
 
 

Delft University of Technology

Path-space moderate deviation principles for the random field curie-weiss model

Collet, Francesca; Kraaij, Richard C.

DOI
10.1214/17-EJP117
Publication date
2018
Document Version
Final published version
Published in
Electronic Journal of Probability

Citation (APA)
Collet, F., & Kraaij, R. C. (2018). Path-space moderate deviation principles for the random field curie-weiss
model. Electronic Journal of Probability, 23, 1-45. Article 21. https://doi.org/10.1214/17-EJP117

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1214/17-EJP117
https://doi.org/10.1214/17-EJP117


E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 23 (2018), no. 21, 1–45.
ISSN: 1083-6489 https://doi.org/10.1214/17-EJP117

Path-space moderate deviation principles for the
random field Curie-Weiss model*
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Abstract

We analyze the dynamics of moderate fluctuations for macroscopic observables of
the random field Curie-Weiss model (i.e., standard Curie-Weiss model embedded
in a site-dependent, i.i.d. random environment). We obtain path-space moderate
deviation principles via a general analytic approach based on convergence of non-
linear generators and uniqueness of viscosity solutions for associated Hamilton–Jacobi
equations. The moderate asymptotics depend crucially on the phase we consider
and moreover, the space-time scale range for which fluctuations can be proven is
restricted by the addition of the disorder.
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1 Introduction

The study of the normalized sum of random variables and its asymptotic behavior plays
a central role in probability and statistical mechanics. Whenever the variables are
independent and have finite variance, the central limit theorem ensures that the sum
with square-root normalization converges to a Gaussian distribution. The generalization
of this result to dependent variables is particularly interesting in statistical mechanics
where the random variables are correlated through an interaction Hamiltonian. For
explicitly solvable models many properties are well understood. In this category fall
the so-called Curie-Weiss models for which one can explicitly explain important phe-
nomena such as multiple phases, metastable states and, particularly, how macroscopic
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Path-space moderate deviation principles for the RFCW model

observables fluctuate around their mean values when close to or at critical temperatures.
Ellis and Newman characterized the distribution of the normalized sum of spins (em-
pirical magnetization) for a wide class of mean-field Hamiltonian of Curie-Weiss type
[EN78a, EN78b, ENR80]. They found conditions, in terms of thermodynamic properties,
that lead in the infinite volume limit to a Gaussian behavior and those which lead to a
higher order exponential probability distribution. Equilibrium large deviation principles
have been established in [Ell85], wheras path-space counterparts have been derived in
[Com87]. Static and dynamical moderate deviations have been obtained in [EL04, CK17]
respectively.

We are interested in the fluctuations of the magnetization for the random field Curie–
Weiss model, which is derived from the standard Curie–Weiss by replacing the constant
external magnetic field by local and random fields which interact with each spin of the
system.

The random field Curie-Weiss model has the advantage that, while still being analytically
tractable, it has a very rich phase-structure. The phase diagram exhibits interesting crit-
ical points: a critical curve where the transition from paramagnetism to ferromagnetism
is second-order, a first-order boundary line and moreover, depending on the distribution
of the randomness, a tri-critical point may exist [SW85]. As a consequence, the model
has been used as a playground to test new ideas.

We refer to [APZ92] for the characterization of infinite volume Gibbs states; [KLN07]
for Gibbs/non-Gibbs transitions; [Kül97, IK10, FKR12] for the study of metastates;
[MP98, FMP00, BBI09] for the metastability analysis; and references therein. From
a static viewpoint, the behavior of the fluctuations for this system is clear. In [AP91],
a central limit theorem is proved and some remarkable new features as compared
to the usual non-random model are shown. In particular, depending on temperature,
fluctuations may have Gaussian or non-Gaussian limit; in both cases, however, such
a limit depends on the realization of the local random external fields, implying that
fluctuations are non-self-averaging. Large and moderate deviations with respect to the
corresponding (disorder dependent) Gibbs measure have been studied as well. An almost
sure large deviation principle can be obtained from [Com89] if the external fields are
bounded and from [LMT13] if they are unbounded or dependent. Almost sure moderate
deviations are characterized in [LM12] under mild assumptions on the randomness.

As already mentioned, all the results recalled so far have been derived at equilibrium; on
the contrary, we are interested in describing the time evolution of fluctuations, obtaining
non-equilibrium properties. Fluctuations for the random field Curie-Weiss model were
studied on the level of a path-space large deviation principle in [DPdH96] and on the
level of a path-space (standard and non-standard) central limit theorem in [CDP12]. The
purpose of the present paper is to study dynamical moderate deviations of a suitable
macroscopic observable. In the random field Curie-Weiss model we are considering,
the disorder comes from a site-dependent magnetic field which is ηi = ±1. The single
spin-flip dynamics induces a Markovian evolution on a bi-dimensional magnetization. The
first component is the usual empirical average of the spin values: mn = n−1

∑n
i=1 σi. The

second component is qn = n−1
∑n
i=1 σiηi and measures the relative alignment between

the spins and their local random fields. The observable we are interested in is therefore
the pair (mn, qn) and we aim at analyzing its path-space moderate fluctuations.
A moderate deviation principle is technically a large deviation principle and consists
in a refinement of a (standard or non-standard) central limit theorem, in the sense
that it characterizes the exponential decay of deviations from the average on a smaller
scale. We apply the generator convergence approach to large deviations by Feng-Kurtz
[FK06] to characterize the most likely behavior for the trajectories of fluctuations around
the stationary solution(s) in the various regimes. Our findings highlight the following
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distinctive aspects:

• The moderate asymptotics depend crucially on the phase we are considering. The
physical phase transition is reflected at this level via a sudden change in the speed
and rate function of the moderate deviation principle. In particular, our findings
indicate that fluctuations are Gaussian-like in the sub- and supercritical regimes,
while they are not at criticalities.
Moreover, if the inverse temperature and the magnetic field intensity are size-
dependent and approach a critical threshold, the rate function retains the features
of the phases traversed by the sequence of parameters and is a mixture of the rate
functions corresponding to the visited regimes.

• In the sub- and supercritical regimes, the processes mn and qn evolve on the same
time-scale and we characterize deviations from the average of the pair (mn, qn).
For the proof we will refer to the large deviation principle in [CK17, Appendix A].
On the contrary, at criticality, we have a natural time-scale separation for the
evolutions of our processes: qn is fast and converges exponentially quickly to zero,
whereas mn is slow and its limiting behavior can be determined after suitably
“averaging out” the dynamics of qn. Corresponding to this observation, we need
to prove a path-space large deviation principle for a projected process, in other
words for the component mn only. The projection on a one-dimensional subspace
relies on the synergy between the convergence of the Hamiltonians [FK06] and
the perturbation theory for Markov processes [PSV77]. The method exploits a
technique known for (linear) infinitesimal generators in the context of non-linear
generators and, to the best of our knowledge, is original. Moreover, due to the fact
that the perturbed functions we are considering do not allow for a uniform bound
for the sequence of Hamiltonians, in the present case we need a more sophisticated
notion of convergence of Hamiltonians than the one used in [CK17]. To circumvent
this unboundedness problem, we relax our definition of limiting operator. More
precisely, we follow [FK06] and introduce two Hamiltonians H† and H‡, that are
limiting upper and lower bounds for the sequence of Hamiltonians Hn, respectively.
We then characterize H by matching the upper and lower bound.
The same techniques have been recently applied in [CGK] to tackle path-space
moderate deviations for a system of interacting particles with unbounded state
space.

• The fluctuations are considerably affected by the addition of quenched disorder:
the range of space-time scalings for which moderate deviation principles can be
proven is restricted by the necessity of controlling the fluctuations of the field.

• In [CDP12], at second or higher order criticalities, the contribution to fluctuations
coming from the random field is enhanced so as to completely offset the contribu-
tion coming from thermal fluctuations. The moderate scaling allows to go beyond
this picture and to characterize the thermal fluctuations at the critical line and at
the tri-critical point.

It is worth to mention that our statements are in agreement with the static results found
in [LM12]. The paper is organized as follows.
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Appendix A is devoted to the derivation of a large deviation principle via solution of
Hamilton-Jacobi equation and it is included to make the paper as much self-contained as
possible.

2 Model and main results

2.1 Notation and definitions

Before entering the contents of the paper, we introduce some notation. We start with
the definition of good rate-function and of large deviation principle for a sequence of
random variables.

Definition 2.1. Let {Xn}n≥1 be a sequence of random variables on a Polish space X .
Furthermore, consider a function I : X → [0,∞] and a sequence {rn}n≥1 of positive
numbers such that rn →∞. We say that

• the function I is a good rate-function if the set {x | I(x) ≤ c} is compact for every
c ≥ 0.

• the sequence {Xn}n≥1 is exponentially tight at speed rn if, for every a ≥ 0, there
exists a compact set Ka ⊆ X such that lim supn r

−1
n log P[Xn /∈ Ka] ≤ −a.

• the sequence {Xn}n≥1 satisfies the large deviation principle with speed rn and
good rate-function I, denoted by

P[Xn ≈ a] � e−rnI(a),

if, for every closed set A ⊆ X , we have

lim sup
n→∞

r−1n logP[Xn ∈ A] ≤ − inf
x∈A

I(x),

and, for every open set U ⊆ X ,

lim inf
n→∞

r−1n logP[Xn ∈ U ] ≥ − inf
x∈U

I(x).
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Throughout the whole paper AC will denote the set of absolutely continuous curves in
Rd. For the sake of completeness, we recall the definition of absolute continuity.

Definition 2.2. A curve γ : [0, T ]→ Rd is absolutely continuous if there exists a function
g ∈ L1([0, T ],Rd) such that for t ∈ [0, T ] we have γ(t) = γ(0) +

∫ t
0
g(s)ds. We write g = γ̇.

A curve γ : R+ → Rd is absolutely continuous if the restriction to [0, T ] is absolutely
continuous for every T ≥ 0.

An important and non-standard definition that we will often use is the notion of o(1) for a
sequence of functions.

Definition 2.3. Let {gn}n≥1 be a sequence of real functions. We say that

gn(x) = g(x) + o(1)

if supn≥1 supx |gn(x)| <∞ and limn→∞ supx∈K |gn(x)− g(x)| = 0, for all compact sets K.

To conclude we fix notation for a collection of function-spaces.

Definition 2.4. Let k ≥ 1 and E a closed subset of Rd. We will denote by

• Ckl (E) (resp. Cku(E)) the set of functions that are bounded from below (resp. above)
in E and are k times differentiable on a neighborhood of E in Rd.

• Ckc (E) the set of functions that are constant outside some compact set in E and
are k times continuously differentiable on a neighborhood of E in Rd. Finally, we
set C∞c (E) :=

⋂
k C

k
c (E).

2.2 Microscopic and macroscopic description of the model

Let σ = (σi)
n
i=1 ∈ {−1,+1}n be a configuration of n spins. Moreover, let η = (ηi)

n
i=1 ∈

{−1,+1}n be a sequence of i.i.d. random variables distributed according to µ =
1
2 (δ−1 + δ1).
For a given realization of η, {σ(t)}t≥0 evolves as a Markov process on {−1,+1}n, with
infinitesimal generator

Gnf(ς) =

n∑
i=1

e−βςi(mn+Bηi)
[
f(ςi)− f(ς)

]
, (2.1)

where ςi is the configuration obtained from ς by flipping the i-th spin; β and B are
positive parameters representing the inverse temperature and the coupling strength of
the external magnetic field, and mn = 1

n

∑n
i=1 ςi.

The two terms in the rates of (2.1) have different effects: the first one tends to align the
spins, while the second one tends to point each of them in the direction of its local field.

In addition to the usual empirical magnetization, we define also the empirical averages

qn(t) :=
1

n

n∑
i=1

σi(t)ηi and ηn :=
1

n

n∑
i=1

ηi.

Let En be the image of {−1, 1}n×{−1, 1}n under the map (σ, η) 7→ (mn, qn). The Glauber
dynamics on the configurations, corresponding to the generator (2.1), induce Markovian
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dynamics on En for the process {(mn(t), qn(t))}t≥0, that in turn evolves with generator

Anf(x, y) =
n(1 + ηn + x+ y)

4
e−β(x+B)

[
f

(
x− 2

n
, y − 2

n

)
− f(x, y)

]
+
n(1− ηn + x− y)

4
e−β(x−B)

[
f

(
x− 2

n
, y +

2

n

)
− f(x, y)

]
+
n(1 + ηn − x− y)

4
eβ(x+B)

[
f

(
x+

2

n
, y +

2

n

)
− f(x, y)

]
+
n(1− ηn − x+ y)

4
eβ(x−B)

[
f

(
x+

2

n
, y − 2

n

)
− f(x, y)

]
. (2.2)

For later convenience, let us introduce the functions

G±1,β,B(x, y) = cosh[β(x±B)]− (x± y) sinh[β(x±B)],
(2.3)

G±2,β,B(x, y) = sinh[β(x±B)]− (x± y) cosh[β(x±B)].

We start with a large deviation principle for the trajectory of {(mn(t), qn(t))}t≥0. Note
that

mn + qn =
1

n

∑
i

σi(1 + ηi) =
2

n

∑
i:ηi=1

σi,

mn − qn =
1

n

∑
i

σi(1− ηi) =
2

n

∑
i:ηi=−1

σi,

which implies that given η, (mn + qn,mn − qn) is a pair of variables taking their value in
discrete subsets of the square [−1− ηn, 1 + ηn]× [−1 + ηn, 1− ηn]. Denote the limiting
set by E0 :=

{
(x, y)

∣∣ (x+ y, x− y) ∈ [−1, 1]2
}

.

Proposition 2.5 (Large deviations, Theorem 1 in [Kra16]). Suppose that (mn(0), qn(0))

satisfies a large deviation principle with speed n on R2 with a good rate function I such
that {(x, y) | I(x, y) <∞} ⊆ E0. Then, µ-almost surely, the trajectories {(mn(t), qn(t))}t≥0
satisfy the large deviation principle

P
[
{(mn(t), qn(t))}t≥0 ≈ {γ(t)}t≥0

]
� e−nI(γ)

on DR2(R+), with good rate function I that is finite only for trajectories in E0 and

I(γ) =

{
I0(γ(0)) +

∫ +∞
0
L(γ(s), γ̇(s)) ds if γ ∈ AC,

∞ otherwise,
(2.4)

where L((x, y), (vx, vy)) = supp∈R2 {〈p, v〉 −H((x, y), (px, py))} is the Legendre transform
of

H((x, y), (px, py)) =
1

2

{[
cosh(2px + 2py)− 1

]
G+

1,β,B(x, y) + sinh(2px + 2py)G+
2,β,B(x, y)

+
[

cosh(2px − 2py)− 1
]
G−1,β,B(x, y) + sinh(2px − 2py)G−2,β,B(x, y)

}
.

Proof. Arguing for the pair (mn + qn,mn − qn), we can use Theorem 1 in [Kra16]. We
obtain our result by undoing the coordinate transformation.

We recall that a large deviation principle in the trajectory space can also be derived
via contraction of a large deviation principle for the non-interacting particle system;
see [DPdH96] for details. Moreover, a static quenched large deviation principle for

EJP 23 (2018), paper 21.
Page 6/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP117
http://www.imstat.org/ejp/


Path-space moderate deviation principles for the RFCW model

the empirical magnetization has been proved in [LMT13]. In both the aforementioned
papers, the large deviation principle is obtained under assumptions that cover more
general disorder than dichotomous.

The path-space large deviation principle in Proposition 2.5 allows to derive the infinite
volume dynamics for our model: if (mn(0), qn(0)) converges weakly to the constant
(m0, q0), then the empirical process (mn(t), qn(t))t≥0 converges weakly, as n→∞, to the
solution of

ṁ(t) = G+
2,β,B(m(t), q(t)) +G−2,β,B(m(t), q(t))

q̇(t) = G+
2,β,B(m(t), q(t))−G−2,β,B(m(t), q(t))

(2.5)

with initial condition (m0, q0).
The phase portrait of system (2.5) is known; for instance, see [APZ92, DPdH95]. We
briefly recall the analysis of equilibria. First of all, observe that any stationary solution
of (2.5) is of the form

m = 1
2 [tanh(β(m+B)) + tanh(β(m−B))]

q = 1
2 [tanh(β(m+B))− tanh(β(m−B))]

(2.6)

and that (0, tanh(βB)) satisfies (2.6) for all the values of the parameters. Solutions with
m = 0 are called paramagnetic, those with m 6= 0 ferromagnetic. On the phase space
(β,B) we get the following:

(I) If β ≤ 1, then (0, tanh(βB)) is the unique fixed point for (2.5) and it is globally
stable.

