking agent behaviour 
2. Single-agent testing 
3. Interaction testing 
4. Multi-agent testing  

 

The first part – recording and tracking agent behaviour – is used to verify the model operation. 
To do so, output variables are monitored to investigate both individual agent behaviour and the 
operation of the model on a system level. The states of the internal processes of individual robots 
have been monitored and the collective robot behaviour is checked. The second part – single-
agent testing – involves the exploration of single agent behaviour. By means of unit tests 
implemented in the model code the behaviour of robots is tested. The third part – interaction 
testing – tests the interaction between agents in the model. By performing theoretical predictions 
and checking the behaviour of the robots when they encounter each other, the basic agent 
interactions are checked to see if they happen as designed. The final part – multi-agent testing – 
verifies the entire model. In this part theoretical predictions are also used to check the behaviour 
of the agents within the system as a whole. These theoretical predictions can be supplemented by 
varying the input parameters to check if the agents act intuitive in changing circumstances as well 
(Dam et al., 2010). 
 

Table 9Table  shows an example of how each of these verification tests is executed and what 
their result are. For each test type a small description is given, as well the theoretical prediction of 
the result. After executing the test, the obtained result is reported and a conclusion is drawn 
whether or not the test verified that part of the model. If the obtained result differed from the 
expected result, corrective measures have been taken in the model code. A complete overview of 
all the verification tests performed can be found in Appendix I. Next to these tests, the model 
have been continuously checked and debugged during the model building phase. When a 
dysfunctional part of the code was identified, the seed of the pseudo-random number generator 
of NetLogo was fixed so the dysfunctional part of the code could be examined and corrective 
measures could be tested. An agent delete button was also implemented in the model 
environment to verify if the model was able to execute its desired tasks and behaviours when an 
unexpected situation was created with the delete button. An example of this is that bags are 
expected to move over the conveyor belt when the patch ahead of them was free, until they 
reached the end of the conveyor belt. By using the delete button the bag at the end of the 
conveyor belt was deleted to see if the bags behind it would notice this and move forward to 
occupy the unexpected free position at the end of the conveyor belt. By checking this after every 
improvement of the model, the bag moving behaviour was verified.  
 

Another verification test that has been performed is the manual calculation of KPI results. For 
several KPIs manual calculations are performed for all four layout configurations. Appendix I 
shows an example of the manual calculation of the minimum value for the KPI ‘average process 
time of bags’. The manual calculations show that for example for the KPI ‘average process time 
of bags’ for the central areas layout configuration, the minimum value of this KPI cannot be 
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lower than 68 seconds. Running the model shows that indeed the value of ‘average process time 
of bags’ does not drop below this minimum value.  
 
Table 9 - Examples of Model Verification Tests 

Test 
Type 

Description  Expected Result Obtained Result Verified? 

1 Testing the 
phases of 
robots 

Robots that are assigned to a 
transport task go through the six 
possible phases in order.   

All robots tested successfully go 
through the six phases in 
sequence. 

Yes 

2 Testing the 
robot 
assignment  

Only robots with the phase 
‘available’ can be assigned to a 
bag that requires transportation.  

 

All tested robots showed correct 
task assignment after which the 
phase of these robots changed 
from available to ‘incoming 
request’. 

Yes 

3 Testing the 
priority rules  

Robots with a value of 0 for the 
priority attribute have to give 
way to a robot with a priority 
value of 1 in case of an 
imminent collision.  

The giving way behaviour of 
robots is tested multiple times 
and the priority rules were 
complied with in all tested 
situations.  

Yes 

4 Testing 
shortest path 
following 
behaviour 

No robots should be visible 
outside the coloured paths that 
mark the shortest paths for all 
robots. 

No unexpected diversions from 
indicated shortest paths are 
detected, indicating all robots 
follow their shortest paths. 

Yes 

 
The verification tests performed do not entirely complete the model verification. As there is an 
infinite number of input parameter combinations and variations possible, the verification of this 
agent-based model is never complete. By performing multiple different tests for the four 
different main parts of verifying agent-based models as proposed by Dam et al. (2010), an effort 
is made to gain a sufficient confidence in the developed simulation model.  
 
 

4.7.2 Model Validation 
To check whether the right thing is build, the developed model needs to be validated. Model 
validation is a process to check if a simulation model possesses a satisfactory range of accuracy 
that is consistent with the intended application of the model (Sargent, 2010). Simulation models 
are usually developed for a specific purpose. In this research the simulation model is developed 
to test whether or not autonomous transport robots are a feasible substitution of conveyor belts 
in the sorting process in a baggage handling system at medium-sized regional airports that 
operate in a point-to-point network. The validity of the model is determined with respect to this 
purpose. However, traditional validation methods are not always suitable for validating agent-
based models. The agent-based model of the baggage robot concept cannot be validated by 
comparing computed behaviour to ‘real’ system behaviour, as there is no ‘real’ system available 
yet that can be used for comparison. The outcome of this simulation model rather serves as an 
increased insight and knowledge into the use of the baggage handling concept in the sorting 
process of baggage handling systems. To validate this outcome, several different methods are 
available, amongst which are (Dam et al., 2010): 

 Historic replay 

 Face validation through expert consultation 

 Literature validation 

 Model replication 
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Historic replay, meaning comparing a model to a real-world situation, can only be done for 
situations that exist in the real world. As the baggage robot concept does not exist in the real 
world in this form yet, this method cannot be used to validate the developed simulation model. 
Literature validation is only possible if other models, not being agent-based models, of the same 
or similar systems exist. There is a lot of literature on automated guided vehicles, but the 
application of more intelligent autonomous transport robots is still lacking. This is why literature 
validation also can’t be used to validate the simulation model of the sorting process in the 
baggage robot concept. Model replication could be a way to validate the model of sorting process 
in the baggage robot concept, but is very labour intensive. This method requires – in an ideal 
situation – a research team that has not been involved in the development of the first model, to 
create a second model with a different system decomposition or with a different modelling 
technique. The outcomes of the two models can be compared to validate the first model (Dam et 
al., 2010). Due to time and resources constraints, this method is not preferred for this research. 
This leaves one validation method to validate the model of sorting process in the baggage robot 
concept: face validation through expert consultation.  
 

Face validation is the most commonly used validation method for agent-based models. In this 
method, domain experts are interviewed to discuss the model and the application of the model 
for its designed purpose (Dam et al., 2010). Three different experts are interviewed to validate the 
developed simulation model. The first is a full professor and head of the school of aviation of the 
University of New South Wales in Sydney, Australia. He is an expert in transport systems and is 
specialized towards baggage handling systems, both the conventional baggage handling systems 
as well as the latest designs complying with IATA resolution 753. The second expert is also a full 
professor and the department head of the Delft Center for Systems and Control, a department of 
the Delft University of Technology. He is an expert in the field of high-tech vehicle control and 
has experience with automated guided vehicle systems in different industries. The third expert is 
a senior systems engineer at Vanderlande. He is an expert in high level control solutions, meaning 
the IT systems that use baggage and system information to match with business rules and 
determine the next step in the process. 
 

The experts were provided with information on the baggage robot concept in general and the 
scope and assumptions of the developed simulation model. They were asked to answer several 
questions on baggage handling systems in general, individual transport robots in general and the 
combination of both into the baggage robot concept. The full questionnaire is provided in 
Appendix J. The experts face validated the developed model with respect to the model purpose. 
They acknowledged that conventional baggage handling systems have the main disadvantage that 
future extensions have to be taken into account from day one as especially sorter equipment is 
not easy to modify when it is in live operation. They argue that replacing these conveyor belts by 
individual transport robots can provide more flexibility.  
 

The experts do mention that as a one to one comparison with conventional conveyor belt 
systems is not included it can’t be proved whether or not the baggage robot concept is better 
than the conventional baggage handling system. To investigate the full potential of the baggage 
robot concept, several additions can be made to the model amongst which are: 

 Including the security screening process 

 An alternative version of the model with conveyor belts 

 An alternative version of the model with guided paths that robots can follow, like an 
AGV system 

However, the purpose of the simulation model is to provide an increased insight and knowledge 
into the use of autonomous transport robots in the sorting process of the baggage handling 
system. The experts believe that the level of detail of the model is sufficient for this purpose. 
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The developed simulation model is face validated by three different experts. Using the face 
validation through expert consultation as a validation method however, has some limitations. As 
it is a new concept that has not been thoroughly researched yet, expert might have a good 
understanding of what happens in conventional baggage handling systems, but may not have a 
very systematic understanding on what may happen to the baggage handling system when 
autonomous transport robots are used. Naturally, experts rely on their own idea of system 
behaviour to estimate model results. These ideas are all subjective and can be biased and flawed 
in various degrees (Dam et al., 2010). This is why models that are validated through the face 
validation method have face validity, meaning the model appears reasonable and that it looks like 
it will do what it is supposed to do. Although experts can be wrong too, Dam et al. (2010) argue 
that this method is still an appropriate way to address agent-based model validation, meaning that 
a model that is face validated by experts can be considered good enough.  
 
 

4.8 Conclusion: Towards Model Experimentation 
In this chapter, a simulation model of the sorting process in the baggage robot concept is 
developed using agent-based modelling. During the development of the model the insight and 
knowledge on the baggage robot concept in general is increased iteratively. The model is verified 
and after validation by experts the model is ready to be used for experimentation. Having verified 
and face validated the model does not mean it is 100% perfect. Further evaluation of strong and 
weak points of the model and important design parameters have to follow from structured 
experiments performed with the model under different scenarios. The next chapter is concerned 
with the model experimentation.  
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5. Model Experimentation 
After the simulation model is created, verified and face validated, it can be used to perform 
experiments. With agent-based models, simulation experiments can be conducted. The real 
system can be modelled and experimented with to get an understanding of its behaviour and its 
performance. By performing experiments, various strategies for the operation of the system can 
also be evaluated (Siebers et al., 2010). In order to do so, experimental designs must be created. 
Aspects of the experimental design are a hypothesis and a time frame. The first step is testing the 
performance of the system at presumed normal conditions when it uses individual transport 
robots. The second step is to investigate the impacts of different situations – meaning that 
different values for input parameters to the system are used. Finally, based on the results of these 
two experiments, a third experiment can be executed to further investigate the impact of the two 
most important input parameters. 
 
 

5.1. Hypothesis 
According to Dam et al. (2010), there are two main types of hypothesis that can be formulated 
for agent-based models. The first type states that under specified conditions, a macroscopic 
regularity will emerge from the agent-based model. This hypothesis type is most common to use 
on models that try to explain real-world observed regularity by modelling a phenomenon that is 
expected to cause the regularity. Experimenting with the model provides an answer to the 
question whether or not the cause of the regularity is explained. If the model does not produce 
the expected regularity, the cause of the regularity can’t be explained by the model and therefore 
the hypothesis is falsified. What this type of hypothesis also does is asking questions about the 
conditions that are needed to produce the real-world observed regularity.  The types of models 
suitable for this first type of hypotheses try to provide an explanation of how the system works 
under varying circumstances and input values (Dam et al., 2010). 
 

The second type of hypothesis states that ‘a range of clearly identifiable emergent behaviours and 
regularities can be established from the agent based model of a system’. This type of hypothesis is 
not intended for models that attempt to recreate the real world but rather is used for exploration, 
as it tries to explain if and if so which parameters delay, alter or disrupt the regularity. This type 
of hypothesis is falsified when the expected regularity does not behave as desired, or if it only 
behaves as desired under unreasonable conditions, or when it behaves chaotically. Chaotic 
behaviour is when behaviour emerges that has no relation to the parameters investigated 
whatsoever. This type of hypothesis is mostly used when the modeller has no clear idea on what 
he or she is looking for in the model (Dam et al., 2010). 
 

In the case of incorporating autonomous and individual transport robots in a baggage handling 
system at a medium-sized airport operating in a point-to-point network, the first hypothesis type 
is considered most relevant. The set of parameter values for this system is fairly clear as they are 
(loosely) based on real-world parameters. Next to having an idea on the values for the input 
parameters, the output metrics to collect are also clear, based on the KPIs for the baggage robot 
concept described in section 3.4.4. The experiments on the simulation model of the sorting 
process in the baggage robot concept therefore focus on examining these output metrics over 
time, to clarify if regularity can be discovered and when. Next to that, experiments can also show 
whether the regularity is stable or not.  
 

In contrast to the second type of hypotheses, the first type will most likely have a fairly clear set 
of parameter values since they are based on real-world parameters that match the system of 
interest. By choosing this type of hypothesis, experiments that can be executed by the simulation 
model focus on examining the variation of the input parameters over time to clarify differences 
in the performance of the system (Dam et al., 2010). 
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Considering the topic and scope of this research, the question is which combination of parameter 
values is beneficial for the performance of the sorting process of a baggage handling system. The 
hypothesis is that under specified conditions, a macroscopic regularity will emerge from the agent 
based model. The specified conditions are the input parameters and the macroscopic regularity is 
that the values of the output metrics follow a certain regularity. For example:  the more robots 
present in the system (input parameter), the lower the average process time of bags (output 
metric). Of course the number of robots present is not the only input parameter influencing the 
average bag process time. The type of layout or configuration is also expected to have (limited) 
influence, as well as the values for the battery reduction and charging rates. For example, the 
lower the charging rate, the faster robots can charge and as a consequence they can spend more 
time transporting bags. To accept the hypothesis, the model needs to produce the desired 
regularity – in this research, performance, measured in KPIs – otherwise the hypothesis is 
falsified (Dam et al., 2010). 
 

To test the hypothesis and to answer the question on the performance of the system in case 
individual transport robots are incorporated, the output metrics should include the key 
performance indicators that have been formulated in section 3.4.4. 

  

To experiment with the simulation model, the characteristics of the robots (e.g. number of robots 
present, battery power reduction and charging rates) can be varied, as well as other variables that 
influence the possibilities of the system (e.g. the number of bags entering the system on a daily 
basis and the configuration or layout of the floor space). A combination of these input 
parameters is also possible. Experiments try to obtain results for output metrics, including the 
KPIs, by varying input parameter values.  
 

 

5.2. Time 
In agent-based models there is a strong focus on observing behaviour in a system. In this 
research the behaviour is the varying level of performance that is achieved by the system. When 
the focus is on behaviour, it is hard to predict upfront how much time it takes for certain 
behaviour to arise. This makes it hard to determine upfront the required number of iterations. In 
models that focus on the second type of hypothesis, emergent behaviour can be unstable or 
oscillatory and can be sensitive to initial conditions. The first type of hypothesis that is used in 
this research has the advantage that some real world conditions can be replicated, providing a 
real-world timeframe (Dam et al., 2010).  
 

In the case of incorporating autonomous and individual transport robots in a baggage handling 
system at a medium-sized regional airport, it is most interesting to define timeframes that are 
detailed to seconds. The system state can change from fully operational to a total breakdown in a 
matter of seconds. Taking larger time steps is therefore undesirable. When it comes to the 
timeframe, baggage handling systems operate in daily cycles. The system is not operational 24 
hours a day since night flights are not allowed to depart or land. This implies that the baggage 
handling system is idle during the night. To get a grasp on the use of the transport robots in 
baggage handling systems, a day is therefore considered sufficient to capture typical daily demand 
patterns. This can be extrapolated to seasonal and yearly patterns by changing the value of input 
parameters like the arrival pattern of bags.   
 

 

5.3. Experiment Setup 
For this research, three experiments are set up. Based on Dam et al. (2010), the first two 
experiments are constructed. The third experiment is set up by the researcher. The first 
experiment is an attempt in representing the most ideal practical situation, in which the input 
parameter values are set to represent ‘normal conditions’.  Normal conditions are considered to 



71 
 

be the conditions on an average day in the year with average external conditions – so no 
unexpected disruptions like dysfunctional systems or heavy snowfall. By fixing the parameters 
that represent normal conditions, the performance of the baggage robot concept in the sorting 
part of a baggage handling system can be examined. This ‘base case’ will be run with 50 
replications. These input parameter values are based on real data for a medium-sized regional 
airport in the Netherlands and assumptions on the battery quality.  
 

The second experiment however requires variation in the input parameters values but within the 
practical limitations of the model. These values need to be established to be able to run multiple 
different experiments in a smart way. For designing the experiment input parameter values, 
different techniques can be used. A widely-used technique in the probabilistic analysis of 
engineering systems is Monte Carlo simulation. This technique performs numerical experiments 
with the goal of obtaining the statistics of the output variables of a system model. Figure 26 
shows a rough visualization on how this technique works. The statistics of the input variables 
(X1, X2, .. , Xk) are given and can vary – in the figure all variables have a normal distribution. 
These distributions are used to obtain the statistics of the output variable Y. The black box in the 
figure represents the computational model that is used to transform the input variables to output. 
Based on their distributions, the values of the input variables are sampled in each experiment. 
Multiple experiments are done in the same way, resulting in computed statistics of the output 
variable(s) (Cruse, 1997). 

 

 
Figure 26 - Experiment technique (Image Author, 2017) 

Monte Carlo simulation is mostly used for complex problems, since the method is simple, 
adequate and widely employed. However, for analysing the reliability of complex engineering 
systems, Monte Carlo simulation is very time consuming and expensive in terms of computer 
resources. This opens up possibilities for other methods, such as Latin Hypercube Sampling 
(LHS) (Olsson, Sandberg, & Dahlblom, 2003). Latin Hypercube Sampling supports Monte Carlo 
simulation by generating samples of the input variables. By doing so, the estimates become more 
precise (Wyss & Jorgensen, 1998). To quote Dam et al. (2010):  
 

“Latin Hypercube Sampling is a statistical technique that guarantees uniform sampling with the desired 
granularity of the scenario space given a Y dimensional parameter space and with a limit of X experiments.” 
 
Latin Hypercube Sampling considers the entire set of parameters, instead of considering only one 
parameter at a time, which is the case with random parameters. It finds where in the parameter 
space the predetermined number of experiments should be performed to get the most 



72 
 

representative subset of the space. In this research, the LHS function in the software tool R is 
used to generate LHS samples.  
 

As the second experiment contains an exploration on how the input parameters affect the 
performance of the baggage robots in the sorting process of a baggage handling system, a smart 
choice of experiments or ‘runs’ need to be made.  To select a subset of experiments over the 
wide-ranging parameters, Latin Hypercube Sampling will be used. This experiment tries to 
indicate which input parameters affect the output metrics the most. 
 

The third experiment investigates the most influential input parameters further. By only varying 
the number of robots and the layout of the manoeuvring area of the robots, while keeping the 
other input parameters constant, the impact of changes in these two input parameters can be 
demonstrated with more certainty.  
 

5.3.1. Replications 
According to Dam et al. (2010), the ideal number of replications for an agent-based model is 100 
replications per combination of input parameter values. This number of replications is not 
feasible in this research, given the constraints in time and available simulation resources. The 
three experiment setups briefly described in the previous section have all been run with varying 
number of replications. The first experiment setup uses 50 replications, the second setup uses 30 
and the third setup is only replicated once for the different combinations of input parameter 
values.  
 

The first experiment setup approximates the ideal number of replications. The second 
experiment setup is at the lower boundary of acceptability in terms of number of replications. 
The last experiment is simply not suitable for any replications due to the large number of 
parameter combinations already included. This limits the possibility to stating definitive 
conclusions on the statistical significance of the results of this experiment setup. Further 
simulation experiments and analyses of results should allow for detailed comparison of the 
deviation induced by replicating these input parameters relative to the deviation induced by 
changing input parameter values.   
 
 

5.4. Parameters 
The simulation model has eight different input parameters that can be altered to generate results. 
For each of the parameters a range is defined in which the parameter value can vary.  The input 
parameters, their value range and the step size within these ranges are shown in Table 10. 
 

The number of bags that enter the sorting process of the baggage handling system during the day 
according to a normal distribution are set to be either 1624 or 4290. The value 1624 corresponds 
to the average number of bags handled by the baggage handling system of a medium-sized 
regional airport in the Netherlands. These 1624 bags are the bag load of 13 flights that are 
distributed over the day. These flights with accompanying destinations, aircraft types, departure 
times and first and last check-in times can be found in Appendix F. The other value of 4290 is 
based on the same number of flights at that same airport, but assumes that all flights are executed 
by one of the largest passenger aircraft, increasing the number of passengers and therefore bags 
on a day by 164% to 4290. The storage and charging area configurations are discussed in section 
4.4.4.2. and the input parameters that concern the charging and battery power consumption rates 
of robots under different circumstances have been discussed in section 4.4.4.3.  
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Table 10 - Parameter value variations for experiment designs 

Input Parameter Value Range Step size 

Number of bags entering during the day according to 
a normal distribution 

1624 or 4290 Not applicable 

Storage and charging area configuration Central areas 
Six Vertical Areas 
Four Horizontal Areas 
Six Horizontal Areas 

Not applicable 

Number of transport robots 1-96 1 

Battery power reduction rate when idle 0 – 0.01 %/sec 0.0001 

Battery power reduction rate when driving without a 
load 

0 – 0.01 %/sec 0.0001 

Battery power reduction rate when driving with a 
load 

0 – 0.01 %/sec 0.0001 

Battery charging rate 0 – 0.01 %/sec 0.0001 

Battery level threshold 0 – 100 % 0.1 
 

5.5. Experiment Design I – Fixed Settings 
In the first experiment design, all settings are fixed to focus on the performance of the baggage 
handling system when autonomous and individual transport robots are used to perform the 
sorting task of the baggage handling system. The key goal of this experiment is to get to know 
the order of magnitude of the KPIs of the system under presumed normal conditions. This ‘base 
case’ is based on indicated assumptions.   
 

General setup 

 Ticks [50.700]: Each tick = 1 second. 50.700 ticks represent 14 hours and 5 minutes. This 
simulates a busy day at a medium-sized regional airport in the Netherlands with 13 flights 
departing between 07:10 and 19:05. The simulation starts at 05:00 when the baggage 
handling system opens. The first bags can be checked in from 05:10, two hours before 
the first flight departs. The final flight departs at 19:05, which is 14 hours and 5 minutes 
later than 05:00. This tick limit therefore considers the operational time of one day. A day 
is considered long enough to explore the performance of the system under normal 
conditions.  

 Repetitions [50]: Sufficient to get a good sample of results when the settings are fixed.  

Parameter settings 

 Total number of bags arriving according to an arrival pattern [1624]: A busy day at a 
medium-sized regional airport in the Netherlands is used as input data. Appendix F 
shows the flight numbers, destinations, check-in times and departure times, as well as the 
aircraft types per flight. Based on these aircraft types the maximum number of passengers 
is derived, which in this experiment are adjusted considering the passenger load factor for 
2017 which is 80.7%.  The arrival pattern is considered to be normally distributed with a 
mean of 40 minutes and a standard deviation of 30 minutes. The distribution is cut off at 
0 and 80 minutes representing the first and last check-in time.  

 Storage and charging area configuration [six horizontal areas]: This layout uses the 
smallest floor space out of all four configuration options. A small floor space increases 
the risk of collisions as robots have less space to divert efficiently. This layout is more 
usable in smaller baggage handling areas than the other configurations  

 Number of transport robots [8]: Based on experiments ran by Vanderlande at a regional 
airport in the Netherlands  
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 Battery power reduction rate when idle [-0.00138889]: As explained in section 4.3.3.3. 

 Battery power reduction rate when driving without a load [-0.00416667]: As explained in 
section 4.3.3.3. 

 Battery power reduction rate when driving with a load [-0.0055556]: As explained in 
section 4.3.3.3. 

