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ABSTRACT

This study deals with the breaking of waves on coastal reefs, with
special emphasis on energy dissipation (wave height attenuation), wave
spectrum modification and the characteristics of wave set-up.

It has an engineering perspective; its main objective is to provide
the practicing engineer with much needed information on the design condi-
tions for coastal structures.

Although the problem is three-dimensional in nature considerations here
are limited to two-dimensional conditions.

The study consists of a review of existing literature, further develop-
ment of theoretical concepts, a field study and a hydraulic model study.

Chapter 1 is an introduction. It gives a short description of the
hydrodynamic processes associated with waves breaking on a reef and it
describes the goals and scope of investigations.

Chapter 2 contains a discussion of some relevant aspects of nonlinear
waves. The distinction followed by Whitham (1974), who distinguishes two
main classes of waves as hyperbolic waves and dispersive waves, is followed.
Of particular relevance is the concept of group velocity in nonlinear waves
as an element for the computation of energy flux in both field and model
experiments.

Chapter 3 is devoted to the significant part bottom friction plays in
wave dissipation over ashallow reef. The starting point of discussion is
the bottom friction in linear waves. The bottom friction coefficient
appears to be a function of both the wave Reynolds number and the relative
roughness of the bottom. The effect of nonlinearity on bottom friction is
evaluated by considering bottom friction losses for a solitary wave and by
evaluating the effects of shoaling, breaking, and currents on the bottom
friction coefficient.

The various aspects of energy dissipation in breaking waves are
discussed in Chapter 4. After a general discussion of the behavior of
waves before and after breaking, the similarity between energy dissipation
in a breaking wave and in a bore is considered in more detail. This simi-
larity is used to define a breaking loss parameter z, the value of which
has been evaluated in this study from both field and model data. It appears
that the proposed parameter is a useful concept in the evaluation of energy
losses from wave breaking.

Chapters 5 and 6 deal with aspects of wave set-up. In Chapter 5 the
problem is treated as a stationary one. In the evaluation of radiation
stresses required for the determination of the wave set-up, nonlinear
aspects are also considered. Chapter 6 deals with the effects of a modu-
lating wave train on the wave set-up on the reef.



Aspects of the wave spectrum and the characteristics of the spectrum
for various water depths are discussed in Chapter 7. Also discussed are
the various possible ways to determine the energy density spectrum from
the time series and the limitations of this spectrum to describe the
characteristic features of waves in shallow water.

Field experiments and their principal results are discussed in
Chapter 8 and the results of the laboratory experiments in Chapter 9.
In addition, the limitations of the experimental set-up to deal with wave
attenuation and wave set-up in very shallow water in a scale model are
evaluated.

In Chapter 10 the computational aspects of wave attenuation and wave
set-up are discussed both in respect to the analyses of field and model
data and for prediction purposes. A summary, conclusion, and recommendations
are presented in Chapter 11, the acknowledgements in Chapter 12, and the
bibliography in Chapter 13.
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CHAPTER 1: INTRODUCTION

In many parts of the world, coastlines are protected from heavy wave
attack by shallow-water areas, or shelves, extending between the coastline
and deep water. In tropical settings such shallow-water areas may be formed
by a coral reef, which may be alive or dead. Examples of this are found in
the Pacific (including Hawaii), Japan, and Australia. In the more temperate
zones such areas may consist of sand or mudflats with elevations of about
mean sea level, examples of which are found along the North Sea coasts of
Germany and The Netherlands.

If conditions as described above exist, the larger waves that approach
the shoreline from deep water will break on the shelf, dissipating large
amounts of energy. Only waves of reduced magnitude can propagate shoreward,
whereby additional energy is dissipated due to breaking and bottom friction.

Wave attenuation on a shallow reef is of great interest to practicing
engineers involved in the design of coastal structures. A phenomenon of
equal and simultaneous interest is called wave set-up. It occurs when the
momentum flux of the breaking waves is transferred into a rise in the mean
water elevation on the reef. This wave set-up in turn allows higher waves to
exist on the shallow reef. Because of the increased mean water level and
its effect on wave height, the wave set-up is also an important design
parameter.

After the long ocean waves have broken on the seaward section of the
reef and have lost a large portion of their energy, a process of regeneration
may take place, whereby waves of lower height and shorter period are created.
The total process of wave breaking and regeneration is very complex. It is
highly nonlinear and cannot be treated mathematically by the more simple
linear wave formulations.

Due to varying bathymetric and hydrodynamic conditions, the amount of
wave set-up usually varies along the shoreline, giving rise to the generation
of currents.

The wave-induced longshore currents along the beach shoreward of a reef
are important agents for the transport of sand along the shoreline. However
this study is limited to the two-dimensional aspects of wave set-up and does
not consider the effects of longshore currents.

Wave attenuation on sloping beaches has been investigated by a number
of researchers. The data available are to a very large extent laboratory
data. Only a relatively small amount of field data is available. Field data
on the attenuation of waves on coastal reefs are even more scarce. The
applicability of laboratory results to prototype conditions meets with
uncertainties because of the scale effects involved. Although much insight
has been gained on the process of wave set-up on a sloping beach during
various studies over the past 20 years, the amount of field data available
to support the laboratory studies is rather insignificant. With respect to
the behavior of wave set-up on a shallow reef, field data are virtually
nonexistent in the literature.



The grave uncertainties regarding the design parameters of wave
attenuation and wave set-up have led to design procedures which may be too
conservative under certain conditions and which may lead to the underdesigning
of structures in other circumstances. The desire to clarify some of the
problems involved in the hydrodynamic processes associated with the breaking
of waves on reefs is the reason for this study.

GOALS

The purpose of this study was to make an in-depth evaluation of the
processes of wave attenuation and wave set-up on a shallow reef and to
develop guidelines for the practicing engineer involved in the design of
coastal structures. Since the process of wave attenuation is linked to the
development of wave set-up, both aspects were studied simultaneously.

Based on existing hydrodynamic laws, the existing theories on wave
attenuation and wave set-up were to be developed further.

Because it was felt that laboratory studies would be insufficient to
obtain reliable quantitative data, great emphasis was placed on the execution
of field investigations. Although such studies meet with many difficulties
and are considerably more expensive than laboratory investigations, the
increased cost was considered justified.

For the study of wave behavior in shallow water, particularly if it
includes breaking phenomena, the use of the Airy theory is no longer valid.
Waves not only change form, break, and dissipate, but they also change their
periodic behavior. The significant wave period on a shallow reef is there-
fore considerably smaller than the significant period of the approaching
waves outside of the reef area.

The nonlinear aspects of the problem have to be given full consideration.

SCOPE OF INVESTIGATIONS
This study consists of four parts:

A literature survey
Theoretical investigations
A field study

A hydraulic model study .

Although most of the literature on wave attenuation and wave set-up
has been examined, it is not intended to present a complete overview of all
previous investigations on this subject. However, to provide sufficient
insiaht into the problem, the most relevant papers have been selected for
discussion. Furthermore, use will be made of data available in the literature
to test the development of theoretical concepts.

In the theoretical investigations the nonlinear aspects of wave
behavior get special attention as they refer to group velocity and energy
flux, shoaling, energy losses due to bottom friction and wave breaking,



characteristics of the energy density spectrum, and radiation stress. It
appears that bottom friction plays a dominant role in the dissipation process
on the reef and consequently in the wave set-up phenomena. For this reason
much attention will be given to aspects of bottom friction as they affect
wave behavior on the reef.

Wave breaking is a very complicated hydrodynamic process in which
energy dissipation due to internal friction plays a dominant role. However,
the similarity between the dissipative processes of a breaking wave and of a
bore can be used to analyze energy losses in breaking waves. In the
literature this approach has been followed by a few investigators. In this
study it will be explored further.

The reef off Ala Moana Park in Honolulu was selected as the study site
for the field investigations. Figure 1.1 shows the hydrographical conditions
at the study site and Figure 1.2 the location of the traverse along which
measurements were made.

In this experimental set-up the problem is treated as a two-dimensional
one because due to refraction the angle between breaking waves and the reef
edge is usually very small. Thus, a two-dimensional approach seems justified.
However, at times energy from adjacent reef areas did enter the study area
along the selected traverse, making evaluation of the computer model with
observed field data difficult.

During the field tests in 1975-76, waves were measured at seven
stations in depths ranging from 11m to less than 1m (Figure 1.3). By
repeating the measurements a number of times on different days, a variety of
wave and tidal conditions was experienced.

The wave measurements were conducted in such a way that computations of
the energy density spectrum could be made at both deep-water and shallow-
water stations.

In the analysis the energy density spectrum proved to be a very useful
tool in the study of the wave attenuation and wave set-up on the reef. In
shallow water, however, the area under the curve of the energy density
spectrum was not quite equal to the total energy per unit of surface area of
the waves; neither was the significant wave height equal to 4v/my, if mg
represented the area under the curve.

The model studies were conducted in the large wave tank at the J.K.K.
Look Laboratory of Oceanographic Engineering, University of Hawaii. The
tank, 55m Tong x 1.22m wide x 1.22m deep, with a maximum water depth of about
Tm, was used to test the model of the traverse at Ala Moana at an undistorted
scale of 1:12, which was considered an acceptable scale for the problem under
study. Despite the relatively large scale, however, elimination of scale
effects for the shallow-water portion of the traverse was not entirely
possible.

The wave generator in the tank was only able to generate monochromatic
waves, which is a handicap in a study of this nature. Attempts to build up
a spectrum in the tank from a series of tests with different heights and
periods were not entirely successful for the shallow-water portion of the
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traverse on the reef because of nonlinear aspects.

There is some evidence that the generator system in the tank gave rise
to the generation of a free second harmonic wave, which affected the results
of the experiments to some degree. Other complications of the model test
set-up were due to the confined body of water in the tank (which affected
the wave set-up measurements), the effect of the side walls (friction), and
the difficulty in simulating the proper bottom roughness.

A critical evaluation of these factors was necessary to verify the
results.
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CHAPTER 2: BEHAVIOR OF NONLINEAR WAVES

In this chapter, aspects of wave propagation, wave deformation, and
energy transport are reviewed. First, some properties of linear and non-
Tinear waves in water of constant depth are discussed. Following this,
attention is given to waves which travel shoreward over a sloping bottom
and onto a reef or shelf.

The propagation of waves over a sloping bottom and over a shallow reef
have strong nonlinear aspects. As long as the waves are unbroken, deductive
mathematical theories can be used to describe their behavior. After the
waves have broken, no mathematical theory exists to fully describe the
phenomenon.

WAVES IN WATER OF CONSTANT DEPTH

Waves can be classified in many different ways: short period versus
long period, periodic versus nonperiodic, deep water versus shallow water,
etc.

Whitham (1974) distinguished between hyperbolic waves and dispersive
waves. This classification is considered particularly useful for this study
and will be reviewed briefly in this chapter. Hyperbolic waves are formulated
mathematically in terms of hyperbolic partial differential equations. Dis-
persive waves are identified by the type of solution, rather than by the
governing differential equations. The latter group contains many different
kinds of waves.

In the following sections the symbols used for differentiation are
30 _ g . 30 _ 4. 379 . 3%¢
3t - %3 ax T O 3T T %ttt T T Oxx

where ¢ is anidentifiable characteristic that is propagated through a medium.

Hyperbolic Waves

In hyperbolic waves the frequency is independent of the wave number.
The prototype of this category is often taken to be the wave equation

= ¢c2 A% § (2.1)

in which c0==constant, although most of the waves are not governed by it.

The simplest form of a hyperbolic linear wave equation is

by * Cooy = O - (2.2)



e, = constant, with general solution
¢ = flx-cpt) . (2.3)

This is the long wave equation in one direction (+x) only.

The nonlinear counterpart of equation 2.2 is

by + c(8) 6, =0 (2.4)

in which c(¢) is a function of the local disturbance ¢. One of the main
characteristics of this nonlinear phenomenon is the eventual breaking of
waves into shockwaves.

Long waves of small amplitude in two opposite directions are governed
by the equation

Ott - Cooxx =0 (2.5)
with general solution
¢ = f(x - cot) + g(x + cot) (2.6)

where f and g are arbitrary functions. The solution is a combination of two
waves: one with shape described by the function f moving to the right with
speed c,; the other with shape g moving to the left with speed cq.

Here the speed c, is constant, independent of the wave frequency and of
the wave number. Long-period oscillations of a reef, as induced by the modu-
lations of the train of short-period waves, are basically governed by this
equation.

The solution of hyperbolic wave equations is associated with the
existence of real characteristics, along which the special properties of the
wave propagate. In an x vs. t diagram, characteristics are represented by
lines for which dx/dt = c¢(¢). Along such a Tine the property ¢ often
remains constant, although this is not absolutely necessary.

The basic idea of wave propagation is that some recognized feature of a

disturbance moves with a finite velocity (Whitham, 1974). For hyperbolic
equations the existence of characteristics corresponds to this idea.

Dispersive Waves

The prototype for dispersive waves is based on the type of solution,
rather than on the type of equation. Whitham (1974) defined a linear dispersive
system as any system which permits solutions of the form

¢ = a cos(kx - wt) (2.7)



where the frequency w is a definite real function of the wave number «;
the function w(x) is determined by the particular system. The phase speed
is then w(k)/x and the waves are usually said to be dispersive if this
phase speed is not constant but depends on x. The term refers to the fact
that a more general solution may consist of the superposition of several
modes of equation 2.7 with different values of k.

It may be noted that equation 2.7 is also a solution of the
hyperbolic equation 2.1 with w = * ck, although this does not constitute
a dispersive solution since ¢ = w/k = constant. However, there are cases
of genuine overlap between the two classes.

In dispersive waves the dispersion relation
w = W) (2.8)

is characteristic of the phenomenon. The general solution for linear wave
fits into this category with the well-known dispersion relation

w? = gk tanh k h (2.9)
where h is the undisturbed depth.
A system of nonuniform oscillatory waves may be described by
¢ = a(x,t) cos 6(x,t) (2.10)

where a and 6 are functions of x and t. The function 6(x,t) is the phase
which measures the point in the cycle of cos 6 between its extremes * 1;
a(x,t) is the amplitude. The uniform wave train, (2.7) is a special case
with a = constant, & = xx - wt, w = W(k). In the more general case of
equation 2.10 , a local wave number k(x,t) and a local frequency w(x,t)
can be defined by

_ 96 - _96
k(x,t) = W,m(x,t) gf . (2.]])
Assuming that they are still related by the dispersion relation, an equation
for 6 is then

30 30) _
= + W LSJ 0 (2.12)

and its solution determines the kinematic properties of the wave train. It
may be more convenient to eliminate 6 from equation 2.11 to obtain

ok, _ g . (2.13)

This relation is a basic one for almost-periodic waves. The wave number
k = 2m/L denotes the number of waves per 2m units of distance. It may be
considered a density of waves. Similarly, w may be considered the flux of
waves, and equation 2.13 1is a statement for the conservation of waves.
Substituting w = W(k) gives



ak ok _ w _ dW(k
Eic ) = 0, [0 A (2.14)

where cq(k) is the group velocity, which is a function of k. It appears
that thé group velocity is the propagation velocity for the wave number k.

This equation for k is nonlinear and is equal to the hyperbolic equation
given by equation 2.4 even though the original problem is Tinear. It may
therefore be interpreted as the wave equation for the propagation of k with
speed Cq(k), and it may be concluded that hyperbolic characteristics are
included in dispersive waves.

The group velocity plays a dominant role in wave propagation. Both the
characteristic k (wave number) and the energy propagate with the group
velocity. An observer following any particular crest moves with the phase
velocity, but sees the local wave number and frequency changing. An
observer moving with the group velocity sees the same local wave number and
frequency, but crests keep passing him.

Nonlinear Waves

In 1847, Stokes showed that the surface elevation n in a plane periodic
wave train, progressing with constant shape in deep water could be expanded
in a Fourier series, in powers of the amplitude (Whitham, 1974):

n = a cos (Kx-wt)+%o<a2 cos 2(:<x—wt)+%n<2a3 cos 3(kx-wt)+ ... (2.15)

where
w? = gc (1 +k%a%2+...) . (2.16)

The linear result, w? = gk, is in agreement with linear theory for deep
water waves.

There are two important aspects included in this result. First, it
proves the existence of periodic solutions in nonlinear waves, where the
dependent variables are functions of 6 = kx - wt, but where the functions
are no longer sinusoidal. Second, it shows that the dispersion relationship
involves the amplitude. The latter has an important effect on the behavior
of nonlinear waves.

The derivations for arbitrary depth are considerably more involved;
one of the important results is the dispersion relation (Whitham, 1974):

2 9 tanh* kh_ - 10 tanh?«kh_+9
w =1+ 0 3 k2 aZ + ... (2.17)
gk tanhchy 8 tanh* h
0

where h, is the still water depth. For k2 ha? >> 1 Stokes' original
results for deep water, equation 2.16 , is ogtained.
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In 1895, Korteweg and de Vries made a very significant contribution
to the development of wave theory. They showed that long waves in water
of relatively shallow depth can be described by a nonlinear equation, in
which both the aspects of nonlinearity and dispersion are represented.