(II) If β > 1, the situation is more subtle. There exist two functions

g1(β) =
1

β
arccosh(

√
β)

and

g2 : [1,+∞)→ [0, 1) , strictly increasing, g(1) = 0, g(βn) ↑ 1 as βn ↑ +∞,

satisfying

• g1(β) ≤ g2(β) on [1,+∞),

• g1(β) and g2(β) coincide for β ∈
[
1, 32
]

and separate at the tri-critical point

(βtc, Btc) = (3
2 ,

2
3 arccosh(

√
3
2 )),

such that

(i) if B ≥ g2(β) the same result as in (I) holds;

(ii) if B < g1(β), then (0, tanh(βB)) becomes unstable and two (symmetric) stable
ferromagnetic solutions arise;

(iii) if β > 3
2 and B = g1(β), then (0, tanh(βB)) is neutrally stable and coexists

with a pair of stable ferromagnetic solutions;

(iv) if β > 3
2 and g1(β) < B < g2(β), then (0, tanh(βB)) is stable and, in addition,

we have two pairs (one is stable and the other is not) of ferromagnetic
solutions. Inside this phase there is a coexistence line, above which the
paramagnetic solution is stable and the two stable ferromagnetic solutions
are metastable, and below which the reverse is true.

We refer to Figure 1 for a visualization of the previous assertions.
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Figure 1: Qualitative picture of the phase space (β,B) for equation (2.5). Each colored
region represents a phase with as many ferromagnetic solutions of (2.6) as indicated by
the numerical label. The thick red and blue separation lines are g1 and g2 respectively.
The thin dashed blue line is the coexistence line relevant for metastability (cf. II(iv)).

2.3 Main results

We consider the moderate deviations of the microscopic dynamics (2.2) around their
stationary macroscopic limit in the various regimes.
The first of our statements is mainly of interest in the paramagnetic phase, but is indeed
valid for all values of the parameters.

Theorem 2.6 (Moderate deviations around (0, tanh(βB))). Let {bn}n≥1 be a sequence of
positive real numbers such that

bn →∞ and b2nn
−1 log log n→ 0.

Suppose that (bnmn(0), bn(qn(0)− tanh(βB))) satisfies a large deviation principle with
speed nb−2n on R2 and rate function I0. Then, µ-almost surely, the trajectories

{(bnmn(t), bn(qn(t)− tanh(βB)))}t≥0

satisfy the large deviation principle

P
[
{(bnmn(t), bn(qn(t)− tanh(βB)))}t≥0 ≈ {γ(t)}t≥0

]
� e−nb

−2
n I(γ)

on DR×R(R+), with good rate function

I(γ) =

{
I0(γ(0)) +

∫ +∞
0
L(γ(s), γ̇(s)) ds if γ ∈ AC,

∞ otherwise,
(2.7)

where

L(x,v) :=
cosh(βB)

8

∣∣∣∣∣v − 2

(
β−cosh2(βB)

cosh(βB) 0

0 − cosh(βB)

)
x

∣∣∣∣∣
2

. (2.8)

Observe that the growth condition b2nn
−1 log log n→ 0 is necessary to ensure that bnηn

(re-scaled empirical average of the local fields) converges to zero almost surely as
n→ +∞. A similar effect is also known in moderate deviation principles for the overlap
in the Hopfield model, see [EL04]. The peculiar scaling is prescribed by the law of
iterated logarithm, that provides the scaling factor where the limits of the weak and
strong law of large numbers become different, cf. [Kal02, Corollary 14.8]. Analogous
requirements will appear also in the following statements.
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Our next result considers moderate deviations around ferromagnetic solutions of (2.6).
To shorten notation and not to clutter the statement, let us introduce the following
matrices

G1,β,B(x, y) =

(
G+

1,β,B(x, y) +G−1,β,B(x, y) G+
1,β,B(x, y)−G−1,β,B(x, y)

G+
1,β,B(x, y)−G−1,β,B(x, y) G+

1,β,B(x, y) +G−1,β,B(x, y)

)
, (2.9)

Ĝ1,β,B(x, y) =

(
G+

1,β,B(x, y) +G−1,β,B(x, y) 0

G+
1,β,B(x, y)−G−1,β,B(x, y) 0

)
(2.10)

and

B(x) =

(
cosh(βx) cosh(βB) sinh(βx) sinh(βB)

sinh(βx) sinh(βB) cosh(βx) cosh(βB)

)
. (2.11)

We get the following.

Theorem 2.7 (Moderate deviations: super-critical regime β > 1, B < g2(β)). Let (m, q)

be a solution of (2.6) with m 6= 0. Moreover, let {bn}n≥1 be a sequence of positive real
numbers such that

bn →∞ and b2nn
−1 log log n→ 0.

Suppose that (bn(mn(0)−m), bn(qn(0)− q)) satisfies a large deviation principle with
speed nb−2n on R2 and rate function I0. Then, µ-almost surely, the trajectories

{(bn(mn(t)−m), bn(qn(t)− q))}t≥0

satisfy the large deviation principle

P
[
{(bn(mn(t)−m), bn(qn(t)− q))}t≥0 ≈ {γ(t)}t≥0

]
� e−nb

−2
n I(γ)

on DR×R(R+), with good rate function

I(γ) =

{
I0(γ(0)) +

∫ +∞
0
L(γ(s), γ̇(s)) ds if γ ∈ AC,

∞ otherwise,
(2.12)

where

L(x,v) :=
1

4
〈G−11,β,B(m, q)[v − (βĜ1,β,B(m, q)− 2B(m))x],v − (βĜ1,β,B(m, q)− 2B(m))x〉.

We see that the Lagrangian (2.8) trivializes in the x coordinate if β = cosh2(βB). The
latter equation corresponds to (β,B) lying on the critical curve B = g1(β). This fact can
be seen as the dynamical counterpart of the bifurcation occurring at the stationary point
as B varies for fixed β: (0, tanh(βB)) is turning unstable from being a stable equilibrium.

At the critical curve, the fluctuations of mn(t) behave homogeneously in the distance
from the stationary point, whereas the fluctuations of qn(t) are confined around 0. To
further study the fluctuations of mn(t), we speed up time to capture higher order effects
of the microscopic dynamics. Speeding up time implies that the probability of deviations
from qn(t) decays faster than exponentially.

Theorem 2.8 (Moderate deviations: critical curve 1 < β ≤ 3
2 , B = g1(β)). Let {bn}n≥1 be

a sequence of positive real numbers such that

bn →∞ and b6nn
−1 log log n→ 0.

Suppose that bnmn(0) satisfies a large deviation principle with speed nb−4n on R and
rate function I0. Then, µ-almost surely, the trajectories

{
bnmn(b2nt)

}
t≥0 satisfy the large

deviation principle

P
[{
bnmn(b2nt)

}
t≥0 ≈ {γ(t)}t≥0

]
� e−nb

−4
n I(γ)
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on DR(R+), with good rate function

I(γ) =

{
I0(γ(0)) +

∫ +∞
0
L(γ(s), γ̇(s)) ds if γ ∈ AC,

∞ otherwise,
(2.13)

where

L(x, v) =
cosh(βB)

8

∣∣∣∣v − 2

3
β(2β − 3) cosh(βB)x3

∣∣∣∣2 .
At the tri-critical point, again the Lagrangian trivializes, and a further speed-up of time
is possible.

Theorem 2.9 (Moderate deviations: tri-critical point β = 3
2 and B = g1( 3

2 )). Let {bn}n≥1
be a sequence of positive real numbers such that

bn →∞ and b10n n
−1 log log n→ 0.

Suppose that bnmn(0) satisfies a large deviation principle with speed nb−6n on R and
rate function I0. Then, µ-almost surely, the trajectories

{
bnmn(b4nt)

}
t≥0 satisfy the large

deviation principle

P
[{
bnmn(b4nt)

}
t≥0 ≈ {γ(t)}t≥0

]
� e−nb

−6
n I(γ)

on DR(R+), with good rate function

I(γ) =

{
I0(γ(0)) +

∫ +∞
0
L(γ(s), γ̇(s)) ds if γ ∈ AC,

∞ otherwise,
(2.14)

where

L(x, v) =
1

8

√
3

2

∣∣∣∣∣v +
9

10

√
3

2
x5

∣∣∣∣∣
2

.

We want to conclude the analysis by considering moderate deviations for volume-
dependent temperature and magnetic field approaching the critical curve first and
the tri-critical point afterwards. In the sequel let {mβ,B

n (t)}t≥0 denote the process
evolving at temperature β and subject to a random field of strength B.

Theorem 2.10 (Moderate deviations: critical curve 1 < β ≤ 3
2 , B = g1(β), temperature

and field rescaling). Let {bn}n≥1 be a sequence of positive real numbers such that

bn →∞ and b6nn
−1 log log n→ 0.

Let {κn}n≥1, {θn}n≥1 be two sequences of real numbers such that

κnb
2
n → κ and θnb

2
n → θ.

Set βn := β + κn and Bn := B + θn, where B = g1(β), with 1 < β ≤ 3
2 . Suppose

that bnmβn,Bn
n (0) satisfies the large deviation principle with speed nb−4n on R with rate

function I0. Then, µ-almost surely, the trajectories
{
bnm

βn,Bn
n (b2nt)

}
t≥0 satisfy the large

deviation principle on DR(R+):

P
[{
bnm

βn,Bn
n (b2nt)

}
t≥0 ≈ {γ(t)}t≥0

]
� e−nb

−4
n I(γ),

where I is the good rate function

I(γ) =

{
I0(γ(0)) +

∫∞
0
L(γ(s), γ̇(s))ds if γ ∈ AC,

∞ otherwise,
(2.15)
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and

L(x, v) =
cosh(βB)

8

∣∣∣∣v − 2

[
1− 2βB tanh(βB)

cosh(βB)
κ− 2β sinh(βB) θ

]
x

−2

3
β(2β − 3) cosh(βB)x3

∣∣∣∣2 .
For approximations of the tri-critical point, we consider two scenarios. The first considers
an approximation along the critical curve, whereas the second scenario considers
approximation from an arbitrary direction.

Theorem 2.11 (Moderate deviations: tri-critical point β = 3
2 , B = g1( 3

2 ), temperature and
field rescaling on the critical curve). Let {bn}n≥1 be a sequence of positive real numbers
such that

bn →∞ and b10n n
−1 log log n→ 0.

Let {κn}n≥1, {θn}n≥1 be two sequences of real numbers such that

κnb
2
n → κ and θnb

2
n → θ.

Set βn := βtc +κn and Bn := Btc +θn, where (βtc, Btc) = (3
2 ,

2
3 arccosh(

√
3
2 )). Assume that

βn = cosh2(βnBn) for all n ∈ N. Moreover, suppose that bnmβn,Bn
n (0) satisfies the large

deviation principle with speed nb−6n on R with rate function I0. Then, µ-almost surely,
the trajectories

{
bnm

βn,Bn
n (b4nt)

}
t≥0 satisfy the large deviation principle on DR(R+):

P
[{
bnm

βn,Bn
n (b4nt)

}
t≥0 ≈ {γ(t)}t≥0

]
� e−nb

−6
n I(γ),

where I is the good rate function

I(γ) =

{
I0(γ(0)) +

∫∞
0
L(γ(s), γ̇(s))ds if γ ∈ AC,

∞ otherwise,
(2.16)

and

L(x, v) =
1

8

√
3

2

∣∣∣∣∣v −
[

2
√

2 arccosh

(√
3

2

)
κ+

9√
2
θ

]
x3 +

9

10

√
3

2
x5

∣∣∣∣∣
2

.

Remark. To ensure that (βn, Bn) approximate (βtc, Btc) over the critical curve, κ and θ
must satisfy

θ

κ
= −4

9
arccosh

(√
3

2

)
+

2

3

√
1

3
. (2.17)

Theorem 2.12 (Moderate deviations: tri-critical point β = 3
2 , B = g1( 3

2 ), temperature and
field rescaling). Let {bn}n≥1 be a sequence of positive real numbers such that

bn →∞ and b10n n
−1 log log n→ 0.

Let {κn}n≥1, {θn}n≥1 be two sequences of real numbers such that

κnb
4
n → κ and θnb

4
n → θ.

Set βn := βtc + κn and Bn := Btc + θn, where (βtc, Btc) = ( 3
2 ,

2
3 arccosh(

√
3
2 )). Suppose

that bnmβn,Bn
n (0) satisfies the large deviation principle with speed nb−6n on R with rate
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function I0. Then, µ-almost surely, the trajectories
{
bnm

βn,Bn
n (b4nt)

}
t≥0 satisfy the large

deviation principle on DR(R+):

P
[{
bnm

βn,Bn
n (b4nt)

}
t≥0 ≈ {γ(t)}t≥0

]
� e−nb

−6
n I(γ),

where I is the good rate function

I(γ) =

{
I0(γ(0)) +

∫∞
0
L(γ(s), γ̇(s))ds if γ ∈ AC,

∞ otherwise,
(2.18)

and

L(x, v) =
1

8

√
3

2

∣∣∣∣∣v −
[

2

3

(
√

6− 2
√

2 arccosh

(√
3

2

))
κ− 3

√
2 θ

]
x+

9

10

√
3

2
x5

∣∣∣∣∣
2

.

By choosing the sequence bn = nα, with α > 0, we can rephrase Theorems 2.6–2.12
in terms of more familiar moderate scalings involving powers of the system-size. We
therefore get estimates for the probability of a typical trajectory on a scale that is
between a law of large numbers and a central limit theorem. These results, together
with the central limit theorem and the study of fluctuations at β = cosh2(βB) in [CDP12,
Prop. 2.7 and Thm. 2.12], give a clear picture of the behaviour of fluctuations for the
random field Curie-Weiss model. We summarize these facts in Tables 1 and 2. The
displayed conclusions are drawn under the assumption that in each case either the initial
condition satisfies a large deviation principle at the correct speed or the initial measure
converges weakly. Observe that not all scales can be covered. Indeed, to control disorder
fluctuations and avoid they are too large, the range of allowed spatial scalings becomes
quite limited.
To conclude, it is worth to mention that our results are consistent with the moderate
deviation principles obtained in [LM12] for the random field Curie-Weiss model at
equilibrium. Indeed, as prescribed by Thm. 5.4.3 in [FW98], in each of the cases
above, the rate function of the stationary measure satisfies H(x, S′(x)) = 0, where
H : R×R→ R is the Legendre transform of L.

3 Expansion of the Hamiltonian and moderate deviations in the
sub- and supercritical regimes

Following the methods of [FK06], the authors have studied large and moderate deviations
for the Curie-Weiss model based on the convergence of Hamiltonians and well-posedness
of a class of Hamilton-Jacobi equations corresponding to a limiting Hamiltonian in
[Kra16, CK17]. For the results in Theorems 2.6 and 2.7, considering moderate deviations
for the pair (mn(t), qn(t)), we will follow a similar strategy and we will refer to the large
deviation principle in [CK17, Appendix A]. For the results in Theorems 2.8–2.12 stated
for the process mn(t) only, we need a more sophisticated large deviation result, which is
based on the abstract framework introduced in [FK06]. We will recall the notions needed
for these results in Appendix A.