 Battery charging rate [+0.00694444]: As explained in section 4.3.3.3. 

 Battery level threshold [0.8]: As explained in section 4.3.3.3. 

Output at each tick 

 The tick 

 The cumulative number of bags in the system 

 The cumulative number of bags leaving the system  

 The average time a bag spends: 
o On an incoming conveyor belt 
o Waiting for a robot to get assigned to the bag 
o Waiting for the assigned robot to arrive at the incoming conveyor belt 
o On a robot 

 The average total process time of bags  

 The average total trip time of robots 

 Percentage of bags that don’t make it to one of the makeup stations in time 

 Percentage loaded trips by robots 

 Percentage empty trips by robots 

 Percentage charging time of robots 

 Total number of potential conflicts detected and avoided 
 

5.6. Experiment Design II – Parameter Sweep Experiment 
For the second experiment – a parameter sweep experiment – a subset of experiments is selected 
using Latin Hypercube Sampling for the eight input parameters. In the first experimental design, 
the number of bags arriving following a normal distribution was considered constant, having a 
value of 1624. For the parameter sweep experiment, an additional and extreme case is added to 
create more variety. As the scope doesn’t change, the same number of flights (13) is used but the 
aircraft type for all flights is now assumed to be a Boeing 777, the world’s largest twinjet. The 
Dutch flag carrier KLM operates this type of aircraft with a seat capacity of 330. For the variety 
in the parameter sweep experiment, no correction for the passenger load factor is applied in this 
experiment. The assumption is therefore that all seats are occupied and each passenger takes one 
bag, resulting in 13 times 330 bags to be distributed over the 13 flights. A histogram of this 
extreme value for the bag arrival pattern can be found in Appendix G.  
 

The general setup for experiment design II is the same as for experiment design I, being 50.700 
ticks per run.  Each combination of input parameter values is replicated 30 times. The type of 
output at each tick is also the same as in the first experiment design. Due to limitations in 
computer power, thirty samples of combinations of input parameter values are drawn. The 
parameter settings however differ. Latin Hypercube Sampling has provided thirty unique 
combinations of parameter setting values. The ranges in which the different input parameter 
values vary are displayed in Table 11. The complete list of all the combinations tested is 
documented in Appendix H.  
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Table 11 - Parameter Value Ranges in the Parameter Sweep Experiment 

1624 Bags 4290 Bags 

Number of Robots 4 - 93 Number of Robots 2 – 91 

Configuration 

Central Areas 
Four Horizontal Areas 
Six Horizontal Areas 

Six Vertical Areas 

Configuration 
Central Areas 

Four Horizontal Areas 
Six Vertical Areas 

Battery reduction 
rate idle 
[%/sec] 

0.00032 - 0.00941 
Battery reduction 

rate idle 
[%/sec] 

0.00119 – 0.0097 

Battery reduction 
rate empty 

[%/sec] 
0.00028 - 0.00998 

Battery reduction 
rate empty 

[%/sec] 
0.00075 – 0.0088 

Battery reduction 
rate loaded 

[%/sec] 
0.0003 - 0.00892 

Battery reduction 
rate loaded 

[%/sec] 
0.00089 – 0.00977 

Charging rate 
[%/sec] 

0.00022 - 0.00838 
Charging rate 

[%/sec] 
0.00066 – 0.00973 

Battery level 
threshold [%] 

3 - 93.4 
Battery level 

threshold [%] 
5 – 97.6 

 

5.7. Experiment Design III – Influencing Parameters Effect 
For the second experiment – a parameter sweep experiment – a subset of experiments is selected 
using Latin Hypercube Sampling for the eight input parameters. In the first experimental design, 
the number of bags arriving following a normal distribution was considered constant, having a 
value of 1624. For the parameter sweep experiment, an additional and extreme case is added to 
create more variety. As the scope doesn’t change, the same number of flights (13) is used but the 
aircraft type for all flights is now assumed to be a Boeing 777, the world’s largest twinjet. The 
Dutch flag carrier KLM operates this type of aircraft with a seat capacity of 330. For the variety 
in the parameter sweep experiment, no correction for the passenger load factor is applied in this 
experiment. The assumption is therefore that all seats are occupied and each passenger takes one 
bag, resulting in 13 times 330 bags to be distributed over the 13 flights. A histogram of this 
extreme value for the bag arrival pattern can be found in Appendix G.  
 
In this experiment, the number of robots varies for the two scenarios as follows: 

 
The input parameters related to the floor layout configuration and the robot’s battery remain 
constant for both scenarios: 

 Configuration:     Central Areas, Four Horizontal Areas, Six  
Horizontal Areas, Six Vertical Areas 

 Battery reduction rate idle [%/sec]  0.00138889 

 Battery reduction rate empty [%/sec]  0.00416667 

 Battery reduction rate loaded [%/sec]  0.0055556 

 Charging rate [%/sec]    0.00694444 

 Battery level threshold [%]   0.8 
 

 

 

1624 Bags 4290 Bags 

Number of Robots 1-25 Number of Robots 1-35 
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5.8. Results from Experiments 
The experiments described in the previous sections are executed with the developed simulation 
model. In this section the results of the three experiments are discussed. For each experiment, 
the most important output metrics are given. These metrics are the seven previously described 
KPIs for the baggage robot concept.  
 

1. Average process time of bags 
2. Minimum number of robots 
3. Percentage empty robot trips 
4. Percentage loaded robot trips 
5. Percentage charging time 
6. Number of avoided conflicts 
7. Percentage of mishandled bags 

 

Next to these seven KPIs, an additional output metric is calculated in every experiment. This 
metric shows the number of bags handled during runtime. As described, the runtime for each 
experiment is the same, being 50.700 seconds. If the value for this metric is lower than 1624 for 
the 1624 scenario or lower than 4290 for the 4290 scenario, it means that the specific 
combination of input parameter values create a system that is unable to handle all the bags. This 
results in an unacceptable value for mishandled bags and therefore these input parameter value 
combinations are considered infeasible. Experiment designs two and three are performed twice; 
once for the 1624 bags scenario and once for the 4290 scenario.  
 
 

5.7.1 Fixed Settings Experiment 
In the fixed settings experiment, all input parameters have a fixed value as described in section 
5.5. The experiment is performed with 50 replications and gives the results for the seven KPI 
output metrics and the additional handled bags output metric. For every replication, the ‘handled 
bags in runtime’ metric gives a value of 1624, so the combination of input parameter values result 
in a system that is capable of handling all 1624 bags. For each KPI a theoretical optimal value is 
determined (as explained in section 3.4.4) and these are shown in the table below. 
 

Table 12 shows the obtained optimal value of the seven KPIs for the fixed settings experiment. 
For each obtained optimal value, four descriptive statistics are added to show the deviations for 
the KPIs in the 50 replications. These descriptive statistics do not apply to the second KPI, being 
the number of robots, as this is both an input parameter. 
 
Table 12 - Results from fixed settings experiment with 50 replications for 7 KPIs 

KPI 
Theoretic 
Optimal 

Value 

Obtained 
Optimal 

Value 
Min Max Average Median 

Standard 
Deviation 

1 ≤ 6 minutes or 
360 sec 

136.96 sec 136.96 sec 154.44 sec 146.84 sec 147.47 sec 3.18 sec 

2 As small as 
possible 

8 Not applicable 

3  Close to 50% 51.92% 51.92% 52.35% 52.14% 52.15% 0.09% 

4 As high as 
possible 

48.08% 47.65% 48.08% 47.86% 47.85% 0.09% 

5 As low as 
possible 

26.68% 26.68% 27.03% 26.86% 26.85% 0.08% 

6 As low as 
possible 

976.00 976.00 1164.00 1071.57 1064.00 44.82 

7 Between 0 and 
0.02% 

0.43% 0.43% 2.77% 1.59% 1.60% 0.51% 
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To visualize the distributions of several output metrics over 50 replications, Figure 27 shows four 
boxplots of four KPIs: 

 the average process time of bags,  

 the percentage charging time,  

 the number of avoided conflicts  

 the percentage of mishandled bags.  
 
The line within the boxplot indicates the median, the ends of the boxes indicate the upper (third) 
and lower (first) quartile and the whiskers show the minima and maxima. The dots represent 
possible outliers. 
 

 
Figure 27 - Boxplots of Fixed Settings Experiment Results for 50 replications 

Table  shows that the minimum and average process time of bags in the fixed settings experiment 
is lower than six minutes. This means the combination of input parameter settings complies with 
the set theoretical optimal value. In this experiment, the robots are very close in complying with 
the occupancy rate, the 50%-50% ratio between the percentage empty and loaded trips. The 
average percentage of charging time over the 50 replications is almost 27%. The number of 
avoided conflicts is 976. This value however does not necessarily mean that 976 unique bags were 
on robots that were in a conflict. It is possible that a bag was transported by a robot that was in a 
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longer lasting conflict, adding to this metric every second. The percentage of mishandled bags 
has a minimal and optimal value of 0.43%, corresponding to 7 mishandled bags during the 
simulated day.  

Interpretation of results 
The average process time of bags is far below the maximum of 6 minutes or 360 seconds. During 
the experiment one of the replications had a maximum value for this KPI of 154.44 seconds, 
which is still way below the 6 minutes threshold. Even when unexpected minor disruptions 
become present, there is enough slack time to avoid significant problems. This combination of 
input parameter values is able to meet the average process time of bags KPI. A 50%-50% ratio 
for the utilization rate of robots is considered ideal when the locations of the charging and 
storage areas do not cause any detours for the robots. However, this is not the case as the layout 
configuration chosen in this experiment can cause a minor detour for the robots as they can 
choose to which charging and storage position they want to go. A value that comes close to this 
50%-50% ratio is therefore considered optimal. This experiment shows a ratio of 51.92%-48.08% 
for empty and loaded trips, which is considered within the ranges of being optimal. 
 

Considering the percentage of charging time, it should be as low as possible while ensuring all 
bags are handled, which is the case in this experiment. A high percentage of charging time might 
mean there are too few robots in the system meaning the robots that are present each have to 
perform multiple transportation tasks in a row, reducing their battery power, which causes a need 
for charging. A high percentage of charging time however might mean there are too many robots 
in the system. This can mean there are robots in the system that do not perform a transportation 
task at all, so their battery level is not reducing and there is no need to charge. When robot 
batteries are not emptying because they are not moving, they simply remain available while 
standing on a charging area, but this time spent does not count as charging time. A value of 
26.68% for 8 robots is considered fine, indicating a good balance between the number of robots 
and the number of incoming bags over time. The number of avoided conflicts cannot be judged 
to be low or high. This combination of input parameter values leads to a situation in which the 
percentage of mishandled bags is higher than 0.02% in all runs. The minimum value obtained in 
the experiment does not comply with the set maximum of 0.02% and the maximum value is even 
larger, 2.77%. This means the selected set of input parameters is not able to comply with all the 
theoretic optimal values for the KPIs, showing that the base case values chosen do not fulfil the 
practical requirements to the baggage robot concept. The next experiment shall provide more 
insight into which combination of design parameter values actually provides a feasible design.  
 

The whiskers show the order of magnitude of variation in the KPI values for different simulation 
seeds. Different seeds mean that for each replication different and random choices in for 
example conflict resolutions are made. Through the path dependency in the simulation, a slightly 
different situation emerges at the end of the simulation run. By showing the spread in values that 
occur – of which the extremes are displayed by the whiskers – the implication of these random 
choices made in the different and random seeds are explored.  
 
 

5.7.2 Parameter Sweep Experiment 
In the parameter sweep experiment, all input parameters have been varied for both the 1624 bags 
and the 4290 bags scenario as indicated in section 5.6. The experiment is performed with 30 
replications of each unique combination and gives the results for the seven KPI output metrics 
and the additional handled bags output metric. Not for every combination of input parameter 
values the ‘handled bags in runtime’ metrics gives a value of 1624 for the 1624 scenario or 4290 
for the 4290 bags scenario. Appendix K.1. shows the infeasible combinations for both scenarios, 
as well as the average process time of bags (APT), the average percentage of mishandled bags 
(AMH), the average percentage of loaded trips (ALT), the average percentage of empty trips 
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(AET) and the average percentage of charging time (ACT). The final column in the table in 
Appendix K.1. shows some descriptive statistics on the number of bags that were handled. The 
inability of these five different combinations of input parameter values to handle all the bags that 
are inserted in the system in the simulated day, indicates that the baggage robot concept is not 
able to perform the sorting process under all simulated input values.  
 

1624 Bags Scenario 
Table 13 shows the obtained optimal value for the seven KPIs for the parameter sweep 
experiment for the 1624 bags scenario. As in the fixed settings experiment, four descriptive 
statistics are added to show the deviations for the KPIs. All the combinations that resulted from 
the Latin Hypercube Sampling are shown in Appendix H. All these combinations were replicated 
30 times. As mentioned earlier, multiple combinations were found to be unable to handle the 
required number of 1692 bags within runtime. These combinations can be found in Appendix 
K.1. These infeasible combinations are still included in Table 13. However, when excluding these 
infeasible input parameter combinations from the analysis, different results for the KPIs are 
obtained. 
 

In Table 13 red cells represent the cells that contain values for the KPIs that were obtained from 
an infeasible combination of input parameter values, i.e. combinations that are unable to handle 
the 1624 bags within the runtime. 
 

The transparent cells show the values when only feasible combinations are considered. The 
combination of input parameter values that result in the values for the obtained optimal values of 
the KPIs in Table 13 can be found in Appendix K.2. As mentioned in the parameter sweep 
experiment, the descriptive statistics do not apply to the number of robots KPI as it is also used 
as an input parameter.  
 
Table 13 - Results from parameter sweep experiment 1 with 30 replications for 15 settings and for 7 KPIs 

KPI 
Theoretic 
Optimal 

Value 

Obtained 
Optimal 

Value 
Min Max Average Median 

Standard 
Deviation 

1 
≤ 6 minutes 
or 360 sec 

61.75 sec 61.75 
4492.15 366.28 68.29 1062.67 

94.80 69.81 68.00 9.89 

2 As small as 
possible 

15 Not applicable 

3  
Close to 50% 50.94% 50.94% 

58.27% 54.24% 54.71% 2.29% 

57.81% 53.86% 54.65% 2.18% 

4 As high as 
possible 

49.06% 
41.73% 

49.06% 
45.76% 45.29% 2.29% 

42.19% 46.14% 45.35% 2.18% 

5 As low as 
possible 

0.14% 0.14% 
77.95% 17.01% 5.80% 23.17% 

22.41% 8.34% 5.70% 7.33% 

6 As low as 
possible 

170.00 170.00 1873 1470.94 1584.50 371.93 

1126.00 1126.00 1873.00 1566.80 1608.00 169.83 

7 Between 0 
and 0.02% 

0.00% 0.00% 
76.22% 5.73% 

0.00% 
18.93% 

0.00% 0.00% 0.00% 

 
Table 13 shows that the obtained optimal value for the average process time of bags is lower than 
6 minutes in the parameter sweep experiment for 1624. However, when infeasible combinations 
are included, both the average and maximum value for this KPI exceeds the 6 minutes or 360 
seconds threshold. When these infeasible combinations are excluded, the average and maximum 
value drops below the threshold again. The same holds for the last KPI, the percentage of 
mishandled bags. Other significant differences between the situations where infeasible 
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combinations are included and situations where they are excluded can be seen in the KPIs 
‘percentage charging time’ and ‘number of avoided conflicts’. The difference in the values for the 
percentage of empty and loaded trips is not too big.  
 

To visualize the distributions of several output metrics over 30 replications, Figure 28 shows four 
boxplots of four KPIs: 

 the average process time of bags 

 the percentage charging time 

 the number of avoided conflicts  

 the percentage of mishandled bags.  
 

These boxplots include both the feasible and the infeasible combinations of input parameter 
values. This way, the effect of infeasible input parameter value combinations is visible. 
 

 
Figure 28 - Boxplots of Parameter Sweep Experiment with 1624 bags. Results for 30 replications. 

The obtained optimal values for the KPIs in the parameter sweep experiment for 1624 are 
obtained by feasible combinations of input parameter values, except for the KPI ‘number of 
avoided conflicts’. For this KPI, a value of 170 is the minimal value obtained when both feasible 
and infeasible combinations are analysed. This value is the result of an infeasible combination, 
stated in the first row of the infeasible combinations table in Appendix K.1. This combination 
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was the four horizontal areas layout with only four robots and a very low charging rate. As only 
four robots tried to handle all the bags – which they were unable to do; on average they were able 
to handle only 558 out of 1624 bags – the chances of them running into each other were lower, 
causing the possible number of conflicts to be very low.  
 

Appendix K.2. shows the combinations of input parameter values that result in the obtained 
optimal values for the KPIs. What is most noticeable is that one specific combination of input 
parameter values causes the optimal value for three of the seven KPIs. This combination has 15 
robots in the six horizontal areas configuration. The combination that has the lowest value on the 
average process time of bags combines 53 robots with the six horizontal areas configuration. 53 
robots is not the highest number of robots present in the experiment. The 1624 bags scenario is 
also performed for 63, 66, 69, 73, 76, 82 and 93 robots in different layout configurations. As 53 
robots show the lowest value for the average process time of bags, this implicates that if more 
than these 53 robots are present, they get in each other’s way while moving around, resulting in 
more conflicts to be avoided, resulting in more time the robots have to wait for each other, 
resulting in a higher average process time for bags.  
 

The lowest number for the avoided conflicts KPI is caused by 19 robots in the central areas 
configuration. For the 1624 bags scenario, there are only two combinations that have a lower 
number of robots. It is expected that the lower the number of robots is, the lower the value for 
the number of avoided conflicts is, as the size of the area remains constant so the chances of two 
or more robots running into each other is lower than when the area is occupied by a larger 
number of robots. The combinations in the 1624 bags scenario that have a lower number of 
robots are one of the infeasible combinations – four robots in the four horizontal areas 
configuration – and a configuration with 15 robots in the six horizontal areas layout. It would be 
in line of expectation if this second configuration would score better on the number of avoided 
conflicts KPI as it has 15 robots instead of 19 and is able to handle all the 1624 bags. However, 
this is not the case as the lowest value for number of avoided conflicts in the 15 robots in the six 
horizontal area configuration is 1297. This can be explained by the type of layout configuration. 
In the central areas configuration – combined with 19 robots resulting in the most optimal value 
for the KPI – there is more manoeuvring space for the robots than in the six horizontal areas 
configuration. This demonstrably results in less avoided conflicts.  
 

The same experiment is also run for a more extreme scenario, a scenario in which 4290 bags need 
to be handled instead of 1624. The next section shows the result of these experiments. 
 

4290 Bags Scenario 
Table 14 shows the obtained optimal value for the seven KPIs for the parameter sweep 
experiment for the 4290 bags scenario. When it comes to the red coloured cells, the same 
reasoning applies as in the 1624 bags scenario – red cells represent the values for the KPIs and its 
descriptive statistics when infeasible combinations are taken into the data analysis as well. The 
infeasible combinations of input parameters for the 4290 bags scenario are visible in Appendix 
K.1. The combinations that do show the optimal values are visible in Appendix K.3.  
 

All obtained values comply with the theoretic optimal value for the KPIs as stated. Compared to 
the 1624 scenario, the average process time of bags is 26.25% higher – still easily complying with 
the maximum threshold of 360 seconds – while the number of bags to be transported is 164.16% 
higher. The minimum number of robots necessary to handle all these 4290 bags is however 
higher, 26 compared to 15, having the same layout configuration. When 4290 bags need to be 
handled, the percentage of empty trips is slightly higher compared to the 1624 bags situation, 
which can be explained by the fact that the combination of input parameter values causing this 
optimal value for the percentage of empty trips includes having 57 robots. It is expected that at 
certain moments most of these robots are operational and as there are quite many, they might 
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run into each other a lot. This results in more conflicts to be avoided which leads to more waiting 
time especially for empty robots, as loaded robots get priority over empty robots, increasing the 
percentage of empty trips in time. The same logic applies to the percentage of loaded trips. The 
optimal value for charging time is higher than in the 1624 bags scenario, which can be explained 
by the fact that the obtained optimal value for this KPI in the 1624 bags scenario is obtained by a 
combination of input parameter values that includes having 76 robots, while in the 4290 bags 
scenario this value is obtained by a combination of input parameter values that includes having 
51 bags. A lower number of robots have to transfer significantly more bags, resulting in more 
need for charging and thus a higher percentage of charging time. The number of avoided 
conflicts is also significantly higher in the 4290 bags scenario compared to the 1624 bags 
scenario, due to the number of robots present in the combination that results in the optimal 
values; 19 robots for 1126 avoided conflicts in the 1624 bags scenario compared to 34 robots for 
7733 avoided conflicts in the 4290 bags scenario.  
 
Table 14 - Results from parameter sweep experiment 2 with 30 replications for 15 settings and for 7 KPIs 

KPI 
Theoretic 
Optimal 

Value 

Obtained 
Optimal 

Value 
Min Max Average Median 

Standard 
Deviation 

1 ≤ 6 minutes 
or 360 sec 

77.96 sec 77.96 
12871.93 1988.96 81.18 3891.19 

386.06 121.03 80.46 90.19 

2 As small as 
possible 

26 Not applicable 

3  
Close to 50% 54.96% 54.96% 

60.40% 56.36% 55.36% 1.61% 

57.71% 55.68% 55.29% 0.87% 

4 As high as 
possible 

45.04% 
39.60% 

45.04% 
43.64% 44.64% 1.61% 

42.29% 44.32% 44.71% 0.87% 

5 As low as 
possible 

1.93% 1.93% 
59.04% 26.54% 27.91% 16.55% 

46.53% 23.76% 26.76% 15.34% 

6 As low as 
possible 

69.00 69.00 9068.00 6515.21 8160.00 2971.58 

7733.00 5042.00 9068.00 7895.07 8276.00 1189.96 

7 Between 0 and 
0.02% 

0.00% 0.00% 
85.58% 17.10% 

0.00% 
30.53% 

15.24% 2.02% 4.57% 

 
For the 4290 bags scenario in the parameter sweep experiment, boxplots of the average process 
time of bags, the percentage charging time, the number of avoided conflicts and the percentage 
of mishandled bags are shown below in Figure 29.  
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Figure 29 - Boxplots of Parameter Sweep Experiment with 4290 bags. Results for 30 replications 

All the values for the obtained optimal value comply with the theoretic optimal values for the 
4290 bags scenario. Compared to the 1624 bags scenario, the deviations in the KPI values for the 
4290 bags scenario are larger, which is visible when the boxplots in Figure 28 and Figure 29 are 
compared.  
 

Experience with the model shows that two input parameters are of most importance; the number 
of robots and the layout configuration. In the design process these two choices have to be made 
first as they are the key drivers for the required capital investment and operational expenditures. 
These factors are out of scope in this research, but cannot be neglected when assessing the 
performance of the scoped model.  
 

The next section examines the effects of the input parameters ‘number of robots’ and 
‘configuration’ more closely as they appear to have the largest impact on the KPIs. Both the 1624 
and the 4290 bags scenario are examined for the different combinations of input parameter 
values for these two input parameters.  
 

