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Article

Passive stability enhancement with sails
of a hovering flapping twin-wing robot

H Altartouri1, A Roshanbin1, G Andreolli1, L Fazzi1,
M Karásek2 , M Lalami3 and A Preumont1

Abstract

Hovering flapping wing flight is intrinsically unstable in most cases and requires active flight stabilization mechanisms. This

paper explores the passive stability enhancement with the addition of top and bottom sails, and the capability to predict

the stability from a very simple model decoupling the roll and pitch axes. The various parameters involved in the

dynamical model are evaluated from experiments. One of the findings is that the damping coefficient of a bottom sail

(located in the flow induced by the flapping wings) is significantly larger than that of a top sail. Flight experiments have

been conducted on a flapping wing robot of the size of a hummingbird with sails of various sizes and the observations

regarding the flight stability correlate quite well with the predictions of the dynamical model. Twelve out of 13 flight

experiments are in agreement with stability predictions.
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Introduction

The complex unsteady aerodynamic mechanisms gener-
ated by insects and humming birds in hovering flight
have been gradually understood over the past
decades.1–4 More recently, the extreme miniaturization
of avionics stimulated the engineering community to
consider building robots mimicking the behavior of
insects and birds, leading to impressive projects such
as Delfly,5 Harvard’s Robobee,6 Festo’s robotic
Seagull,7 AeroVironment’s Nano Hummingbird,8

University of Texas A&M,9 or Konkuk University in
Korea,10 to quote only a few. Beyond the mere curiosity
of mimicking nature, it is believed that the ornithopters
will one day outperform in agility the best quadcopters.

Our own project (Figure 1), named COLIBRI11,12

flew for the first time in June 2016.13 In this particular
design, the wings have only a single degree of freedom
(flapping) and the wing shape (camber and angle of
attack) is obtained passively as a result of the aerody-
namic forces exerted on the wing during flapping. The
wing consists of a stiffened membrane attached to two
bars, the leading edge bar used for flapping and the
root-edge bar which controls the aerodynamic profile
of the wing during flapping. The attitude control

moments are obtained by moving the root-edge bars
in such a way to create a dissymmetry in the lift force
distribution produced by the wings and moving the
center of pressure along the wing span; a dissymmetry
between the left and right wing will produce a roll
moment, and a dissymmetry between the front and
back half strokes will produce a pitch moment; this
mechanism is known as wing twist modulation.8

Most of the study reported in this paper was done
before the first actively stabilized flight of the
COLIBRI robot, at a time when the wing design did
not generate enough lift to include all the hardware
necessary for active control. The purpose of the study
is to improve the understanding of the vehicle
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dynamics and stability in flight, which is helpful for

designing the controller and achieving the actively

stable flight. It is focused on the stability enhancement

by means of sails, the capability to predict the stability

with simple, uncoupled equations considering the robot

as a rigid body, and the experimental determination of

the system parameters.

Rigid body dynamics near hovering

The dynamics of a flapping wing robot near hovering

may be described approximately as a rigid body;

besides, the longitudinal and lateral dynamics are only

weakly coupled, so that it may be assumed that they are

uncoupled; they can be described by linearized Newton–

Euler equations; a similar approach has been followed

by e.g. Van Breugel et al.,14 Ristroph et al.,15 and Teoh

et al.16 For the sake of simplicity, we will focus on the

longitudinal dynamics; the lateral dynamics is similar

with appropriate changes in the numerical values.
Consider the force diagram of Figure 2. At hovering

equilibrium, the lift balances the weight, L¼mg, and

the robot is upright (pitch angle h¼ 0). If a disturbance

induces some h, the thrust vector L rotates, generating

a horizontal component Lsinh ’ Lh which induces

some horizontal motion (velocity u), in turn generating

some opposing drag force. The horizontal velocity u

modifies the wing velocity distribution w, increasing it

to wþ u during the upstroke and decreasing it to w� u

during the downstroke (according to the coordinate

system of Figure 2). If the drag force varies quadrati-

cally with the wing tip absolute velocity, the total drag

force reads

fd ¼ �bðwþ uÞ2 þ bðw� uÞ2 ¼ �4bwu ¼ �Ku (1)