If the nonlinear terms are approximated to the first order of a/h,,
the Korteweg-de Vries equation. has the form:
3 n -
ng + ¢, [1 t5 ﬁ;) Nt Vvn., T 0 (2.18)
. ; _ 1 2
in which v = g % h0 .
The linearized form of this equation has the dispersion relationship,
c_ K

_ 0
© C TEv e, (2.19)

Many exact analytic solutions have been found for equation 2.18 .
Korteweg and de Vries showed that periodic solutions,

f(e)

n
(2.20)

and ) kX - wt,

could be found in closed form and without further approximation in terms
of Jacobian elliptic functions, cn8. These solutions are called cnoidal
waves, and they confirm the existence of periodic solutions, as found by
Stokes.

The Korteweg-de Vries equation is limited to waves propagating in one
direction only, in contrast to the Boussinesq equations, which include waves
moving in the opposite direction (Whitham, 1974).

The linearized form of the Korteweg-de Vries equation has the form

ng ten o tvn = 0 (2.21)
with solutions
n = acos (kx - wt) }
and ® = CyK - vk (2.22)
_ 1 2
where vV = g coho

The dispersion relation in equation 2.22 agrees with equation 2.19 for
small values of . However, the former has bounded phase and group velocities
if the values of k become large, in contrast to the latter.

In addition to the periodic solution, Korteweg and de Vries (1895) found

a solution for the 1imiting case, where the period becomes infinite, repre-
senting a single hump of positive elevation n. This is the solitary wave.

11



For depth h0 and maximum elevation Ny»

S 1/2 -
no_ N, sech? [—03] (x - ct) (2.23)
4h, |
n
and ¢ = ¢ [1 +‘7F9] (2.24)
0

co being the speed of linear shallow-water waves. Equation 2.24 , for the
velocity of propagation c in terms of the amplitude a, is the remnant of the
dispersion relation in this non-periodic case.

The Korteweg-de Vries equation is a powerful tool in the treatment of
shallow-water waves because it combines nonlinearity with dispersion. It is
a useful equation for evaluating wave conditions on a shallow reef.

The dependence of the dispersion relationship on the amplitude generates
a number of interesting phenomena. One is that, in nonlinear waves, there
are generally two group velocities instead of one. This will be further
discussed below.

Studies by Kruskal (1974) and others have shown that solitary waves
(called "solitons") may form a solitary wave train, in which individual waves
interact but retain their form after joint interaction. Because the wave
speed is a function of the wave amplitude, larger solitary waves will
eventually overtake and pass through smaller ones, with the only effect of
the interactions being a phase shift.

Here, the term "solitons" is also used in a somewhat broader
perspective, as a series of short-period oscillatory waves following a lead-
ing crest in shallow-water waves. Sometimes free, second harmonic waves in
a laboratory wave flume are also referred to as solitons (Hulsbergen, 1974).

Modulations of a Wave Train

Whitham (1974) showed that modulations of a linear wave train can be
described by the equations

ok , dw _

3T + X 0 (2.25)

da’ 3 2\ -
and -5—'"‘ X (Cg a?) = 0 (2.26)
where a = amplitude

w = wg(k) is given by the linear dispersion

relationship
cg = w!(k) = Tlinear group velocity.

T2



The concept can be extended into the nonlinear case. The crucial qualitative
change of nonlinearity is the dependency of w on a which introduces a coup-
ling of equation 2.25 and equation 2.26 . For moderately small amplitudes,
w may be expressed in Stokes' fashion:

w = wo(k) + wa(k) a2 + ....
and equation 2.25 becomes

ok , . ok 2a2
S {wo (k) + w2 (k)az} 5+ wa(k) %. = 0. (2.27)

For small amplitudes, equations 2.25 and 2.26 develop further into:

%+ w, " (k) %+ w2 (k) ?’;—: =0 (2.28)
and

B vt (k) 2+ u (k) a2 K= o (2.29)
from which one finds the characteristics

&= (k) {wz(k) wo"(k)}”2 a . (2.30)

In the case w2 wy" > 0, the characteristics are real and the system is
hyperbolic. The double characteristic velocity splits under the nonlinear
corrections providing the two velocities of equation 2.30 .

If w2 we" < 0, the characteristics are imaginary and the system is
elliptic. This leads to problems of instability: small perturbations will
grow with time. (Remarkably enough this is the case with Stokes' waves on
deep water.)

The modulation equations for the fully nonlinear case can be developed
by applying the variational approach to the modulation theory (Whitham, 1974).
In the hyperbolic case the characteristic velocities dx/dt are used to
define the nonlinear group velocities which is an extension of the linear
case. The development of the double characteristic velocity of the Tinear
theory into two different velocities has far-reaching results. It predicts
the eventual splitting of a modulation of finite extent into two separate
disturbances. In problems where the linear group velocity is positive the
two nonlinear group velocities will usually be positive also (Whitham, 1974).

Further Considerations on the Group Velocity

The concept of group velocity is relevant in a modulating wave train
where wave properties (k, energy) are propagated with a characteristic speed.

13



For linear wave theory one has

- dw
Cgr(k) = Jb (2.31)
which gives the relationship
cgr = nc (2.32)
where

=
1]

2kh
172 [ sinh skh

In a Tinear uniform wave train, the concept of group velocity as the
propagation speed of the property k loses its meaning since 3k/3t and dw/dx
are both equal to zero. The propagation of energy still takes place, however,
and even though no groups of waves are physically present in the train, the
term "group velocity" is still maintained and its value used for the determina-
tion of the energy flux.

In a nonlinear strictly periodic wave train, a similar situation occurs.
The group velocity loses its meaning in identifying the speed at which the
quantity k is transported; yet it remains significant because it specifies
the transport of wave energy.

It is assumed that the two values of the characteristic velocities in
nonlinear waves have no significance for the strictly periodic wave train;
only if for some or other reason a modulation occurs, the two different group
velocities start to play a part.

In the near Tinear case the mean of the two characteristic velocities
will give a good approximation for the average group velocity as a measure for
energy propagation. For Stokes' waves of small amplitude the average value
of the group velocity (equation 2.30) becomes

cgr = W, () (2.33)
which is equal to the group velocity for linear waves.

For strongly nonlinear waves this is no longer acceptable.

Some Specific Relations for Periodic Waves of Finite Amplitude

Various papers have been published dealing with the propagation of
nonlinear waves in water of shallow depth. In this section the results of
some of these studies will be reviewed.

In Longuet-Higgins (1974a) a number of exact relations were proven for
periodic waves of finite amplitude in water of uniform depth.

The speed, momentum, energy, and energy flux are considered and new

relationships between certain fundamental integral properties of waves were
presented.

14



One of the unexpected findings of another paper by Longuet-Higgins
(1974b) was that the speed and energy of solitary waves attain maxima for
waves of less than the maximum amplitude. This property may have implica-
tions for the manner in which waves break in shallow water. Longuet-Higgins
showed that a similar property is relevant to all gravity waves of finite
amplitude; the symbols of Longuet-Higgins are used below.

The rectangular coordinates (x,y) are chosen with the x-axis horizontal
in the direction of wave motion and the y-axis vertically upward. The
equations of the free surface and the bottom are y = n and y = -h, respec-
tively. The velocity (u,v) is assumed irrotational and periodic in x with
wavelength A. The axes are chosen so that the mean elevation n is given by

A
M = Sfndx = M = 0 (2.34)
0

so that the origin is at the mean surface level and h equals the mean depth.

Similarly, by choosing axes moving with the required horizontal
velocity, the mean velocity u, defined by

A -
Aau o= Judx = [¢]0_5 = C (2.35)
0

may be made to vanish at one particular level and, hence, since the motion
is irrotational, at all levels within the fluid. The vanishing of n and u
implies that both M and C must also vanish, whereas for the solitary wave
both quantities are positive. Other quantities are given per unit of width
and are defined by Longuet-Higgins in the following way whereby the density
is taken as 1. Mass flux is

n
I = J udy (2.36)
-h

whereby the overbar denotes the average over one wavelength or period.
Mean kinetic energy is:

-1
1]
-3
—

§v(u2 + vZ)dy . (2.37)

=

Mean potential energy is:

gydy - (2.38)

<
n
O3

Radiation stress (excess flux of momentum due to the waves) is:

n
- 2 1 .2
Sy = _fh(p +u?) dy - 5 gh? (2.39)
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Mean energy flux is:

n
F = s[p+ ]7 (u* + v2) + gyl udy . (2.40)
-h

Longuet-Higgins established some simple relationships between these various
quantities. He gave short proof of a relationshipalready established by
Levi-Civita in 1924 showing that

2T = c¢ 1 (2.41)
where ¢ is the phase velocity.

Furthermore, he proved that

Sex = 4T -3V +h u_b‘f (2.42)

where up denotes the velocity on the bottom and that

F o= (3T -2V)c + ’? (ch + I) L’;Z' i (2.43)

In deep water the fluxes of mass, momentum, and energy are respectively
given by

1 = & (2.44)
and

Sxx = 4T - 3V (2.45)
and

F = (3T - 2V)c (2.46)

whereby the first remains true for water of any depth. It is emphasized
that all of these relations are exact and do not depend on any approximation
in the wave theory.

It is worth.ngting that if a different condition is applied--instead of

C = 0 the condition I = 0 (the total horizontal mass flux is zero) is
introduced--an equation different from equation 2.41 1is obtained, viz

2T = -Qc/x (2.47)
where if -Q is the mass flux in the steady flow relative to an observer
moving with the phase speed c:

n
-Q = Q\ (u-c)dy. (2.48)

Under certain physical circumstances this is appropriate.
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Another interesting expression found by Longuet-Higgins is
- 129172 1/2
2T = c¢/x 6 {fc-[1+(n")21""“[2R-2g (h+n)]"/“} dx (2.49)

where
R = p+g[(u-c)?+v2]+g(y+h)

which represents the total head of the relative motion, and n! = dn/dx.
This expresses the kinetic energy as an integral involving only the surface
elevation n and other constants of the motion.

For deep water and small amplitude waves, the expressions for Syx and F
in equations 2.42 and 2.43 reduce to

Sxx = §'E (2.59)
and 1
F = 7 Ec , (2.5])

the usual formulas, since 1/2 ¢ equals the group velocity for deep water.

In the second part of the paper on the mass, momentum, energy and
circulation of a solitary wave, Longuet-Higgins and Fenton (1974) defined a
new parameter
2

2
T erest - 9 trough (2.52)

2
Cc
CO

w  =1-

where qcrest and qtpgugh denote the particle speeds at the wave crest and
wave trough, respectivély, and c, denotes the speed of gravity waves of
infinitesimal amplitude. The authors computed the various wave parameters,
defined earlier, as a function of w.

WAVES TRAVELLING OVER A SLOPE ONTO A REEF OR SHELF

When waves move into areas of decreasing depth a number of different
transformations occur

1. Studies by Madsen and Mei (1962) and by Johnson (1972, 1974) have
shown that, if a solitary wave progresses over a slope onto a
shelf, and if no breaking occurs, the initial wave may disintegrate
into a train of solitary waves of decreasing amplitude.

2. Periodic waves propagating into shallow water are likely to

demonstrate cnoidal wave characteristics, as shown in a study
by Svendsen and Buhr Hansen (1976).
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3. In case the wave height exceeds a critical level, the waves
are subject to breaking on the slope or on the shelf. For the
stage after breaking satisfactory theories that describe the
process in detail have not been developed.

Solitary waves propagating (in unbroken form) into shallow water show
remarkable behavior; this is of interest in explaining some basic wave
behavior previously not well understood.

The study by Madsen and Mei (1969) was based on numerically solving a
set of approximate equations for long waves over uneven bottom. The
results showed that, as a solitary wave climbs a slope, the rate of
amplitude increase depends on the initial amplitude as well as on the
angle of the slope. The equations used are equivalent to those derived by
Mei and Le Méhauté (1966). Of particular interest is their finding of the
transformation of the solitary waves when propagating on the shelf into
more than one wave, each with different amplitudes.

In an earlier study, Zabusky and Kruskal (1966) found numerically that,
based on the Korteweg-de Vries equation and spatially sinusoidal initial
data, a steepening of each crest was followed by a disintegration into a
series of solitary waves which interact with those from the neighboring
periods in a complicated manner.

Madsen and Mei (1969) called attention to a common feature of waves
prior to disintegration: a wave crest is steeper at the front and flatter
at the back; the stepped bore (with a horizontal back) may be considered
as a limiting configuration of this kind (see also Peregrine, 1966).

The more recent studies give further clarification of the behavior of
solitary waves traveling onto a shelf. Johnson (1972) considered the
problem of a solitary wave moving onto a shelf and derived a Korteweg-de Vries
equation with variable coefficients for this condition. By making use of
formal asymptotic methods, a single equation could be derived to describe
the phenomenon. Johnson found that, if a solitary wave moves over the
uniform depth (d = 1) without changing shape before reaching the shelf, it
breaks up into a finite number of solitons (n) on the shelf provided that

d, = Ij?n (n + 1)] 3 (2.53)

where dy is the depth of the shelf and n is an integer (n > 1). The shelf
must be shallower than the uniform depth (dg < 1): the number n of solitons
formed is independent of the shape of the shelf formation.

If there is no integer solution for equation 2.53 for given dg, the
situation is more complicated. It appears from the analysis that an
oscillatory wave will be formed in addition to the solitary waves. If the
solution of 2.53 for given d, lies between two integers, N, and N, + 1,
eventually No + 1 solitons will appear on the shelf, together with 3n
oscillatory wave. For n =1, do = 1, as expected.
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The soliton amplitudes are

2An°
nn+1) > M < 1,2, .. .n (2.54)

if A is the amplitude of the initial solitary wave.
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Figure 2.1 Two and Three-Soliton Formations on Shelf
(from Johnson, 1972)
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In Figure 2.1 two-soliton and three-soliton formations are depicted
from Johnson (1972). Here d0 = 0.451 and £ is a characteristic coordinate.

Similar studies in this area have been conducted by Kruskal (1974) and
others. The formation of solitons following a crest of shoaling wave has
been observed in nature (Walker, 1974b). Figure 2.2 shows the formation of
solitons at Waikiki Beach.

Johnson also found that in the case of slowly varying and decreasing
depth, a uniformly valid solution can be obtained in the form of a slowly
varying cnoidal wave. The result is in agreement with the theoretical and
experimental work of Svendsen and Buhr Hansen (1976).

Figure 2.2 Formation of Solitons at Waikiki Beach
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Shoaling and Breaking

When waves break on a slope three situations may be considered:

1. Waves break on the slope before they reach the shallow reef.
In the studies of Svendsen and Buhr Hansen (1976) which deal
with a slowly decreasing depth, this situation occurred with
the cnoidal shoaling waves. They defined the point of breaking,
which is difficult to define, even in a laboratory setting, as
the point where the crest of the waves reaches its highest
elevation.

In the case of relatively steep slopes the waves may retain
an initial solitary wave form and break in a similar manner
as the cnoidal wave type.

2. Waves break on the edge of the reef. Although the regime of
breaking is strictly outside the area of apnlicability of the
Korteweg-de Vries theory, by considering the near vertical face
of the breaking wave in shallow water as a moving front, the
Korteweg-de Vries equation can be used to define the wave
behavior on both sides of the moving face.

The solution to this problem is formed by the Airy function
and the integrated Airy function (Figure 2.3). It shows an
asymptotic behavior ahead of the disturbance and an oscillatory
pattern following the wave crest.

3. The broken wave on the reef has the appearance of a bore.
This similarity may be used to define a breaking loss
coefficient ¢, the value of which can be determined experimentally.

A bore can be treated as a hydraulic jump by using a coordinate system
that moves with the speed of the waves. In a hydraulic jump a conservation
of mass and of momentum is required; the conservation of energy is no
longer a useful concept because much energy is dissipated by internal
friction. Depending on the difference in water depth before and after the
discontinuity the resulting bore may take two distinct forms.

The weaker bores have a smooth but oscillatory structure (Figure 2.4),
whereas the fully developed bores have a rapid, turbulent change with no
coherent oscillation (Figure 2.5). The first experiments in this area were
documented by Favre (1935). The change in type seems to occur sharply at
a depth ratio of hy/h; = 1.28 corresponding to a Froude number of
F=c¢/Vghy ~1.21. (Whitham, 1974)

When waves break ona shallow reef, theoretical and empirical evidence
indicates that at the breaker point h,/h;, is of the order 2. At the
beginning of breaking, the type of bore will 1ikely be what is called a
turbulent bore. When propagating over the reef, however, energy is dissi-
pated by bottom friction and turbulent dissipation, whereby the ratio
h2/h, decreases with traveling distance. When the ratio h,/h; = 1.3 - 1.2,
a change in behavior may be expected in which the usual breaking stops and
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Figure 2.3 (a) Airy Function and
(b) Integrated Airy Function

(from Kalkwijk, 1972)

the wave front develops into an undulating bore.

Experiments suggest that this process usually occurs only over a
relatively short distance. The waves become oscillatory again, with
significantly reduced periods as compared with the intial wave; they may
break for the second time if the water depth decreases further along their
path of movement.

In Yamaguchi and Tsuchiya (1976), the shoaling of finite amplitude waves

is discussed. In addition, both Stokes' waves and cnoidal waves are con-
sidered and a comparison is made between numerical and experimental results.
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In determining the energy flux of finite amplitude waves a difficulty
arises as to the determination of the wave celerity in the extension to the
high order approximate solution. The first approach is that the average
horizontal water particle velocity over a wavelength vanishes if an
observer moves with the waves, and a second is that the average momentum
over a wavelength vanishes with the addition of a uniform motion. A similar
difficulty was found by Longuet-Higgins and Fenton (1974).