5.7.3 Influential Parameters Effect Experiment 
This experiment shows the effects that the chosen number of robots and the layout configuration 
have on the KPIs. The difference is that the fixed settings parameter experiment fixates the 
number of robots to 8, whereas this extra experiment varies the number of robots between 1 and 
25 and the layout configurations. This experiment tries to show the minimum required number 
of robots per layout configuration, to comply with all the optimal KPI when the other input 
parameters such as battery charging rate and the battery level threshold are kept constant and  
considered to represent ‘normal conditions’. For the 1624 bags scenario, 100 unique experiments 
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are performed, however due to time and resource constraints these experiments are only 
replicated once to give a rough idea on the relation between these input parameters and the KPIs. 
Each configuration is combined with one to 25 robots and tested on the KPIs. For the 4290 bags 
scenario, 201 unique combinations are tested, also replicated once. Each combination is tested 
with 1 to 35 robots. Appendix K.5 shows the descriptive statistics for the 1624 scenario for the 
influential parameters effect experiment and Appendix K.6 shows the descriptive statistics for the 
4290 bags scenario. 
 

Table 15 shows for each layout configuration the minimum number of bags needed to comply 
with the desired thresholds of both the number of bags to be handled as the average process time 
of bags and the percentage of mishandled bags. It has become apparent that the KPI percentage 
of mishandled bags is the most important KPI for determining the number of robots needed. 
For the 1624 bags scenario for examples, 11 bags are needed in the central areas configuration in 
order to comply with the threshold for the percentage of mishandled bags. For the 4290 bags 
scenario, the experiment was extended to 96 robots instead of 35, as the value for the percentage 
of mishandled bags did not drop below the 0.02% in the one to 35 robots range. When testing 
the 36-96 robot range and thus adding 61 experiments, the 0.02% was never reached. In fact, the 
lowest percentage reaches was 8.72% with 47 robots.   
 

Table 15 -Number of robots required to comply with KPI thresholds 

 KPIs 

# Handled Bags Average process 
time of bags 

% of mishandled 
bags 

Configuration 1624 
bags 

4290 
bags 

1624 
bags 

4290 
bags 

1624 
bags 

4290 
bags 

Central areas 6 robots 17 robots 9 robots 25* robots 11 robots >96 robots 

Four horizontal areas 6 robots 15 robots 8 robots 18 robots 10 robots 20 robots 

Six horizontal areas 5 robots 14 robots 7 robots 16 robots 9 robots 18 robots 

Six vertical areas 6 robots 15 robots 8 robots 18 robots 10 robots 21 robots 

* depending on the seed, as just one replication is done for the experiment, no solid conclusions 
can be drawn for this output metric. 
 
 

Figure 30 shows four histograms for the 1624 bags scenario with the number of robots on the x-
axis and separate bars in the histogram for each layout configuration.  
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Figure 30 - Histograms of Influential Parameter Experiment with 1624 bags. Results for 1 replication 

 

The top left histogram in the figure shows the average process time of bags per configuration in 
the 1624 bags scenario. From this histogram, it becomes clear that the more robots are used, the 
lower the average process time of bags becomes. However, after a certain point, the addition of 
an extra robot does not contribute a great deal to the reduction in average process time of bags. 
For the 1624 bags scenario, having 9 robots causes the average process time to be below the set 
threshold for all configurations. Adding an extra robot does decrease the average process time 
but cost estimations for the purchase of an additional robot have to show if it is worth it.  
 

The top right histogram shows the average percentage of robot charging time per configuration. 
This histograms shows a downwards trend starting from approximately 10 robots in each 
configuration. This trend can seem counterintuitive, but it shows that the more robots are 
present, the less time is needed to charge. This is probably caused by having a lot of robots 
standing idle with a full battery. As these robots do not have to charge as it could be that they 
haven’t been used, they influence the value of the counter as they are included in the calculation 
of the average charging time as well.  
 

The bottom left histogram shows the number of avoided conflicts per configuration. From this 
upwards trend it can be concluded that robots get in each other’s way more when the number of 
robot increases. In this histogram however, there is a clear difference visible between the 
configurations. The central areas configuration shows a significantly lower number of potential 
conflicts than the other configurations, regardless of the number of robots present. This can be 
explained by the manoeuvring space that this layout provides. As the charging and storage 
positions are located at the top and bottom of the layout as seen from above, robots have a larger 
open space to move around. The other areas have the same dimensions but are located in such a 
way that the robots have less manoeuvring space near the incoming conveyor belts, resulting in 
different shortest path possibilities. 
 

The bottom right histogram shows the average percentage of mishandled bags per configuration. 
A clear downward trend is visible here and from 11 robots onwards, the value for this KPI drops 
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below the 0.02% threshold. Adding an additional robot does not decrease this percentage even 
more, as it reaches a value of 0.00% in all configurations with 11 robots already.  
 

When it comes to the layout configurations, the six horizontal areas configuration has the best 
value for the number of handled bags in runtime, the average process time of bags and the 
average percentage of mishandled bags. From this it can be concluded that this configuration 
provides the robots to get to the bags at the incoming conveyor belts fastest, resulting in a low 
value for the named variables. The central areas configuration is the most beneficial when the 
average percentage of mishandled bags is considered the most important KPI. A relatively high 
number of potential conflicts occur in the six horizontal areas layout, as the manoeuvre space for 
the robots is small near the incoming conveyor belts.  The ratio loaded trips and empty trips is 
also the best for the six horizontal areas configuration. It is assumed that this is because the 
charging and storage positions are relatively the closest to the incoming conveyor belts, resulting 
in a minimal detour for robots that want to go to one of these positions. 
 

The same histograms are also made for the 4290 bags scenario and are visible in Figure 31. The 
same logic as for the 1624 bags scenario applies here. The only major difference is that when the 
central area configuration is combined with one to 35 robots, an acceptable mishandled bags 
percentage is not reached. This specific configuration is further investigated for one to 96 robots 
and the mishandled bags percentage did never drop below the 0.02% threshold. This leads to the 
conclusion that for the 4290 bags scenario, the central areas configuration is not able to perform 
sufficient under this combination of input parameter values.  
 

 
Figure 31 - Histograms of Influential Parameter Experiment with 4290 bags. Results for 1 replication 

 

5.9. Conclusions on the Experiment Results 
Three types of experiments have been executed; a fixed settings experiment, a parameter sweep 
experiment for both the 1624 and the 4290 bags scenario and an experiment to further 
investigate two most influential input parameters, being the number of robots and the layout 
configuration.  
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The fixed settings experiment shows promising results in terms of the average process time of 
bags. However, the specific combination of input parameter values appeared to be infeasible as 
the number of mishandled bags was too high with these values. The standard deviation due to 
stochastic variations in this experiment is relatively low, which shows that the number of 
replications needed for running the model with the exact same parameter settings does not need 
to be very high. To find a feasible combination of input parameter values, and to determine the 
most important design parameters and their optimal values, a parameter sweep experiment is 
executed.  
 

The parameter sweep experiment showed that the baggage robot concept can be used in the 
sorting process of a baggage handling system at a medium-sized regional airport operating in a 
point-to-point network. However, under extreme circumstances – simulated by entering 4290 
bags into the system – the baggage robot concept is not able to perform when a central areas 
layout configuration is chosen. Which exact parameter settings independently cause specific KPI 
values is hard to say as only a limited number of input parameter values are tested, based on a 
sample created by using Latin Hypercube Sampling. Data and experience with the model showed 
the two most important design choices in this baggage robot concept: number of robots and 
layout configuration. To investigate the effects of these two input parameters, a third experiment 
is executed, combining these two KPIs.  
 

The influential parameter experiment links the two key design choices with the implications on 
the performance of the baggage robot concept in the sorting process of a baggage handling 
system. When it comes to the layout configuration, the main conclusion is that the closer the 
charging and storage positions are to the incoming conveyor belts, the less time bags have to wait 
at the end of the conveyor belt to be picked up and he lower the average process time of bags. 
Also, the percentage of empty trips is reduced as the detour for robots to go to one of the 
charging and storage positions is almost none. However, having the charging and storage 
positions located close to the incoming conveyor belts, reduces the manoeuvre space of the 
robots, resulting in more conflicts to be avoided than is the case in for example the central areas 
configuration.  
 

When it comes to the regularity hypothesis discussed in section 5.1, it can be stated the 
hypothesis is accepted as regularity is found in the experiment results. The average process time 
of bags decreases as the number of robots increases, the number of avoided conflicts increases 
when the number of robots also increases, and the average percentage of mishandled bags 
decreases when the number of robots increases. This regularity is found and has appeared to be 
stable under different scenarios.  
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6. Conclusion and Discussion 
The aim of this thesis has been to provide a conceptual design of future baggage handling 
systems based on the use of autonomous transport robots.. This concept level design has been 
tested and evaluated in an agent-based model. This chapter firstly addresses the research 
questions to draw the conclusions of this research. Secondly, all aspects of the research are 
discussed in a structured manner. This chapter ends with ideas and recommendations for future 
research on the topic of simulating and evaluating the baggage robot concept.  
 

6.1. Conclusion: Answers to the Research Questions 
This section answers the research questions as defined in section 1.2.2. Firstly, the five sub-
research questions are answered. This section concludes with the answer on the main research 
question. 
 

(1) What is the current state of baggage handling systems and transport robots? 
This research question is answered in Chapter 2. When it comes to conventional baggage 
handling systems, dropped baggage undergoes five processes: (i.) security screening, (ii.) sorting, 
(iii.) makeup, (iv.) transporting to an aircraft and (v.) loading into an aircraft.  
 

The dropped passenger bag is placed on a conveyor belt. From this conveyor belt the bag flows 
through a complicated system of connected conveyor belts until it reaches a makeup station. At 
the makeup station, the bag is manually put into in a baggage cart that is driven to the aircraft. 
Different elements of the conventional baggage handling system are currently improved. This can 
range from automated sorters to integrated screening solutions. But not only are elements added 
or automated in the conventional baggage handling system, the physical conveyor belts are also 
optimised, to make them more energy efficient for example.  
 
The most recent innovation in the field of baggage handling systems is Vanderlande’s FLEET 
system that combines conventional baggage handling systems with automated guided vehicles. 
Automated guided vehicles are a very common, widely used transport system. This driverless 
transport system is used for moving materials horizontally from one location to another. 
Automated guided vehicles are widely used in several industries, like warehousing and container 
handling. Since the introduction of FLEET, automated guided vehicles are finding their way to 
baggage handling systems in airports. In FLEET the complex system of connected conveyor 
belts is replaced by automated guided vehicles – transport robots – that carry individual baggage 
items all the way, from the drop-off facilities to the makeup stations.  

(2) What Key Performance Indicators (KPI’s) are relevant in assessing the capacity and continuity of a baggage 
handling system that makes use of autonomous individual transport robots? 
This research question is answered in Chapter 3, section 3.4.4. The KPIs described in this section 
are specific for the sorting process of baggage handling systems that use individual transport 
vehicles, as it is argued that transport robots are expected to be the most valuable in this process. 
Not all mentioned KPIs are therefore applicable to or relevant for conventional baggage handling 
systems using conveyor belts. The rationale for the target values of the KPIs listed below is 
described in section 3.4.4.   
 

The key performance indicators that have been identified are the following: 

 Average process time of bags: the average time that elapses between the moments of the bag 
being offered for transport at the entrance of the sorting area and the bag arriving at the 
exit of the sorting area. Based on existing practice at a medium-sized regional airport in 
the Netherlands, the value of this KPI should not exceed six minutes, or 360 seconds.   

 Percentage of bags exceeding a norm time: exceeding the norm time means that a bag arrives at a 
correct makeup station, but too late. Bags that have arrived too late cannot be loaded on 
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the aircraft before departure, resulting in bags being marked as mishandled. The 
percentage of mishandled bags should be as low as possible for a baggage handling 
system to be accepted for operation by ground handling parties and airports. Based on a 
case study at a medium-sized regional airport in the Netherlands, a value of 0.02% for 
this KPI is considered acceptable. 

 Average number of robots: the number of robots present in the system to perform the 
transport and sorting task of the sorting process. This number should be no more and no 
less than the number of robots required for handling checked baggage at peak demand. 
The number of robots should be sparse, so as low as possible to comply with the optimal 
target values for the other KPIs.  

 Occupancy rate 
o Percentage of operational time while being loaded: robots can be operational and non-

operational. This KPI shows the percentage of the total time that a robot is 
executing a transport task. A low value of this KPI can indicate several things, 
including having too many robots in the system and inefficient charging 
strategies. 

o Percentage of operational but empty trips by robots: the percentage of empty trips should 
be minimal, indicating an efficient allocation of robots to bags. A value that is 
close to 50% is considered optimal for this KPI, as robots are only loaded when 
they are transporting bags from the entrance to the exit of the sorting process and 
need some time to go to charging or storage areas every now and then.  

 Percentage of charging time: this KPI reflects charging efficiency. The amount of time a robot 
spends charging should be as low as possible, under the condition that the system 
complies with all the requirements and constraints of the system.  

 Number of conflicts avoided: conflicts are not allowed to occur in a system in which robots 
transport bags as conflicts can lead to deadlock which can in its turn lead to system 
downtime. A low value for this KPI indicates that the chosen configuration of the system 
causes not too many imminent conflicts. However, a low value is not as strict 
requirement in itself, as long as all potential conflicts are avoided and conflict avoidance 
does not cause so much delay that the percentage of mishandled bags will increase. 

(3) How can the autonomous individual transport robot concept be used in baggage handling systems? 
This research question is answered in Chapter 3 ‘Baggage Robot Concept’ by combining the 
existing elements of baggage handling systems and transport robots and improving them. 
Conventional baggage handling systems at airports use a complicated network of conveyor belts 
to transport bags from drop-off to the exit of the baggage handling area, from where bags are 
transported to the aircraft. The disadvantages of using a system of conveyor belts (which include 
being difficult to expand and difficult to relocate) may be overcome by the flexibility that is 
offered by autonomous individual transport robots. The disadvantages of conveyor belts 
appeared to be most present in the sorting process of the baggage handling chain. It is therefore 
concluded that the use of an alternative to a conveyor belt system – like individual transport 
robots – will be most beneficial in the sorting process. The baggage robot concept differs from 
the FLEET concept as it has more autonomy built into the robots. The robots are more 
intelligent and able to find their own paths in an open space, without being bound to an 
infrastructural grid. Given the current state of robot technology, it is questionable if the proposed 
type of autonomous robot is already available on the market. Yet, for future airport operations, 
autonomy provides more benefits, as it is easier to buy or insert one additional robot into the 
system. As long as it is an identical robot, it will be able to find its way through the area. In this 
way, the baggage robot concept is more flexible than an AGV system, as when an AGV system 
needs to be increased, new routes and predefined paths have to be established before the system 
can be operational again.  
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(4) How can the performance of a baggage handling system that makes use of autonomous individual transport 
robots be predicted and evaluated? 
This research question is answered in Chapter 4. Using agent-based modelling a simulation model 
of the baggage robot concept in the sorting process of the baggage handling system can be run. 
The most important reason to use agent-based modelling is the autonomous nature of the 
individual transport robots considered in this research. Agent-based models are able to explicitly 
model the complexity that arises from individual actions and interactions that happen in such a 
system. The discrete entities – agents – present in such models are designed to mimic the 
behaviour of their real-world counterparts. Section 4.4.2. describes  the requirements, constraints 
and assumptions used to develop an agent-based model of the sorting process of the baggage 
robot concept.  
 

By means of a hybrid control approach, a simulation model is developed that is able to simulate 
the implementation of the baggage robot concept in the sorting process of baggage handling 
systems. In the simulation model, an algorithm has been developed that enables the transport 
robots to autonomously calculate and follow the shortest path while iteratively avoiding 
obstacles. By using multiple verification methods and expert validation, the model is verified and 
face validated and can be used to perform experiments. It is important to note that only the 
sorting process is modelled. This has been a scoping choice.  
 

In addition, the use of individual transport robots is assumed to be the most beneficial in this 
specific process. The simulation model developed in this thesis therefore is not able to evaluate 
and predict the performance of the baggage robot system as a whole.  

(5) What does the performance of a baggage handling system with autonomous individual transport robots look 
like? 
This research question is answered in section 5.8 and 5.9. In this research, the main design 
choices for the baggage robot concept appear to be: 

 the number of robots    and  

 the type of layout configuration  
 
By executing three types of experiments the performance of the baggage robot concept in the 
sorting process is evaluated for two different scenarios. Scenario 1 has 1624 bags inserted into 
the system according to normally distributed arrival patterns. In Scenario 2 there are 4290 bags 
that are inserted following the same distribution. By executing these experiments, regularity was 
found for the KPIs. The average process time of bags decreases when the number of robots 
increases, for every configuration. The number of avoided conflicts increases when the number 
of robot increases and the average percentage of mishandled bags decreases when the number of 
bags increases. These regularities are found for all the configurations in both scenarios. The only 
layout that was unable to handle 4290 bags while having an acceptable percentage of mishandled 
bags is the ‘central areas’ configuration. The ‘six horizontal areas’ configuration appears to offer 
the best  values for the KPIs considered.  
 
Table 16 shows the number of robots required per layout configuration and per scenario for the 
three main KPIs. For example, to handle all 1624 bags in the ‘central areas’ layout configuration, 
at least 6 robots are necessary. To comply with the threshold for the average process time of bags 
in the 4290 scenario with a ‘six vertical areas’ layout, 18 robots are necessary. The same reasoning 
holds for the other values in the table.   
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Table 16 - Copy of Table 15 - Number of robots required to comply with KPI thresholds 

 # Handled Bags Average process 
time of bags 

% of mishandled 
bags 

Configuration 1624 
bags 

4290 
bags 

1624 
bags 

4290 
bags 

1624 
bags 

4290 
bags 

Central areas 6 17 9 25* 11 >96 

Four horizontal areas 6 15 8 18 10 20 

Six horizontal areas 5 14 7 16 9 18 

Six vertical areas 6 15 8 18 10 21 
* depending on the seed, as just one replication is done for the experiment, no solid conclusions 
can be drawn for this output metric. 
 
Considering the layout configuration, the main conclusion is that the closer the charging and 
storage positions are to the incoming conveyor belts, the less time bags have to wait at the end of 
the conveyor belt to be picked up and the lower the average process time of bags is. The 
percentage of empty trips is also reduced as the detour for robots to go to one of the charging 
and storage positions is almost none. However, having the charging and storage positions located 
close to the incoming conveyor belts, reduces the manoeuvre space of the robots, resulting in 
more conflicts to be avoided than is the case in for example the central areas configuration. This 
might well increase the risk of a collision in a practical baggage handling system. 

By combining the answers on the sub-research question and knowledge gained while working on 
this research, the main research question can be answered: 

In what way is it feasible to dynamically alter the floor plan and desired capacity of airport baggage handling 
systems by making use of autonomous individual transport robots?  
 

By implementing the baggage robot concept, a step is made in dynamically altering the floor plan 
and desired capacity of airport baggage handling systems. The performance of this baggage robot 
concept has been reflected upon using the simulation results. Exact design parameters or values 
for these parameters cannot yet be given due to the limitations of the developed simulation 
model and the lack of reliable data available for a far-future concept. Yet, the number of robots 
and the layout configuration were found to be the most important design parameters. The 
number of robots should be such that the average process time of bags does not significantly 
decrease when introducing an additional robot to the system. The layout should be such that the 
route the robots travel is as short as possible, while at the same time ensuring the robots have 
enough manoeuvre space to reduce the number of possible conflicts. An example of such a 
layout that was chosen in this research is the ‘six horizontal areas’ layout, in which the charging 
and storage location of robots is located close to the incoming conveyor belts. Depending on the 
number of bags to be handled and the arrival pattern of these bags, a different minimum number 
of robots is necessary. When taking all the KPIs into account, this number should be higher 
(because of the determining KPI ‘percentage of mishandled bags’) than in case the other KPIs do 
not play a role and the acquisition costs of robots are the main determinant.  

This thesis has been a first exploration in integrating autonomous robot systems in baggage 
handling systems, contributing to future proof and cost efficient operations.   

Contribution of the thesis 
The contribution of this thesis is twofold. Firstly, the contribution to airport operations in 
practice has been to sketch the possibilities, benefits, and disadvantages in the next phase of 
development of future baggage handling systems. Currently, the most advanced baggage handling 
system is FLEET – not guided by fully autonomous reasoning of the robots, but by predefined 



93 
 

paths. This thesis has shown the way forward in integrating truly autonomous technology in 
baggage handling systems, by proposing a high-level design and evaluating the performance of 
this baggage handling system. 
 
The scientific contribution of this thesis is in showing how to construct and simulate low-detail, 
flexible agent-based models to evaluate the performance of baggage handling systems. Agent-
based modelling has been the most suitable modelling methodology due to the autonomous, 
individual nature of the robots. This thesis has shown how to integrally design a baggage 
handling system grounded in practical experience and requirements to its performance and at the 
same time demonstrating how to evaluate its performance.  
 

6.2. Reflection on the Research: A Discussion on. … 
This report is structured to describe the performed research on different aspects. This section 
starts with a discussion on the baggage robot concept as introduced in Chapter 3. After 
discussing this concept as a whole, the modelling phase and the resulting simulation model - on 
the baggage robot based sorting process - is discussed. With the simulation model, several 
experiments are executed, resulting in data that have been analysed.  
 
 

6.2.1. The Baggage Robot Concept 
In this paragraph the baggage robot concept is discussed. Chapter 3 has elaborated on the 
baggage handling concept as a supplement to or a replacement of conventional baggage handling 
systems at airports. The main aim of the baggage robot concept is to replace conveyor belts in 
the baggage handling system, to make it possible to dynamically alter the floor plan and the 
desired capacity of a baggage handling system. Vanderlande has recently introduced a system 
called FLEET that tries to accomplish the same. The difference between FLEET and the 
baggage robot concept as proposed in this research is the level of autonomy of the transport 
robots. In FLEET, the transport robots are automated guided vehicles, meaning they have to 
follow a predefined path. The baggage robot system however proposes individual transport 
robots that are more intelligent and capable of moving around the baggage handling area 
autonomously. The advantage of this approach is that individual robots can intelligently plan and 
re-plan their shortest routes, also when confronted with other robots crossing their paths at the 
same time. This concept therefore has an approach that is different from FLEET.  
 

In this research, numerous assumptions have been made on the technical feasibility of these 
more intelligent and autonomous robots. For example, it is assumed that intelligent sensing 
capabilities can be integrated in the small robots and that the robots are capable of (almost) fully 
autonomous reasoning. However, this research did not include an exploration on the actual 
technical feasibility of these robots. Furthermore, the timescale and costs necessary to develop 
robots or a prototype of the robots that have these increased capabilities is not considered in this 
research. This means that it is not possible yet to estimate on which timescale the proposed 
baggage robot concept could be built into a prototype to further test the system.  
 

As this research focuses on medium-sized regional airports, the description of the baggage robot 
concept in Chapter 3 pays no attention to the specific requirements of odd-sized and transfer 
baggage. This has been excluded from the research scope described in section 1.2.3. The 
consequence is statements on the use of the baggage robot concept in other types of airports 
cannot be made and that this research cannot provide specific statements on the baggage robot 
concept for airports in general. 
 

Furthermore, the timescale and costs necessary to research and develop robots or a prototype of 
the robots that have these increased capabilities are not considered in this research. It looks as if  
it would be technically possible already to integrate autonomy into small-scale robots, considering 
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recent developments on self-driving cars and e.g. Boston Dynamics robots performing a wide 
range of incredibly difficult tasks. It would thus be more of an economic investment-related 
challenge to build truly autonomous baggage robots than it would be a technological innovation 
challenge. This dependence on investment in baggage robot technology means that it is not 
possible yet to estimate with any precision on which timescale the proposed baggage robot 
concept could be built into a prototype to further test the system.  
 