where b is an aerodynamic constant depending on the

wing shape; the damping force is linear in u. According

to equation (1), the damping constant K is a linear

function of the wing velocity w, that is of the flapping

frequency. K may be determined experimentally with a

pendulum experiment conducted with and without

flapping the wing; a sketch of the experimental setup

is shown in Figure 3(a) (the same set-up can be used to

determine the damping constant in the lateral direction

by rotating the robot by 90�). Figure 3(b) shows the

value of K in the longitudinal and in the lateral direc-

tions for various flapping frequencies; one sees that K

varies nearly linearly with the flapping frequency, as

suggested from equation (1). Figure 3(c) shows typical

Flight Control Board

Control Mechanism via
Wing-Twist Modulation

Brushed DC Motor

Gear Train

Rotary Servo Actuator

Flapping Mechanism

Battery

Linear Servo Actuator

Figure 1. General view of the COLIBRI robot.

Figure 2. Coordinate system and force diagram of forces for
the longitudinal (pitch) equilibrium.

Seconds

|X
|(

m
N

.s
/m

)
u

Flapping Frequency (Hz)
10 12 14 16 18 20

0

10

20

30

Longitudinal

Lateral

0 5 10 15 20 25 30

-8

-4

0

4

8

19.5 Hz

Without
flapping

(a)

(b)

(c)

Figure 3. (a) Pendulum experiment for the determination of
the damping constant K ¼ �Xu. (b) Damping coefficient K in the
longitudinal and lateral directions for various flapping frequencies
(wing MLF72E-5); the dotted lines shows the linear fit passing
through the origin. (c) Typical time histories of the free response
of the pendulum, with the exponential fit.
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time histories of the free response of the pendulum,

with the exponential fit in dashed lines. The data pre-

sented in Figure 3 confirms the linear dependency of K

on the flapping frequency; K also depends on the wing

shape as illustrated in Table 1, which gives the numer-

ical values of the longitudinal and lateral damping

coefficient K of two among the many wings used in

this project (the reference number in the first column

is internal to the project).
The damping forces associated with the wing motion

constitute the dominant damping mechanism in the

system and we will assume that all the damping

forces can be reduced to a point force acting at the

center of drag D and proportional to the linear velocity

of the center of drag

fd ¼ �Kðuþ qzdÞ (2)

where u is the velocity of the center of mass C, q ¼ _h is

the pitch rate, and zd is the distance between the center

of mass and the center of drag (zd > 0 if D is above C).

From Figure 2, one sees that if the center of drag is

above the center of mass, the drag force generates a

pitch moment which tends to reduce the pitch angle h.
The longitudinal (pitch) and lateral (roll) dynamics

may be modeled in the same way; in the following, we

limit the presentation to the pitch dynamics, using clas-

sical notations of aircraft dynamics.17

Near hovering, the longitudinal dynamics is gov-

erned by Newton’s equation

m _u ¼ Xuuþ Xqqþ mgh (3)

where the three terms in the right-hand side are respec-

tively the drag force due to the axial velocity of the

center of mass u, the drag force due to the pitch rate

q ¼ _h, and the horizontal component of the wing thrust

vector (assuming that h is small and that the vertical

component of the thrust equilibrates the weight mg);

from equation (2), Xu ¼ �K and Xq ¼ �Kzd. The rota-

tional equilibrium (Euler equation) reads

I _q ¼ MuuþMqqþ s (4)

where I is the moment of inertia about the center of

mass C and the three terms on the right-hand side are

respectively the moment with respect to C of the drag
forces associated with the translation velocity u, the
moment of the drag forces due to the rotation velocity
q, and the external control torque, s. According to our
assumption that the drag forces can be reduced to a
point force acting at the center of drag,
Mu ¼ �Kzd ¼ Xq. However, for the rotational damp-
ing, we include an additional term Kr representing the
rotational damping about the center of drag, so that
Mq ¼ �Kr � Kz2d. Mq can be estimated with a pendu-
lum experiment similar to that used to evaluate
the translational damping, with the bird attached
to the center of mass (Figure 4(a)). Figure 4(b) shows
the magnitude of Mq measured for different flapping
frequencies; Mq varies nearly linearly with the flapping
frequency. Figure 4(c) shows typical time histories of
the free response of the pendulum, with the exponential
fit in dashed lines.