A number of expressions for the energy flux are presented in this paper
based on the Stokes' and cnoidal theories and using the first and second
approach mentioned above. Based on Laitone's (1963) cnoidal wave theory,
the mean energy flux sz is aiven by

2
W, = pe b A [gh (12 (€2 -2) E-3()%) () +
o (4 (- + 37 - 2) + (8" - 53¢+ 53) () +

60 (< -2) (B 475 B () +0 (| (2.55)

where k is the modulus of the elliptic function, and K and E are the
complete elliptic integrals of the first and second kinds, respectively.

Cnoidal wave theories using both of the definitions coincide with each
other for small ratios of h/L,. The comparison between the change of wave
height computed from Chappelear's cnoidal wave theory by the second defini-
tion and that from Laitone's theory is given in Figure 2.6, in which the
ratio H/Ho from Chappelear's theory becomes greater than that from Laitone's
theory with increase in deep water wave steepness Ho/Lo. The ratio H/Hp at
the breaking point, calculated from Stokes' criterion by Laitone's theory,
becomes considerably smaller than that by Chappelear's theory.

The results of numerical computations were compared with experimental
data on wave shoaling from hydraulic model testing. In the laboratory much
care was taken to obtain the correct mass transport and to avoid undesired
reflections.

In comparing the results of laboratory investigations with the numerical
data, the effect of wave damping due to bottom friction was taken into
account, assuming a laminar wave boundary layer. Figure 2.7 shows some
results, comparing experimental data with Stokes' waves. The comparison is
reasonable: h, and H, are the water depth and wave height measured at the
most offshore site, where hj is the depth measured at the slope and Hi the
wave height at that location.

In the work of Svendsen and Buhr Hansen (1976), an experimental descrip-
tion is presented for the transformation of periodic waves breaking on a
gently sloping beach. The data include the variation of wave height, phase
velocity, wave surface profiles, and the maximum value of the ratio between
wave height and water depth (H/h)max near the breaking point. The results
are compared with the theories of sinusoidal and cnoidal wave shoaling.
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The latter theory in most cases agrees with experimental results if
the energy losses along the bottom and the walls of the wave tank are
included. Furthermore, an empirical relationship is established between
wave length to water depth ratio L/h at the breaking point and the deep
water wave steepness Ho/Lo‘ The maximum wave height to water depth ratio

at breaking showed considerably less scattering than found previously when
plotted against the dimensionless parameter S = hx L/h, hx being the bottom

slope (Figure 2.8).
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The ratio L/h at the breaking point appears to be related to the deep
. water wave steepness. Experiments show that this relationship can be
described by

172
(%)B = 2.30 (E—") : (2.56)

0

The parameter S = hX(L/h)B then becomes proportional to the similarity
coefficient £ = tan a/\/HO/L0 proposed by Battjes (1974a).

The experiments described in the paper by Svendsen and Buhr Hansen
(1976) were carefully conducted with sophisticated instrumentation. The
authors suggested that one possible reason for the many discrepancies in
the results of tests on the shoaling of waves by various investigators is
that in many instances the tests were performed on slopes that were
acually too steep to allow the shoaling assumption to be valid. Svendsen

(1974) showed that a consistent shoaling theory requires that S = O(h/L)3.
The shoaling condition implies that S is too small to be of importance.

Another important factor cited by Svendsen and Buhr Hansen is the
effect of the friction losses, which can be shown to have a considerable
effect on the shoaling process, particularly in a relatively narror labora-
tory flume. In the calculation of friction Tosses in the experiments,
particle velocities determined by the Tinear wave theory were used. It was
observed from their study that as Tong as the deep water wave steepness is
less than 3 to 4 percent, the linear wave theory seems to work well in
deeper water. This is of particular interest because the cnoidal theory
cannot be applied for h/L0 > 0.10.

Some results of the experiments are shown in Figure 2.9; deviations
from the linear wave theory are particularly visible in graph b. The
effects of friction on wave shoaling are shown in Figure 2.10. The wave
steepness here is 3.58 percent. Sinusoidal theory gives a minimum value
H/H0 = 0.913 against 0.85 measured.

If the deep water wave steepness increases, the wave height to water
depth will increase to large values outside the cnoidal region. At HO/L0

= 6.4 percent, the waves actually break at h/Lo ~ 0.10 so that the entire

shoaling process has been determined by the linear theory. However, the
lTinear theory cannot handle the larger values of H/h and a second or third
order Stokes shoaling theory would be appropriate.

The theory of cnoidal wave shoaling used in the Svendsen-Buhr Hansen
paper was developed by Svendsen and Brink-Kjaer (1972). The combined
linear-cnoidal shoaling model fits the experimental data surprisingly well
in those cases where the H/h ratio remains small for h/L0 > 0.10

(Figure 2.11). The predictions follow the development all the way to the
breaking point, although the theory is not strictly applicable there.
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The absolute value of the energy flux was determined from the wave
height in the constant depth part of the flume, which may not be correct.
Svendsen and Brink-Kjaer (1972) matched the two theories by assuming
continuity in energy flux, which leads to a discontinuity in wave height
at the matching point. Svendsen and Buhr Hansen (1976) matched the wave
heights at the matching point, which then necessarily led to a discontinuity
in the theoretically determined energy flux.

Walker (1974a,1976) did a study on wave transformation in a hydraulic model.
The primary objective of his study was to ascertain the influence of wave
height and wave breaking on wave refraction over a three-dimensional shoal.
Wave shoaling, decay in the breaker zone, and phase velocities were analyzed
in a base test series over a bottom slope of 1:30. Wave shoaling observed
over this slope was 25 percent greater than that predicted by the Airy theory
at the breaking point for wave steepness HO/Lo = 0.030 and 50 percent greater

than that predicted for HO/L0 = 0.002. Measurements indicated that the
nonbreaking celerity could be expressed by ¢ = (1 + .25 H/h) Cyo where <, is
the Airy celerity. The celerity in the breaking region was higher and
corresponded with ¢ = 1.33 Vgh .

The results of the wave shoaling tests by Walker are presented in
Figure 2.12, in which values of H/H0 are plotted against the depth over deep

water wavelength ratio. In Figure 2.13, test results are compared with some
theoretical values for selected steepness ratios Ho/Lo' In Walker's analysis

bottom friction is not taken into consideration.
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Shuto (1976) analyzed the behavior of nonlinear long waves in shallow
water. He derived an equation which includes nonlinearity, dispersion,
topography, and bottom friction, and the results may be considered as a
fundamental equation for waves in shallow water. In the derivations the
horizontal velocity of the linear long waves is used as the representative
velocity. Since it has a uniform vertical distribution, it is easily
connected with the surface elevation n.
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In addition to several solutions in analytical form, the change in
wave height of cnoidal waves is given in Shuto's paper. An example of the
results of a computation for a shallow-water wave on a 1:20 slope is given
in Figure 2.14; the predicted wave height is given with and without friction.
The solid line is for conditions with friction and agrees reasonably well
with experimental results. Scattering of the experimental data is considered
to be due mainiy to the reflection from the slope and the wave absorber
installed at the end of the flume. The friction coefficient is estimated
from known characteristics of wave and bottom conditions and a comparison is
made between the values of the friction factor based on varying theories.
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Figure 2.14 Change in Wave Height on a Slope
(from Shuto, 1976)

32



CHAPTER 3: BOTTOM FRICTION IN A WAVE REGIME

In the energy dissipation of waves approaching the coastline, two
phenomena play a major role: bottom friction and energy losses from turbu-
lence due to breaking. In thi§ chapter, energy losses due to bottom friction
will be considered. First some of the basic concepts of boundary friction
phenomena for a steady flow situation will be reviewed; following this,
bottom friction under oscillatory flow will be considered for both smooth
and turbulent-rough boundary layers. After that the effects of nonlinearity,
shoaling and wave breaking, and the effect of a superimposed current on the
bottom friction parameter will be investigated.

Results from field and Taboratory experiments will be discussed and a
comparison with theoretical values will be made in Chapters 8 and 9 of this
study.

BOTTOM FRICTION IN STEADY FLOW

Boundary friction in steady flow is related to the boundary layer that
is being developed. Two situations may be considered:

(a) The formation of a boundary layer in a flow regime with infinite
height and length.

(b) The development of a boundary layer in uniform flow with confined
boundaries, such as the flow through pipes. Channel flow with
open water surface may be considered a special case of this
category.

For the velocity distribution in the boundary layer the Reynolds number
plays a dominant role. Depending on the type of problem the characteristic
length and velocity dimensions that determine the Reynolds number may be
defined in different ways.

In flow over a horizontal plate in an infinite flow regime, the Reynolds

number may be defined by the product of the velocity in the main flow, U, and
the distance from the beginning of the plate, %

if v is the kinematic viscosity.

In a confined flow regime the diameter of the pipe D, the depth of water
in the channel, h, or the hydraulic radius R may be used to determine the
Reynolds number.

In pipe flow or channel flow the transition from laminar to turbulent
flow occurs at a Reynolds number
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_ U
Re = o 500

Flows with higher Reynolds numbers than this value are likely to be turbulent,
although the transition between one flow regime to the other is not sharp but
depends on experimental circumgtances.

The transition from laminar to turbulent flow starts in the middle of a
pipe or at the surface of an open channel. As the Reynolds number increases,
a greater portion of the profile is occupied by the turbulent flow regime,
whereas the flow near the boundaries remains laminar over considerably higher
values of the Reynolds number.

In the turbulent regime, the boundary friction depends on both the Reynolds
number and the relative roughness of the pipe wall or channel bottom.

As a measure of boundary roughness, Nikuradse's sand roughness kS is
usually employed. In the case of a sand covered bottom, the value of kS

equals the diameter of the sand grains; in case of bottom ripples or other
bottom irregularities, a value for kS a few times the ripple height or bottom

irregularity is applicable.

Motzfeld (1937) found that kg values equal to four times the ripple height

or bottom irregularity should be applied, whereas Bretschneider and Nakazaki,
from measurements of the vertical wind velocity distribution over a rock farm
in Hawaii found that the bottom roughness characteristics corresponded to

kS = 3.3 d, where d is the average vertical rock dimension. (Nakazaki, 1980).

The thickness of the laminar boundary layer & plays a significant role in
boundary friction. For increasing Reynolds numbers, the value of & decreases;
for very large Reynolds numbers,the value of the laminar layer disappears,
although possibly very near the boundary a very thin laminar layer may be
retained.

The bottom friction is strongly affected by the relative values of k¢
and ¢.

If the roughness is small compared to the thickness of the laminar layer,
the value of the roughness has no effect on the boundary friction. If on the
contrary the roughness is large compared to the thickness of the laminar layer,
the latter loses its influence on the boundary friction.

According to Rouse (1938), the thickness of the laminar layer § ;.. may
be expressed by

8 = 11.6 — (3.1)

visc T
p

34



where 1 is the shear stress near the boundary and p the density of the fluid.
Experiments show that for

k

S < 0.25 (3.2)

Gvisc

the effect of roughness on boundary friction may be neglected, whereas for

k
> 6 (3.3)

visc

S

the boundary friction is only determined by the relative value of the rough-
ness parameter (relative with respect to the radius of the pipe or the depth
of an open channel). Reference is made to Figure 3.1

3
<
3; 2
S
~
Qé [

0 | 1 J

0.1 I 10 100
k/8
Figure 3.1 Variation in Roughness Effect with Relative Thickness

of the Boundary Layer. Values of ro/k range from
15.0 to 252.0 . (from Rouse, 1938)

Utilizing the value of 6visc as expressed in equation 3.1, the criterion

of equation 3.3 may also be written as

> 70 (3.4)

The expression \/g is called the shear stress velocity U, and the parameter

k.U
= has the characteristic of a Reynolds number. This boundary Reynolds
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number plays a significant part in sediment transportation problems in open
channels.

For wide open channel flow the resistance coefficient f, defined below,

may be expressed as a function of the Reynolds number and the ratio %L .
S
whereby the hydraulic radius is replaced by the depth of the water:

f = fnct (Re, 1) (3.5)
S

whereas for turbulent-rough boundaries the relationship is reduced to

f = fnct ('%L ) . (3.6)
s

Analogous to the results of pipe flow experiments, it is found:

1. 2h
— = 1.52 + 2.04 Tog,, T (3.7)

/?
For pipe flow and open channel flow the friction parameter f, of above, is
related to the mean velocity U of the flow in the pipe or in the channel by
the expression:

- —;—fpﬁz . (3.8)

In open channel flow the Chezy coefficient C is commonly used to determine
the mean velocity:

U = ORS (3.9)
in which S is the slope of the energy gradient, which for uniform and steady

flow equals the slope of the channel. For wide open channels the hydraulic
radius R becomes virtually equal to the mean depth h, so that

U = C/hS (3.10)

where h is the depth of water in the channel. The boundary shear stress in
steady flow may then be expressed by

T = pghs (3.]])

From equations 3.10, and 3.11 it follows

h§ = — = ?— (3.]2)
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whereas from equations 3.8 and 3.12 the relationship between f and C, as
defined above, becomes

c =2 . (3.13)

Since both f and C relate boundary shear stress to the mean velocity
in the channel, the velocity distribution over the channel cross section
plays a part in these relationships. With the assumption of a constant
shear stress, a derivation of the velocity distribution for turbulent-rough
boundaries gives (Rouse, 1938):

T - l—]n% = 1 1n§—° = 5.75 10910% (3.14)
in which
UZ = velocity at distance z from the boundary
U, = shear stress velocity
k = von Karman's universal constant (k = 0.4)
In = natural logarithm
z, = distance from boundary where UZ =0
kS = bottom roughness parameter .
From equation 3.14 the mean velocity over the profile is
U - -Hh EK:]ni—o dz (3.15)
0
which may be replaced by
h/z
U - ”::0 f *n () d &) . (3.16)
1 (o 0
This leads to
U=U?*1n-e2—o=u—:-1n%2—g. (3.17)
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From equation 3.8 one has

u _ /8
U: = J3 (3.18)
so that
/
8 1 30h
F - In EF; (3.19)

which leads to equation 3.7 .

Friction Parameter Related to Velocity Near Bottom

In the above section the friction parameter has been defined in relation-
ship to the mean velocity over the flow profile. In certain other problems,
such as wave phenomena, it is advantageous to relate the friction coefficient
to the velocity near the boundary. In order to distinguish the latter from
the former, the symbol fz is used. The boundary shear stress is then defined

by

2
T = -;—fz p U, (3.20)

where UZ is the velocity measured at a distance z from the wall.

Consequently, the value of fz is related to the distance from the wall
at which the velocity UZ is determined. To make a comparison between the
values of f and fz, it will be of interest to look at their relative values.

For this one has to know the velocity distribution function near the boundary.
In the case of turbulent-rough boundaries, the existence of a logarithmic
velocity distribution (equation 3.14) has been validated and is therefore
used for the comparison.

From equations 3.14, 3.19 and 3.20, one obtains

1 30h
_ 1 4,30 (3.21)
KV8 eks

=

and

= 1 30z (3.22)

1
A, w2 s

From equations 3.21 and 3.22, the ratio between f and fZ becomes

2]n3_02_

' Uz ks
—_— = 2 = = ——= (3.23)

f - 30h

z U In =¥

ekS
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It will be of interest to determine for which distance z' from the wall,
at which UZ is measured, f is equal to fz.

Equating f and fz gives

' 1
Z ~ 'g—VﬁkS . (3.24)

For a reef where the depth varies between 1.0 and 2.0 m and which has
an estimated bottom roughness of between 0.25 and 0.5 m, the value of z' based
on equation 3.24 varies between 0.11 m and 0.06 m. This equals the order of
magnitude of the size of the bottom irregularities of a coral reef. If Uz

represents the velocities near the bottom, then the value of f and fz would be

approximately equal (assuming the logarithmic velocity distribution would still
be applicable).

BOTTOM FRICTION IN LINEAR WAVES

The physical meaning of the boundary layer in a wave regime is the same
as for steady flow; it is the region over which velocities decrease to zero
from the main flow to the boundary.

Similar to the development of the boundary layer in steady flow, the
boundary layer conditions in a wave regime are affected by the magnitude of the
Reynolds number and the size of the bottom irregularities. For the wave-induced
boundary layer a distinction is also made between laminar and turbulent flow,
whereby in the latter case smooth and turbulent-rough regimes can be distin-
guished. Accordingly, the bottom friction experienced by waves is related to
the boundary flow conditions.

The boundary layer thickness & may be defined (Jonsson, 1966, 1978a) to
correspond with the lowest level above the wall, where the velocity equals the
free stream velocity. See Figure 3.2. For short-period waves, the thickness
of the boundary layer is usually not more than 1/100 of the water depth so
that it therefore may be disregarded for the establishment of the flow profile.
Experimental evidence shows that at z = 2§, the maximum shear stress is only
about 5% of the maximum shear stress near the bottom. For practical purposes,
28 can be considered to be analogous to the depth h of a steady flow in an open
channel. Jonsson found from experiments (Jonsson, 1963) that Tg = 0.35 T, for

fully developed rough turbulence and Tg = 0.21 Ty for laminar boundary flow in
a wave regime if Ts represents the shear stress at a distance § from the
boundary and Tn the maximum shear stress near the wall.