Furthermore, the timescale and costs necessary to research and develop robots or a prototype of 
the robots that have these increased capabilities are not considered in this research. It looks as if  
it would be technically possible already to integrate autonomy into small-scale robots, considering 
recent developments on self-driving cars and e.g. Boston Dynamics robots performing a wide 
range of incredibly difficult tasks. It would thus be more of an economic investment-related 
challenge to build truly autonomous baggage robots than it would be a technological innovation 
challenge. This dependence on investment in baggage robot technology means that it is not 
possible yet to estimate with any precision on which timescale the proposed baggage robot 
concept could be built into a prototype to further test the system.  
 

6.2.2. Modelling and the Resulting Simulation Model 
This paragraph reflects on the chosen modelling methodology – agent-based modelling – and 
discusses the benefits and disadvantages of the simulation model used to evaluate the sorting 
process of the baggage robot concept. Appendix L elaborates on how first-time users can use the 
developed simulation model and makes suggestions on how the model can be altered to serve 
different purposes.  

Modelling 
The process of designing and implementing the model has helped enormously in making the 
baggage robot concept more explicit and understanding all the aspects that play a role in 
designing such a concept. Modelling has made it possible to make a precise conceptual design of 
the baggage robot concept. However, this research only focuses on the sorting process of a 
baggage handling system at a medium-sized regional airport operating in a point-to-point 
network. The two other major processes (security screening and the makeup process) in the 
baggage handling system are not included, meaning the model is not able to show the 
performance of the baggage robot concept in the entire baggage handling process.   
 

To translate the developed conceptual model into a working simulation model, agent-based 
modelling is used. The implementation of the agent-based model was done in NetLogo. 
Reflecting on these modelling decisions, it was the right choice to use agent-based modelling and 
NetLogo, as the model has naturally allowed for modelling autonomous robots. The NetLogo 
software is clear on which information is available in whose (autonomous) mind. Furthermore, 
NetLogo is well suited for building relatively small and flexible models and is open source 
software, making it relatively easy for others to use the developed model. A disadvantage of 
NetLogo is that it is not fast, especially compared to agent-based models that are for example 
directly programmed in Java. This restricts the researcher in running many variations and 
replications, reducing the statistical significance of the model results. When more detailed designs 
of the proposed baggage robot concept have been completed, it may be worthwhile to develop a 
more detailed agent-based model, making the generated results more reliable.  
 

The model has been face validated by three experts. As discussed in section 4.7.2, the use of 
expert validation does not imply that the model can be considered fully validated. To strengthen 
the validity of the developed model, a discrete event model or an agent-based model of the 
current baggage handling system with conveyor belts can be built. This additional model can then 
be used for comparison with the model developed in this research, to pinpoint the most 
significant differences. However, this still does not fully validate the developed model, as true 
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validation checks if the model is a good representation of the real world system. In this case, the 
real world system does not exist yet. Reflecting on the nature of current BHS systems, it would 
likely be more natural to use a discrete event model, although it is more difficult to compare two 
models built in two different modelling methods.  

Simulation Model 
The developed simulation model of the baggage robot concept is an abstraction of the real world 
concept. This means that assumptions and simplifications have to be made. In the simulation 
model, only four incoming conveyor belts and four makeup stations are programmed. The 
reason to select four makeup stations is because the data used to construct an arrival pattern 
required only four makeup stations when the flights were manually scheduled. The four incoming 
conveyor belts were arbitrarily chosen as they don’t have to represent the number of bag-drop 
facilities since the model skips the security screening process. The four incoming conveyor belts 
therefore represent four points where the security process can insert security-cleared bags into 
the sorting process. A drawback of the simulation model in its current state is the inability to 
easily alter the number of incoming conveyor belts and makeup stations to experiment with, as 
well as the locations of these facilities in the baggage handling area. Such additions can help in 
understanding and showing the impact of a different number and location of these facilities on 
the performance of the baggage robot concept in the sorting process.  
 

As mentioned, the simulation model only represents the sorting process in the baggage handling 
system of an airport that operates in a point-to-point network. To fully test the performance of 
the baggage robot as an addition to or replacement of a conventional baggage handling system at 
such an airport, the security process and makeup process need to be included as well. In all of 
these processes, odd-sized baggage needs to be accommodated for as well. To simulate the 
baggage robot concept in a different airport setting, aside from the mentioned additions, transfer 
facilities need to be added as well. When additional KPIs such as the waiting time for passengers 
that want to drop off their bag at one of the bag-drop facilities are desired, the assumption that 
the buffer capacity of the incoming conveyor belts is infinite needs to be changed to a limited 
capacity. A limited buffer capacity should be considered to investigate the waiting time of bags 
on the belt, which has an effect on the bag offering process. By restricting the buffer capacity, 
research can be done on the development of passenger queues at bag-drop facilities.  
 

Another important assumption that is made in the simulation model is that the arrival pattern is 
considered to follow a normal distribution with a mean of 40 minutes and a standard deviation of 
30 minutes. In this research, no variations to this arrival pattern are considered. The results 
generated by this simulation model can therefore not be generalized to all possible arrival 
patterns. To investigate the impact of the arrival pattern on the performance of the baggage 
robot concept in the sorting process, it is recommended to experiment with the gamma 
distribution and different values for the mean and standard deviation. To make the arrival pattern 
as realistic as possible, data need to be obtained from different airports of different sizes 
worldwide. By doing so, the accuracy of the KPI results can be increased. Currently, the accuracy 
of the KPI results is not too high because a normal distribution with a specific mean and 
standard deviation is assumed and the number of bags that are entered into the system on a daily 
basis is only varied twice (1624 bags and 4290 bags). When investigating the implementation of 
the baggage robot concept at a different type and size of airport, these values have to be adjusted.   
 

Important to mention is that in this research, a mishandled bags percentage of 0.02% is assumed. 
This means that if during the sorting process 0.02% of the bags are marked as ‘mishandled’, there 
is no leeway for errors in the security and makeup process. The feasible KPI scores are therefore 
also influenced by the scoping choice of only considering the sorting process.  
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When it comes to the software implementation, simplifications and assumptions have also been 
made. In the developed simulation model, robots are only positioned in the middle of a patch. 
This implies the use of a buffer zone between robots because a robot does not occupy a whole 
patch. However, this buffer zone size might be variable, to investigate the impact on for example 
process time. When moving around, the robots have to construct and follow a shortest path. 
This research used the A* algorithm to calculate the shortest path for each robot to each 
destination.  
 
In the software implementation, conflict and deadlock resolution were relatively difficult to 
implement. In the current model implementation only one way to deal with this has been 
implemented. There are however other ways of implementing these autonomous procedures. 
The current implementation uses priority rules for transport robots carrying a bag and decides 
randomly which empty transport robot can go first after the loaded robot has passed in case of 
imminent collisions. The other involved robots have to wait until they can proceed to follow 
their shortest path. This implies that a part of the robots is waiting – even though it is only for 
just a time step of one second. This could have implications for the simulation results. The 
baggage robot concept might thus – accepting the relevant assumptions and simplifications – 
even be slightly more effective than becomes apparent from the current experiment results, as 
the waiting time caused by imminent collisions can be less than one second.  
 
 

6.2.3. Simulating and Data Analysis 
This paragraph discusses the possibilities for simulation that the current model allows for. Next 
to this, the merits of the current data analysis are discussed.  

Simulating 
While simulating the baggage robot concept in the sorting process, each tick is assumed to 
represent one second. However, one tick per second makes the simulation too laborious. In the 
current low detail implementation this was a way to take into account that robots do not 
physically bump into each other, and at the same time to make sure that all robots move at the 
right speed. While running the model, the shortest path calculations for every robot slowed down 
the simulation time significantly. Although runtime calculations have not been performed, this is 
the only computation done in the model that is non-trivial in terms of runtime.   
 

The simulation speed decreased even more when the number of robots or the number of bags 
inserted into the system was larger. This can be explained by the fact that many more 
optimization calculations are needed in such cases to run the model.  As the model was relatively 
slow, it has not been possible to perform full sweeping simulation experiments to investigate the 
full output space in far more detail. This does have implications for the data analysis, but given 
the time and resources constraints in this research, Latin Hypercube Sampling is considered a 
good solution to overcome these limitations.  

Data Analysis 
The developed simulation model has been used to perform four types of experiments amounting 
to 1252 replications. This is a relatively small number for a stochastically varying agent based 
model. It would have been advantageous to perform far more experiments if resources and time 
available would have allowed for this.  
 

As it has been quite difficult to perform a balanced set of experiments, Latin Hypercube 
Sampling was used. The data analysis therefore is performed on three experiment designs, 
resulting in 1 experiment for the first type which is replicated 50 times, 30 experiments for the 
second type which is replicated 30 times and 301 experiments for the third type (4 times 25 
unique experiments for the 1624 scenario, 3 times 35 unique experiments for the 4290 scenarios 
plus an additional 96 unique experiments for the 4290 scenario combined with the central areas 
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configuration). The experiments of the third experiment design are only replicated once due to 
speed, time and resource limitations. Given these limitations, it should be argued that the level of 
detail of the results corresponds to the level of detail made possible by the nature of the 
experiments. From the data analysis, mainly qualitative conclusions have been found about the 
inner workings of the proposed baggage robot concept in the sorting process, the order of 
magnitude of the KPI scores and resulting prospective feasibility of the baggage robot concept.  

Validity of the model and the simulation 
The validity of the current simulation model has been tested by performing an expert-based 
review of the model. This is a method that is limited in fully assessing the validity of both the 
models and the results. To increase the validity of the model, it had to be compared to a similar 
model developed by a different research group, by comparing it to a similar model on the 
conventional baggage handling system or to a similar model in which the robots follow 
predefined paths such like AGVs. When more detailed data on the performance of current 
conventional baggage handling systems and for example FLEET can be obtained, conclusions on 
the results can be substantiated better. However, it must be argued that the level of validity of the 
current model does fit the design stage that the baggage robot concept currently is in.  
 

6.2.4. Towards the Success of the Baggage Robot Concept 
Concluding the discussion it can be stated that from the current simulation results it has become 
apparent that the designed baggage robot concept system is feasible in dynamically altering the 
floor layout and desired capacity of the sorting process of baggage handling systems. The exact 
design parameters – such as the number of robots and the chosen layout – should be made more 
precise in later iterations of the conceptual baggage robot concept design, and subsequent 
iterations of the model-based evaluations of these concepts. 
 

This research gives insight into what rough design choices have to be made when researching and 
developing a baggage robot concept. The nature of implications of these design choices becomes 
apparent from qualitative guidance on how to continue the design process in the section on 
future research. The low-level of detail simulation that has been used in this research might very 
well be an interesting instrument to evaluate other autonomous robot-based logistic systems in 
different industries too.  
 

 

6.3. Future Research 
This section concludes with proposed topics for future research on the baggage robot concept as 
a supplement to or a replacement of conventional baggage handling systems. The section is 
structured in the same way as section 6.2. It reflects on which design aspects have not been taken 
into account in the high level concept design of the baggage robot concept, and on the current 
level of knowledge that is available on the strengths and weaknesses of the proposed concept.  
 

6.3.1. The Baggage Robot Concept 
In the part of the discussion on the baggage robot concept itself, it was stated that numerous 
assumptions have been made on the technical feasibility of the robots. In this research the robots 
are considered to be more intelligent and autonomous than the robots used in Vanderlande’s 
FLEET concept. A possible follow-up research should therefore lean more towards autonomy 
than FLEET does at the moment.  
 
A suggestion for future research is to explore the technical feasibility of the proposed robot 
types. One important starting point can be to research the sensing capabilities of the transport 
robots. To do so, inspiration can be taken and lessons can be learned from innovations in the 
field of self-driving cars. Although the self-driving car technology is still being developed, it can 
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help to improve the individual transport robot systems. The state-of-the-art when it comes to 
self-driving cars is that they perceive the world by combining information coming from different 
types of sensors, including cameras, radar and LIDAR. LIDAR is a technique that is similar to 
radars and uses invisible light pulses to map its surrounding area. By combining the different 
types of sensors, the safety and reliability of autonomous vehicles can be increased as the sensors 
complement each other. The cameras are cheap and are able to detect markings on the 
infrastructure, but are unable to measure distances. This is where radars complement cameras, as 
they are able to measure distance and velocity. However, radars are not able to provide the 
vehicle with fine details on its environment. That is where LIDAR is useful, as it is able to do so. 
By combining the data from these three sensors, the vehicle is able to identify its surroundings 
and everything that’s in it, including road markings, other vehicles, walls, and so forth. The 
robots in the baggage robot concept do not have to be as intelligent as self-driving cars, as they 
will be used inside and in a highly controlled environment. This means that sensors do not have 
to be able to for example detect snow or a plastic bag blowing across the area (“Special Report 
Autonomous Vehicles,” 2018).   
 
In this research, the individual robots play a central role. In their movements, they detect and 
react to other robots in the area, but do not share information continuously. The developments 
in self-driving or autonomous cars can help in shifting the individual optimization perspective – 
possibly leading to sub-optimal solutions and routes – to a perspective in which the operation of 
the system as a whole is optimized. This can for example be done by ‘fleet learning’, a process in 
which vehicles learn from each other’s experiences by comparing the data they gathered while 
driving through the same area (“Special Report Autonomous Vehicles,” 2018).   
 

Increasing the capabilities and intelligence of vehicles – being autonomous cars or autonomous 
transport robots - will not necessarily eliminate the need for human assistance. Autonomous 
vehicles are programmed to obey defined rules but still can get stuck when unforeseen 
circumstances occur. Unlike humans, programmed vehicles are unable to bend the rules in such 
circumstances to for example drive around a blockage. Human controllers can give temporary 
permission to the vehicle to deviate from the set rules to resolve unforeseen and undesired 
situations (“Special Report Autonomous Vehicles,” 2018). 
 

As mentioned in the part of the discussion on the baggage robot concept itself, the timescale and 
costs necessary to research and develop robots or a prototype of the robots that have these 
increased capabilities and intelligence are not considered in this research. Future research on 
timescale and cost estimates for research and development can help in estimating on which 
timescale the proposed baggage robot concept could be built into a prototype system to further 
test it. It is recommended to test these prototypes on different types and sizes of airports to 
verify the suitability of the baggage robot concept in different circumstances. For smaller airports 
for example, it might be too expensive to buy highly modern autonomous robots, while for large 
hub airports it might be an interesting baggage handling system considering the expected lower 
operational costs over time. 
 

Furthermore, the cost dimension of the proposed baggage robot concept has been omitted 
completely. Both capital expenditure and operational expenditure costs are important to take into 
account in the development and operation of a baggage handling system. Such a cost analysis 
would first be highly instructive as to compare the current conventional baggage handling system 
cost with the prospective cost of the proposed autonomous system. The costs of conventional 
systems include costs over time, also when confronted with increasing demand and thus bulk 
investment cost. The costs of the proposed autonomous system includes cost over time, also 
when confronted with increasing demand thus incremental investment cost of buying extra 
robots.  
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6.3.2. Modelling and the Resulting Simulation Model 

Modelling 
During the modelling process, scoping choices have been made resulting in a heavy NetLogo 
model of the first high-level design of the sorting process of the baggage robot concept. For 
future research, it is recommended to develop a more detailed agent-based model when more 
detailed designs of the proposed (full) baggage robot concept have been completed.  
 

To give a full picture on the performance of the baggage robot concept in the broadest sense, it 
would be interesting to extend the scope of the model to the security screening and the makeup 
process, the other two major processes in baggage handling. An addition that adds value but 
complicates the modelling process is to add holding positions for extra decision time in the 
screening process and storage for early bags.  
 

Another additional model that can be developed to fully investigate the pros and cons of the 
baggage robot concept is a variation of the already developed model. A difference that can be 
made to see the impact on for example capacity is to include predefined paths in the model that 
the robots can follow. This additional model would then be an AGV-variant of the model of the 
baggage robot concept, developed with agent-based modelling.  
 

When additional models on the conventional baggage handling system and a baggage system that 
uses AGVs would be developed, the performance of the baggage robot system can be compared 
and judged. In that case, it is recommended to also include the CAPEX and OPEX cost as well 
as energy consumption. In order to convince an airport to change its current way of handling 
baggage, these elements must be taken into account. 
 

Next to that, it has been difficult to operationalise the overall performance of a given 
parameterised autonomous BHS system layout. The first component of such an overall analysis is 
if a given baggage handling system fulfils all feasibility conditions, this analysis has already been 
performed. However, it is not a priori clear if lower process time or lower numbers of 
mishandled bags should be aimed for. The relative importance of different KPIs is not elucidated 
yet. A proposed solution would be to integrate the KPIs into a multi-criteria analysis to compare 
this overall performance, wherein the weights of different KPIs would need to be calibrated by 
further desk study, expert knowledge or end-user experience. 
 

Within the model, the collision and deadlock avoidance strategies can also be improved in future 
research. A suggestion to improve the collision and deadlock avoidance strategies is to take the 
modified voltage potential algorithm, known from free flight research, as an inspiration. In a 
situation in which more than two robots are involved in an imminent conflict, constraints 
imposed in the simulation model, like the limited space available because of walls, the number of 
robots, the fixed speed of the robots, the fact that a lot of robots simultaneously have to go to 
one specific point representing a makeup station, cause difficult to solve collision and conflict 
avoidance situations. Literature on free flight shows that imposing such constraints make solving 
the multiple robot problem near to impossible. A solution can be the modified voltage potential 
algorithm, in which entities – like aircraft or in this case robots – share information. An example 
of this is that one robot asks another robot to move in such a way that it can move itself and get 
out of a deadlock situation itself. By sharing information on e.g. their current situation and 
planned path, a deadlock situation can be avoided or resolved. It could be that new deadlocks 
exist, but by collaborating, these deadlocks can be resolved as well.  

Simulation Model 
When it comes to the simulation model itself, future research can add value to the existing model 
by implementing and experimenting with more incoming conveyor belts and makeup stations, as 
well as the locations of these facilities in the baggage handling area. This can help in researching 
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the impact of a different number and location of these facilities on the performance of the 
baggage robot concept in the sorting process.  
 

The construction of the shortest path in the simulation model can be optimized in future 
research by for example allowing for diagonal movements or free-moving, as the real world is not 
divided into patches. Appendix C.1. explains the difference diagonal movements can make in 
terms of the number of steps necessary to arrive at a point compared to the stepwise approach 
that is used in this research. Furthermore, the A* algorithm is only one of many algorithms for 
path planning. To investigate the effect of the choice for this algorithm, variations to the model 
have to be made in which a different algorithm is implemented. Examples of other algorithms 
include the Dijkstra algorithm, Basic Theta*, Phi* and the Greedy Best First Search.  
 

6.3.3. Simulating and Data Analysis 

Simulating 
For future research, it would be good to perform runtime calculations to check exactly what part 
of the simulation took what amount of time. By doing so, parts that slow down the simulation 
model can be identified and might be optimized. It could be that the complexity of the algorithm 
slows the simulation down, or that the algorithm itself does not performs optimally. Identifying 
the cause and possibly optimizing it can help in simulating a full day or multiple weeks, if desired. 
While running the model, the simulation speed decreased even more when the number of robots 
or the number of bags inserted into the system was larger. This can be explained by the fact that 
many more optimization calculations are needed in such cases to run the model.  As the model 
was relatively slow, it has not been possible to perform full sweeping simulation experiments to 
investigate the full output space in far more detail. This does have implications for the data 
analysis, but given the time and resources constraints in this research, Latin Hypercube Sampling 
is considered a good solution to overcome these limitations.  

Data Analysis 
Provided that the model has been strengthened and made faster in the future, there are many 
possibilities to perform more detailed and deep analyses that can (i.) increase trust in the results, 
and that can (ii.) increase the depth of results as found from the model. Multiple regression 
analysis or comparable statistical techniques might be used to investigate the relations between 
the variety of input (design) parameters and the output (KPI) metrics. More advanced machine 
learning techniques, such as Patient Rule Induction Method, might even be used to get to know 
the mapping between input space and output space in far more detail.  

Validity of the model and the simulation 
If in future research the concept is brought further, more detailed simulation methods should be 
used to prove more detailed results and evaluative hypotheses about the workings of the detailed 
design. To thoroughly validating the model, several of the validation methods as described in 
section 4.7.2 can be used to not only give the agent-based simulation model face validity, but fully 
validate it. A more validated model can increase the reliability of its results, but it can also 
increase the commitment of stakeholders for the baggage robot concept when these stakeholders 
are also involved in the validation steps.  
 
The concept design and simulation experiments performed in this thesis have contributed 
extensively to understanding the complex challenges inherent to integrating individual transport 
robots in real-life baggage handling systems. By furthering the application of flexible agent-based 
modelling to the field of airport operations valuable practical lessons can be learned to fulfil the 
ambitions in airports of the future.  
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Abstract – This scientific summary describes a research performed to investigate in which way it 
is feasible to dynamically alter the floor plan and desired capacity of airport baggage handling 
systems by making use of autonomous individual transport robots. By researching the state of the 
art of both conventional baggage handling systems and transport robot systems, a new baggage 
handling solution called the Baggage Robot Concept is proposed. A simulation model of this 
Baggage Robot Concept is developed to evaluate the performance of this concept in the sorting 
process of a baggage handling system at medium-sized regional airports. The research identified 
that the most important design elements for the Baggage Robot Concept are the number of 
robots and the floor layout configuration. The Baggage Robot Concept turns out to be a feasible 
concept. An important design choice that is identified in the research is the trade-off between 
manoeuvre space of robots and the location of charging and storage positions. This scientific 
summary summarizes a study that has been a first exploration in integrating autonomous robot 
systems in baggage handling systems, contributing to future proof and cost efficient operations.   
 

Keywords: Baggage Robot Concept; Autonomous Transport Robots; Baggage Handling 
Systems; Sorting Process; Agent-Based Modelling 
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I. INTRODUCTION 
International air travel demand has been 
increasing for many years now and forecasts 
show that this growth will also be substantial in 
the future [1]. This implies challenges for 
airports worldwide as main airports have 
difficulties matching their current capacity with 
the ever-increasing air travel demand [2] [3]. At 
airports worldwide, elements such as runways, 
terminals, air traffic control and more need to be 
expanded to cope with the growing number of 
passengers [4]. One of the critical elements 
determining the capacity of an airport is the 
baggage handling system [5]. A traditional 
baggage handling system – or BHS – consists of 
a complex system of conveyor belts with many 
connected elements. The rigid nature of these 
conveyor belts make the system laborious and 
lengthy to implement, and also incapable of 
adapting to changing circumstances. This, in 
combination with the long-term uncertainty of 
demand, makes it impossible for the 
conventional baggage handling system to 
properly adapt to the demand fluctuations in the 
aviation industry. Currently, baggage handling 

systems are ‘oversized by design’: the systems 
have spare capacity to be able to handle growth 
in passenger numbers and to allow for failures in 
parts of the system. This prevents the need for 
alterations to the implementation as much as 
possible, but comes with an undesirable cost as a 
result of having overcapacity for many years or 
capacity that will never be used.  
 

