On leveraging physical
Knowledge to augment neural
NetWOork-nased surrogate models
for simulations.

Master Thesis
Tadeusz Kaniewski

—

S i —

: —_— —m —m— s

2 L "

% T T s e =8 p—]

CD
An“én4 " = = :
g{‘){ ECR y E. g {:IZ }M n x

n

V’e,u,c P { } el tom L
?#0<_> #05 niye VlL-Z.VL*'.X._
Yooy, g ol

| %’V*RJ&:‘P {g’} nen, /.7>o-_>
“ﬁfw@ T Y-
k) i

)c {1’745} X+ - /V—>R n>no(x 3)(8 i o kod. {

max;

() €>79€[0,4): U e X | ' o
?(xn-sm >y (x)<t /filjﬁu {x | F

(YR !
ORC
+ { » \ |
n ln_,co lVL-’m ” .: 4‘]I E
{x {}w}(;;{xnj } l?: i ,
‘j, = ‘ ‘—:,‘;f_ 7/7 Ys(., } N ,
; A ¢

On leveraging physical knowledge to
augment neural network-pased surrogate
models for simulations,

by

Tadeusz Kaniewsk|

Student Name Student Number
Tadeusz Kaniewski 5282640

TU Delft Supervisor: Anh Khoa Doan, PhD
Additional Supervisor: Jonathan Donier, PhD

Institutions: Delft University of Technology
Place: Lausanne, Switzerland
Project Duration: February, 2022 - February, 2023

Cover Image: Source: [MacKenzie, 2018]

o]
TUDelft

Preface

| would like to begin by expressing my deepest gratitude to my university supervisor Dr. Anh Khoa
Doan and my work colleagues for their unwavering support and guidance throughout my master’s
thesis. Their invaluable insights and expertise have greatly contributed to the success of this project.
This past year has been a great learning experience, which also allowed me to move to a new country
and meet very interesting people.

| also would like to extend my heartfelt thanks to my family for their constant love and encouragement.
Their patience and understanding during the long hours and late nights spent working on this thesis
were greatly appreciated and will never be forgotten.

Lastly, | would like to take a moment to remember and honor my beloved dog, Bono. He was a
faithful companion throughout the last 13 years of my life, and his passing during the course of my
thesis was a great loss to me. | apologize to him that, due to my absence from home, | was unable to
comfort him during his dying days, and | will always remember him as a loyal and loving friend.

Tadeusz Kaniewski
Lausanne, March 2023

Abstract

The computational cost of high-fidelity engineering simulations, for example CFD, is prohibitive if the
application requires frequent design iterations or even fully fledged optimization. A popular way to
reduce the computational cost and enable fast iteration cycles is to use surrogate models that are
trained to predict simulation results from historical simulation data. While most traditional methods are
parametric, ANNs are able to process geometries directly and are thus agnostic to the parametrization
of the geometric models, which makes them appealing when working on multiple design campaigns.
However, ANNs may fail to transfer the learned knowledge when used on new design campaigns that
are significantly different from those used to train the model or when the size of the training data set is
too small.

The goal of this project is to increase the reliability of ANN-based surrogate models on new design
campaigns and on small datasets. One main direction to achieve this goal is to incorporate prior physi-
cal knowledge into the learning process. Methods to supplement training data with a simplified solution,
meaningful physical scaling, and governing equation-based losses were used. The data set used for
this study was based on a real-life-inspired complex 3D parametrized geometry of an automotive HVAC
system.

The methods were tested in generalization, transfer learning, and single-campaign inference tasks.
Moreover, physics-informed losses were tested in an ill-posed setting as a prediction outlier correction
tool. While the initial findings suggest that incorporating prior physical knowledge may improve model
performance, especially in low-data regimes, further investigation is needed to draw any definitive
conclusions. Additionally, the preliminary results related to the use of physics-informed losses as a
correction method are inconclusive and require further experimentation in the future. Therefore, more
research is needed to determine the effectiveness of these approaches.

Preface

Contents

Abstract

Nomenclature

List of Figures

List of Tables

1 Introduction

2 Literature review

2.1

2.2
23

24

2.5

2.6

Background on neural networks Lo
211 Overview of machinelearningo
2.1.2 |Introductiontoneuralnetworks oL
2.1.3 Optimization algorithms
214 Overfitting. e
2.1.5 Convolutional neuralnetworks.
Geometricdeep learning. L
Neural network based surrogate modellingforCFD
Incorporation of physics into neural network-based surrogate models
241 NN-solvercoupling.
2.4.2 Physics-informed neural networks-PINNs
243 Datatransformations.
Transfer learning and neuralnetworks
2.5.1 Nomenclature and type of transferlearning.
2.5.2 Transferring knowledge ofinstances
2.5.3 Transfer Knowledge of Parameters

Conclusion e e

Vi

viii

Xi

Contents iv

3 Research Question & Objectives 23
3.1 Research Question(s) e 23
3.1.1 Sub-questions 23

3.2 Research Objective e 23

4 Methodology 25
41 HVACUSECASE. o o it e e e e e e 25
4.2 Datageneration. 28
4.3 Datapre-processing i e e e e e 30
44 Designof Experiment 31

5 Baseline model 33
51 Generalsettings e 33

6 Physics-informed modifications for baseline model improvement 35
6.1 Simplified solver solution as an additional input 35
6.2 Physics-basedscaling 35
6.3 Physics-informedlosses 36

7 Results 39
7.1 Model performance assessment. oL 39
7.1.1 Statistical metricsused. L 40

7.1.2 Scalars computed on predicted fields 40

7.1.3 Metric calculation methodology L Lo 41

7.2 Baselinemodelresults. 42
7.2.1 Baseline model - inference performance 43

7.2.2 Baseline model - transfer learning performance 44

7.2.3 Generalizationperformanceo 48

7.2.4 Baseline model performance-summary 50

7.3 Physics-informed surrogate modelso 51
7.3.1 Physics-informed methods assessment in improving inference performance. . . . 51

7.3.2 Physics-informed methods assessment in improving transfer learning performance
53

7.3.3 Physics-informed methods assessment in improving generalization performance . 57

Contents v
7.3.4 Physics-informed losses 59

7.3.5 Physics-informed surrogate models - summary. 62

8 Conclusion 64
9 Discussion and future work recommendations 65
9.1 DISCUSSION e 65
9.2 Future work recommendations. L 66
Bibliography 67
References 7
A Appendix CFD convergence study 72
B Simplified solver solution as an additional input - method explanation 74
C Campaign details 77
C.1 Campaign 1 parameterranges e 78
C.2 Campaign 2 parameterrangeso e e e e 78
C.3 Campaign 3 parameterranges o i i i e e e e e 79
C.4 Campaign 4 parameterranges e e 79

D Physics-informed methods comparison of L1 errors on fields. 80
E Full PDE loss correction results 83

Nomenclature

Abbreviations
Abbreviation Definition
CFD Computational Fluid Dynamics
ROM Reduced Order Modeling
NN Neural Network
ML Machine Learning
MLP Multilayer Perceptron
CNN Convolutional Neural Network
LBFGS Limited-memory Broyden—Fletcher—Goldfarb—Shanno algorithm
SGD Stochastic gradient descent algorithm
RGB Red, green, blue color model
SVvD Singular value decomposition algorithm
POD Proper orthogonal decomposition
PDE Partial differential equation
PCA Principle component analysis
N-S Navier-Stokes equation
SDF Sign-distance function
LBM Lattice-Boltzmann method
RANS Reynolds-Averaged Navier-Stokes
AoA Angle of attack
PINN Physics Informed Neural-Network
ANN Artificial Neural Network
S-A Spalart Allmares turbulence model
TBNN Tensor-Based Neural Network
LES Large eddy simulation
DNS Direct numerical simulation
PCG Preconditioned conjugate gradient scheme
CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart
TF TesnorFlow
SVM Support vector machine
BC Boundary conditions
IC Initial conditions
ESN Echo state network
MSE mean squared error
VP velocity-pressure
\AY velocity-vorticity
FVM Finite Volume Method
GNN Graph Neural Network
MINST Modified National Institute of Standards and Technology database
RMS Root-mean squared
LSTM Long short-term memory neural networks
SINDY Sparse identification of nonlinear dynamics
ODE ordinary differential equation
RAR Residual-based Adaptive Refinements
FEM Finite Element Method

vi

Contents

Vi

Abbreviation Definition
MRI magnetic resonance imaging
HVAC Heat, ventilation and air-conditioning unit
PI physics-informed
Symbols
Symbol Definition
Velocity

Turbulent Kinetic Energy
Reynolds number

neuron weight

neuron bias

body force terms

loss function

loss function

coefficient of determination
pressure

time

eddy viscosity

strain rate

Richardson number
gravitational acceleration
reference length

kernel weights

area

mixing length

mean strain rate tensor
momentum vector

ADAM optimizer bias correction term
ADAM optimizer bias correction term
time averaged component
time varying component
reference value

I T >IN T AL DHDED O \OB’U’BSET:BQ N~ :U(/)SH"B SV SNLSRRC Q;ppvg
Q B [V]

Density/ local geodesic polar coordinates
vorticity

penalty function term

L2/L1 regularization penalty weight
activation function

neural network model parameters / local geodesic polar coordinates

kinematic viscosity

momentum constant

ADAM optimizer smoothing term
stress

Kronecker delta

mean / dynamic viscosity
learning rate

List of Figures

1.1 The number of publications in the field of PINNs, since the original paper of Raissi et al.
[2019]. With passing years, more and more complex problems were tackled, firstly 1D
Schrodinger equations (SE) [Raissi et al., 2019], subsequently Euler equations [Mao
etal., 2019], than Navier-Stokes (N-S) equations [Jin et al., 2021] and finally N-S coupled
with heat equations [Cai et al., 2021b]. The graphic shows the exponential growth of the
interest in the field measured by new publications.

2.1 Fundamental division of machine learning algorithms. Source: Brunton et al. [2020]

2.2 Asingle neuron consists of weighted sum of inputs and a bias term which is later trans-
formed with an activation function and passed asoutput.

2.3 Commonly used activation functions, image source Fengetal. [2019]
2.4 Simple CNN architecture. Source: [Geron,2019]
2.5 Convolution operation. Source: [Prijono,2018]
2.6 Pooling operation. Source: [Prijono, 2018]
2.7 U-Net architecture as used by Thuerey et al. [2020]. Source: [Thuerey et al., 2020].

2.8 Overlay of Cartesian grid and structured C meshes. The first is the input structure of
CNN and the other is the typical simulation mesh. Interpolation between the two will
introduce large errors. Source:[Bhatnagaretal.,2019].

2.9 Diagram of CFD-GCN architecture. Source: [De Avila Belbute-Peres et al., 2020].
2.10 Field predictions comparison for generalization experiment. Samples for the test set. . .
2.11 Schematic of PINNs structure. Source: [Caietal.,2021a]..

2.12 PointNet-based PINN, generalization experiment surface temperature prediction on the
test set. Source: [Kashefi and Mukerji, 2022].

2.13 Size of vertices pair against Re. Comparison of performance of CNN models in interpo-
lation and extrapolation. Compared to FVM ground truth data. Source: Ma et al. [2021].

2.14 comparison of the different non-dimensionalization strategies on airfoil prediction of pres-
sure and velocity components. Source: Thuerey etal. [2020].

2.15 Results showing performance curves for transfer knowledge of parameters study, be-
tween the target and the source networks. Different number of layers are transferred
from the source to the target and the performance is evaluated to assess the impact of
such transfer. Source: [Yosinskietal.,2014].

2.16 Parameter transfer by layer, boost (relative improvement) from source to subtask. Left
to right Re=[10,200,300,400,500] Source:[Chenetal.,2021].

viii

11

12
13
13
14

15

17

18

List of Figures iX

4.1

4.2

4.3
4.4

4.5

4.6
4.7
4.8

4.9

5.1

5.2

6.1

7.1

7.2

7.3

7.4

7.5

7.6
7.7
7.8

7.9

Base HVAC geometry. e 25
Base HVAC geometry in yellow placed in a reference car. Car geometry source:Rail

[2021]. . . o 26
HVAC duct parameterization. 27
HVAC visualization of the multi-campaigndataset. 28

Sample geometries from all campaigns created, with added reference global dimensions

IN (MM . o 28
Each geometry is simulated thrice to form 3 samples each at different inlet velocity. . . . 29
Example unstopped simulation run, with iteration stopping criterion plotted. 30
Mass flow locations. 30
Effect of remeshing. Bad mesh at the top vs. good mesh at the bottom. 31
Stock GNNmodel. e 33
Final baseline model inputsandoutputs. 34
Physics-informed loss prediction correction workflow. 38
Examples of predicted scalar scatterplots. 42

bs_exp1: R? and R of the predicted scalars from ScalarNet of the test set for various
runs of bs_expT. 43

R? and R of the ScalarNet predicted scalars of the test set for various runs of Experiments
3and 5. . . e 44

bs_exp3 3x10: CFD ground truth vs. model predictions for npp; and mgp2. 45

A geometry from campaign 1 compared to a geometry from campaign 4, showing the
position difference between left ducts in the two geometries. 46

CFD and L1 errors for dp-585 sample from bs_exp3 3x70 andbs_exp5 3x10. 46
R and R2 comparison between bs_exp1, bs_exp3and bs_exp5 for scalars from ScalarNet. 47
L1 error on fields for Experiments 1,3 and 5 for baselinemodel. 48

Baseline model generalization velocity comparison between bs_exp3 3x0and bs_exp5 3x0
dp-585sample. L 49

7.10 Baseline model generalization pressure comparison between bs_exp3 3x0and bs_exp5 3x0

dp-585sample. e 50

7.11 R? and R of predicted scalars from ScalarNet of the test set for baseline experiment, a

simplified solution as an additional input experiment, linear and mixed scaling, and finally
the combination of linear scaling and a simplified solution addition experiment. 51

List of Figures X

7.12 R? and R of predicted scalars from ScalarNet of the test set for baseline experiment (bs),
a simplified solution addition (pot), linear (nd_Ilin) and mixed scaling (nd_mix and finally
fusion of linear scaling and a simplified solution addition experiment(pot_nd.. 53

7.13 R? and R of the calculated scalars based on the predicted fields of the test set for the
baseline experiment (bs), the simplified solution addition experiment (pot), linear (nd_lIin)
and mixed scaling (nd_mix and finally the fusion of the linear scaling and the simplified
solution addition experiment (pot nd. 54

714 Rforpot expb. e 55
7.15 Comparison between CFD, bs_exp5 3x710 model prediction and pot_exp5 3x710 model. 56

7.16 Comparison of pressure drop and pressure field performance for the baseline model
versus scaling techniques for Experiment 5. 57

7.17 Zero shot prediction of dp-585 from Experiment 5 3x0 and 3x1 runs with mixed scaling. 58
7.18 Loss plots for various weightings used to the physics loss training. 59

7.19 CFD divergence vs. divergence as predicted at various intermediate steps of variable
weight model training. 60

7.20 Divergence of the velocity distribution for predictions of the Supervised 3 training.. . . . 60

7.21 Velocity field, comparison between CFD, base model prediction and prediction correction
model in Supervised 2. 61

7.22 X-velocity field comparison between CFD and Pl loss model prediction, unsupervised

training, wr,,, =1E -8, n=1000. 62
A.1 Tracking of the quantities of interest for different levels of mesh refinement. 73
B.1 Potential flow vs. viscous CFD solution for HVAC geometry. 75
D.1 PI methods comparison of L1 errors on fields for Experiment1. 80
D.2 Pl methods comparison of L1 errors on fields for Experiment3. 81

D.3 Pl methods comparison of L1 errors on fields for Experiment5. 82

4.1
4.2

4.3

6.1

7.1

7.2
7.3

7.4

7.5

7.6
7.7

7.8

A1

CA
C.2
C3
C4
C.5

E.1

List of Tables

HVAC geometrical parameters and theirranges. 27
Campaign Overview. 29
DOE for model performance assessment, camp is a shortening for word campaign. . . 32
Loss weights tried with thismethod. 37
bs_exp1: Absolute and percentage mean L1 error of predictions vs. CFD ground truth

for scalar quantities. 43
bs_exp1: Absolute L1 error of predictions vs. CFD ground truth for field quantities. . . . 44

Correlation and mean percentage L1 error for two zero-shot runs, one for bs_exp3_3x0
and bs_exp5 3x0each. e 48

L1 error on the predicted fields for generalization runs: bs_exp3 3x0 and bs_exp5 3x0. 49

R? and R metrics on mass flows from the validation set of campaign 4 calculated using
the simplified solution (potential flow (PF)) velocity solution obtained from ANSYS Fluent. 55

Comparison of the L1 pressure drop error for the different scaling methods used. . .. 57

Correlation and mean percentage L1 error for zero-shot runs, for different physics-informed

methods on Experiment 5. L 58
Physics-informed loss experiment results including intermediate results. Relative im-
provement on L1 error for scalars calculated from fields and fields themselves. 61

Mesh refinement levels for the convergence study - 4 was the mesh setting used for this

WOIK. . o e 72
HVAC geometrical parameter type division. 77
Fixed and semi-variable parameter selection/subrange for campaign 1. 78
Fixed and semi-variable parameter selection/subrange for campaign2. 78
Fixed and semi-variable parameter selection/subrange for campaign 3. 79
Fixed and semi-variable parameter selection/subrange for campaign4. 79
Physics-informed loss, experiment results including intermediate results. Relative im-

provement on L1 error for scalars calculated from fields and fields themselves. 83

Xi

Introduction

The computational costs of high-fidelity engineering simulations, for example, computational fluid dy-
namics (CFD), are very high if the application requires frequent design iterations or fully fledged op-
timization. A popular way to reduce computational costs and enable fast iteration cycles is to use
techniques such as reduced-order models (ROM) or adjoint solvers. Those methods can be effective
solutions, but their applications are often very case-specific and have a limited range of design explo-
ration capabilities [Li et al., 2022]. This work utilizes a machine learning (ML) software that aims to
improve the design product pipeline using neural network-based surrogate modeling techniques.

This work utilizes a deep learning-based computer-aided engineering software that utilizes ML tech-
niques to accelerate design processes. This ML software allows the user to create neural network (NN)
models that can be trained later to predict simulation results from historical simulation data. While most
traditional methods are parametric, this one allows to build models that are able to process geometries
directly and is thus agnostic to the parameterization and meshing of geometric models, which makes it
appealing when working on multiple design campaigns'. Another benefit of this type of solution is that
such models predict the results much faster than traditional simulation methods, allowing for building
of fast optimization cycles for rapid design landscape exploration.

However, NN models require enough data to at least sparsely cover the desired design envelope.
This can be done by utilizing past simulation results from older campaigns of a given product, but may
also require some new simulations from the current to-be-designed campaign. If the coverage of the
design space is too sparse or irregular, the model may fail to provide useful results. Additionally, prior
usage of the ML software used in this work was purely data-driven, which on some occasions led to
locally non-physical results and poor extrapolation capabilities.

The goal of this project is to tackle these limitations by incorporating prior physical knowledge into
the models. The creators of the ML software used for this thesis see this as a key development area
as it can lead to more accurate models that need lower amounts of data to train. Moreover, many
customers, who have used CFD simulations in their design processes for years, have large libraries of
simulations of their past campaigns. The information captured in those simulations can potentially be
used to train models for new campaigns and limit the costly usage of CFD simulations for training data
creation. This could lead to faster time to market for the products and also better designed products
due to more effective design space exploration. Such improvements are seen as highly valuable to
customers, and as this methodology is still in the stage of early adoption, improvements like this will
hopefully allow for more widespread production use of the ML software in major target markets.

"In this work, campaign refers to a separate design cycle that aims, by iterating on the design by creating different samples,
to arrive at the final optimized design.

Scientific deep learning is a new research field, and it evolves extremely dynamically. Every month,
new papers are published in the field and thus the state-of-the-art evolves rapidly. Figure 1.1 illustrates
this landscape, with an almost exponential growth in the number of publications in the field of physics-
informed neural networks (PINNs), which is one of the fields of particular interest for this work.

MNSE+HE
Feu=0
A+ (e Flu = -Fp + (Re)'Viu + (Ri)8
80 + (u=F)d = (Pel'Wa

Fer=0

Al + (U=Vu = -Vp + (Re)'viu

i + fa.u=0

igh + 0.58,,h + fh{<h =0

Figure 1.1: The number of publications in the field of PINNs, since the original paper of Raissi et al. [2019]. With passing years,

more and more complex problems were tackled, firstly 1D Schrodinger equations (SE) [Raissi et al., 2019], subsequently Euler

equations [Mao et al., 2019], than Navier-Stokes (N-S) equations [Jin et al., 2021] and finally N-S coupled with heat equations
[Cai et al., 2021b]. The graphic shows the exponential growth of the interest in the field measured by new publications.

This thesis will explore a series of methods for adding physical prior knowledge to neural network-
based surrogate models trained with CFD simulations. It is important to note here that this work aims to
combine research and industrial applications. The models, unlike in other literature found, are trained
on a complex, 3D, industrial-like application of automotive HVAC geometry. The use case of complex,
3D industrial-like automotive HVAC geometry presents significant challenges, particularly in maintain-
ing scientific rigor, with some aspects of this work requiring compromises between the academic and
research realities.

This thesis is structured as follows. Firstly, a condensed description of prior knowledge and state
of the art will be described in Chapter 2. Subsequently, having identified potential research directions,
Chapter 3 will present the research questions to be addressed in this thesis. Chapter 4 presents the
base methodology using which the different aspects of the research questions will be tackled. Chap-
ter 5 will present the baseline surrogate model, with respect to which all methods to incorporate phys-
ical prior knowledge will be compared. In Chapter 7 the results generated during this work will be
presented. Firstly, the baseline model performance will be analyzed, and subsequently the different
physics-informed (PI) methods will be compared to the baseline model performance. In Chapter 8 the
conclusions will be drawn from the work presented, and finally in Chapter 9 discussion and suggestions
for future developments in this research topic will be proposed.

Literature review

2.1. Background on neural networks

In this chapter, the fundamentals of neural networks will be introduced. The ideas presented will be
essential for understanding the research field. A lot of information in this section can be treated as
general knowledge. For the main reference of this chapter, the textbook of Geron [2019] was used.

2.1.1. Overview of machine learning

Machine learning is a branch of engineering science that focuses on the use of algorithms that can
assimilate data, where the assimilation process is referred to as training, and can later use the accumu-
lated knowledge for further predictions based on this previous experience. Typically, machine learning
is divided into 3 main categories, as presented in Figure 2.1. The algorithms are divided based on the
type of training being done. Supervised learning is learning during which carefully labeled data is given
to the algorithm to assimilate. Labeled data means data that have the desired solution appended to
them. On the other end of the spectrum, unsupervised learning algorithms train with unlabeled data, by
learning the dependencies between the data points without the help of knowing the right answer at the
start. In between, there is a group of algorithms that use partially labeled data during training, called
semi-supervised learning algorithms. Each group of algorithms in Figure 2.1 is characterized by the
type of problem that this group of algorithms can solve. For an extended explanation of the algorithms
and what they can do, see Geron [2019].

Supervised Semi-supervised

s . . Optimization Reinforcement Generative
Classification Regression X
& Control Learning Models
« SVM, * Linear, = Linear control, * Q-learning, * Generative * K-means, +POD(PCA,
¢ Decision trees, * Generalized linear, * Genetic algorithms, * Markov decision adversarial K nearest neighb., * Autoencoder,

* Random forests, * Gaussian process, * Deep MPC, processes, networks (GANs) = Spectral = Self-organiz. maps,
¢ Newral Networks e ¢ Deep RL clustering, * Diffusion maps

Figure 2.1: Fundamental division of machine learning algorithms. Source: Brunton et al. [2020]

2.1. Background on neural networks 4

2.1.2. Introduction to neural networks

Although there are many algorithms, one of the most popular classes of ML algorithms is called neural
networks (NN). The reason for their widespread use is that they are efficient when handling large data
sets. Moreover, NN can tackle problems that belong to various fields and various groups, as presented
in Figure 2.1. Based on the survey [Liu et al., 2017], neural networks have been applied to a wide range
of problems such as image recognition, computer vision, language processing and music recognition,
and were also used in COVID-19 modeling [Shorten et al., 2021], or medical image analysis [Shen et al.,
2017]. Additionally, they can be easily scaled to tackle complex problems, outperforming other ML
techniques [Geron, 2019]. Neural networks can also be used as function approximators [Hornik et al.,
1989]. Using the input data, the model, which approximates a function, can predict the output of the
function. The function here can be any mathematical expression. The most basic type of neural network
is called a multilayer perceptron or MLP in short. It started with the proposal of a single perceptron by
an American psychologist Frank Rosenblatt in 1957 [Geron, 2019]. Combining multiple perceptrons
into layers creates an MLP. MLP neural networks are composed of an input layer, hidden layers in
the middle, and an output layer in the end. The input layer, as the name suggests, is where the user
provides information to the network, based on which the prediction can be made in hidden layers and
presented in the correct form by the output layer. In essence, each layer is made out of neurons, with
each neuron, representing first a linear transformation operator having a weight and a bias, followed
by a non-linear transformation through a selected activation function. A single neuron is depicted in
Figure 2.2.

Inputs Weights Weighted sum Activation
+ bias function

ClEg+ | (w0)y

Figure 2.2: A single neuron consists of weighted sum of inputs and a bias term which is later transformed with an activation
function and passed as output.

Therefore, the output of a single neuron is:

Y :U<§n:$iwi+b> (2.1)

i=1

The activation function is a function applied at the output of the neuron, and it applies a transfor-
mation to the output to introduce non-linearity to the output of the neuron. It is a bio-inspired operation
[Geron, 2019], that is supposed to mimic the brain’s behavior, allowing neurons to be active, or "stim-
ulated”, by different inputs. This allows for the network to learn non-linear behavior in the data, by
allowing different neurons in the network to output relatively large (very active neuron) or relatively low
(low-acting or inactive neuron) values. Activation functions, responsible for the value of the neuron
output, sometimes scale or cap the maximum or minimum value, or both. The choice of an activation
function is highly problem-specific, and there are many functions to choose from. Some of the common
activation functions are sigmoid, hyperbolic tangent, ReLU, and Leaky ReLU. Their plots are presented
in Figure 2.3.

During training, the weights and biases are optimized to fit the training data, using the method
called backpropagation [Rumelhart et al., 1986]. Using automatic differentiation [Gline, et al., 2018], it

2.1. Background on neural networks 5

Sigmoid

1.0

RelLU LeakyRelLU(a=0.2)
10

o |z,2>0
LeakyReLU(z)=

az, otherwise

ReLU(z)= | z,2>0
l. 0,otherwise 5 m

(c) (d)

Figure 2.3: Commonly used activation functions, image source Feng et al. [2019]

is possible to calculate the derivatives of network error with respect to all network model parameters
(weights and biases), with just two passes: one forward and one backward. Having all those gradients
calculated, the gradient descent step can be performed.

A typical training of a neural network consists of a forward pass, loss function evaluation, and a
backward pass.

In the forward pass, the input is processed through the input layer and sent to the first hidden layer,
where the output is calculated using the stored weight and biases. Then the output of that layer is sent
to the next layer to do the same, and so on. Unlike during the prediction step, in the forward pass of
backpropagation, the intermediate results and the outputs from each neuron in the hidden layer are
stored, since they are needed for the derivative calculations.

Next, the loss function is evaluated based on the output of the last layer of the network. The loss
function is the function that measures how well the neural network models the training data set.

Finally, the backward pass is performed. By applying the chain rule of derivatives and using the
stored neuron outputs, the derivatives of the loss function with respect to all model parameters are
calculated, which are then propagated backward to evaluate the sensitivity of the error to each neuron’s
weights and biases. Finally, knowing the gradients, the gradient descent step can be performed to
optimize and update the model parameters.