The Reynolds number in a wave regime may be defined in two different ways
(Jonsson, 1963).
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Figure 3.2 Typical Velocity Profile in the Boundary Layer
(from Jonsson, 1966)

U.8
1) Re = ~%— (boundary layer thickness Reynolds number)  (3.25)
Ubaa
2) RE = S (amplitude Reynolds number) (3.26)
in which
Ub = the maximum velocity of the main fluid motion near the bottom
§ = thickness of boundary layer
ag = the maximum travelling distance of a particle near the bottom
from its zero position
v = kinematic viscosity .

The wave boundary friction coefficient fw was defined by Jonsson (1963) in the
following manner:

/\— l Fa)
T = fwszb

2 (3.27)

where 1 is the maximum shear stress during a wave cycle and U, the max imum
value of the orbital velocity near the bottom. Dimensional analysis further
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shows (Jonsson, 1963) that the wave boundary layer thickness & and the wave
bottom friction factor fw are related to dimensionless parameters as listed
in Table 3.1.

TABLE 3.1
DIMENSIONLESS VARIABLES IN WAVE BOUNDARY PROBLEM
Flow Regime 6/a6 fw

ﬁa6 Ua6

Laminar case fnct (_?7_) fnct (—:;0
as a5

Rough turbulent case fnct (F— fnct (F—)
s 3
Ua(S Ua6

Smooth turbulent case fnct (—:rd fnct (—:;0

Another way to define the friction factor for wave boundaries is by
setting

1
T =5 Cf p Uy IUbl (3.28)

in which the symbol Cf is used to distinguish between equations 3.27 and 3.28.
T is the instantaneous bottom shear stress and Ub the instantaneous velocity
near the bottom given by

U, = Ub sin wt (3.29)

Ub being the maximum value of Ub' The rate of energy loss per unit of time
is given by

_ 1 2

and the mean rate of energy loss over a wave period is
_ =2 .3
€¢ = 35 P Ce Uy - (3.31)
It has often been implied that in equations 3.27 and 3.28 Ce = fw’ but this

is not the case primarily because of a phase shift between Ub and t. However,
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Jonsson (1963) showed that for the rough turbulent boundary f -~ Cc, but
that for the laminar case fw 7 Cf.

Kajiura (1968) defined the bottom shear stress again differently:

T = Cp Uy U (3.32)

in which

C E cos 6 (3.33)

6 being the phase angle between the orbital velocity near the bottom and the
bottom shear stress.

The mean rate of dissipation is then given by

'I e A
€ = 3 Cop Ub3 cos 0 . (3.34)

When compared with equation 3.31 it is seen that

- 3m 7
Cf = 7 C coso. (3.35)

In the expressions above, the symbol *~ signifies the maximum value of the
parameter.

Sawaragi, et al. (1976) gave the relationship between C and Up/wz
(Figure 3.3) and showed that the phase shift in the friction parameter 8, as
Ub 30a‘S
defined by Kajiura, is significant for high values of ——= —— (Figure 3.4).

u)Zo s

The Nikuradse roughness parameter kS and the corresponding value of z, are

defined as in the case of steady uniform flow (z0 = é%'ks)'

The Laminar Solution

For a laminar boundary layer flow, the equation of motion can be reduced
to two principle terms (Lamb, 1963):

u azu
o, 2y (3.36)
9Z

in which u is the horizontal velocity in the boundary layer and the z the
vertical coordinate; v is the kinematic viscosity.

For the solution of this equation, it is advantageous to use the analogue
of a horizontal plate of infinite dimensions that supports a mass of infinite
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height. The plate is oscillating with frequency w and horizontal velocity U,
whereby

U = Ucos wt . (3.37)

The relative water motion near the horizontal plate is identical to the
laminar boundary layer underneath a wave field. For the solution to be
practically valid, the height of the fluid mass does not have to be infinite
but will have to be several times the thickness of the laminar boundary layer
that develops.

The differential equation is solved by separation of variables.

For the simulated case with velocities u', the boundary conditions are:

z = 0 u' = = U cos wt

U
zZ = n u' = 0

and the solution is

=
u' = Ue 2v cos(ﬁ%z-wt) ’ (3.38)
For the flow with fixed boundary and oscillating fluid, one has
u = U-u'
with solution

w

u = Ucoswt-Ue cos ( /f% z - wt). (3.39)

The solution contains a traveling wave in the z-direction, for which the
amplitude decreases in an exponential rate. The speed at which this wave
travels is ¢ = 2wv and the length of one complete oscillation is obtained
from

w

-2;)\=2'rr
so that

yo= oo B -2 57 )12 (3.40)
At z = ) the oscillating wall velocity "or defect velocity" is reduced to
g of its value at the boundary. The length %}-is the so-called Stokes
length, also called "decay-length" and represents a reduction of amplitude
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in the ratio e']. The value %;— is also a measure for the thickness of

the laminar boundary layer for which various authors have used different
definitions. The wave length A is 2w times the Stokes length.

Longuet-Higgins (1957) defined the thickness of the laminar boundary
layer by

o= B0 a4

Jonsson's (1966) definition of § (see Figure 3.2) gives

w e W
v 8 3

so that

§ = g@ - \/;’}-(vT)]/z. (3.42)

Brebner (1966) used

§ = 4.6 (32)]/2 = 4.6 (ﬂ)m. (3.43)

il

Brebner's value corresponds to a distance from the boundary at which the
horizontal defect velocity is reduced to 1% of its value at the boundary.

The shear stress at the boundary, which is a measure for the force per
unit of area necessary to move the plate, may be obtained from

T o= ou |y
* 15z z=10

u being the viscosity coefficient pv. After differentiating the maximum
value of the shear stress is

Tpax - & p\)]/2 w1/2 u . (3.44)

It furthermore appears that U lags 45 degrees behind the wall shear stress.
With

f, = — . (3.45)
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For linear wave motion, the maximum traveling distance of a particle
from its mean position near the bottom (free stream particle amplitude) is:
- Ut _

U
aé = -2? = a. (3-46)

Utilizing Jonsson's (1966) expression for the value of § (equation 3.42) and
combining it with the expression for RE, one obtains

(3.47)

This relationship illustrates the physical meaning of RE: it is a measure
for the square of the relationship between the flow amplitude at the bottom
and the theoretical boundary layer thickness.

As to the question when the roughness at the boundary starts to have
influence, Lhermitte (1958) set

kS
= > 0.25 . (3.48)

Jonsson defined the start of the laminar-rough regime at

% _ 42

R, T /RE (3.49)

which is equivalent to equation 3.48.

By analogy with steady hydraulics, Jonsson (1966) originally expected
the Taminar-smooth turbulent transition regime to lie in the range
250 < Re < 500.

Since for laminar flow Re = T /%;— (using equation 3.42), the Tower

limit (Re = 250) gave RE = 1.26 x 10°.

Jonsson reasoned that the oscillatory boundary flow should be fully

turbulent for Reynolds numbers RE larger than 2 x 104. However, the validity
of this 1imit has been questioned. Newer theoretical and experimental results
suggest that the above figure is too low by a factor of about 10 for smooth

walls. It seems justified to assume that the laminar-smooth turbulent transi-

tion regime goes from RE = 104 to RE = 3 x 105 (Jonsson, 1978a).

The Turbulent-Rough Boundary Layer

For rough walls, information on transition is limited.

Jonsson (1966) found that for very rough walls the lower limit for fully
developed turbulence can be approximated by
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ag 0.33

RE = 5500 ( E—'> . (3.50-a)
S

Sleath's (1974) adaptation of the measurements by Li (1954) and Manohar
(1955) as transformed by Jonsson (1978a) gave

0.45
a5
RE = 4130 ('E‘ ) ) (3.50-b)
S

For design purposes RE = 104 seems reasonable.

For less rough walls Kajiura (1968) concluded, based on Kalkanis' (1964)
data for three-dimensional wall roughness, that fully developed rough turbu-
lence existed for

a5
RE = 2000 <'E' > . (3.51)
S

Kamphuis expressed the lower 1limit of the rough turbulent regime in
terms of a roughness Reynolds number

Uy k
Vv

> = 200 to 70 . (3.52)

a
The former value holds for E§-< 100, the Tatter for larger values of
s
s
= (Jonsson, 1978a).
s ,

The mathematical treatment of the turbulent boundary layer is more
complex because the Reynolds stresses have to be taken into consideration
and assumptions for the value of the eddy viscosity have to be made.

For rough turbulent flow, the friction factor is independent of the

a
Reynolds number; one has f = f<-42>.
W kS

Kajiura (1964, 1968) theoretically derived expressions for the wave
induced shear stresses for the smooth turbulent and rough turbulent flow
regimes. In Kajiura's approach, assumptions were made for the eddy viscosity,
whereby the boundary layer was divided into three regions: an inner,
overlap, and outer layer. A limitation of the theory is that it assumed an
average state of turbulence over the wave period (Riedel, et al., 1972).
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For the turbulent-rough flow regime, Kajiura obtained:

1 1 45
— 4 log = -0.254 + log = . (3.53)

4.05 | w 4\ Ty 3

Kalkanis (1964) assumed a form of the equation of the turbulent boundary
layer almost similar to that given by Lamb for the laminar boundary layer, viz

U-u = Uf, (2) sin(ut - f, (2)) (3.54)

in which u = velocity in the boundary layer at a distance z above the bed,

U = orbital velocity at the Timit of the boundary layer and U = the amplitude
of this velocity. From experimental results, he arrived at values of f](z) and

fz(z).

A similar approach was followed by Manohar (1955), who in the equation of
motion, replaced the kinematic viscosity by the eddy viscosity:

U-u = UePZginut - 8'2) (3.55)
where
o = (1&_)1/2
2¢
and
€ = eddy viscosity .

Bijker (1967) followed a similar approach. However, for B'z he chose an
arbitrary function Z of z. Bijker's analysis was aimed at determining the
combined shear stress of waves and currents. He started from the assumption
that for the calculation of the resultant bed shear, the orbital velocity at
a certain level could be superimposed on the velocity of the main current at

ek

that level. For the latter he chose the distance z' = 7§§- in which kS is

the bed ‘roughness.

Horikawa and Watanabe (1968) reported on measurements of the velocity
distribution near a rough wall in a turbulent boundary layer. Their results
agree with the theory developed by Kajiura. Measurements by Jonsson (1963)
also correspond with Kajiura's theory.

The measurements by Jonsson (1963) and Jonsson (1966) were conducted in

a
an oscillating water tunnel where large values of Ei could be obtained.

s
Jonsson found that the velocity distribution near the wall confirms to the
turbulent velocity profile in an open channel (equation 3.14). If the
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logarithmic profi]e\is assumed to extend to the main flow, he found the
following expressions for the boundary layer thickness and the wave friction

factor:
306) (305) %
T—) ¢ log|5— = 1.2 — (3.56)
(% 5 5
and
1 ] as
+ log = -0.08 + 1log T (3.57)
4 fw 4 fw s

Equation 3.57 is slightly different from equation 3.53 developed by Kajiura.

Riedel, et al. (1972) carried out shear stress measurements on both
smooth and sand roughened beds in an oscillating water tunnel. Their results
are based on tests carried out under very controlled conditions. For the
rough turbulent flow, they found:

" 0.77
S aG
fw = 0.25<-§> i 0.1 ¢ X 25 (3.58)
s
a
1 1 )
e % ] 0g = 0.122 + log >
4.95 \/fw 4 \/fw 3
%
a 25 . (3.59)
S

The results of Jonsson (1966), Kajiura (1968) and Riedel, et al. (1972)
are shown in Figure 3.5.

The assumption of a logarithmic velocity profile for the oscillatory
a a
boundary layer is reasonable for kﬁ > 25. For Eﬁ < 25, this assumption
s s

needs to be modified (Riedel, et al., 1972).

Kamphuis (1975) reanalyzed the Canadian data. His new relationship
a
fw versus Eg is much closer to Jonsson's (1966) results as expressed in
3
equation 3.57.

He proposed the following approximation to the Canadian measurements:

- 0.75

s 3
f, = 0.4 E) (for H < 100) . (3.60)
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Jonsson (1978a) suggested that the application of this formula perhaps
a
should be restricted to the interval 2 <-Eg < 20, where agreement with
s
equation 3.57 is very good.

Jonsson furthermore suggested that his formula (equation 3.57) should
a a
be used for > 1.57. For values of Eg < 1.57 he suggested a constant
s s
value fw = 0.30. Kajiura (1968) proposed a constant value fy = 0.25 for

a
Fg < 1.67. For a comparison of results, reference is made to Figure 3.6.
s

10
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t
-
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Figure 3.6 Friction Factors
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Smooth Turbulent Case

There is only a Timited amount of data available for this case. Jonsson
(1966) arrived at the following expression:

1
+ 2 log = log RE - 1.55 . (3.61)
I I
4 W 4 W

A good approximation for equation 3.61 is:

_ - 0.2
fw = 0.09 RE .

The criterion for fully developed turbulence has been discussed above.

(3.62)

Transitional Regime

In the transitional regime, the wave friction factor fw depends on both

a
the Reynolds number (RE) and the ratio Eg . Similar to the case for steady
s
flow, the value of fw depends on the ratio between § and ks. Jonsson (1966)
gives for the relationship between fw and fL :
s
_ _0.0604
fw = ;;;7__225 (3.63)
k
S

a relationship similar to the results for steady flow if the depth as taken
is equal to 26.

Experimental results of Riedel, et al. (1972) are presented in Figure
3.7. This diagram resembles the Moody diagram for unidirectional flow. The
horizontal axis shows the Reynolds number RE and the vertical axis the friction
a
factor fw . Lines for given Fg values are shown as horizontal lines and
s
indicate independence of RE beyond a certain value of the Reynolds number.
a
This value of RE is higher for higher values of EQ .
s

Experimental results by Jonsson (1963) and Riedel, et al. (1972) on these
relationships are similar but not quite identical.

Figure 3.7 also shows that for high values of the Reynolds number fw is
3
only dependent on the ratio — .

ks
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ENERGY LOSSES IN WAVES DUE TO BOTTOM FRICTION

Bottom friction causes waves in shallow water to lose energy. Assuming
linear wave theory and constant wave period, an expression can be developed
for the rate of energy dissipation.

Suppose F(x) is the energy flux per unit of crest width and sf(x) the
mean rate of energy dissipation per unit of area.

Assuming stationary conditions and a horizontal bottom, one has

uzxﬂ +oeg(x) = 0. (3.64)

The above equation is valid for a sloping bottom when waves travel
perpendicular to the shore and depth contours are parallel to the coastline.

When waves come in at an oblique angle over a sloping bottom, refraction
has to be taken into consideration and equation 3.64 has to be modified.

However, in this analysis the discussion is limited to the two-dimensional
situation.

Utilizing equation 3.28 for the bottom shear stress

1

T=7C

fFP Ublubl
the rate of dissipated energy per unit of area can be calculated from

1 3
ef(x) =10, = 7 Cep |Ub| (3f65)

where the overbar denotes the time average. The friction coefficient Cf
usually has a value from 0.02 to 0.04, but on shallow reefs it can become
significantly larger.

Using Tinear wave theory, the bottom velocity at a fixed point can be
expressed by

Ub = TII_—H m sin wt (3.66)

which gives

3
1 mH 4
et = 7 O olrstonwn) 3 - (3.67)

The energy flux F(x) for linear waves and horizontal bottom can be
written in the form
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1 2
F(x) = Enc = g °9 H™ nc (3.68)

so that for a horizontal bottom

dF(x 1
40 - TogHne . (3.69)

The energy balance equation then develops into:

l.pg e 4 Gl i o= o (3.70)
4 dx 3(T sinh kh)3 '

or
dH
> + Bdx = 0 (3.71)
H
in which
8nl s
B = T . (3.72)

3 gnc (T sinh kh)
Integration of equation 3.71 gives

1 _ _ 1
“Exy t Bx = constant = - ﬁ;' (3.73)

where H0 is the wave height at the beginning of a section and

H(&) = H(L) +oBx . (3.74)

If waves are approaching the shoreline over a sloping bottom, the actual
bottom profile can be replaced by a step-profile with stepwise horizontal
sections with decreasing depth. Equation 3.74 may then be applied to each of
the horizontal sections. At each step an adjustment of wave height has to be
made because of the change in group velocity due to the change in depth.

EFFECTS OF NONLINEAR WAVE CHARACTERISTICS ON THE LINEAR BOTTOM FRICTION
COEFFICIENT
In the previous sections, waves were assumed to have linear character-

istics. The rate of energy dissipation could then be described by equations
3.64 and 3.67.
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When waves become nonlinear, e.g., when they enter into shallow water,
it is customary to retain the linear formulation for the calculation of
energy dissipation.

However, the effects of nonlinearity will then require that the (1inear)
bottom friction coefficient be adjusted in order to account for the different
rate of energy dissipation in rionlinear waves.

In this section, an evaluation will be made on the manner in which this
apparent friction coefficient will deviate from the coefficient valid for
Tinear wave conditions.

The considerations will take into account the effect of the magnitude of
orbital velocities as well as the effect of increased turbulence.

Effect of Nonlinear Orbital Velocities

In defining the wave bottom friction coefficient, the use of equation
3.28:

-

T = 7 CfDIUIU

is most useful for the evaluation because a direct relation is assumed
between the shear stress and the instantaneous bottom velocity.