The equations may be written in state space, using
the state vector ðu; q; hÞT
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>;
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I

(5)

where X̂u ¼ Xu=m and M̂q ¼ Mq=I are always negative
and X̂q ¼ �Kzd=m and M̂u ¼ �Kzd=I are negative if

Table 1. Robot damping coefficient K (mN.s/m) for two wings
used in this project.

Longitudinal Lateral

MLF72-2 at 25 Hz 13.8 16.1

MLF72E-5 at 19.5 Hz 22.3 26.8

(a)

(c)

(b)

Figure 4. (a) Pendulum experiment for the determination of
the rotational damping constant Mq. (b) Magnitude of the
damping coefficient MqðMq < 0Þ appearing in the longitudinal
equilibrium equation for various flapping frequencies (wing
MLF72E-5); the dotted lines shows the linear fit passing through
the origin. (c) Typical time histories of the free response of the
pendulum, with the exponential fit.
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zd > 0, that is if the center of drag is above the center of
mass, and positive if zd < 0.

The characteristic equation reads

k3 � ðX̂u þ M̂qÞk2 þ ðM̂qX̂u � M̂uX̂qÞk� M̂ug ¼ 0

(6)

The pole pattern obtained with this fairly simple
model is consistent with more elaborate models avail-
able in the literature.18–22

Passive stability with sails

Consider the system of Figure 5 where the flapping
wing robot has been supplemented with two sails, a
top sail of area S1 at z1 above the center of mass and
a bottom sail of area S2 at z2 below the center of mass.
Again, we assume that the drag forces acting on the
sails can be reduced to point forces acting at the geo-
metrical center of the sail, and proportional to the
absolute linear velocity of the geometrical center:
fi ¼ �kiSivi; this linear viscous damping assumption
is confirmed by the experiments reported in the next
section. The whole system is once again considered as
a rigid body of mass m and center of mass C. With
these assumptions, the various terms involved in the
longitudinal dynamics are as follows:

Drag force due to the axial velocity u

Xuu ¼ �Ku� k1S1u� k2S2u ¼ ð�K� k1S1 � k2S2Þu
(7)

Pitch moment due to u

Muu ¼ ð�Kzd � k1S1z1 þ k2S2z2Þu (8)

Drag force due to the rotational velocity q

Xqq ¼ ð�Kzd � k1S1z1 þ k2S2z2Þq (9)

Pitch moment due to the rotational velocity q

Mqq ¼ ð�Kz2d � k1S1z
2
1 � k2S2z

2
2Þq (10)

Notice that, once again, Mu¼Xq. We will address
shortly how the drag coefficients of the sails may be
determined experimentally. Before this, let us consider
the inertia properties of the system. The vertical equi-
librium of the system implies that L ¼ mgcosh ’ mg
while the horizontal component of the wing thrust
force is mgsinh ’ mgh.

Let m1 be the added mass of air associated with the
top sail; the mass of air which can be regarded as the

mass attached to the sail (e.g. see White23), and m2 the

added mass of air of the bottom sail, that we assume

lumped at the center of the sails, respectively at z1
above C and z2 below C. Newton’s equation describing

the longitudinal dynamic equilibrium becomes

ðmþm1 þm2Þ _u ¼ Xuuþ Xqqþ mgh (11)

and Euler’s equation which describes the pitch equilib-

rium about h becomes

ðIþm1z
2
1 þm2z

2
2Þ _q ¼ MuuþMqq (12)

where I is the total moment of inertia about C and the

various terms involved in the right-hand side are

defined by equations (7)–(10). Notice that the added

masses appear only in the inertia forces and not in

the horizontal component of the thrust force. The fore-

going equations may be casted in a state-space form

similar to equation (5)