A single combined forward and backward passes form an iteration, and a pass through the entire
training set forms an epoch. In cases where the number of training samples is very large, batching can
be used. The batching operation randomly selects a smaller subset of samples at each iteration to use
for the optimization step. This smaller data set of samples used allows to limit the computational effort
required for the update of parameter.

2.1. Background on neural networks 6

Loss functions

A loss function is any function or expression that is evaluated during training to guide the optimizer in
adjusting the weights of the neurons. The most commonly used formulations for this purpose are L1
and L2 loss functions, which are also built into common ML frameworks like TensorFlow [Abadi et al.,
20185].

The L1 loss function can be written as:

N
LLI = Z |yn,truth - yn,pred| (22)

n=1
The L2 loss function can be written as:

N
»CLZ = Z(yn,truth - yn,precl)2 (23)

n=1

Where N is the number of samples, y,,.q is the prediction of the network for a given sample and
yerutr, 1S the ground truth value for a given sample.

These are just the most commonly used functions, but there are many more to choose from. Loss
functions can affect the performance of a NN in many ways. For example, Janocha and Czarnecki
[2017] in their work applied to classification problems state that the choice of loss functions not only
has an impact on the model training but also can affect how well the model can be trained, as well as
how the learning of the model can be generalized to other problems. Loss functions can be crafted
specifically with the particular problem in mind. In case of this work, where the NNs will be used to
predict CFD-like physical fields around or inside geometries, loss functions incorporating both pure
data loss, as well as, physics equations-based loss and boundary condition loss could be used. This
topic will be explored in further detail in Section 2.4.

2.1.3. Optimization algorithms

There are many optimization algorithms that are used for the training of neural networks, like Stochastic
Gradient Descent, ADAM [Kingma and Ba, 2014], or L-BFGS [Liu and Nocedal, 1989]. There are
two main types of optimizers used for NN training: first- and second-order method optimizers. First-
order methods (ADAM, SGD), as the name suggests, use only first-order derivatives to perform an
optimization step. Second-order methods (L-BFGS) use both first- and second-order derivatives for
this task.

ADAM optimizer

The ADAM optimizer is an extremely popular optimizer used in ML. To understand the ADAM optimizer,
another concept that needs to be introduced is the concept of momentum first proposed by Polyak
[1964]. SGD uses a gradient calculated on a randomly chosen batch of training set. This means that,
if the batch is small, the direction of the descent can oscillate a lot, as it varies from batch to batch.
Algorithms with momentum try to solve this problem, by leveraging past gradient information along with
the current gradient calculation to improve the stability and convergence rate.

In the momentum algorithm:

m — fm —nVeJ(0)

(2.4)
0 —60+m

2.1. Background on neural networks 7

At each iteration, the algorithm subtracts the local gradient from the momentum vector, and it up-
dates the weights by adding the new momentum vector to them. The momentum vector is calculated
as an exponentially decaying average of past gradients. The parameter j is called momentum and is
a multiplier of the momentum vector to prevent it from growing too large. Usually, this is set to values
of around 0.9.

The ADAM optimizer [Kingma and Ba, 2014] uses adaptive estimates of first- and second-order
momentums. Exponentially decaying moving averages of the gradient of the cost function (m) and
square of gradient of the cost function (s) are used for the update of the step, which are used to estimate
the first- and second-order momentums.

m— Sm— (1 —31)VeJ(0)
s — P28+ (1 — B2) Ve J(0) ® Vo J(0)

rT1—>Lt

1-5 (2.5)
s _>

1- 4

0—>0+mMmo/s+e

B1 and (B, are model hyperparameters that weight the contribution of the past terms in the update
step. Due to the initialization used in this algorithm, where s and r are initialized as zero, the algorithm
is biased towards zero values as well. To overcome this, the algorithm introduces bias correction terms
s and m. The final hyperparameter introduced is ¢, which is a smoothing term and is usually initialized
to 1077,

2.1.4. Overfitting

The training of neural networks is an iterative process, with each iteration updating the parameters of
the network to optimize the network output with reference to the ground truth provided. To monitor the
progression of training, tools like TensorBoard [Abadi et al., 2015] are used to read the training logs,
where for each number of iterations, the state of the loss function is stored along with other metrics
if indicated. This is an analogous tool to residual plots in CFD, with a key difference being that in
machine learning there is a very critical phenomenon occurring called overfitting. One of the most
common metrics for evaluating data fit is 22, which is calculated as follows:

Zi (yzruth - y}ired)Z
Zi (y;ruth - gtTUth)2

R2 =1— (26)

Almost always when training a neural network, or indeed any machine learning model, the data set
is divided into 2 to 3 parts: training, test, and validation data sets. The training data set is used only
for the iterative training process. The validation data set is used for every n iteration during training to
test the prediction performance of the model. Finally, the test set is used after the model has finished
training to check again the inference performance of the model with the data that the model has never
worked with before.

Overfitting occurs when the model starts to fit too well to the training data sets, losing prediction
accuracy on the validation data set. This can be easily spotted by tracking training and validation sets
losses with the progress of training, as overfitting is characterized by an increasing loss on the validation
data set, while the performance of the model on the training data set is still improving or stagnating.

2.1. Background on neural networks 8

2.1.5. Convolutional neural networks
In this section, the convolutional neural network (CNN) architecture will be introduced.

The main difference between the MLP network introduced earlier and a CNN is the type of neurons
used in the layers. CNNs are widely used in pattern recognition and classification of images.

CNNs are made up of three types of layers [O’shea and Nash, 2015]: convolutional layers, pooling
layers, and fully connected layers like those seen in MLPs. The stacking of these three different types
of layers forms a simple CNN as presented in Figure 2.4.

'J@T‘F%“E

Convolution Pocling Convolution Pooling Fully connected

Figure 2.4: Simple CNN architecture. Source: [Geron, 2019]

Convolutional layer

Convolutional layer is formed by a learnable kernel with an activation function. These kernels have three
parameters: width, height, and depth. Kernels, as well as images, can be thought of as matrices. For
images, each pixel is a matrix entry, where each entry is a numerical value that indicates the brightness
of the pixel. Kernels are matrices of learnable weights, where width and height parameterize the size
of the kernel and signify how large of a portion of an image the kernel aggregates the features from.
The depth of the kernel is normally dependent on the number of colors a pixel has. In a typical screen
or camera, a pixel would consist of RGB (red, green, and blue) colors.

The kernel scans the picture f and obtains the pixel values and calculates the scalar product be-
tween the learnable weight of each kernel h and the captured pixel values. Then the scalar products
in the kernel are summed. After a filter passes the entire image, the resultant set of filter and pixel mul-
tiplications form a convolved feature. This process is illustrated in Figure 2.5. Subsequently, the bias
term is added to the convolved feature and the result passes through the activation function, forming a
feature map.

Each entry in the convolved feature G is calculated as follows:

Grunw = ([* Mnpnw = Z Z gk frs—jmw —k 2.7)
ik
A kernel consists of a matrix of learnable weights and a single learnable bias.
Input Filter Result
al9l2|s |8 3T 2
10| 4
5 6 |2|4|0]s3
sk 100 |- —
2|4 |5|4]|5]2 -
— 10| -1
5| 6|5 |4 (7|8 - ;
Parameters: :
5|7 (79|21 Size: f=3 [2) =41+ 90+ 21+
Stride: s=1 5*1+670 +2(-1) +
5|8 |5 |3 [8]|4 Padding: p=o 21+ 40+ 5%(-1)
XM, = 6x6 https://indoml.com

Figure 2.5: Convolution operation. Source: [Prijono, 2018]

2.2. Geometric deep learning 9

Pooling layer

The main function of the pooling layer is the reduction in the dimensionality of the image representation.
This is done by applying a fixed-size grid and reading values from its receptive fields that combine the
activation map features falling under the grid. Max-pooling (see Figure 2.6) is a method that is often
applied, that for each grid application pulls the maximum value for the grid and passes it to a new
activation map.

Max Pooling Avg Pooling

4|92 |5 419 (2|5

5§ | 6|24 ‘ 9 |5 ‘ 5|6 2|4 60 | 33
2| 4|54 l 6 ﬂ 2 4 | 5| 4 43 | 53
5|6 |84 5 6 | 8| 4 o

Figure 2.6: Pooling operation. Source: [Prijono, 2018]

Fully-connected layers

Fully connected layers flatten the last activation map from upstream, and using that feature vector, they
capture complex relationships between the global features in the image, outputting a one-dimensional
feature vector. Fully connected layers are also used to output the information from the network in the
desired form. For example, in image classification tasks, the last layer would be fully connected with
activation function like softmax, which is used to normalize the output to form a probability. This would
give the probability that a given image belongs to a given class.

2.2. Geometric deep learning

This section is a first of many that will introduce more task-specific aspects of NNs. In this section
geometric deep learning will be introduced which is one of the key ideas used in the NN models trained
for this project. Geometric deep learning was pioneered by the work of Bronstein et al. [2016] who
coined the term and laid out the formal foundations of the field. In his paper, Bronstein et al. [2016]
presents different deep learning methods, applied before mainly to euclidean domains like 2D planes
(images), now extended to non-euclidean data structures, like 3D graphs and meshes. A key distinc-
tion is made between two main tasks to be solved in geometrical deep learning, the first one being
characterising the data structure and the second one being analyzing the functions defined on the data
structures in the non-euclidean domain. Bronstein et al. [2016] focuses mainly on the second problem,
which presents different classes of approaches for generalizing convolution-like operations to graphs.
Spectral methods, spectrum-free methods, charting-based methods, and combinations of the above
are presented in this paper.

Spectral methods are based on the assumption that convolution can be generalized to a graph by
looking at linear operators that commute with Laplacian matrix, which is a matrix representation of a
graph. Such methods operate on a spectrum of graph weights, which are formed by the eigenvectors
of the graph Laplacian. Such methods suffer from a lack of transferability to different domains, as
each domain consists of its own fixed spectrum of eigenvectors of the graph Laplacian and the spectral
filter coefficients are dependent on those eigenvectors. Spectrum-free methods rely on the fact that
a polynomial of the Laplacian acts as a polynomial on the eigenvalues. Thus, it is possible to repre-
sent a filter using polynomial expansion rather than relying on the frequency domain of the spectral
multipliers. The most notable example of such convolution is presented as part of the ChebNet which
relies on Chebyshev polynomials. Unfortunately, those methods also suffer from a lack of transferabil-
ity to different domains. Charting-based methods, on the other hand, generalize the convolution to
non-euclidean domains and utilize pooling of features by means of pointwise calculation of statistics

2.3. Neural network based surrogate modelling for CFD 10

like mean and covariance. An example of such an approach is proposed by Masci et al. [2015]. The
proposed geodesic convolution neural networks are based on local geodesic polar coordinates. The
weighing functions can be obtained as a product of Gaussians. MoNet by Monti et al. [2017] extends
the work of Masci et al. [2015] by defining the geometric convolutions that allow for a more generic
spatial domain framework for geometric deep learning on non-euclidean structures. Implementation
of parametric and learnable kernels with Gaussians replaces the fixed kernels, allowing for additional
degrees of freedom compared to the other works presented above, where only filters were learnable.
A major advantage of the MoNet approach is that it takes full advantage of the mesh-specific geometric
structure, compared to approaches that treat the mesh as a graph where normals and coordinates are
features of each node. In addition, it requires no additional processing steps that would introduce inter-
polation errors or limit the designer’s choice with regard to freedom of meshing. For these reasons, a
GNN based on MoNet convolutions will be used in this work, which are defined as follows:

Let w be a set of weighing functions w = (w1, ..,w;) such that w; : R> - Rand u : z,y —
p(z,y),0(x,y) is the local polar geodesic distance between the vertices x and y. Given a mesh with
vertices V' and vector field f : V' — R on this mesh, the patch operator is defined as:

Vo eV, je{l,..J} Di@)f= > wjulxy)fy) (2.8)

yEN(z)

The output of the geometric convolution layer with learnable kernel weights g = (¢1, ..., ¢g.7) is given by:

J
fxg=> 9;D;(@)f (2.9)
j=1

In MoNet, the weighing functions used are parametric Gaussian kernels.

-1

wj(u) = exp(—5 (u —)" 3w~ py)) (2.10)

J

with learnable mean p; and diagonal covariance matrix Zj

2.3. Neural network based surrogate modelling for CFD

Numerical simulations, such as CFD, used to capture flow behavior, produce a huge amount of nu-
merical data. The emerging field of machine learning thrives in environments where large quantities of
data are present. Due to efficient operation and relative ease of use, many ML techniques are being
applied to improve CFD simulations or leverage CFD simulations to make models of the flows. What
makes ML techniques even more interesting is their ability to capture patterns from the data. Similarly
to tasks like image classification, where trained NN classifies images based on the foreground object
presented in the image, NN fed with FVM simulations can recognize different patterns in the data within
the geometrical domain. Fluid mechanics is full of such visual patterns, many of them repeating across
different scales [Taira et al., 2017].

Distinctions can be made about the field of ML for CFD, and those are based on where in the process
the ML component is being used. Two distinct groups can be formed here: approaches incorporating
the ML solutions into the CFD solver itself, improving or replacing some components of the solver.
The other approach would be to use the data generated by the CFD solver to extract information or
assimilate the data in some way, allowing for posterior usage. One of the main approaches in this
field is to use the CFD-generated data to build surrogate models. In this section, a concise review of
CFD-data-based NN surrogate modelling approaches will be made.

A way to use machine learning for CFD is to use the ground truth data generated by the solver,
to train a neural network, essentially replacing the solver. In this scenario, the neural network, for a

2.3. Neural network based surrogate modelling for CFD 11

specific range of cases on which it was trained, could emulate the solver and predict CFD-like results
for new geometries. One of the first research groups to propose this idea was Guo et al. [2016], where
the authors proposed a framework for 2D and 3D flow prediction using a CNN, for steady flow. The
simulation data was fed to the CNN by applying voxelization to the CFD simulations, which means that
the fields from the mesh were projected onto a Cartesian grid. The sign distance function (SDF) was
used for geometry representation. A single set of stacked convolutional layers was used to encode
the geometrical features from the SDF. Then, for each field component separately, a decoding branch
is created to predict the field value. The network was trained on low Reynolds number (Re = 20)
CFD simulations, generated using LBM. The work showed a comparison between SDF and binary
geometry representation, showing a much better accuracy when SDF was used. It was argued that this
was caused by the more global information contained within the SDF, whereas binary representation
is much more locally restricted. The performance achieved on the validation set for the experiment
was not fully analyzed, although the visual field comparison on the validation test samples presented
appeared accurate. For 3D geometries, the average velocity field error for the validation data set was
below 3% compared to the LBM simulations.

9w

= Input Output = Field Quantiies Pre-computed Targets

T

Figure 2.7: U-Net architecture as used by Thuerey et al. [2020]. Source: [Thuerey et al., 2020].

H B

K 2
L, Lo

Thuerey et al. [2020] used a U-Net architecture shown in Figure 2.7, based on the CNN architecture,
to construct a surrogate model trained on 2D RANS simulations of airfoils with a much wider range of
Reynolds numbers [0.5, 5] million. The authors present the results of how the number of trainable pa-
rameters of the models as well as the amount of training data impact the performance of the models.
Smaller models provided lower error on small data set and vice versa - the more data was available,
the better the larger models performed in relation to smaller models. Furthermore, the generalizability
of the models was assessed by modifying the angle of attack of the data set to be outside the scope of
the original data sets. Then various composition data sets were fed to the model, showing a decreased
performance of the model, the less data from the original data set was present. Although the modifica-
tions to the samples outside of distribution were low, the errors were still relatively acceptable, below
3% over the three channels (x, y velocities and pressure).

In the first papers Guo et al. [2016] and Thuerey et al. [2020] presented a common research ap-
proach to input data into a CNN-derived model. In these approaches, CFD data calculated on an
unstructured grid are projected onto a Cartesian regular grid as seen in Figure 2.8, which later allows
the data to be easily inputted into a CNN framework. This approach comes with drawbacks. Resam-
pling causes a decrease in the order of accuracy of the CFD data due to the unavoidable extrapolation
and interpolation required in the process. Additionally, projection of the data to a Cartesian grid causes
loss of information in highly sensitive areas of the flow, like in the boundary layer area, where the CFD
mesh will have much more cells to capture the high gradients of the solution. Resampling loses this
information, unless a prohibitively large Cartesian grid is used of the order of cell size of the boundary
layer cells in the CFD mesh, but this is absolutely unfeasible from the computational effort standpoint.
These methods work in a research environment with relatively simple geometries, but in an industrial
setting using an unstructured grid with a variable grid from sample to sample in the training set is
unavoidable [Kashefi et al., 2021].

2.4. Incorporation of physics into neural network-based surrogate models 12

Figure 2.8: Overlay of Cartesian grid and structured C meshes. The first is the input structure of CNN and the other is the
typical simulation mesh. Interpolation between the two will introduce large errors. Source:[Bhatnagar et al., 2019].

Another variation on the topic was presented in the paper by Kashefi et al. [2021], where instead
of using a CNN-based model, PointNet architecture [Qi et al., 2016] was used to work directly on
a point cloud with fields. This architecture was originally developed in 2016 for 3D computer vision
tasks, such as point cloud classification. This is a very convenient solution, as the point cloud can be
exported directly from the CFD mesh. This is a large step forward in the usability direction, allowing for
usage of unstructured meshes. In this work, the point cloud represents both the field data and implicitly
represents the geometry by the void in the point cloud. The model was trained on 2D CFD results of
various simple geometrical shapes at low Reynolds number conditions (20 to 84). Overall, the model
produced good results on the validation test set with the lowest errors for pressure and slightly higher
errors for velocity components. The max errors appeared on the walls of the geometries, where no slip
conditions were assigned.

In this work, some effort was put into analyzing the trained model from the aspect of explainability,
that is, analyzing which points in the domain are seen by the networks as critical points in the prediction
of global features. Then, for critical and non-critical points the momentum and continuity residuals were
computed by running a single training iteration, to evaluate the gradients of solution with respect to
input point locations. The results of this study show higher residual values for critical points. This was
explained by the fact that the critical points are much more affected by changes in location of the points
due to their large contribution to the global features, hence having higher residual values. The work on
PointNets was then extended to work within the PINN framework [Kashefi and Mukeriji, 2022]. Further
details on this topic will be presented in Section 2.4

2.4. Incorporation of physics into neural network-based surrogate
models

In this section, different approaches to physical prior knowledge incorporation, specifically into machine-
learning-based surrogate models, will be presented. This is often seen as a potential way to improve
generalizability and transfer learning of machine learning models. Incorporation of physical prior knowl-
edge was already indirectly done by training the model on physical data, such as CFD results, but there
are ways to directly introduce such prior knowledge into the models itself.

2.4.1. NN-solver coupling

One of the ways of including physical prior knowledge into machine learning models is to couple the
NN with a physical solver. In the paper by De Avila Belbute-Peres et al. [2020].

2.4. Incorporation of physics into neural network-based surrogate models 13

Fine - -
L —— o > sese — cee —3 Q
Mesh o Z1 ZI(+] ZK o
I
I Uy = SU2(X,, AoA, Mach)
AoA Up- Us1 = Upsample(U;), i=0,....L
Mach sample

Zp = [X,SDF(X), AoA, Mach|
Zii1 = ReLU(GON;(Z,)), i=0,... k—2
Zy = [ReLU(GCNR(Z;._1)), UL]
G SU2 Ziris1 = ReLU(GONyi(Z4)), i=0,... K —k
Y = GONg (Zx)

; FHES

Figure 2.9: Diagram of CFD-GCN architecture. Source: [De Avila Belbute-Peres et al., 2020].

A differentiable CFD solver (SU2 [Palacios et al., 2013]) was embedded in a graph convolutional NN
(GCN) (see Figure 2.9). The input angle of attack and Mach number are fed into both the solver branch
and the GCN branch of the model. In the solver branch, a simulation is run on a learnable coarse mesh
grid. The GCN branch, apart from the case-specific scalar values, is fed a refined version of the mesh,
which is processed by graph convolutional layers. Then the output of that graph convolutional layer
is concatenated to the result of the coarse CFD simulations, which first pass through an upsampling
step. Finally, the CFD results and the fine mesh features are processed inline by the GCN to produce
a final high-fidelity solution. In the learning process, the coarse mesh is optimized for the best final
performance thanks to the adjoint method for reverse mode differentiation available in SU2.

The interpolation and extrapolation capabilities of the model were tested by predicting results for
a-M parameter pairs that were either in or outside of the training data set. The extrapolation test setup
was particularly interesting due to the construction of the train/test set. In the train set, cases with no
shock waves were used, and in the test set, only the conditions that cause shock discontinuities were
used. As part of the analysis, an ablation study was performed, testing the GCN branch without the CFD
solver, coarse CFD solver by itself, and the entire model, but with non-learnable mesh. Generalization
is where the addition of the CFD solver into the GCN dramatically improves performance. In this part
of the study, the GCN alone performs very poorly and even coarse simulation outperforms it for this
given training time. The field results are presented in Figure 2.10. The results show that the CFD-GCN
model is able to capture shock relatively accurately, unlike the GCN model, which fails to generalize
and predict flow structures similar to what it was trained on. This shows that this type of CFD solver-in-
the-loop implementation can be viewed as a form of physics-informed learning. As this method uses a
CFD solver in the loop, it is important to take into account the inference time. For this simple case of 2D
airfoil with a fine mesh having only 6648 nodes and the coarse mesh having 354 nodes, the inference
time took around 2s vs. 0.1s for the GCN model and 137s for the CFD simulations on fine mesh.

Prediction Ground truth Ground truth

100 08 a0 0a
07s 06 3 [
s 050 " s0 050 a4
025 02 0z
0.00 0o 0.00 . ao

-0.25 -0.5 025 -0,
0.2 0.2

-0 00 050 -0
04 04

-075 -0.75 . E
06 o8

-L.00 1.00 ~1.0¢ 1

- 0 -1.00
050 -0.25 000 025 050 075 100 125 150 050 -0.25 000 025 050 7% 100 125 150 -0.50 -025 000 025 050 075 100 125 150 050 -025 000 025 050 075 100 125 150

Prediction

(a) X-velocity component comparison between GCN model and CFD. (b) X-velocity component comparison between CFD-GCN model and
Source: [De Avila Belbute-Peres et al., 2020]. CFD. Source: [De Avila Belbute-Peres et al., 2020].

Figure 2.10: Field predictions comparison for generalization experiment. Samples for the test set.

2.4. Incorporation of physics into neural network-based surrogate models 14

2.4.2. Physics-informed neural networks - PINNs

Physics-informed neural networks, first proposed by Raissi et al. [2019] aim to use neural network
models to solve partial differential equations, by harnessing the power of the underlying equations and
the ability of neural networks to model complex non-linear functions [Hornik et al., 1989]. His way to
approach this was to introduce additional terms in the loss function that were evaluating the underlying
physical equations on the domain of interest of the model, as well as terms taking into account the
boundary conditions. This addition utilized the automatic differentiation commonly present in neural
network models to obtain the necessary gradients for the equation-based loss calculation. This simple
addition was aimed at decreasing the model tendency to overfit in low-data regimes, as well as to
improve its generalizability and overall performance in low-data scenarios. This is mainly accomplished
by the additional physics-based loss terms like Lppg (see Figure 2.11) that during training penalize
the solutions that do not adhere to the underlying physics and have high loss, which can be seen as a
way of applying physics-based regularization to the network.

Neural Network AD

Loss

Lopg = f(2,8,8,0,0, .., A)
Lpata = fla — Ulpata
Lic = Ulge, — 9lat,

Lgc = (Opitlgn—0nglan) + (lan — glan)

N
L =wiLppg +W2Laata*
v waLic+ wilpc
End «

Note: @ = [u,v,p, @], x = [x, y], 6: weights/biases, A: unknown PDE parameters, w;,i = 1, ..., 4: weights |

Figure 2.11: Schematic of PINNs structure. Source: [Cai et al., 2021a].

In its most common implementation, the backbone of a PINN can be a feedforward MLP neural
network. Then utilizing capabilities of the packages like TensorFlow, the gradients of the output with
respect to inputs can be obtained, and based on those the PDE loss, BC and IC losses can be cal-
culated. To evaluate them, a set of collocation points is also required on the boundary and inside the
domain. Those can be randomly sampled within the regions of interest or can be used to target a more
specific area of the domain. Apart from the new loss terms, the usual loss coming from the data itself
is still used.

Jin et al. [2021] presented a paper in which MLP-based PINNs (VP-NSFnets) were used to solve
incompressible, unsteady flows in simple cases, using a data-free approach. In the data-free approach,
good results were obtained for low Reynolds number flows. The models were also used to solve a
turbulent channel flow at Re = 1000, showing the ability of the model to sustain turbulence, although
with high pressure errors, increasing with timestamp time.

2.4. Incorporation of physics into neural network-based surrogate models 15

el Circular inner cylinder
| R et i Hexagonal inner cylinder
,-‘\ > I = l
M LT
- s..u e
80.95-_' : : i L | T |
g : ! |I I| 'I!
P]) 1t '
o 09'-' ! | :
5] e
=] - !
| |I
0.85 ! \
; { |I
1 i 1
PR T NN N NS I T T T T N S S
S BT P Oy Sy S

0 (rad)

Figure 2.12: PointNet-based PINN, generalization experiment surface temperature prediction on the test set. Source: [Kashefi
and Mukerji, 2022].

Kashefi and Mukerji [2022] presented work using a PointNet as a base for a PINN surrogate model,
where predictions were obtained for simplified flow cases for various simple geometries at the same
flow conditions. This architecture has the advantage of being able to directly use the simulation point
cloud as collocation points or observation points. The models were used in both data-free and ill-posed
approaches. In the ill-posed experiment, the 2D thermally driven convection problem was solved with
incomplete BC observation data. The model was shown to be highly dependent on pressure data
observations, as the model without it predicted a pressure field with average error increasing more than
70 times. Generalization performance was tested on unseen geometries, showing good agreement for
circular geometries, but much poorer performance on hexagonal sample, with high errors at the corners
of the geometry, as seen in Figure 2.12.

The majority of work in this area of research uses different implementations of the PINN framework
in low-speed, low-Reynolds number settings. The work of Mao et al. [2019] is one of very few examples
of PINN applied to high-speed flows. In this work, Euler equations were used in the loss for both inverse
and forward problems. For forward problems, two approaches were tested: either with specified BC
and IC or without specified BC and IC but with scattered observations of field values in the domain. The
results presented show that the model is capable of accurately capturing shocks, with the distribution
of collocation points in the domain being the main factor that affects the resolution and the number of
collocation points being a secondary factor. Mao et al. [2019] identified a key problem with this work:
in order to be able to place the collocation points accurately in the domain, one first has to know the
approximate position of the shock. Since this work was published, several works have been written on
conditional domain sampling for collocation points such as Lu et al. [2020] or Nabian et al. [2021] that
tackle this issue. Lu et al. [2020] proposed to address this problem by adding more collocation points
in the domain where the loss magnitude is greater than a specified threshold. In the case of Nabian
et al. [2021], the method of importance sampling [Press et al., 2007] was used for PINN training. This
method relies on selecting training points based on the proposal distribution that is proportional to a
piecewise constant approximation of the loss function.

In many of the scenarios presented, either no simulation data was used for the training, or analytical
test cases were used, or low Reynolds number simulations were used with no turbulence modeling

2.4. Incorporation of physics into neural network-based surrogate models 16

necessary. Very few works attempt to assimilate data generated at higher Re using the PINN framework.
Eivazi et al. [2022] uses simulation data from various turbulence models (LES and DES) as training data
for a series of test cases (without mixing the turbulence models) and predicts a RANS solution without
any assumption on turbulence. The training simulation data are used only to specify the values of the
fields at the boundaries of the domain. Among other cases, LES simulation data were used to solve the
flow over the trailing edge of a NACA4412 airfoil, with Re. = 200000, with the results obtained showing
a mean velocity error below 3%. It would be interesting to investigate how such a loss formulation
would behave on a model used for surrogate modeling rather than solving a single case solution.