This leads to a need for research that focuses on 
the development of a new baggage handling 
concept at airports, to cope with these 
challenges and to be less dependent on the rigid 
conveyor belt systems. This new baggage 
handling concept must provide dynamic capacity 
and eliminate as much as possible the need to 
invest in overcapacity that will not be used for a 
number of years. This research investigates if a 
so-called Baggage Robot Concept – meaning 
using autonomous and individual transport 
robots in a baggage handling system – can help 
in making the floor plan and desired capacity of 
airport baggage handling systems more dynamic.  
 

By investigating the state of the art of both 
baggage handling and transport robot systems, 
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the Baggage Robot Concept is introduced, 
combining the two systems. An agent-based 
simulation model is then used to test the sorting 
process of this Baggage Robot Concept on a 
medium-sized regional airport operating in a 
point-to-point network.  
 
 

II. RESEARCH APPROACH 
The situation of growing air travel demand and 
its implications show the urge of dynamically 
alter capacity of baggage handling systems. The 
goal of this research is to investigate the use of 
autonomous and individual transport robots in 
baggage handling systems. The research is 
structured by following the design science 
methodology as formulated by Peffers et al. 
(2007) [6].  
 

Conventional baggage handling systems are 
‘oversized by design’ to have spare capacity to be 
able to handle growth in passenger numbers in 
the future and to allow for failures in parts of the 
system. The motivation to research alternative 
systems that enable dynamic capacity 
adjustments is the undesirable cost as a result of 
having this overcapacity for many years. The 
2050+ Airport research project, supported by 
the European Commission, underlines this 
motivation by proposing to use small transport 
robots [7]. By researching the state of the art of 
both conventional baggage handling systems and 
transport robot systems, the most important 
elements of the Baggage Robot Concept are 
identified. Next to that, key performance 
indicators useful for assessing the performance 
of this new concept, as well as the identification 
of requirements, both functional and non-
functional are identified. These system 
requirements and key performance indicators are 
then used to develop a simulation model of a 
part of the Baggage Robot Concept. By using 
this model, the Baggage Robot Concept is 
demonstrated on a small scale. This 
demonstration can serve multiple purposes, 
from proving that the Baggage Robot Concept 
works to a more formal evaluation of the 
simulation model itself.  
 

Finally, the simulation model is used to 
experiment with both the model and the 
Baggage Robot Concept itself. By experimenting 
with the model, the effects of different input 
parameter values on the performance of the 
model and the Baggage Robot Concept can be 
tested by using different experimental designs. 
By varying for example the number of robots 
and the floor layout configuration, the effect of 

the different input parameters on the 
performance of the Baggage Robot Concept can 
be identified. By using the key performance 
indicators formulated, an evaluation of the 
Baggage Robot Concept itself can be performed. 
From running experiments and generating 
performance data from the simulation model, 
observations and measures can show to what 
extent the autonomous and individual transport 
robots provide a solution to the research 
problem.  
 
 

III. THE BAGGAGE ROBOT CONCEPT 
The main purpose of a baggage handling system 
in an airport is to transport checked bags from 
bag drop off facilities to makeup stations, where 
the bags are loaded on baggage carts that bring 
them to the aircraft. The Baggage Robot 
Concept serves the same purpose. By using 
individual transport robots that autonomously 
and real-time decide on their preferred paths, 
bags are transported between the drop off 
facilities and makeup stations, replacing the 
complex system of conveyor belts that is 
currently used. Fixed machines such as the 
different security screening machines can stay at 
their original location and the transport robots 
are used to transport bags to, between and from 
these machines. The rough sketch in Figure 1 
shows the difference between a conventional 
baggage handling system (left) and the Baggage 
Robot Concept (right). The conveyor belts in the 
security screening and sorting process are 
removed. The orange lines indicate the shortest 
paths between the security screening layers and 
three makeup stations. These orange lines do not 
indicate paths that the robots have to take, as 
robots can freely move around in the baggage 
handling area. The lines rather indicate possible 
paths. The black and orange squares in the right 
sketch of the Baggage Robot Concept indicate 
the individual transport robots moving in the 
area.  
 

 
Figure 1 – Conventional BHS versus the Baggage Robot 
Concept – replacing conveyor belts by transport robots 

The robots can bring bags to and pick up bags 
from the security screening machines by placing 
the bags on a small conveyor belt that goes 
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through the security screening machine and pick 
it up after the screening is completed. The 
robots do not go through the machines 
themselves. Once the bags are cleared in the 
security screening process, they continue to the 
sorting process.  
 

During the sorting process in a baggage handling 
system, bags need to be transported from the 
area where bags are security checked to one of 
the makeup stations in the baggage handling 
facility. By using individual transport robots 
instead of conveyor belts, bags can be 
transported to the correct makeup station 
directly. The robots fulfil the transport and 
sorting task simultaneously, taking the bag 
straight to the correct makeup station. 
 

As each individual robot has a battery, a 
charging facility is needed to charge these 
batteries. The battery charging is done by 
inductive charging. Inductive charging positions 
can be anywhere in the area. The sketch in 
Figure 1 indicates a charging area (in green) with 
multiple charging positions. The green lines 
indicate paths that robots can but do not have to 
take to arrive at these charging positions. The 
charging area serves a double function as it can 
also function as storage area. The same drip-
feeding technology of AGVs can be applied 
here. Robots can be drip-fed while standing idle 
in the charging and storing area, making sure the 
battery is continuously charged during idleness. 
Robots that have completed a transport job, i.e. 
have picked up a bag from a bag drop facility 
and unloaded the bag at the correct makeup 
station, can take on a new transport job as long 
as their battery is sufficiently charged to 
complete another transport job.  
 

Design Elements of the Baggage Robot 
Concept 
In this section, the most important design 
elements of the Baggage Robot Concept are 
described.  
 

Layout Configuration 
The layout of a baggage handling area in which 
individual transport robots transport bags from 
the drop off point to a makeup station can be 
adjusted easily. The robots do not depend on 
fixed infrastructure; they only need a charging 
station. By integrating electromagnetic induction 
in the floor of the baggage handling area, the 
charging infrastructure does not result in any 
obstacles for transport robots in motion. The 
location of charging positions can differ per 
baggage handling area, depending on the original 

layout of the area when a baggage robot system 
is integrated in an existing baggage handling area 
or can be decided upon during the design phase 
of a new baggage handling area.  
 

Control 
One of the most important considerations in the 
design of a new transport robot system is the 
control architecture, in particular the technique 
used to coordinate the motions of the individual 
vehicles [8]. Robots in the Baggage Robot 
Concept are considered to be autonomous. They 
have some control over their state and behaviour 
and are able to react to actions of robots in their 
proximity. A hybrid control architecture 
provides suitable control of the Baggage Robot 
Concept. It increases the robustness, scalability 
and performance of the system.  
 

Routing 
From the perspective of passengers, it is 
important that their bags are loaded into the 
correct aircraft and in time. To create as much 
slack time as possible in the sorting and other 
processes of baggage handling, the preferred 
path bags travel in the baggage handling area is 
the shortest path. This means that bags have to 
be transported between m entrances and n exits 
of the baggage handling system, taking the 
shortest path between these points. As robots do 
not exit the sorting system when they unload a 
bag at a makeup station, they also need paths or 
a route back to one of the m entrances to pick 
up new bags. These return trips can be 
interrupted when the robot runs low on battery 
power and needs to charge its battery to 
continue its path to one of the m entrances. This 
storage and charging area can also be used by 
robots to stand idle and drip-feed their battery 
when there are no bags incoming.  
 

Collision and Deadlock Avoidance 
When a number of robots have to perform their 
transport tasks in the same area, as is the case in 
this Baggage Robot Concept, there is a risk of 
collisions. In this concept, robots plan their 
paths independently. The path they initially plan 
is collision free, but there is no guarantee that 
this path will remain collision free as all robots 
in the system are able to change their own paths 
at any time. This may result in a situation in 
which robots have already started moving along 
their path when they detect another robot 
getting close to crossing their path [9]. This 
detection of other robots in their proximity is 
one of the most important abilities of the robots 
to realize collision avoidance. The most effective 
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way to detect the other robots close by is by 
obtaining information on the planned paths of 
these closest robots by means of local 
communication [10]. To avoid a collision 
between the robots, re-planning of one of these 
paths is necessary to guarantee collision free 
paths for both robots involved [9]. The robots 
involved exchange information on their 
positions and planned paths. Together they need 
to decide who gets permission to go and who 
has to give way. To make this decision, 
predetermined traffic rules can be used that 
depend on the type of predicted collision.  
 

Two types of collisions for multi-robot systems 
as distinguished by Mauro (2017) are side 
collisions and frontal collisions [11]. In case of 
an imminent side collision, stopping and 
resuming policies are used to avoid actual side 
collisions. Robots transporting bags have 
priority over empty robots in collision avoidance 
situations. When two robots with the same 
priority are threatened by a side collision, 
priority cannot be decisive and one of the robots 
will be randomly picked to move first. This 
random picking can be done by the centralized 
component or the two robots negotiate who 
goes first by for example “pulling straws” and 
assigning a winner based on centrally defined 
rules. 
 

In case of a possible frontal collision, a more 
relaxed version of Mauro’s (2017) right turn 
policy is proposed, being a  turn, (wait) and 
continue policy.  Both robots stop moving 
forward and instead move one step to a 
neighbouring position that is unoccupied and 
then re-calculate and resume their new shortest 
path. If all neighbouring positions are occupied, 
robots wait until one of these neighbouring 
positions is vacated again, after which it will 
resume a shortest path. A right-moving policy is 
considered but found to be too constraining as 
when the position on the right is occupied, 
deadlock is lurking. 
 

To determine when a collision avoidance 
measure should be invoked, the Baggage Robot 
Concept uses a safety zone for each robot. This 
safety zone can also be referred to as a safety 

distance 𝑑𝑠𝑎𝑓𝑒 between two robots. When the 

distance between two robots is larger than or 
equal to the safety distance, no possible collision 
will occur in the near future. When this distance 
becomes smaller and the safety zones start to 
(partially) overlap, one of the collision avoidance 
measures is invoked to avoid an actual collision, 

depending on whether the possible imminent 
collision is a side collision or a frontal collision. 
 

By invoking the collision avoidance measures 
discussed when collisions are imminent, 
deadlocks are avoided too. As the turn and 
continue policy is a relaxed version of the right 
turn policy, robots have more neighbouring 
positions to go to. By adding the possibility to 
wait one or more time steps in this policy, 
unsolvable deadlocks are avoided.   
 

This form of hybrid control for collision 
avoidance uses centralized components to 
achieve global coordination by decentralized 
algorithms and assumes only local 
communication between pairs of physically close 
robots. The local communication between the 
robots allows for more adaptive coordination 
between the robots when planning their paths, 
supported by a centralized component [12].  
 

Key Performance Indicators 
Key performance indicators are necessary to 
evaluate the performance of the Baggage Robot 
Concept. When this new system performs as 
well or even better than the conventional 
version, the feasibility is proven. At the same 
time, the new system provides more flexibility in 
capacity by using individual and autonomous 
transport robots. Key performance indicators 
that are relevant in measuring the performance 
of the new sorting system for baggage handling 
are indicated in Figure 2. 
 

These KPIs can be prioritized dependent on 
stakeholder views. Stakeholders include the 
owner of the baggage handling system (airport 
and/or ground handler), airlines and passengers. 
The owner of the baggage handling system is 
interested in all KPIs, whereas the airlines and 
passengers are only (in)directly interested in the 
average process time of bags and the percentage 
of bags exceeding the norm time as these KPIs 
are related to mishandled bags. In case of 
mishandled bags, passengers are duped and 
airlines have to compensate these passengers.  
 

 
Figure 2 - Key Performance Indicators of the sorting 
process of the Baggage Robot Concept 
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To research the relation between design 
elements key performance indicators, a 
simulation model of the Baggage Robot Concept 
has been constructed. The next section 
elaborates on the simulation model used to 
evaluate the Baggage Robot Concept.  
 
 

IV. SIMULATION MODEL 
Constructing a real-size test setup of the 
Baggage Robot Concept is laborious and 
expensive. Using modelling and simulation a 
low-cost, less time-intensive evaluation of a part 
of the rough design of the Baggage Robot 
Concept as described in the previous section can 
be performed. The method of choice in this 
research is Agent-Based Modelling (ABM). The 
most important reason for this choice is the 
autonomous nature of the individual transport 
robots considered. In literature, the single most 
given reason on using ABM can be paraphrased 
as that agent-based model are able to explicitly 
model the complexity that arises from individual 
actions and interactions that arise in the real 
world [13].  
 

The goal of using the simulation model to run 
experiments is to provide the user of the model 
with insights into the performance of a baggage 
handling system that uses autonomous and 
individual transport robots for the sorting job of 
the system. The model is constructed using 
modelling steps as derived from Marion, 
Scotland, Lawson, & Marion (2008) and Maki & 
Thompson (2005), roughly consisting of: 
conceptualisation, model implementation, model 
verification and validation, model 
experimentation and analysis of experiment 
results [14] [15].  
 

The scope of the model is chosen to be the 
sorting process in the baggage handling system. 
It is assumed that the biggest lead time 
improvements can be achieved in the sorting 
system. The model requirements are to minimize 
the bag waiting time by positioning the charging 
and storage areas as close to the incoming 
conveyor belts as possible and at the same time 
to maximize the reachability of these positions 
by giving each position at least one free 
neighbour position for robots to move over. 
Furthermore, basic constraints and assumptions 
simplify the simulation model.  
 
Model Elements 
Similar to the description of the Baggage Robot 
Concept in section III, the most important 
model elements are discussed.   

Layout Configuration 
The baggage handling area in this research is 
considered to have fixed dimensions. The 
location of basic elements such as incoming 
conveyor belts and entrances to makeup stations 
are fixed as well. However, the locations where 
individual transport robots are stored and 
simultaneously charged by means of drip-feeding 
can be altered. This research considered four 
layout options which are depicted in Figure 3. 
Green squares indicate the location of the 
charging and storage area. The layout 
configurations are named after these locations. 
The top left configuration is called ‘central 
areas’, the top right configuration ‘six vertical 
areas’, bottom left is called ‘four horizontal 
areas’ and bottom right ‘six horizontal areas’.  
 

 
Figure 3 - Four Layout Configurations 

These layout configurations are not the only 
layouts imaginable but rather are designed to 
demonstrate how the location of storage and 
charging areas affect the performance of the 
system as a whole. Corresponding to the first 
design requirement – minimizing bag waiting 
time by locating charging and storage areas as 
close to the incoming conveyor belts as possible 
– layouts 2 to 4 are chosen. The first layout 
‘central areas’ serves as a comparison, to check 
whether or not positioning the storage and 
charging areas as close to the incoming conveyor 
belts as possible has an influence on the waiting 
time of bags, opposed to the layout where the 
storage and charging positions are not located as 
close to the belts as possible. 
 

Control 
The preferred control approach for the Baggage 
Robot Concept as a whole is hybrid control. The 
simulation model that focuses on the sorting 
process of the Baggage Robot Concept 
incorporates this type of control. 
 

When sensors detect a bag at the end of an 
incoming conveyor belt, it sends out a signal to a 
central control unit. This central control unit 
assigns the closest available and sufficiently 
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charged robot to the transportation task of 
transporting the detected bag to a makeup 
station (centralized control). Once the robot 
received the task, it independently performs the 
transportation task, while continuously being 
aware of its environment (decentralized control). 
While executing the transportation tasks, robots 
have to obey to the ‘traffic rules’ that are 
centrally defined.  
 

Once the robot delivered the bag, it drives back 
to a free storage and charging position and when 
it is charged enough, it sends out a signal to the 
central control unit that it is available again and 
ready to receive a new transportation task. This 
combination of centralized and decentralized 
control components in the model shows how 
the hybrid control approach is implemented in 
the model.  
 

Routing 
The problem considered is the transportation of 
bags between a set of fixed incoming conveyor 
belts O (origin) and fixed entrances to makeup 
stations D (destination). For each incoming bag 
a robot has to be assigned to the transportation 
task of the incoming bag to transport the bag 

from its incoming conveyor belt m ∈ O to the 
makeup station that corresponds with the 

destination the bag needs to be sorted to n ∈ D. 
The transportation task or sorting of bags to a 

makeup station can be defined as 𝑆𝑚𝑛 ∈ 𝑆(𝑡).   
 

For each individual transport robot the shortest 
route from the origin to the destination needs to 
be calculated. These shortest paths are therefore 
defined from the point of view of the individual 
robots. The objective of this problem is the 
following: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑑𝑖𝑗

𝑖𝑗𝜖𝐴

 

Subject to 

𝑑 ≥ 0 

∑ 𝑑𝑖𝑗

𝑗

− ∑ 𝑑𝑗𝑖 =  {
1    
−1  
0   

 
𝑖𝑓 𝑖 = 𝑂
𝑖𝑓 𝑖 = 𝐷

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

𝑗

  ∀ 𝑖 

 

In which the sorting area of the baggage 
handling system is considered to be an 

undirected graph (𝑉, 𝐴) with source node 𝑂, 

destination node 𝐷 and cost expressed in 

distance 𝑑𝑖𝑗 for each edge (𝑖, 𝑗) in 𝐴. To find 

this shortest path, the A* algorithm is used. A* 
is found to be a faster version of the well-known 
Dijkstra algorithm as it is a best-first search 
algorithm. As the Dijkstra algorithm requires 
more computational power at every step in the 

simulation model, A* is found to be better 
suitable for simulation purposes.  
 

Collision and Deadlock Avoidance  
To avoid a deadlock situation, robots have the 
ability to communicate with other robots in their 
direct surrounding and one step further. When 
two robots are in each other’s proximity and 
want to go to the same position at the same 
time, they communicate before taking a step. In 
this communication step, they exchange 
information on where they want to go and what 
their priority is. This thinking ahead mechanism 
of the robots make sure that not more than one 
robot can take the actual step to a position that 
is desired by more than one robot. This avoids 
collisions, but also deadlocks, as robots are able 
to think not only one but two steps ahead. 
 

Model Verification and Validation  
The model is verified using four types of 
verification tests as suggested by Van Dam et al. 
(2010) [16]. The verification tests performed do 
not entirely complete the model verification. As 
there are an infinite number of input parameter 
combinations and variations possible, the 
verification of this agent-based model is never 
complete. By performing multiple different tests 
for the four different main parts of verifying 
agent-based models as proposed by Dam et al. 
(2010), an effort is made to gain a sufficient 
confidence in the developed simulation model. 
 

To validate the agent-based model, the method 
of face validation through expert validation is 
used. Three experts face validated the developed 
model with respect to the model purpose. They 
acknowledged that conventional baggage 
handling systems have the main disadvantage 
that future extensions have to be taken into 
account from day one as especially sorter 
equipment is not easy to modify when it is in live 
operation. They argue that replacing these 
conveyor belts by individual transport robots 
can provide more flexibility. Although experts 
can be wrong too, Dam et al. (2010) argue that 
this method is still an appropriate way to address 
agent-based model validation, meaning that a 
model that is face validated by experts can be 
considered good enough. 
 
 

V. RESULTS 
The verified and face validated model can be 
used to perform experiments. By performing 
experiments, various strategies for the operation 
of the system can be evaluated [13]. 
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Experimental Setup 
For this research, three experiments are set up. 
In the first experiment, these input parameter 
values are set to represent presumed ‘normal 
conditions’. Normal conditions are considered 
to be the conditions on an average day in the 
year so no unexpected disruptions like 
dysfunctional systems or heavy snow. By fixing 
the parameters, the performance of Baggage 
Robot Concept in the sorting part of a baggage 
handling system on a medium-sized regional 
airport can be examined.  
 

The second experiment however, requires all 
input parameters to vary simultaneously. The 
input parameters are: 

 Layout configuration 

 Number of robots 

 Battery reduction rate when robot is idle 

 Battery reduction rate, robot empty, 
driving 

 Battery reduction rate, robot loaded, 
driving 

 Battery charging rate of robot 

 Battery level threshold 
 

The values of these input parameters need to be 
established to be able to run multiple different 
experiments in a smart way. Latin Hypercube 
Sampling is used to run experiments with smart 
variations in the input parameters. This second 
experiment tries to indicate which input 
parameters affect the output metrics the most 
for two scenarios; 1624 bags are inserted into the 
system and 4290 bags are inserted, representing 
an extreme case.  
 

The third experiment investigates the most 
influential input parameters further. By only 
varying the number of robots and the layout of 
the manoeuvre area of the robots and keeping 
the other input parameters constant, the effect 
of these input parameters can be demonstrated 
with more precision. This experiment is also 
executed for both number of bags scenarios.  
 

Experimental Results  
 

Experiment Design I: Fixed Settings 
Figure 4 shows four boxplots for four KPIs: the 
average process time of bags, the percentage 
charging time, the number of avoided conflicts 
and the percentage of mishandled bags. KPIs on 
the robot utilization rates are not shown as they 
are all around the 50%-50% ratio and the 
number of robots is used as an input parameter.  
 

The results of the first experiment design show 
that this combination of input parameter values 
is able to meet the average process time of bags 
KPI. The average process time of bags is far 
below the maximum allowed threshold of 6 
minutes or 360 seconds. Even when unexpected 
minor disruptions become present, there is 
enough slack time to avoid significant problems. 
The layout configuration chosen in this 
experiment design can cause a minor detour for 
the robots as they can choose to which charging 
and storage position they want to go. 
 

 
Figure 4 - Results Experiment Design I 

This experiment shows a ratio of 51.92%-
48.08% for empty and loaded trips, which is 
considered within the ranges of being optimal. 
The percentage of charging time should be as 
low as possible while ensuring all bags are 
handled, which is the case in this experiment. A 
value of 26.68% for 8 robots is considered fine, 
indicating a good balance between the number 
of robots and the number of incoming bags over 
time. The number of avoided conflicts cannot be 
judged to be low or high. This combination of 
input parameter values leads to a situation in 
which the percentage of mishandled bags is 
higher than 0.02% in all runs. This means the 
selected set of input parameters is not able to 
comply with all the theoretic optimal values for 
the KPIs, showing that the base case values 
chosen do not fulfil the practical requirements to 
the Baggage Robot Concept. The next 
experiment shall provide more insight into 
which combination of design parameter values 
actually provides a feasible design. 
 

Experiment Design II: Parameter Sweep 
This experiment design is performed under two 
scenarios: inserting 1624 bags into the system 
and inserting 4290 bags into the system, 
representing an extreme scenario. Figure 5 
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shows the boxplots of four KPIs for both 
scenarios for the second experiment design.  
 

In the 1624 bags scenario, the combination that 
has the lowest value on the average process time 
of bags KPI combines 53 robots with the six 
horizontal areas configuration. This implies that 
if more than 53 robots are present, they get in 
each other’s way while moving around, resulting 
in more conflicts to be avoided, resulting in 
more time the robots have to wait for each 
other, resulting in a higher average process time 
for bags. Considering the number of avoided 
conflicts, this experiment shows that the central 
areas configuration results in the most optimal 
value for this KPI, as there is more manoeuvre 
space for the robots than the other layout 
configurations. This demonstrably results in less 
avoided conflicts. 