It is realized that this direct relationship has physical and mathema-
tical shortcomings because the phase difference between shear stress and
orbital velocity is ignored. Nevertheless, the equation is useful to obtain
some quantitative values.

In the following, the index "b" is dropped from the "U" for reasons of
simplifying the notation. The rate of mean energy dissipation was found from

equation € = T U , which for Tinear waves gave

2 3

& T 3¢

o & 1S 2 ( mH )

£V = 3me G TS

The evaluation of the effect of nonlinearity is based on the equality of
the mean energy dissipation during one wave cycle. Where in Tinear waves the
bottom velocity at a given location may be described by a sine or cosine
function, in nonlinear waves the function U = f(t) deviates from a sine or
cosine curve. In a higher order Stokes' wave, the velocity U may be written

u = Uz + U (3.75)

where U2 is the linear botom velocity and U' the higher order part of this
velocity. The mean rate of energy dissipation is

.
_ 1 1 3
ef-TI 7 Ceo U, +U'[7dt . (3.76)
0
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In this expression the integrand is always positive because both
positive and negative bottom velocities contribute to the energy dissipation
process. Further analysis gives

-

p C

_ f 3 Cep ' 2 3

€ = —E?—-J l [UQ + 3 U2 U +'3U£ u'-+u ] I dt . (3.77)
0

Assuming that U' is relatively small compared to Ul the term with U'3

may be neglected, being of higher order than the previous terms. The third
term, including the integral

-
1 e

T ] U2 u'" dt

0

is small compared to the first two terms and is also dropped in this analysis.

This leaves

el [T, ! 2
e T J ' U, ’ dt * [ 3 | U, U'l at | . (3.78)

0 (o}

If the dissipated energy in a nonlinear wave is set equal to the amount
dissipated in a linear wave with the same value UQ (the maximum value of the
first mode), an equivalent friction factor C'f may be defined as follows:

Pl [T 03 gt =2 e (] u3 |dt + 3 - u.2 ut|dt
) 2 )
0 (0] 0

T 27
(3.79)
From this the ratio between C'f and Cf may be calculated:
r T
3| |u?u Idt
' 2
C¢ ‘0
—_ = ] + . (3'80)
Cf (T 3
o Jat
‘0

Equation 3.80 may be used to determine the effect of nonlinearity on the
friction coefficient for the case of higher order Stokes' waves, in case U’
is relatively small compared to Ul'
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A similar procedure may be followed if instead of Stokes' waves a
cnoidal shallow water wave is employed.

In the above considerations of the behavior of the bottom velocities,
their deviation from linear behavior served as a basis for analysis.

Near the bottom the deviations from the linear characteristics are
usually small and therefore the effect of nonlinearity on the bottom friction
coefficient will be small also.

Effect of Turbulence Induced by Wave Breaking

In the area of breaking, waves are highly nonlinear and therefore the
considerations of the preceeding paragraph apply. In addition, however, there
is an additional nonlinear effect which may have to be taken into account.

In the process of breaking, considerable energy is transformed into
turbulence energy which in turn is inducive to energy dissipation due to
internal friction.

In order to determine in which manner the increased degree of turbulence
affects the magnitude of the bottom friction coefficient, the following three
cases may be considered:

a. Increased turbulence over the full depth, but excluding the
bottom boundary layer.

b. Increased turbulence over the full depth of water extending
into the wave boundary Tayer.

c. Turbulence confined to an upper layer, a less turbulent
central layer and a bottom boundary layer (three layer
model).

In case (a) the fluid motion in the immediate vicinity of the bottom will
not be affected by the higher degree of turbulence in the upper layers. The
effect on the bottom friction coefficient is then minimal. Observations
carried out in the present study as well as reports by other investigators
suggest that this situation may indeed develop, although criteria for this
condition have not been established.

Most Tikely this condition occurs in spilling breakers.

The second case (b) may be expected when plunging breakers and a fully
developed bore prevail. Under those conditions the value of the bottom friction
coefficient will be affected, both during the breaking process and possibly also
to some degree after breaking and during regeneration.

Model (c) has been proposed by Huntley (1976) after single point measure-

ments of velocity fluctuations in the surf zone. Its effect on the bottom
shear stress would be similar to model (a).
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In the following, the effect of turbulence on the bottom friction
coefficient will be assessed for model (b) in a way similar to the effect
of nonlinearity, as discussed in the previous section.

The friction coefficient is again defined by equation 3.28, with U the
time dependent orbital velocity near the bottom.

In this equation for the bottom shear stress, the value of U is
considered a mean velocity over a short period of time; turbulent fluctua-
tions of the near bottom velocity increase or decrease the instantaneous
values of this velocity.

If U is the mean velocity over a short period and U' the turbulent
fluctuation, then at any time

u =10+ U . (3.81)

The instantaneous boundary shear stress is then given by

T o= g Cop |[(T+U)|(T+ ) (3.82)
and the mean rate of energy dissipation:
. , .
=t Im 1 1 ] T 1 3
€ = T (U+Uu') = = E—Cf p |[(U+U")| dt . (3.83)

0

Because the frequency of the turbulent fluctuation U' is much higher

than the frequency of U, evaluation of equation 3.83 may be possible in two steps;

first averaging over a duration t, during which U may be considered constant,
and secondly averaging U over the wave cycle T.

Averaging over a time period T with constant U gives

kS 3
J '(U’+ U')l dt
0

=

o] esd

= — 2 2 3
| oo s 2ule 5| o o+ | Joses
o} 0 0

Jo

3 3
= 3
jo - 2

T T

_ 2 1 3

u[ vZat + L) u | et . (3.84)
0 0

Assuming again that the magnitude of the third term is small compared to
the first term of the last equation, the former may be neglected.
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As far as the second term is concerned, define
T
1 " _ -
','r‘ J U dt = CUl ag
0

where 02 is the variance of the fluctuation U'. Then the equation
develops into

T
3
l—J‘U+U‘|dt='U3}+3|U’GZ. (3.85)
0
Consider the variation of U over the wave period T and define
T
cf"[ ]U3|dt = C, [ |U3+3U02'dt (3.86)
() 0

where Cf" is the friction coefficient as affected by the turbulence.

From equation 3.86

-
3 Uoz l dt
C n
_L. = 1 + -~ . (3'87)
Cf T
J 73 ‘ dt
0
If it is assumed that
o = al (3.88)

where a is a constant, equation 3.87 is reduced to

C n
=1+ 3f (3.89)
f

and the effect of increased turbulence is directly related to az. There is
no information available regarding the value of o and its variation with time
in a breaking region. A reasonable guess could be a = 1/4 - 1/2 for which
C " c "
7;— = 1.19 - 1.75 but higher values of o and thus of T;— seem possible.

f f
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It may be feasible to suppose that o is related to the Froude number:

a = f (Fr) (3.90)
and
o 2
o= s (3.91)
f .

Calculations of the value of the friction factor based en observations
in this study confirm that in breakers of the plunging type an increase in
the friction factor is likely to occur.

The above demonstrates that the effect of increased turbulence on the
bottom shear stress coefficient can be significant, provided the turbulence
extends well into the near bottom fluid layers.

Because waves in a breaking regime are by nature nonlinear, effects of
both nonlinearity and turbulence will both have to be taken into consideration.

The above considerations are particularly valid in the region of actual
breaking.

During the execution of model experiments under this study, some evidence
has been found that an increased level of turbulence persists when breaking
waves have passed through a section, increasing the value of the bottom friction
coefficient for that section.

EFFECTS OF UNI-DIRECTIONAL CURRENT

Similarly to the effects of nonlinearity discussed in the previous
paragraphs, the presence of a uni-directional or slowly varying current on
the waves also varies the value of the apparent friction coefficient. Such
current may be from an outside source (tide, wind) or may be generated by the
waves themselves.

In this paragraph the presence of such a current is assumed and its effect
on the apparent bottom friction coefficient is evaluated.

The problem of the bed shear in a combined regime of waves and currents
has been discussed by Jonsson and Lundgren (1961). They suggested a super-
position of the uniform current velocity and the orbital velocity immediately
above the boundary layer. They applied the logarithmic velocity distribution
in the turbulent boundary layer between the main fluid flow and the bed.

Using similar procedures as developed in the preceeding paragraphs, the
apparent friction coefficient Cf* can be calculated from the equation

7 T u Idt =7 5 ‘ U+ Ug Idt (3.92)
0

0
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->

where Cf is the instantaneous friction coefficient, U the wave-induced
-

velocity near the bottom and U6 the steady uni-directional current at a
distance § from the boundary.

The vector signs indicate that superposition of the velocities is
accomplished in vector form.

To calculate U(S a logarithmic velocity distribution is assumed.

From equation 3.92 one obtains

rT -> > 3
( u + U6 ) { dt
Cf* ‘0
T = — . (3.93)
f [ + 3
U l dt
‘o

The presence of a uni-directional current superimposed on the wave-induced
currents demonstrates itself as an increase of the apparent friction coefficient
as evidenced from equation 3.93.

~

The outcome of equation 3.93 is a function of ( ﬁi-,e ) s where U is the
§

maximum value of the orbital velocity and 6 the angle between the wave
orthogonal and the uni-directional current. The integral may be evaluated
numerically.

Bijker (1967) followed a somewhat different approach in determining the
bed shear under the combined action of waves and currents.

In his analysis the superposition of orbital velocities and main current
is carried out at a level z' above the bottom, where

ek

7' = —3T5 (3.94)

in which kS is the bottom roughness and e the base of the natural logarithm.

At that level the orbital velocities have a value pU where p was evaluated
theoretically and experimentally, respectively at 0.39 and 0.45. He found for
the value of the ratio between the mean resultant shear stress and the bed
shear due to currents only the expression

-

n'q|-s

~2
_ 1 U
-1 pE Y (3.95)
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where

E=p_|<(_3_=p|</§
Vg /T
in which

?} = mean value of resultant shear stress

e = shear stress due to current only
V. = mean velocity of uni-directional current
G = amplitude of orbital velocity near the bottom
Kk = von Karman's universal coefficient
C = Chezy coefficient
f = Darcy Weissbach friction coefficient
€ = dimensionless coefficient .

The result of equation 3.95 is only to a small degree dependent on the
angle between the wave orthogonal and the current.

Using this result the ratio between the mean resultant shear stress and
the mean shear stress induced by the waves only is then given by

~2
1 2 U
(] fzt Vf)

T
;f: — (3.96)
T 1 2
By defining T, in the usual manner
_ 1 2
TC = g‘ fp v (3.97)

and assuming a sinusoidal behavior of U, equation 3.96 may be developed into
2
(3'7 - gz) : (3.98)

This approach provides another avenue for calculating the effect of a
current on wave-induced shear stresses.

= 1 f
2 Cgt
Tw f

This approach can be extended into the evaluation of dissipated energy
from which an apparent shear stress coefficient, as defined earlier, can be
calculated.
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Apparent Shear Stress Coefficient for Waves and Weak Current

The rate of energy dissipation per unit of area due to bottom friction
in a wave-current regime can be expressed by:

-> -

€ = Tp T (Ua # U) (3.99)

where the overbar denotes the time average and T, is the instantaneous resulting
shear stress. Ué and U are defined as before.

> ->
Assuming independence between U6 and U, one may write:

> 5> - >
eg = TptUs + T.°U . (3.100)
Setting
e > *
T T e P T

- - - -> * -
B T . Ty Ud + Te * U + = W " U

- -~ * -
eg = T Ug + ', U . (3.101)

For weak superimposed currents, it may be assumed that

— -
T

n
~

.
(=22

n

; >
w ' VU e €¢ (3.102)
where €¢ is the energy dissipation due to bottom friction in waves without a
current. This gives
- -

€4 T Tp* UG + €f
In a two-dimensional situation, when waves travel in the direction of the
current:

(3.103)
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so that

€ = T ° UG toee . (3.104)
Writing
1 .* 3
€ = 7 Cpe U]
and
1 3
€e = 3 Cf o |U7|
gives
C T U
T
o= o (3.105)
f f

which is the desired relationship.

BOTTOM FRICTION IN SOLITARY WAVES WITH HORIZONTAL BED

The effect of bottom friction on the deformation of the finite amplitude
long waves on a horizontal bed can be mathematically modelled by associating
the empjirical friction term of steady flows with the Boussinesq equations.
(Erdal Ozhan and Hiroyoshi Shi-igai, 1977).

For waves traveling in one direction only, the modified Korteweg-de Vries
equation is applicable.

The frictional behavior of the bed in the motion of solitary waves was
analyzed by Ozhan and Shi-igai by considering the analogy with the steady flow
past a flat plate.

Keulegan's (1948) analytical result for solitary waves, which gives the
wave height attenuation with traveling distance, applies to the smooth bottom
only and does not hold for turbulent-rough boundary conditions.

In the following, results of Ozhan and Shi-igai (1977) will be briefly
discussed.

In the analytical considerations, a frictional force (on a fluid element
of unit mass) was added to the right-hand side of the equations of motion
defined by:
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Tyl
P T 2(d¥n) (3.106)

where Ub is the particle velocity at the sea bed and f a friction coefficient.

In the equation of motion, the velocity U is the average over-depth
horizontal partical velocity.

The Boussinesq equation with friction term was developed into a
non-dimensional form and computations were carried out based on the modified
equation. The results of the computations were compared with the results of
laboratory data.

In the computer analysis, the friction factor was introduced as a constant

coefficient, so the effect of a variable %L ratio over the complete wave was
S
not taken into account.

In order to present the results in a form comparable to Jonsson (1963)
and others, a Reynolds number was to be specified. 1In analogy with flat
plate theory, the Reynolds number was defined by

Up
Re = | 2 d& (3.107)

where £ is the excursion length of the bottom particles. By using the
relationships:
dx

dg = Ub dt and dt = <

equation 3.107 could be written in the form

A"
R 2
Rg, = T I Up~ dx . (3.108)
max .

By using the second order expressions for Ub and c as developed by Laitone
(1960), the following result was obtained:

1/2 2
e - a2 i), s ()

3
+0(%) ](3.109)
In analogy to the theory of the wave induced bottom friction in a
a
turbulent-rough regime (where the independent parameter is EQQ, this variable
s

’ . gmax
1s here computed as the ratio ¢ where

S
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Yo 1/2 3
< | 2o e () [ A B o8]
(3.110)

The general functional form of the friction coefficient may then be written

3
PR (R : _HEES> (3.111)
L E"mélX kS
or
1/2 k
f =, [ Lsﬂlﬁa_ii : 75.,.%] (3.112)

in which d = depth at = ~ .

In the analysis, the rough-bottom friction coefficients were computed
so as to provide the best fit of the computed wave height attenuation curves
with the measured ones-

Friction coefficients were plotted according to equation 3.111 and results
are shown in Figure 3.8. In this figure the curves limiting the completely
rough flow region as suggested by Kamphuis (1975) are also shown. For the

g€
rough turbulent flow region, the relationship between f and ?ax is similar
S
to results found by other investigators. See, for example, results by Riedel,
et al. (1972), shown in Figure 3.7.
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Figure 3.8 The Friction Coefficient Diagram for the Solitary Wave
(from Ozhan and Shi-igai, 1977)
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CHAPTER 4: WAVE HEIGHT ATTENUATION IN BREAKING WAVES

ASPECTS OF WAVE BREAKING

Wave breaking is an essential element of wave attenuation, because
it usually accounts for the major portion of energy dissipation in waves
approaching the coastline.

It is outside the scope of this paper to give a complete overview of
the history and state of the art of wave breaking, but a short summary may
be useful. Reference is made to relevant studies on thisaspect. Signifi-
?ant rﬁcent contributions have been made by Galvin (1968, 1972) and Battjes

1974a).

In view of the scope of this study, elements of importance are the
following:

a. Location and depth where breaking starts and where
breaking stops (if relevant).

b.  The type of breaker that may be expected.
c. The energy losses in the breaking process.

Important parameters in the breaking process are the breaker height
relative to breaker depth, deep water wave height, deep water wave steepness,
breaker steepness and beach slope.

A study of the literature reveals that the two parameters which define
the breaking process for the Targer part are the deep water wave steepness
and the beach slope. In several earlier studies which were based on the
solitary wave theory, the effect of beach slope was not included, which led
to erroneous results.

Both for theoretical analysis and for experimental evaluation, the
assumption of a criterion for the beginning of breaking is required. There
are several.

Stokes (1947) postulated as the limiting conditions for breaking that
the crest particle velocity exceeds the phase velocity. If that is the case,
the wave becomes unstable and breaks.

Several investigators have applied this criterion to various wave theories
to determine when breaking starts.

Michell (1893) found that the limiting condition for deep water waves
was met when

(H—O-) = 0.142 . (4.1)

max
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Havelock (1919) extended this to shallow water and found:
Ho- o0.418 ¢
L = o anh kh . (4.2)

McCowan (1894) found the well known criterion for solitary waves in constant
depth:

Yy = f> = 0.78 . (4.3)

For shallow water tanh kh + kh so that equation 4.2 , applied to the
beginning of breaking, develops into Hp/hp = 0.88.

It is known from experiments, however, that the wave height at the
beginning of breaking, H,, is related to the depth at that point, hp, by
Hp/hb = vb, where the ratio yp is not constant, but relates to deep water
wave steepness and beach slope.