CNN-based PINNS

MLP-based PINNs are relatively simple to implement and can produce accurate results, but lack the
ability to utilize the geometrical information about the data. Additionally, due to pointwise learning, they
require a lot of collocation points for the evaluation of the PDE loss to arrive at a converged solution.
This introduces a large computational overhead. An approach to deal with some of the short-comings of
MLP-based PINNs is to use CNN architecture as a backbone of the model. Ma et al. [2021] presented
a PINN based on the U-Net architecture. U-Nets are encoder-decoder networks based on CNNs, that
allow for efficient spatial data processing, making it possible to both extract local and global spatial fea-
tures from the structured images or meshes. In this instance, a binary geometry representation is used
to process the geometry. The Navier-Stokes equations (N-S) based loss is used on the inner domain,
BC loss is used on the boundary, and the data loss can be added if observations are present. Applying
the PDE physics-driven loss function to a CNN introduces a complication related to the evaluation of
the gradients, as unlike in MLP, the simple pointwise gradient evaluation in backpropagation cannot
be used. In this case, convolutional filters were constructed based on finite differences to evaluate
the differential terms in the Lppr. One of the experiments of particular interest was a model trained
on a steady flow around the cylinder. For this model, the geometry was fixed as well as the inflow
conditions, with the only variable being the Reynolds number. It was varied between 0.8 and 20.2 for
the training. This range of Reynolds numbers was selected, as in this range the flow structures created
in the wake of the cylinder vary considerably, allowing for a relatively challenging test for the architec-
ture. According to the literature [Zdravkovich and Bearman, 1998], in this span of Re for flows below
Re =5 a creeping laminar flow should be present and for flows above that threshold, the flow should
transform into one with a pair of trapped symmetric vortices behind the cylinder. The model was first
tested in interpolation tasks with good agreement with the finite-volume method (FVM) ground truth.
Subsequently, the model was tasked with extrapolating to higher Reynolds numbers. The accuracy of
the model was measured by comparing the length of the trapped symmetric vortices behind the cylin-
der between the FVM simulations and the predictions of the NN model. The results of this study are
presented in Figure 2.13.

2.4. Incorporation of physics into neural network-based surrogate models 17

12 ! :] "
I ¢
b ¢
L 1
1 i o
XXX}
0.8+ d —S :
1
> ® PD-CNN 1
% 061 | ——PD-CNN fitting H l
¢ FVM !
04 1 1
1
i
021 - | —
Interpolation : Extrapolation
O L 1 1
0 5 10 15 20 25

Re

Figure 2.13: Size of vertices pair against Re. Comparison of performance of CNN models in interpolation and extrapolation.
Compared to FVM ground truth data. Source: Ma et al. [2021].

An approach to learning from irregular meshes was introduced by Gao et al. [2021a], using a CNN
as the backbone of the PINN. The approach encodes an elliptical transformation into the CNN to project
irregular meshes and governing PDEs into a regular domain, allowing for CNN capabilities without is-
sues associated with mesh projection. This model was called PhyGeoNet. The elliptical projection is
deterministic and pre-computed, resulting in no data loss and low computational effort. This approach
also encodes boundary conditions into the padding of the convolutional filter, simplifying the loss func-
tion, and making the learning process faster. This architecture is shown to work well on irregular 2D
geometries for heat and N-S equations, without the need for labeled data, even for variable geometries.
However, it is limited to 2D irregular domains and can only handle a small subset of geometries with
more than five C° continuous edges.

GNN-based PINNs

A subsequent article from the same research group [Gao et al., 2021b] proposed an architecture based
on graph neural networks (GNNs) to address the limitations of PhyGeoNet. The model operates on
unstructured grids, with mesh nodes acting as graph nodes and mesh edges acting as graph edges.
The input is the spatial position of the node, and the output is the field quantity at the node. The
model uses graph convolution operations and message passing to update the feature vectors of the
graph. The spectral-based method of the Chebyshev graph convolutions [Defferrard et al., 2017] is
used. Piecewise polynomial basis functions are used to reduce the dimensionality of the search space.
The conservation laws are discretized using the continuous Galerkin method, and the variational for-
mulation of the PDE residuals is used for the physics-informed loss. The model can be used for both
forward and inverse problems, and its application to fluid mechanics was demonstrated in lid-driven
cavity flow and idealized stenosis in medical field. The predictions obtained had errors below 1% and
2%, respectively, relative to the ground truth simulations.

2.4.3. Data transformations

A more straightforward way to improve the physical understanding of the models is to take advantage of
physical knowledge in the data pre-processing pipeline. In particular, applying appropriate data scaling
and normalization can lead to great training improvements, as shown by Cao et al. [2016].

2.4. Incorporation of physics into neural network-based surrogate models 18

More generally, physics-based data enrichment, which has shown promise in the work by Kissas
et al. [2020], is essentially using physics-based non-dimensionalization of the data inside the PINN
architecture used to recover full-flow data from scattered human MRI data. In this work, both physics-
based non-dimensionalization and scaling to zero mean and unit variance were used. The non-dimensionalization
proposed was:

where j = 1,..., D. At this point, we define the quantities:

;A
ﬁ:£7 A: ﬁ:£7 {L'*:

x b=
U 1407 Po L7 T

Ta

where pg = pU%, T = % and A° = L. In this work, the impact of scaling and non-dimensionalization
was examined versus a case with no data processing used. The results show that the model with no
scaling and no non-dimensionalization fails to learn the desired velocity through y-bifurcation, most
probably due to the input data being of highly different scales. In such a case, lack of scaling can
have a detrimental effect on training of the network, as the network will be biased towards variables
of higher magnitude. On the other hand, the models where both scaling and non-dimensionalization
were used predict the velocity evolution with high accuracy when compared to synthetic test data. The
effects of scaling to zero mean and unit variance are well documented [Glorot and Bengio, 2010] ,
where the approach mitigates the problem of vanishing gradients, but the effect of the physics-based
non-dimensionalization was not examined in isolation.

Thuerey et al. [2020] in his work, where the U-Net architecture was used to construct surrogate
models trained on RANS simulations, showed the impact of non-dimensionalization in isolation. Three
models were compared: model A where no non-dimensionalization was done, model B where the
pressure and velocities were non-dimensionalized by free stream velocity and free stream velocity
squared, respectively, and finally model C where additionally to non-dimensionalization with reference
values, pressure null space was removed. It is important to note that for all models, the last step of
preprocessing is the scaling of the data between the [—1, 1] range. The trained models were evaluated
on 400 randomly selected samples from the UIUC airfoil database. The results show that the average
absolute error with respect to the ground truth pressure and velocity for model A is very large, more
than 200 times higher than that for model B. Model C achieved a four-fold decrease in error compared
to model B. A graphical representation of the differences between the model results is presented in
Figure 2.14. The positive effect of such data preprocessing was associated with the simplification of
the solution space, as well as simplification of relationships between the input and output quantities.

p . . .
. . p .

Figure 2.14: comparison of the different non-dimensionalization strategies on airfoil prediction of pressure and velocity
components. Source: Thuerey et al. [2020].

Target

(B) Dimension less

(C) No p null space

=
]
o
ks
S
=
5]
i
<

2.5. Transfer learning and neural networks 19

2.5. Transfer learning and neural networks

In order to train machine learning models, data is often essential. In real-life applications, there are
very few examples where such data is easy to obtain. Data generation requires a lot of work to create,
especially when it comes to labeled data. One of the most simple ways to generate labeled data is to use
humans to do the labeling. Even nowadays humans are used in data labeling processes [Von Ahn et al.,
2008], for example, using the CAPTCHA system and its derivatives, which was acquired by Google
and serves as a tool for human verification. Automated data labeling strategies are available [Glne,
et al., 2018], but this only solves the problem of labeling the data. Often, obtaining the data itself is a
major issue. This is where transfer learning is often used. This set of techniques allows one to transfer
parts of the information from a data set or a trained model, where there is abundant information, to an
area where the information coverage is more sparse. Provided there is some transferable information
or relations between the data, utilizing transfer learning can reduce the necessary data requirement in
the new target domain [Pan and Yang, 2010].

This work is focused on fluid mechanics applications, but the field of transfer learning for fluid me-
chanics applications is a relatively unexplored territory. Therefore, in this chapter, works from other
fields, such as image processing, will be used to fill the knowledge gaps. Some of the model architec-
tures used in NN for fluid mechanics are related to or even are directly taken from the work done in the
image processing field, so one would hope that the experience gained in those related fields can be
transferred to application in fluid mechanics.

Pan and Yang [2010] wrote one of the most fundamental surveys on transfer learning (TL). In this
work, mainly clustering, regression, and classification tasks were considered. To keep the work consis-
tent, the notation and nomenclature will be based on that foundational work.

2.5.1. Nomenclature and type of transfer learning

Domain D consists of feature space X and marginal probability distribution P(X), where X = {z1, ..., }
where n corresponds to the sample number. In a given D, the task consists of a label space) and a
predictive function f(-), where taskis T = {J, f()} . f can be used to predict the label y; for a given
Z;.

The source domain Dy is the domain that will be used as a source of transferable knowledge to the
target domain D

There are two main distinctions in transfer learning. Transfer learning settings describe the data
landscape from the perspective of labeled data availability. Transfer learning approaches define the
strategies that can be used. These approaches are very often setting-dependent.

Four main TL settings can be distinguished. Firstly, there is traditional machine learning that does
not utilize transfer learning. In this setting, the source and the target domains, as well as the source
and the target tasks, are the same. Secondly, there is inductive transfer learning, which uses the
same source and target domains, but only related source and target tasks. Then there is unsupervised
transfer learning, for which both the domain and the tasks only share some relation. Finally, there is
transductive transfer learning which uses related domains but the same tasks between source and
target.

There are several approaches to TL, and they can be selectively applied to different TL settings.
Instance-transfer aims to transfer some data from the source domain, after transformation, such as
reweighting, to the target domain. Feature-representation-transfer approach is based on finding a
suitable learned feature representation of the source domain to enhance knowledge transfer to the
target domain. Parameter-transfer approach is based on transferring model hyperparameters from
the source domain to the target domain. Relational-knowledge-transfer is based on finding relations
between the source and the target domains data and utilizing those to transfer-learn.

2.5. Transfer learning and neural networks 20

For this review, transferring knowledge of parameters and of instances will be presented in more
detail, as those approaches are seen as most applicable to our problem.

2.5.2. Transferring knowledge of instances

In his work Pan and Yang [2010], introduces several approaches of instance-transfer to inductive TL.
One of those is an algorithm called TrAdaBoost developed by Dai et al. [2007]. This algorithm is used in
a data setting where labeled data is available in both the source and target domains, with both domains
having the same labels but different distributions. Assuming that there is some overlap in the domains,
the algorithm aims to iteratively reweigh the source data to promote the helpful data over the unhelpful
data. This is done by using a base classifier that is trained on the reweighed source and target data
but is evaluated only on target data.

In the work of Wang et al. [2018b], an approach was presented to deal with the transfer of knowledge
between tasks with overlapping domains. The proposed approach assumes that there is a source
domain with a large amount of labeled data and a target domain with a small amount of labeled data.
In this work, first, a model is trained on the source domain. The trained model is then used to evaluate
samples from the target data set. This is done using the data dropout method first proposed by [Wang
et al., 2018a], where the target data are evaluated on the pre-trained model from the source domain.
The influence on the loss of each sample in the target data set is calculated using the influence metric
derived by [Wei Koh and Liang, 2017], which calculates the influence of the loss based on a sample
from validation and test sets from the target domain. If the influence of the given training samples
is greater than zero, the sample is removed from the training set. Subsequently, such an optimized
training data set can be used to retrain the pre-trained model. This method was tested on an extensive
array of image classification tasks on various data sets, with good results showing the effectiveness of
the method, even in settings of non-uniform data distribution (class distribution) in the test set.

2.5.3. Transfer Knowledge of Parameters

In this approach, it is assumed that for the target and source domains, the task parameters should be
relatable and could be transferred from the target to the source to improve performance. In the paper
by Yosinski et al. [2014], the approach of transferring network layers, trained on a source domain, to a
network that is going to be trained on the target domain is closely analyzed. The authors trained two
networks (A and B), each on a different half of the ImageNet data set. They then transferred a varying
number of layers from network A to network B, and tested the performance of the resulting network
(AnB) on the target data set. The results showed that AnB, where the n number of first layers of the
network was fixed after 1, 2 and 3 layers, had almost the same accuracy as the base B model (see
Figure 2.15). This suggests that the early layers of the network were responsible for general features of
the classes that were transferable to the new data set with different classes. They also found that when
4, 5 or 6 first layers were transferred, performance suffered, after which it recovered back to baseline
B levels. Additionally, they also repeated the same experiment with both AnB and Bn B, but this time
with all layers learning. This is referred to as AnB* and BnB*. The results show that when all layers
are allowed to learn, the performance of the transferred network improves beyond the performance of
the baseline model.

2.5. Transfer learning and neural networks 21

0.66

@ @ @
0.64 ° @ @ Z @

- @®
g 6 . L] ® 8 @® k
2062 pr4 P M4
o o Py L4 P el
o
5 0.60
¢
z ° 4
£ 0.58 ’ g
2
.’; baseB L J
§ selffer BnB ®

selffer BnB

transfer AnB

transfer AnB

2 3 4 5 [3 7

5: Transfer + fin'e-tuning in%proves generalization

=]
o
&

3: Fine-tuning recovers co-adapted interactions

2: Performance drops
due to fragile
co-adaptation

e
o
Y

4: Performance
drops due to
representation
specificity

e
o
)

e
in
©

Top-1 accuracy (higher is better)

e
n
-

0545 1 3 5 a 5 G 5
Layer n at which network is chopped and retrained

Figure 2.15: Results showing performance curves for transfer knowledge of parameters study, between the target and the
source networks. Different number of layers are transferred from the source to the target and the performance is evaluated to
assess the impact of such transfer. Source: [Yosinski et al., 2014].

Chen et al. [2021] presented work that examined parameter transferability for PINNs. In this work,
the models were trained in the data-free regime, with training supervised only on the physics-informed
loss. Several variations of MLP-based PINNs were tested: the original PINN framework [Raissi et al.,
2019], PINN with learning rate annealing [Raissi et al., 2020] and GP-PINN [Wang et al., 2020]. The
transfer learning was tested on two PDEs separately: first, solving the Helmholtz equation with different
forcing terms, and second, solving the N-S equations at different Reynolds numbers. In each case, a
benchmark case was set, and then transfer learning was tested applying the first layers n of the trained
benchmark model to the different test cases. In the case of the N-S equations, the benchmark was set
at Re = 100, and the target tasks were set at Re = 10, 200, 300, 400, 500 respectively. In both cases, the
domain was 1 x 1 square. In the case of N-S equations, the setup represented the lid-driven cavity flow.
The results show that the average L2 error on the fields decreased for all cases, and all transfer levels
improved the predictions. For the lid-driven cavity flow, the best results were obtained for GP-PINN.

63
21

51| 35
35 39| 25 14
ol N _00R Rl el
&
1 294 15—2 3 4 e 5!2 3 4 01!!

Layers Layers Layers Layers Layers

20
28

15

Boost (%)
-
o

5
0

Figure 2.16: Parameter transfer by layer, boost (relative improvement) from source to subtask. Left to right
Re=[10,200,300,400,500] Source:[Chen et al., 2021].

The transfer learning capability of the VP-NSFnets [Jin et al., 2021], introduced in Section 2.4.2,
was tested using the Kovasznay flow. The model trained on the data at Re = 40 was used to transfer to
a new task, set at Re = 60. The model weights of all layers of the trained network at Re = 40 were used

2.6. Conclusion 22

to initialize the layers of the network with the target of Re = 60. Subsequently, the target network was
fine-tuned with new BCs. The result was a decrease in runtime by 80%, compared to a network trained
from scratch for the same Reynolds number. The accuracy obtained was also better for a converged
fine-tuned model vs. model trained from scratch. The transfer from Re = 40 to Re = 80 was carried
out in the same way, and the conclusions were also valid for this experiment, although slightly lower
accuracy was achieved for the fine-tuned model, although still superior to the network trained from
scratch for the same target conditions. This would mean that not only did transfer learning help reduce
computational cost, but also had a positive impact on accuracy itself.

2.6. Conclusion

This literature review tried to provide a ground-up view of physics-informed surrogate modeling tech-
niques along with a transfer learning background. In the process of the review, several gaps in the
current knowledge were identified. The thesis work that follows, will aim to tackle those research gaps
and, hopefully, bring value to the field. Surrogate modeling used so far in research lacked powerful
models with the geometrical processing power, which is seen as one of the main limitations of the
methods presented. Geometrical deep learning offers an opportunity to combine the latest research
in geometry processing with research in physics-informed machine learning. The application of state-
of-the-art PINN frameworks to GNN models appears to be a clear research direction. It was shown
that PINNs in the data-free regime fail to produce accurate generalizable results for industrial cases,
but the hope is that observation data coming from CFD results can improve the performance of such
models. Physics-based data augmentation by non-dimensionalization, in a number of works presented,
has also shown a promise to improve the training of surrogate models and combining such methods
with geometric deep learning, and performing detailed performance analysis that is currently lacking in
the field, presents itself as a feasible research direction.

Another promising research direction was inspired by the work of De Avila Belbute-Peres et al.
[2020], where GCN was linked with a low-resolution CFD solver to produce high-resolution Euler CFD
results for 2D airfoils. This exact method does not seem to be suitable for industrial applications, in
mind for the thesis, due to suspected large computational overheads at inference time needed for more
realistic geometry 3D simulations. Nevertheless, the method is inspirational, as the low-resolution Euler
CFD simulations that was used as the input field, can be substituted with an even simpler approximation
of the flow, like, for example, potential flow. This would essentially force the neural network not only
to upsample the simulation result, but also to correct it to match the target simulation physics, in the
case of this work, most probably RANS turbulent simulation. This seems like a research avenue worth
exploring.

Apart from Chen et al. [2021], little research has been done on transfer learning applied to physics-
informed machine learning, and this avenue of research appears to be another domain worth exploring.
What is missing in the field is a clear way to assess the similarity of samples in the target and source
domains. Such similarity metric perhaps could be correlated with the positive transfer of information be-
tween target and source domains to allow for a solution for instance-based transfer learning applicable
to surrogate modeling.

Research Question & Objectives

3.1. Research Question(s)

Based on the conclusions of the literature review, the main research question proposed for the thesis
is:

“How different ways of including physical priors into NN surrogate models for fluid flow
prediction affect the accuracy of inference, transfer learning, and generalizability capabili-
ties?"

3.1.1. Sub-questions

Based on the research question, several sub-questions were formulated to arrive at the final answer to

the overarching question from the above section. To be able to compare physics-informed approaches,
a baseline will have to be established, which leads to the first sub-question:

“Based on the selected test case data set, what is the performance (at inference time, transfer
learning, and generalizability) of an optimized model that does NOT leverage physical prior
knowledge?”

Subsequently, having implemented the proposed approaches to improving the models by leveraging
physical knowledge, the following question has to be answered:

“What is the performance of the physics-informed model at inference time and in the trans-
ferlearning task, and what is the impact of the methods on the generalizability of the model?”

Finally, if time allows, combining the different approaches together will be attempted, which leads
to the final sub-question:

“Can the different methods be combined, and if so, what is their cumulative effect?”

3.2. Research Objective

Firstly, to be able to compare the performance of surrogate model predictions, a library of CFD simu-
lations will have to be created. This part is influenced by the creators of the ML software used for this

23

3.2. Research Objective 24

thesis, as they have a commercial interest in making the model function on a particular practical test
case, in this case an automotive parametric HVYAC geometry. The creation of the library will involve
CFD study of the existing parameterised geometry to discover its sensitivity to different parameters.
If necessary, the parameterization can be changed to alter the simulation data obtained to reach the
desired production-like standards. Subsequently, the baseline uninformed model will be trained and
evaluated for its inference, generalizability, and transfer learning capabilities.

Subsequently, different ways of including physical prior knowledge will be implemented in the ML
software using which Pl models will be trained, and the performance in the same tasks will be evaluated
again. This leads to the main research objectives for this master thesis project:

“Evaluate the inference, generalizability and transfer learning performance of different meth-
ods to embed physical prior knowledge into neural network-based surrogate models and
compare the results to the baseline model based on the HVAC CFD simulation library."

Finally, if possible, different methods will be combined and again evaluated and analyzed on how
they impact the performance of the surrogate models.

Methodology

In this chapter, the methodology used to address the research questions will be explained. Firstly, the
target use case will be presented. Subsequently, the data generation process will be explained. Then,
data pre-processing steps will be outlined. Finally, the design of experiments will be presented. Using
those experiments, the model performance will be assessed so that to answer the research questions
posed in the previous chapter.

4.1. HVAC use case

The work presented here addresses the topic of ML-based surrogate modeling. In order to build a
model, data are needed: either observational or simulation data of a selected geometry/application.
For this work, a use case based on a parametrized automotive HVAC geometry was chosen. The
geometry is presented in Figure 4.1.

Windshield outlet

Inlet Evaporator Movable flaps

Left foot outlet

Heat exchanger

Ln Hl 7 xoutlets
Right foot outlet .— & - 1 x inlet

Left outlet 1
Left outlet 2 Right outlet 2 J
Y X

“*

Right outlet 1

Figure 4.1: Base HVAC geometry.

25

4.1. HVAC use case 26

The geometry consists of the central section and the two large side ducts. The central section
houses the inlet, evaporator, heat exchanger, flaps used to direct air flow, and five outlets. The five
outlets simulate the configuration of a passenger car, where the central ducts point at the passenger’s
face, while the ducts at the bottom point toward the feet of the passengers in the front row. The outlet at
the top of the central section points towards the wind shield. The exchanger and evaporator are used
as sink and source terms to add and remove heat from the system. There are five flaps in the HVAC
that can close off certain outlets or just redirect the flow and alter the mass flow distribution between
the outlets. The side ducts, coming out of the central section, direct the air toward the outside edges of
the passenger cabin. The mock-up of the HVAC geometry, placed within the car outline, is presented
in Figure 4.2.

i

Figure 4.2: Base HVAC geometry in yellow placed in a reference car. Car geometry source:Rail [2021].

The base geometry was then translated to Ansys SpaceClaim and parameterized. The outside
shape of the central section, called the HVAC box, is fixed, while only the flap angles are variable. The
shape of the side ducts is parametrized with 15 parameters each. Finally, there is a scale parameter
that allows for global size scaling. The geometry of the side ducts works as a series of lofts guided by
a path linking 2D rectangular sections. The parameterization of the side ducts governs the 2D section
locations, where the sections are presented in Figure 4.3. The duct geometry is formed by a loft over
those sections. The full list of parameters, as well as parameter ranges, are presented in Table 4.1.

4.1. HVAC use case 27
Table 4.1: HVAC geometrical parameters and their ranges.
Parameter name | Range low [Range high | Parameter name | Range low | Range high
Duct parameters
Left elbow delta x [mm] -40 20 Right elbow delta x [mm] -20 40
Left elbow delta y [mm] -5 200 Right elbow delta y [mm] -5 200
Left duct length [mm] 500 800 Right duct length [mm] 500 800
Left duct vert. position [mm] | -20 80 Right duct vert. position [nm] | -20 80
Left bump 1y [mm] -10 10 Right bump 1y [mm] -10 10
Left bump 1 x [mm)] -10 10 Right bump 1 x [mm] -10 10
Left bump 2 y [mm)] -10 10 Right bump 2 y [mm] -10 10
Left bump 2 x [mm] -10 10 Right bump 2 x [mm] -10 10
Left external shape y [mm] 0 10 Right external shape y [mm] 0 10
Left sec. 7 y [mm] -20 20 Right sec. 7 y [mm] -20 20
Left outlet width [mm] -20 20 Right outlet width [mm)] -20 20
Left outlet height [mm)] -20 20 Right outlet height [mm] -20 20
Left global height [mm] -10 10 Right global height [mm)] -10 10
Left global width [mm)] -10 10 Right global width [mm)] -10 10
Door angles
Left foot door angle [°] 15 60 Right foot door angle [°] 15 60
Left windshield door angle [°] | 1 155 Right windshield door angle [°] 155
Global parameters
Door heater angle [°] | 22 | 90 | Scaling factor [0.9 [11

left | right elbow delta x -—-I

left | right elbow delta y

'

!

~

vert. position

(a) Frontal view.

—

left | right bump 2 x

hl

left | right bump 1y
left | right bump 2y

left | right sec 7 y
left | right outlet height

o left | right bump 1 x

/

left | right external shape y —/

(b) Isometric view.

Figure 4.3: HVAC duct parameterization.

r— left | right duct leangth —J Lleft | right duct

~— left | right outlet width

4.2. Data generation 28

4.2. Data generation

Campaign 1 Campaign 2 Campaign 3

o

Figure 4.4: HVAC visualization of the multi-campaign data set.

The DOE for generating the training data was performed as follows. Four parameter windows were
first defined, which can be seen to correspond to HVAC geometries for four different vehicles. This is
represented by Figure 4.4, where you can see campaign 1 being as if it was designed for a smaller
car like a city car, while campaign 3 was designed for a larger car, like a pick-up truck, and so on.
To achieve this, the geometry parameterization was leveraged, allowing to reproduce such a data set.
Appendix C presents parameter ranges and fixed parameters for each campaign. The design process
for the geometries was largely empirical, based on the idea that during a car design process, the HVAC
system is designed to fit some constraints, like the outlet location, overall width, and length of the car.
The HVAC geometry can then be freely adapted to different car models. Each of these four design
areas will be referred to as "campaigns”. Within each campaign, a number of parametric variations
were performed within the range of the defined parameter window.

Campaign 1 Campaign 2

]3”_”? 308.79
160702 7

>

Campaign 3 r Campaign 4 r

)uao.as w
377,41~ >

204273 1727.16

-

Figure 4.5: Sample geometries from all campaigns created, with added reference global dimensions in [mm].

To ensure a non-sparse and uniform coverage of the design space, Latin hypercube sampling was
used to randomly select the parameters for each sample within the data set. The flap angles for this
project, as well as heat exchanger and evaporator properties, were fixed. This was done, as it was
thought that adding such large non-geometrical sources of flow variability will drown out the signal
coming from the flow changes due to the geometrical variability. It is important to note that flaps were
set to angles that allow flow to pass through all the outlets. To add realism to the data and increase the

4.2. Data generation 29

difficulty of the task for the ML model, each campaign was assigned three different inlet velocities, for
which each geometry within the campaign will be simulated for. This means that effectively one HVAC
geometry is the parent to three simulated samples, as in Figure 4.6. In total, 630 samples were created,
divided into four campaigns as detailed in Table 4.2. The details of each campaign are presented in
Appendix C.

1 Geometry =

3 Samples

Sample 1 - Input velocity 1

.
b

Sample 2 - Input velocity 2

ol

Sample 3 - Input velocity 3

=

Figure 4.6: Each geometry is simulated thrice to form 3 samples each at different inlet velocity.

Table 4.2: Campaign overview.

Campaign 1 Campaign 2 Campaign 3 Campaign 4
Number of samples | 3x70 3x40 3x40 3x40
Inlet velocities ™ 1.00, 1.50, 2.00 | 1.50, 2.00, 2.50 | 2.00, 2.50, 3.00 | 1.08, 1.58, 2.08

Campaign 4 is set to be the target data set to assess the performance of the model in various data
regimes. Campaign 1 is the largest campaign that will be both used as a data set for transfer learning,
and to assess the single-campaign performance scaling with number of samples. Finally, campaigns
2 and 3 are auxiliary campaigns to aid transfer learning. As visible in Figure 4.5 the campaigns vary
between each other in global dimensions, as well as in the shapes of the side duct outlets. Then within
a campaign, minor details change, such as the local shape of the ducts, with the global dimensions
remaining untouched to maintain the signature campaign resemblance.