_u
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(13)

where X̂u ¼ Xu=ðmþm1 þm2Þ and M̂q ¼ Mq=ðIþ
m1z

2
1 þm2z

2
2Þ are always negative, X̂q ¼ Xq=ðmþm1 þ

m2Þ and M̂u ¼ Mu=ðIþm1z
2
1 þm2z

2
2Þ, and

g� ¼ mg=ðmþm1 þm2Þ. Since the sails have the same

shape in pitch and roll, the equations are very similar

for the lateral (roll) axis, except for a different value of

the damping constant K (Table 1).

Figure 5. Robot configuration with top and bottom sails (z1 and
z2 are both positive; zd is positive if the center of drag D is above
the center of mass C).
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Added mass and damping of the sails

The sails appear in the foregoing equations through the
viscous damping and the added mass (the mass of air
which is moving with the sail), respectively k1S1 and m1

for the top sail and k2S2 and m2 for the bottom sail.
Surprisingly, it has been observed that the behavior of
the bottom sail is significantly different from that of the
top sail, because of the downflow induced by the flap-
ping wings.

To evaluate the added mass and the damping coef-
ficient, a vibration experiment was conducted in which
the sail is attached to a cantilever beam (Figure 6); the
beam is excited by a voice coil and the beam vibration
is monitored with a laser vibrometer; the frequency
response functions (FRFs) are recorded, first without
sails and then with sails of various sizes. Additionally, a
flapping wing mechanism is used to simulate the down-
ward flow when studying the bottom sail. A finite ele-
ment model of the system (cantilever beamþ point
mass and damper at the geometrical center of the
sail) has been developed and the damping coefficient
and the added mass of every sail are calculated by curve
fitting on the FRFs (Figure 7). The good quality of the
fit confirms the assumptions made.

The damping coefficient k1S1 and the added mass of
air m1 of the top sail are reported in Table 2. For the
bottom sail, the flapping wing mechanism is used at the
normal flapping frequency (21 Hz) at a distance d
between the geometrical center of the sail and the
wing root (corresponding to the configurations used
in the flight experiments). The experiment led to the
surprising results of Figure 8 that the added mass is
not significantly affected by the air flow while the
damping coefficient is. Due to the down flow induced
by the flapping wings, the damping coefficient mea-
sured for the bottom sail is one order of magnitude
larger than that of the top sail and depends critically
on the distance d between the geometrical center of the
sail and the wing root. The damping coefficient k2S2 of
a bottom sail of 50 cm2 is reported in Table 3 for two
values of the distance d. The above data allow to

compute all the parameters of the linearized model of

the foregoing section.

Flight experiments

Thirteen flight experiments have been conducted with

the flapping wing robot equipped with top and bottom

Figure 6. Experimental setup for the determination of the
added mass and damping of the sails. The sail is attached to the
tip of a cantilever beam. A flapping wing mechanism (not used for
the top sail) is mounted on a separate support to simulate the air
flow acting on the bottom sail. d is the distance between the
geometrical center of the sail and the wing root.

Figure 7. FRF of the system of Figure 6 for a top sail of various
sizes (full line: experiment; dotted line: finite element model
including an added point mass and damper at the geometric
center of the sail).

Table 2. Top sail damping coefficients and added mass of air.

Sail surface (cm2) k1S1 (mN:s=m) m1 (g)

50 1 0.3

150 5 1.1

220 5 2.8

600 38 10.0

Table 3. Bottom sail of 50 cm2: damping coefficient and added
mass of air as a function of the distance d between the geo-
metrical center of the sail and the wing root, for wing MLF72-2
flapping at 21Hz.

d (cm) k2S2 (mN:s=m) m2 (g)

10 15 0.29

23 18 0.32

Figure 8. FRF of the system of Figure 6 for a bottom sail of
50 cm2 at various distances from the wing root (d ¼10 cm and
23 cm); wing MLF72-2 flapping at 21 Hz (full line: experiment;
dotted line: finite element model).