In both settings, however, a main ingredient is the convergence of Hamiltonians. There-
fore, we start by deriving an expansion for the Hamiltonian associated to a generic
time-space scaling of the fluctuation process. We will then use such an expansion to
obtain the results stated in Theorems 2.6 and 2.7. For Theorems 2.8–2.12, we need
additional methods to obtain a limiting Hamiltonian, that will be introduced in Sections
4 and 5 below.
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SCALING
EXPONENT

REGIME RESCALED PROCESS LIMITING THEOREM

α = 0 all β
all B

(mn(t), qn(t))
LDP at speed n with rate

function (2.4)

α ∈
(
0, 12
) all β

all B
(nαmn(t), nα(qn(t)− tanh(βB)))

LDP at speed n1−2α with
rate function (2.7)

β > 1
B < g2(β)

(nα(mn(t)−m), nα(qn(t)− q)) LDP at speed n1−2α with
rate function (2.12)

α = 1
2

all β
B > g1(β)

(
n1/2mn(t), n1/2(qn(t)− tanh(βB))

)
CLT

weak convergence to the
unique solution of a linear

diffusion equation
(see [CDP12, Prop. 2.7])β > 1

B < g2(β)

(
n1/2(mn(t)−m), n1/2(qn(t)− q)

)
Table 1: Non-critical fluctuations for the order parameter of the random field

Curie-Weiss spin-flip dynamics

3.1 Expansion of the Hamiltonian

Let (m, q) be a stationary solution of equation (2.5). We consider the fluctuation process(
bn (mn(bνnt)−m) , bn (qn(bνnt)− q)

)
. Its generator An can be deduced from (2.2) and is

given by

Anf(x, y) =
bνnn

4

[
1 + ηn +m+ q + (x+ y)b−1n

]
e−β(xb

−1
n +m+B)×

×
[
f
(
x− 2bnn

−1, y − 2bnn
−1)− f(x, y)

]
+
bνnn

4

[
1 + ηn −m− q − (x+ y)b−1n

]
eβ(xb

−1
n +m+B)×

×
[
f
(
x+ 2bnn

−1, y + 2bnn
−1)− f(x, y)

]
+
bνnn

4

[
1− ηn +m− q + (x− y)b−1n

]
e−β(xb

−1
n +m−B)×

×
[
f
(
x− 2bnn

−1, y + 2bnn
−1)− f(x, y)

]
+
bνnn

4

[
1− ηn −m+ q − (x− y)b−1n

]
eβ(xb

−1
n +m−B)×

×
[
f
(
x+ 2bnn

−1, y − 2bnn
−1)− f(x, y)

]
.

Therefore, at speed nb−δn , the Hamiltonian

Hnf = bδnn
−1e−nb

−δ
n fAne

nb−δn f (3.1)

results in

Hnf(x, y) =
bν+δn

4

[
1 + ηn +m+ q + (x+ y)b−1n

]
e−β(xb

−1
n +m+B)×

×
[
enb

−δ
n [f(x−2bnn−1,y−2bnn−1)−f(x,y)] − 1

]
+
bν+δn

4

[
1 + ηn −m− q − (x+ y)b−1n

]
eβ(xb

−1
n +m+B)×
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SCALING
EXPONENT

REGIME
RESCALED
PROCESS

LIMITING THEOREM

α = 1
4

β > 1, B = g1(β) n1/4mn
(
n1/4t

)
weak convergence to the

process

Y (t) = 2Xt

with

X ∼ N(0, sinh2(βB))

(see [CDP12, Thm. 2.12])

α ∈
(
0, 16
)

1 < β ≤ 3
2

, B = g1(β) nαmn
(
n2αt

) LDP at speed n1−4α with
rate function (2.13)

βn = β + κn, Bn = B + θn
where

B = g1(β), 1 < β ≤ 3
2

κnn2α → κ, θnn2α → θ

nαmn
(
n2αt

) LDP at speed n1−4α with
rate function (2.15)

α ∈
(
0, 1

10

)

β = 3
2

, B = g1(β) nαmn
(
n4αt

) LDP at speed n1−6α with
rate function (2.14)

βn = 3
2
+ κn, Bn = g1(

3
2
) + θn

where

βn = cosh2(βnBn), ∀n ∈ N
κnn2α → κ, θnn2α → θ

nαmn
(
n4αt

) LDP at speed n1−6α with
rate function (2.16)

βn = 3
2
+ κn, Bn = g1(

3
2
) + θn

where

κnn4α → κ, θnn4α → θ

nαmn
(
n4αt

) LDP at speed n1−6α with
rate function (2.18)

Table 2: Critical fluctuations for the order parameter of the random field Curie-Weiss
spin-flip dynamics

×
[
enb

−δ
n [f(x+2bnn

−1,y+2bnn
−1)−f(x,y)] − 1

]
+
bν+δn

4

[
1− ηn +m− q + (x− y)b−1n

]
e−β(xb

−1
n +m−B)×

×
[
enb

−δ
n [f(x−2bnn−1,y+2bnn

−1)−f(x,y)] − 1
]

+
bν+δn

4

[
1− ηn −m+ q − (x− y)b−1n

]
eβ(xb

−1
n +m−B)×

×
[
enb

−δ
n [f(x+2bnn

−1,y−2bnn−1)−f(x,y)] − 1
]
.
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Let ∇f(x, y) = (fx(x, y), fy(x, y))ᵀ be the gradient of f . Moreover, denote

1± =

(
1 ±1

±1 1

)
and e± =

(
1

±1

)
.

We Taylor expand the exponential functions containing f up to second order:

exp
{
nb−δn

[
f
(
x± 2bnn

−1, y ± 2bnn
−1)− f(x, y)

]}
− 1

= ±2b−δ+1
n 〈e+,∇f(x, y)〉+ 2b−2δ+2

n 〈1+∇f(x, y),∇f(x, y)〉+ o
(
b−2δ+2
n

)
and

exp
{
nb−δn

[
f
(
x± 2bnn

−1, y ∓ 2bnn
−1)− f(x, y)

]}
− 1

= ±2b−δ+1
n 〈e−,∇f(x, y)〉+ 2b−2δ+2

n 〈1−∇f(x, y),∇f(x, y)〉+ o
(
b−2δ+2
n

)
.

To write down the intermediate result after Taylor expansion, we introduce the functions

G±n,1,β,B(x, y) = (1± ηn) cosh[β(x±B)]− (x± y) sinh[β(x±B)]

G±n,2,β,B(x, y) = (1± ηn) sinh[β(x±B)]− (x± y) cosh[β(x±B)]
(3.2)

and the matrix

Gn,1,β,B(x, y) =

(
G+
n,1,β,B(x, y) +G−n,1,β,B(x, y) G+

n,1,β,B(x, y)−G−n,1,β,B(x, y)

G+
n,1,β,B(x, y)−G−n,1,β,B(x, y) G+

n,1,β,B(x, y) +G−n,1,β,B(x, y)

)
,

which are the finite-volume analogues of (2.3) and (2.9). In what follows, not to clutter our
formulas we will drop subscripts highlighting the dependence on the inverse temperature
β and the magnetic field B. A tedious but straightforward calculation yields

Hnf(x, y) = bν+1
n 〈

(
G+
n,2

(
xb−1n +m, yb−1n + q

)
+G−n,2

(
xb−1n +m, yb−1n + q

)
G+
n,2

(
xb−1n +m, yb−1n + q

)
−G−n,2

(
xb−1n +m, yb−1n + q

)) ,∇f(x, y)〉

+ bν−δ+2
n 〈Gn,1(xb−1n +m, yb−1n + q)∇f(x, y),∇f(x, y)〉

+ o
(
bν−δ+2
n

)
.

To have an interesting reminder in the limit, we need δ = ν + 2. This gives

Hnf(x, y) = bν+1
n 〈

(
G+
n,2

(
xb−1n +m, yb−1n + q

)
+G−n,2

(
xb−1n +m, yb−1n + q

)
G+
n,2

(
xb−1n +m, yb−1n + q

)
−G−n,2

(
xb−1n +m, yb−1n + q

)) ,∇f(x, y)〉

+ 〈Gn,1(xb−1n +m, yb−1n + q)∇f(x, y),∇f(x, y)〉+ o (1) . (3.3)

In the sequel we will Taylor expand G±n,1 and G±n,2 around (m, q). Therefore we need the
derivatives of the G’s. By direct computation, we get the following lemma.

Lemma 3.1. Let G±n,1 and G±n,2 be defined by (3.2). Then, we obtain

∂k

∂xk
(
G+
n,2 +G−n,2

)
(x, y)

=



βk
(
G+

2 +G−2
)

(x, y)− 2kβk−1 sinh(βx) cosh(βB)

+2βk ηn cosh(βx) sinh(βB) if k is even,

βk
(
G+

1 +G−1
)

(x, y)− 2kβk−1 cosh(βx) cosh(βB)

+2βk ηn sinh(βx) sinh(βB) if k is odd,
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∂k

∂xk
(
G+
n,2 −G

−
n,2

)
(x, y)

=



βk
(
G+

2 −G
−
2

)
(x, y)− 2kβk−1 cosh(βx) sinh(βB)

+2βk ηn sinh(βx) cosh(βB) if k is even,

βk
(
G+

1 −G
−
1

)
(x, y)− 2kβk−1 sinh(βx) sinh(βB)

+2βk ηn cosh(βx) cosh(βB) if k is odd,

∂

∂y
G±n,1(x, y) = ∓ sinh(β(x±B)),

∂

∂y
G±n,2(x, y) = ∓ cosh(β(x±B)),

∂k+1

∂xk∂y

(
G+
n,2 +G−n,2

)
(x, y) =

−2βk sinh(βx) sinh(βB) if k is even,

−2βk cosh(βx) sinh(βB) if k is odd,

and

∂k+1

∂xk∂y

(
G+
n,2 −G

−
n,2

)
(x, y) =

−2βk cosh(βx) cosh(βB) if k is even,

−2βk sinh(βx) cosh(βB) if k is odd.

Note that the functions G, whenever differentiated twice in the y direction, equal zero.
For the sake of readability, we again put the terms of the Taylor expansions of G±n,1 and

G±n,2 in matrix form. For k ∈ N, k ≥ 1, let us denote

DkGn,2(x, y) :=

(
∂k

∂xk
(G+

n,2 +G−n,2)(x, y) ∂k

∂xk−1∂y
(G+

n,2 +G−n,2)(x, y)
∂k

∂xk
(G+

n,2 −G
−
n,2)(x, y) ∂k

∂xk−1∂y
(G+

n,2 −G
−
n,2)(x, y)

)

and

DkG2(x, y) :=

(
∂k

∂xk
(G+

2 +G−2 )(x, y) ∂k

∂xk−1∂y
(G+

2 +G−2 )(x, y)
∂k

∂xk
(G+

2 −G
−
2 )(x, y) ∂k

∂xk−1∂y
(G+

2 −G
−
2 )(x, y)

)
,

where G±n,2 are defined in (3.2) and G±2 in (2.3). Moreover, set

Nk :=

(
∂k

∂xk
cosh(βx) sinh(βB) 0

∂k

∂xk
sinh(βx) cosh(βB) 0

)
.

By Lemma 3.1, it follows that DkGn,2(x, y) = DkG2(x, y) + 2ηnN
k, for all k ≥ 1. We obtain

the following expansion.

Lemma 3.2. For f ∈ C3
c (R2), we have

Hnf(x, y) = bν+1
n 〈

(
G+

2 (m, q) +G−2 (m, q)

G+
2 (m, q)−G−2 (m, q)

)
,∇f(x, y)〉 (3.4)

+ 2bν+1
n ηn〈

(
cosh(βm) sinh(βB)

sinh(βm) cosh(βB)

)
,∇f(x, y)〉 (3.5)

+

5∑
k=1

bν+1−k
n

k!
〈DkG2(m, q)

(
xk

kxk−1y

)
,∇f(x, y)〉 (3.6)

+ 2ηnb
ν+1
n

5∑
k=1

b−kn
k!
〈Nk(m, q)

(
xk

kxk−1y

)
,∇f(x, y)〉+ o(bν−4n ) (3.7)

+ 〈G1(m, q)∇f(x, y),∇f(x, y)〉 (3.8)

+ o (1) , (3.9)

where the remainder terms converge to zero uniformly on compact sets.
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Proof. Consider (3.3). We Taylor expand up to fifth order the terms involving G±n,2. This
yields

〈

(
G+
n,2

(
xb−1n +m, yb−1n + q

)
+G−n,2

(
xb−1n +m, yb−1n + q

)
G+
n,2

(
xb−1n +m, yb−1n + q

)
−G−n,2

(
xb−1n +m, yb−1n + q

)) ,∇f(x, y)〉

= 〈
(
G+
n,2(m, q) +G−n,2(m, q)

G+
n,2(m, q)−G−n,2(m, q)

)
,∇f(x, y)〉

+

5∑
k=1

b−kn
k!
〈DkGn,2(m, q)

(
xk

kxk−1y

)
,∇f(x, y)〉+ o(b−5n )

= 〈
(
G+

2 (m, q) +G−2 (m, q)

G+
2 (m, q)−G−2 (m, q)

)
,∇f(x, y)〉+ 2ηn〈

(
cosh(βm) sinh(βB)

sinh(βm) cosh(βB)

)
,∇f(x, y)〉

+

5∑
k=1

b−kn
k!
〈DkG2(m, q)

(
xk

kxk−1y

)
,∇f(x, y)〉

+ 2ηn

5∑
k=1

b−kn
k!
〈Nk(m, q)

(
xk

kxk−1y

)
,∇f(x, y)〉+ o(b−5n ).

Multiplying by bν+1
n we obtain (3.4)-(3.7). Finally, an expansion of the Gn,1 matrix shows

that only the zero-th order term remains, giving (3.8).

Observe that o(1) + o(bν−4n ) (cf. lines (3.7) and (3.9)) includes all the remainder terms
coming from first Taylor expanding the exponentials, and then the functions G±n,1, G

±
n,2.

For any f ∈ C3
c (R2), let us denote by Rexp

n,f and RGn,f these two contributions. In what
follows we will need a more accurate control on these remainders. For this reason we
state the following lemma.

Lemma 3.3. Let f ∈ C3
c (R2) and let ν ∈ {0, 2, 4}. Set Kn,0 = [− log1/2 bn, log1/2 bn]2.

There exists a positive constant C (dependent on the sup-norms of the first to third order
partial derivatives of f , but not on n) such that we have

sup
(x,y)∈Kn,0

∣∣∣Rexp
n,f (x, y) +RGn,f (x, y)

∣∣∣ ≤ C (n−1bν+2
n + bν−5n log3 bn

)
. (3.10)

Proof. We study the Taylor expansion of the exponential functions first. We treat explicitly
only the case of

b2ν+2
n

4

[
exp

{
nb−(ν+2)
n [f(x+ 2bnn

−1, y + 2bnn
−1)− f(x, y)]

}
− 1
]
,

the others being analogous. We denote by Rexp,+
n,f the remainder terms coming from

Taylor expanding such a function. To shorten our next formula, we set x = (x, y)ᵀ and
ξ = (ξ1, ξ2)ᵀ. By Lagrange’s form of the Taylor expansion, there is some ξ ∈ R2 with
ξ1 ∈ (x, x+ 2bnn

−1) and ξ2 ∈ (y, y + 2bnn
−1) and

Rexp,+
n,f (x) =

n−1bν+2
n

2
〈D2f(x)e+, e+〉

+ exp
{
nb−(ν+2)
n [f(ξ)− f(x)]

}{
2b−(ν+1)
n

∑
j1+j2=3

(∂1f(ξ))j1(∂2f(ξ))j2

j1!j2!

+ bnn
−1〈∇f(ξ), e+〉〈D2f(ξ)e+, e+〉+ 2bν+3

n n−2
∑

j1+j2=3

∂j11 ∂
j2
2 f(ξ)

j1!j2!

}
.
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Observe that, by the mean-value theorem, we can control the exponential. Indeed,
there exists a point z ∈ R2, on the line-segment connecting ξ and x, for which we have
f(ξ)− f(x) = 〈∇f(z), ξ − x〉. Since ξ−x ∈ (0, 2bnn

−1)2, we can estimate |f(ξ)− f(x)| ≤
4(‖∂1f‖ ∨ ‖∂2f‖)bnn−1 and, in turn, we get

exp
{
nb−(ν+2)
n [f(ξ)− f(x)]

}
≤ exp

{
4b−(ν+1)
n (‖∂1f‖ ∨ ‖∂2f‖)

}
≤ exp {4(‖∂1f‖ ∨ ‖∂2f‖)} .

Therefore, we can find positive constants c1 and c2 (depending on the sup-norms of the
first, second and third order partial derivatives of f , but not on n), such that

sup
(x,y)∈R2

∣∣∣Rexp,+
n,f (x, y)

∣∣∣ ≤ c1 n−1bν+2
n + c2 b

−(ν+1)
n .

Analogously, we get the same control for the other three exponential terms. We conclude

sup
(x,y)∈R2

∣∣∣Rexp
n,f (x, y)

∣∣∣ ≤ 4
[
c1 n

−1bν+2
n + c2 b

−(ν+1)
n

]
.