The simulations were done entirely within the Ansys suite of tools. Firstly, each sample’s geometry
and simulation domain was modeled in Ansys SpaceClaim. Subsequently, meshing and simulations
were performed in Ansys Fluent. The specific meshing and simulation setup was an inherited part of the
project. The entire process was governed by Ansys Workbench, where the data set parameterization
is stored and each sample parameters are sent to the meshing and simulation software, one by one,
for simulation.

The created mesh was an unstructured polyhedral mesh with added prism layers. The overall mesh
size was around 2.5 million cells, with an average y™ of less than 1. The simulations use RANS, as
well as the k-w SST turbulence model. Due to scarce resources and time frame limitations runtime
was crucial. Because of this, hybrid initialization was used (potential flow) to speed-up the simulations.
The heat exchanger as well as the evaporator were modeled as porous media. Furthermore, relatively
relaxed convergence stopping criteria (1e — 3 for continuity, x,y,z velocity, k and omega, and 1e — 6 for
energy) were used, together with the maximum iteration step criterion, as in Figure 4.7.

4.3. Data pre-processing 30

Residuals
——cantinuity
——x-velocity 1e+00

y-velocity \
— z-velocity

1e-05

Iterations

Figure 4.7: Example unstopped simulation run, with iteration stopping criterion plotted.

The convergence study is presented in Appendix A.

For the purpose of this work, the following values of interest were extracted from the CFD simula-
tions. Firstly, pressure and x, y, and z velocity fields were extracted from the simulations. Furthermore,
seven mass flows were saved for each outlet, along with an area-averaged pressure drop. The list of
saved result variables is much longer than this, but only the mentioned quantities of interest were used
for the training of the surrogate models in this work. The spatial location of the mass flows, along with
reference names of the geometrical sections used in this work, are presented in Figure 4.8. Each mass
flow corresponds to the outlet section of the HVAC geometry.

Windshield outlet
Left foot mws
outlet

mrLr

;h q | 7 x outlets
Right foot - | El 1xinlet

putlet Left $utlet =)
MRF m LD1 Left outlet s
"4 Y 2 > N
: Right

= % mprp2 outlet 2 -
Right
- outlet 1

MRD1

Figure 4.8: Mass flow locations.

4.3. Data pre-processing
To be able to train the model, a significant amount of data pre-processing had to be done.

The initial step of data pre-processing was data assessment looking for any corrupted samples.
This was done by calculating various statistics over each simulated sample and analyzing, campaign
by campaign, the samples. Provided that a sample was simulated correctly, the values of interest were
not large outliers and that the sample had a correctly generated mesh and geometry, it was assumed
that a given sample was a good sample. Minor outliers or samples slightly out of distribution were not

4.4. Design of Experiment 31

removed, as it was assumed that the designed data set was close to what a real-life customer would
like to model and know the results for, hence the design space was not curtailed artificially by putting
too strict boundaries.

Before building a model, one first has to decide if a training should utilize only surface-based field
values, or the entire 3D flow field. For the purpose of this research project, the entire 3D flow field was
used, as it allows for more detailed analysis of the model performance, due to the ability to recalculate
the scalar values, based on the field predictions. Besides, one of the planned approaches to incorporate
physics knowledge, physics-informed loss, is based on 3D derivatives of the flow field, which can only
be obtained with volumetric predictions.

The results are read in Fluent format. To better capture the variability in the side ducts, which are
the main source of variability in the data, the simulation mesh is downsampled to a target density that
corresponds to that of the side ducts. This allows the model to put enough emphasis on the ducts
compared to, e.g. the HVAC box, which has a higher point density in the simulation mesh due to the
higher number of intricate geometrical features. In fact, it was observed that omitting this downsampling
step led to low-quality predictions in the side ducts due to the model being biased to the main HVAC
box.

An additional remeshing step was performed in order to ensure a uniform density and that normals
were correctly assigned. Figure 4.9 (top) presents the mesh after exporting it from Ansys SpaceClaim
as an .stl. It was found that during the geometry extraction process both the normals for the same faces
were flipped and the meshing had to be redone due to it being highly irregular. Figure 4.9 (bottom)
presents the HVAC geometry after remeshing, revealing a uniform mesh.

Figure 4.9: Effect of remeshing. Bad mesh at the top vs. good mesh at the bottom.

4.4. Design of Experiment

In order to answer the research questions presented, a rigorous and repeatable series of tests has to
be conducted to assess the performance of the models in various data settings. For this purpose, three
experiments were created (see Table 4.3), each of them was set in different data regimes.

1. Experiment 1 tested the performance of the model on campaign 4 in isolation. This was to obtain
the benchmark value of the best performance of a trained model in a data-rich environment, as

4.4. Design of Experiment

32

well as to assess the inference performance in this data-rich setting.
2. Experiment 3 was a transfer learning experiment that assessed the TL and generalizability per-
formance of the models on transfer from a single campaign (1) to campaign 4.
3. Experiment 5! was a transfer learning experiment that assessed generalizability and TL perfor-
mance when transferring from campaigns 1,2 and 3 to campaign 4.

Experiments 3 and 5 were both trained on the same task as Experiment 1: predicting the validation
set consisting of the same data set of three inlet velocities times ten geometries from campaign 4 (thirty
samples in total). The hope was that using additional campaigns in the training set would allow models
in Experiments 3 and 5 to reach comparable performance to models in Experiment 1 with fewer samples
from campaign 4 needed in the training set.

Each experiment was run several times, varying the size of the training data set. For Experiment
1 the runs were performed with increasing sizes of the training data set. In experiments 3 and 5, in all
runs, the transfer learning data sets were fully used and only the size of the target data set in the training
set changed. This was to measure the impact of additional target data set samples in the training set
on the model performance.

Table 4.3: DOE for model performance assessment, camp is a shortening for word campaign.

Experiment name Experiment run | Training set Validation set
3x5 3x5 camp4 3x10 camp4
. 3x10 3x10 camp4 3x10 camp4
Experiment 1 (exp1) .55 3x20 camp4 3x10 camp4
3x30 3x30 camp4 3x10 camp4
3x0 3x60 camp1 3x10 camp4
. 3x1 3x60 camp1 + 3x1 camp4 3x10 camp4
Experiment 3 (exp3) 3x5 3x60 camp1 + 3x5 camp4 3x10 camp4
3x10 3x60 camp1 + 3x10 camp4 3x10 camp4
3x0 3x60 camp1 + 3x30 camp2 + 3x30 camp3 3x10 camp4
3x1 3x60 camp1 + 3x30 camp2 + 3x30 camp3 + 3x1 camp4 3x10 camp4
Experiment 5 (exp5) | 3x2 3x60 camp1 + 3x30 camp2 + 3x30 camp3 + 3x2 camp4 | 3x10 camp4
3x5 3x60 camp1 + 3x30 camp2 + 3x30 camp3 + 3x5 camp4 3x10 camp4
3x10 3x60 camp1 + 3x30 camp2 + 3x30 camp3 + 3x10 camp4 | 3x10 camp4

"Experiments 4 was originally planned to test the generalization performance with zero-shot predictions but as it never yielded
any meaningful results it was removed from the scope of this thesis, but the legacy numbering of the experiments was maintained.

Baseline model

This chapter will present the baseline model which was be used throughout the rest of this work.

5.1. General settings

For the purpose of this work, the GNN model was used. The basic architecture, which is recalled
in Figure 5.1, predicts the field surface values on the input geometry, as well as scalar quantities.
For such an architecture, the model inputs are the geometry surface mesh and any associated input
scalars. The input scalar value can be any significant scalar that characterizes the sample, like inflow
free stream velocity, particular geometry parametrization variable, or other quantities that characterise
the flow. This is passed to the Geometry processing block that utilizes the geodesic convolutions [Monti
et al., 2017] to process the geometry. One of the outputs of the Geometry processing block is a low-
dimensional global embedding. The global embeddings are fed to a ScalarNet whose role is to predict
output scalars, while the outputs of the geometry processing block are fed to a FieldNet whose role is
to predict fields. The training process is governed by a loss function, typically L1 or L2 loss functions.

Geome!:ry FieldNet > Fields -—;-</|_o§x>
processing e DG
[output
Scalaret > OUP
Inputs output

Figure 5.1: Stock GNN model.

Figure 5.1 shows the high-level architecture of the baseline model that will be used throughout this
work. The inputs and outputs of the model are presented in Figure 5.2. The inputs to the model are the
surface mesh of the HVAC geometry and the optional input scalars. The model outputs are the seven
mass flows and pressure drop scalar predictions, velocity and pressure volumetric field predictions,
and optionally the spatial gradients of the predicted fields.

33

5.1. General settings

34

All subsequent models used will utilize this baseline architecture, unless otherwise specified. Sep-
arate loss functions are used for fields and each of the scalars. Then the loss function used for training

is as follows:

Inputs

Input scalars

Qutputs

Surface mesh

Figure 5.2: Final baseline model inputs and outputs.

n
LTotal = Lfields X waields + 21 (Lscalar branch X Wscalar branch) (51)

A hyperparameter search led us to using W,,.,,. = 1 and Wy,

throughout this work.

= 0.1, which we will use

scalaryranch

Physics-informed modifications for
baseline model improvement

In this chapter, details of the methods for incorporating prior physical knowledge will be introduced. In
the following chapters, the results of the experiments with those different methods will be presented.

Three main methods were shortlisted as the most promising approaches. Firstly, using a simplified
solution as an additional input field to the model. Secondly, using physics-based scaling of the training
and validation data. Lastly, using losses based on the governing equations.

6.1. Simplified solver solution as an additional input

The explanation of the method can be seen in Appendix B

6.2. Physics-based scaling

The second method selected for this experiment was physics-based scaling of the data. This was
proven to work well in previous work in simpler models, as discussed in Section 2.4.3.

For the purpose of this study, two methods were tested. Firstly, velocity V and mass flows . were
scaled by the inlet velocity V;,,;.:, while pressure p and pressure drop scalar p4,.., Were scaled by the
inlet velocity squared. This is a standard scaling used in many fluid mechanics applications, and this is
the scaling that was used in both Thuerey et al. [2020] and Kissas et al. [2020]. It is important to note
that this is not non-dimensionalization, as pressure is not scaled by the density of the fluid.

\' m

. p Ddrop
V* = m* = pr= = P, = 6.1
Vvinlet ‘/inlet V2 drop V2 ()

inlet

inlet

The other method used was linear scaling of all quantities with inlet velocity:

\ m p Ddr
v* — m* — p* — p* — Top (62)
Vvinlet ‘/inlet ‘/inlet drop V;nlet

This scaling is usually not applied, unless a creeping flow (Re << 1) is assumed, in a scenario
where viscous effects are dominant. In this case, the Reynolds number, based on the outlet, is consid-
erably higher, roughly in the range of ~ [1000, 15000]'. But nevertheless, in this internal flow case the

TCalculation based on the conditions in the outlet of the side duct

35

6.3. Physics-informed losses 36

viscous effects are considerable, which was the reason behind trying this approach.
After using this physics-based scaling, the standard centering and scaling to unit variance is used.

The scaling was implemented as a data set transform performed before the data was given to the
model for training. Hence, the raw predictions of the model were also scaled. To obtain the predictions
in the non-scaled state, the data transformation was applied in reverse to the predictions, and only
afterwards the results were analysed.

6.3. Physics-informed losses

This approach is based on work done by Raissi et al. [2017], and all subsequent publications in the
field. It is based on the incorporation of a loss based on governing equations into the model. Unusually,
in the data-free regime, PINNs are used to solve single case unsteady flow using the full N-S equations
combined with losses on the boundary conditions of the domain. In this case, a similar approach is used
on steady flow in a surrogate model setting with the training data obtained using the RANS equations
with the k£ — w SST model.

RANS momentum equation for incompressible flow in vector form is the following:

vV 1 1
1+(V-V)V=—7Vp+fv-r+f (6.3)
ot p P

RANS continuity equation for incompressible flow in vector form is the following:

vV-V=0 (6.4)

Where V is the Reynolds-averaged velocity vector, p is the fluid density, p is the pressure, 7 is the
Reynolds stress tensor, f is the body force vector,t is time.

For the physics-informed loss to help with the training, it should be aimed at solving the same system
of equations as the ones modelled using CFD. This raises the problem that if the full RANS system
of equations is to be used with the £ — w SST turbulence model, implementing the loss based on the
equations becomes highly complex due to both the high computational demands for calculating higher-
order gradients for the momentum equation to obtain the loss, as well as implementing the calculation
for the additional terms coming from the specific turbulence model used.

For these reasons, a decision was made to include only the continuity equation in the physics-
informed loss. The usage of lower-order derivatives combined with equations only based on the time-
averaged flow velocities simplifies the loss implementation and keeps the computational expenses
manageable.

Moreover, the loss components based on the boundary conditions were not used, due to increased
complexity of implementation for complex geometries such as the ones used for this study. Instead,
the data loss component can be thought of as fixing the boundary conditions in an indirect way during
the learning process.

This results in the following new loss function:

LTotal = Lfieldswa,yeldS + 2;l(Lscalar branchWscalar ln‘anch) + wLpDELPDE (65)

Where:

6.3. Physics-informed losses 37

N
1
Liields = N Z (fgti— fpred,i)Q
=t (6.6)

N __ _ 2
1 Mpred. i OVpred. i OWpred. i
L — prea,j prea,j prea,j
PET N j; (ox * Oy * 0z

The partial derivatives for the Lppg were calculated on the prediction point cloud using automatic
differentiation. A very important aspect of the loss computation is the weighing of each component,
as many authors [Lu et al., 2020, Nabian et al., 2021, Abbasi and Andersen, 2022, Wang et al., 2020]
uncovered the convergence sensitivity of physics-informed losses to the weights of the loss component.
For the purpose of this work, several different weights were tried, presented in Table 6.1.

Table 6.1: Loss weights tried with this method.

N. WL pic14s WLscqrars WLppge

1 0 1E-5

2 10 0 1E-8

3 |1 0 0.1

4 1 0 0.01

5 1 0 [1E-8,1E-7,1E-6, 1E-5]

In Table 6.1 the different weights used for the loss terms are presented. This was to assess the
impact of the L pp g as well as control the impact of the data in the training. In cases 1 and 2 the model
was trained in a data-free regime that relied solely on PDE loss to govern the optimization of the model
parameters. In subsequent cases 3,4 and 5, both model and data losses are used to optimize the
model parameters.

For the purpose of this work, physics-informed losses were used as a correction method (see Fig-
ure 6.1), as suggested in some of the works by Karniadakis [2020], Zhu et al. [2022]. By correction, it
is meant that first a baseline model is trained, in this case the setup as for Experiment 1, so a single-
campaign (4) training set with 3 x 30 samples. The training is run until completion, and the predictions
on the validation set are made. Subsequently, the model architecture and weights are transferred to
another model, which, instead of using only data losses, uses the new loss, which includes Lppg.
Analysis of predictions of the baseline model is performed and outlier or under-performing sample is
found, and that sample is then used as a singular training sample for the new model, which iterates on
this one sample for up to 2000 iterations. Intermediate checkpoints of the model are saved to be able
to analyze the progress of the samples throughout the training process. Subsequently, the predictions
of the single samples are made and analysed compared to the prediction of the baseline model and
the ground-truth CFD data. During training, baseline model predictions for the corrected sample are
used as supervision data.

The correction approach to using physics-informed losses is another way of trying to minimize the
convergence sensitivity of this method. If an optimized model is used as a base model, the chances
are that it is already close to a minimum in the loss landscape, and applying this correction loss, will
only allow to identify the minimum better. This is done under the assumption that the selected sample
is a valid sample that represents the data set well and that the PDE baseline model is well trained for
the data set.

6.3. Physics-informed losses 38

Outlier
prediction

PDE Baseline
C> | model + PDE [
loss

CFD training PDE Baseline
m = [model E>

Model trained
parameters

i §

Figure 6.1: Physics-informed loss prediction correction workflow.

Several aspects of this PDE baseline model differ from the baseline model described in Chapter 5.
The activation functions are switched from RelLu to softmax to allow for differentiability of the outputs
with respect to the coordinates. Additionally, no input field is used in this model, as this is an additional
input with respect to which gradients for the Lppg cannot be computed. Finally, gradient tracking
is enabled so that partial derivatives of outputs with respect to the point cloud coordinates can be
computed. This makes the results of this experiment unsuitable for direct comparison with the other
experiments.

The next chapter (Chapter 7) will present the results of the baseline model, followed by results and
analysis of all the methods presented in this chapter.

Results

In this section, the results obtained using models with the different methods used to incorporate physical
prior knowledge will be presented, starting with a detailed analysis of the baseline model and followed
by physics-informed method analysis. It is important to note that due to the large number of models
trained during this work', detailed analysis of the prediction accuracy of each model is not possible,
therefore only global metrics for the models will be shown to present the general performance, and
only when details are necessary for complete understanding, will the details be presented.

To remind the reader, the baseline model was first run and then the models with different physics-
informed methods were run for all the experiments presented in Table 4.3. Due to a large number
of models trained, keeping track of them may be hard. To solve this the following model naming
convention will be used from now on, <method>_exp<n> and if a particular run configuration will be
mentioned, the configuration will be added at the end of the code name to form the following name:
<method>_exp<n>_<number of target data sets samples in the training set>. Four methods are pre-
sented in this chapter (for a detailed explanation, refer to Chapter 6):

1. Adding a simplified solution (potential flow in the case of this work) as an additional input to the
model (method type designation pot).

2. Linear scaling of the data before training (method type designation nd_lin).
Mixed scaling of the data before training (method type designation nd_mix).

4. Adding a simplified solution as an additional input to the model, combined with linear scaling of
both the input fields and the training data (method type designation nd_pot).

w

Finally, the baseline models have the method type designation of bs. To give an example a baseline
model run of Experiment 5 with 3 x 5 samples from campaign 4 in the training set will be from now on
referred to as: bs_exp5 3x5

7.1. Model performance assessment

In order to systematically assess the model performance, a consistent set of metrics gathered from each
model run must be used to allow for a like-for-like comparison between the results. The presentation
of those metrics and the post-processing needed to achieve them will be the topic of this section.

For the final version of this report, 85 models were trained and analyzed, each model having 6 scalar outputs to analyze and
4 fields.

39

7.1. Model performance assessment 40

7.1.1. Statistical metrics used

The main metrics used to assess accuracy in this study are the following: L1 error, the coefficient of
determination also known as R?, and the correlation coefficient R.

L1 error is the most straightforward metric. It is also known as absolute error, and is defined as
follows:
L1 = [Ygt — Ypred| (7.1)

Where y,, is the ground truth value and y,,.q is the predicted value. Often, this error is used to mea-
sure both field and scalar prediction accuracy. For fields, firstly, the L1 error would be calculated in a
pointwise fashion, between the CFD simulation data, which act as ground truth data and the prediction
point cloud. Subsequently, the L1 error can be averaged per sample and then per validation data set
to yield a measure of field prediction accuracy for a given run of an experiment.

To assess a prediction of the scalars, one of the metrics used is called the correlation coefficient, or
Rin short. In this work, a numpy implementation of the Pearson product-moment correlation coefficient
was used. It is calculated as follows:

Z (y;t - ygt) (y;red - yp;ed)

R =
. . 2
\/Z (y;f - y;t>2 Z (y;l)red - yp;ed)

This is a measure of the linear correlation between two variables. It ranges from —1 to 1, where —1
indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive
correlation. This metric will be used to assess the correlation of the scalar prediction with the ground-
truth values. This metric does not take into account the absolute value of the predicted value, but rather
captures if the trend represented by the predictions matches the trend in the ground truth data. This
is an important metric as, although it does not assess the absolute precision of the predictions, it does
allow one to assess whether the tool predicts the right trends in the data. Often, engineers working in
industry are not interested in the absolute precision of the tool, but rather its ability to capture relative
differences between the designs. High correlation coefficients mean that the model captures those
trends and, although absolute precision may be low, capturing the trends in the data is often enough
to determine relative differences between different designs and to decide on their desirability or not.

(7.2)

The coefficient of determination, or R?, is a statistical metric that represents the proportion of vari-
ance in the dependent variable that is predictable from the independent variable(s) in a regression
model. Under the assumption that the training and validation data have the same variance, R? should
be in the range between 0 and 1, with higher values indicating a stronger relationship between the

variables. _ S
Zz(yz]t - y;zn“ed)
Zi(y;t - ggt)Q
It is calculated as the ratio of the explained variance to the total variance, where the explained variance
is the variance of the predicted values and the total variance is the variance of the actual values. This

metric will be used to assess both the scalar and field predictions. In addition to this, additional physics-
based metrics were used to evaluate the quality of field predictions, as described next.

R*=1- (7.3)

7.1.2. Scalars computed on predicted fields

In addition to purely statistical metrics such as the R? score, additional metrics were used in order to
assess the quality of field predictions from a physical perspective. Note that visual inspections of each
predicted field in each experiment run in this work is not possible due to the sheer number of runs
performed and predictions made, hence the need for a quantitative metric. For this purpose, CFD-like
scalar values are recalculated using the field predictions. This allows for like-for-like comparisons of the
quantities of interest calculated from the prediction fields to the ones obtained from the CFD simulations.

7.1. Model performance assessment 41

It is important to note that in the architecture used in this work, scalars and fields are predicted using
two distinct branches. Therefore, the scalar predictions made by the model and the scalar calculations
made based on the predicted fields may not yield exactly the same values.

In ANSYS Fluent, the mass flow is calculated as follows [ANSYS Inc, 2013]:
/ pu-dA =" pivi; - A (7.4)
=1

This is a sum of the mass flows through each facet that belongs to the selected outlet plane.

The pressure drop is calculated as the area-averaged pressure of the HVAC inlet. For the CFD
simulations, the null pressure boundary condition is used at all HVAC outlets, so there is no need to
subtract the pressure at the outlets from the inlet pressure.

P _ Z?:l PA;
drop — Z:L:l Az
To calculate those scalar values, access to the facet area is necessary. Due to the model input being

the point cloud, this method relies on the existence of the mesh associated with the point cloud, which
is a considerable limitation.

(7.5)

Having the scalars computed from fields allows for using the same statistical metrics to be used on
them as used for scalars outputted by the model directly. This allows for a more reliable and quantifiable
insight into the model field predictions. Another way to utilize this calculation is to build a loss function
based on it. This was not done in this work, but could be worth exploring in a future work.

7.1.3. Metric calculation methodology

At this point, important clarification is needed on the topic of performance metrics. The typical scatter
plot for a single model run for a given training set configuration for the baseline model is presented in
Figure 7.1b. To measure the accuracy of the prediction, various statistics are calculated.

« If a value for a singular scalar or field error is reported, it is, in fact, an average over three velocity
clusters, which you can see highlighted in green, orange, and blue in Figure 7.1b. 3 velocity
clusters exist, as each geometry is predicted for three different inlet velocities. This averaging
over clusters is done instead of global R? for the entire validation set, as this gives a more accurate
understanding of how the model captures the trends within each cluster. The global R? calculated
on the validation set without taking into account the velocity clusters would be artificially inflated
by the variation of the minimum to maximum values in the validation set. In a design scenario,
an engineer wants to know the accurate performance of a given design at each velocity set point.
Hence, such a methodology for the computation of the statistics is used. For this purpose, first, for
each scalar predicted by the model, the metrics are computed separately for each inlet velocity
cluster. Those single-scalar metrics calculated per cluster are marked by the subscript v, for
example, R, or R%2. Subsequently, to agglomerate the metric for a single scalar over the three
inlet velocity clusters, the per-cluster metrics are averaged over three clusters. Those metrics are
marked by subscript ¢, for example R..

* When the total average statistic is quoted for a training, it is the statistic computed per cluster for
each variable that was later averaged over a set of variables. This is especially important for the
R and R? computations. In the case of correlation for scalars, the average was calculated over
five mass flows and the pressure drop. For R? the average was computed over five mass flows
only. This is done consistently throughout the work. The omission of the pressure drop in the R?
calculation is due to the fact that the model was never able to accurately capture the magnitude of
the pressure drop, while it was able to capture trends (hence, inclusion in the calculation R). This
probably happened due to dominance of inter-cluster variability over the very low intra-cluster

7.2. Baseline model results 42

variability, as can be seen in Figure 7.1a. This relative low inter-cluster variability leads the model
to focus its attention on other scalars that are more uniformly distributed and have larger errors
during training. Limited attention of the model is spent on learning the intra-cluster variability of
the pressure drop scalars, leading to a model that is not able to accurately infer the magnitude
of the scalar due to the variability within clusters. To signify global run metrics like R and R?, the
bar superscript will be used, so, for example, R and RZ2.

100

90

— R2=1
® V=1.081Z, pyop, R = 0.366, R,=0.857
Vi=1.5812, persp, RZ = 0.864, R,=0.043
® Vi=2.081%, pyep, R = -8.854, R,=0.619

—0.0015

-0.0020

— R?=1 ()
® Vi=10817, myp, RZ = 0.907, R,=0.963

V;=1.581Z, mypy, RZ = 0.873, R,=0.970 s

o Vi=2.081%,mip:, R = 0.847,R,=0.937 GEuseBro

—0.0025 (584)

]

80

kg
5

(627)
-0.0030 d
(s3245p6) 0@
70 (582]
€

—-0.0035

60
—0.0040 (626‘!

Prediction: parop [Pal
Prediction: myp [

50 620
~0.0045 . ;

40
-0.0050

30

—0.0050 -0.0045 —0.0040 —0.0035 —0.0030 —0.0025 —0.0020 —-0.0015

30 40 50 60 70 80 90 100 «
Ground truth: m;p [‘2]

Ground truth: pyrep [Pal

(a) Example of raw results for pg,..,, for bs_exp1_3x30. (b) Example of raw results for 1, p1 for bs_exp1_3x30.

Figure 7.1: Examples of predicted scalar scatter plots.

Figure 7.1b presents the scatter plot of ground truth CFD values vs. the predictions from ScalarNet,
for the mass flow of the left duct 1. For this particular run of the baseline model, with a training set of
thirty geometries simulated at three different inlet velocities, the values are well captured by the model
with high R, and R? as can be seen in the legend. It can also be seen that R? decreases slightly with
increasing inlet velocity. This is a trend that is repeated among other experiments and makes physical
sense, as a higher inlet velocity would mean a higher Re as well as a higher chance of turbulent flow
in the ducts, which can be much more complex to capture due to its high local variability in the flow
patterns.

7.2. Baseline model results

The results of this model will establish the benchmark to which all subsequent methods will be com-
pared. Starting with Experiment 1 (bs_exp1) where inference performance is evaluated with a single
campaign (4) and moving to transfer learning and generalization assessment looking at Experiments
3 (bs_exp3) and 5 (bs_expb), where, respectively, campaign 1 and campaigns 1,2 and 3 are used as
base campaigns, and a small amount of data is added to the training set from campaign 4 to assess
the transferability of the knowledge between campaigns. All models are then evaluated based on the
prediction of a fixed validation set that is part of campaign 4.

This section tackles the first sub-question from the Chapter 3:
“Based on the selected test case data set, what is the performance (at inference time, transfer

learning, and generalizability) of an optimized model that does NOT leverage physical prior
knowledge?”

7.2. Baseline model results

43

7.2.1. Baseline model - inference performance

An analysis of bs_exp1 will be carried out, looking at how the performance scales with number of
samples in the training set, as well as how it reaches a performance plateau.