Altartouri et al. 5



sails of various sizes (Figure 9); for every configuration,
the position of the center of mass C was determined
experimentally; the position of the center of drag D
with respect to the center of mass is calculated by the
formula z�d ¼ Mu=Xu.

Figure 10 and Table 4 describe the various config-
urations: mass, size of the sails, z�d. Table 5 gives the
numerical values of the stability derivatives in pitch
[components of the system matrix, equation (13)] and
in roll. Table 6 gives the eigenvalues in pitch and roll
and the predicted behavior: I-D means “Instable-
Divergent” (one positive real eigenvalue); I-O means
“Instable-Oscillatory” (a pair of complex eigenvalues
with positive real part); S means “Stable.” The last
column of the table gives the behavior observed
during the flight; videos showing the various behaviors
observed are shown in Video of flight with sails.24

Figure 11 shows examples of pitch and roll signals
recorded during flight tests. In order to capture the
attitude, a room equipped with 8 OptiTrack Flex
motion tracking cameras has been used. These cameras

(a) (b)

Figure 9. Flapping wing robot equipped with top and bottom
sail stabilizers used in the flight experiments. The reflective
markers used for motion tracking in the video room are
also indicated.

Figure 10. Configurations used in the flight experiments. The weight of the robot equipped with sails in each configuration is shown
below it.

6 International Journal of Micro Air Vehicles 11(0)



Table 4. Characteristics of the various flight configurations: mass, top and bottom sail area and position, added mass of air, position
of the global center of drag z�d .

Flight No M (g) S1 (cm
2) m1 (g) z1 (cm) S2 (cm

2) m2 (g) z2 (cm) z�d (cm)

1 16.3 600 10 18.3 – – – 13

2 17.0 600 10 15.2 – – – 10

3 17.0 600 10 19.8 – – – 14

4 17.1 600 10 19.0 50 0.1 12.8 8

5 17.5 600 10 19.8 50 0.3 25.0 4

6 18.2 600 10 18.3 50 0.3 26.5 3

7 17.0 600 10 11.2 – – – 6

8 16.7 600 10 7.50 – – – 4

9 16.8 150 1.1 20.2 50 0.1 14.7 �6

10 16.8 150 1.1 23.9 50 0.1 11.0 �2

11 17.2 150 1.1 24.8 50 0.2 22.6 �8

12 16.9 150 1.1 20 50 0.2 17.7 �4

13 17.0 200 1.8 15.5 50 0.1 10.0 0

Table 5. Stability derivatives of longitudinal (column 2–5) and lateral (column 6–9) dynamics for 13 flight tests with the configurations
shown in Figure 10.

Flight No X̂u X̂q M̂u M̂q Ŷ v Ŷ p L̂v L̂p g�
1 �2.05 �0.26 �15.56 �3.09 �2.13 �0.26 �15.37 �3.09 6.08

2 �1.99 �0.19 �13.32 �2.54 �2.08 �0.19 �12.93 �2.56 6.18

3 �1.99 �0.28 �15.09 �3.11 �2.08 �0.28 �15.00 �3.11 6.18

4 �2.54 �0.20 �11.07 �3.56 �2.62 �0.19 �10.94 �3.56 6.19

5 �2.61 �0.11 �5.71 �4.90 �2.69 �0.11 �5.63 �4.90 6.24

6 �2.55 �0.07 �3.77 �4.77 �2.63 �0.07 �3.62 �4.78 6.33

7 �1.99 �0.11 �7.02 �1.53 �2.08 �0.10 �6.46 �1.59 6.18

8 �2.02 �0.09 �10.21 �1.15 �2.10 �0.08 �9.71 �1.17 6.14

9 �1.89 0.11 8.61 �2.54 �2.02 0.11 9.15 �2.57 9.21

10 �1.89 0.04 4.38 �3.11 �2.02 0.04 4.61 �3.12 9.21

11 �2.01 0.16 15.79 �6.66 �2.14 0.16 15.86 �6.66 9.22

12 �2.05 0.09 10.36 �5.14 �2.17 0.08 9.72 �5.17 9.21

13 �1.85 �0.01 �1.29 �3.45 �1.97 �0.01 �1.17 �3.45 8.87

Table 6. Eigenvalues of longitudinal (column 2 and 3) and lateral (column 4 and 5) dynamics versus the observations.