We focus now on the remainder terms relative to the expansion of the G’s function. We
have

RGn,f (x, y) =
bν−5n

6!
〈D6G2(ζ1, ζ2)

(
x6

6x5−1y

)
,∇f(x, y)〉,

with ζ1 ∈ (m,m+ xb−1n ) and ζ2 ∈ (q, q + yb−1n ). We easily derive the following bound

sup
(x,y)∈K0,n

∣∣RGn,f (x, y)
∣∣ ≤ c3 bν−5n log3 bn,

where c3 = c3(‖∂1f‖, ‖∂2f‖) is a suitable positive constant, independent of n. The
conclusion then follows.

Turning back to the expansion of Hn in Lemma 3.2, we analyze now the terms containing
ηn that appear in (3.5) and (3.7). As cosh is a positive function and bn → ∞, any
contribution by ηn is dominated by the one in (3.5). To make sure that this term vanishes,
we apply the Law of Iterated Logarithm.

Theorem 3.4 (Law of Iterated Logarithm, [Kal02, Corollary 14.8]). We have

lim sup
n→∞

ηn
√
n√

log log n
=
√

2 and lim inf
n→∞

ηn
√
n√

log log n
= −
√

2 µ-a.s..

As an immediate corollary, we obtain conditions ensuring that bν+1
n ηn converges to zero

almost surely.

Corollary 3.5. Let ν ∈ N. If {bn}n≥1 is a sequence such that

b2ν+2
n n−1 log log n→ 0, (3.11)

then bν+1
n ηn → 0 µ-almost surely.

Note that condition (3.11) corresponds to the growth assumption in Theorems 2.6 and
2.7 for ν = 0, in Theorems 2.8 and 2.10 for ν = 2 and in Theorems 2.9, 2.11 and 2.12
for ν = 4. The result of Lemma 3.2, combined with the corollary, yields a preliminary
expansion for

Hnf = bν+2
n n−1e−nb

−ν−2
n fAne

nb−ν−2
n f ,

which is obtained from the generic Hamiltonian (3.1) after the choice δ = ν + 2 we made
to get a non-trivial expansion with controlled remainder.

EJP 23 (2018), paper 21.
Page 18/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP117
http://www.imstat.org/ejp/


Path-space moderate deviation principles for the RFCW model

Proposition 3.6. Let f ∈ C3
c (R2) and ν ∈ N. Moreover, let {bn}n≥1 be a sequence such

that
bn →∞ and b2ν+2

n n−1 log log n→ 0.

Then, µ-almost surely, we have

Hnf(x, y) = bν+1
n 〈

(
G+

2 (m, q) +G−2 (m, q)

G+
2 (m, q)−G−2 (m, q)

)
,∇f(x, y)〉+ o(1) + o(bν−4n ) (3.12)

+

5∑
k=1

bν+1−k
n

k!
〈DkG2(m, q)

(
xk

kxk−1y

)
,∇f(x, y)〉 (3.13)

+ 〈G1(m, q)∇f(x, y),∇f(x, y)〉. (3.14)

In the setting of our main theorems ν ∈ {0, 2, 4} and (m, q) is a stationary point. This
implies that all contributions on the right hand side of (3.12) vanish almost surely and
uniformly on compact sets as n→∞. Furthermore, the expression in (3.14) is constant
and we do not need to consider this expression any further.
Thus, the analysis for our main results focuses on the expressions in (3.13). The next
lemma gives expressions for the matrices DkG2(m, q).

Lemma 3.7. Let k ∈ N, k ≥ 1.

(a) If (m, q) is a generic point, then

DkG2(m, q) =



βk

(
G+

2 (m, q) +G−2 (m, q) 0

G+
2 (m, q)−G−2 (m, q) 0

)

−2βk−1

(
k sinh(βm) cosh(βB) cosh(βm) sinh(βB)

k cosh(βm) sinh(βB) sinh(βm) cosh(βB)

)
if k is even,

βk

(
G+

1 (m, q) +G−1 (m, q) 0

G+
1 (m, q)−G−1 (m, q) 0

)

−2βk−1

(
k cosh(βm) cosh(βB) sinh(βm) sinh(βB)

k sinh(βm) sinh(βB) cosh(βm) cosh(βB)

)
if k is odd.

(b) If (m, q) is a stationary point, then

DkG2(m, q) =



−2βk−1

(
k sinh(βm) cosh(βB) cosh(βm) sinh(βB)

k cosh(βm) sinh(βB) sinh(βm) cosh(βB)

)
if k is even,

βk

(
G+

1 (m, q) +G−1 (m, q) 0

G+
1 (m, q)−G−1 (m, q) 0

)

−2βk−1

(
k cosh(βm) cosh(βB) sinh(βm) sinh(βB)

k sinh(βm) sinh(βB) cosh(βm) cosh(βB)

)
if k is odd.

(c) If (m, q) = (0, tanh(βB)), we additionally obtain G+
1 (0, tanh(βB)) = G−1 (0, tanh(βB))

and then

DkG2(m, q) =


−2βk−1 sinh(βB)

(
0 1

k 0

)
if k is even,

2βk

cosh(βB)

(
1 0

0 0

)
− 2βk−1 cosh(βB)

(
k 0

0 1

)
if k is odd.
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(d) If (m, q) = (0, tanh(βB)) and β = cosh2(βB), then

DkG2(m, q) =


−2βk−1 sinh(βB)

(
0 1

k 0

)
if k is even,

−2βk−1 cosh(βB)

(
k − 1 0

0 1

)
if k is odd.

(e) If (m, q) = (0, tanh(βB)), (β,B) = ( 3
2 ,

2
3 arccosh(

√
3
2 )) and k = 3, then

D3G2(m, q) = −2β2 cosh(βB)

(
2 0

0 1

)
.

We are now ready to prove Theorems 2.6 and 2.7. The large deviation principles follow
from the abstract results in [CK17, Appendix A].

3.2 Proof of Theorems 2.6 and 2.7

The setting of Theorems 2.6 and 2.7 corresponds to that of Proposition 3.6 with ν = 0.
Having chosen a stationary point (m, q) and applying Lemma 3.7(b), we find

Hnf(x) = 〈DG2(m, q)x,∇f(x)〉+ 〈G1(m, q)∇f(x),∇f(x)〉+ o(1)

= 〈(βĜ1(m, q)− 2B(m))x,∇f(x)〉+ 〈G1(m, q)∇f(x),∇f(x)〉+ o(1),

where the matrices Ĝ1 and B are defined in (2.10) and (2.11) respectively. The remainder
o(1) is uniform on compact sets. Therefore, for f ∈ C2

c (R2), Hnf converges uniformly to
Hf(x) = H(x,∇f(x)), where

H(x,p) = 〈(βĜ1(m, q)− 2B(m))x,p〉+ 〈G1(m, q)p,p〉.

The large deviation results follow by Theorem A.14, Lemma 3.4 and Proposition 3.5 in
[CK17]. The Lagrangian is found by taking the Legendre-Fenchel transform of H and is
given by

L(x,v) :=
1

4
〈G−11 (m, q)[v − (βĜ1(m, q)− 2B(m))x],v − (βĜ1(m, q)− 2B(m))x〉.

Observe that, in the case when (m, q) = (0, tanh(βB)), we get

L(x,v) :=
cosh(βB)

8

∣∣∣∣∣v − 2

(
β−cosh2(βB)

cosh(βB) 0

0 − cosh(βB)

)
x

∣∣∣∣∣
2

.

This concludes the proof.

4 Projection on a one-dimension subspace and moderate devia-
tions at criticality

For the proofs of Theorems 2.8 and 2.9, we consider the stationary point (m, q) =

(0, tanh(βB)). Recall that, given the correct assumptions on the sequence {bn}n≥1, the
expression for the Hamiltonian in Proposition 3.6 reduces µ-a.s. to

Hnf(x, y) =

5∑
k=1

bν+1−k
n

k!
〈DkG2(0, tanh(βB))

(
xk

kxk−1y

)
,∇f(x, y)〉

+ 〈G1(0, tanh(βB))∇f(x, y),∇f(x, y)〉+ o(1) + o(bν−4n ). (4.1)
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If ν ∈ {2, 4}, the term corresponding to D1G2(0, tanh(βB)) is diverging and, more pre-
cisely, is diverging through a term containing the y variable (see Lemma 3.7(d)). We have
a natural time-scale separation for the evolutions of our variables: y is fast and converges
very quickly to zero, whereas x is slow and its limiting behavior can be characterized
after suitably “averaging out” the dynamics of y. Corresponding to this observation, our
aim is to prove that the sequence {Hn}n≥1 admits a limiting operator H and, additionally,
the graph of this limit depends only on the x variable. In other words, we want to prove
a path-space large deviation principle for a projected process.

The projection on a one-dimensional subspace relies on the formal and recursive calculus
explained in the next section (an analogous approach will be implemented also in
Section 5.1 to achieve the large deviation principles of Theorems 2.10–2.12). We want
to mention that the results presented in Sections 4.1 and 5.1 take inspiration from the
perturbation theory for Markov processes introduced in [PSV77].

4.1 Formal calculus with operators and a recursive structure

We start by introducing a formal structure allowing to write the drift component in (4.1)
in abstract form. Afterwards, we introduce a method based on this abstract structure to
perturb a function ψ depending on the only variable x to a function Fn,ψ depending on
(x, y), so that the perturbation exactly cancels out the contributions of the drift operators
to the y variable.

Consider the vector spaces of functions

V :=

{
ψ : R2 → R

∣∣∣∣∣ψ is of the type
r∑
i=0

yi ψi(x), with ψi ∈ C∞c (R)

}

and Vi :=
{
ψ : R2 → R

∣∣ψ is of the type yi ψi(x), with ψi ∈ C∞c (R)
}
, for i ∈ N. More-

over, for notational convenience, we will denote

Vodd :=
⋃
i odd

Vi, Veven :=
⋃
i even

Vi, Veven\{0} :=
⋃

i even,i6=0

Vi

and
V≤j :=

⋃
i≤j

Vi.

Next we define a collection of operators on V . Let a ∈ R and g : R2 → R a differentiable
function. We consider the operators

Q+
k [a]g(x, y) := axk−1ygx(x, y)

Q−k [a]g(x, y) := axkgy(x, y)

]
for even k (4.2)

and
Q0
k[a]g(x, y) := axkgx(x, y)

Q1
k[a]g(x, y) := axk−1ygy(x, y)

]
for odd k. (4.3)

Note that the drift component in (4.1) can be rewritten in terms of operators of the form
(4.2) and (4.3). The result of the following lemma is immediate.

Lemma 4.1. For all a ∈ R and i ∈ N, we have

Q+
k [a] : Vi → Vi+1 and Q−k [a] : Vi → Vi−1, for even k

and
Q0
k[a],Q1

k[a] : Vi → Vi, for odd k.
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In particular, note that all operators map V into V . Furthermore, the operators Q1
k, with

odd k, have V0 as a kernel. We will see that Q1
1 plays a special role.

Assumption 4.2. Assume there exist real constants (a+k )k≥1, (a−k )k≥1 if k is even and
a01 = 0, (a0k)k>1, (a1k)k≥1 if k is odd, for which, given a continuously differentiable function
g : R2 → R, we can write

• for even k,

Qkg = Q+
k g +Q−k g with

{
Q+
k g(x, y) := Q+

k [a+k ]g(x, y),

Q−k g(x, y) := Q−k [a−k ]g(x, y),

• for odd k,

Qkg = Q0
kg +Q1

kg with

{
Q0
kg(x, y) := Q0

k[a0k]g(x, y),

Q1
kg(x, y) := Q1

k[a1k]g(x, y).

Observe that the drift term in (4.1) is of the form

Q(n)ψ(x, y) :=

ν+1∑
k=1

bν+1−k
n Qkψ(x, y).

We aim at abstractly showing that, for any function ψ ∈ V0 and sequence bn →∞, we
can find a perturbation Fn,ψ ∈ V of ψ for which there exists ψ̃ ∈ V0 such that

ψ̃(x)−Q(n)Fn,ψ(x, y) = o(1).

We will construct the perturbation in an inductive fashion. We start by motivating the
first step of the construction. Let ψ ∈ V0, i.e. a function only depending on x. Then:

(1) Q1ψ = 0, but Q2ψ 6= 0 and moreover Q2ψ ∈ V1 because of the action of Q+
2 .

(2) The leading order term in Q(n)ψ is given by bν−1n Q2ψ.

Next, we consider a perturbation ψ + b−1n ψ[1] of ψ, with ψ[1] and the order b−1n chosen in
the following way:

(3) The action of Q(n) on b−1n ψ[1] yields a leading order term bν−1n Q1ψ[1], which matches
the order of bν−1n Q2ψ in step (2) above.

(4) We choose ψ[1] so that Q2ψ +Q1ψ[1] = 0.

At this point, the leading order term of Q(n)(ψ+ b−1n ψ[1]) equals bν−2n (Q3ψ +Q2ψ[1]) and
the construction proceeds by considering ψ + b−1n ψ[1] + b−2n ψ[2], where ψ[2] is chosen so
that

(5) Q3ψ +Q2ψ[1] +Q1ψ[2] ∈ V0.

Note that we can only assure that the sum is in V0. This is due to the specific structure
of the operators that we will discuss in Lemma 4.6.
Now there are two possibilities

(a) Q3ψ +Q2ψ[1] +Q1ψ[2] 6= 0. In this case ν = 2 is the maximal ν that we can use for
this particular problem. In addition, the outcome of this sum will be in the form
cx3ψ′(x) and hence determine the limiting drift in the Hamiltonian.
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(b) Q3ψ +Q2ψ[1] +Q1ψ[2] = 0. In this case, ν = 2 is a possible option. However, we can
use a larger ν and proceed with perturbing ψ with even higher order terms.

As a final outcome, our perturbation of ψ ∈ V0 will be of the form

Fn,ψ(x, y) :=

ν∑
l=0

b−ln ψ[l](x, y), (4.4)

where we write ψ[0] = ψ for notational convenience. Our next step is to introduce the
procedure that tells us how to choose ψ[r + 1] if we know ψ and ψ[1], . . . , ψ[r].

Lemma 4.3. Let ψ ∈ V . Define the maps

P0 : V → V0, with P0(ψ)(x, y) := ψ0(x),

and

P : V →
⋃
i≥1

Vi, with P (ψ)(x, y) := −
r∑
i=1

yi
ψi(x)

ia11
.

Then, we have ψ(x, y) +Q1
1P (ψ)(x, y) = ψ0(x).

Proof. By direct computation, we get

Q1
1P (ψ)(x, y) = a11y∂y[P (ψ)(x, y)] = −

r∑
i=1

yiψi(x),

from which the conclusion follows.

Starting from ψ = ψ[0] ∈ V0, we define recursively

ψ[r] = P

(
r−1∑
l=0

Qr+1−lψ[l]

)
and φ[r] =

r−1∑
l=0

Qr+1−lψ[l], (4.5)

for all 1 ≤ r ≤ ν.

Remark 4.4. For all l ≥ 1, ψ[l] = Pφ[l] and, by Lemma 4.3, φ[l] +Q1
1ψ[l] = P0φ[l], which

is exactly the result that we aimed to find in steps (4) and (5) above.

Next, we evaluate the action of Q(n) applied to our perturbation of ψ.

Proposition 4.5. Fix ν ≥ 2 an even natural number and suppose that Assumption 4.2
holds true for this ν. Consider the operator

Q(n)ψ(x, y) :=

ν+1∑
k=1

bν+1−k
n Qkψ(x, y) (4.6)

and, for ψ = ψ[0] ∈ V0, define Fn,ψ(x, y) :=
∑ν
l=0 b

−l
n ψ[l](x, y). We have

Q(n)Fn,ψ(x, y) =

ν∑
i=1

bν−in P0φ[i](x) + o(1),

where o(1) is meant according to Definition 2.3.

Proof. We aim at determining the leading order term of

Q(n)Fn,ψ(x, y) =

ν+1∑
k=1

bν+1−k
n QkFn,ψ(x, y)

=

ν+1∑
k=1

ν∑
l=0

bν+1−k−l
n Qkψ[l](x, y) + o(1).
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The remainder o(1) contains lower order terms in the expansion and it is small as b−ln ψ[l]

is uniformly bounded on the state space En for any n ∈ N (see Lemma 4.10). We
re-arrange the first sum by changing indices r = k + l − 1. It yields

Q(n)Fn,ψ(x, y) =

ν∑
r=0

bν−rn

r∑
l=0

Qr−l+1ψ[l](x, y) + o(1).