1.00

0.75

0.50

1.00

0.75

0.50

0.25

el

< 0.00

—-0.25 o -0.25 —#— bs_expl Total R
— bs_expl Total R? :i - bs expl R, iy

—0.50 “- b eXpLR My —0.50 ¥ -4~ bs_expl Rc My,
I - bs_expl RZ myp,] ~4- bs_expl R, fiagp;

¥ -3¢~ bs_expl RZ Mg] -~ bs expl R, Mian
—0.757 - bs_expl R2 aps —0.757 bs_exp1 R s
E bs_expl RZ Mys] bs_expl Re Parap

—1.00 1 T T LA Ny S B -1.00+——++1"+—"— 1T

w

10 15 20 25
N. of geometries from the target dataset

30

w

10 15 20 25
N. of geometries from the target dataset

30

(a) R*. (b) R.

Figure 7.2: bs_exp?: R? and R of the predicted scalars from ScalarNet of the test set for various runs of bs_exp1.

In Figure 7.2 the evolution of the R? and R, for bs_exp1 with the size of the training data set is
plotted. A clear increasing and converging trend is visible on almost all scalars, showing that with
increasing training data set size, prediction accuracy improves, which was to be expected. The main
outlier is the correlation metric on the pa.., (see Figure 7.2b), which improves almost linearly with an
increase in the training data set size. Looking at the Figure 7.2 and the absolute errors presented in
Table 7.1 and Table 7.2, it is visible that by the training set size of 20 geometries (3 x 20 samples) the
performance on the validation data set shows a high correlation of more than 0.75 and a positive R?
of above 0.5 for all scalars considered. At this data set size, the errors for all scalars halve, relative
to the model performance with 5 geometries (3 x 5 samples) in the training set. Many of the scalars
have very low L1 errors of about 1%. The largest errors for the model with the largest data set (3 x 30
samples) were obtained for the 7, p; and mrp;. This was to be expected, as those mass flows show
the highest variance within the inlet velocity clusters, and large values of performance metrics like R?
and R, measure the accuracy relative to each scalar’s variance. This means that for these particular
scalars, the relative accuracy is high, but precision in a global sense is lower when compared to other
predicted scalars.

Table 7.1: bs_exp1: Absolute and percentage mean L1 error of predictions vs. CFD ground truth for scalar quantities.

N. of geometries mrp1 mrpo MRD1 TMRD2 mws Pdrop

in training set L1 [kg/s] | L1 (%] L1[kg/s] | L1lkg/s] | L1[kg/s] L1[%)] | Lllkg/s] | L1[%] | L1[kg/s] | L1 [%] L1 [Pd] L1 [%]
5 0.0004105 | 14.44% | 0.0001173 2.49% | 0.0005546 | 18.07% | 0.0001234 | 2.63% | 0.0004632 | 2.23% | 0.9926281 | 1.38%
10 0.0003436 | 12.70% | 0.0000793 1.67% | 0.0002847 | 8.73% | 0.0000800 | 1.69% | 0.0003411 | 1.60% | 0.7956736 | 1.09%
20 0.0002142 | 7.59% | 0.0000620 1.24% | 0.0001068 | 3.98% | 0.0000665 | 1.38% | 0.0002400 | 1.09% | 0.6608915 | 0.85%
30 0.0001397 | 4.41% | 0.0000576 1.17% | 0.0000862 | 2.81% | 0.0000529 | 1.07% | 0.0002146 | 0.98% | 0.6683922 | 0.78%

7.2. Baseline model results

44

Table 7.2: bs_exp1: Absolute L1 error of predictions vs. CFD ground truth for field quantities.

N. of geometries L1 error

in training set Pressure | X Velocity Y Velocity Z Velocity
[Pal [m/s] [m/s] [m/s]

5 1.0306267 | 0.098893605 | 0.12224015 | 0.098756544

10 0.8665144 | 0.083754085 | 0.10680834 | 0.08623453

20 0.7356513 | 0.07560715 | 0.095826864 0.0743815

30 0.7056592 | 0.06964034 | 0.09004241 0.06922776

7.2.2. Baseline model - transfer learning performance

In this section, the results of Experiments 3 (bs_exp3) and 5 (bs_exp5) will be analyzed in a transfer
learning setting. Experiment 3 uses full campaign 1 as the base training set, to which an increasing
number of samples from campaign 4 are added. Experiment 5 uses combined campaigns 1, 2, and 3
as the base training data set, with an increasing number of geometries added from campaign 4. After
each training, the model is used to predict the validation data set, which is a fixed subset of campaign 4.
Itis important to reiterate that no geometry is shared between the training and validation set. Therefore,
each training/validation set consists of n geometries, each simulated for three inlet velocities.

o

R2

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

1.00

0.75

0.50

0.25

0.00

-0.25

—-0.50

-0.75

-1.00

-
-

>
-3¢-
>

bs_exp3 Total RZ
bs_exp3 RZ myp;

- bs_exp3 R2 Mip» T =T

bs_exp3 R? Mapy

- bs_exp3 R2 Mgpy

bs_exp3 RZ Mys

[=]

N. of geometries from the target dataset

(a) R? Experiment 3 (bs_exp3).

bs_exp5 Total R?

bs_exp5 R2 mipy
bs_exp5 RZ mp;
bs_exp5 R2 Mapy
bs_exp5 R2 Mg,

bs_exp5R2 Mys /'

o

N. of geometries from the target dataset

(c) R? Experiment 5 (bs_exp5).

1.00

0.75

0.50

0.25

x 0.00

—0.257, . W —&- bs_exp3 Total R
/ \“/' -4~ bs_exp3 R fp
—0.50 - bs_exp3 R. myp;
-~ bs_exp3 R gy
- bs_exp3 R. mgp;
—0.75 bs_exp3 R. Mys
bs_exp3 Rc Parop
—-1.00 T T T L T T T
0 2 a4 6 8 10
N. of geometries from the target dataset
(b) R Experiment 3 (bs_exp3).
1.00
0.75
0.50
0.25
« 0.00
—0.25 7 —4— bs_exp5 Total R
* -~ bs_exp5 R. M
—0.501 - bs_exp5 R, yn;
] -4~ bs_exp5 Rc Moy
] - bs_exp5 R mgpe
—0.75 - bs_exp5 R Mys
] bs_exp5 Re Parop
-1.00 —T T T T T | B —
0 2 4 6 8 10

N. of geometries from the target dataset

(d) R Experiment 5 (bs_exp5).

Figure 7.3: R2 and R of the ScalarNet predicted scalars of the test set for various runs of Experiments 3 and 5.

7.2. Baseline model results 45

The results in Figure 7.3 show that R and R improve for bs_exp3 and bs_exp5 with increasing
number of geometries from campaign 4 in the training set. Furthermore, there is a clear performance
benefitin adding more base campaigns to the training set, since the models of bs_exp5 (which has three
base campaigns: 1,2 and 3) outperform the models of bs_exp3 (which has only one base campaign:
1) consistently throughout the range of training data set configurations, with R2 at 10 geometries run of
0.55 for bs_exp5 vs. 0.34 for bs_exp3. Likewise, the R obtained for this run is much higher for bs_exp5
which is at 0.80 versus 0.53 for bs_exp3.

— R?=1 » -0.0030 — — R*=1
® V=1081%, rigpy, R:= 0897, R=0.973 ® V=1.081Z, rigy, RL=0227, R=0564)

—-0.0020 — .] (54 -
V=15817, R = 0867, R=0.962 Vi=15812, m,
v v (541) T
L]

Rl =10341,R=0701
® V=2.081% maon, R2 = 0.861, R=0.960 ~00035— @ V=20812 map. RL=0312, R=0.671

”
—0.0025 — (579)
)

—0.0040 —
~0.0030 —| (588)

ke

Prediction: Mgp, [+]

(581" 1)
e

}

_0.0035— ~0.0045 — (579)

g
(5841p8E) -
w5250,/ 08%
®

~0.0041
0.0040 ~0.0050 —|

Prediction: Mgp; [52]

(621
—0.0045 — e
I3 ~0.0055 —
627)
~0.0050 —| “’é.ﬁ‘w 2 I e
L] 622) £
Yo (6
—~0.0060 — (619)
L]

-0.0055 —]

~0.0065 —|

I
—0.006 —0.005 —0.004 -0.003 —0.002 -00065 -00060 -0.0055 -0.0050 -0.0045 -00040 -00035 -0.0030

Ground truth: itgpy (] Ground truth: mgp; [42]

(a)mRDl. (b)mRDQ.

Figure 7.4: bs_exp3_3x10: CFD ground truth vs. model predictions for hgp1 and mgps.

In both bs_exp3 and bs_exp5, mrp: is the scalar with the highest prediction accuracy out of all
the scalars, as seen in Figure 7.3. This is due to several factors. First, the right duct 1, at which
end the mass flow iz p; is calculated, has quite a large geometrical intra-campaign variability, making
the local geometry very influential on the mass flow at the duct. This allows the geometry processing
part of the network to easily capture the geometrical dependencies into the bottleneck based on which
the scalar predictions are made. The other scalars are harder for the model to capture due to their
smaller variability caused by changes between the geometries. This variability difference can be seen
in Figure 7.4, where the prediction vs. ground truth are plotted for two scalars, with cluster colored
based on the inlet velocity. Looking at the scatter plots one can see that rmgpo (Figure 7.4b) values
are less affected by geometry and more by the inlet velocity, compared to ringp; (Figure 7.4a). This is
visible in the cluster distribution differences between the two scalars plotted. mgps clusters are very
tightly packed together, showing a large variability due to the inlet velocity but a small variability due
to geometrical differences. On the other hand, clusters of 1wgp; are much more spread out, showing
a large variability due both to inlet velocity and geometrical variability. As the local geometry of the
other outlets (not left duct 1 or right duct 1 in Figure 4.8) associated with scalars, like i zp2, remains
constant, the factors that affect mass flows are the secondary effects resulting from the changes in
the side duct geometries (left duct 1 and right duct 1), as well as changes due to the different inlet
velocities. As the effect on those mass flows of inlet velocity is much bigger than the effects caused by
the geometrical changes, the model easily captures the inlet velocity dependency, but then struggles
to predict the inter-cluster variability caused by the geometrical changes.

7.2. Baseline model results 46

Program 1 Program 4

Left duct 1

/N

Y

<Z X

Figure 7.5: A geometry from campaign 1 compared to a geometry from campaign 4, showing the position difference between
left ducts in the two geometries.

Moreover, in bs_exp3 the 1y p; is an outlier throughout the experiment, as visible in Figure 7.3,
where for this scalar the models perform particularly badly. The reasons behind this can be seen in
Figure 7.5, where the figure shows a sample from campaign 1 in green and campaign 4 in blue. The
geometries are fed into the model and are centered around the middle of the HVAC box, as shown in
Figure 7.5. The relative distance between the outlet of campaign 1 and campaign 4 makes it harder
for the model to transfer the knowledge from abundant campaign 1 to scarce campaign 4 for that duct.

Therefore, this mass flow is captured so poorly by the bs_exp3 models compared to the others, which
are much closer together in the coordinate space.

CFD - exp3-3x10 e exp5-3x10

«Z CFD Velocity Magnitude (m/s) L1 error Velocity Magnitude (m/s) L1 error Velocity Magnitude (m/s)
w00 10 20 30 00 02 05 0 02
—) - = -— =

Figure 7.6: CFD and L1 errors for dp-585 sample from bs_exp3_3x70 andbs_exp5_3x10.

This phenomenon is also visible when comparing the velocity field prediction errors between CFD,
bs_exp3 and bs_exp5, as on Figure 7.6. L1 errors are considerably higher in the left duct 1 for the
bs_exp3 3x10 model than for the same run of bs_exp5. In bs_exp3 prediction, large areas of high
error can be observed, especially around the last duct turn. In addition, the errors are higher all the
way to the outlet plain of the duct. Interestingly, the error magnitude for the duct section upstream of

the final turn looks very similar for both predictions, whereas all the large differences are downstream
of the turn.

7.2. Baseline model results 47

1.00

0.75

0.50

0.25

0.00

Avg R\ R?

—-0.25

bs_expl Total RZ
bs_expl Total R

—0.50

bs_exp3 Total RZ

bs_exp3 Total R
—-0.75 -

bs_exp5 Total RZ

SETEE

bs_exp5 Total R

—1.00 T 1T T 7 T T T T [T T T T 7 T T T T 1 T T T T T T T 17
0 5 10 15 20 25 30
N. of geometries from the target dataset

Figure 7.7: R and R2 comparison between bs_exp1, bs_exp3 and bs_exp5 for scalars from ScalarNet.

The purpose of transfer learning in this work is to improve the performance on the target data set by
adding a small number of target data samples to the training set. To assess whether transfer learning
had a positive impact on model performance, the results of bs_exp? are compared with the results of
bs_exp3 and bs_expb in Figure 7.7. This compares the performance of the model in a single target
campaign with the model using transfer learning.

Looking at Figure 7.7, both TL experiments bs_exp3 and bs_exp5 compare favorably with bs_exp1
for the same number of geometries in the training data set. Both bs exp3 and bs_exp5 with 5 and
10 geometries in the training set have higher R? and R than the respective runs of bs_exp1. For
bs_exp5_3x10, the correlation is on par with the correlation obtained in bs_exp1 with twice the number
of geometries from the target campaign used. Figure 7.8 presents the L1 error on velocity and pressure
fields on the validation data setof bs_exp17, bs_exp3and bs_exp5. For velocity in Figure 7.8a the results
show a clear converging error trend for all experiments. Furthermore, the trends obtained from scalar
predictions hold for the field predictions, with bs_exp5 having lower errors than bs_exp3 across all
training runs for all the velocity field components. Moreover, for the same number for geometries from
campaign 4, both TL experiments have lower errors than bs_exp1. For pressure field in Figure 7.8b
both TL experiments have equal or lower errors than bs_exp1, but for this field prediction, bs_exp3
reaches lower errors than bs_exp5 at larger data set sizes.

7.2. Baseline model results

48

- bs_expl V,
bs_expl V,
bs_expl V:

10!

-#- bs_explp
#- bs exp3p
-%- bs_exp5p

bs_exp3 Vy
bs_exp3 V, 7

bs_exp3 V, H
bs_exp5 Vx
bs_exp5 Vy
bs_exp5 V.

Phh b i b

L1 error
L1 error

k
100

L e s o B s s
10 15 20 25
N. of geometries from the target dataset

L e S LA N s s s e s e e e
15 20
N. of geometries from the target dataset

30 0

30

(a) Velocity. (b) Pressure.

Figure 7.8: L1 error on fields for Experiments 1,3 and 5 for baseline model.

7.2.3. Generalization performance

In this section, the ability of the model to generalize will be assessed. This is the ability to utilize the
learning on one task and use the learnt knowledge to apply it to another task without additional data. In

this work, this was tested by training two models, one of bs_exp3_3x0 and one of bs_exp5 3x0, where
no target data geometries were added to the training set.

Table 7.3: Correlation and mean percentage L1 error for two zero-shot runs, one for bs_exp3_3x0 and bs_exp5_3x0 each.

Cluster Inlet velocity Vi, | mip1 [mLp2 [MRDL [MRD2 [s [Parop
[m/s] | R JIL1[%] [R [Ii[%] | R JI1[% | R [I1[% | R [IL1[% | R [LI[%]

bs_exp3 _3x0

1.08 -0.5863 | 28.74% | 0.2116 | 29.99% | 0.0775 | 43.93% | -0.0915 | 31.39% | 0.1690 | 30.88% | -0.5771 | 6.47%

1.58 -0.4235 | 31.83% | 0.5938 | 31.59% | -0.0090 | 42.34% | -0.0915 | 31.42% | 0.0718 | 30.71% | 0.0733 | 2.48%

2.08 -0.5085 | 33.95% | 0.4452 | 33.74% | 0.0361 | 45.43% | 0.0166 | 34.59% | 0.4639 | 31.59% | 0.4307 | 8.52%

Average over clusters -0.5061 | 31.51% | 0.4169 | 31.77% | 0.0349 | 43.90% | -0.0554 | 32.47% | 0.2349 | 31.06% | -0.0244 | 5.82%
bs_exp5_3x0

1.08 0.0458 | 15.85% | -0.2958 | 10.30% | -0.2676 | 19.71% | 0.0017 | 12.49% | 0.1572 | 12.49% | -0.1625 | 7.36%

1.58 0.3470 | 14.37% | -0.3408 | 14.62% | -0.5274 | 21.85% | -0.3017 | 13.64% | -0.2704 | 11.38% | -0.1132 | 4.88%

2.08 0.5867 | 15.50% | -0.4369 | 10.59% | -0.3765 | 19.62% | -0.1705 | 9.70% | -0.6386 | 9.00% | -0.5722 | 1.65%

Average over clusters 0.3265 | 15.24% | -0.3578 | 11.84% | -0.3905 | 20.39% | -0.1568 | 11.94% | -0.2506 | 10.96% | -0.2826 | 4.63%

Analyzing the values in Table 7.3, the errors for both generalization experiments are much higher

than even for bs_exp1_3x5 geometries configuration (Table 7.1). However, the errors from bs_exp5 3x0
are less than half of bs_exp3 3x0 errors. This can be attributed to the geometrical relatedness of the
different campaigns used for the training, as in Figure 7.5. However, even with high errors, some
scalars have a relatively high correlation. In bs_exp5 the 7 p; for the highest velocity cluster reaches
a correlation of 0.59, while in bs_exp3 high positive correlation is predicted for 7y p» and my s. Further-
more, the predicted pq4,..,, for the low-velocity cluster has a correlation of —0.60 while the high-velocity
cluster has a positive correlation of 0.43. These results are particularly surprising considering that in
bs_exp3_3x0 only campaign 1 was used, which consists of geometries simulated at [1.0,1.5,2.0] %,

so in theory the high-velocity cluster for campaign 4 (V;,e: = 2.08%) is outside of the training data
distribution.

7.2. Baseline model results 49

Table 7.4: L1 error on the predicted fields for generalization runs: bs_exp3_3x0 and bs_exp5_3x0.

Cluster Inlet velocity V;,,;.: L1, error

[m/s] Pressure [Pa] | X-velocity [m/s] | Y-velocity [m/s] | Z-velocity [m/s]
bs_exp3_3x0

1.08 6.0269 0.3125 0.3904 0.1698

1.58 10.9955 0.4693 0.5830 0.2635

2.08 18.9192 0.6328 0.7820 0.3609

Average over clusters 11.9805 0.4715 0.5851 0.2647
bs_exp5_3x0

1.08 0.8033 0.1022 0.1069 0.0824

1.58 1.0012 0.1407 0.1515 0.1236

2.08 1.5094 0.1854 0.2051 0.1647

Average over clusters 1.104638 0.142729 0.154495 0.123563

Table 7.4 presents the L1 errors on the predicted fields. Here, the errors are presented separately
for each velocity cluster in the validation set. Both models exhibit the same behaviour: lower velocity
clusters have lower errors, whereas higher velocity clusters have higher errors. bs_exp5 _3x0L1 errors
are considerably lower when compared to bs_exp3_3x0 results, but still larger than the bs_exp1_3x5
(Figure 7.8). To investigate the predicted fields more closely, fields were plotted for one of the samples
in Figure 7.9 and Figure 7.10.

CFD exp3-3x0 exp3-3x0

£

Prediction Velocity Magnitude (m/s) L1 error Velocity Magnitude (m/s)
e 00 10 20 30 =, 00 0.4 06 1.0
— a— — - —

exp5-3x0 exp5-3x0

g

Z

) ~><CFD Velocity Magnitude (m/s) Prediction Velocity Magnitude (m/s) L1 error Velocity Magnitude (m/s)
00 10 20 30 . 00 10 20 30 . oo 04 06 1.0
o el B

Figure 7.9: Baseline model generalization velocity comparison between bs_exp3_3x0 and bs_exp5_3x0 dp-585 sample.

In Figure 7.9 and Figure 7.10, the prediction of the velocity and pressure fields is compared with
the ground truth for one of the side ducts of the sample dp-585. In the velocity graphs in Figure 7.9,
the predictions of the bs_exp3_3x0 model are smeared, while roughly showing the correct magnitude.
There is a significant improvement visible in the prediction of bs_exp5 3x0, where the model was able
to capture some of the prevailing high-velocity zones downstream of the duct turn. The L1 error in the
velocity magnitude also shows much smaller errors in the prediction of the bs_exp5 3x0 model. In
general, those predictions are far from capturing the fields precisely, as the errors in the prediction are
noisy. Moreover, they do not allow one to make an informed design decision based on the prediction,
but at least they are able to recover an average pattern based on knowledge learned from the training
set.

7.2. Baseline model results 50

CFD exp3-3x0 exp3-3x0

Prediction Pressure (Pa) L1 error Pressure (Pa)
. -10.0 20.0 60.0 2! 0.0 200 60.0
« | — « | o
exp5-3x0

CFD Pressure (Pa)
-1.0 00 1.0 20

z I I icti
< [— Prediction Pressure (Pa) L1 error Pressure (Pa)
& y -1.0 00 1.0 20 y
; A ; 00 50 100
¥ ¥ h i

&~

Figure 7.10: Baseline model generalization pressure comparison between bs_exp3_3x0 and bs_exp5_3x0 dp-585 sample.

Looking at the pressure comparison in Figure 7.10, the prediction of bs_exp3_3x0 is highly erro-
neous, where the predicted pressure is more than an order of magnitude different from the CFD result.
bs_exp5 3x0 model prediction has much lower errors, which shows the benefit of the additional cam-
paigns in the training set. However, the model struggles to predict pressure accurately, even for the
bs_exp5 3x0 prediction. Errors are of one order of magnitude larger than the actual prediction. For
example, at the outlet the model predicts large areas of negative pressure, while in CFD the boundary
condition of 0 Pa is imposed there. This is a consistent feature for all the samples in the campaigns,
and the model is unable to transfer this knowledge to this new campaign.

7.2.4. Baseline model performance - summary

In this section, the baseline model performance was established both in a single-campaign inference
setting (bs_exp1) and in transfer learning inference (bs_exp3 and bs_exp5). In addition, the general-
ization of the multi-campaign models was analyzed. Overall, the single-campaign training performance
increased with increasing size of the training data set. In the transfer learning task, comparing models
that transfer from a single campaign with models that transfer from multiple campaigns, as expected,
the TL models reached better performance for the same number of samples from the target data set in
the training set. Moreover, the single-campaign transfer is very sensitive to the choice of the campaign
to be used as the base campaign. If the base campaign is not similar or has features not existing in the
target campaign, the task of inferring correctly the impact of those geometrical features can be difficult
for the model. This was also very apparent in generalization task performance analysis, where adding
more base campaigns for TL significantly improved target data field prediction accuracy. Statistically,
the larger the number of base campaigns, the higher the chance that the features in those will resem-
ble the features of the target campaign, making it easier for the model to transfer the knowledge to the
new campaign. On a general note, the importance of relative differences in scalar distributions was
highlighted as an important factor to take into account, as their clustering and variance within clusters
can make the task less or more challenging to learn.

7.3. Physics-informed surrogate models 51

7.3. Physics-informed surrogate models

In this section, the results of experiments with the methods introduced in Chapter 6, will be presented.
This will aim to answer the two remaining Research Sub-questions from Chapter 3, namely:

“What is the performance of the physics-informed model at inference time and in the trans-
fer learning task, and what is the impact of the methods on the generalizability of the model?”

and,
“Can the different methods be combined, and if yes, what is their cumulative effect?”

To answer these questions, the entire DOE, presented in Table 4.3, will be run after having applied
the selected methods. Moreover, a simplified solution addition method and linear scaling were later
combined and used together to assess the compound effect of the approaches. Due to the approach
that was taken to physics-informed losses, the results of this experiment will be presented in a separate
section, which can be seen as a method to apply on top of any of the predictions made by the models
presented in this work.

7.3.1. Physics-informed methods assessment in improving inference performance

1.00 1.00

0.75 0.75

0.50 0.50

0.25 0.25

/// < 0.00

0 I Y Y A A A

o 0.00 .
-0.25 ~0.25
050 — bs_expl TutalRL o 505 —4- bs expl Total R
- >~ pot_expl Total R? ' | 4 pot_expl Total R
nd_mix_expl Total RZ] nd_mix_expl Total R
=0.75 nd_lin_expl Total R? -0.75 J nd_lin_expl Total R
nd_pot_expl Total RZ E nd_pot_expl Total R
—1.00 L s e B B e s B B B B B B B —1.00 e e e e B e B B B S B s s s s
10 15 20 25 30 5 10 15 20 25 30
N. of geometries from the target dataset N. of geometries from the target dataset
(a) R? Experiment 1. (b) R Experiment 1.

Figure 7.11: R? and R of predicted scalars from ScalarNet of the test set for baseline experiment, a simplified solution as an
additional input experiment, linear and mixed scaling, and finally the combination of linear scaling and a simplified solution
addition experiment.

In this section, the impact on performance of physics-informed (PI) methods on the single-campaign
model training run of Experiment 1 will be analyzed. The general performance of the models is pre-
sented in Figure 7.11a and Figure 7.11b. Here, a comparison is made with reference to the bs_exp1.
In general, all methods show a converging trend with an increase in the size of the training set. With
training set sizes of 20 and 30 geometries, the bs_exp1 model performance on average is almost as
good as any of the methods tried. The simplified solution addition method (pot_exp17) is the closest
in performance to the bs_exp? models in a rich data environment. In runs with a smaller training set
sizes, the addition of a simplified solution appears to improve the model performance with respect to
bs_exp1. Moreover, on average, with the lowest data set size of 5 geometries, the combined simplified
solution addition and scaling method (pot_nd_exp1) is an outlier, as it shows by far the best perfor-
mance of all the methods tried at this training set size. This improvement in performance coming from

7.3. Physics-informed surrogate models 52

the addition of a simplified solution at lower training set sizes is encouraging, as it points towards the
ability of the model to utilize this input in low data regimes. This is particularly encouraging for further
experimentation in the TL setting.

The worst performance was measured for the models with linear scaling applied (nd_lin_exp1). This
observation leads to an interesting question. The difference between linear and mixed scaling is the
treatment of pressure-related quantities. For the calculation of R? the pressure drop scalar is not taken
into account, which means that the velocity fields and the mass flows training data were treated the
same way between the training with linear (nd_lin_exp1) and mixed scaling (nd_mix_exp1). However,
there is a very large performance difference between the linear and mixed scaling in Figure 7.11ain the
low data regime. This could signify that the different pressure scaling between the two training runs has
a significant impact on the velocity-related quantities. Looking at the correlations in Figure 7.11b, the
trends from the R? plots are maintained, with pot_exp7 showing superior performance with reference to
the baseline at a smaller training data set size, while nd_lin_exp1 performs poorly in low data regimes,
but recovers at the training set size of 20 geometries. pot_nd_exp1 performance curve has roughly the
same shape as the curve for nd_lin_exp1, although it is shifted to a higher performance starting point
at low data regimes, perhaps due to the added base flow prediction coming from the simplified solution
addition.

7.3. Physics-informed surrogate models 53

7.3.2. Physics-informed methods assessment in improving transfer learning per-
formance

In this section, the proposed methods will be assessed in a TL setting using the design of Experiment
3 and Experiment 5- transferring from a single base campaign to the target campaign and transferring
from three base campaigns to one target campaign, respectively. In both cases, the target campaign
is campaign 4.