Flight No k1 k2 and k3 k4 k5 and k6
Predicted

stability Observation

1 �6.83 0:85� 3:62j �6.84 0:81� 3:61j I–O I–O

2 �6.24 0:85� 3:53j �6.24 0:80� 3:49j I–O I–O

3 �6.82 0:86� 3:60j �6.84 0:82� 3:59j I–O I–O

4 �6.63 0:26� 3:20j �6.63 0:22� 3:19j I–O S

5 �6.48 �0:51� 2:29j �6.49 �0:55� 2:26j S S

6 �6.00 �0:66� 1:88j �5.99 �0:71� 1:82j S S

7 �4.87 0:68� 2:90j �4.83 0:58� 2:82j I–O I–O

8 �5.21 1:02� 3:32j �5.17 0:95� 3:26j I–O I–O

9 3.02 �3:72� 3:53j 3.06 �3:82� 3:60j I–D I–D

10 2.02 �3:51� 2:75j 2.04 �3:60� 2:81j I–D I–D

11 3.09 �5:88� 3:55j 3.05 �5:93� 3:57j I–D I–D

12 2.66 �4:93� 3:40j 2.53 �4:93� 3:32j I–D I–D

13 �4.45 �0:43� 1:55j �4.42 �0:50� 1:45j S S

Altartouri et al. 7



offer the resolution of 1280 px� 1024 px and the fre-

quency of 120 frames per second (FPS). Five retrore-

flective markers were attached to the robot with a

dissymmetric arrangement to avoid the loss of orienta-

tion and attitude from the tracking system. In analyz-

ing Table 6, it is interesting to note that all the observed

behaviors during the flights are in agreement with the

predictions except for flight No4. Figure 12 shows the

real part of the eigenvalues of the longitudinal dynam-

ics predicted by our model, as a function of the distance

between the center of mass and the center of drag, z�d
(z�d is positive when the center of drag is above the

center of mass). We note that:

• None of the flights with top sail only was stable.
• All the twin sails flights with negative z�d

were instable.
• All stable cases had a small positive value of z�d.
• All predicted stable flights were observed stable with

the exception of flight No4, which was very close to

the stability limit.
The same conclusions apply to the lateral dynamics.

Conclusion

This paper has analyzed the dynamic stability of a flap-

ping twin-wing robot near hovering; a very simple

model (similar to those used in aircraft dynamics)

decoupling pitch and roll has been used to show that

the system is intrinsically unstable. The model has been

used to study the passive stability enhancement with

Figure 11. Examples of pitch (left) and roll (right) signals recorded during flight tests in the video tracking room. From top to
bottom: Stable flight (No13), oscillatory unstable (No3), and divergent (No11).

Figure 12. Numerical predication of the real part ðrÞ of the
eigenvalues of the longitudinal dynamics as a function of z�d . All
flight tests confirm the numerical predictions except for flight
No4 which was predicated unstable and observed stable.

8 International Journal of Micro Air Vehicles 11(0)



the addition of top and bottom sails. Experiments have

been conducted to evaluate the parameters involved in

the dynamical model; the experiments revealed that the

damping coefficient of the bottom sail (located in the

flow induced by the flapping wings) is significantly

larger than that of the top sail and depends critically

on the flapping frequency and the distance between the

geometrical center of the sail and the wing root.

Thirteen flight experiments have been conducted with

sails of various sizes and the behavior of the robot was

observed; 12 out of 13 flight experiments are in agree-

ment with stability predictions of our simplified model.

This led to trust the model and use it later for designing

the controller, and achieving the actively stable flight.

The study indicates that z�d plays an important role on

stability; none of the flights with negative values of z�d,
nor with large positive values (typical of single sail con-

figuration) were stable. In spite of the variety of sail

sizes, the model was able to successfully predict

the stability.
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