Observe that the term corresponding to r = 0 vanishes as Q1ψ[0] = 0. By (4.5) and the
properties stated in Remark 4.4, we get

Q(n)Fn,ψ(x, y) =

ν∑
r=1

bν−rn

[
Q1ψ[r](x, y) +

r−1∑
l=0

Qr−l+1ψ[l](x, y)

]
+ o(1)

=

ν∑
r=1

bν−rn

[
Q1ψ[r](x, y) + φ[r](x, y)

]
+ o(1)

=

ν∑
r=1

bν−rn P0φ[r](x) + o(1).

For the cases we are interested in, we will use ν ∈ {2, 4}. Thus, to conclude, we need to
consider the action of P0 on the functions φ[r], for r = 1, . . . , 4. This is the content of the
next two statements.

The functions ψ[r], φ[r] belong to the vector spaces Vi according to the classification
given in the next lemma.

Lemma 4.6. If ψ = ψ[0] = φ[0] ∈ V0, then

ψ[r] ∈

{
V≤r ∩ Veven\{0} if r is even,

V≤r ∩ Vodd if r is odd

and

φ[l] ∈

{
V≤r ∩ Veven if r is even,

V≤r ∩ Vodd if r is odd.

Proof. As all operators Qk map Vi≤k into Vi≤k+1 and the projection P maps V0 to {0}, it
suffices to prove that, for any r ∈ N, ψ[2r] ∈ Veven and ψ[2r + 1] ∈ Vodd.
We proceed by induction. Clearly the result holds true for r = 0. We are left to show the
inductive step. Suppose the claim is valid for all positive integers less than r, we must
prove that, if r is odd (resp. even) and ψ[r] ∈ Vodd (resp. Veven), then ψ[r + 1] ∈ Veven
(resp. Vodd). We stick on the odd r case, the other being similar. By definition, we have

ψ[r + 1] = P

(
r∑
l=0

Qr+2−lψ[l]

)
.

Let us analyze the sum on the right-hand side of the previous formula. It is composed of
terms of two types: either l is even or it is odd.

• If l even, then by inductive hypothesis ψ[l] ∈ Veven. Additionally, r + 2 − l is
odd, so that by Lemma 4.1, the operator Qk maps Veven to Veven and therefore,
Qr+2−lψ[l] ∈ Veven.

• If l odd, then by inductive hypothesis ψ[l] ∈ Vodd. Additionally, r+2−l is even, so that
by Lemma 4.1, the operatorQk maps Vodd to Veven and therefore, Qr+2−lψ[l] ∈ Veven.
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This yields that ψ[r + 1] ∈ Veven, giving the induction step.

To evaluate the limiting drift from the expression in Proposition 4.5, we need to evaluate
P0 in the functions φ[i], with i ∈ N, i ≤ ν. From Lemma 4.6, we have φ[2i + 1] ∈ Vodd
which is in the kernel of P0. An explicit calculation for the even i is done in the next
lemma.

Lemma 4.7. Consider the setting of Proposition 4.5. For ψ = ψ[0] ∈ V0, we have
P0φ[l] = 0 if l is odd and

P0φ[l] =


Q0

3ψ +Q−2 PQ
+
2 ψ if l = 2,

Q0
5ψ +Q−2 PQ

+
4 ψ +Q−4 PQ

+
2 ψ +Q−2 PQ1

3PQ+
2 ψ

+Q−2 P (Q0
3 +Q−2 PQ

+
2 )PQ+

2 ψ if l = 4.

(4.7)

Proof. By Lemma 4.6, if l is odd, then φ[l] ∈ Vodd and, as a consequence, P0φ[l] = 0. We
are left to understand how the even terms contribute to V0. We exploit the recursive
structure of the functions ψ[l] and φ[l].
For k = 2, we find Q3ψ +Q−2 ψ[1], as Q+

2 always maps into the kernel of P0. For k = 4

we find Q5ψ +Q−4 ψ[1] +Q−2 ψ[3], as ψ[2] has no V0 component and Q3 maps Vi into Vi for
all i. Thus, we obtain

Q0
5ψ +Q−4 P (Q+

2 ψ) +Q−2 P
(
Q4ψ +Q3ψ[1] +Q−2 ψ[2]

)
= Q0

5ψ +Q−4 P (Q+
2 ψ) +Q−2 P

[
Q+

4 ψ +Q3P (Q+
2 ψ) +Q−2 P (Q+

2 P (Q+
2 ψ))

]
.

A straightforward computation yields the following result that will be useful for the
computation of the constants involved in the operators in the previous lemma.

Lemma 4.8. Given ψ ∈ V , it holds

Q−k PQ
+
j ψ(x, y) = −

a−k a
+
j

a11
xk+j−1ψx(x, y),

Q−2 PQ1
3PQ+

2 ψ(x, y) =
a−2 a

1
3a

+
2

(a11)2
x5ψx(x, y).

We see in (4.7) that P0φ[4] contains a part resembling P0φ[2]. On the one hand, if
P0φ[2] = 0, then P0φ[4] has a much simpler structure. On the other, whenever P0φ[2] 6= 0,
P0φ[4] is not needed as in (3.13) there are terms of higher order that dominate. As
a consequence, we will only ever work with the simplified result for P0φ[4]. Similar
observations involving higher order recursions can be made for any arbitrary P0φ[2l]

with l ∈ N, l ≥ 3. By combining these remarks with the type of calculations made for
getting the expressions presented in Lemma 4.8, we conjecture the following general
structure.

Conjecture 4.9. Let Assumption 4.2 be satisfied with ν even. Suppose that P0φ[2l] = 0
for all l ∈ N with 2l < ν. Then

P0ψ[ν](x, y)

=

a0ν+1 +
∑
n≥2

∑
i1+···+in=ν+n

i1,in even
ij odd and 6=1 for j /∈{1,n}

(−1)n−1
a−i1

(∏n−1
j=2 a

1
ij

)
a+in

(a11)
n−1

xν+1ψx(x) + o(1). (4.8)

We neither prove nor use (4.8), but we believe it is of interest from a structural point of
view and deserves to be stated.
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4.2 Proofs of Theorems 2.8 and 2.9

The formal calculus we developed in Section 4.1 is used to formally identify the limiting
operator H of the sequence Hn given in (4.1). However, it is not possible to show
directly H ⊆ LIMnHn as in the proof of Theorems 2.6 and 2.7, since the most functions
ψ ∈ C∞c (R) cause supn ‖HnFn,ψ‖ ≮∞ and thus we can not prove LIMnHnFn,ψ = Hψ.
To circumvent the problem, we relax our definition of limiting operator. In particular, we
introduce two limiting Hamiltonians H† and H‡, approximating H from above and below
respectively, and then we characterize H by matching upper and lower bound.
We summarize the notions needed for our result and the abstract machinery used for the
proof of a large deviation principle via well-posedness of Hamilton-Jacobi equations in
Appendix A. We rely on Theorem A.9 for which we must check the following conditions:

(a) The processes {(bnmn(bνnt), bn (qn(bνnt)− tanh(βB)))}t≥0 satisfy an appropriate expo-
nential compact containment condition.

(b) There exist two Hamiltonians H† ⊆ Cl(R2)×Cb(R2) and H‡ ⊆ Cu(R2)×Cb(R2) such
that H† ⊆ ex− subLIMnHn and H‡ ⊆ ex− superLIMnHn.

(c) There is an operator H ⊆ Cb(R) × Cb(R) such that every viscosity subsolution
to f − λH†f = h is a viscosity subsolution to f − λHf = h and such that every
supersolution to f − λH‡f = h is a viscosity supersolution to f − λHf . The operators
H† and H‡ should be thought of as upper and lower bounds for the “true” limiting H
of the sequence Hn.

(d) The comparison principle holds for the Hamilton-Jacobi equation f − λHf = h for all
h ∈ Cb(R) and all λ > 0.

We will start with the verification of (b)+(c), which is based on the expansion in Propo-
sition 3.6 and the formal calculus in Section 4.1. Afterwards, we proceed with the
verification of (a), for which we will use the result of (b). Finally, the form of the operator
H is of the type considered in e.g. [CK17] or [FK06, Section 10.3.3] and thus, the
establishment of (d) is immediate.

Consider the statement of Proposition 3.6. We want to extract the limiting behavior of
the operators Hn presented there. If (m, q) = (0, tanh(βB)) the term in (3.12) vanishes,
whereas the term in (3.14) converges if ∇fn(x, y)

n→∞−−−−→ ∇f(x) uniformly on compact
sets (see Lemma 4.10 below). For the term in (3.13), we use the results from Section 4.1.
For k ∈ {1, . . . , 5}, denote by Qk : C2(R2)→ C1(R2) the operator

(Qkg)(x, y) :=
1

k!
〈DkG2(0, tanh(βB))

(
xk

kxk−1y

)
,∇g(x, y)〉.

Note that, by the diagonal structure of DkG2(0, tanh(βB)) established in Lemma 3.7, we
find

Q1g(x, y) = Q1
1g(x, y) = −2 cosh(βB)ygy(x, y), (4.9)

Q2g(x, y) = Q+
2 g(x, y) +Q−2 g(x, y),

with

{
Q+

2 g(x, y) = −2β sinh(βB)xygx(x, y)

Q−2 g(x, y) = −2β sinh(βB)x2gy(x, y),
(4.10)

Q3g(x, y) = Q0
3g(x, y) +Q1

3g(x, y),
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with

{
Q0

3g(x, y) = − 2
3β

2 cosh(βB)x3gx(x, y)

Q1
3(x, y) = −β2 cosh(βB)x2ygy(x, y),

(4.11)

Q4g(x, y) = Q+
4 g(x, y) +Q−4 g(x, y),

with

{
Q+

4 g(x, y) = − 1
3β

3 sinh(βB)x3ygx(x, y)

Q−4 g(x, y) = − 1
3β

3 sinh(βB)x4gy(x, y),
(4.12)

Q5g(x, y) = Q0
5g(x, y) +Q1

5g(x, y),

with

{
Q0

5g(x, y) = − 1
15β

4 cosh(βB)x5gx(x, y)

Q1
5(x, y) = − 1

12β
4 cosh(βB)x4ygy(x, y).

(4.13)

The operators Qzk, with z ∈ {+,−, 0, 1}, are of the type (4.2) and (4.3) for particular
choices of the constant a ∈ R.

Observe that the term (3.13) has the form (4.6) with Qk = Qk given by (4.9)–(4.13).
Moreover, Assumption 4.2 is satisfied by the Qk’s (k = 1, . . . , 5). For ψ ∈ C∞c (R), we
follow Proposition 4.5 and define approximating functions Fn,ψ thanks to which we can
determine the linear part of the limiting Hamiltonian H. Recall that the quadratic part
of H comes from (3.14) after showing uniform convergence for the gradient.

The next lemma proves uniform convergence for the sequence of perturbation functions
Fn,ψ and for the sequence of the gradients.

Lemma 4.10. Suppose we are either in the setting of Theorem 2.8 and ν = 2 or in the
setting of Theorem 2.9 and ν = 4. For ψ ∈ C∞c (R), define the approximation

Fn,ψ(x, y) :=

ν∑
l=0

b−ln ψ[l](x, y), (4.14)

where ψ[·] are defined recursively according to (4.5). Moreover, let R := [a, b] × [c, d],
with a < b and c < d, be a rectangle in R2. Then Fn,ψ ∈ C∞c (R2), LIMFn,ψ = ψ and

sup
(x,y)∈R∩En

|∇Fn,ψ(x, y)−∇ψ(x)| = 0 (4.15)

for all rectangles R ⊆ R2.

Proof. By Lemma 4.6 we find that ψ[l] ∈ V≤l, i.e. it is of the form ψ[l](x, y) =
∑l
i=0 y

iψ[l]i(x)

with ψ[l]i ∈ C∞c (R). Thus, as bn →∞, we find that

lim
n→∞

sup
(x,y)∈R∩En

|Fn,ψ(x, y)− ψ(x)|+
∣∣∣∣[∂xFn,ψ(x, y)

∂yFn,ψ(x, y)

]
−
[
ψ′(x)

0

]∣∣∣∣ = 0

for all rectangles R ⊆ R2. The second part of this limiting statement establishes (4.15).
To show LIMFn,ψ = ψ, we need the first part of this limiting statement and uniform
boundedness of the sequence Fn,ψ. This final property follows since En ⊆ R× [−2bn, 2bn],
implying that b−ln ψ[l] is bounded for each l.

We start by calculating the terms in (3.13) that contribute to the limit via Proposition 4.5
and Lemma 4.7.
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Lemma 4.11. Let (β,B) satisfy β = cosh2(βB). For f ∈ V , we have(
Q0

3 +Q−2 PQ
+
2

)
f(x, y) =

2

3
β(2β − 3) cosh(βB)x3fx(x, y). (4.16)

Moreover, at the tri-critical point (βtc, Btc), we obtain (Q0
3 +Q−2 PQ

+
2 )f = 0 and

(
Q0

5 +Q−2 PQ
+
4 +Q−4 PQ

+
2 +Q−2 PQ

1
3PQ

+
2

)
f(x, y) = − 9

10

√
3

2
x5fx(x, y). (4.17)

Proof. It suffices to prove the statement for f of the form yig(x), for some function
g ∈ C2(R). Preparing for the use of Lemma 4.8, we list the relevant constants:

a11 = −2 cosh(βB), a±2 = −2β sinh(βB), a13 = −β2 cosh(βB), a±4 = −1

3
β3 sinh(βB).

We prove our first claim. The term Q0
3f is given in (4.11), whereas Lemma 4.8 yields

Q−2 PQ
+
2 f(x, y) = 2β2 sinh(βB) tanh(βB)x3yigx(x).

Combining these two results, we get(
Q0

3 +Q−2 PQ
+
2

)
f(x, y) =

2

3
β2 cosh(βB)

[
3 tanh2(βB)− 1

]
x3fx(x, y).

By using the fundamental identity cosh2− sinh2 = 1 for hyperbolic functions and the fact
we are on the critical curve, simple algebraic manipulations lead to the first conclusion.

We proceed with proving (4.17). The term Q0
5 is defined in (4.13). By Lemma 4.8 we find

Q−2 PQ
+
4 f(x, y) = Q−4 PQ

+
2 f(x, y) =

1

3
β4 tanh(βB) sinh(βB)x5fx(x, y)

and
Q−2 PQ

1
3PQ

+
2 f(x, y) = −β4 tanh(βB) sinh(βB)x5fx(x, y).

Adding the contributions above gives(
Q0

5 +Q−2 PQ
+
4 +Q−4 PQ

+
2 +Q−2 PQ

1
3PQ

+
2

)
f(x, y)

= − 1

15
β4 cosh(βB)

[
5 tanh2(βB) + 1

]
x5fx(x, y).

Plugging the value β = βtc = 3
2 yields the result.

Approximating Hamiltonians and domain extensions. The natural perturbations Fn,ψ of
our functions ψ do not allow for uniform bounds of ‖HnFn,ψ‖. We repair this lack by
cutting off the functions. To this purpose, we introduce a collection of smooth increasing
functions χn : R→ R such that 0 ≤ χ′n ≤ 1 and

χn(z) =


− log log bn + 1 if z ≤ − log log bn

z if − log log bn + 2 ≤ z ≤ log log bn − 2

log log bn − 1 if z ≥ log log bn.

(4.18)

Lemma 4.12. Suppose we are either in the setting of Theorem 2.8 with ν = 2 or in the
setting of Theorem 2.9 with ν = 4. Let ε ∈ (0, 1) and ψ ∈ C∞c (R). Consider the cut-off
(4.18) and define the functions

χn

(
Fn,ψ(x, y)± ε log(1 + x2 + y2)

)
(4.19)

with Fn,ψ as in (4.4)+(4.5). Then,
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(a) For any C > 0 there is an N = N(C) such that, for any n ≥ N , we have χn ≡ id on
the compact set K1 = K1(C) :=

{
(x, y) ∈ R2

∣∣ ε log(1 + x2 + y2) ≤ C
}

.

(b) Let C be a positive constant providing a uniform bound for the sequence {Fn,ψ}n≥1
(cf. Lemma 4.10) and consider the compact set

K2,n :=
{

(x, y) ∈ R2
∣∣∣ ε

2
log(1 + x2 + y2) ≤ max{C, 2 log log bn}

}
.

The function (4.19) is constant outside K2,n.