1.00 1.00
4 —>¢ bs_exp3 Total R? 1
0.75 E pot_exp3 Total RZ 0.75 E
- nd_mix_exp3 Total R? -
0.50 E nd_lin_exp3 Total }Ti 0.50 7///4
] nd_pot_exp3 Total R? 1 ////’//
] /]
0.25 o 0.25] /
] _—]
N - g i
T 0.00 i @ 0.00
_0_255 / —0.25;
0 505 / o 50; 4 bs_exp3 Total R
i] '] pot_exp3 Total R
]] nd_mix_exp3 Total R
—0.757 =0.757 nd_lin_exp3 Total R
] E nd_pot_exp3 Total R
-1.00 T T T T T T T T T T —1.00 — T T T I T T
0 2 4 8 10 0 2 4 6 8 10
N. of geometries from the target dataset N. of geometries from the target dataset
(a) R? Experiment 3. (b) R Experiment 3.
1.00 4 1.00
0.751 0.75
0.50 e e 0.50
1 e 1
0.25 // 0.25+
- / -
] /]
% 0.004 A @ 000
B / B
] / 7
—0.25 A —0.25
y]
] / e]
0501 / — bs_exp5 Total Rz_ 0.50 14 bsews Total K
- 1 // >~ pot_exp5 Total R? . . 1 4 pot_exps Total R
] % nd_mix_exp5 Total R*] nd_mix_exp5 Total R
—0.75 1 nd_lin_exp5 Total R? —0.757 nd_lin_exp5 Total R
] [nd_pot_exp5 Total RT E nd_pot_exp5 Total R
—-1.00 T T T T I T T T I T T T -1.00+—F7T—7 T T T T T T T T T T T T 1 T
0 2 4 6 8 10 o] 4 6 8 10
N. of geometries from the target dataset N. of geometries from the target dataset
(c) R? Experiment 5. (d) R Experiment 5.

Figure 7.12: R? and R of predicted scalars from ScalarNet of the test set for baseline experiment (bs), a simplified solution
addition (pot), linear (nd_lin) and mixed scaling (nd_mix and finally fusion of linear scaling and a simplified solution addition
experiment(pot_nd.

Figure 7.12 presents the general performance curves for the different methods applied to Experi-
ments 3 and 5. For Experiment 3, all methods consistently outperform the bs_exp3 model, with the
exception of the nd_mix_exp3_3x5. In single-campaign transfer learning pot_exp3 consistently out-
performs other approaches, reaching considerably better R2 than the bs_exp3 models. It performs
particularly well in the 3 x 5 training run, where it reaches R? of 0.40 vs. 0.10 for the baseline model.
pot_exp3_3x10 as well as the nd_lin_exp3_3x10 and nd_pot_exp3_3x710 models reach very similar
high performance (R? ~ 0.6 and R ~ 0.75), considerably outperforming the bs_exp3_3x70 model run.

Looking at Experiment 5, overall all methods outperform the bs_exp5, but their relative performance
to each other has changed relative to Experiment 3. nd_mix_exp5, nd_lin_exp5 and pot_nd_exp5

7.3. Physics-informed surrogate models 54

reach very similar performance at almost all data set sizes, constantly outperforming the bs_exp5 mod-
els. Furthermore, pot_exp5 performs the least favourably of all the methods presented, but it nonethe-
less outperforms the bs_exp5 models throughout the range of training set sizes. The largest R? per-
formance difference between the bs_exp5 and the Pl methods occurs at a 3x5 data set size where
nd_mix_expb and nd_lin_exp5 reach almost identical performance of 0.62 vs. 0.2 for the bs_exp5_3x5
model. Overall, this consistent performance between two types of scaling in the R? plots indicates
that at least in this Experiment 5 the interaction between the pressure quantities and velocity-derived
quantities did not significantly affect the overall model scalar prediction performance.

To assess the quality of the fields, the scalars were recomputed using the predicted fields, and the
results for Experiment 5 are presented in Figure 7.13. The immediate observation when looking at the
plot of Figure 7.13a is the substantially lower overall R? scores for all the training runs compared to
scalars predicted from ScalarNet, plotted in Figure 7.12c. With no runs of bs_exp5 models, as well as
the pot_exp5 and pot_nd_exp5 reaching values of R? of above 0. Furthermore, both nd_lin_exp5 and
nd_mix_exp5 reach positive values, with linear scaling reaching R? of 0.48 at the largest training set size.
This poor performance for some methods would indicate that the model did not correctly capture the field
variability of the validation set at the outlet planes. Looking at the correlation calculated based on the
scalars from fields in Figure 7.13b, the performance of the scalars is more similar to the performance
of the ScalarNet scalars, with all models reaching high correlation (0.70 and higher) with increasing
training set size. pot_nd_exp5, nd_mix_expb5 and nd_lin_exp5 outperform the bs_exp5 model at 3 x 5
data set size, while at the highest added data set size of 3 x 10 nd_mix_exp5 reaches a correlation of
0.85 vs. 0.75 for the bs_exp5_3x10 model. These results combined with the findings from Figure 7.13a
suggest that the models can capture the outlet fields well, in terms of their variance with respect to
different geometrical changes, but struggle to accurately capture the magnitude of the fields at the
outlets, which is highlighted by the low R2.

1.00 1.00
—k— bs_exp5 Total RZ, . .

0.75 - pot_exp5 Total RZ,,. 0.75

nd_mix_exp5 Total RZ,,, B

0.50 nd_lin_exp5 Total RZ ;. 0.50

nd_pot_exp5 Total RZ

0.25

% 0.00

-0.25

- —4— bs_exp5 Total Rueje
7 —4— pot_exp5 Total Reeras

—-0.50

nd_mix_exp5 Total Ryess

—0.75 nd_lin_exp5 Total Reeigs

nd_pot_exp5 Total Rpegs

—1.00

L S A 10 +——F+F—" 77T+ 71 T
2 4 6 8 10] 2 4 6 8 10

= A

N. of geometries from the target dataset N. of geometries from the target dataset
(a) R? Experiment 5. (b) R Experiment 5.

Figure 7.13: R? and R of the calculated scalars based on the predicted fields of the test set for the baseline experiment (bs),
the simplified solution addition experiment (pot), linear (nd_lin) and mixed scaling (nd_mix and finally the fusion of the linear
scaling and the simplified solution addition experiment (pot_nd.

Detailed plots of L1 errors for both Experiment 3 and Experiment 5 fields for different methods can
be found in Appendix D.

Effects of adding a simplified solution

Using the velocity field obtained from the simplified solution simulation (potential flow solution in the
case of this work), one can calculate the mass flow for each duct. This was done to analyze how the
performance of the model compares with the performance of simplified solution-derived mass flows.

7.3. Physics-informed surrogate models 55

The calculated results for campaign 4 are presented in Table 7.5.

Table 7.5: R? and R metrics on mass flows from the validation set of campaign 4 calculated using the simplified solution
(potential flow (PF)) velocity solution obtained from ANSYS Fluent.

Cluster Inlet velocity V;,,;.; mrp1 mppa MRrD1 MRD2 mws

[mis] R? R R? R R R R? R R? R
1.080 -17.794 0.453 -95.143 0.366 -16.582 -0.507 -122.191 0.267 -825.135 -0.440
1.580 -17.075 0.941 -86.193 0.820 -12.584 0.890 -101.442 0.667 -2894.681 | 0.421
2.080 -15.677 0.893 -98.351 0.733 -15.515 0.853 -93.813 0.647 -924.864 0.329
Average -16.848756 | 0.761981 | -93.228958 | 0.639852 | -14.893660 | 0.411717 | -105.815373 | 0.526838 | -84.002264 | 0.540166

The mass flows derived from the velocity field which was obtained from the simplified solution are
presented in Table 7.5. As expected, they have very low, non-physical R2. This is because the velocity
magnitude is lower in the ducts for the simplified solution (PF) vs. viscous CFD simulations. Moreover,
the simplifications in the PF theory (lack of viscous effects and flow being irrotational) lead to much more
uniform flow patterns at the outlet. Nevertheless, looking at the scalar correlation obtained from this
simplified solution velocity field, there is a significant positive correlation between the simplified solution-
derived values and the CFD. This allows to compare the correlations between the GNN models, trained
during this work, to the values obtained using the simplified solution. To illustrate this, correlation
evolution with the size of the data set per scalar are presented in Figure 7.14, where both plots for
scalars from the ScalarNet and scalars calculated based on the predicted fields are plotted for pot_exp5.

1.00
0.75
0.50
0.25
« 0.00
-0.25 7 pot_exp5 Total R —4— pot_exp5 Total Regge
. -+~ pot_exp5 Rc Mipy] / -#- pot_exp5 Re feigs Mipy
—o50F -4 pot_exp5 R Mup; -0504 4 ~#- pot_exp5 Re, s Mioz
] -k~ pot_exp5 Rc Mpp1] - Pot_exp5 Re, fieigs Map1
_0.754 -4~ pot_exp5 Rc Mep; 0754 #- Pot_exp5 R, rews Mapz
B pot_exp5 R Mys B pot_exp5 R fieigs Mis
] pot_exp5 Rc Parop] pot_exp5 R, fields Pdrop
-100+——T—T—7T 71 T T T T T T T T T T T T T T Bl 0L e e e s e L B B B B
) 2 4 6 8 10 0 2 4 6 8 10
N. of geometries from the target dataset N. of geometries from the target dataset
(a) R from ScalarNet output. (b) R calculated from predicted field.

Figure 7.14: R for pot_exp5.

When comparing the average R. for the simplified solution (Table 7.5) with the ScalarNet scalars
(Figure 7.14a), it is visible that the model needs a threshold number of training geometries from the
target data, before its predictions are better than the correlations obtained using the simplified solution.
For most scalars, R is higher than the simplified solution-derived scalars at the 3 x 5 samples from the
target campaign. An outlier is rivy p; Which oscillates around the value obtained using the simplified
solution velocity field for the entire range of data set sizes. Looking at scalars from fields, which in
general perform slightly worse than scalars from ScalarNet, as seen in previous sections, the majority
of the scalars outperform simplified solution-derived scalars at the biggest data set size. It is important
to note that for all data set sizes, trained models outperform the simplified solution in terms of R2.

\
\

™
L T™

7.3. Physics-informed surrogate models 56
)
| + Prediction Velocity Magnitude (m/s) v L1 error Velocity Magnitude (m/s)
“k 00 20 5.0 “k 0.0 0.5 1.0
;] | —

CFD Velocity Magnitude (m/s)
y 00 5.0

\
\

%
"

iy
T

. e =
X + Prediction Velocity Magnitude (m/s) & L1 error Velocity Magnitude (m/s)
“5 00 20 50 “% 0.0 0.5 1.0
- - —

Figure 7.15: Comparison between CFD, bs_exp5_3x710 model prediction and pot_exp5_3x710 model.

The velocity fields for bs_exp5 3x10 as input were plotted in Figure 7.15. This was done to investi-
gate the field predictions and error patterns to see if they changed due to the addition of the input field.
A particular sample from the validation set was chosen for this visualization, as the sample plotted has
a particular geometrical feature, a converging-diverging section causing large acceleration in the flow.
This feature is captured by the simplified solution , and the hypothesis that the simplified solution helps
with predicting features like this was investigated. Looking at the plot, at first glance both predictions
present similar flow patterns and magnitude as the CFD ground truth, with both predictions slightly
under-predicting the velocity in the throat of the converging section. Looking at the L1 error plots, it is
apparent that the error patterns between the two predictions are very similar, although the prediction
from the model with the simplified solution has significantly lower errors, especially in the throat section
of the duct. This would suggest that, indeed, the addition of the simplified solution may be helping to
predict this feature more accurately.

Comparing scaling effects

Previously, in Section 7.3.2, the positive impact of scaling on velocity-derived quantities was presented
based on the R? plots. Nevertheless, the difference between the scaling methods themselves is in the
way the pressure quantities are treated. For the purpose of this comparison, Figure 7.16a compares
the pressure drop R, both from the ScalarNet scalars, and the scalars calculated from the predicted
field. The results show that the R, calculated based on the pressure drop from the fields is lower for
the same training run, than the R, for the pressure drop from the ScalarNet.

Moreover, the addition of data seems to have a stabilizing effect on the difference between the
Pdrop cOMputed from fields and p4,,, from the ScalarNet, where the larger the training set, the lower
the relative difference. The best R, (0.83) is reached by the pg,..,, from ScalarNetin the nd_lin_exp5_3x5
run. This is surprising, as one would expect the best model performance to occur at the highest data
set size (3x710). However, nd_mix_exp5 R. on p., from ScalarNet was very close at the same data
set size. Moreover, unlike for linear scaling, the higher correlation was maintained at higher training set
size when mixed scaling was used. When looking at both scalars from fields and from ScalarNet with
mixed scaling, the R, obtained was considerably higher than for bs_exp5 3x70 and nd_lin_exp5_3x10.

L1 pressure field error evolution with data set size is plotted in Figure 7.16b for Experiment 5. As
expected, the pressure field average absolute error decreases with the increase in the number of sam-
ples from campaign 4 in the training set. Moreover, both scaling methods present a steeper rate of

7.3. Physics-informed surrogate models 57

decrease, and drop to lower error values than the bs_exp5. The error curves for both scaling methods
look almost identical in shape, but there is a substantial difference in magnitude, where mixed scaling
consistently reaches lower error values than linear scaling.

=
N

1.00 7 -#- bs_exp5p
1 il nd_lin_exp5 p
] — nd_mix_exp5 p
0.75+ 114
050 . 1
] S 1.0
0.25 s]
1 A 5 o] T .
® 000 L7 & * 5
¥ ¢ 4
4 » —
37 =]
-0.25 ¥ 0.87
B -4~ bs_exp5 Rc Parop :
—0.50 -4~ bs_exp5 R ferds Parop o
] nzi:iniexpi j:(Parop 07 i
- nd_lin_exp> Re, fierds Pdrop m
=0.757 nd_mix_exp5 Re Parop]
1 nd_mix_exp5 Re, feids Pdrop o
—1.00 —_—————— 0.6 T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
N. of geometries from the target dataset N. of geometries from the target dataset
(a) Comparison of Rand R¢cias.- (b) Comparison or L1 errors on pressure field.

Figure 7.16: Comparison of pressure drop and pressure field performance for the baseline model versus scaling techniques
for Experiment 5.

As the values of R? > 0 on p4,., Were never reached, the magnitude of this quantity was not yet
analyzed. Looking at Table 7.6, the L1 errors for p4,,, from Experiment 5 were compared between the
baseline and different scaling methods. Across all three methods compared, the errors drop with the
increased contribution of campaign 4 in the training set. In the zero-shot experiment (3x0), the baseline
model predicts by far the most erroneous value with the L1 percentage error of 4.63%. For the same
data set size, linear scaling reaches the lowest value of 1.7%. The lowest overall error was reached by
the largest data set size for a model with mixed scaling, where the error drops to 0.58% vs.0.72% for
linear scaling payop-

Table 7.6: Comparison of the L1 pressure drop error for the different scaling methods used.

N. of geometries Parop L1 error .
in training set bs_exp5 nd_lin_exp5 nd_mix_exp5
L1[Pa] | L1[%] | L1[Pa] | L1[%] | L1[Pa] | L1 [%]
0 2.370 | 4.63% 0.756 | 1.70% 1179 | 2.87%
1 0.792 | 1.08% 0.645 | 0.94% 0.671 | 1.12%
2 0.743 | 1.00% 0.654 | 0.91% 0.664 | 1.05%
5 0.880 | 1.22% 0.659 | 0.78% 0.720 | 0.91%
10 0.628 | 0.77% 0.570 | 0.72% 0.474 | 0.58%

7.3.3. Physics-informed methods assessment in improving generalization per-
formance

In this section, the impact of the proposed Pl methods on the generalization performance of the models
is assessed. This was be done by comparing the zero-shot model training runs with different methods
against the baseline model performance for Experiment 5. Table 7.7 presents the correlations and L1
errors for all zero-shot runs for Experiment 5 using different Pl methods. In general, the model with
mixed scaling (nd_mix_exp5_3x0) has considerably better R (0.38) compared to models with other PI
methods (—0.17,—0.03,0.3) and the baseline model (—0.18). Moreover, the model with mixed scaling
deviates from the trend presented by other models. Both the baseline and the rest of the zero-shot Pl

7.3. Physics-informed surrogate models 58

models predict the data correlation of 7, p; well (to a different degree, but this scalar is a positive outlier
in all these runs). The bs_exp5_ 3x0 model as well as the nd_lin_exp5 3x0 and pot_exp5_3x0 capture
no correlation between all the other scalars. pot_nd_exp5_3x0 captures the 1, p; correlation well, as
well as shows some signal of learning on mgrp2 and mys. The nd_mix_exp5 3x0 scalar correlation
patterns change significantly, as the model reaches a significant correlation on all scalars, apart from
mr,pi and Mmws.

Table 7.7: Correlation and mean percentage L1 error for zero-shot runs, for different physics-informed methods on Experiment
5.

Cluster Inlet velocity | MLLD1 I [I mRDI I RD2 I mws I Pdrop | Average
Vintet [m/s] | R T L% | R UM | R JUM | R JUM® | R JLI%]| R JU®% [R] LI[%]
Baseline Model Exp 5 3x0
-0.3578 | 11.84% [-0.3905 | 20.39% [-0.1568 | 11.94% [-0.2506 | 10.96% [-0.2826 [4.63%
Model with simplified solution Exp 5 3x0
-0.3182 | 11.66% [-0.4653 | 20.79% [-0.4366 | 14.30% [-0.4017 | 11.86% [-0.1925 [1.83%
Model with linear scaling Exp 5 3x0
-0.2704 | 11.00% | 0.0227 [20.13% [-0.3590 | 10.72% [-0.1608 | 8.29% [-0.1761 [1.70%
Model with mixed scaling Exp 5 3x0
0.4247] 13.02% | 0.3811 [20.71% | 0.6071 [12.95% [0.1709 [11.50% | 0.6421 | 2.87%
Model with linear scaling and simplified solution Exp 5 3x0
0.0385 | 10.31% | 0.1404] 19.69% | 0.6121 [11.00% | 0.4298 [7.48% | -0.1808 | 0.60%

Average over clusters [0.3265 | 15.24%

-0.1853 [12.50%

Average over clusters [0.7457 | 13.70%

0.1781 [12.36%

Average over clusters [0.7297 | 13.92%

-0.0357 [10.96%

Average over clusters [0.0998 | 14.33%

0.3876 | 12.56%

Average over clusters [0.7354 | 13.87%

0.2959 [10.49%

Figure 7.17 compares the velocity field for the bs_exp5_3x0 model with the same model configura-
tion with mixed scaling. In addition, nd_mix_exp5 3x1was added for comparison. The nd_mix_exp5 3x0
model reaches relatively high correlations on the scalars, and adding one sample to the training data
from campaign 4 produces much worse results, as can be observed in Figure 7.12d. When comparing
the fields, this trend is not reflected in the accuracy of the predictions, as the nd_mix_exp5 3x0 has
much larger error on the velocity field than nd_mix_exp5 _3x1. The zero shot prediction with mixed
scaling has large errors close to the bottom wall upstream from the final bend. Moreover, the velocity
patterns downstream of the bend do not resemble the training data patterns, as there are high-velocity
zones on both sides of the duct. When comparing the zero-shot with mixed scaling to zero-shot pre-
diction from the baseline model, the baseline model shows lower errors, especially downstream of the
final bend. Moreover, the flow patterns resemble the final flow more closely.

CFD exp5-3x0

Prediction Velocity Magnitude (m/s) L1 error Velocity Magnitude (m/s)
00 10 20 30 0.0 04 06 10
‘ | | b
- Mix-sc exp5-3x0 J Mix-sc oxps-3x0 /
- Predic ﬂol ve\orm, Magr\nudn (m/s) L1 error Vu\omw Magm!udu (m/s)
- Mix-sc exp5- le , Mix-sc exp5- 3!1 ’
FD Velocity Magnitude (m/s) = -
0.0 3.0
Ty - — —
Prediction Velocity Magnitude (my/s) k1 error Velocity Magnitude (m/s)
0 30 “\ 00 5 10
| - —

Figure 7.17: Zero shot prediction of dp-585 from Experiment 5 3x0 and 3x1 runs with mixed scaling.

7.3. Physics-informed surrogate models 59

7.3.4. Physics-informed losses

In this section, the results of experimentation with physics-informed losses are presented. In this work,
this approach is treated as a posterior correction of the surrogate model predictions, rather than surro-
gate modeling. In this section, one of the trained models was used to predict the validation data set.
Subsequently, an outlier from the predictions was chosen on the basis of average field error values.
Then, the trained model formed the base model to which a PDE loss is added, and the model is re-
trained again with the new loss and the outlying sample as the only sample in the training set. Different
weightings of the PDE loss were tested. This was done to establish the impact of the PDE loss on the
prediction, in this setting, where unlike other works on the topic (see Cai et al. [2021a]), no boundary
condition loss is used. Rather an implicit information about boundary and initial condition is given in
the form of data. In this case the prediction of the outlying sample of the base model before retraining
with PDE loss. For all models trained in this section, all layers of the network were fixed, apart from
the FieldNet. This was done, as the FieldNet is the main component of the network responsible for the
field values predictions and improving those is the target use case of the method. For this reason, in
this section only field prediction will be assessed. The expected result of this experiment was that the
PDE loss, since it is solving part of the same equations the ground truth CFD is solving, would correct
the outlying predictions, to closer represent the CFD ground truth.

For the various loss-weighing configurations used, the model was saved at intermediate steps to
evaluate the evolution of the predictions with the progress of the training run. The following models
were trained:

* Unsupervised 1 - no loss on the data with w;,.,, =1

* Unsupervised 2 - no loss on the data with w;,.,, = 1E — 08

* Supervised 1 - supervision on the data with w;,,,, = 1E — 01
» Supervised 2 - supervision on the data with w;,.,, = 1F — 02

» Supervised 3 - supervision on the data with gradually increasing w;,.,,,, starting from w;, . =
1FE — 8 and increasing by order of magnitude for roughly each 500 iterations until completion at
= 1F — 5 at 2000 iterations.

Wippe

The training curves are presented in the Figure 7.18.

10°

E — i — -5
= —— Unsupervised, w;,,, =107 107 E| Unsupervised, wg,,, =10
B Unsupervised, w;,,, =107% . Unsupervised, w,, =107"
h I 10! : — wi,, =107t
10715 e 1084
3 — =102 E| — i, =102
"] Manually adjusted, w,,_ =[107%, 1071 " E Manually adjusted, wi,,, = [1078,107%]
g 1 g 105
~ 1072 ~ 3
4 E 4 3
8 104 =
1073 3
4 103

o 2 3 2, <, 4 <. < < o < 5 2 < <z <. s <
o T Yo %, <, Yo, %, %, o % Yo %, <, Yo, R %,
Iteration Iteration
(a) Field L2 loss. (b) Divergence L2 loss.

Figure 7.18: Loss plots for various weightings used to the physics loss training.

First, to validate the workings of the loss, the CFD gradients were used to calculate the divergence of
the velocity field, and then the same was done for the predictions of the Supervised 3 training. Interme-
diate models were saved after n = 5, 50, 1000, 2000 iterations. The results are presented in Figure 7.19.

7.3. Physics-informed surrogate models 60

e PDE Loss varciblo weight n=5 PDE Loss varaible weight n=50 e PDE Loss varaiblo weight n=5 _J PDE Loss veraible welghi n=50 g

R — =
L /W‘— = =
L L == =
= =

Prediction div V (1/s) Prediction div V/ (1
1000 00 1000 . 000 0
- | — e —

PDE Loss varcible weight n=2000

)
1000

=
. PredicfiondivV (1/9 . Prediction divV (1/)
— - -, 000 00 1000 < 1000 00 1000
—
- 0k Loss = -

]
L

CFD div V (1/s) Prediction div V/ (1/s)
300 00 300 1000 00 100.0
—

o — g o o D T Mo L e
N — ¥ —— C —
(a) Main HVAC box. (b) Left duct.

CFD dliv V (1/5)
< 300 00 300

Prediction diiv V (1/s)
<« 000 00 1000

Figure 7.19: CFD divergence vs. divergence as predicted at various intermediate steps of variable weight model training.

The results show that the divergence of the velocity field in both the CFD and the prediction of the
model is much higher in the main HVAC box than in the ducts. Moreover, the divergence predicted
by the model is much higher than the divergence calculated by the CFD. Furthermore, the patterns
between the CFD and the model predictions repeat themselves, especially in the HVAC box. Moreover,
it can be noticed that, with the progression of the training, the divergence of the predicted velocity field
decreases, especially in the very high divergence zones in the HVAC box. To further illustrate this, the
histograms of the divergence of the velocity field for the predicted sample are presented in Figure 7.20.

4 _|

B k “lk

103; 1035
- 102§ . 1025 ;“
c 3 c |
=1 4 =]
o - o i

E lllllll' - WI. d ‘Hw

“MW .ll” meh |

10-1- 10-1-

—-1000-750 =500 —=250 O 250 500 750 1000 -1000-750 =500 —250 0O 250 500 750 1000
Vv V- VI
(a) n = 5 iterations. (b) n = 1500 iterations.

Figure 7.20: Divergence of the velocity distribution for predictions of the Supervised 3 training.

The results show a clear change between the initial prediction of the model, after 5 iterations in
Figure 7.20a and the predictions after 1500 iterations in Figure 7.20b. The distribution narrows, with
a larger number of field points closer to having zero divergence. What is not visible in the plots is the
fact that the extreme values are the most affected by training. These values are most often found near
the walls of the HVAC box, as can be seen in Figure 7.19. Unfortunately, looking back at Figure 7.19
the decrease in divergence occurs mainly in areas where the divergence is large, so the main HVAC
box, whilst the quantities of interest for this particular work are in and around the inlet and outlets of the
geometry.

7.3. Physics-informed surrogate models 61

Table 7.8: Physics-informed loss experiment results including intermediate results. Relative improvement on L1 error for
scalars calculated from fields and fields themselves.

Intermediate prediction Scalars from fields Fields
Name/mode Weppp | Niter mLp1 MmLp2 MRD1 MprD2 mws drop Pressure | X-velocity | Y-velocity | Z-velocity
Supervised 2 1E-2 5| 19183.13% 10.05% | 68.19% -17.70% -33.54% -51.49% -3.78% -1.18% 0.51% 0.04%
Supervised 2 1E-2 50 | 58524.56% 174.67% | -13.12% 211.94% 199.34% 1.98% 19.62% 50.91% 34.26% 4.42%

Supervised 2 1E-2 | 150 | 89266.37% | 268.28% | -46.33% | 347.39% | 477.00% 19.60% | 24.57% 96.49% 89.77% 8.99%
Supervised 2 1E-2 | 1500 | 204397.65% | 1306.59% | 575.92% | 1981.40% | 2798.98% | 175.50% | 82.48% | 560.34% | 477.78% | 126.84%

Supervised 3 1E-8 5] 11941.38% 36.13% 5.68% 15.73% 28.80% 75.05% 1.11% 0.95% 0.68% 0.17%
Supervised 3 1E-8 50 6307.43% 16.69% | 15.91% -11.18% -0.78% -5.69% 1.82% 2.38% 1.71% 0.23%
Supervised 3 1E-8 | 150 401.59% 24.48% 2.56% 1.01% 5.03% 0.28% 1.00% 1.53% 0.88% 0.11%
Supervised 3 1E-7 | 500 3541.99% 19.85% 2.73% -4.77% -4.26% 0.98% 0.43% 1.00% 0.61% -0.04%
Supervised 3 1E-6 | 1000 3379.21% 30.42% 6.88% 1.99% 14.11% 2.39% 0.68% 2.40% 1.10% 0.31%
Supervised 3 1E-5 | 1500 | 11338.15% 33.74% -5.88% 0.44% 27.27% 5.21% 2.82% 4.09% 2.68% 0.42%
Supervised 3 1E-5 | 2000 2077.80% 46.26% | -14.95% 6.45% 7.40% 19.65% 8.02% 17.77% 13.13% 1.15%
Unsupervised 1 1E-5 5| 14514.10% 14.56% | 77.55% -16.85% 14.68% 43.97% | 76.06% -0.40% -1.02% 0.21%
Unsupervised 1 1E-5 50 | 46799.00% | 157.39% | -62.20% | 178.30% | 196.50% 97.51% | 109.99% 48.31% 32.58% 4.11%
Unsupervised 2 1E-8 5| 49653.34% -26.76% | 194.39% -71.88% -53.31% | 237.55% | 114.54% -0.78% 1.70% 1.43%

Unsupervised 2 1E-8 50 | 18420.46% 89.28% | 140.89% 81.29% | 154.77% | 673.71% | 226.41% 38.78% 38.54% 7.01%
Unsupervised 2 1E-8 | 150 | 25991.69% | 179.79% | 188.31% | 235.22% | 410.22% | 724.14% | 222.09% 82.39% 72.90% 5.84%
Unsupervised 2 1E-8 | 1000 | 88791.00% | 1059.44% | 173.63% | 1618.05% | 2264.04% | 1364.27% | 261.71% | 445.54% | 407.95% 75.60%

To track the results, the relative percent error improvement on scalars from fields and L1 errors
of the fields were calculated. The results of the various experiments are presented in the Table 7.8
(complete results available in the Appendix E), with bold metrics meaning a relative improvement over
the baseline model prediction. Overall, the results show no instance where all quantities of interest
are improved by applying the correction. Moreover, all unsupervised models diverge very quickly from
the ground truth. The same phenomenon occurs when the model is supervised on data, but is much
slower and greatly depends on the choice of the weight of the physics-informed loss. In the case of
Supervised 3 training, the model is able to correct the field divergence, while not diverging greatly from
the ground truth. But even in this scenario, the improvements gained are small and very inconsistent.
In all other models, there are intermediate predictions that show an improved performance, usually in
the first 50 iterations. The best intermediate prediction was produced by the Supervised 2 model , with
0.01 weight on the Pl loss, as it was able to decrease the L1 errors on mgp2, mws, Pdrop, Pressure
field and x-velocity field. In this prediction, none of the other fields diverged too much, but the L1 error
on the 7y p; increased by more than 19000%. To further investigate this, the fields were plotted in
Figure 7.21.