To account for this Battjes (1974a) proposed:

H - 0.142 tanh —b
i = 0. anh —2 kh . (4.4)
max 0.88

Tests by Danel (1952) showed that the constant 0.142 in equation 4.4
was closer to 0.12:

% = 0.12 tanh kh . (4.5)

Reference is also made to Silvester (1974).
For shallow water this becomes identical with equation 4.4 for y, = 0.743.

Analysis of breaking criteria on a shallow reef observed in this study
has indicated that Havelock's expression indeed needs modification, because
in its original form it leads to an insufficient number of waves that break.
Field measurements carried out in the current study indicated that Battjes'
modified formula with yp ~ 0.7 gave better agreement between theory and
observations.

Another possible breaking criterion is that the wave breaks when the
vertical acceleration in the wave exceeds the acceleration of gravity.
Based on that criterion Laitone (1963) found for solitary waves

+— = 0.827 - (4.6)
b

A third criterion, postulated by Stokes (1948) states that waves break
when the wave front becomes vertical.
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In experimental work by Svendsen and Buhr Hansen (1976) the point
of breaking was defined at the location where the wave reaches its highest
crest elevation.

The importance of the bottom slope in the wave breaking criterion was
stressed by Ippen and Kulin (1955), Galvin (1968) and Le Méhauté and Koh
(1967). The latter replotted the results of several wave tank experiments
and deduced the following breaking criterion, in which S is the beach slope.

-1/4
H H
2= 0. s]/7<—°) (4.7)
0 0
for 1:50 < S < 1:5
HO
and 0.002 < 12 < 0.09
0

This equation indicates that the relative breaker height increases
with bottom slope and decreases with deep water wave steepness.

Walker (1974a) found that measured wave heights shoaled to greater
breaking heights than were predicted by the empirical curve of Le Méhauté
and Koh.

Galvin (1968) from the study of movies on laboratory type breakers
presented criteria regarding breaker type in terms of an "offshore
parameter" Hy/Lo (tan®a), and an "inshore parameter" Hp/g T?tan o, if tan o
is the beach slope. The breaking point was determined as the most seaward
location where the wave front is vertical, or if this did not occur, the
location where foam first appeared on the crest.

He arrived at the following classification for the inshore parameter:

TYPE OF BREAKER INSHORE PARAMETER
Collapsing-Surging < 0.003
Plunging 0.003 - 0.068
Spilling > 0.068

Spilling occurs when waves break on a small slope for high wave
steepness; in plunging breakers the wave slides up the slope with little
or no bubble production.

The collapsing breaker is between the plunging and the surging
breaker; minimal air pockets but bubbles and foam are present.

Reference is made to Figure 4.1 .
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Figure 4.1 Cross Sections of Four Breaker Types
(from Galvin, 1972)

Battjes (1974a, b) defined a similarity parameter

£ = tan o
(H/L)' /2

and examined the value of the parameter in surf processes. He concluded
that this parameter is a good indicator of many overall properties of the
surf zone, such as breaker type, breaker height-to-depth ratio, set-up,
run-up and run-down, reflection and absorption and the number of waves that
are present in the surf zone. It may therefore truly be called a similarity
parameter. This parameter was used by Iribarren and Nogales (1949) for
determining whether wave breaking would occur. Its general usefulness in
surf problems has also been suggested by Bowen, et al. (1968).

Galvin's offshore parameter can be written 50_2 in which the index o

refers to the deep water wave height. Converting Galvin's values to values
of € the following criteria are obtained:
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Surging or collapsing if £o > 3.3
Plunging if 0.5 < g9 < 3.3
Spilling if Eo < 0.5

These results are based on experiments on slopes 1:5, 1:10, and 1:20.
Galvin's inshore parameter is not equivalent to the parameter £,. However,
Battjes re-examined Galvin's results and concluded that the classification
of the breakers could be done equally well with £y as with Galvin's inshore
parameter.

The following approximate values were found

Surging or collapsing: Ep > 2.0
Plunging: 0.4 < g < 2.0
Spilling: Ep < 0.4

Figure 4.2 includes data from several investigators. There appears to be

a weak dependence of yp on £g. For low values of £y (&0 < 0.2) yp seems to
be approximately constant with a value of 0.7-0.8. The values of yp found
by various authors show considerable scatter, which is partly due to the
difficulties in experimentation. They reflect on the scatter present in
Figure 4.2. '
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Figure 4.2 Breaker Height-to-Depth Ratio
(from Battjes, 1974a)

Van Dorn (1976) in studying set-up and run-up in a laboratory flume
found that £p = 0.6 is possibly a better division point between spilling
and plunging breakers than the value of 0.4 suggested by Battjes.
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In calculating the energy flux connected with a breaking wave, the
velocity of propagation of the breaker is of great importance.

Theoretical and experimental analysis reveals that wave height has
a significant influence on the velocity of propagation.

Keulegan and Patterson (1940) gave for the celerity of shallow water
waves of finite height:

2 3n, h% 3%n
C gh (]+2T'I-+ 37]3)(—2) . (4.8)

For the solitary wave (Laitone, 1963) the velocity of propagation is usually
given in the form

c = /g(h+H) (4.9)

which relation is commonly accepted for the value of c near breaking.
Van Dorn (1976) found from measured velocities near the breaking point that
the phase velocity cp was closely approximated by

¢, = (20n)'% = (1.54 gh )/ (4.10)

in which n, is the crest elevation above the mean water level at breaking.

It gives considerably Tower values than the expression for the solitary
wave (4.9).

Walker (1974a) measured phase velocities in a small scale laboratory
model. He found that for the non-breaking waves the phase velocity could
be expressed by

¢ = Vg (1+0.25 M (4.11)

as a reasonable average from measurements with considerable scatter. This
equation may be written in the form

£ = F = 14+024 (4.11a)

vgh h
in which Fr = 1 + 0.25 H/h has the identity of a Froude number. It gives a

value Fr = 1.25 for H/h = 1. Similarly, the wave celerity in the breaking
zone is given in Walker (1974a) by

¢, = Fry Jglh+mg (4.12)

in which ng is the local wave set-up. The average value of Fryp is 1.22 with
slightly Tower values in very shallow water.
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To match the celerities of the surf and non-breaking waves, he suggests
the formula

¢, = 1.25 \/g(h + ns) (4.13)
where My * 0 at breaking point H/h = 1. The factor 1.25 implicitly retains
the influence of wave height on wave celerity.

WAVE CONDITIONS ON A REEF

Shoaling and Wave Attenuation on Ala Moana Reef

In this section some general characteristics of waves breaking on Ala
Moana Reef will be described. The data on which this description is based
were obtained during field observations in the summer of 1976.

Wave Height

High incident waves break on the reef slope and do not necessarily
generate the highest waves on the reef. Those breaking waves lose much of
their energy so that they enter the reef section with strongly reduced height.

Low waves on the other hand, while remaining unbroken increase in height
during shoaling and reach a maximum magnitude when they arrive at the reef
edge.

The results of this study have shown that the deep water wave steepness
is the controlling parameter. See Figure 4.3. These results are obtained
from the model investigations carried out for this study. In this figure the

wave height divided by depth (H/hs) is plotted against the value Hi/gT2 whereby
H. is the measured wave height in station 7, where the water depth in prototype

i
is approximately 11.4 m.

This relationship is plotted for stations #5 and #4; the former is
located near the edge of the reef, and the latter approximately 60 m shore-
ward (Figure 4.3).

Although the data show some irregular behavior (particularly for station #4),
the general tendencies of wave behavior are visible.

In station #5 the re1at1ve wave height H/h reaches a maximum value for a

steepness parameter H. /gT of about 0.15 x 10‘2 for the curve h /H = 1.0.

Waves of greater steepness break on the sloping bottom seaward of station
#5 and lose energy traveling shoreward.

Waves of very low steepness usually remain unbroken and have a lower
height over the reef.
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Figure 4.3  Wave Height over Depth Versus Steepness of Incident Wave
for Ala Moana Reef, from Data Observed During this Study

A similar trend is to be observed for the wave height in station #4,
although less distinct than for station #5. The reason for the generally
lower wave height in station #4 is the loss in energy that occurs in the
wave from station #5 to #4.

The observations in station #5 indicate that the maximum breaking
coefficient Yy = Hb/hb has a mean value of approximately 1.5. It is to be

noted that wave set-up is not included in the depths for Figure 4.3. Battjes
(1974a)has shown that the value of Yp is related to the deep water wave

steepness as well as to the beach slope.

The parameter H1./gT2 relating to incident wave height is somewhat

different from the value Ho/gTZ, which is based on the deep water wave height.

One could therefore expect a family of curves (depending on the ratio
H]./hs instead of one, but it is assumed that the general characteristics of
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wave behavior do not change significantly if the wave height Hi is used
instead of the deep water wave height Ho'
Wave Celerity over Reef

Field observations on Ala Moana reef regarding the wave celerity allow
a Froude number to be calculated from

c = Fr v/gh (4.14)
where h represents the mean depth.

The Froude number Fr as defined above is usually > 1 and appears to be
related to wave height.

It was found that the formula

172
¢ = [g(h +H ]/3)] (4.15)

in which HZ 1/3 denotes the significant wave height and h the mean depth,
best describes wave propagation velocities over the reef.

The corresponding Froude number is

g o w 1R
b - [H _zh_wg]

Wave Spectrum

Shoaling and wave breaking have significant effects on total wave energy
as well as on the distribution of energy over the various wave components.

Generally speaking there is a noticeable shift of energy density to
higher and lower frequency components as waves travel shoreward and break
on the reef.

The loss of energy and the change in wave spectrum have been subject of
detailed analysis in this study.

Figure 4.4 shows the change in variance along a sloping bottom with
shallow reef, as obtained from the model investigations carried out under the
present study. _

Hensen's Model Studies for North Sea Coast

Hensen (1954) described the results of a series of model tests carried
out to determine the design wave height for coastal protection works on the
German North Sea Coast.
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Figure 4.4 Variance (of water level observations) as

function of location from model experiments.
Test 2: Runs 9 - 17, reduced to prototype data.

The German North Sea Coast is protected by a shelf of extensive tidal
flats at mean sea level. The storm floods of February 1, 1953 demonstrated
that water levels up to 5m above mean sea level may occur during extreme
conditions.

The study was undertaken to determine the wave height that could be
expected at various levels of inundation of the tidal flats, which informa-
tion would provide the design wave height for the sea defense works along
the North Sea Coast.

This problem shows much resemblance with the present study. Although
water depths over the shallow reefs in Hawaii are usually significantly
smaller than the ones used in the German study, the nature of the problem
is similar.

The experimental set-up in Hensen's study is shown in Figure 4.5.

The tidal flats have a width of 600m, whereas the offshore section
(with horizontal bottom and a depth of 10.60m below M.S.L.) covers a
distance of 1200m.

The study was conducted at an undistorted scale of 1:20. Both wave
height and water elevation above M.S.L. varied between 2.00m and 5.00m.

A water level of +2.00m in the field and a scale of 1:20 provides a
water depth over the shelf in the model of 0.10m.
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Figure 4.5 Test Conditions for North Sea Dike
(from Hensen, 1954)

In the model experiments carried out for the present study, the scale
was 1:12 and a depth of 1:20 m in the field was therefore also represented
by a model depth of 0.01 m, which is identical to the depth used in the
German tests for the lowest water level.

Some significant results of Hensen's investigations are shown in
Figures 4.6, 4.7 and 4.8. Figure 4.6 shows the wave height on the shelf
as related to the water depths over the shelf for waves with periods larger
than 9 seconds.

Although several curves could be drawn between the data points, there
is a clear upper Timit indicated by the solid line in the diagram.

Hensen's study does not indicate at which location the waves over the
shelf have been measured. This makes a strict comparison with the results
of this study difficult, since wave attenuation over the reef accounts for
a reduction in wave height in the direction of wave travel.
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Figure 4.6 Wave Height on Tidal Flat as Related to
Water Depth (from Hensen, 1954)
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Figure 4.8 Wave Height on Shelf as Related to Wave Period
(from Hensen, 1954)

Nevertheless an attempt is made to make an overall comparison, by
replotting Hensen's data in a dimensionless diagram similar to Figure 4.3,
where the change in relative wave height, H/h, is related to the steepness

parameter of the incident waves, Hi/gTz, for varying relative water depths
on the shelf, h/Hi.

The results are shown in Figure 4.7.

Hensen's data show that the ratio H/h is somewhat higher for the
higher water levels than for the lower ones. In view of the wave dissipa-
tion over the reef between the reef edge and the point of measurement this

dependency on wave height is to be expected. Some scale effects may also
have been involved.

Wave Period

Hensen's (1954) study is based on linear concepts as far as wave
period is concerned. Consequently, wave period is related to the primary
wave only and does not include the secondary waves and higher frequency
components generated in the shoaling and breaking process.

If the latter are taken into consideration and periods are measured

by a zero-upcrossing method, a tendency for decrease in mean wave period
would have been observed.
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In his study Hensen (1954) found that the effect of period on
wave height over the shelf is evident for low periods, but that for
periods over 9 seconds the water level is the dominant parameter (see
Figure 4.8).

Transformation of Waves After Breaking

The process of wave breaking is characterized by intense energy
dissipation resulting in a decrease in wave height and ultimately also in
a change of characteristic wave period.

The problem has been treated both experimentally and theoretically in
the literature; a distinction is to be made between waves breaking on a
slope (beach) and on a horizontal bed. In the following, some relevant
studies on wave transformation after breaking will be discussed. However,
considerations are limited to regular waves. The effects of the changes in
wave spectrum will be discussed in a later chapter.

Horikawa and Kuo (1966) studied the wave transformation inside the
surf zone both theoretically and experimentally. The theoretical curves,
computed numerically, had a consistent agreement with experimental data
in case of wave transformation on a horizontal bottom, but for the wave
dissipation‘on a uniformly sloping beach the analytical results were
inadequate to describe the actual phenomena.

Their theoretical analysis is based on the following assumptions:

a. The 2nd order approximation of solitary wave theory
introduced by Laitone was adopted to express the
characteristics of the broken waves progressing in the
surf zone .

b. The wave is attenuated by the effects of turbulence
and bottom friction.

c. The friction coefficient was assumed to be constant
over the surf zone.

d. The turbulence is isotropic and decreases exponentially
with the travelling distance from the breaking point.

The effects of bottom friction were accounted for in the usual manner
by introduction of a bottom friction coefficient.

The energy dissipation due to turbulence per unit of volume and per
unit of time was expressed by

1} 2
W= o5y (4.16)

where W is the rate of energy dissipation due to turbulence per unit of
volume

p = coefficient of fluid viscosity
u' = fluctuation of horizontal velocity component
A = microscale of turbulence or dissipation length.
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Assuming the kinetic energy of turbulence to decrease in an exponential
manner with the distance from the breaking point, it is possible to express
the decay of turbulence by the relationship

(u)®> = aexp. (- Bx/L) (4.17)

where B indicates the damping coefficient of turbulence, x the distance
measured from the breaking point and L the wave length. They found that the
dissipation length may be expressed by the following relation:

a2 2
A2 = -10vd—“—2- - P, - [ (4.18)
u' c
() o)
Assuming furthermore that
A T du
u = g k(z + h) 55 (4.19)

in which the mixing length 2 is taken proportional to the distance from the
bottom, k Von Karman's Universal constant and u the horizontal component of
the particle velocity of the wave, it was found that

2 2
W= 15058 (z+n)2 (Y (4.20)
and
v
dEt _
—d? = J I W dz dx =
v |
0.825 gBh® (Hy* H H,?2
3 L 5
+7.65 (}) +8.60 (B +2.08 ()] (4.21)
dEt
where at is the rate of energy dissipation due to turbulence .

The requirement of energy conservation is expressed by the expression:

dE dE dE
s _ b t
ra '[W * ?t—] \4.22)
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H/h

in which

dE

7ﬁ§ = the time rate of energy dissipated in the solitary
wave (per unit of width).

5 * rate of energy dissipation due to bottom friction.

Introducing the appropriate expressions in equation 4.22 an
expression is found for the change in wave height due to eneray dissipation.

Figure 4.9 presents a sample of experimental results and Fiaure 4.10
the theoretical curve for B = 5 for a horizontal bottom. In this diagram
the dimensionless wave height H/h is plotted against the dimensionless

horizontal distance x/(T vgh). The agreement between theoretical and
experimental results is satisfactory.

1.0
LEGEND:
e h = 6. cm o h=12.5 cm
0.8 x = 75 ¢cm o = |15.0 em
o B @ v =10.0 cm T = 1.0 sec
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I —-
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0.2 ! ! ' : J
0 | 5

2
x//Tlvf;F

Figure 4.9 A sample of experimental results. (Horizontal Bottom)
(from Horikawa and Kuo, 1966)
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Figure 4.10 Comparison of the experimental results with the
theoretical curve. (Horizontal Bottom)
(from Horikawa and Kuo, 1966)
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The authors also compared their results with field data, obtained by
Ijima by means of stereophotography of waves in the surf zone on the
Niigata West Coast. Figure 4.11 shows a comparison of various curves.

1.0 ~ LEGEND:
B LABORATORY
o8 b e-—-s THEORY (C,-= 0.005, p= 1)
; »---c@ [JIMA
0.6
=
~
>
0.4
0.2 |
0 ' . . .
0 ! 2 5
X/T ~/ gh

Figure 4.11 Relationship between H/h and x/(T/gh) obtained from
various sources. (Horizontal Bottom)
(from Horikawa and Kuo, 1966)

Although the agreement with the analytical curve and the field data
is consistent with the results of laboratory investications, it was noted
_by the authors that the value of the damping coefficient B = 4-5 for the
laboratory was much higher than the value B = 1 for the field.