Proof. We start by proving (a). The function Fn,ψ is uniformly bounded by Lemma 4.10.
Consider an arbitrary C > 0. The mapping (x, y) 7→ Fn,ψ(x, y)± ε log(1 + x2 + y2) is thus
bounded, uniformly in n, on the set K1. To conclude, simply observe that, since the
cut-off is moving to infinity, for sufficiently large n, we obtain χn ≡ id on K1.
We proceed with the proof of (b). For any (x, y) /∈ K2,n, we obtain

Fn,ψ(x, y) + ε log(1 + x2 + y2) ≥ −C +
ε

2
log(1 + x2 + y2) +

ε

2
log(1 + x2 + y2)

≥ ε

2
log(1 + x2 + y2)

> log log bn.

The definition (4.18) of the cut-off leads then to the conclusion. The proof for the function
Fn,ψ(x, y)− ε log(1 + x2 + y2) follows similarly.

Lemma 4.13. Suppose we are either in the setting of Theorem 2.8 with ν = 2 or in the
setting of Theorem 2.9 with ν = 4. Let ε ∈ (0, 1) and ψ ∈ C∞c (R). Consider the cut-off
(4.18) and define the functions

ψε,±n (x, y) := χn

(
Fn,ψ(x, y)± ε log(1 + x2 + y2)

)
(4.20)

and
ψε,±(x, y) := ψ(x)± ε log(1 + x2 + y2),

with Fn,ψ as in (4.4)+(4.5). Then, for every ε ∈ (0, 1), the following properties are
satisfied:

(a) ψε,±n ∈ D(Hn).

(b) ψε,+ ∈ Cl(R2) and ψε,− ∈ Cu(R2).

(c) We have

inf
n

inf
(x,y)∈En

ψε,+n (x, y) > −∞ and sup
n

sup
(x,y)∈En

ψε,−n (x, y) <∞.

(d) For every compact set K ⊆ R2, there exists a positive integer N = N(K) such that,
for n ≥ N and (x, y) ∈ K, we have

ψε,±n (x, y) = Fn,ψ(x, y)± ε log(1 + x2 + y2).

(e) For every c ∈ R, we have

LIM
n↑∞

ψε,+n ∧ c = ψε,+ ∧ c and LIM
n↑∞

ψε,−n ∨ c = ψε,− ∨ c.

Moreover, it holds
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(f) For every c ∈ R, we have

lim
ε↓0

∣∣∣∣ψε,+ ∧ c− ψ ∧ c∣∣∣∣+
∣∣∣∣ψε,− ∨ c− ψ ∨ c∣∣∣∣ = 0.

Proof. We prove all the properties for the ‘+’ superscript case, the other being similar.

(a) As the cut-off (4.18) is smooth, it yields ψε,±n ∈ C∞(R2). In addition, the location of
the cut-off and Lemma 4.12(b) make sure that ψε,±n is constant outside a compact
set K ⊂ En, implying ψε,±n ∈ D(Hn).

(b) This is immediate from the definitions of ψε,±.

(c) Let c > 0. From the uniform boundedness of Fn,ψ, we deduce

inf
(x,y)∈R2

Fn,ψ(x, y) + ε log(1 + x2 + y2) ≥ −c+ ε log(1 + x2 + y2),

which is bounded from below uniformly in n.

(d) This follows immediately by Lemma 4.12(a).

(e) Fix ε > 0 and c ∈ R. By (c), the sequence {ψε,+n ∧ c}n≥1 is uniformly bounded
from below and then, we obviously get supn≥1 ||ψε,+n ∧ c|| < ∞. Thus, it suffices to
prove uniform convergence on compact sets. Let us consider an arbitrary sequence
(xn, yn) converging to (x, y) and prove limn ψ

ε,+
n (xn, yn) = ψε,+(x, y). As a converging

sequence is bounded, it follows from (d) that, for sufficiently large n, we have

ψε,+n (xn, yn) = Fn,ψ(xn, yn) + ε log(1 + x2n + y2n),

which indeed converges to ψε,+(x, y) as n ↑ ∞. See Lemma 4.10.

(f) This follows similarly as in the proof of (e).

Definition 4.14. Suppose we are either in the setting of Theorem 2.8 with ν = 2 or in the
setting of Theorem 2.9 with ν = 4. Let H ⊆ Cb(R)×Cb(R), with domain D(H) = C∞c (R),
be defined as

• in the setting of Theorem 2.8 with ν = 2:

H(x, p) =
2

cosh(βB)
p2 +

2

3
β(2β − 3) cosh(βB)x3p; (4.21)

• in the setting of Theorem 2.9 with ν = 4:

H(x, p) = 2

√
2

3
p2 − 9

10

√
3

2
x5p. (4.22)

We define the approximating Hamiltonians H† ⊆ Cl(R
2) × Cb(R2) and H‡ ⊆ Cu(R2) ×

Cb(R
2) as

H† :=
{(
ψ(x) + ε log(1 + x2 + y2), Hψ(x) + c(ε)

) ∣∣ψ ∈ C∞c (R), ε ∈ (0, 1)
}
,

H‡ :=
{(
ψ(x)− ε log(1 + x2 + y2), Hψ(x)− c(ε)

) ∣∣ψ ∈ C∞c (R), ε ∈ (0, 1)
}
,

with c(ε) := 8
(
ε
2‖ψ

′‖+ ε2
)
.
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Proposition 4.15. Suppose we are either in the setting of Theorem 2.8 with ν = 2 or in
the setting of Theorem 2.9 with ν = 4. Consider notation as in Definition 4.14. We have
H† ⊆ ex− subLIMnHn and H‡ ⊆ ex− superLIMnHn.

Proof. We prove only the first statement, i.e. H† ⊆ ex − subLIMnHn. Fix ε > 0 and
ψ ∈ C∞c (R). We apply Lemma 4.13 with fn := ψε,+n . We show that (ψ(x) + ε log(1 + x2 +

y2), Hψ(x) + c(ε)) is approximated by (fn, Hnfn) as in Definition A.5(a). Since (A.1) was
proved in Lemma 4.13(e), we are left to check conditions (A.2) and (A.3).

(A.2) We start by showing that we can get a uniform (in n) upper bound for the function
Hnψ

ε,+
n .

– If |Fn,ψ(x, y) + ε log(1 +x2 + y2)| ≥ log log bn, then the function ψε,+n is constant
and therefore Hnψ

ε,+
n ≡ 0.

– If |Fn,ψ(x, y) + ε log(1 + x2 + y2)| < log log bn, the variables x and y are at most
of order log1/2 bn and we can characterize Hnψ

ε,+
n by means of (4.1), since we

can control the remainder term. Indeed,

* the first, second and third order partial derivatives of ψ ∈ C∞c (R2) and
log(1 + x2 + y2) are bounded, therefore by means of (3.10) we get control
of the remainder up to order log1/2 bn variables x and y;

* the function ψ is constant outside a compact set and thus has zero deriva-
tives outside such a compact set;

* by assumption, the derivative χ′n is bounded between 0 and 1.

We find

Hnψ
ε,+
n (x, y) =

{
− 1

15
β3 cosh(βB)(6β − 5)bν−4n x5ψ′(x)

− 2

3
β cosh(βB)(3− 2β)bν−2n x3ψ′(x) +

εΞn(x, y)

30(1 + x2 + y2)

}
χ′n(−)

+
2

cosh(βB)

[
(ψ′(x))

2
+

4εxψ′(x)

1 + x2 + y2
+

4ε2(x2 + y2)

(1 + x2 + y2)2

]
(χ′n(−))

2

+ o(1) + o(bν−4n ), (4.23)

with

Ξn(x, y) =− 5β4 cosh(βB)bν−4n x4y2 − 60β2 cosh(βB)bν−2n x2y2

− 120 cosh(βB)bνny
2 − 40β3 sinh(βB)bν−3n x4y

− 240β sinh(βB)bν−1n x2y − 4β4 cosh(βB)bν−4n x6

− 40β2 cosh(βB)bν−2n x4.

We want to show that (4.23) is uniformly bounded from above. We start by
analyzing the terms in Ξn(x, y). By completing the square, we can write

− 120 cosh(βB)bνny
2 − 240β sinh(βB)bν−1n x2y − 40β2 cosh(βB)bν−2n x4

= −120 cosh(βB)bν−2n

(
bny + β tanh(βB)x2

)2
− 120β2 cosh(βB)

(
1
3 − tanh2(βB)

)
bν−2n x4. (4.24)
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We take out −40β2 cosh(βB)bν−2n x2y2 from −60β2 cosh(βB)bν−2n x2y2 and, by
the same trick as above, we also get

− 40β2 cosh(βB)bν−2n x2y2 − 40β3 sinh(βB)bν−3n x4y − 4β4 cosh(βB)bν−4n x6

= −40β2 cosh(βB)bν−4n x2
(
bny + 1

2β tanh(βB)x2
)2

− 2β4 cosh(βB)
(
2− 5 tanh2(βB)

)
bν−4n x6. (4.25)

Observe that both quantities (4.24) and (4.25) are non-positive, since β ≤ 3
2

implies 1
3 − tanh2(βB) ≥ 0 and 2− 5 tanh2(βB) ≥ 0. Putting all together yields

Ξn(x, y) =− 5β4 cosh(βB)bν−4n x4y2 − 20β2 cosh(βB)bν−2n x2y2

− 120 cosh(βB)bν−2n

(
bny + β tanh(βB)x2

)2
− 120β2 cosh(βB)

(
1
3 − tanh2(βB)

)
bν−2n x4

− 40β2 cosh(βB)bν−4n x2
(
bny + 1

2β tanh(βB)x2
)2

− 2β4 cosh(βB)
(
2− 5 tanh2(βB)

)
bν−4n x6, (4.26)

which is then overall non-positive. Using also that 2x(1 + x2 + y2)−1 ≤ 1 and
(x2 + y2)(1 + x2 + y2)−2 ≤ 1, we have

Hnψ
ε,+
n (x, y) ≤ Hψ(x) + 8

(ε
2
‖ψ′‖+ ε2

)
+ o(1) + o(bν−4n ), (4.27)

with H as in (4.21) if ν = 2 and as in (4.22) if ν = 4 and (β,B) = (βtc, Btc). In
particular, as ψ ∈ C∞c (R) and we can control the remainder, there exists a
positive constant c0, independent of n and ε, such that Hnψ

ε,+
n (x, y) ≤ c0.

To conclude, observe that, since there exist positive constants c1 and c2 (indepen-
dent of n) such that ‖Hnψ

ε,+
n ‖ ≤ c1bνn log bn + c2 (cf. equation (4.23)), choosing the

sequence vn := bn leads to supn v
−1
n log ‖Hnψ

ε,+
n ‖ < +∞.

(A.3) Let K be a compact set. Consider an arbitrary converging sequence (xn, yn) ∈ K
and let (x, y) ∈ K be its limit. We want to show lim supnHnψ

ε,+
n (xn, yn) ≤ Hψ(x).

As a converging sequence is bounded, by Lemma 4.13(d) we can find a sufficiently
large N = N(K) ∈ N such that, for all n ≥ N , we have

ψε,+n (xn, yn) = Fn,ψ(xn, yn) + ε log(1 + x2n + y2n).

Thus, for any n ≥ N , equation (4.27) yields

Hnψ
ε,+
n (xn, yn) ≤ Hψ(x) + 8

(ε
2
‖ψ′‖+ ε2

)
+ o(1) + o(bν−4n ),

where the remainder terms converge to zero uniformly on compact sets. Since
bn →∞, the conclusion follows.

To conclude this section we obtain the Hamiltonian extensions.

Proposition 4.16. Consider notation as in Definition 4.14. Moreover, set Ĥ† := H† ∪H
and Ĥ‡ := H‡ ∪H. Then Ĥ† is a sub-extension of H† and Ĥ‡ is a super-extension of H‡.

Proof. We prove only that Ĥ† is a sub-extension of H†. We use the first statement of
Lemma A.11. Let ψ ∈ D(H). We must show that (ψ,Hψ) is appropriately approximated
by elements in the graph of H†.
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For any n ≥ 1, set ε(n) = n−1 and consider the function ψn(x, y) = ψ(x)+ε(n) log(1+x2 +

y2), with H†ψn = Hψ+ c(ε(n)). From Lemma 4.13(f) we obtain that ||ψn ∧ c− ψ ∧ c|| → 0,
for every c ∈ R. In addition, as Hψ ∈ Cb(R), we have ||H†ψn −Hψ|| → 0. This concludes
the proof.

Exponential compact containment. The last open question we must address consists in
verifying exponential compact containment for the fluctuation process. The validity of
the compactness condition will be shown in Proposition 4.18. We start by proving an
auxiliary lemma.

Lemma 4.17. Suppose we are either in the setting of Theorem 2.8 and ν = 2 or in the
setting of Theorem 2.9 and ν = 4. Let G ⊆ R2 be a relatively compact open set. Consider
the cut-off introduced in (4.18) and define

Υn(x, y) = χn

(
1

2
log(1 + x2 + y2)

)
.

Then, we obtain

lim sup
n↑∞

sup
(x,y)∈G∩En

HnΥn(x, y) ≤ 2

cosh(βB)
.

Proof. The proof is analogous to the verification of condition (A.3) in the proof of Propo-
sition 4.15. Set ψ ≡ 0 and ε = 1

2 .

Proposition 4.18. Suppose we are either in the setting of Theorem 2.8 and ν = 2 or in
the setting of Theorem 2.9 and ν = 4.
Moreover, assume that (bnmn(0), bn(qn(0) − tanh(βB))) is exponentially tight at speed
nb−ν−2n , then the process

Zn(t) := (bnmn(bνnt), bn(qn(bνnt)− tanh(βB)))

satisfies the exponential compact containment condition at speed nb−ν−2n . In other words,
for every compact set K ⊆ R2, every constant a ≥ 0 and time T ≥ 0, there exists a
compact set K ′ = K ′(K, a, T ) ⊆ R2 such that

lim sup
n→∞

sup
z∈K∩En

n−1bν+2
n logP [Zn(t) /∈ K ′ for some t ≤ T |Zn(0) = z] ≤ −a.

Proof. The statement follows from Lemmas 4.17 and A.3 by choosing fn ≡ Υn on a fixed,
sufficiently large, compact set of R2. For similar proofs see e.g. [DFL11, Lem. 3.2] or
[CK17, Prop. A.15].

Proof of Theorems 2.8 and 2.9. We check the assumptions of Theorem A.9. We use
operators H†, H‡ as in Definition 4.14 and limiting Hamiltonian H ⊆ Cb(R)×Cb(R), with
domain C∞c (R), of the form Hf(x) = H(x, f ′(x)) where

• in the setting of Theorem 2.8 with ν = 2:

H(x, p) =
2

cosh(βB)
p2 +

2

3
β(2β − 3) cosh(βB)x3p;

• in the setting of Theorem 2.9 with ν = 4:

H(x, p) = 2

√
2

3
p2 − 9

10

√
3

2
x5p.

EJP 23 (2018), paper 21.
Page 33/45

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP117
http://www.imstat.org/ejp/


Path-space moderate deviation principles for the RFCW model

We first verify Condition A.8: (a) follows from Proposition 4.15, (b) is satisfied by
definition and (c) follows from Proposition 4.16.

The comparison principle for f − λHf = h for h ∈ Cb(R) and λ > 0 has been verified
in e.g. [CK17, Prop. 3.5]. Note that the statement of the latter proposition is valid
for f ∈ C2

c (R), but the result generalizes straightforwardly to class C∞c (R) as the
penalization and containment functions used in the proof are C∞.

Finally, the exponential compact containment condition follows from Proposition 4.18.

5 Variations in the external parameters

Suppose we are either in the setting of Theorem 2.10 with ν = 2 or in the setting of
Theorems 2.11 and 2.12 with ν = 4. The major difference of these theorems compared
to Theorems 2.8 and 2.9 is the variation in the parameters β and B as the system size
increases. The inverse temperature and the magnetic field are respectively βn := β + κn
and Bn := B + θn, where {κn}n≥1 and {θn}n≥1 are real sequences converging to zero.
In this more general framework, due to an extra Taylor expansion in β and B, the
Hamiltonian (4.1) changes into

∑
l≥0

∑
j≥0

5∑
k=1

κln
l!