CFD ‘ Supervised weight=0.01 n=5 ‘
‘)‘7
]

)

<

. CFD X-velocity (m/s) I Prediction X-velocity (m/s)
£ -1.0 20 50 £ -1.0 20 50
| ——
Base model pred ‘ Supervised weight=0.01 n=5
, N

—

v
> d

vy

<t Base model X-velocity (m/s) .+ Delta X-velocity (Base model - corrected pred) (m/s)
E -1.0 20 5.0 « 0.1 00 0.1
!l -

Figure 7.21: Velocity field, comparison between CFD, base model prediction and prediction correction model in Supervised 2.

The correction effect is not visible directly on the field, even though the x-velocity L1 errors de-
creased on average by 1.18%. Looking at the difference in delta between the base model prediction
and the prediction of the Supervised 2 model, there are some subtle differences, where the high-velocity
zones decrease in magnitude and the low-velocity zones increase in magnitude for the corrected sam-
ple. These are perhaps signs of the diffusive character of the loss.

7.3. Physics-informed surrogate models 62

If large weights are applied to the Pl loss, the model rapidly diverges from the original solution,
probably because of the difference in the loss magnitude between the field loss and the divergence
loss. To balance the losses, a sufficiently small weight has to be applied to the Pl loss to equalise their
magnitudes to the same order of magnitude. If the model is left to train with a high loss on the Pl loss,
the model has a diffusive effect on the predictions, as can be seen in Figure 7.22.

CFD US weight =1E-8, n=1000
i B — [N —
— - m— .

IC ™
— \ll
| il

& &

CFD X-velocity (m/s) <2 Prediction X-velocity (m/s)
« -10 20 50 « -0 20 50
— ——

Figure 7.22: X-velocity field comparison between CFD and Pl loss model prediction, unsupervised training, wr ., = 1E = 8,
n = 1000.

Figure 7.22 shows, how the unsupervised model deteriorates the prediction of the velocity. The
prediction is smoothed out and almost completely loses any definition of the distinctive velocity pat-
terns visible in CFD and which are relatively well captured by the base model. The high-velocity zones
still appear in the prediction, but they are of significantly lower magnitude than the base prediction and
the CFD. This shows the importance of fixing the boundary conditions. However, even with an implicit
boundary condition fixed by an accordingly selected field loss weights, the model did not provide sig-
nificant constant benefits in the predictions. This could be attributed to many possible reasons. Firstly,
only the continuity equation was used in the loss. Perhaps, solving this single equation is not enough
to gain any consistent, explainable benefit in the correction process. Moreover, this method relies on
the base model prediction to be of sufficient quality, to accurately convey the boundary condition in-
formation to the PI correction model. Perhaps the prediction is not of sufficient quality to deliver that
information, and either an additional loss on the boundaries of the domain is needed, or perhaps a fixed
constraints of values on the boundary of the domain are necessary.

7.3.5. Physics-informed surrogate models - summary

In general, improved model performance was observed when using physics-informed surrogate models,
especially in transfer learning and generalization tasks. In a single-campaign inference task (exp1),
adding a simplified solution as an additional input to the model improved the model performance in low
data regimes, when the training data set was smaller or had fewer samples from the target campaign.
In transfer learning performance, when only one campaign was available to transfer (exp3), the addition
of a simplified solution provided the largest performance gain. Moreover, the addition of a simplified
solution was observed to help predict the impact of certain geometrical features in the flow, but overall
field errors were often greater when a simplified solution was added, perhaps due to the dissimilarity
of the flow field to the bulk flow in CFD training data.

In the setting of transferring from multiple campaigns to the target campaign, the best performance
in field prediction was observed for the simplified solution addition method. The mixed scaling method
also outperformed linear scaling when looking at prediction of the pressure drop and pressure field.
Moreover, mixed scaling was shown to outperform all other methods when tasked with generalizing

7.3. Physics-informed surrogate models 63

the learned knowledge to a new target campaign. Combining two methods together of the simplified
solution addition and linear scaling of training data did not provide a compounding improvement, but
performed worse than any of the methods separately in all tasks presented.

Finally, an outlier prediction correction method was investigated in the form of a divergence equation-
based loss. It was shown that in both supervised and unsupervised settings, the prediction correction
method did not improve the prediction, moreover, it deteriorated its accuracy by diffusing the predicted
fields. This is suspected to be the fault of implicit boundary conditions information in the form of base
model predictions. Furthermore, signs of the challenging task of loss weighing were observed, which
could indicate the need to implement loss weighing to make this type of training more robust.

Conclusion

In this work, different methods for improving the NN-based surrogate model inference, TL, and gener-
alization performance were tested on a real-world 3D HVAC use case. This is a unique piece of work
in the field, as it is not only one of the few works that attempt this type of surrogate modeling on a 3D
domain but also uses a real-world use case based on a set of in-house-made CFD RANS simulations.
The initial part of this work focused on establishing a suitable model architecture and training pipeline.
Subsequently, the baseline model was trained in a series of different data settings to establish its per-
formance in inference, transfer learning, and generalization in an uninformed state. Subsequently, the
same experiments were repeated with a series of methods to establish the effect of the method on the
model.

All in all, four main methods were tested: addition of simplified solution as input to the model, linear
and mixed scaling of the training data, and governing-equation-based (PDE) losses. In addition, a
combined method of adding a simplified solution as input and linear training data scaling was tested.

Overall, the addition of a simplified solution and both scaling methods provided some benefits, es-
pecially in low-data regimes, in both single-campaign and multi-campaign training scenarios. In a
single-campaign setting, adding a simplified solution as an additional input had a minor positive effect
on the accuracy of the predictions of the models at lower training data set sizes. In a setting where
only one historical campaign to transfer from (Experiment 3), adding the simplified solution showed the
non-negligible performance boost. Finally, in a setting where three historical campaigns are available
for transfer learning (exp5), all methods presented provided a benefit over the baseline models, with
mixed scaling method showing the largest benefits, as it not only improved both fields and scalar predic-
tions, but it has also improved the correlations achieved in zero-shot predictions. Finally, in none of the
experiments did the addition of simplified solution combined with the linear scaling method significantly
outperform the best of either of the methods used alone.

Subsequently, the PDE loss based on continuity equations was tested as a tool for the prediction
outlier correction. The base model without the loss was used as a donor of the model parameters for
the model with the PDE loss, which was retrained with the added PDE loss. The re-trained model was
tested in both a supervised and unsupervised setting, where supervision was carried out on the outlier
sample predictions from the parameter-donor model. The method was validated by comparing the
predicted velocity field divergence to the velocity field divergence from the CFD data. The correction
experiments with the data showed some signs of the method having a positive effect, by lowering
some L1 errors with respect to the base model predictions, but the improvements were not achieved
constantly throughout all scalars within each run.

64

Discussion and future work
recommendations

9.1. Discussion

Although the work provided a meaningful input that allowed to answer the research questions, this was
a long and structured research process, where errors or misjudged decisions propagate throughout the
work. Often, there is not enough time or resources to correct them, as you notice the mistakes so far in
the process that backtracking is not feasible. Learning from hindsight, if the same research questions
were to be answered anew, a number of changes could be made to this work to improve its quality.

For this work, the model was trained on seven mass flows, but only five out of seven were used
in evaluation of the models. This was because the model was never able to capture the variability of
those two mass flows that ended up being excluded from model evaluation. To examine this more
closely, a posterior convergence study was done on the CFD results, showing that the CFD results
for those badly captured mass flows were never stable for the mesh refinement level used for this
work. Moreover, the convergence study revealed that although all other scalars used for the training
did indeed reach a stable steady state, the residuals did not converge in all cases to the values set as
the convergence criteria. This would indicate that the CFD setup could be improved to allow for better
convergence. Perhaps, improving the mesh quality or increasing the domain size further downstream
of the outlier ducts could allow for better convergence. Moreover, extending the runs could also help
to reach a better convergence. It is important to remember that if simulations are run for longer with
larger domains, the computational cost will also increase. The main reason for which the CFD setup
in this work was designed the way it was, was to balance out the quality of the simulations with the
computational cost. Nevertheless, the current training data created during this assignment are still
usable if one considers those limitations. Perhaps in future training runs, the models should be limited to
only values for which a steady-state, stable solution was obtained. Noisy, badly converged training data
could have a negative impact on the training process of the models. Moreover, in the future, if further
attempts are made to produce training CFD-based data, it is important to conduct the convergence
study before any bigger sets of simulations are run, and while running the simulations, a closer care
has to be taken in monitoring the convergence of the simulations. In this work, the CFD setup did not
inform the user if a given CFD simulation converged or not, unless the simulation was done by hand
step-by-step.

The stochasticity of the model was not taken into account in this work. It is often the case that
a model trained multiple times in the same setting with the same data will produce different results
due to inherited stochasticity in the training process. This stochasticity is present in couple of forms.
For example, in this work, the batch size was set to one, which means that at each iteration, one

65

9.2. Future work recommendations 66

sample from the training set was used for the iteration. The order in which the samples are drawn is
random. Based on this randomly drawn sample, the optimizer gradients are calculated and used to set
the gradient descent direction in the optimization landscape. To evaluate the impact of stochasticity
in training on the results, a selected number of training runs for different experiments can be re-run a
number of times to evaluate the variations in the final predictions. This could allow one to establish
a variability-'randomness-dependent component of the prediction/measurement error of the models,
which would be helpful in evaluating the predictions. Moreover, such a model can be later used to form
ensemble predictions, perhaps further improving the model predictions, as each model may be learning
the same data in a different way, and combining the predictions may yield more accurate results.

In training runs with PDE loss, all experiments were performed using only one outlying sample from
the base model. This was done to balance the time and resources available for this work. Ideally,
the same experiments could be repeated for at least two more samples to account for the impact that
different base prediction can have on the training with the PDE loss. Furthermore, the outlier was
selected using the largest average L1 error on the fields. Perhaps instead it would be interesting to
select the samples for correction, based on the largest divergence of the velocity field, to see if for such
samples the positive corrective impact of the PDE loss would be greater.

9.2. Future work recommendations

The field of physics-informed machine learning is a new field of research with many interesting potential
research directions to be taken. Based on the experience gained through performing the presented
work, the following aspects could be interesting avenues to look at when considering further work on
physic-informed surrogate modeling for CFD simulations.

Firstly, the impact of the flow physics on the performance of different physics-informed methods has
to be more closely analyzed. In this work, a very specific case study was used, with internal flow with
high viscous force impact, with Reynolds number between [1500 and 15000]. The conclusions on the
method performance may only apply to similar flows. Experimenting with the presented methods in
different use cases would allow one to have a better understanding of the best practices with regard to
which methods to use for what use case depending on the particular flow physics.

In this work, PDE loss did not provide any consistent benefit in the outlier correction setting. There
are several possible reasons why this could have been the case. Firstly, implicit boundary condition
information, coming from the training supervision on the baseline model outlier prediction data, could
be a downside of the method. Perhaps the boundary condition information was not captured correctly
in this sample, or the information was not easily captured by the model, leading to ineffective boundary
condition fixing and, moreover, diffusive impact on the loss on the predicted corrected fields. Experi-
menting with either an additional loss to penalize non-adherence to boundary conditions or some form
of hard constraint on the boundary conditions could be an interesting direction of research that could
potentially improve the method performance. Moreover, using only part of the Navier-Stokes equations
in the loss could be another reason for such diffusive behavior of the loss. Experimentation with PDE
loss consisting of the full Navier-Stokes equations could be an interesting direction of research on this
type of application of the PDE loss.

Those are just the main possible future work directions, and hopefully the process of reading this
work can inspire further directions of potential research, allowing for this research area to further de-
velop.

Bibliography

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, llya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, Xiaogiang Zheng, and Google Research. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. 2015. URL www.tensorflow.org.

Jassem Abbasi and Pal Ostebg Andersen. Physical Activation Functions (PAFs): An Approach for
More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs). 5 2022. doi:
10.48550/arxiv.2205.14630. URL https://arxiv.org/abs/2205.14630v1.

ANSYS Inc. ANSYS Fluent Theory Guide, 11 2013.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of Aerodynamic Flow Fields Using Convolutional Neural Networks. arXiv, 2019.

Michael M. Bronstein, Joan Bruna, Yann Lecun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18—42,
11 2016. ISSN 10535888. doi: 10.1109/msp.2017.2693418. URL https://arxiv.org/abs/1611.
08097v2.

Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine Learning for Fluid Mechanics.
arXiv preprint, 2020. doi: https://doi.org/10.48550/arXiv.1905.11075. URL www.annualreviews.org.

Shengze Cai, Zhiping Mao, Zhicheng Wang, - Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (PINNs) for fluid mechanics: A review. Acta Mechanica Sinica,
pages ppb—ppb, 2021a. doi: 10.1007/s10409-021-0xxxx-x. URL https://doi.org/10.1007/
510409-021-0xxxx—X.

Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis.
Physics-Informed Neural Networks for Heat Transfer Problems. 2021b. doi: 10.1115/1.
4050542. URL http://asmedigitalcollection.asme.org/heattransfer/article-pdf/143/6/
060801/6688635/ht_143_06_060801.pdf.

Xi Hang Cao, lvan Stojkovic, and Zoran Obradovic. A robust data scaling algorithm to improve
classification accuracies in biomedical data. BMC Bioinformatics, 17(1):359, 9 2016. ISSN
14712105. doi: 10.1186/S12859-016-1236-X. URL /pmc/articles/PMC5016890//pmc/articles/
PMC5016890/7report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016890/.

Xinhai Chen, Chunye Gong, Qian Wan, Liang Deng, Yunbo Wan, Yang Liu, Bo Chen, and Jie Liu.
Transfer learning for deep neural network-based partial differential equations solving. Advances in
Aerodynamics, 3(1):1-14, 12 2021. ISSN 25246992. doi: 10.1186/S42774-021-00094-7/FIGURES/
8. URL https://aia.springeropen.com/articles/10.1186/s42774-021-00094~-7.

Wenyuan Dai, Qiang Yang, Gui Rong Xue, and Yong Yu. Boosting for transfer learning. ACM Interna-
tional Conference Proceeding Series, 227:193-200, 2007. doi: 10.1145/1273496.1273521.

Filipe De Avila Belbute-Peres, Thomas D Economon, and 1 J Zico Kolter. Combining Differentiable
PDE Solvers and Graph Neural Networks for Fluid Flow Prediction. 2020.

67

www.tensorflow.org.
https://arxiv.org/abs/2205.14630v1
https://arxiv.org/abs/1611.08097v2
https://arxiv.org/abs/1611.08097v2
www.annualreviews.org
https://doi.org/10.1007/s10409-021-0xxxx-x
https://doi.org/10.1007/s10409-021-0xxxx-x
http://asmedigitalcollection.asme.org/heattransfer/article-pdf/143/6/060801/6688635/ht_143_06_060801.pdf
http://asmedigitalcollection.asme.org/heattransfer/article-pdf/143/6/060801/6688635/ht_143_06_060801.pdf
/pmc/articles/PMC5016890/ /pmc/articles/PMC5016890/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016890/
/pmc/articles/PMC5016890/ /pmc/articles/PMC5016890/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016890/
https://aia.springeropen.com/articles/10.1186/s42774-021-00094-7

Bibliography 68

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on
Graphs with Fast Localized Spectral Filtering. 2017. URL https://github.com/mdeff/cnn_graph.

Hamidreza Eivazi, Mojtaba Tahani, Philipp Schlatter, and Ricardo Vinuesa. PHYSICS-INFORMED
NEURAL NETWORKS FOR SOLVING REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS.
Computer Methods in Applied Mechanics and Engineering, 390, 2022. doi: https://doi.org/
10.1016/j.cma.2021.114502. URL https://wuw.sciencedirect.com/science/article/abs/pii/
S0045782521007076.

Junxi Feng, Xiaohai He, Qizhi Teng, Chao Ren, Honggang Chen, and Yang Li. Reconstruction of
porous media from extremely limited information using conditional generative adversarial networks.
Physical Review E, 100(3), 9 2019. ISSN 24700053. doi: 10.1103/PHYSREVE.100.033308.

Han Gao, Luning Sun, and Jian Xun Wang. PhyGeoNet: Physics-informed geometry-adaptive convo-
lutional neural networks for solving parameterized steady-state PDEs on irregular domain. Journal
of Computational Physics, 428:110079, 3 2021a. ISSN 10902716. doi: 10.1016/J.JCP.2020.110079.
URL www.elsevier.com/locate/jcp.

Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural Galerkin networks: A
unified framework for solving PDE-governed forward and inverse problems. 2021b.

Aurelien Geron. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts,
Tools, and Techniques to Build Intelligent Systems. O’Reilly, 2nd edition, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. 2010. URL http://www.iro.umontreal.

Atilim Gune,, Gune,s Baydin, Barak A Pearlmutter, and Jeffrey Mark Siskind. Automatic Differentiation
in Machine Learning: a Survey. 2018. URL https://chainer.org/.

Xiaoxiao Guo, Wei Li, and Francesco lorio. Convolutional Neural Networks for Steady Flow Ap-
proximation. In KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 481-490, 2016. ISBN 9781450342322. doi:
10.1145/2939672.2939738. URL http://dx.doi.org/10.1145/2939672.2939738.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are univer-
sal approximators. Neural Networks, 2(5):359-366, 1 1989. ISSN 0893-6080. doi: 10.1016/
0893-6080(89)90020-8.

Katarzyna Janocha and Wojciech Marian Czarnecki. On Loss Functions for Deep Neural Networks in
Classification. Schedae Informaticae, 25:49-59, 2 2017. ISSN 20838476. doi: 10.48550/arxiv.1702.
05659. URL https://arxiv.org/abs/1702.05659v1.

Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. NSFnets (Navier-Stokes flow nets):
Physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of Com-
putational Physics, 426:109951, 2 2021. ISSN 10902716. doi: 10.1016/J.JCP.2020.109951. URL
www.elsevier.com/locate/jcp.

George Em Karniadakis. DeepOnet: Learning nonlinear operators based on the universal approxima-
tion theorem of operators., 9 2020. URL https://www.youtube.com/watch?v=1bS0qORkoHO.

Ali Kashefi and Tapan Mukerji. Physics-Informed PointNet: A Deep Learning Solver for Steady-State
Incompressible Flows and Thermal Fields on Multiple Sets of Irregular Geometries. arXiv preprint,
2022. doi: https://doi.org/10.48550/arXiv.2202.05476. URL https://arxiv.org/abs/2202.05476.

Ali Kashefi, Davis Rempe, and Leonidas J Guibas. A Point-Cloud Deep Learning Framework for
Prediction of Fluid Flow Fields on Irregular Geometries. Physics of Fluids, 33(2), 2021. doi:
https://doi.org/10.1063/5.0033376.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A Method for Stochastic Optimization. 3rd International
Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 12 2014. doi:
10.48550/arxiv.1412.6980. URL https://arxiv.org/abs/1412.6980v9.

https://github.com/mdeff/cnn_graph
https://www.sciencedirect.com/science/article/abs/pii/S0045782521007076
https://www.sciencedirect.com/science/article/abs/pii/S0045782521007076
www.elsevier.com/locate/jcp
http://www.iro.umontreal.
https://chainer.org/
http://dx.doi.org/10.1145/2939672.2939738
https://arxiv.org/abs/1702.05659v1
www.elsevier.com/locate/jcp
https://www.youtube.com/watch?v=1bS0q0RkoH0
https://arxiv.org/abs/2202.05476
https://arxiv.org/abs/1412.6980v9

Bibliography 69

Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R. Witschey, John A. Detre, and Paris Perdikaris.
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-
invasive 4D flow MRI data using physics-informed neural networks. Computer Methods in Applied
Mechanics and Engineering, 358, 1 2020. ISSN 00457825. doi: 10.1016/J.CMA.2019.112623. URL

www.sciencedirect.comwww.elsevier.com/locate/cma.

Jichao Li, Xiaosong Du, and Joaquim R R A Martins. Machine Learning in Aerodynamic Shape Opti-
mization. arXiv, 2022. doi: https://doi.org/10.48550/arXiv.2202.07141. URL https://arxiv.org/
pdf/2202.07141.pdf.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming 1989 45:1, 45(1):503-528, 8 1989. ISSN 1436-4646. doi: 10.1007/
BF01589116. URL https://link.springer.com/article/10.1007/BF01589116.

Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi. A Survey of
Deep Neural Network Architectures and Their Applications. Neurocomputing, 234, 2017.

L U Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DEEPXDE: A DEEP LEARNING
LIBRARY FOR SOLVING DIFFERENTIAL EQUATIONS. arXiv, 2020. URL https://arxiv.org/
abs/1907.04502.

Hao Ma, Yuxuan Zhang, Nils Thuerey, Xiangyu Hu, and Oskar J Haidn. Physics-driven Learning of the
Steady Navier-Stokes Equations using Deep Convolutional Neural Networks. arXiv preprint, 2021.
doi: https://doi.org/10.48550/arXiv.2106.09301Focustolearnmore. URL https://arxiv.org/pdf/
2106.09301.pdf.

Mike MacKenzie. Artificial Intelligence & Al & Machine Learning, 2018. URL https://www.flickr.
com/photos/mikemacmarketing/30212411048.

Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks for high-
speed flows. 2019. doi: 10.1016/j.cma.2019.112789. URL www.sciencedirect.comwww.elsevier.
com/locate/cma.

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst. Geodesic convolu-
tional neural networks on Riemannian manifolds. 1 2015. URL http://arxiv.org/abs/1501.06297.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodoi, Jan Svoboda, and Michael M Bron-
stein. Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 5115-5124, 2017. doi:
https://doi.org/10.48550/arXiv.1611.08402. URL https://arxiv.org/abs/1611.08402v3.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure En-
gineering, 36(8):962-977, 4 2021. doi: 10.1111/mice.12685. URL http://arxiv.org/abs/2104.
12325http://dx.doi.org/10.1111/mice.12685.

Keiron O’shea and Ryan Nash. An Introduction to Convolutional Neural Networks. 2015. URL https:
//arxiv.org/abs/1511.08458.

Francisco Palacios, Michael R. Colonno, Aniket C. Aranake, Alejandro Campos, Sean R. Copeland,
Thomas D. Economon, Amrita K. Lonkar, Trent W. Lukaczyk, Thomas W.R. Taylor, and Juan J.
Alonso. Stanford University Unstructured (SU2): An open-source integrated computational environ-
ment for multi-physics simulation and design. 571st AIAA Aerospace Sciences Meeting including the
New Horizons Forum and Aerospace Exposition 2013, 2013. doi: 10.2514/6.2013-287.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345—-1359, 2010. ISSN 10414347. doi: 10.1109/TKDE.2009.191.

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 4(5):1-17, 1 1964. ISSN 0041-5553. doi:
10.1016/0041-5553(64)90137-5.

www.sciencedirect.comwww.elsevier.com/locate/cma
https://arxiv.org/pdf/2202.07141.pdf
https://arxiv.org/pdf/2202.07141.pdf
https://link.springer.com/article/10.1007/BF01589116
https://arxiv.org/abs/1907.04502
https://arxiv.org/abs/1907.04502
https://arxiv.org/pdf/2106.09301.pdf
https://arxiv.org/pdf/2106.09301.pdf
https://www.flickr.com/photos/mikemacmarketing/30212411048
https://www.flickr.com/photos/mikemacmarketing/30212411048
www.sciencedirect.comwww.elsevier.com/locate/cma
www.sciencedirect.comwww.elsevier.com/locate/cma
http://arxiv.org/abs/1501.06297
https://arxiv.org/abs/1611.08402v3
http://arxiv.org/abs/2104.12325 http://dx.doi.org/10.1111/mice.12685
http://arxiv.org/abs/2104.12325 http://dx.doi.org/10.1111/mice.12685
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458

Bibliography 70

William H Press, Saul a Teukolsky, William T Vetterling, and Brian P Flannery. Numerical Recipes 3rd
Edition: The Art of Scientific Computing. Sample page from NUMBERICAL RECIPES IN C, 1:1262,
2007. ISSN 00361445. URL https://books.google.com/books/about/Numerical_Recipes_3rd_
Edition.html?hl=de&id=1aA0dzK3FegC.

Benny Prijono. Student Notes: Convolutional Neural Networks (CNN) Introduction — Be-
lajar Pembelajaran Mesin Indonesia, 3 2018. URL https://indoml.com/2018/03/07/

student-notes-convolutional-neural-networks-cnn-introduction/.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, 2017-January:77—-85, 12 2016. doi: 10.48550/arxiv.1612.00593.
URL https://arxiv.org/abs/1612.00593v2.

Rail. Volvo V60 | 3D CAD Model Library | GrabCAD, 8 2021. URL https://grabcad.com/library/

volvo-v60-1.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686—707, 2 2019. ISSN 10902716. doi: 10.1016/J.JCP.2018.
10.045. URL www.elsevier.com/locate/jcp.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics Informed Deep Learning (Part I):
Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv preprint, 2017. URL https:
//arxiv.org/abs/1711.10561.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning velocity
and pressure fields from flow visualizations. Science (New York, N.Y.), 367(6481):1026, 2 2020. ISSN
10959203. doi: 10.1126/SCIENCE.AAW4741. URL /pmc/articles/PMC7219083//pmc/articles/
PMC7219083/7report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219083/.

D E Rumelhart, James L McClelland, and C Asanuma. Parallel Distributed Processing: Foundations.
Parallel distributed processing: explorations in the microstructure of cognition, pages 45 — 76, 1986.
URL https://books.google.co.uk/books?id=ktLhoQEACAAJ.

Dinggang Shen, Guorong Wu, and Heung Il Suk. Deep Learning in Medical Image Anal-
ysis. Annual review of biomedical engineering, 19:221, 6 2017. ISSN 15454274. doi:
10.1146/ANNUREV-BIOENG-071516-044442. URL /pmc/articles/PMC5479722//pmc/articles/
PMC5479722/7report=abstracthttps://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/pmc/
articles/PMC5479722/.