 

 
Figure 5 - Results Experiment Design II 

 

For the 4290 scenario, all obtained values 
comply with the theoretic optimal value for the 
KPIs as stated. Compared to the 1624 scenario, 
the average process time of bags is 26.25% 
higher – still easily complying with the maximum 
threshold of 360 seconds – while the number of 
bags to be transported is 164.16% higher. The 
minimum number of robots necessary to handle 
all these 4290 bags is however higher, 26 
compared to 15. When 4290 bags need to be 
handled, the percentage of empty trips is slightly 
higher compared to the 1624 bags situation, 
which can be explained by the fact that the 
combination of input parameter values causing 
the optimal value for this KPI includes having 
57 robots. It is expected that at certain moments 
most of these robots are operational and as there 
are quite many, they might run into each other a 
lot, resulting in more conflicts to be avoided, 

which results in more waiting time especially for 
empty robots as loaded robots get priority over 
empty robots, increasing the percentage of 
empty trips in time. The same logic applies to 
the percentage of loaded trips. The optimal value 
for charging time is higher than in the 1624 bags 
scenario. In the 1624 bags scenario the optimal 
value for this KPI is obtained by having 76 
robots, while in the 4290 bags scenario this value 
is obtained by a combination of input parameter 
values that include having 51 robots. A fewer 
number of robots have to transfer significantly 
more bags, resulting in more need for charging 
and thus a higher percentage of charging time. 
The number of avoided conflicts is also 
significantly higher in the 4290 bags scenario 
compared to the 1624 bags scenario, due to the 
number of robots present in the combination 
that results in the optimal values; 19 robots for 
1126 avoided conflicts in the 1624 bags scenario 
compared to 34 robots for 7733 avoided 
conflicts in the 4290 bags scenario. 
 

The next experiment design examines the effects 
of the input parameters ‘number of robots’ and 
‘configuration’ more closely as they showed to 
have the greatest impact on the KPIs. Both the 
1624 and the 4290 bags scenario are examined 
for the different combinations of input 
parameter values for these two input parameters. 
 

Experiment Design III: Influential Parameters 
This experiment tries to show the minimum 
required number of robots per layout 
configuration, to comply with all the optimal 
KPI when the other input parameters such as 
battery charging rate and the battery level 
threshold are kept constant considered to 
represent ‘normal conditions’. Figure 6 shows 
histograms of the 1624 bags scenario. For the 
4290 bags scenario, the histograms show the 
same trends in course of the results. 
 
The results show that the more robots are used, 
the lower the average process time of bags 
becomes. However, after a certain point, the 
addition of an extra robot does not contribute a 
great deal to the reduction in average process 
time of bags. For the 1624 bags scenario, having 
9 robots causes the average process time to drop 
below the set threshold for all configurations, 
for the 4290 bags scenario 25 robots are needed. 
Adding an extra robot does decrease the average 
process time but cost estimations for the 
purchase of an additional robot have to show if 
it is worth it. Considering the average percentage 
of time that robots are charging, a downwards 
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trend starting from approximately 10 robots in 
each configuration for the 1624 bags scenario is 
detected and for the 4290 bags scenario from 
around 22 robots.  
 

The bottom left histogram shows the number of 
avoided conflicts per configuration. From this 
upwards trend it can be concluded that robots 
get in each other’s way more when the number 
of robot increases. In this histogram however, 
there is a clear difference visible between the 
configurations. This is true for both scenarios. 
The central areas configuration shows a 
significantly lower number of potential conflicts 
than the other configurations, regardless of the 
number of robots present. This can be explained 
by the manoeuvre space that this layout causes. 
As the charging and storage positions are located 
at the top and bottom of the layout as seen from 
above, robots have a larger open space to move 
around. The other areas have the same 
dimensions but are located in such a way that 
the robots have less manoeuvre space near the 
incoming conveyor belts, resulting in different 
shortest path possibilities. 
 

 
Figure 6 - Results Experiment Design III 

 

The bottom right histogram shows the average 
percentage of mishandled bags per 
configuration. A clear downward trend is visible 
here and from 11 robots onwards, the value for 
this KPI drops below the 0.02% threshold. 
Adding an additional robot does not decrease 
this percentage even more, as it reaches a value 
of 0.00% in all configurations with 11 robots for 
the 1624 bags scenario. For the 4290 bags 
scenario, the central area configuration is not 
able to meet the percentage of mishandled bags 
KPI threshold, not even with 96 robots, which is 
the maximum number of robots tested. For the 
other three layout configurations, 21 robots are 
enough to have the percentage of mishandled 
bags drop below the threshold of 0.02%.  
 
 

VI. CONCLUSION & FUTURE 
RESEARCH 

By implementing the Baggage Robot Concept, a 
step is made in dynamically altering the floor 
plan and desired capacity of airport baggage 
handling systems. The performance of this 
Baggage Robot Concept has been reflected upon 
using the simulation results. Exact design 
parameters or values for these parameters 
cannot yet be given due to the limitations of the 
developed simulation model and the lack of 
reliable data available for a far-future concept. 
Yet, the number of robots and the layout 
configuration were found to be the most 
important design parameters. The number of 
robots should be such that the average process 
time of bags does not significantly decrease 
when introducing an additional robot to the 
system. The layout should be such that the route 
the robots travel is as short as possible, while at 
the same time ensuring the robots have enough 
manoeuvre space to reduce the number of 
possible conflicts. An example of such a layout 
that was chosen in this research is the Six 
Horizontal Areas layout, in which the charging 
and storage location of robots is located close to 
the incoming conveyor belts. Depending on the 
number of bags to be handled and the arrival 
pattern of these bags, a different minimum 
number of robots is necessary. When taking all 
the KPIs into account, this number should be 
higher (because of the determining KPI 
‘percentage of mishandled bags’) then when the 
other KPIs don’t play a role and the acquisition 
costs of robots are the main determinant. 
Depending on the interest of the system owner, 
the importance of the KPIs can shift. 
 

This thesis has been a first exploration in 
integrating autonomous robot systems in 
baggage handling systems, contributing to future 
proof and cost efficient airport operations.   
 

Future Research 
Future research should investigate the success of 
the Baggage Robot Concept as a supplement to 
or a replacement of conventional baggage 
handling systems. A suggestion for future 
research is to explore the technical feasibility of 
the proposed robot types. One important 
starting point can be to research the sensing 
capabilities of the transport robots to gain 
insight into the technical possibilities of these 
robots. To do so, inspiration can be taken and 
lessons can be learned from innovations in the 
field of autonomous cars. Although the 
autonomous car technology is still being 
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developed, it can help to improve the individual 
transport robot systems. In this future research, 
timescale and cost estimations for research and 
development can help in estimating on which 
timescale the proposed Baggage Robot Concept 
could be built into a prototype system to further 
test it. 
 

During the modelling process, scoping choices 
have been made resulting in a heavy NetLogo 
model of the first high-level design of the 
sorting process of the Baggage Robot Concept. 
To give a full picture on the performance of the 
Baggage Robot Concept in the broadest sense, 
future research can extend the scope of the 
model to the security screening and the makeup 
process, the other two major processes in 
baggage handling. To extend this future 
research, implementing and experimenting with 
more incoming conveyor belts and makeup 
stations, as well as the locations of these facilities 
in the baggage handling area can add value to the 
existing model. 
 

If in future research the concept is brought 
further, more detailed simulation methods 
should be used to prove more detailed results 
and evaluative hypotheses about the workings of 
the detailed design. To thoroughly validating the 
model, several of the validation methods 
mentioned in section IV can be used to not only 
give the agent-based simulation model face 
validity, but fully validate it. 
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Appendix B – Stakeholders Involved in the Baggage Handling Process 
  

Table B 1 - Stakeholders Involved in the Baggage Handling Process 

Actor Interests Desired 
situation/objectives 

Existing or expected 
situation and gap 

Causes Possible solutions  

Airlines Minimize the costs for 
compensation  in case of 
lost or delayed bags  

Have a significant market 
share and close to zero 
expenses on 
compensations for lost or 
delayed bags 

Bags get lost or delayed in 
the baggage handling 
system of an airport, 
resulting in the airline 
having to give the affected 
passenger(s) a 
compensation 

The conventional baggage 
handling system with 
conveyor belts is not 
100% flawless 

Having a baggage 
handling system that 
reduces the chances of 
bags getting mishandled 
or delayed 

Airports Have or keep a good 
reputation on baggage 
handling to attract 
passengers  

To become the most 
important airport in the 
region  

Bags get lost, delayed or 
wrongfully sorted in the 
baggage handling system, 
affecting the reputation of 
the airport in the eyes of 
passengers 

The conventional baggage 
handling system with 
conveyor belts is not 
100% flawless 

Having a baggage 
handling system that 
reduces the chances of 
bags getting mishandled 
or delayed 

Ground handlers Win and maintain tenders 
by guaranteeing an 
outstanding performance 
at minimum costs 

Carry out all the baggage 
handlings at an airport 
with outstanding 
performance and 
minimum costs to win 
and maintain tenders 

Bags get lost, delayed or 
wrongfully sorted, 
affecting the performance 
quality and reputation of 
the ground handler 

The conventional baggage 
handling system with 
conveyor belts is not 
capable of dynamically 
altering capacity and is not 
100% flawless 

Having a baggage 
handling system that has 
dynamic capacity to 
minimize operational 
costs and can guarantee 
accurate performance 
simultaneously  

Passengers Having the baggage 
loaded into the same 
aircraft as the passenger in 
time 

Having the right baggage 
item(s) at the right reclaim 
belt at the right 
destination at the right 
time 

Bags get lost, delayed or 
wrongfully sorted, 
resulting in passengers 
missing their baggage 
item(s) once they arrive at 
the destination airport 

The conventional baggage 
handling system with 
conveyor belts is not 
100% flawless 

Having a baggage 
handling system that 
reduces the chances of 
bags getting mishandled 
or delayed 
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Appendix C – Path Lengths and Charging Calculations 
 

C.1. Path Length Values per Layout Configuration 
This section shows the values for the shortest and longest shortest paths between the charging 
and storage positions and the incoming conveyor belts for all four layout configurations. In the 
simulation model, robots move using a ‘stepwise approach’, meaning that robots cannot go to a 
position that is located diagonally from the robots current position in one step. For diagonal 
movements it needs two steps, opposed to a direct approach where diagonal movements can be 
done in one step. This difference is displayed in Figure C 1. 

 
Figure C 1 - Stepwise approach (black lines) versus direct approach (blue line) 

In the stepwise approach, multiple displays of the shortest path between two positions are 
possible. However, the value of the shortest path between two positions remains the same, 
regardless through which exact other positions it goes, as long as the start and end position 
remain the same and the shortest path algorithm is followed. Note that not all possible shortest 
paths in the stepwise approach are shown but just two to demonstrate that the lengths remain the 
same if the start and end node aren’t changed and the shortest path logic is followed.  
 
The tables below show the values for the shortest and the longest shortest path for all four 
layouts and for both the stepwise and the direct approach. The stepwise approach value is the 
first value, followed by an arrow indicating the difference between the stepwise and the direct 
approach. For example the shortest path from the closest charging and storage position to the 
closest incoming conveyor belt in the central areas layout configuration is 18 steps when the 
stepwise approach is used, which is the approach used. In further research one might want to 
check the effect of a different approach like the direct approach on the performance of the 
system. That is why the value for the shortest and longest shortest path for each layout 
configuration is also calculated for when the direct approach were to be used. As becomes 
apparent from the values in the tables below, the direct approach causes robots to get to the 
incoming conveyor belts in fewer steps for all layout configurations.  
  

Table C 1 - Path Length Values Central Areas 

Configuration 1: Central Areas 
Maximum number of robots: 96 

 # Steps  # Steps 

Shortest path to belt 1 18  12 Longest shortest path to belt 1 33  23 

Shortest path to belt 2 23  12 Longest shortest path to belt 2 38  23 

Shortest path to belt 3 29  17 Longest shortest path to belt 3 44 23 

Shortest path to belt 4 34  22 Longest shortest path to belt 4 49  26 
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Table C 2 - Path Length Values Six Vertical Areas 

Configuration 2: Six Vertical Areas 
Maximum number of robots: 96 

 # Steps  # Steps 

Shortest path to belt 1 5  3 Longest shortest path to belt 1 19 10 

Shortest path to belt 2 10  8 Longest shortest path to belt 2 24  15 

Shortest path to belt 3 16 14 Longest shortest path to belt 3 30  21 

Shortest path to belt 4 21  19 Longest shortest path to belt 4 35  26 

 
Table C 3 - Path Length Values Four Horizontal Areas 

Configuration 3: Four Horizontal Areas 
Maximum number of robots: 96 

 # Steps  # Steps 

Shortest path to belt 1 5  3 Longest shortest path to belt 1 20  13 

Shortest path to belt 2 10  8 Longest shortest path to belt 2 25  18 

Shortest path to belt 3 16  14 Longest shortest path to belt 3 31 24 

Shortest path to belt 4 21  19 Longest shortest path to belt 4 36  29 
 

Table C 4 - Path Length Values Six Horizontal Areas 

Configuration 4: Six Horizontal Areas 
Maximum number of robots: 96 

 # Steps  # Steps 

Shortest path to belt 1 4  2 Longest shortest path to belt 1 15 12 

Shortest path to belt 2 9  7 Longest shortest path to belt 2 20  12 

Shortest path to belt 3 15  13 Longest shortest path to belt 3 26 14 

Shortest path to belt 4 20  18 Longest shortest path to belt 4 31  19 
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C.2. Charging Calculations 
 
A robot should be fully charged within 4 hours which means that the battery percentage needs to 
go from 0 to 100% in 4 hours (14.400 seconds), which means that every second the battery 
charges 0.00694444 percentage points per second.  
 
As it takes 4 hours to fully charge a battery and it is preferred to load an unused robot maximum 
once a day, the battery should last for at least 20 hours when the robot is unused. When the 
robot is idle for a while, it would proceed to the charging area, where the robot’s battery is being 
drip-fed. Combined with a threshold of a battery percentage of 0.8%, a situation where a robot’s 
battery reaches 0% will be avoided. To still have a safety margin, it is assumed that it takes at least 
20 hours for a robot’s battery to go from 100% to 0%, meaning the drain rate is assumed to be 
0.001388889 percentage points  per second.  
 
Furthermore it is assumed that driving without a load requires three times as much battery as 
standing idle, corresponding to 3 x 0.001388889 = 0.00416667 percentage points per second. 
Driving around the baggage handling area with a bag on the robot is assumed to consume four 
times as much battery as standing idle, corresponding to 4 x 0.001388889 = 0.00555556 
percentage points per second.  
 
A threshold is set on the battery percentage for a robot to be allowed to start a new assignment. 
The longest path that can be taken by a robot consists of 157 patches, corresponding to 471 
meters.  
 
In the configuration with the longest shortest paths – configuration 1 – the shortest path from 
the furthest charging position to the furthest conveyor belt consists of 49 patches. The longest 
shortest path from the conveyor belt to the furthest makeup station is 55 patches. The longest 
shortest path from this makeup station to the furthest charging and storing position is 53. Adding 
the values lead to the longest shortest path to complete one transportation job for a robot. For 
the stepwise approach this cycle which is completed by following the longest shortest paths has a 
value of 157 patches. Figure C 2 shows these paths for the stepwise approach and the difference 
in case a direct approach was to be used. The red arrows show the path of the stepwise approach 
from the furthest charging and storage position to the furthest conveyor belt and from this 
conveyor belt to the furthest makeup station. The black arrows show the way back from this 
makeup station to the furthest charging and storage position. Green arrows indicate the path of 
the direct approach from the furthest charging and storage position to the furthest conveyor belt 
and from there to the furthest makeup station. Purple arrows indicate the path from this makeup 
station to the furthest charging and storage position. Note that the layout is symmetric; multiple 
longest shortest paths are possible, all leading to the same values for longest shortest paths 
forming a cycle.  
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Figure C 2 - Stepwise and direct approach longest shortest paths 

While traveling this path, the longest distance that a robot is loaded with a bag is 55 patches, 
which leaves 102 patches to be travelled by the robot without it having a load. Driving without a 
load consumes 0.00416667 % per seconds and a robot needs 102 seconds to travel a distance of 
102 patches, meaning that the battery percentage decreases 102 * 0.00416667 = 0.42500034 
percentage points. To travel one patch with a loaded bag reduces the battery percentage with 
0.00555556 percentage points per second. The longest path contains 55 patches to be travelled 
while the robot is loaded, corresponding to 0.00555556 * 55 = 0.305558 percentage points per 
second. The total battery consumption of a robot that travels the longest possible path without 
visiting a charging area during this trip adds up to 0.73055614 percentage points per second. This 
means that when a robot is only traveling this longest path and keeps doing so without visiting a 
charging, it can drive 136 cycles on one charged battery for it to run fully empty. This 
corresponds to 136 * 157 = 21.352 seconds – or 355.9 minutes or almost 6 hours.  An important 
note to this conclusion is that this assumes no idle time in between, so the robot is not in any 
queue or often needs to wait for other robots to pass by.  
 
A threshold is set for the minimum battery percentage for a robot before it needs to return to 
one of the charging areas. When the battery percentage is lower than the battery percentage 
required for starting and completing the longest path, the robot is not allowed to accept a new 
transport request for an incoming bag. The battery percentage required to start and complete the 
longest path is calculated earlier and set to 0.73055614%. To allow for some slack and possible 
unforeseen circumstances like encountering a queue on the longest path, the value is increased by 
ten percent, setting the threshold at a rounded level of 0.8%. 
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Appendix D – Formalisation Examples  
 
Two examples of formalisation of the agents and objects present in the system 
 
Transport robot agents have:    ___________    

 Size  Integer =< patch size  

 Speed  Integer > 0 patches per tick (time step) = 1 

 Battery power Integer >= 0 and =< variable integer representing full battery 

 Availability  Boolean, available or unavailable, determined by the combination of 
o Load  Boolean, carrying one or no bag 
o Occupied Boolean, robot is already occupied with a transport task or not 
o Battery power Boolean, Integer >= minimum integer to accept a new bag assignment 

 Phase  List reporting on which of the six phases a robot is in  

 Number  Integer >= 0 and =< variable integer representing a maximum number  

 Location  Integer numbers representing the coordinates of the agent in the system 

 Directions  List of possible directions (N, NE, E, SE, S, SW, W, NW) 

Bag objects have:           

 Size  Integer =< patch size 

 Destination String, string of characters representing destination airport 

 Directions  List of possible directions, depending on its location 

 Activity  Boolean, a bag can be transported or be stationary at a time step 

 Queuing time Integer >= 0 reporting how long a bag spends waiting on the belt  

 Phase  List reporting on where the bag is in the baggage handling process 

 Location  Integer numbers representing the coordinates of the object in the system 

 Lead time  Integer >= 0 reporting how much time a bag spends in the system 

 Number  Integer >= 0 and =< variable integer representing a maximum number  
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Appendix E – Pseudo Codes 
 
Pseudo-code pick-up bags 
; Initial setup 
For all robots:  
 set colour grey 
 set phase “available” 
 set current-path [ ] 

set loaded-bag 0 
set bag-limit 1 
set bag-transported “ ” 
set bag-assigned “ ” 
set makeup-station “ ”  

 
For all bags 
  set destination one of the destinations A, B, C or D 
 set my start belt one of the  drop off conveyor belts 
 set phase “approaching belt”  
 set robot-claimed “ ” 
 
Start picking up a bag 
 For each bag [ 

if a bag is created 
   move to one of the conveyor belts 
  if a bag reached one of the conveyor belts 
   set phase “on belt” 
  if a bag arrives at the end of one of the drop-off belts  
   set phase “end of drop off belt no robot assigned” 
   send a signal into the system 
   ask the available robots to calculate their distance to the requesting bag 

ask the robot with the smallest distance to the bag to pick me up ]   
For the nearest robot: pick me up [ 

set  phase to “incoming request” 
set the requesting bag’s phase to “end of drop off belt robot assigned” 
copy the id of the requesting bag and set it as bag-assigned to the robot 
set the  direction patch equal to the location of the requesting bag 

  set the current path equal to the shortest path to the bag 
  move over this shortest path  
   

if a robot reaches the bag 
   set phase “arrived at belt” 
   set loaded-bag 1 

set the phase of the bag to “on robot” 
copy the id of requesting bag and set it as bag-transported of the  robot] 

End picking up a bag 
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Pseudo-code transporting and unloading bags 
Start transporting and unloading a bag 
 For robots with phase is “arrived at belt” and loaded-bag > 0 [ 
  Set makeup-station equal to destination of bag-here with a destination ] 
 For robots with phase is “arrived at belt” [ 
  If the makeup-station is A and loaded-bag > 0 
   Set direction-patch as entrance patches of makeup-station A 
  If the makeup-station is B and loaded-bag > 0 
   Set direction-patch as entrance patches of makeup-station B 
  If the makeup-station is C and loaded-bag > 0 
   Set direction-patch as entrance patches of makeup-station C 
  If the makeup-station is D and loaded-bag > 0 
   Set direction-patch as entrance patches of makeup-station D 
  Set colour red 
  Set phase to “transporting bag” 
  Set current-path to find-a-path and set patch-here equal to my direction-patch 
  Set the path of the bag with phase “on robot” equal to the robot’s path ] 
 For bags with phase “on robot” [ 
  Let path-for-the-bag be equal to the current-path of the robot that transports me 
  Set current-path to path-for-the-bag ] 
 For robots with patch-here is one of the entrance patches of either makeup-station [ 
  ask bag that has the same patch-here as me to die 
  set loaded-bag equal to 0 
  set colour grey 
  set bag-transported “ ” 
  set bag-assigned “ “ 
  set phase “delivered bag” 
  set makeup-station “ ” 

set direction-patch equal to one of the CS-areas patches that  aren’t occupied yet 
  set current-path find-a-path and set patch-here equal to my direction-patch ] 
End transporting a bag 
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Pseudo-code updating battery level 
; Initial setup 
For all robots: set battery-level 100 
 
Start updating battery level 
For each robot [ 

if “robot is available to accept a transport request and is located at one of the charging 
areas” 

  increase the battery level with the chosen value for charging rate 
if “robot has accepted a request and is on its way to an incoming bag” 

decrease the battery level with the chosen value for battery reduction while 
driving empty 

if “robot arrived at the incoming conveyor belt and waits for a bag” 
decrease the battery level with the chosen value for battery reduction while 
waiting 

if “robot is driving to one of the make-up stations while carrying a bag” 
decrease the battery level with the chosen value for battery reduction while 
driving loaded 

 if “robot delivered a bag and is driving back to one of the charging and storage areas” 
decrease the battery level with the chosen value for battery reduction while 
driving empty ] 

End updating battery level 
 
The values for the battery charging and reduction rates as argued in this section are linked to the 
phases in which a robot can be. The combination of possible robot phases and corresponding 
charging rates are summarized below. 
 