θjn
j!

bν+1−k
n

k!
〈∂lκ∂

j
θD

kG2(0, tanh(βB))

(
xk

kxk−1y

)
,∇f(x, y)〉

+ 〈G1(0, tanh(βB))∇f(x, y),∇f(x, y)〉+ o(1) + o(bν−4n ) (5.1)

and determining the terms that contribute to the limiting operator is trickier than before.
In the linear part of (4.1) the operators appearing with a factor bkn introduce terms with
xk; whereas, now this is no longer the case. Operators with pre-factor bkn may introduce
terms with xm for m ≤ k (the power m depends on the order of κn and θn with respect
to bn). Therefore, we need to extend the method presented in Section 4.1 appropriately.

5.1 Extending the formal calculus of operators

Let V and Vi, with i ∈ N, be the vector spaces of functions introduced at the beginning
of Section 4.1. We are going to define an alternative set of operators on V . Let a ∈ R and
g : R2 → R be a differentiable function. Fix k ∈ N and consider the array of operators

Q+
k,m[a]g(x, y) := axm−1ygx(x, y)

Q−k,m[a]g(x, y) := axmgy(x, y)

]
for even m and m ≤ k (5.2)

and
Q0
k,m[a]g(x, y) := axmgx(x, y)

Q1
k,m[a]g(x, y) := axm−1ygy(x, y)

]
for odd m and m ≤ k. (5.3)

We have the direct analogue of Lemma 4.1.

Lemma 5.1. For all a ∈ R and k, i ∈ N, we have

Q+
k,m[a] : Vi → Vi+1 and Q−k,m[a] : Vi → Vi−1, for even m,

and

Q0
k,m[a],Q1

k,m[a] : Vi → Vi, for odd m.

Notice that also in this extended setting the operators with superscript 1 (i.e., Q1
k,m with

odd m and m ≤ k) have the peculiarity of admitting V0 as a kernel.
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Assumption 5.2. Assume there exist real constants a+k,m, a−k,m ifm is even and 1 ≤ m ≤ k
and a01,1 = 0, a11,1, a

0
k,m, a1k,m if m is odd and 1 < m ≤ k, for which, given a continuously

differentiable function g : R2 → R, we can write

Qkg =
∑
m≤k
m even

(
Q+
k,mg +Q−k,mg

)
+
∑
m≤k
m odd

(
Q0
k,mg +Q1

k,mg
)

(5.4)

with
Q+
k,mg(x, y) := Q+

k,m[a+k,m]g(x, y)

Q−k,mg(x, y) := Q−k,m[a−k,m]g(x, y)

]
for even m and m ≤ k

and
Q0
k,mg(x, y) := Q0

k,m[a0k,m]g(x, y)

Q1
k,mg(x, y) := Q1

k,m[a1k,m]g(x, y)

]
for odd m and m ≤ k.

Observe that we recover Assumption 4.2 if azk,m = 0 whenever k 6= m and set Qzk,k := Qzk
for appropriate z ∈ {+,−, 1, 0}.

Using our new definitions, Lemma 4.3 and the recursion relationships (4.5) are un-
changed and furthermore, the result of Proposition 4.5 is still valid. The main modifica-
tion is that we need to re-evalute the functions P0φ[i] as the Qk are defined by using a
larger set of operators. We get the following two statements.

Proposition 5.3. Fix ν ≥ 2 an even natural number and suppose that Assumption 5.2
holds true for this ν. Consider the operator

Q(n)ψ(x, y) :=

ν+1∑
k=1

bν+1−k
n Qkψ(x, y) (5.5)

and, for ψ = ψ[0] ∈ V0, define Fn,ψ(x, y) :=
∑ν
l=0 b

−l
n ψ[l](x, y). We have

Q(n)Fn,ψ(x, y) =

ν∑
i=1

bν−in P0φ[i](x) + o(1),

where o(1) is meant according to Definition 2.3.

We can evaluate the functions P0φ[i] as we did in Lemma 4.7. Under the more general
Assumption 5.2, more terms survive the infinite volume limit. We calculate the outcomes
only for the cases we will need below.

Lemma 5.4. Consider the setting of Proposition 5.3. For ψ = ψ[0] ∈ V0, we have
P0φ[l] = 0 if l is odd and

P0φ[l] =



Q0
3,3ψ +Q−2,2PQ

+
2,2ψ +Q0

3,1ψ if l = 2,

Q0
5,5ψ +Q−2,2PQ

+
4,4ψ +Q−4,4PQ

+
2,2ψ +Q−2,2PQ1

3,3PQ+
2,2ψ

+Q0
5,3ψ +Q−2,2PQ

+
4,2ψ +Q−4,2PQ

+
2,2ψ +Q−2,2PQ1

3,1PQ+
2,2ψ

+Q0
5,1ψ + +Q−2,2P (Q0

3,3 +Q−2,2PQ
+
2,2 +Q0

3,1)PQ+
2,2ψ if l = 4.

(5.6)

Following Conjecture 4.9, we can make a similar conjecture in this extended setting as
well.

Conjecture 5.5. Let Assumption 5.2 be satisfied with ν even. Assume that azk,l = 0 for
k 6= l mod 2 and all z ∈ {+,−, 0, 1}. Moreover, suppose that P0φ[2l] = 0 for all l ∈ N with
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2l < ν. Then

P0ψ[ν](x, y) = o(1)

+
∑

0≤µ≤ν
µ even


a0ν+1,µ+1 +

∑
n≥2

∑
i1+···+in=ν+n
ij 6=1 for j /∈{1,n}
r1+···+rn=µ+n

rj≤ij all j
r1,rn even

rj odd for j /∈{1,n}

(−1)n−1
a−i1,r1

(∏n−1
j=2 a

1
ij ,rj

)
a+in,rn

(a11,1)
n−1


xµ+1ψx(x).

5.2 Preliminaries for the proofs of Theorems 2.10–2.12

As we did before, we now connect the discussion of Section 5.1 with the proofs of
Theorems 2.10–2.12 via Theorem A.9. Recall that our purpose is to find an operator
H ⊆ C∞c (R) × C∞c (R) such that H ⊆ ex − LIMHn. In other words, for f ∈ D(H), we
need to determine fn ∈ Hn such that LIM fn = f and LIMHnfn = Hf .
Consider the statement of Proposition 3.6. We want to find the limit of the operator Hn

presented there. We analyze term by term. If (m, q) = (0, tanh(βB)) the term in (3.12)
vanishes. The very same proof as the one of Lemma 4.10 gives the next lemma implying
that the term in (3.14) converges as a consequence of the uniform convergence of the
gradients.

Lemma 5.6. Suppose we are either in the setting of Theorem 2.10 with ν = 2 or in the
setting of Theorems 2.11 and 2.12 with ν = 4. For ψ ∈ C∞c (R), define the approximation

Fn,ψ(x, y) :=

ν∑
l=0

b−ln ψ[l](x, y), (5.7)

where ψ[·] are defined recursively according to (4.5) with the Qk’s given by (5.4).
Moreover, let R := [a, b]× [c, d], with a < b and c < d, be a rectangle in R2. Then, we have
Fn,ψ ∈ C∞c (R2), LIMFn,ψ = ψ and

sup
(x,y)∈R∩En

|∇Fn,ψ(x, y)−∇ψ(x)| = 0 (5.8)

for all rectangles R ⊆ R2.

For the term in (3.13), we use the results from Section 5.1. At this point the proofs of
Theorem 2.10 and 2.11 differ from the proof of Theorem 2.12 in the sense that in the
first case κn, θn are of order b−2n , whereas in the latter κn, θn are of order b−4n . Therefore,
the connection between the linear part in (5.1) and the operators in Assumption 5.2
changes. To give an explicit example: Q0

5,1 is a different operator in the two settings.
Using (5.6) of Lemma 5.4, we calculate the drift of the limiting Hamiltonians by consid-
ering the relevant operators in the two sections below.

5.3 Proof of Theorems 2.10 and 2.11

In the setting of Theorems 2.10 and 2.11, κn and θn are of order b−2n . We identify the
relevant operators for Assumption 5.2 from the linear part in the expansion in (5.1). First
of all, there are the operators that do not involve derivations in the κ and θ directions.
These are the operators we also considered for Theorems 2.8 and 2.9. Turning to
our extended notation, we find for k ∈ {1, . . . , 5} and appropriate z ∈ {+,−, 0, 1}, the
operators Qzk,k = Qzk as defined in (4.9)–(4.13).

Additional operators are being introduced by the differentiations in the θ, κ directions.
In particular, the relevant operators are
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(a) Q0
3,1 and Q1

3,1 arising from the first and second coordinate of

(∂κ + ∂θ)D
1G2(0, tanh(βB))

(
x

y

)
;

(b) Q+
4,2 and Q−4,2 arising from the first and second coordinate of

1

2
(∂κ + ∂θ)D

2G2(0, tanh(βB))

(
x2

2xy

)
;

(c) Q0
5,3 arising from the first coordinate of

1

6
(∂κ + ∂θ)D

3G2(0, tanh(βB))

(
x3

3x2y

)
;

(d) Q0
5,1 arising from the first coordinate of(

1

2
∂2κ + ∂κ∂θ +

1

2
∂2θ

)
D1G2(0, tanh(βB))

(
x2

2xy

)
.

We explicitly calculate the relevant operators from the results in Lemma 3.7. We start
with Q0

3,1 which is used for Theorem 2.10. From Lemma 3.7(c) we get

Q0
3,1g(x, y) =

[
2

cosh(βB)
(1− 2βB tanh(βB))κ− 4β sinh(βB)θ

]
xgx(x, y), (5.9)

after using the identity β = cosh2(βB) for (β,B) on the critical curve. We proceed now
with the operators needed for Theorem 2.11. In this setting, (βn, Bn) lies always on the
critical curve, i.e. βn = cosh2(βnBn) for any n ∈ N, and therefore we use Lemma 3.7(d)
to compute the DkG2’s. It yields Q0

3,1 = Q0
5,1 = 0 and for the remaining operators we

find:

Q1
3,1g(x, y) = −2 sinh(βB) [Bκ+ βθ] ygy(x, y), (5.10)

Q+
4,2g(x, y) = −2

[
(sinh(βB) + βB cosh(βB))κ+ β2 cosh(βB)θ

]
xygx(x, y), (5.11)

Q−4,2g(x, y) = −2
[

(sinh(βB) + βB cosh(βB))κ+ β2 cosh(βB)θ
]
x2gy(x, y), (5.12)

Q0
5,3g(x, y) = −2

3

[
β (2 cosh(βB) + βB sinh(βB))κ+ β3 sinh(βB)θ

]
x3gx(x, y). (5.13)

In the next lemma we calculate the expressions resulting from the concatenations of P ’s
and Q’s given in (5.6). The action of P is described in Lemma 4.3.

Lemma 5.7. Let (β,B) satisfies β = cosh2(βB). For f ∈ V , we have

(Q−2,2PQ
+
2,2 +Q0

3,3 +Q0
3,1)f(x, y) =

2

3
β(2β − 3) cosh(βB)x3fx(x, y)

+ 2

[
1− 2βB tanh(βB)

cosh(βB)
κ− 2β sinh(βB) θ

]
xfx(x, y). (5.14)

Moreover, if we approach the tri-critical point (βtc, Btc) along the critical curve, we
obtain (Q−2,2PQ

+
2,2 +Q0

3,3 +Q0
3,1)f = 0 and

(Q0
5,5 +Q0

5,3 +Q0
5,1 +Q−2,2PQ

+
4,4 +Q−4,4PQ

+
2,2 +Q−2,2PQ

+
4,2 +Q−4,2PQ

+
2,2

+Q−2,2PQ
1
3,3PQ

+
2,2 +Q−2,2PQ

1
3,1PQ

+
2,2)f(x, y)

= − 9

10

√
3

2
x5fx(x, y) +

[
2
√

2 arccosh

(√
3

2

)
κ+

9√
2
θ

]
x3fx(x, y). (5.15)
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Proof. It suffices to prove the statement for f of the form yig(x), for some function
g ∈ C2(R). The term Q0

3,1f is given in (5.9) and the expression for (Q−2,2PQ
+
2,2 +Q0

3,3)f

in (4.16). Combining these two results yields (5.14).
Lemma 4.11 and the observation thatQ0

3,1 = 0 on the critical curve imply that (Q−2,2PQ
+
2,2+

Q0
3,3 +Q0

3,1)f = 0 whenever (β,B) = (βtc, Btc) and βn = cosh2(βnBn) for any n ∈ N.
We are left to show (5.15). We start by stating the relevant constants

a11,1 = −2 cosh(βB), a±2,2 = −2β sinh(βB), a13,1 = −2 sinh(βB)[Bκ+ βθ],

a±4,2 = −2
[
(sinh(βB) + βB cosh(βB))κ+ β2 cosh(βB)θ

]
.

Observe that

• the expression for (Q0
5,5 + Q−2,2PQ

+
4,4 + Q−4,4PQ

+
2,2 + Q−2,2PQ

1
3,3PQ

+
2,2)f is given in

(4.17);

• the operator Q0
5,1 = 0 as we are on the critical curve;

• Q0
5,3f is defined in (5.13);

• by direct computation, or by using a variant of Lemma 4.8, we get

(Q−2,2PQ
+
4,2)f(x, y) = (Q−4,2PQ

+
2,2)f(x, y)

= 2β sinh(βB)
[
(tanh(βB) + βB)κ+ β2θ

]
x3fx(x, y)

and

(Q−2,2PQ
1
3,1PQ

+
2,2)f(x, y) = −2β2 sinh(βB) tanh2(βB) [Bκ+ βθ]x3fx(x, y).

Adding the contributions above gives(
Q0

5,5 +Q−2,2PQ
+
4,4 +Q−4,4PQ

+
2,2 +Q−2,2PQ

1
3,3PQ

+
2,2

+Q0
5,3 +Q0

5,1 +Q−2,2PQ
+
4,2 +Q−4,2PQ

+
2,2 +Q−2,2PQ

1
3,1PQ

+
2,2

)
f(x, y)

= − 1

15
β4 cosh(βB)

[
5 tanh2(βB) + 1

]
x5fx(x, y)

+ 2β sinh(βB)

(
2

3
β + 1

)
[Bκ+ βθ]x3fx(x, y).

Plugging the values β = βtc = 3
2 and B = Btc = 2

3 arccosh(
√

3
2 ) leads to the conclusion.

Proof of Theorems 2.10 and 2.11. The proof follows the proof of Theorems 2.8 and 2.9.
We highlight the differences.
Due to the variations in β and B, additional drift terms are introduced. These are given
in Lemma 5.7. Therefore, we work with the following Hamiltonians

• in the setting of Theorem 2.10 with ν = 2:

H(x, p) =
2

cosh(βB)
p2 + 2

{[
1− 2βB tanh(βB)

cosh(βB)
κ− 2β sinh(βB) θ

]
x

+
β

3
(2β − 3) cosh(βB)x3

}
p; (5.16)

• in the setting of Theorem 2.11 with ν = 4:

H(x, p) = 2

√
2

3
p2 +

{[
2
√

2 arccosh

(√
3

2

)
κ+

9√
2
θ

]
x3 − 9

10

√
3

2
x5

}
p. (5.17)
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The presence of extra drift terms, involving θ and κ, makes the verification of condition
(A.2) in Definition A.5 slightly more involved.
Consider the sequence of functions ψε,+n defined as (4.20), where the operators Qk’s
used to construct Fn,ψ are given by (5.4) now. Recall equation (4.1). We want to show
that, on the set E4,n = {(x, y) ∈ R2 | |Fn,ψ(x, y) + ε log(1 + x2 + y2)| < log log bn}, we can
obtain supnHnψ

ε,+
n <∞, uniformly in n. Observe that the cut-off guarantees Hnψ

ε,+
n ≡ 0

on Ec4,n.