The discrepancy suggests the existence of a scale effect of
turbulence in the problem under study.

For the uniformly sloping bed the following relationships were
determined from dimensional analysis:

H rHo h 1

Lo el s (4.23)
Hp Lo "y

H rHO h ] ( )
Ho o yle, Mos 4.24
h L,> hy

where S is the slope and the subscripts o and b denote the respective values
in deep water and at the breaking point.

Figure 4.12 presents results of experimental data for a slope of 1:65.
Each individual curve represents the change in wave height as the wave
progresses from deep to shallow water for wave steepness ratios Hg/Lo
decreasing from 0.065 to 0.025.

Figure 4.13 summarizes the results of wave attenuation, presented as
H/Hp versus h/hp, for several beach slopes. In the same diagram results
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Figure 4.12 Transformation of wave heights inside surf zone with
1/65 bottom slope.
(from Horikawa and Kuo, 1966)
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h/h

from experiments by Nakamura, et al. (1966) are plotted for a 1:10 slope

and wave steepness ratios Ho/L, between 0.01 and 0.02.

Figure 4.13 shows

that for 0.2 < h/hp < 0.8 and for the 1:10 slope the ratio H/Hp decreases
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with h/hy in an almost 1inear fashion; for the more gentle slopes, the
wave attenuation is strongest immediately after breaking. '

In Figure 4.14 the ratio H/h is plotted against the relative depth
h/hb for various slopes; both the experimental curves and the theoretical
curves are shown; the agreement is not fully satisfactory. There was a
large scatter in the data used. for plotting this diagram. The figure
shows that the relative wave height, H/h has its minimum value at h/hy =~ 0.6
for all slopes considered. It is to be noted that wave set-up is not
included in the data.

1.5 LEGEND:

. ‘ EXPERIMENTAL
------- THEORETICAL

Figure 4.14

H/h

Comparison of the
theoretical and
experimental
results

(from Horikawa
and Kuo, 1966)

Nakamura et al. (1966) studied wave decaying due to breaking. Their
approach was basically experimental. Some results are presented in Figure
4.15.

They found that after progressive waves over a sloping bottom pass the
breaking point, they advance in the breaker zone in the form of a bore.
When the bottom slope is 1/30 or steeper, the breaking waves arrive at the
shoreline in that form; when the slope is 1/50 or gentler the waves reform
to nonbreaking waves after passing the breaker zone.

The relationship between H/Hp and h/hp found in Figure 4.15 is also
plotted in Figure 4.13 to allow comparison with Horikawa's findings. They
are in general agreement.

The relative length of the breaker zone Lp/Lo is related to the deep

water steepness as shown in Figure 4.16. There is scatter in the data but
the relationship is corvincing.
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Figure 4.15 Change of Wave Height According to Water Depth
(Slope: 1/10) (from Nakamura, et al, 1966)
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Figure 4.16 Relation Between Ho/Lo and Length of Breaker Zone
(from Nakamura, et al, 1966)
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H/H.

)

Figure 4.17 shows the dependency of H/Hp of the deep water wave
steepness. It appears that for h/hp > 1 there is a significant dependency
on steepness, whereas in the breaker zone (h/hp < 1) the dependency on wave
steepness is small. An average curve common for all Hg/Lo values is likely
to give a representative relationship.

20

- H, /L,

0.10 ,0.070.05

1.0 }
08 F 0.03

i 0.015
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¥ «T Figure 4.17

Relation among h/hp,

02 f SLOPE < 1/50 Ho/Lo and H/Hp

i (S1ope: 1/50)
o b v v v v 0wy gy (from Nakamura, et al, 1966)

0.2 0.4 060810 2 4 6 8 10

h/hb

Another interesting result of this study is Figure 4.18 which shows
the change in wave period in dimensionless form. The ratio Ta/Tp which is
the period of the reformed wave divided by the period of the breaking wave
is presented as function of hp/Lo for slopes of 1:50 and 1:00. The paper
does not specify how the period of the reformed wave is defined.

1.0 - o
o8 F SLOPE /
- 1/50
0.6
- 1/100
L2 0.4 |-
\ =
o
-
0.2
0.1 1 | T . | 1 | 1 13 1 131 - |
0.002 0.0l 0.02 0.1 0.2

hb /Lo

Figure 4.18 Change of wave period due to breaking
(from Nakamura, et al, 1966)

Van Dorn (1976) studied set-up and run-up in shoaling breakers. He
included the measured wave set-up in his data on wave attenuation.
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Results are presented in Figure 4.19 in which values of H/Hp are plotted
against (n + D)/(ny + D) and against x/x,, for three different slopes.

n + D represents the local depth corrected for wave set-up and ﬁb +
Dp the corresponding value at the breaker point. The value xp represents
the width of the surf zone and the distance x is measured from the
theoretical shoreline, taking wave set-up into consideration.
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Figure 4.19 Wave height versus total water depth
and surf zone width, all normalized
to breaking values

(from Van Dorn, 1976)

For the steep slope S = 0.083 he found an almost linear relationship,
whereas for gentler slopes the ratio H/Hp decreases more quickly immediately
after breaking and more slowly for the smaller water depths. The period
does not seem to have a determining effect on the process of wave decay.

By and large Van Dorn's results are in agreement with Horikawa's

and Nakamura's. The inclusion of the wave set-up in the actual depth
provides a higher degree of accuracy.
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Wave Attenuation, Using "Bore-Approach"

Murota (1966) presented theoretical and experimental results on the
transformation of surges. His paper deals with the transient deformation
of surges (bores) in open channel.

In several estuaries and tidal rivers the rising tide during its
upward propagation develops into a sudden jump of the water surface.
This phenomenon is called a bore. A similar phenomenon may be
experienced when tsunamis enter shallow water.

Dronkers (1964) described the characteristics of a bore in a tidal
river. From a hydraulic point of view the bore can be considered as a
moving hydraulic jump which propagates with the velocity c. If an observer
moves with the velocity of the bore . he will observe the phenomenon of the
stationary hydraulic jump; the well-known formulae for the hydraulic jump
may then be applied and be transformed into a moving coordinate system.

The difference in energy level AH, for a hydraulic jump is given by

3
(h2 - hl

AH = I hoh (4.25)

2

vhere h, and h, represent the depth of water on either side of the jump.

The rate of change of energy, dE!/dt in a bore per unit width is
given by - ’

1
d_fi‘ = -pqgAH (4.26)

whereby the discharge q per unit of width is defined by
q = (c+wv1) (4.27)
relative to the moving system. c is the velocity of propagation of the bore.

The phenomenon of the bore has a great deal of similarity with the
breaking of wind waves and swell in shallow water and offers an attractive
model for the dissipation of wave energy during breaking. Such approach
was followed by Le Méhauté (1962), Divoky et al. (1970), and Hwang and
Divoky (1970). The concept is also used in this paper to arrive at an
energy dissipation coefficient for waves breaking on a reef.

The rate of dissipation of total energy available in a bore, E', per

unit of width, dE!/dt is related to the rate of energy dissipation per
unit of distance by

1 1
QaEt_ 2 cd_dEx_ _ (4.28)
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Combining equations 4.26 and 4.28 gives

! -1
QdEx_ = = ogatH . (4.29)

Writing equation 4.27 in the form
v

q = <c¢h

where & is a representative water depth, equation 4.29 develops into

1
d_dEx_ = -pghaH - (4.30)

Divoky et al. (1970) combined the Boussinesq solitary wave theory with
the dissipation of energy of a hydraulic jump to arrive at an expression for
wave attenuation.

Hwang and Divoky (1970) used the similarity between breaking wave and
bore to determine wave set-up and decay on gentle slopes.

In their paper the energy dissipation rate is assumed to be a fixed
fraction, B, of that of a bore of the same height.

Use of equations 4.25 and 4.30 1leads to

] H3D
dEr B[__J I (4.31)
dx dx BORE 4 yt(yt + H)

where H is the height of the bore H = (h, - h,), yt is the depth below the
trough (yt = h;) and D is the representative water depth (D = h)

This model furthermore applied the usual expression for the momentum
flux. To implement the model the cnoidal wave theory of Keulegan and

Patterson (1940) was used to describe periodic waves in moderately shallow
water and gently spilling breakers.

For the relationship between total wave energy E! and momentum flux M
a linear approximation

El
M= 3/2 T (4.32)

in agreement with the theory given by Longuet-Higgins and Stewart (1964)
was applied.

For the calculation of the total wave energy E!, it was assumed that
this value was two times the total potential energy of the wave.

Results of computations based on this model with B taken arbitrarily
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as 0.8 are presented in Figure 4.20, where they are compared with data by
Horikawa and Kuo (1966) for a slope of 1/65.
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Figure 4.20 A Comparison of the Hwang and Divoky Model with
Data of Horikawa and Kuo (1966) for Wave Height
Decay in the Breaking Zone

( from Hwang and Divoky, 1970)

Considering that the distance between consecutive jumps equals the
length of a breaking wave, L, the mean energy per unit of surface area
equals

I
E = L (4.33)
and
dE _ _ pgkAH
x L - £ 38)

Expressing the energy dissipation in terms of the energy flux, F,
one has for breaking waves

F o= ¢ E = CcE (4.35)
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and for a horizontal bottom:

dF  _ dE
= ° ‘& ° (4.36)
which leads to
A,
df _ _ pghAH |

Equation 4.36 1is strictly not applicable for a sloping bottom since
the term E o¢/9x # 0, but for slopes of low steepness equation 4.37 is
still a reasonable approximation.

Schonfeld's Approach to Bore Propagation and Energy Dissipation

In this section the method developed by T.C. Schonfeld (1955) will be
utilized for additional analysis of the bore problem.

Introducing again a coordinate system moving with the velocity, ¢, of
the bore, the laws of conservation of mass and momentum are applied to the
water between two cross sections perpendicular to the flow direction, one
just before and the other one just behind the jump. The derivations below
are for a channel with width b. For the two-dimensional case, b can be
taken equal to 1; if refraction occurs, b can be considered the distance
between two orthogonals. Let F¢ furthermore denote a friction force.

With reference to Figure 4.21, where h; and h, are the water depth
before and after the jump and v, and v, the mean velocities in the bore as
shown, the law of the conservation of mass gives

p bhy(c + vi) = p bha(c + vz) (4.38)
where ¢ is the velocity of propagation of the bore.

The law of conservation of momentum gives

F og bhy? + p (c + vy)? bh; =

£t |
rg bh22 + p (C + Vz)2 bh, . (4.39)

N|=— N —

Introducing 4.38 into 4.39 gives

(c+vy) (c+ = ) 1+h2_ Ff
1) (c+v2) gh = d|— 53 (R, <)) (4.40)

and defines a water depth hy.
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Figure 4.21 Definition Sketch of Bore
| (from Schonfeld, 1955)

Solving (c + vy) and (c + v;) from equations 4.38 and 4.40 :

Vi - V2 ghm
h, - h, - B = h, h, (4.41)
and
C = -V, + Bh] = -V + th =
-3 (Vi +va) + 58 (hy +hy) - (4.42)

By treating the jump as located in one cross section and treating the
energy losses due to friction separately, the friction force Ff may be left
out of consideration obtaining

h, = ]?(h1+h2) . (4.43)
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The law of conservation of energy is not satisfied, if considerations
are limited to the mean values of the velocities. The bore provokes a
dissipation of energy of the main flow; the rate of dissipation is equal
to the power set free in the jump. Schonfeld (1955) considered the shape
of the bore and its energy budget. The bore travels faster than the
characteristic wave component in the lower water ahead, but slower than the
wave component in the upper water arrear. The equilibrium of the profile
can nonetheless be attained by the effect of the vertical accelerations and
by considering some characteristic features of the bore (Figure 4.22).

EXPONENTIAL \
\

: < \
SECONDARY WAVE =
- X\

=ai Bl S\ ...t OSCILLATORY

Figure 4.22

Features of Bore
(from Schonfeld, 1955)

T AT T AL ZLE L LT,

a. The front of the bore may be considered as a wave of
exponential shape

n, = a;expz*p (x-ct) . (4.44)

The velocity of propagation of such wave in flowing water with
velocity v is

c = v+ //é% tang p,h, (4.45)

which is larger than v + /gh;, the velocity of propagation of a long wave.

b. The upper portion of the bore is usually characterized by
a sinusoidal wave:

n, = a,cos k(x - ct) - | (4.46)

The phase velocity of such wave in flowing water is

c = v+ //ﬁ%-tanh kahs (4.47)

which is smaller than the long wave phase velocity v + /gﬁ2 .
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In order for the two wave systems to move forward with the same speed,
the average level arrear must be greater than the average level ahead, which
arrangements exist in the characteristics of the bore.

Assuming that the phase speed ¢ is the same for front and back waves
gives a consideration for determining the values of p, and k.

The formula
1 1 hz + h1 h2 + hl
& ° B % z TRR T (4.48)

is a good approximation for not too great values of the relative height
2(h2 = hy)/(h2 + hy).

In his paper Schonfeld (1955) presented another characteristic feature of
the bore, the part played by surface tension.

The exponential toe of the bore is preceded by a train of capillary
waves with the phase velocity

c = y+/K (4.49)

p

when o is the constant of surface tension between air and water.

He found

2hy

1 . 9
ki pg hz (hy + h2) (4.50)

as an expression for the wave number k; of these waves.

In agreement with the above described characteristics of the bore
the energy in the bore is dissipated in three different ways:

(1) The group velocity cg of the short gravity waves is less

than the phase velocity. Consequently there is a rearward
transport of energy in the trail amounting to

P

. (c - cgr) b ]7 pg a,?

hl + hz 2ksh, )
pgb —— O -gmrziGh;) 22 -

(4.51)

=

This power is gradually dissipated by internal and bottom
friction in the wave train.
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(2) The group velocity cq of the capillary ripples is greater
than the phase velocity; hence there is a forward transmission
of energy in the ripple train amounting to:

P = (cg -c)b %-T k%a,?
1 hl + hz
PY‘ = ‘4' Tbg —7 (klzalz) s (4.52)

This poweb is gradually dissipated by viscosity in the ripple
train.

(3) Relative to the moving coordinate system the flow appears as
decelerated, which induces extra turbulence and a loss of head.
The deceleration loss is total, when it equals AH [equation 4.25 ].
Y - Assuming that the loss is only partial to the fraction a, the rate
of energy dissipation due to turbulence is given by

Py = l—a og b 8 (hy - hy)? . (4.53)

It is clear that the train of gravity waves must be fed from ahead
and that: the ripple train must be fed from behind. The delivered
power P must be the sum of the three dissipations, discussed above:

p = pg + Pr + P (4.54)

d

When the water is deep the capillary ripples must be very short and
the power transmission negligible. In a laboratory setting, how-
ever, they may have to be considered. In very shallow water the
phase velocity of the sinusoidal and exponential gravity waves have
to be corrected for capillarity and the phase velocity of the
capillary ripples for gravity. In case capillary power may be
neglected, the available power will be distributed over the two
remaining components, as follows. When the jump is low, the steep-
ness is small and the transition very gradual. There will not be
much energy dissipated through deceleration and most of the

energy available will be invested in the trailing waves. As the
jump grows higher the deceleration losses increase rapidly and
finally take a great deal of the available energy when the jump

has broken and an eddy has formed. Reference is also made to the
work of Benjamin and Lighthill (1954).

Energy Dissipation Coefficient for Waves Based on Similarity With
the Bore

Of the three dissipation mechanisms of equation 4.54 the loss due to
turbulence (Pq) is the most significant one for breakina waves. From
equation 4.53 an expression may be developed for the rate of energy flux
dissipation per unit of length.

97



The principle mechanisms of energy dissipation under field conditions
are wave breaking (turbulence) and bottom friction.

Assuming stationary conditions and parallel wave orthogonals,
conservation of energy requires:

dF  _
R CR (4.55)
where dF/dx is the gradient of the energy flux in the direction of wave
propagation.

In this expression e relates to the energy dissipation due to breaking
and ef to the dissipation from bottom friction.

Although there is some nonlinear interdependence between bottom
friction and wave breaking observations indicate that such interaction is
small and that the two mechanisms may be treated independently.

In the following analysis only wave breaking will be considered; the
effects of bottom friction were considered in Chapter 3.

To evaluate the energy dissipation due to breaking equation 4.53 will
be used as a starting point, whereby b is taken equal to one

1 ghm
7% PI\/Ah,

Py (ho - hy)? . (4.56)

For a wave at the breaking point (see Figure 4.23) the difference in water
level on both sides of the bore equals the wave height:

hz - h1 = H
and
ho = h, +H
hI
/ T ST S S S S S s
Figure 4.23 Breaking Wave Schematized To Bore

98



h, +h H
% el = n
hm 2 hy + 2
hy ha = hy (h; +H)
This leads to
T+pi
Py = },—apg@ﬁ—l—"— : (4.57)

+ TF_ hy

a is the fraction of the total dissipation rate P that is due to
turbulence (breaking) as defined earlier.

For periodic breaking waves with bore similarity, the gradient of
energy flux due to breaking is related to P4 by

Py
x - &% T T (4.58)

if L is the length of a wave in the breaking zone.