Robot phases Charging rate  

Available 
Incoming-request 
Arrived at belt 
Transporting bag 
Delivered bag 

+ 0.00694444 % / sec 
- 0.00416667 % /sec 
- 0.00138889 % / sec 
- 0.00555556 % / sec 
- 0.00416667 % /sec 
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Appendix F – Arrival Pattern 
 
 
Table F 1 - Arrival Pattern Used 

Nr. Flight Destination 
Departure 

time 

First 
check-

in 
time 

Last 
check-

in 
time 

AC 
type 

Max 
Passengers 

1 TRA6301 
Gran 

Canaria 
07:10 5:10 6:30 B737 189 

2 TRA6771 Budapest 07:30 5:30 6:50 B737 189 

3 TRA2N Eindhoven 07:35 5:35 6:55 B737 189 

4 CFE4452 London City 09:15 7:15 8:35 E190 98 

5 CFE4454 London City 10:55 8:55 10:15 E190 98 

6 TRA5605 Salzburg 13:05 11:05 12:25 B737 189 

7 CFE4476 London City 13:50 11:50 13:10 E190 98 

8 TRA6923 Innsbruck 16:40 14:40 16:00 B738 189 

9 TRA5053 Alicante 17:10 15:10 16:30 B737 189 

10 CFE4478 London City 17:40 15:40 17:00 E190 98 

11 TRA5293 Vienna 18:25 16:25 17:45 B737 189 

12 TRA6493 Venice 18:40 16:40 18:00 B737 189 

13 CFE4458 London City 19:05 17:05 18:25 E190 98 
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Figure F 1 - Visualisation of Arrival Pattern 
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Appendix G – Extreme Value for the Arrival Pattern 
 
 
The same flights are considered, only the capacity of these flights are altered to represent an 
extreme situation in which all 13 flights use a Boeing 777-300 with 330 seats, all these seats are 
occupied and on average everyone on board takes one bag with them. This results in a total of 
4290 seats, or 4290 bags to be distributed over the 13 flights. Compared to the realistic flight, 
passenger and bag distribution used in the first experimental design, where 1624 bags were 
distributed over the 13 flights, the number of bags to be handled increased by 164%.  
 

 
Figure G 1 - Visualisation of Extreme Arrival Pattern 
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Appendix H – Experimental Design Parameter Sweep Experiment 
 

 
Figure H 1 - Experimental Design Parameter Values 
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Appendix I – Model Verification Tests 
 
Verification tests 

1. Recording and Tracking Agent Behaviour 
2. Single-Agent Testing 
3. Interaction Testing in a Minimal Model 
4. Multi-agent Testing 

 
1. Recording and Tracking Agent Behaviour 
To check if the model on agent level is working as expected the behaviour of individual agents 
can be investigated. To verify the model on the agent level, the inputs, states and outputs of the 
agents – in this research the robots – are recorded and logged. This can be done by recording the 
behaviour of the robot ‘from the outside’ by following individual robots around in the model 
using the ‘watch agent’ tool in NetLogo. Besides this, the internal processes of individual agents 
can be logged by using the ‘inspect agent’ tool in NetLogo. This tool shows the ‘thought’ 
processes that happen within an agent during runtime.  
 
2. Single-Agent Testing 
Most agent-based models consist of a large number of agents. In almost all studies that use agent-
based models, the behaviour of all these agents combined is tested for verification of the model. 
However, testing the behaviour of a single agent is often overlooked, despite it being an 
important action in the verification of agent-based models. One way to test the single agent 
behaviour is by means of ‘unit testing’, this can be done continuously and automatically. Unit 
testing entails the addition of a test line in the code of the model that gives insight into how that 
specific part of the code responds to these tests. In NetLogo, the ‘show’ function can be used in 
the code, which will show the results of all the unit tests in the interface during runtime.  
 
3. Interaction Testing in a Minimal Model 
The same technique of unit testing can be applied to multiple robots. As the agent-based model 
developed only contains one agent type, the minimal model consists of two agents. This 
verification test checks whether or not the expected and modelled agent interactions happen 
correctly. Two checks in this type of verification test are if the model shows the desired 
interaction and whether or not the model shows undesired interactions.  
 
4. Multi-agent Testing 
Verification tests one to three focussed on single agents or the minimal model. The final 
verification test is to check the entire model on whether or not it does what it should do. To do 
so, input parameters can be varied and a theoretical prediction of the effect of these variations on 
the model behaviour and output can be formulated. If after running the model the behaviour and 
output correspond to the theoretical prediction, the agent-based model passed the multi-agent 
verification test successfully.   
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Table I 1 - Verification Tests and Results 

Nr.  Test Type Description Expected Result Obtained Result Verified? Resolved? 
1 1 Every robot has a phase that 

changes depending on its actions. 
This test checks if robots go 
through all phases when they 
execute a bag transport task. 

Robots that are assigned to a 
transport task go through the 
following phases in order: 
available, incoming request, 
arrived at belt, transporting bag, 
delivered bag, en route to 
charging and storage area, 
charging. 

This test is executed multiple 
times for different robots. 
All robots tested successfully go 
through the six phases in that 
sequence 

Yes n/a 

2 1 Every robot can carry one bag at a 
time and has an attribute ‘loaded 
bag’ which can only have the 
values 0 or 1. This test checks if 
the ‘loaded bag’ attribute is 
measured and updated correctly 
throughout a run.  

Robots initially have a value of 0 
for the attribute ‘loaded bag’. If a 
robot arrived at a belt and picks 
up a bag this value is changed to 1 
and when it drops the bag at one 
of the makeup stations the value 
changes bag to 0. 

This test is executed multiple 
times for different robots. All 
robots successfully changed their 
loaded bag attribute from 0 to 1 
and back to 0 when transporting a 
bag. For none of the tested robots 
the loaded bag attribute got a 
value greater than 1 at any point.  

Yes n/a 

3 1 Every robot has a battery level 
which decreases when not 
charging and increases when 
charging. This test checks if the 
value of the battery level attribute 
is measured and updated correctly 
throughout a run.  

Robots initially have a value of 
100 for the attribute ‘battery level’. 
When moving the battery level 
decreases at the rate specified by 
the slider for the corresponding 
movement type (standing idle, 
moving without a bag, moving 
with a bag) in the interface view. 
When the value is below 100 and 
a robot is at a storage and 
charging position, the battery level 
increases with the rate specified by 
the ‘charging rate’ slider.   

This test is executed multiple 
times for different robots. The 
battery level initially is 100 and 
decreases according to the set 
rates. However, when it is at a 
charging and storage area it can 
exceed a value of 100 for the 
battery level as the charging phase 
is only connected to the charging 
and storage area positions and 
does not check if the robot 
actually needs charging. This is 
resolved by checking if the robot 
actually needs charging (when its 
battery level < 100) before 
starting to charge. 

No Yes 

4 1 Like robots, every bag can have Bags start counting the time they Before bags are picked up the Yes n/a 
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different phases. One of the 
phases is ‘on robot’ which 
measures the time a robot spend 
on a bag so in the moving sorting 
process. In this test it is checked if 
the counter that counts the time 
steps a bag spends on a robot 
starts at the  moment the bag is 
picked up by a robot, and if it’s 
updated every tick and stops 
updating when the bag is no 
longer on a robot.  

spend on a robot the moment 
they are loaded onto a robot. 
While being transported by the 
robot, the ‘on robot time’ 
attribute increases with 1 every 
time step. When the robot drops 
the bag at one of the chutes to the 
makeup stations, the counter 
stops counting and saves the value 
for ‘on robot time’ so it can be 
used later to calculate the average 
‘on robot time’ of all the robots in 
the system. 

value for their attribute ‘on robot 
time’ is 0. Whenever their status 
changes to ‘on robot’ when they 
are picked up by a robot, the 
counter starts adding 1 to the ‘on 
robot time’ attribute. When the 
bag reaches one of the chutes to 
the makeup station, the bag dies 
(is deleted from the model) and 
the counting immediately stops. 
The end value is stored and used 
to calculate and update the 
average ‘on robot time’ of all 
robots in the system.   

5 1 Every robot has a priority 
attribute which can be either 0 or 
1. When a robot is not 
transporting a bag, the priority is 0 
and when a robot is transporting a 
bag, the value for the priority 
attribute is 1.  

The initial value for the robot’s 
attribute ‘priority’ is 0 and remains 
0 until it picks up a bag and 
changes its phase to ‘transporting 
bag’, that’s when the priority 
attribute changes to 1. When the 
robot’s phase is changed to 
‘delivered bag’ as it drops off a 
bag at a makeup station, the value 
for priority becomes 0 again. 

This test is executed multiple 
times for different robots. When 
following a robot around by using 
the ‘inspect agent’ function in 
NetLogo, the value for the 
priority attribute changes correctly 
from 0 to 1 when it picks up a bag 
and back to 0 when it drops off a 
bag.  

Yes n/a 

 

6 2 When a robot picks up a bag it 
should translate the destination of 
the bag into the corresponding 
makeup station. This test checks if 
individual robots translate bag 
destination A to makeup station 
A, and so on. 

When a robot picks up a bag at 
the end of one of the incoming 
conveyor belts, it copies the 
‘destination’ attribute of the bag 
and translates it to a robot 
attribute ‘makeup-station’. 
Destination A is translated to 
makeup station A, B to B, C to C 
and D to D.  

This test is executed multiple 
times for different robots. When a 
robot reaches a bag at one of the 
incoming conveyor belts, its status 
changes from ‘incoming request’ 
to ‘arrived at belt’ and 
‘transporting bag’ and the 
attribute ‘makeup-station’ is filled 
with A, B, C or D, depending on 
the value for the ‘destination’ 
attribute of the bag it picks up. 

Yes n/a 
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7 2 Only bags that are available to 
accept a transport request are 
allowed to be called to pick up an 
incoming bag. This test checks if 
only available robots are called by 
showing a list of available robots 
(so robots with phase “available” 
and a battery level that is equal to 
or exceeds the set battery level 
threshold) at every tick.   

Whenever a bag reaches the end 
of an incoming conveyor belt a 
list of available robots is displayed 
in the command centre of the 
interface. Only robots from this 
list can claim a bag. When a robot 
claimed a bag it’s no longer 
available so in the next tick that 
robot is eliminated from the list 
with available robots.  

This test is executed multiple 
times for multiple robots. When a 
robot accepts a transport request 
its phase changes to ‘incoming 
request’, eliminating this robot 
from the list with ‘available 
robots’.  

Yes n/a 

8 2 When a robot picks up a bag, the 
bag is placed on the robot and is 
transported to one of the makeup 
stations. Once the robot with the 
bag arrives at one of these 
makeup stations, the bag needs to 
be unloaded and visually 
disappear from the model. This 
test checks if the bag visually is 
placed on a robot and unloaded 
once a makeup station is reached. 

It is expected that when a robot 
picks up a bag, the visual of the 
(red) bag disappears and the 
colour of the robot changes from 
grey to red. When the bag is 
dropped off at one of the makeup 
stations, the colour of the robot 
should turn from red back to grey.  

This test is executed multiple 
times for multiple robots. In each 
test the colour of the robot 
changes from grey to red when it 
picks up a bag, and from red back 
to grey when the bag is dropped 
at one of the makeup stations.  

Yes n/a 

9 2 When a bag reaches the end of an 
incoming conveyor belt, it should 
stop moving and wait at that last 
patch to be picked up by a robot. 
Once the bag is picked up, the 
next bag in line can move to the 
last patch of the conveyor belt 
that was vacated when the bag in 
front was picked up by a robot. 
This test checks if the desired bag 
behaviour is executed by the bags. 

Upon reaching the end of a 
conveyor belt, bags should stop 
moving. Only one bag can be at 
the final position of each 
conveyor belt. Once it’s picked up 
by a robot that final position is 
vacated and can be occupied by 
the next bag in line.  

Upon reaching the end of an 
incoming conveyor belt, bags 
don’t stop moving but instead 
keep moving forward and enter 
the baggage handling area on their 
own. This problem is resolved by 
marking the first patch after the 
last conveyor belt patches ‘true’ 
for the patch attribute ‘occupied 
for bags?’. By doing so, bags that 
are located at the end of an 
incoming conveyor belt are 
restricted to move passed the last 
patch of the conveyor belt, 
making them stand idle at the last 

No Yes 
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patch. 

10 2 For robots to store the shortest 
path they calculated, a robot 
attribute called ‘current-path’ is 
filled with the coordinates of the 
patches in its path. This list of 
coordinate shows the sequence in 
which these patches have to be 
taken by the robot. This test 
checks if the ‘current-path’ 
attribute is updates when a new 
shortest path is calculated so the 
robot knows where to go next.  

The attribute ‘current-path’ 
should initially be empty and filled 
based on the destination patch of 
the robot. Once a destination 
patch is chosen, the robot 
calculates its shortest path to that 
destination patch and this shortest 
path is stored in the ‘current-path’ 
attribute. By calling the show 
function of NetLogo the current 
path lists of all robots can be 
inspected which can’t be empty.  

When a robot can’t find a 
destination patch, the ‘current-
path’ attribute list is emptied, seen 
from the show function in 
NetLogo. This attribute being 
empty causes robots to stand still 
with no idea where to go next, 
forming an obstacle to other 
robots as it doesn’t move as it 
doesn’t know where to go. 
This has been resolved by adding 
a ‘temporary direction patch’ 
attribute to the robots that is filled 
whenever the initial desired 
destination patch is not available. 
This way, the ‘current-path’ 
attribute is always filled so the 
robot keeps moving towards its 
goal.  

No Yes 

 

11 3 Not more than one robot is 
allowed to be on one patch. This 
test checks if the patch attribute 
‘occupied-for-robots?’ is true 
whenever a robot is on that 
specific patch. If a patch is 
occupied by a robot, another 
robot cannot move to that same 
patch while it is still occupied by 
the first robot. 

The attribute ‘occupied-for-
robots?’ of the patch a robot 
stands on is true if a robot has the 
coordinates of that patch. A robot 
cannot move to or move over a 
patch that is true for the 
‘occupied-for-robots?’ attribute.  

Robots don’t move to or over 
patches that are occupied by other 
robots, except at storage and 
charging areas. Multiple robots 
have the same coordinates, 
meaning that a patch is occupied 
by more than one robot. This is 
resolved by restricting a robot to 
pick an occupied patch as 
destination patch in the charging 
and storage areas 

No Yes 

12 3 Every robot has a priority (1 in 
case it’s transporting a bag, 0 
otherwise). In case two robots 
want to go to the same patch 

Robots with a value of 0 for the 
priority attribute have to give way 
to a robot with a priority value of 
1 in case of an imminent collision.  

This test is executed multiple 
times for different situation. In 
one of the situations the following 
situation occurred: 

Yes n/a 
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simultaneously, the collision 
avoidance algorithm is evoked, in 
which the robot that is carrying a 
bag gets priority over the other 
robot, which has to wait until the 
robot with the priority passed.   

Robot 6 (not carrying a bag) and 
robot 7 (carrying a bag) both want 
to go to the same patch, patch 44 
12. In the next tick robot 7 moved 
to patch 44 12 while robot 6 had 
to wait.  
The same pattern was found for 
the other situations and other 
robots this test was executed for. 

13 3 This test checks if a collision 
avoidance measure is evoked 
when the trajectories of two 
robots overlap and robots are 
expected to reach one of these 
overlapping patches at the same 
time.  

When two robots have 
overlapping trajectories and are 
expected to end up at one of these 
overlapping patches at the same 
time, one of the robots have to 
alter its trajectory, avoiding a 
possible collision. 

This test is executed multiple 
times for different situation. The 
trajectory, stored in the ‘current-
path’ attribute of the robots is 
altered when parts of the 
trajectories of two robots 
overlapped at the same time.  

Yes n/a 

 

14 4 All robots calculate their shortest 
path between destinations and 
have to stick to that path. This 
test checks if all robots construct 
and follow their shortest path by 
colouring the intended shortest 
paths and visually checking if no 
robot diverts from their coloured 
path. 

All robots that are assigned to a 
transport task calculate a shortest 
path to the bag and take this path 
to pick up the bag, after which it 
again calculates a shortest path to 
the appropriate makeup station, 
takes it, and calculates a shortest 
path back to a charging and 
storage position. No robots 
should be visible outside the 
coloured paths. 

No robots are visible on white 
patches (white marks the patches 
that are not used for any shortest 
path). This means that all robots 
follow their shortest path. No 
unexpected diversions are 
detected.  

Yes n/a 

15 4 Every robot should calculate and 
travel over a shortest path from 
one to another destination. 
Destinations can be a charging 
and storage position, an incoming 
conveyor belt or a makeup 
station. In all four of the layouts, 
robots have therefore no reason 

When running the model, no 
robots are expected to be at or 
travel to one of the outer corners 
of the baggage handling area. 
They should only move between 
the incoming conveyor belts, 
makeup stations and charging and 
storage positions. 

This test is executed multiple 
times. In none of the runs 
executed robots end up or travel 
to one of the outer corners or to 
another location in the baggage 
handling area where they 
shouldn’t be. 

Yes n/a 
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to pick another destination within 
the baggage handling area so. This 
test checks if robots do not travel 
to or through one of the outer 
corners of the baggage handling 
area, marked with white patches. 

16 4 The collision avoidance measures 
are focussed on collisions between 
two robots. This checks if no 
deadlock situations occur when 
more than two robots run 
through a collision avoidance 
measure.  

When more than two robots are 
in each other’s proximity, collision 
avoidance measures are invoked. 
It is expected that robots do not 
end up in a deadlock but in a near 
collision situation where they have 
to get out one by one by looping 
through the collision avoidance 
measures. 

This test is executed multiple 
times under varying input 
parameter settings. With a strict 
right moving policy for frontal 
collisions, deadlocks could occur. 
This is resolved by relaxing the 
collision avoidance measure of 
frontal collisions to a move at any 
empty surrounding patch, instead 
of forcing the robots to move to 
the right. That patch on the right 
could be occupied at that time, 
which caused deadlock situations.  

No Yes 

 
In this example the minimum value for the KPI ‘average process time of bags’ is calculated for the four layout configurations. The time it takes for 
bags to get to the belt, to move over the belt, to wait for robot assignment and the minimum time bags spend on a robot are equal for all layout 
configurations and calculated by counting the number of patches needed to travel this distance. The minimum average process time of bags can be 
calculated by: 

 

𝑚𝑖𝑛. 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑏𝑒𝑙𝑡 + 𝑚𝑖𝑛. 𝑡𝑖𝑚𝑒 𝑜𝑛 𝑏𝑒𝑙𝑡 + 𝑚𝑖𝑛. 𝑡𝑖𝑚𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 + 𝑚𝑖𝑛. 𝑡𝑖𝑚𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑜𝑛 𝑟𝑜𝑏𝑜𝑡 + 𝑚𝑖𝑛. 𝑡𝑖𝑚𝑒 𝑜𝑛 𝑟𝑜𝑏𝑜𝑡  
4 + 7 + 1 + 𝑚𝑖𝑛. 𝑡𝑖𝑚𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑜𝑛 𝑟𝑜𝑏𝑜𝑡 + 39 

 
Table I 2 - Manual KPI Calculation Example 

 Min. time waiting on robot Total minimum average process time of bags  

Central Areas 17 4 + 7 + 1 + 17 + 39 = 68 seconds 

Four Horizontal Areas 4 4 + 7 + 1 + 4 + 39 = 55 seconds 

Six Horizontal Areas 3 4 + 7 + 1 + 3 + 39 = 54 seconds 

Six Vertical Areas 4 4 + 7 + 1 + 4 + 39 = 55 seconds 
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Appendix J – Model Validation Questionnaire 
 

The Baggage Robot Concept 

Baggage Handling Systems  
1. What is your expertise in the field of conventional baggage handling systems? 
2. What are in your opinion the main advantages of using conveyor belts in baggage 

handling systems? 
3. What are in your opinion the main disadvantages conventional baggage handling systems? 

 
Individual Transport Robots 

4. What is your experience or expertise in systems with individual transport robots? 
5. Do you think individual transport robots can be useful in baggage handling systems? If 

so, where in the process of handling baggage can individual transport robots be of most 
value? 
 

The Baggage Robot Concept 
6. Are the formulated KPIs adequate to judge the performance of the baggage robot 

concept? 
 
Simulation model of the sorting process in the Baggage Robot concept 
 

7. Which input parameters are of most importance for a simulation model to investigate the 
use and performance of autonomous and individual transport robots in baggage handling 
systems? 

8. Which key performance indicators are important to be generated from the simulation 
model? 

9. To what extent does the simulation model represent the sorting process of a baggage 
handling system that makes use of autonomous and individual transport robots to replace 
conveyor belts? 

10. Can this simulation model of the sorting process of the baggage robot concept proof that 
it is an adequate substitution for conveyor belts in baggage handling systems? 

11. What experiments do you think should be executed in order to conclude whether or not 
the baggage robot concept is an adequate substitute for a conventional baggage handling 
system? 

12. Any other remarks/considerations you would like to make. 
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Appendix K – Experimental Results  
 
APT = Average Process Time of Bags 
AMH = Average Percentage of Mishandled Bags  
 
ALT = Average Percentage of Loaded Trips 
AET = Average Percentage of Empty Trips 
ACT = Average Percentage of Charging Time 
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K.1. Infeasible Combinations for 1624 and 4290 bags in the Parameter Sweep Experiment 
Table K 1 - Infeasible Combinations for both scenarios in the Parameter Sweep Experiment 

Configuration 
# of 
bags 

# of 
robots 

Battery 
reduction 

idle 
[%/sec] 

Battery 
reduction 

empty 
[%/sec] 

Battery 
reduction 

loaded 
[%/sec] 

Charging 
rate 

[%/sec] 

Battery level 
threshold 

[%] 
Bag Statistics Robot Statistics 

Number of bags 
handled in runtime 

Four Horizontal 
Areas 

1624 4 0.00941 0.007 0.00368 0.00022 25.9 

APT 
[sec] 

4338.0 

ALT 
[%] 

42.1% 
Min 552 

Max 454 

AET 
[%] 

57.9% 
Average 558.2 

AMH 
[%] 

75,96% 

Median 558.5 

ACT 
[%] 

69.9% 
Stdev. 2.7 

Var. 7.1 

Six Vertical 
Areas 

1624 21 0.00154 0.00901 0.0043 0.00094 84.2 

APT 
[sec] 

248.6 
ALT 
[%] 

44.5% 
Min 1569 

Max 1602 

AET 
[%] 

55.5% 
Average 1585.8 

AMH 
[%] 

9,94% 

Median 1587.0 

ACT 
[%] 

76.9% 
Stdev. 7.8 

Var. 61.6 

Four Horizontal 
Areas 

4290 2 0.00565 0.00188 0.00631 0.00577 5 

APT 
[sec] 

12266.1 

ALT 
[%] 

41.1% 
Min 747 

Max 758 

AET 
[%] 

58.9% 
Average 753.6 

AMH 
[%] 

85,48% 

Median 754 

ACT 
[%] 

18.8% 
Stdev. 2.2 

Var. 4.9 

Central Areas 4290 8 0.00789 0.00422 0.00928 0.00622 10.2 

APT 
[sec] 

6358.5 
ALT 
[%] 

39.8% 
Min 2295 

Max 2313 

AET 
[%] 

60.2% 
Average 2304 

AMH 
[%] 

72,80% 

Median 2303.5 

ACT 
[%] 

35.2% 
Stdev. 3.9 

Var. 15.2 

Four Horizontal 
Areas 

4290 11 0.00908 0.00735 0.00736 0.00486 97.6 

APT 
[sec] 

9757.3 

ALT 
[%] 

41.9% 
Min 2079 

Max 2102 

AET 
[%] 

58.1% 
Average 2088.3 

AMH 
[%] 

73,89% 

Median 2088.0 

ACT 
[%] 

59.0% 
Stdev. 4.6 

Var. 20.8 
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Figure K 1 - Number of Bags Handled in Runtime per Layout Configuration for the 1624 Bags Scenario in Experiment Design III 
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Figure K 1 - Number of Bags Handled in Runtime per Layout Configuration for the 4290 Bags Scenario in Experiment Design III 
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K.2. Combinations of Input Parameter Values Causing Optimal Values for 1624 Bags  
 
Please note that only the feasible combinations of input parameters are shown. 
 