In particular, on E4,n the variables x and y are at most of order log1/2 bn and we can get
control of the remainder terms in (4.1) via Lemma 3.3. Therefore, following the exact
same strategy as in the proof of Proposition 4.15, we find

Hnψ
ε,+
n (x, y) ≤ Hψ(x) +

ε

30(1 + x2 + y2)

(
Ξn(x, y) + Θn(x, y)

)
+ 8

(ε
2
‖ψ′‖+ ε2

)
+ o(1) + o(bν−4n ), (5.18)

with H as in (5.16) if ν = 2 and as in (5.17) if ν = 4 and (β,B) = (βtc, Btc), with Ξn(x, y)

given in (4.26) and where

Θn(x, y) =− 120(βθ +Bκ) sinh(βB)bν−2n y2 − 60(βθ +Bκ)2 cosh(βB)bν−4n y2

− 60β [2κ cosh(βB) + β(βθ +Bκ) sinh(βB)] bν−4n x2y2

− 240 [κ sinh(βB) + β(βθ +Bκ) cosh(βB)] bν−3n x2y

− 40β [2κ cosh(βB) + β(βθ +Bκ) sinh(βB)] bν−4n x4

+ 120

[
1− 2βB tanh(βB)

cosh(βB)
κ− 2β sinh(βB)θ

]
bν−2n x2. (5.19)

We want to see that (5.18) admits a uniform upper bound. Since ψ ∈ C∞c (R) and
ε ∈ (0, 1), it suffices to show that the function (1 + x2 + y2)−1(Ξn(x, y) + Θn(x, y)) is
uniformly bounded from above.
If ν = 2 the result is straightforward; indeed, Ξn(x, y) ≤ 0 and (1 + x2 + y2)−1Θn(x, y)

is bounded. We take now ν = 4. First of all, the term 120[· · · ]bν−2n x2 in (5.19) vanishes
when we are on the critical curve (use (2.17)) and, moreover, the term −60β[· · · ]bν−4n x2y2

can be controlled by −20β2 cosh(βB)bν−2n x2y2 in Ξn(x, y), cf. (4.26).
We then combine the three terms in (5.19) involving bν−2n y2, bν−3n x2y and bν−4n x4 into a
quadratic term of the type

d1(κ, θ)bν−4n

(
bny + d2(κ, θ)x2

)2
+ d3(κ, θ)bν−4n x4,

where all the signs of the coefficients di are undetermined. Observe that we can bound
the size of the first square as follows(

bny + d2(κ, θ)x2
)2 ≤ 2

(
bny + β tanh(βB)x2

)2
+ 2 (d2(κ, θ)− β tanh(βB))

2
x4,

obtaining

d1(κ, θ)bν−4n

(
bny + d2(κ, θ)x2

)2
+ d3(κ, θ)bν−4n x4

≤ 2 |d1(κ, θ)| bν−4n

(
bny + β tanh(βB)x2

)2
+
[
2d1(κ, θ) (d2(κ, θ)− β tanh(βB))

2
+ d3(κ, θ)

]
bν−4n x4,

that can be in turn controlled by

−120 cosh(βB)bν−2n (bny + β tanh(βB)x2)2 − 2β4 cosh(βB)(2− 5 tanh2(βB))bν−4n x6
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in Ξn(x, y). Therefore, to conclude, there exist suitable positive constants c1 and c2
(independent of n and ε) for which we have

Hnψ
ε,+
n (x, y) ≤ c1 + εc2 + 8

(ε
2
‖ψ′‖+ ε2

)
,

giving uniformly upper-boundedness in n.

5.4 Proof of Theorem 2.12

As in the previous section, we first identify the relevant operators for Assumption 5.2
from the linear part in the expansion in (5.1). In the setting of Theorem 2.12, κn and
θn are of order b−4n and therefore, the operators arising from the θ and κ derivatives
change.

For k ∈ {1, . . . , 5} and appropriate z ∈ {+,−, 0, 1}, the operators Qzk,k = Qzk are still as
defined in (4.9)–(4.13). The only additional operator of relevance is Q0

5,1. It comes from
the first coordinate of

(∂κ + ∂θ)D
1G2(0, tanh(βB))

(
x

y

)
,

and is explicitly given by

Q0
5,1g(x, y) =

[
2

cosh(βB)
(1− 2βB tanh(βB))κ− 4β sinh(βB)θ

]
xgx(x, y). (5.20)

Lemma 5.8. Let f ∈ V . If we approach the tri-critical point (βtc, Btc) from an arbitrary
direction, we obtain (Q−2,2PQ

+
2,2 +Q0

3,3)f = 0 and

(Q0
5,5 +Q0

5,1 +Q−2,2PQ
+
4,4 +Q−4,4PQ

+
2,2 +Q−2,2PQ

1
3,3PQ

+
2,2)f(x, y)

=

[
2

3

(
√

6− 2
√

2 arccosh

(√
3

2

))
κ− 3

√
2 θ

]
xfx(x, y)− 9

10

√
3

2
x5fx(x, y).

Proof of Theorem 2.12. The proof follows the proof of Theorems 2.10 by using instead
the Hamiltonian given by

H(x, p) = 2

√
2

3
p2 +

{[
2

3

(
√

6− 2
√

2 arccosh

(√
3

2

))
κ− 3

√
2θ

]
x− 9

10

√
3

2
x5

}
p.

A Appendix: path-space large deviations for a projected process

We turn to the derivation of the large deviation principle. We first introduce our setting.

Assumption A.1. Assume that, for each n ≥ 1, we have a Polish subset En ⊆ R2 such
that for each x ∈ R2 there are xn ∈ En with xn → x. Let An ⊆ Cb(En) × Cb(En) and
existence and uniqueness holds for the DEn(R+) martingale problem for (An, µ) for each
initial distribution µ ∈ P(En). Letting Pnz ∈ P(DEn(R+)) be the solution to (An, δz), the
mapping z 7→ Pnz is measurable for the weak topology on P(DEn(R+)). Let Zn be the
solution to the martingale problem for An and set

Hnf =
1

rn
e−rnfAne

rnf ernf ∈ D(An),

for some sequence of speeds {rn}n≥1, with limn→∞ rn =∞.

Following the strategy of [FK06], the convergence of Hamiltonians {Hn}n≥1 is a major
component in the proof of the large deviation principle. We postpone the discussion on
how determining a limiting Hamiltonian H due to the difficulties that taking the n→∞
limit introduces in our particular context. We first focus on exponential tightness, an
equally important aspect.
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A.1 Compact containment condition

Given the convergence of the Hamiltonians, to have exponential tightness it suffices to
establish an exponential compact containment condition.

Definition A.2. We say that a sequence of processes {Zn(t)}n≥1 on En ⊆ R2 satisfies
the exponential compact containment condition at speed {rn}n≥1, with limn→∞ rn =∞,
if for all compact sets K ⊆ R2, constants a ≥ 0 and times T > 0, there is a compact set
K ′ ⊆ R2 with the property that

lim sup
n→∞

sup
z∈K

1

rn
logP [Zn(t) /∈ K ′ for some t ≤ T |Zn(0) = z] ≤ −a.

The exponential compact containment condition can be verified by using approximate
Lyapunov functions and martingale methods. This is summarized in the following lemma.
Note that exponential compact containment can be obtained by taking deterministic
initial conditions.

Lemma A.3 (Lemma 4.22 in [FK06]). Suppose Assumption A.1 is satisfied. Let Zn(t) be
a solution of the martingale problem for An and assume that {Zn(0)}n≥1 is exponentially
tight with speed {rn}n≥1. Consider the compact set K = [a, b]× [c, d] and let G ⊆ R2 be
open and such that [a, b]× [c, d] ⊆ G. For each n, suppose we have (fn, gn) ∈ Hn. Define

β(q,G) := lim inf
n→∞

(
inf

(x,y)∈Gc
fn(x, y)− sup

(x,y)∈K
fn(x, y)

)
,

γ(G) := lim sup
n→∞

sup
(x,y)∈G

gn(x, y).

Then

lim sup
n→∞

1

rn
logP [Zn(t) /∈ G for some t ≤ T ]

≤ max

{
−β(q,G) + Tγ(G), lim sup

n→∞
P [Zn(0) /∈ [a, b]× [c, d]]

}
.

A.2 Operator convergence for a projected process

In the papers [Kra16, CK17, DFL11], one of the main steps in proving the large deviation
principle was proving directly the existence of an operator H such that H ⊆ LIMnHn; in
other words by verifying that, for all (f, g) ∈ H, there are fn ∈ Hn such that LIMn fn = f

and LIMnHnfn = g (the notion of LIM is introduced in Definition A.4). Here it is hard to
follow a similar strategy.
We are dealing with functions

fn(x, y) = f(x) + b−1n f1(x, y) + b−2n f2(x, y) (for suitably chosen f1 and f2)

given in a perturbative fashion and satisfying intuitively fn → f and Hnfn → Hf

with Hamiltonian H ⊆ Cb(R) × Cb(R). In contrast to the setting of [CK17], even if
Fn,f ∈ C∞c (R2), we can not guarantee supn ‖HnFn,ψ‖ < ∞, implying we do not have
LIMHnfn = Hf . To circumvent this issue, we relax our definition of limiting operator.
In particular, we will work with two Hamiltonians H† and H‡, that are limiting upper
and lower bounds for the sequence of Hamiltonians Hn, respectively, and thus serve as
natural upper and lower bounds for H.

Definition A.4 (Definition 2.5 in [FK06]). For fn ∈ Cb(En) and f ∈ Cb(R2), we will write
LIM fn = f if supn ||fn|| <∞ and, for all compact sets K ⊆ R2,

lim
n→∞

sup
(x,y)∈K∩En

|fn(x, y)− f(x, y)| = 0.
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Definition A.5 (Condition 7.11 in [FK06]). Suppose that for each n we have an operator
Hn ⊆ Cb(En)× Cb(En). Let {vn}n≥1 be a sequence of real numbers such that vn →∞.

(a) The extended sub-limit, denoted by ex − subLIMnHn, is defined by the collection
(f, g) ∈ Cl(R2)× Cb(R) for which there exist (fn, gn) ∈ Hn such that

LIM fn ∧ c = f ∧ c, ∀ c ∈ R, (A.1)

sup
n

1

vn
log ||gn|| <∞, sup

n
sup
x∈R2

gn(x) <∞, (A.2)

and that, for every compact set K ⊆ R2 and every sequence zn ∈ K satisfying
limn zn = z and limn fn(zn) = f(z) <∞,

lim sup
n→∞

gn(zn) ≤ g(z). (A.3)

(b) The extended super-limit, denoted by ex− superLIMnHn, is defined by the collection
(f, g) ∈ Cu(R2)× Cb(R) for which there exist (fn, gn) ∈ Hn such that

LIM fn ∨ c = f ∨ c, ∀ c ∈ R, (A.4)

sup
n

1

vn
log ||gn|| <∞, inf

n
inf
x∈R2

gn(x) > −∞, (A.5)

and that, for every compact set K ⊆ R2 and every sequence zn ∈ K satisfying
limn zn = z and limn fn(zn) = f(z) > −∞,

lim inf
n→∞

gn(zn) ≥ g(z). (A.6)

For completeness, we also give the definition of the extended limit.

Definition A.6. Suppose that for each n we have an operator Hn ⊆ Cb(En) × Cb(En).
We write ex − LIMHn for the set of (f, g) ∈ Cb(R

2) × Cb(R
2) for which there exist

(fn, gn) ∈ Hn such that f = LIM fn and g = LIM gn.

Definition A.7 (Viscosity solutions). Let H† ⊆ Cl(R2)×Cb(R2) and H‡ ⊆ Cu(R2)×Cb(R2)

and let λ > 0 and h ∈ Cb(R2). Consider the Hamilton-Jacobi equations

f − λH†f = h, (A.7)

f − λH‡f = h. (A.8)

We say that u is a (viscosity) subsolution of equation (A.7) if u is bounded, upper semi-
continuous and if, for every f ∈ D(H†) such that supx u(x)−f(x) <∞ and every sequence
xn ∈ R2 such that

lim
n→∞

u(xn)− f(xn) = sup
x
u(x)− f(x),

we have
lim
n→∞

u(xn)− λH†f(xn)− h(xn) ≤ 0.

We say that v is a (viscosity) supersolution of equation (A.8) if v is bounded, lower
semi-continuous and if, for every f ∈ D(H‡) such that infx v(x)− f(x) > −∞ and every
sequence xn ∈ R2 such that

lim
n→∞

v(xn)− f(xn) = inf
x
v(x)− f(x),

we have
lim
n→∞

v(xn)− λH‡f(xn)− h(xn) ≥ 0.
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We say that u is a (viscosity) solution of equations (A.7) and (A.8) if it is both a subsolution
to (A.7) and a supersolution to (A.8).
We say that (A.7) and (A.8) satisfy the comparison principle if for every subsolution u to
(A.7) and supersolution v to (A.8), we have u ≤ v.

Note that the comparison principle implies uniqueness of viscosity solutions. This in
turn implies that a new Hamiltonian can be constructed based on the set of viscosity
solutions.

Condition A.8. Suppose we are in the setting of Assumption A.1. Suppose there are
operators H† ⊆ Cl(R

2) × Cb(R2), H‡ ⊆ Cu(R2) × Cb(R2) and H ⊆ Cb(R) × Cb(R) with
the following properties:

(a) H† ⊆ ex− subLIMnHn and H‡ ⊆ ex− superLIMnHn.

(b) The domainD(H) contains C∞c (R) and, for f ∈ C∞c (R), we haveHf(x) = H(x,∇f(x)).

(c) For all λ > 0 and h ∈ Cb(R), every subsolution to f − λH†f = h is a subsolution
to f − λHf = h and every supersolution to f − λH‡f = h is a supersolution to
f − λHf = h.

Now we are ready to state the main result of this appendix: the large deviation principle
for the projected process. We denote by ηn : En → R the projection map ηn(x, y) = x.

Theorem A.9 (Large deviation principle). Suppose we are in the setting of Assumption
A.1 and Condition A.8 is satisfied. Suppose that for all λ > 0 and h ∈ Cb(R) the
comparison principle holds for f − λHf = h.
Let Zn(t) be the solution to the martingale problem for An. Suppose that the large
deviation principle at speed {rn}n≥1 holds for ηn(Zn(0)) on R with good rate-function I0.
Additionally suppose that the exponential compact containment condition holds at speed
{rn}n≥1 for the processes Zn(t).
Then the large deviation principle holds with speed {rn}n≥1 for {ηn(Zn(t))}n≥1 on
DR(R+) with good rate function I. Additionally, suppose that the map p 7→ H(x, p)

is convex and differentiable for every x and that the map (x, p) 7→ d
dpH(x, p) is continu-

ous. Then the rate function I is given by

I(γ) =

{
I0(γ(0)) +

∫∞
0
L(γ(s), γ̇(s))ds if γ ∈ AC,

∞ otherwise,

where L : R2 → R is defined by L(x, v) = supp {pv −H(x, p)}.

Proof. The large deviation result follows by [FK06, Cor. 8.28] with H† and H‡ as in
the present paper and H† = H‡ = H. The verification of the conditions for [FK06,
Thm. 8.27] corresponding to a Hamiltonian of this type have been carried out in e.g.
[FK06, Sect. 10.3] or [CK17].

A.3 Relating two sets of Hamiltonians

For Condition A.8, we need to relate the Hamiltonians H† ⊆ Cl(R
2) × Cb(R

2) and
H‡ ⊆ Cu(R2)× Cb(R2) to H ⊆ Cb(R)× Cb(R).

Definition A.10. Let H† ⊆ Cl(R
2) × Cb(R2) and H‡ ⊆ Cu(R2) × Cb(R2). We say that

Ĥ† ⊆ Cl(R2)×Cb(R2) is a viscosity sub-extension of H† if H† ⊆ Ĥ† and if for every λ > 0

and h ∈ Cb(R2) a viscosity subsolution to f − λH†f = h is also a viscosity subsolution to
f − λĤ†f = h. Similarly, we define a viscosity super-extension Ĥ‡ of H‡.

The following lemma allows us to obtain viscosity extensions.
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Lemma A.11 (Lemma 7.6 in [FK06]). Let H† ⊆ Ĥ† ⊆ Cl(R
2) × Cb(R2) and H‡ ⊆ Ĥ‡ ⊆

Cu(R2)× Cb(R2).

Suppose that for each (f, g) ∈ Ĥ† there exist (fn, gn) ∈ H† such that, for every c, d ∈ R,
we have

lim
n→∞

||fn ∧ c− f ∧ c|| = 0

and
lim sup
n→∞

sup
z:f(γ(z))∨fn(γ(z))≤c

gn(z) ∨ d− g(z) ∨ d ≤ 0.

Then Ĥ† is a sub-extension of H†.

Suppose that for each (f, g) ∈ Ĥ‡ there exist (fn, gn) ∈ H‡ such that, for every c, d ∈ R,
we have

lim
n→∞

||fn ∨ c− f ∨ c|| = 0

and
lim inf
n→∞

inf
z:f(γ(z))∧fn(γ(z))≥c

gn(z) ∧ d− g(z) ∧ d ≥ 0.

Then Ĥ‡ is a super-extension of H‡.
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