Connor Shorten, Taghi M. Khoshgoftaar, and Borko Furht. Deep Learning applications for COVID-
19. Journal of Big Data 2021 8:1, 8(1):1-54, 1 2021. ISSN 2196-1115. doi: 10.1186/
S40537-020-00392-9. URL https://journalofbigdata.springeropen.com/articles/10.1186/
s40537-020-00392-9.

Kunihiko Taira, Steven L. Brunton, Scott T.M. Dawson, Clarence W. Rowley, Tim Colonius, Beverley J.
McKeon, Oliver T. Schmidt, Stanislav Gordeyeyv, Vassilios Theofilis, and Lawrence S. Ukeiley. Modal
Analysis of Fluid Flows: An Overview. AIAA Journal, 55(12):4013-4041, 2 2017. ISSN 1533385X.
doi: 10.48550/arxiv.1702.01453. URL https://arxiv.org/abs/1702.01453v2.

N Thuerey, K WeilRenow, L Prantl, and Xiangyu Hu. Deep Learning Methods for Reynolds-Averaged
Navier-Stokes Simulations of Airfoil Flows. arXiv preprint, 2020. URL https://github.com/
thunil/.

Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel Blum. reCAPTCHA:
Human-based character recognition via web security measures. Science, 321(5895):1465-1468, 9
2008. ISSN 00368075. doi: 10.1126/SCIENCE.1160379.

Sifan Wang, Yujun Teng, and Paris Perdikaris. UNDERSTANDING AND MITIGATING GRADIENT
PATHOLOGIES IN PHYSICS-INFORMED NEURAL NETWORKS A PREPRINT. 2020. URL https:
//github.com/PredictiveIntelligencelab/GradientPathologiesPINNs.

https://books.google.com/books/about/Numerical_Recipes_3rd_Edition.html?hl=de&id=1aAOdzK3FegC
https://books.google.com/books/about/Numerical_Recipes_3rd_Edition.html?hl=de&id=1aAOdzK3FegC
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/
https://arxiv.org/abs/1612.00593v2
https://grabcad.com/library/volvo-v60-1
https://grabcad.com/library/volvo-v60-1
www.elsevier.com/locate/jcp
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561
/pmc/articles/PMC7219083/ /pmc/articles/PMC7219083/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219083/
/pmc/articles/PMC7219083/ /pmc/articles/PMC7219083/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219083/
https://books.google.co.uk/books?id=ktLhoQEACAAJ
/pmc/articles/PMC5479722/ /pmc/articles/PMC5479722/?report=abstract https://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/pmc/articles/PMC5479722/
/pmc/articles/PMC5479722/ /pmc/articles/PMC5479722/?report=abstract https://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/pmc/articles/PMC5479722/
/pmc/articles/PMC5479722/ /pmc/articles/PMC5479722/?report=abstract https://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/pmc/articles/PMC5479722/
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00392-9
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00392-9
https://arxiv.org/abs/1702.01453v2
https://github.com/thunil/
https://github.com/thunil/
https://github.com/PredictiveIntelligenceLab/GradientPathologiesPINNs.
https://github.com/PredictiveIntelligenceLab/GradientPathologiesPINNs.

Bibliography 71

Tianyang Wang, Jun Huan, Baidu Research, and Bo Li. Data Dropout: Optimizing Training Data for
Convolutional Neural Networks. ArXiv, 2018a.

Tianyang Wang, Jun Huan, Baidu Research, and Michelle Zhu. Instance-based Deep Transfer Learn-
ing. arXiv, 2018b. URL https://arxiv.org/pdf/1809.02776.pdf.

Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influence Functions. 2017.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in Neural Information Processing Systems, 27(NIPS 14), 2014.

M. M. Zdravkovich and P. W. Bearman. Flow Around Circular Cylinders—Volume 1: Fundamentals.
Journal of Fluids Engineering, 120(1):216-216, 3 1998. ISSN 0098-2202. doi: 10.1115/1.2819655.

Min Zhu, Handi Zhang, Anran Jiao, George Em Karniadakis, and Lu Lu. Reliable extrapolation of deep
neural operators informed by physics or sparse observations. arXiv, 12 2022.

https://arxiv.org/pdf/1809.02776.pdf

Appendix CFD convergence study

The models used in this work learn the CFD data and can only be as good at predicting the new results
as the training CFD data itself. This is why checking the quality of the training data is important. To do
so, a convergence study was performed by simulating a selected geometry from the validation set of
campaign 4 at five mesh refinement levels. The goal of this was to see if the solution is independent
of the mesh settings, and to see if, and if yes, at which point the values of interest converge to a stable
value. This was done in the last phase of the project, rather than at the beginning, as designing the
mesh and the CFD setup was not an objective of this work, but rather an inherited part of the project.
Poor performance on the mr and rmrr scalars was the motivation for this study. The details of the
mesh refinement levels are presented in Table A.1. Refinement level 4 presents the mesh used in the
study for data generation. After each simulation, the average y+ was extracted for the mesh, along
with the evolution of the quantities of interest with the progress of the simulation.

Table A.1: Mesh refinement levels for the convergence study - 4 was the mesh setting used for this work.

Refinement Level | Number of cells | Average y+
1 240902 3.90
2 532793 2.1
3 1484677 1.05
4 2609012 0.66
5 3627306 0.49

The plots of the quantities of interest vs. the mesh refinement levels were plotted in Figure A.1. For
mpp1, Mrp2, Mrp1 and mgps the values of the mass flows are stable, varying little between each
simulation. This was deemed acceptable, as for those particular values, the solution is independent
of the mesh for the refinement levels tried. For 71,,s a converging trend was observed with the mesh
refinement level, and by the mesh refinement level 3 the values obtained were stable and independent
of the mesh. The converging trend for p,.., Was also observed, but a fully stable and independent value
was not obtained for no consecutive mesh refinement levels. Nevertheless, a very steady converging
trend, close to a plateau, was observed, deeming the refinement level 4 usable due to the trend shown
in the data. Finally, for 7 and mhgr No converging trend was observed. The mrpr value increases
almost linearly with the mesh refinement level, while 1hyr shows signs of instability. These values
cannot be treated as mesh independent. In order to reach this state, the CFD setup would have to be
improved.

In summary,the mesh refinement level 4, which was the mesh used for data generation, for this

particular sample showed that the quantities of interest 1y, p1, 1, p2, MRrD1, MED2, Mws have reached
mesh independence by refinement level 4. For pg,,, mesh independence is not fully reached, but it

72

73

is close, and can be conditionally accepted for the purpose of this study, taking into consideration the
limited resources and time available for this work. Finally, 7y and 7, did not show mesh indepen-

dence.
—0.0019 7
b - - Mys
] —-0.0106
—0.0020] :
] —0.0107
—0.0021]
] —-0.0108
g, —0:00227 $F —0.01091]
; b —— My ;‘]
4 Mrp2]
& —0.0023 —— o £ —0.0110
w 4 wn |
w _ —e= mp1 v 7
©] © 5
= _0.00241 = _0.0111-
—0.0025] -0.0112
—0.0026{ —0.0113;
] F\—;‘/‘\/ 1
1 —-0.0114+
T T
1 2 3 4 5 2 4 5
Refinement level Refinement level
(@) mrp1, mLp2, Mrp1 and mepa. (b) ws.
14— panp
32.0) B
.0 1 i
. —-0.0016
— 31.5 i
(o] T 4
&. - 4
o y —-0.0017
= 31.0 .
5] —]
4] b Dl
o 1 2l]
a 1 2 1
¢ 30.5 S _0.0018
v "]
Q i % 4
. g]
9 30.0 7
= . —-0.0019
295 1
1 —0.0020
29.0 1
T T T T L T T 1 T T T T T T T T
1 2 3 4 5 1 4 5
Refinement level Refinement level
(C) Pdrop- (d) mrr and MRF.-

Figure A.1: Tracking of the quantities of interest for different levels of mesh refinement.

Simplified solver solution as an
additional input - method explanation

For the purpose of this work potential flow solver was used as a simplified solver.

Potential flow exists under the assumption that the flow is irrotational and inviscid.

VxV=w=0 (B.1)
The velocity potential ¢ can be defined as:
_ _o¢, _0¢ _09
VquborufaxvfawaaZ (B.2)
V-V=0 (B-3)

Applying the continuity equation (Equation B.3) to Equation B.2, reduces to Laplace’s equation for the

velocity potential:
¢ 0% 0%
2 = — —_— —_— =
Vg = a2z 9y + 5.2 0 (B.4)

Potential flow can be a valid approximation of fluid flow, for example, for subsonic flows outside
of boundary layers, where viscosity can be neglected. The flow inside an HVAC is not one of those
flows, with large wetted area internal flow, where viscous forces have a large effect on the flow. The
potential flow solution for a flow inside a HVAC is much different from a viscous CFD solution as shown
in Figure B.1.

74

75

RANS solution ' RANS solution
P
CFD Velocity Magnitude (m/s)
0.0 3.0 .
m - R

Potential flow solution ’ Potential flow solution

Velocity Magnitude (m/s) l ‘
00 10 %0 50 VelocrryMognltude(m/s]

CFD Velocity Magnitude (m/s)
: 0.0 7.0
b o

ﬂl“‘

-

Figure B.1: Potential flow vs. viscous CFD solution for HVAC geometry.

As visible in Figure B.1, the flows vary largely, between the viscous and rotational steady-state
RANS CFD simulation and the potential flow simulation. The flow is much more uniform in the potential
flow simulation with no vorticity and viscous effects affecting the flow, whereas the CFD simulation flow
is much more varied. This is especially visible in the HVAC box area, where the flow turns around the
first set of doors that direct the flow through the heat exchanger.

Despite this difference, the potential flow solution can still be a source of valuable information. Firstly,
it is highly affected by geometrical variations in the cross section of the ducts. Additionally, although the
flow within the middle of the ducts is almost never inviscid, it is relatively close to the values in the CFD
simulations. A more complex solution could have been used as the input field, like the laminar flow
solution, but the key reason for using potential flow is its ease of calculation and very fast simulation
runtime. A more complex solution could provide a better final result, but the additional runtime would
make the entire process of creating a surrogate model much more computationally expensive. This
would make this ML-based approach to getting flow predictions much less desirable when compared
to classical FVM methods.

For the purpose of this project, potential solutions were computed for all samples in the data set
using ANSYS Fluent. The solution of Equation B.4, is solved where the velocity components are ob-
tained by taking the gradient of the velocity potential. The flowing boundary conditions are implemented
[ANSYS Inc, 2013].

The wall non-penetrability boundary condition fixes the velocity normal to the wall to be 0.

99

— =0 B.5
an wall ()
Inlet boundary and far-field boundaries are based on the velocity specified by the user.
99 =V (B.6)
on inlet

The outlet boundary is specified as having zero velocity potential.
=0 (B.7)

This process yields x,y and z-velocity components which are then passed as an additional input
field into the model.

On average, the simulation time for the potential flow took 10 seconds and the solution-solving
process took an additional minute. This time does not include the geometry creation and meshing

76

process. The entire process, as used for this work, took around 10 minutes per sample. This means
that for 630 geometries, the solution process would take 6300 minutes, which is 105 hours, which
is less than 4.5 days. Important to note is that the efficiency of the solution process was not taken
into account, and probably the solution time can be decreased further. For example, the solution was
calculated on the same mesh quality as the viscous CFD. Decreasing the mesh size would allow for
faster computation of the solution without lowering its quality.

Campaign details

In order to create campaigns with the parameterized HVAC geometry, the geometrical parameters have
to be carefully varied. For a given campaign, the geometrical parameters of the HYAC geometry were
divided into 3 groups:

» Fixed parameters - these are the fixed parameters for a given campaign; these typically are the
parameters that affect the shape of the HVAC in the global scale - modify it overall boundaries and
dimensions, and would be fixed in the design process of the system due to component interfaces.

+ Semi-variable parameters - these are the parameters that vary within a limited range chosen from
the full parameter range of the given parameter.

* Variable parameters - these are the parameters that can be varied fully in the parameter space,
no matter what campaign is used. These are topically minor geometrical changes.

Independent of the campaign, the fixed, semi-variable and variable parameters were kept the same,
while the values or ranges within the parameters changed. The division of parameters from Table 4.1
is presented in Table C.1.

Table C.1: HVAC geometrical parameter type division.

Fixed parameters Semi-variable parameters | Variable parameters

Right duct length Right elbow delta x Right bump 1 x

Left duct length Left elbow delta x Left bump 1 x

Right duct vert. position | Right elbow delta y Right bump 1y

Left duct vert. position Left elbow delta y Left bump 1y

Scaling factor Right global height Right bump 2 y

Right outlet width Right global width Left bump 2y

Right outlet height Left global height Right external shape y

Left outlet width Left global width Left external shape y

Left outlet height Right sec. 7y
Leftsec. 7y

In the following sections, the fixed and semi-variable parameter values/ranges are reported for each
of the campaigns. The variable parameters vary in its full range for each of the campaigns. The range
is specified in Table 4.1.

77

C.1. Campaign 1 parameter ranges

C.1. Campaign 1 parameter ranges

Table C.2: Fixed and semi-variable parameter selection/subrange for campaign 1.

Parameter name | Range min | Range max
Fixed parameters
Right duct length [mm] 700.00
Left duct length [mm)] 550.00
Right duct vert. position [mm] -20.00
Left duct vert. position [mm] -20.00
Scaling factor 0.90
Right outlet width [mm)] -5.00
Right outlet height [mm] -5.00
Left outlet width [mm] -5.00
Left outlet height [mm] -5.00
Semi-variable parameters

Right elbow delta x [mm)] 9.78 20.21
Left elbow delta x [mm)] -17.86 -12.10
Right elbow delta y [mm] 161.15 199.02
Left elbow delta y [mm] 81.27 119.02
Right global height [mm] -2.28 2.31
Right global width [mm] -9.31 -4.68
Left global height [mm] -2.29 2.32
Left global width [mm)] -9.28 -4.68

C.2. Campaign 2 parameter ranges

Table C.3: Fixed and semi-variable parameter selection/subrange for campaign 2.

Parameter name | Range min | Range max
Fixed parameters
Right duct length [mm] 550.00
Left duct length [mm] 800.00
Right duct vert. position [mm] 40.00
Left duct vert. position [mm] 40.00
Scaling factor 1
Right outlet width [mm] -15.00
Right outlet height [mm)] 30.00
Left outlet width [mm] -15.00
Left outlet height [mm] 30.00
Semi-variable parameters

Right elbow delta x [mm] 17.83 2217
Left elbow delta x [mm] -28.90 -21.10
Right elbow delta y [mm] 85.78 113.22
Left elbow delta y [mm] 165.78 194.22
Right global height [mm] 5.26 8.73
Right global width [mm] -1.73 1.73
Left global height [mm)] 5.26 8.73
Left global width [mm] -1.73 1.73

C.3. Campaign 3 parameter ranges

79

C.3. Campaign 3 parameter ranges

Table C.4: Fixed and semi-variable parameter selection/subrange for campaign 3.

Parameter name

| Range min | Range max

Fixed parameters

Right duct length [mm] 800.00
Left duct length [mm)] 800.00
Right duct vert. position [mm] 80.00
Left duct vert. position [mm] 80.00
Scaling factor 1.1

Right outlet width [mm)] 20.00
Right outlet height [mm] 20.00
Left outlet width [mm] 20.00
Left outlet height [mm] 20.00

Semi-variable parameters

Right elbow delta x [mm)] -7.33 -2.67
Left elbow delta x [mm)] 0.80 9.20
Right elbow delta y [mm] -5.00 25.31
Left elbow delta y [mm] 34.69 65.30
Right global height [mm] 5.13 8.87
Right global width [mm] 5.13 8.87
Left global height [mm] 5.13 8.87
Left global width [mm)] 513 8.87

C.4. Campaign 4 parameter ranges

Table C.5: Fixed and semi-variable parameter selection/subrange for campaign 4.

Parameter name

| Range min | Range max

Fixed parameters

Right duct length [mm] 750.36

Left duct length [mm] 562.76

Right duct vert. position [mm] -4.92

Left duct vert. position [mm] 51.71

Scaling factor 1.1

Right outlet width [mm] 11.56

Right outlet height [mm)] 10.59

Left outlet width [mm] 10.60

Left outlet height [mm] 11.91
Semi-variable parameters

Right elbow delta x [mm] -17.27 -13.68

Left elbow delta x [mm] -35.30 -28.82

Right elbow delta y [mm] 54.75 84.24

Left elbow delta y [mm] 30.63 60.12

Right global height [mm] 4.90 7.78

Right global width [mm] -4.37 -1.50

Left global height [mm)] -4.76 -1.89

Left global width [mm] -9.44 6.56

1

m
B

L1 error [

1

m
5

L1 error [

Physics-informed methods comparison

0.100
7} ~J- bs_expl Vy
7 % pot_expl Vs
. nd_mix_expl Vi,
0.095 7 nd_lin_expl vy
i nd_pot_expl V,
0.090
0.085
0.080 : s
0.075 . -
0.070-
0.065 - 1 — ‘
5 10 15 20 25 30
N. of geometries from the target dataset
(a) X-velocity.
0.100
] —§— bs_expl Vv,
i - pot_expl V:
0.095 nd_mix_expl Vz
] nd_lin_expl Vs
] nd_pat_expl V;
0.090
0.085
0.080
0.075
0.070
0.065
0.060 — _— ‘
5 10 15 20 25 30

N. of geometries from the target dataset

(c) Z-velocity.

1

m
5

L1 error [

L1 error [Pa]

of L1 errors on fields.

0.130 7
] %8 bs_expl Vv,
] - pot explV,
0.125 nd_mix_expl V,
] nd_lin_expl vy,
0.120 1 nd_pot_expl v,
0.115
0.110
0.105 —
b N R
0.100 N N
0.095 e ————
0.090 R
0.085 +— —— —— T ‘
5 10 15 20 25 30
N. of geometries from the target dataset
(b) Y-velocity.
-%- bs_explp
- pot_expl p
‘ nd_mix_expl p
102 nd_lin_expl p
nd_pot_expl p
9x 1071
8x10714 o .
»- . -
7x1071 o
T T T T T
5 10 15 20 25 30

N. of geometries from the target dataset

(d) Pressure.

Figure D.1: Pl methods comparison of L1 errors on fields for Experiment 1.

80

81

F ~d - bs_exp3 V,
_1 b pot_exp3 Vx
4x 10 B nd_mix_exp3 Uy
1 nd_lin_exp3 v,
. \'. nd_pot_exp3 V.
3x107 W
Eh2x101]
s
@
L]
~
1071+ B
> e]
6x10 2+ T T T T T T T T T T T T T T T T T
2 4 6 8 10
N. of geometries from the target dataset
(a) X-velocity.
~d bs_exp3 V.
3x 101 pot_exp3 Vs
nd_mix_exp3 V:
nd_lin_exp3 v,
nd_pot_exp3 V:
2x1071
&
.
I
@
—
~
10-1- \
S —
6x10 2+ T T T T T T T T T T T T T T T T T
2 4 6 8 10
N. of geometries from the target dataset

(c) Z-velocity.

3 bs_exp3V,
N pot_exp3 V,
4x 1071 nd_mix_exp3 v,
nd_lin_exp3 v,
nd_pot_exp3 v,
3x 10714
@‘ 2% 1071
s
@
—
~
. e e _—
10714
6x10 22— T T T T T T T T T T T T T T T T T T
2 4 6 8 10
N. of geometries from the target dataset
(b) Y-velocity.
-9%- bs_exp3p
1 F pot_exp3 p
10° nd_mix_exp3 p
- nd_lin_exp3 p
7 nd_pot_exp3 p
©
=)]
S |
=]
o :
— 9
~ \
100 | T S -
1 T T T T T T T
0 2 4

N. of geometries from the target dataset

(d) Pressure.

Figure D.2: Pl methods comparison of L1 errors on fields for Experiment 3.

m
E

L1 error [

2x107t

82

2x107!t
-%- bs_exp5 V =% bs_exp5V,
- pot_exp5 Vi % pot_exp5 Vy
nd_mix_exp5 Vy nd_mix_exp5 Vy
nd_lin_exp5 Vx 4 nd_lin_exp5 Vy
nd_pot_exp5 Vx 3 nd_pot_exp5 V,
B\l
K \}
b
% \
— — W
Eln \ Efn R
& &
@ kY @
— R —
~ \ ~
1071+ 1071+ S
T
| T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
N. of geometries from the target dataset N. of geometries from the target dataset
(a) X-velocity. (b) Y-velocity.
2x 1071
—— bs_exp5 V, -%- bs exp5p
4 pot_exp5 V: - pot_exp5 p
nd_mix_exp5 V, § nd_mix_exp5 p
nd_lin_exp5 Vz B nd_lin_exp5 p
nd_pot_exp5 Vz “\‘\ nd_pot_exp5 p
100
©
B %
= 9% 1071
2
@
L]
~
1071+ i 8x10-11 .
4 -1 S
7x10 9
T T T T T T T T T T T T T T T T T T T 1 T T
o 2 4 6 8 10 0 2 4 6 8 10
N. of geometries from the target dataset N. of geometries from the target dataset
(c) Z-velocity.

(d) Pressure.

Figure D.3: Pl methods comparison of L1 errors on fields for Experiment 5.

Full PDE loss correction results

Table E.1: Physics-informed loss, experiment results including intermediate results. Relative improvement on L1 error for

scalars calculated from fields and fields themselves.

Intermediate prediction Scalars from fields Fields
Name/mode Wrppe | Niter Mrp1 Mrpo MRDI MRD2 mws drop Pressure | X-velocity | Y-velocity | Z-velocity
Supervised 1 1E-1 5 4444 41% 38.87% | 28.38% 29.54% -21.43% 50.23% 0.00% 0.82% -2.06% 0.09%
Supervised 1 1E-1 50 | 104181.00% | 211.88% | 37.51% | 265.07% | 250.26% -10.57% | 17.87% 54.49% 26.96% 3.92%
Supervised 1 1E-1 150 | 118111.54% | 316.11% | 12.94% | 424.65% | 519.48% -13.41% | 22.50% | 100.63% 79.05% 7.21%
Supervised 1 1E-1 | 1500 | 223822.21% | 1372.23% | 641.89% | 2086.42% | 2883.01% | 238.60% | 80.95% | 569.74% | 463.69% | 130.12%
Supervised 2 1E-2 5| 19183.13% 10.05% | 68.19% -17.70% -33.54% -51.49% -3.78% -1.18% 0.51% 0.04%
Supervised 2 1E-2 50 | 58524.56% | 174.67% | -13.12% | 211.94% | 199.34% 1.98% | 19.62% 50.91% 34.26% 4.42%
Supervised 2 1E-2 | 150 | 89266.37% | 268.28% | -46.33% | 347.39% | 477.00% 19.60% | 24.57% 96.49% 89.77% 8.99%
Supervised 2 1E-2 | 1500 | 204397.65% | 1306.59% | 575.92% | 1981.40% | 2798.98% | 175.50% | 82.48% | 560.34% | 477.78% | 126.84%
Supervised 3 1E-8 5| 11941.38% 36.13% 5.68% 15.73% 28.80% 75.05% 1.11% 0.95% 0.68% 0.17%
Supervised 3 1E-8 50 6307.43% 16.69% | 15.91% -11.18% -0.78% -5.69% 1.82% 2.38% 1.71% 0.23%
Supervised 3 1E-8 | 150 401.59% 24.48% 2.56% 1.01% 5.03% 0.28% 1.00% 1.53% 0.88% 0.11%
Supervised 3 1E-7 | 500 3541.99% 19.85% 2.73% -4.77% -4.26% 0.98% 0.43% 1.00% 0.61% -0.04%
Supervised 3 1E-6 | 1000 3379.21% 30.42% 6.88% 1.99% 14.1% 2.39% 0.68% 2.40% 1.10% 0.31%
Supervised 3 1E-5 | 1500 | 11338.15% 33.74% -5.88% 0.44% 27.27% 5.21% 2.82% 4.09% 2.68% 0.42%
Supervised 3 1E-5 | 2000 2077.80% 46.26% | -14.95% 6.45% 7.40% 19.65% 8.02% 17.77% 13.13% 1.15%
Unsupervised 1 1E-5 5| 14514.10% 14.56% | 77.55% -16.85% 14.68% 43.97% | 76.06% -0.40% -1.02% 0.21%
Unsupervised 1 1E-5 50 | 46799.00% | 157.39% | -62.20% | 178.30% | 196.50% 97.51% | 109.99% 48.31% 32.58% 4.11%
Unsupervised 1 1E-5 | 150 | 70342.30% | 250.82% | -60.38% | 315.96% | 458.71% 95.41% | 108.45% 92.73% 92.45% 6.71%
Unsupervised 1 1E-5 | 1500 | 329116.43% | 1405.45% | 888.47% | 2149.76% | 2703.82% 87.53% | 137.12% | 548.44% | 544.77% | 130.73%
Unsupervised 2 1E-8 5| 49653.34% -26.76% | 194.39% -71.88% -53.31% | 237.55% | 114.54% -0.78% 1.70% 1.43%
Unsupervised 2 1E-8 50 | 18420.46% 89.28% | 140.89% 81.29% | 154.77% | 673.71% | 226.41% 38.78% 38.54% 7.01%
Unsupervised 2 1E-8 | 150 | 25991.69% | 179.79% | 188.31% | 235.22% | 410.22% | 724.14% | 222.09% 82.39% 72.90% 5.84%
Unsupervised 2 1E-8 | 1000 | 88791.00% | 1059.44% | 173.63% | 1618.05% | 2264.04% | 1364.27% | 261.71% | 445.54% | 407.95% 75.60%

83

	Preface
	Abstract
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Literature review
	Background on neural networks
	Overview of machine learning
	Introduction to neural networks
	Loss functions

	Optimization algorithms
	ADAM optimizer

	Overfitting
	Convolutional neural networks
	Convolutional layer
	Pooling layer
	Fully-connected layers

	Geometric deep learning
	Neural network based surrogate modelling for CFD
	Incorporation of physics into neural network-based surrogate models
	NN-solver coupling
	Physics-informed neural networks - PINNs
	CNN-based PINNS
	GNN-based PINNs

	Data transformations

	Transfer learning and neural networks
	Nomenclature and type of transfer learning
	Transferring knowledge of instances
	Transfer Knowledge of Parameters

	Conclusion

	Research Question & Objectives
	Research Question(s)
	Sub-questions

	Research Objective

	Methodology
	HVAC use case
	Data generation
	Data pre-processing
	Design of Experiment

	Baseline model
	General settings

	Physics-informed modifications for baseline model improvement
	Simplified solver solution as an additional input
	Physics-based scaling
	Physics-informed losses

	Results
	Model performance assessment
	Statistical metrics used
	Scalars computed on predicted fields
	Metric calculation methodology

	Baseline model results
	Baseline model - inference performance
	Baseline model - transfer learning performance
	Generalization performance
	Baseline model performance - summary

	Physics-informed surrogate models
	Physics-informed methods assessment in improving inference performance
	Physics-informed methods assessment in improving transfer learning performance
	Effects of adding a simplified solution
	Comparing scaling effects

	Physics-informed methods assessment in improving generalization performance
	Physics-informed losses
	Physics-informed surrogate models - summary

	Conclusion
	Discussion and future work recommendations
	Discussion
	Future work recommendations

	Bibliography
	References
	Appendix CFD convergence study
	Simplified solver solution as an additional input - method explanation
	Campaign details
	Campaign 1 parameter ranges
	Campaign 2 parameter ranges
	Campaign 3 parameter ranges
	Campaign 4 parameter ranges

	Physics-informed methods comparison of L1 errors on fields.
	Full PDE loss correction results