Figure K 3 - Feasible Combinations of Input Parameter Values Causing Optimal Values for the 1624 Bags Scenario 
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While complying with the optimal values of the other KPIs: 
 
Table K 2 - Combinations of Input Parameter Values to Comply with All KPI Thresholds for the 1624 Bags Scenario 

1624 Bags Input Parameter Values 

KPI 
Theoretic 
Optimal 

Value 

Optimal 
Value 

# of 
Robots 

Configuration 

Battery 
reduction 

idle 
[%/sec] 

Battery 
reduction 

empty 
[%/sec] 

Battery 
reduction 

loaded 
[%/sec] 

Charging 
rate 

[%/sec] 

Battery 
level 

threshold 
[%] 

Average 
Process Time 
of Bags 

≤ 6 minutes 
or 3600 
seconds 

61.7 sec 53 Six Horizontal Areas 0.00273 0.00847 0.00465 0.00736 77.7 

Number of 
Robots 

As small as 
possible 

15 15 Six Horizontal Areas 0.00718 0.00239 0.0078 0.00514 17.6 

% Empty 
Trips 

Close to 
50% 

50.9% 15 Six Horizontal Areas 0.00718 0.00239 0.0078 0.00514 17.6 

% Loaded 
Trips 

As high as 
possible 

49.1% 15 Six Horizontal Areas 0.00718 0.00239 0.0078 0.00514 17.6 

% Charging 
Time 

As low as 
possible 

0.14% 76 Central Areas 0.00048 0.00028 0.0003 0.00838 52.3 

Number of 
Avoided 
Conflicts 

As low as 
possible 

1126 19 Central Areas 0.00636 0.00955 0.00341 0.00669 38.3 

% 
Mishandled 
Bags 

Between 0 
and 0.02% 

0.00% All combinations of input parameter values score 0.00% on the KPI Percentage of Mishandled Bags 
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K.3. Combinations of Input Parameter Values Causing Optimal Values for 4290 Bags  
 
Please note that only the feasible combinations of input parameters are shown.  
 
Figure K 4 - Feasible Combinations of Input Parameter Values Causing Optimal Values for the 4290 Bags Scenario 
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While complying with the optimal values of the other KPIs: 
 
Table K 3 - Combinations of Input Parameter Values to Comply with All KPI Thresholds for the 4290 Bags Scenario 

4290 Bags Input Parameter Values 

KPI 
Theoretic 
Optimal 

Value 

Optimal 
Value 

# of 
Robots 

Configuration 

Battery 
reduction 

idle 
[%/sec] 

Battery 
reduction 

empty 
[%/sec] 

Battery 
reduction 

loaded 
[%/sec] 

Charging 
rate 

[%/sec] 

Battery 
level 

threshold 
[%] 

Average 
Process Time 
of Bags 

≤ 6 minutes 
or 3600 
seconds 

77.96 sec 86 Six Vertical Areas 0.00192 0.00617 0.00551 0.00944 21.9 

Number of 
Robots 

As small as 
possible 

26 26 Six Vertical Areas 0.00328 0.00528 0.0094 0.00391 40.2 

% Empty 
Trips 

Close to 
50% 

55.96% 57 Six Vertical Areas 0.00762 0.00075 0.00211 0.00066 70 

% Loaded 
Trips 

As high as 
possible 

54.04% 57 Six Vertical Areas 0.00762 0.00075 0.00211 0.00066 70 

% Charging 
Time 

As low as 
possible 

1.93% 51 Six Vertical Areas 0.0097 0.00127 0.00089 0.00921 16.3 

Number of 
Avoided 
Conflicts 

As low as 
possible 

7733 37 Central Areas 0.00251 0.00344 0.00977 0.00973 73.9 

% 
Mishandled 
Bags 

Between 0 
and 0.02% 

0.002% 26 Six Vertical Areas 0.00328 0.00528 0.0094 0.00391 40.2 

 
 0.00% 

Multiple (10) combinations of input parameter values score 0.00% on the KPI Percentage of Mishandled 
Bags. See Appendix K.4. for these 10 combinations. 

 
  



146 
 

K.4. Combinations of Input Parameter Values Causing 0% Mishandled Bags for 4290 Bags 
 

Table K 4 - Input Parameter Value Combinations Causing a Value of 0.00% for the KPI Mishandled Bags for the 4290 Bags Scenario 

4290 Bags Input Parameter Values 

KPI 
Theoretic 
Optimal 

Value 

Optimal 
Value 

# of 
Robots 

Configuration 

Battery 
reduction 

idle 
[%/sec] 

Battery 
reduction 

empty 
[%/sec] 

Battery 
reduction 

loaded 
[%/sec] 

Charging 
rate 

[%/sec] 

Battery 
level 

threshold 
[%] 

% Mishandled 
Bags 

Between 0 
and 0.02% 

0.00% 26 Six Vertical Areas 0.00328 0.00528 0.0094 0.00391 40.2 

 

34 Four Horizontal Areas 0.00119 0.0055 0.00258 0.00339 49 

46 Four Horizontal Areas 0.00576 0.00719 0.00685 0.0033 7.7 

51 Six Vertical Areas 0.0097 0.00127 0.00089 0.00921 16.3 

57 Six Vertical Areas 0.00762 0.00075 0.00211 0.00066 70 

59 Six Vertical Areas 0.004 0.00807 0.0081 0.0026 81.6 

78 Four Horizontal Areas 0.0089 0.0088 0.00843 0.00198 27.6 

86 Six Vertical Areas 0.00192 0.00617 0.00551 0.00944 21.9 

89 Six Vertical Areas 0.00379 0.00495 0.00568 0.00897 66.7 

91 Four Horizontal Areas 0.00338 0.00274 0.00523 0.00547 34.8 
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K.5. Descriptive Statistics Experimental Design III, Scenario: 1624 bags 
 
Table K 5 - Descriptive Statistics Experimental Design III for the 1624 Bags Scenario 

Experiment Design 
III 

Scenario: 1624 bags 

Average 
process time 

of bags 
[sec] 

Average % 
Mishandled 

Bags 
[%] 

Average % 
empty trips 

 
[%] 

Average % 
loaded trips 

 
[%] 

Average % 
charging time 

 
[%] 

Number of 
conflicts 
avoided 

[#] 

Number of 
handled bags 

in runtime 
[#] 

Number of robots: 1 - 25 
Layout configuration: Central Areas 

Minimum 90.27 0.00 57.26 39.08 9.20 0 341 

Maximum 13401.29 83.35 60.92 42.74 26.73 1290 1624 

Average 1510.98 19.19 58.51 41.49 17.85 990.68 1496.4 

Standard Deviation 3310.58 29.95 1.14 1.14 5.79 378.55 321.67 

Number of robots: 1 - 25 
Layout configuration: Four Horizontal Areas 

Minimum 69.14 0.00 54.71 41.22 8.80 0 359 

Maximum 13431.32 82.63 58.78 45.29 25.36 1688 1624 

Average 1415.82 17.92 56.17 43.83 17.49 1197.52 1504.48 

Standard Deviation 3251.57 29.33 1.25 1.25 5.99 483.48 311.53 

Number of robots: 1 - 25 
Layout configuration: Six Horizontal Areas 

Minimum 62.37 0.00 51.04 47.35 8.25 0 412 

Maximum 12413.33 80.94 52.65 48.96 28.59 1662 1624 

Average 1177.74 15.39 51.61 48.39 16.96 1143.36 1522.2 

Standard Deviation 2906.64 27.29 0.53 0.53 6.44 479.36 284.49 

Number of robots: 1 - 25 
Layout configuration: Six Vertical Areas 

Minimum 68.96 0.00 54.77 42.00 8.85 0 366 

Maximum 13375.16 82.46 58.00 45.23 25.73 1722 1624 

Average 1389.11 17.89 56.33 43.67 17.59 1272.56 1506.12 

Standard Deviation 3197.46 29.41 1.17 1.17 6.03 519.01 308.08 
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K.6. Descriptive Statistics Experimental Design III, Scenario: 4290 bags 
 
Table K 6 - Descriptive Statistics Experimental Design III for the 4290 Bags Scenario 

Experiment Design 
III 

Scenario: 4290 bags 

Average 
process time 

of bags 
[sec] 

Average % 
Mishandled 

Bags 
[%] 

Average % 
empty trips 

 
[%] 

Average % 
loaded trips 

 
[%] 

Average % 
charging time 

 
[%] 

Number of 
conflicts 
avoided 

[#] 

Number of 
handled bags 

in runtime 
[#] 

Number of robots: 1 - 96 
Layout configuration: Central Areas 

Minimum 263.49 8.72 57.36 38.98 6.37 0.00 340.00 

Maximum 14278.18 92.69 61.02 42.64 28.12 5589.00 4290.00 

Average 1208.90 21.85 57.99 42.01 14.84 4823.15 4024.60 

Standard Deviation 2691.65 20.67 0.94 0.94 6.94 1329.42 799.56 

Number of robots: 1 - 35 
Layout configuration: Four Horizontal Areas 

Minimum 82.10 0.00 55.26 41.09 16.84 0.00 360.00 

Maximum 13544.57 92.30 58.91 44.74 28.44 8264.00 4290.00 

Average 2469.99 29.25 56.81 43.19 23.07 5574.66 3606.03 

Standard Deviation 4013.65 32.98 1.08 1.08 2.65 2799.05 1170.22 

Number of robots: 1 - 35 
Layout configuration: Six Horizontal Areas 

Minimum 69.16 0.00 51.40 47.09 15.81 0.00 411.00 

Maximum 13711.89 91.32 52.91 48.60 28.60 8371.00 4290.00 

Average 2185.46 25.92 52.04 47.96 22.85 5474.06 3685.14 

Standard Deviation 3847.19 32.24 0.48 0.48 3.22 2774.15 1112.94 

Number of robots: 1 - 35 
Layout configuration: Six Vertical Areas 

Minimum 81.83 0.00 55.40 41.77 16.88 0.00 363.00 

Maximum 13670.82 92.24 58.23 44.60 28.30 8527.00 4290.00 

Average 2450.08 28.83 56.91 43.09 23.13 5769.71 3603.69 

Standard Deviation 3966.68 32.81 0.97 0.97 2.67 2940.23 1169.39 
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K.7. Visualization of Descriptive Statistics Experimental Design III, Both Scenarios 
 
 

 
Figure K 5 - Boxplots of Average Process Time of Bags for Experimental Design III  Figure K 6 - Boxplots of % Charging Time for Experimental Design III 

 

 
Figure K 7 - Boxplots of Number of Avoided Conflicts for Experimental Design III  Figure K 8 - Boxplots of % Mishandled Bags for Experimental Design III 
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L. Using the Model 
This appendix includes information on how to use the simulation model as a first time user of 
the NetLogo software. The focus is on the model interface, which can be used to easily and 
quickly alter input parameter values and to see the effects of these changes on several output 
metrics and ultimately the KPI results. The written lines of code corresponding to the model 
interface are available and commented on in the model file but are not focused on in this 
appendix.  
 

L.1. Using the Simulation Model 
Upon opening the simulation model, the main window with three tabs appears: Interface, Info 
and Code. In the interface tab the model is visible and it includes tools that can be used to 
inspect and alter what the model does. Figure L 1 shows the interface of the model developed in 
this research. 

 

Figure L 1 - Interface of the Simulation Model 

As visible, the interface shows several different tools on the left of the model view, plots below 
the model view and monitors on the right. This section discusses these tools, plots and monitors 
that can be used by the model user. 

L.1.1. Model Input 
The NetLogo software allows the model user to use multiple tools to adjust the model input. 
Amongst these tools are buttons, sliders, switchers and choosers. The inputs for the model are 
coloured purple and green and are located on the left side of the model view. This section 
elaborates on the tools used in the simulation model developed in this research.  
 

Setup, Go & one-go 
The Setup button on the top left of the model interface sets the model in a state from which it 
can be run. The button refers to the lines of code in the Code tab of the main window that start 
with ‘to setup’. In this model, pressing the Setup button resets the world to an initial, empty state, 
from where it starts setting up the model. In this procedure, the patches are set up, the robots are 
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placed on the green coloured patches and the arrival pattern is set up. Whenever a change is 
made in one of the input parameters, the user has to press the Setup button before running the 
model (activating the Go button) to run the model with the changed input parameter values. 

The Go button next to the setup button refers to the lines of code in the Code tab of the main 
window that start with ‘to go’. Activating the Go button calls all the procedures that need to start 
in the model. In this model, these procedures include the inserting of bags into the model 
according to a predefined arrival pattern, the calling of robots to pick up incoming bags, the 
movements of bags to and over the incoming conveyor belts, all robot movements and the 
connections between the robots and the bags. In this procedure, the output metrics are also 
constantly updated as all procedures defined in the Go procedure are run through at every tick of 
the model.  

The one-go button does the same as the Go button, except that once activated, the Go button 
loops forever, whereas the one-go button activates all the procedures in the ‘to go’ code only 
once, so for one tick only. Using this button instead of the Go button allows the model user to 
see the changes in the model view and output metric values tick by tick. This can be helpful 
during for example debugging and is especially helpful when the user turns the randomness in the 
model off by changing the code line ‘random-seed’  to ‘;random-seed’, which inactivates the 
random generator in the model, ensuring that each model run is exactly the same. 

Input Parameters 
On the left side of the model view, 8 input parameters are visible which will be discussed in this 
section. The first two input parameters are so-called ‘choosers’ that let the model user choose 
between several options from a drop-down list.  

The first chooser is ‘Experiment-type’ and has two options to choose from: ‘1624’ and ‘4290’. 
These options relate to the number of bags that are inserted into the system during the model 
run. ‘1624’ represents the scenario in which 1624 bags are inserted and ‘4290’ represents the 
second scenario, in which 4290 bags are inserted. 

The second chooser is ‘charging-area-configuration’ and has four options to choose from:  

 Central areas 

 Six Vertical Areas 

 Four Horizontal Areas 

 Six Horizontal Areas 

These options correspond to the floor layout configuration. Each of these configurations has the 
same number of green patches – 96 – representing the charging and storage positions for robots. 

Input parameters three to eight are sliders. Sliders are commonly used as a quick way to change 
the value of the input parameter without having to recode the procedure every time. The model 
user can move the slider to a desired value. For the ‘number-of-robots’ input parameter, the choice is 
limited to a range between 0 and 96 robots. This maximum value of 96 is fixed. It prohibits the 
model user to select more robots than charging and storage positions available in each of the 
layout configurations. The input parameters ‘charging-rate’, ‘battery-reduction-empty’, ‘battery-reduction-
loaded’ and ‘battery-reduction-waiting’ have a minimum value of 0 and a maximum value of 0.01 
percentage points per second and the slider can be changed by increments of 0.001 percentage 
points per second. These input parameters represent the rates in which the battery power reduces 
and this can be different for different states of the robot as explained in section 4.4.4.3. The final 
slider is ‘battery-level-threshold’ and can be altered between 0 and 100% with increments of 0.8%.  
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In the model view, below the input parameters, recommended values are stated in a note in case 
the model user unintendedly changes the value of the battery reduction and level sliders.  

Conflict and Deadlock Avoidance Algorithm Options 
Below the input parameters, two switches are present which can be turned on and off. When 
turned off, ‘Destination-taken-allowed’, prohibits neighbouring moving robots from simultaneously 
switching places in case of an imminent frontal conflict. In this case, the conflict avoidance 
measure ‘turn, (wait) and continue’ is invoked. When this switch is turned on, this conflict 
avoidance measure is not invoked and the robots involved can take each other’s’ position during 
the tick, they are ‘taking each other’s destination’.  

When turned on, the second switch ‘Deadlock-Resolution’ makes sure that robots that are involved 
in an imminent conflict continuously look for a temporary path to a free patch to re-evaluate its 
shortest path to its original destination. This switch makes sure that robots continuously re-
evaluate their shortest path and start following a new shortest path that does not include moving 
over occupied patches at that time. The combination of the ‘Destination-taken-allowed’ switched 
turned off (and thus invoking collision avoidance measures) and the ‘Deadlock-Resolution’ switch 
turned off (and thus prohibiting robots from re-evaluating their paths) results in deadlock 
situations.  

Robustness Verification Check Button 
The ‘Delete’ button can be used for verification purposes. One of the situations where it can be 
used is to check if bags move over the incoming conveyor belts once the bag in front of them 
suddenly disappears. It checks of the model continuously adapts to changing circumstances 
created by the model user. When this button is activated, the model user can click on an agent 
and make it disappear. This agent ceases to exist and therefore will not execute any further code. 
When the button is activated it can be used an infinite number of times. To deactivate the 
button, the model user has to click on the button again.  

L.1.2. Model Output 
In NetLogo, there are several ways of showing the quantitative results after each tick. In the 
developed model the most used output tool are monitors. Monitors display the value of a 
reporter from the model, which can be a variable. Monitors automatically update several times 
per second, providing near real-time values. Another output visualisation tool is a plot. A plot can 
show data that the model is generating over time. A plot is also updated automatically several 
times per second when the Go button is activated, meaning the model is running. This section 
discusses the several monitors and plots used in the developed model. 

Count bags and belt buffer monitors 
In between the input parameters and the model view, six monitors are located. The first monitor 
‘count bags’ continuously monitors how many bags are present in the model. When a bag is created 
in the model, the value of this monitored is increased by one and when a bag exits the model 
after it’s handled or when the model user deliberately deletes the bag with the ‘Delete’ button,  the 
value of the monitor decreases with one. The other five monitors on the left side of the model 
view concern the buffers of the incoming conveyor belts. The most left patch of each incoming 
conveyor belt is defined as a buffer patch with an unlimited capacity. When a queue arises at the 
incoming conveyor belts, NetLogo places bags on top of each other, which makes it impossible 
for the model user to see how many bags are on one patch. This is why in the entire model, 
having more than one entity per patch is prohibited, except for the buffer patches. To still give 
the model user insight in how many bags are in each queue, the monitors ‘Buffer belt 1’, ‘Buffer belt 
2’, ‘Buffer belt 3’ and ‘Buffer belt 4’ show how many bags are in the buffer zone of the queue. The 
monitor ‘Total buffer´ shows how many bags in total are located in the buffer zones combined.  
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Bag monitors 
On the top right side of the model view, eight monitors show values related to the bags in the 
model. The first one, ‘Total number of bags’, shows the total number of bags that were present at 
some point during the model run. Unlike the ‘count bags’ monitor, the value of this monitor does 
not decrease when a bag exits the system or when it is manually deleted by the ‘Delete’ button. 
The next three monitors ‘Average time to belt’, ‘Average time on belt’, and ‘Average time on robot’, show 
the average time bags spend travelling to the belt, travelling on the belt and travelling on a robot 
respectively. These monitors are updated every time a bag exits the system after it is handled. 
Every time a bag exits, the bag specific values for the time variables are used to calculate the new 
average value for the monitors. The same holds for the monitors ‘Average time waiting end of belt till 
robot assignment’ and ‘Waiting time before assigned robot arrives’.  The last two monitors, ‘Handled Bags’ 
and ‘Mishandled Bags’ are also updated every time a bag exits the system through one of the chutes 
to the makeup stations. At the end of each model run or experiment, the value for the ‘Handled 
Bags’ monitor has to equal the number selected in the ‘Experiment-type’ input parameter. For 
example, when the 1624 bags scenario is selected in ‘Experiment-type’, at the end of each complete 
model run or experiment, the value of Handled Bags’ should be 1624.  

KPI monitors 
On the bottom right side of the model view, six monitors show the values for the KPIs defined 
in this research. The first two monitors ‘Average total process time of bags’ and ‘Percentage mishandled 
bags’ are updated each time a bag exits the model. The other monitors update at each tick. These 
monitors can be used as output metrics when running experiments.  

Plots 
Below the model view, two plots are visible. The first one plots robot occupancy. Robots can 
have different statuses, being: 

 Incoming request 

 At Belt 

 Transporting Bag 

 Delivered Bag 

 En route to CS 

 Charging 

 Available 
The plot on the left shows the number of robots per status. It shows that when the number of 
robots with status ‘Available’ decreases, the number of robots with other statuses increases. It 
could show that over time, certain values stabilize. In the research performed, the focus was on 
end-of-runtime values. However, plots like this can show more valuable information on the 
performance of the system over the entire runtime series.  
 
The plot on the right shows the number of bags in the system at every point in the runtime. 
While the model runs, it shows clear peaks that correspond with the peaks in the defined arrival 
pattern. It can also show the effect of the number of robots present in the system when the 
entire time series of a model run is considered.  
 
The two plots show how the system performs during the simulated day, instead of only 
generating end-of-runtime results like some monitors. Insights derived from plots like these can 
add value to the evaluation of the system as a whole when every time step over the operational 
period, like a day, is considered.  

L.2. Using the Model for Different Situations 
There are multiple ways to use the developed model for different situations. However, adjusting 
the model beyond the limits build into the model interface takes some more effort. In this 
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section, some alterations to the input parameters are discussed, including how to alter the model 
in such a way that it generates new results. 
 

Changing the Arrival Pattern of Bags 
The current version of the model requires a separate .csv file to generate bags according to a 
certain arrival distribution. To make changes to the arrival pattern or the number of bags, the 
data in the used .csv files have to be altered. If that is done, the model user can add a new choice 
to the ‘Experiment-type’ chooser by editing the chooser and then editing the ‘to setup’ code in the 
Code tab. The same lines of codes can be used for the new .csv file, only the name of the new 
.csv file and the name of the experiment type have to be adjusted.  
 
Using the model in other industries 
The current model considers only four incoming conveyor belts and four entrances to makeup 
stations. Following the same procedure as described above, these numbers can be altered. The 
possible changes explained on the arrival pattern of bags focussed on an airport situation. 
However, this model can also be used for different industries, like for example warehouses. To 
use the model for other goods than bags, the arrival pattern can be adjusted if necessary, to 
match the arrival pattern of goods from for example incoming trucks with inventory that drop 
off their goods at a warehouse. To visualize different goods than bags, the model user can go to 
Tools -> Turtle Shapes Editor and adjust or add a new shape. In the model code and interface, 
one simply needs to replace the words ‘bag’ and ‘bags’ by the desired word for the goods the 
model represents.  

Changing the floor layout configuration and maximum number of robots 
The current version of the model allows the model user to choose between four layout 
configurations. The maximum number of robots that can be selected by the slider ‘Number-of-
robots’ is connected to these layouts. All four layout configurations entail 96 green patches, 
representing the charging and storage positions. As during the night all robots have to be able to 
charge themselves for the next days, the number of robots in the system have to be equal to or 
lower than the number of charging and storage positions. When the model user wants to adjust 
the layout configuration options, there are several parts of the code that needs to be adjusted.  
 
It starts with the globals. Currently, six global types are defined (CS-area-north1, CS-area-south1, 
CS-areanorth2, and so on). This enables the user to have six separate charging and storage areas. 
The next procedure that needs to be adjusted is the ‘setup-patches’ procedure. This procedure is 
concerned with the location of the individual charging and storage positions.  
 
If the charging and storage positions and areas are altered and the number of these positions is 
for exampled increased, the user can manually adjust the maximum allowed number of robots. 
To do so, the ‘Number-of-robots´ slider can be edited and the maximum value allowed can be 
altered.  

Changing the battery charging and reduction rates  
The current version of the model allows the model user to change the charging rate, the battery 
reduction when empty rate, the battery reduction when loaded rate and the battery reduction 
while waiting (idle) rate between the values 0 and 0.01. To adjust this range, or the changing 
increment of 0.001, the model code does not have to be adjusted. The user can simply edit the 
sliders one by one and change the range and increment. 
 