This gives
L8 i 1+ 34
= _— 1 2
€b 4L099 1 . hl (4.59)
]+E
Introducing
= H
T hy
L = T
= 2
w T
¢ = Fr/gh;

where Fr is a Froude number, equation 4.59 develops into

opg Y/Z+

5 = wH? | (4.60)
8m/2. Fr VT + v

Introduce a coefficient ¢ according to

¢ = SZFY (4.61)
Fr/T ¥ v
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which reduces equation 4.60 to

g = —& oguH? . (4.62)
8m/2
The function
e fr . pEFY (4.63)
¢ A+ y

is dependent on y only and is plotted in Figure 4.24.
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Figure 4.24 Energy loss coefficient as a function of
wave height-to-depth ratio '

In order to obtain a value of z from equation 4.63 appropriate
values of Fr and a must be assumed.

Equations 4.55 and 4.62 allow the experimental verification of ¢ from
field and model experiments.

Energy Transfer to Waves of Higher Frequency in the Breaking Process

In the previous paragraphs energy losses due to wave breaking have
been considered.

An important additional aspect of the breaking process is the nonlinear
transfer of energy from the main wave system to waves of higher frequencies.
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In the total energy budget this transfer of energy to higher frequency -
modes is responsible for a downward. shift in the significant wave period
as waves approach shallow water and propagate over the shallow reef.

Experiments taken at Ala Moana Reef under this study have confirmed
this phenomenon. However, the conditions on the reef.at Ala Moana usually
involved a wave spectrum, although often with a narrow band swell, and are
not directly comparable to conditions used in the laboratory studies where
monochromatic waves were generated.

The use of equation 4.54 provides some insight into this process.
For field conditions the capillary term is relatively insignificant and is
neglected. This gives

P = Pg +Py o (4.64)

For the principle wave the term P, signifies a loss of power, similarly to
the losses due to turbulence (Pg):

Identifying the energy flux of the principal wave system with F* and
neglecting friction, the energy losses for this system may then be found
from the relation

P,+P)
dF* o (Pg*P) o p
g < iy REge B w==g R (4.65)
or
*
%F;_ = ]EELLB (hy - hy)? (4.66)
Similarly to equation 4.55 write
dF*  _ - gl 2 (4.67)
- — = (e . +€) = - pgwH
dx b g 8n/?
where
gt = l—c - (4.68)

Integrating equation 4.67 over the traveling distance x; - x, (see Figure
4.25) gives

X2
1
F: - Ft = - J £ pguH2dx (4.69)
8m
X1
and X, i
* *
£ = B - f 2l oquh?dx . (4.70)
s 8mv/2
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The total flux of wave energy (including secondary waves) at station x, is
larger than the quantity F% given by equation 4.70 because part of the
energy of the principal wave system is transferred into wave undulations
of shorter period. If the energy flux of the latter system is F** then

F, = F3 +F,* . (4.71)

If the higher frequency waves have an amplitude a, and a group speed Cqr

F** = J'chr og az” (4.72)
and
F, = FF + %’cgr pg a2 . (4.73)

Using the value of F3 as expressed by equation 4.70 one has:

X2
F = F* - Cl 0 szdX + l Cc ga ¢ (4 74)
‘ 1 Bz 2 “gr P38z - '

X1

For the total energy flux (primary wave system and secondary wave system
together) it was earlier derived that

dF 4

— - - = - pngz
so that X2
F, = Fy- J———C pgwH?dx (4.75)
8m/2
X1
Equating equations 4.74 and 4.75 gives
X2
* ! 2 1 2
F, - f — pgwH*dx + 5 c__ pg az
8mv2 2 “gr
X1
X2
= F, - f——g-pngzdx (4.76)
8m/2
X1
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which leads to:

X2
1 2 _ * l-0 ¢ 2
5C__pgaz2 = F, - F, + pgwH2dx . (4.77)
2 “gr 1 1 [ O g

X1

At the point where breaking starts the energy flux present in the
secondary waves generated by the bore may be considered negligible so that
at that Tocation

L
F] = F]

which reduces equation (4.77) to

X2
a,2 = jzgc' @) T HZdx . (4.78)
X1 gr 8m/2

The value of o necessary to evaluate equations 4.77 or 4.78 is
related to the relative height of the breaking wave y. [See Figure 4.26]

For a = 1, a2 = 0, which may be expected since all energy is
dissipated in the bore by turbulence and no energy is available to form
secondary waves.

The amount of energy available in the secondary wave system is related
to the value of o as well as to the travel distance of the bore.

For surging breakers the value of o will be close to one, whereas for
Tow breakers its value is small and much energy is available for the
generation of secondary waves.

Based on research by Favre (1935) weaker bores have a smooth
oscillatory structure, whereas the fully developed bores have a rapid
turbulent change (see Chapter 2). The change of type seems to occur rather
sharply at a depth ratio h,/h; ~ 1.28, corresponding to a H/h; ratio of
~ 0.28.

The expected trend in the values for o is suggested in Figure 4.26.

In case o approaches zero this is also the case for z and equation
4.78 loses its meaning. All energy of the bore is then dissipated in
short period oscillations.

High Frequency Oscillations

For the determination of the frequencies of the secondary wave system
two different approaches provide an order of magnitude for the period or
frequency of these oscillations.
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Figure 4.25 Energy Loss in Breaking Wave

1.0
Y = H/h'

Figure 4.26 Trend in the Value of o, as

Related to H

1
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In the first approach, equation 4.48 provides a formula for the
computation of the energy in the high frequency band induced by the breaking
wave.

According to Schénfeld (1955) this formula is a good approximation for
determining the wave number k2 if the relative height

2(h2 - h1)
h2 + h]‘

H
M

is not too great. This relationship may be used to compute the wave number,
and given the depth h2, also the wave period.

It is assumed (without proof) that the formula gives an acceptable
approximation, even if the ratio H/hm is not very small.

A second approach for determining the period of the short period oscil-
lations following the crest of the breaker is based on the Airy function.
Reference is made to Chapter 2. In this solution the wave number of the
induced oscillations is not constant but it varies with time and location.
If an appropriate value of t is selected, the length of the waves and
consequently their wave number can be determined from Figure 2.3.

The above procedure provides some insight into the energy transfer from
the principal wave to higher frequency modes and may be used to obtain some
quantitative information on this process.

ENERGY DISSIPATION FOR WAVES BREAKING ON HORIZONTAL REEFS OR SLOPES

The derivations in the following sections are meant to give an overall
verification of the use of the bore concept for energy dissipation in
breaking waves.

Experiments by different investigators show that the wave attenuation
during breaking has a different character depending on the slope of the beach.
Therefore, it is attempted to develop approximate expressions for slopes of
varying degrees of steepness.

Energy Dissipation due to Wave Breaking on a Horizontal Reef

The relationships 4.61 and 4.62 may be used to determine the energy
dissipation on a horizontal reef. For these calculations, expressions for
energy dissipation and for the energy content of the waves are needed.
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For the latter the Boussinesq expression for the energy of a solitary wave
per unit of width is selected:

_ 8 3/2 3/2
E = —pg H h . (4.79)
T 3/3

Although the solitary wave extends itself to + ~ and - ~ the energy
is contained in a limited part of the wave on either side of the crest.
Under these conditions it may be assumed that the mean energy flux is equal
to

L pg H3/2 h3/2
Fo- 38 . (4.80)

if T is the "wave period" for the pseudo-solitary wave.

E » the average amount of energy per unit of area is

i_ g H3/2 h3/2

E 3/3 ~ (4.81)
For parallel orthogonals and neglecting bottom friction
T o= (4.82)
may be used in conjunction with equation 4.80 .
Taking the depth as constant gives
& B lagn/zzew/2® - (4.83)
3/3
Using equation 4.62 to define gy leads to
8.1 a/ 2 1/2 dH =, 2
—— 09 h (3/2) HY? == = —=2= pguH
3/3 1 ax 8mv2
- =logh . (4.84)
42
After some reorganization of symbols:
-]6/2_ h3/2 dH = dx . (4.85)

Cv/§ H3/2
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Integration (assuming ¢ and h constant) gives:

32/2_ h3/2 _]_

X+ C (4.86)
z/3 H

in which C is an integration constant. Setting H = Hp at x = 0 and taking

the + x in landward direction, the integration constant is defined and the

equation for H develops into

32/2 (JH; )y o= My :

9 . =

C‘/g '/ﬁ h3/2

(4.87)

The assumption of constant ¢ is only valid for distances of 1imited length.
Since ¢ = f(y) and vy = H/h, the variability of ¢ for longer stretches has
to be taken into account, and the differential equation 4.86 is then to
be solved taking a variable z into consideration.

Along a horizontal reef the wave height attenuates due to energy
dissipation and consequently the value of y decreases also; this therefore
affects the value of z.

In Figure 4.27 the ratio H/H is plotted against (xvﬂg)/QA h3/2) in
which A = 322 /¢/3 .

1.0

0.8

0.6

H/H,

0.4

0.2
o) | 1 1 1 ]
(o} 0.2 0.4 0.6 0.8 1.0
X 4/ Hy
Ahs/z

Figure 4.27 Energy Dissipation
After Breaking On Horizontal Reef (z = constant)
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Introducing a proportionality between the breaking wave height at the
beginning of the horizontal section, Hy and the depth over the reef, h,
(yp = Hp/h), equation 4.87 can also be written in the form

32/2 b - X
2l

where x dehotes the distance from the point where H = Hb'

Below a Timiting value of H, the waves no longer break and energy is
transmitted only in the sinusoidal waves following the crest.

Equation 4.86 can be solved numerically if a variable g, correspond-
ing to equation 4.61 , is used.

In order to verify the values of ¢, the experiments carried out under
this study, have been useful. However to make the correct evaluation for
z, bottom friction losses in the breaker zone must also be taken into
consideration.

Energy Dissipation On Gentle Slopes

Application of the procedures in the previous section also gives
satisfactory results for gentle slopes (m < 1/65).

It appears that for such slopes the derivation of the energy
dissipation as for a horizontal bottom, with h = hy, is adequate.

Reference is made to Figure 4.28, where Horikawa's (1966) observations
for 1/65 - 1/80 slopes are compared with computed dissipation rates based
on the horizontal bed formulation. For a 1:65 slope, with yp = 0.8, ¢ =
constant = 0.77 and friction neglected, a reasonable degree of agreement
(with Horikawa's observations) is obtained.

The assumed value of ¢ = 0.77 is relatively high. However, in such
gentle slopes energy dissipation due to bottom friction, (which has been
neglected so far), plays a measurable part. If friction would have been
taken into consideration the value of ¢ necessary to obtain agreement, will
be significantly reduced.

Energy Losses For Waves Breaking On Slopes Of Moderate Steepness

When waves break on a slope of moderate steepness (1:20 - 1:40) the
procedures developed in the previous paragraphs can still be applied although
with a Tesser degree of accuracy.

In the first place it may be expected that the expression for total
wave energy, which was based on the pseudo-solitary wave concept becomes a
less attractive model of description. It may be preferable to use the
expression for energy density of linear waves, modified with a nonlinearity

108



coefficient §, as defined by

SE = %-ngz . (4.89)

0.8

0.6

HORIKAWA,
1966
0.4 |- SLOPE 1:65

H/H,

0.2

o) 1 | 1 1 J
0o 10 20 30 40 50

x/hy

Figure 4.28  Comparison Between Observed and Computed Data on
Wave Attenuation for Low Steepness Slope
(Horizontal Bottom, Yp = 0.8, £ = 0.77, Friction

Neglected)
In the second place, the expression for energy dissipation in breaking
waves, equation 4.62,
. - pngZ
8mv2

b
was derived for a horizontal bottom.

It is proposed that for slopes of moderate steepness this relationship
may still be used although with a slightly different value of c.

A Froude number related to wave height:
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Fr! = = (4.90)

Y/gH

is defined, where H is a breaking or broken wave height. Assuming that
¢ = ¢c__ is a reasonable approximation, the energy flux can be expressed by

gr
11 2 o
F = ggoe9gH Fr' JgH
or
Foo= %_ p93/2 H5/2 . (4.91)

Under the simplified assumption that both Fr' and & are constant and using

dF
dx

_Eb

further development leads to

dF _ ' 3/2 3/2
N AN 7 N KA I

SR - png2 . (4.92)

gm2 -
Integration gives
2.52 Fr’ [1 (“)]/2] = X (4.93)
3 § - \H. B ’
b TJEH;

where Hb is the height of the wave at the beginning of breaking.

A graphical representation of this equation is given in Figure 4.29,
where the various numerical parameters are grouped together in a constant

B’ 2.5/Z Fr®
zé
After some algebraic manipulation of the right hand member of equation
4.93 whereby the travelling distance x is replaced by the decreasing depth,
one finds

_ . lL-
X 1 hb
= — = (4.94)
T Vgﬁb Y ven
Hy
Lo
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H/H,

1.0

0.8

0.6

0.4

0.2

172 x
I -(H/H I
[ MMy ] 8'T/oH,
IN WHICH 8' = Mﬁ'
¢ 6
|
1
0 0.1
FRTI  S
8'T./gH,
Figure 4.29 Energy Dissipation on Slopes of Moderate Steepness
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where in the denominator of the right hand side of the above equation
the similarity parameter

£ - m - tan a
b Vi
b/ Lo VHb/Lo

appears.

This development leads to the equation

1/ 1 - (h/h))
H b
1= o= = e 4.95

where the constant B" contains all numerical (constant) parameters.

W - 5/myp Fr' 5/ Fr
B = R - 2 : (4.96)

Equation 4.95 1is used to verify some experimental data published by
Horikawa (1966) for a 1:20 slope. '

For the evaluation the following numerical values for the various-
parameters were used: '

Yy = 0.75; o = 0.75; Fr = 1.155 § = 1.3; Eb = 0.16

Figure 4.24 gives for v, = 0.75: ¢ Fr/o = 0.94 and ¢ = 0.61, which makes

g - SAOTEIIS L gy

0.61 - 1.3

For this value of B" a reasonable agreement between observed data and
theoretical values is obtained, as shown in Figure 4.30.

The agreement is least satisfactory for h/hp > 0.7. A possible reason

for this is a lesser rate of energy dissipation in the beginning of the
breaking process, when the bore has not completely formed.

Breaking Of Waves On Steep Slopes

Experimental evidence (see e.g. Nakamura, et al, 1966 and Figure 4.31) shows
that for steep slopes (e.g. 1:10) a linear reduction in wave height develops
after the bore stage has been attained. For a Tinear relationship between
wave height and depth, the expression of energy of a solitary wave
[equation 4.79 ] can be modified to

E. = T -2 g (4.97)

T 3/3
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where T is a proportionality coefficient which denends on Yp-

1.0
SLOPE 1/20
0.8 - /
0.6 -
oS
X
~
z
04
LEGEND:
oz b 7 e——e HORIKAWA, 1966
. o——0 PRESENT STUDY
0 1 1 ) 1 J
0 0.2 0.4 0.6 0.8 1.0

h/h,

Figure 4.30 Comparison Between Observed and Computed Data
on Wave Attenuation for Steep Slope.
Wave Energy Proportional to H2.

Yp = 0.9 Fr=1.3 a=0.75 £ =0.66 & =0.13

Assuming this expression to be valid for a breaking wave, the
corresponding energy flux for a wave with period T is

3
Fow I8 gl (4.98)

33 T

Assuming that the relationship

dr T PR -
dx b 8_"/2

pgwH?

is still valid for the steep slope, one has
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or

rg 3H™ dH _ t pg 2
am BT & " Tam o "
3/3 42 T

di

x cpnstant

%

(4.99)

which is in agreement witH the presumptions that lead to equation 4.97.

In Figure 4.31 a close t.é linear relationship between H and h is shown
for a slope 1:10; however, the relationship between H/H_ and h/hy is not

linear for values of h/hb > 0.7 .

H/H,

0.8

0.6

0.4

0.2

s

LEGEND:
e——e NAKAMURA, (966
o——po PRESENT STUDY -

WAVE ENERGY PROPORTIONAL TO H®

=076 ¢ = 2.8 (UNREALISTIC)
w-....8 PRESENT STUDY
F=0354 §{=1.12 (REALISTIC).
| A 1 1 J
0 0.2 0.4 0.6 0.8 1.0
h/h,

Figure 4.31 Comparison Between Observed and Computed Data

for Steep Slope (1:10)
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This may be explained as follows. For a steep slope a plunging
breaker may usually be expected. Over the horizontal distance between
the beginning of overturning and the formation of the actual bore, eneray
dissipation due to turbulence is small and wave attenuation accordingly
is minor. With reference to Figure 4.32 dissipation due to breaking
starts at a location x = x! and not at x = 0.

Figure 4,32 Geometry of breaking wave

This position x' can be computed approximately by considering the
parabola that is described by the water particles in the crest after the
breaking point.

The time it takes to reach the position x can be approximated by

1-gt2 = H

2 b

or
t = o (4.100)

and the horizontal distance covered
x!=t.c = tFrl /g Hy . (4.101)

where Fr! represents the Froude number as related to the wave height at
breaking.

2 Hy
2 o 1
3 Fr* vg Hb

x
|

1

Frl V2 Hb ; (4.102)
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For
Fr! = J/1.54 = 1.24 (Van Dorn, 1976)
x1=1.76 H - (4.103)

Furthermore from geometrical considerations:

X' _ 1-h/hy
i i (4.104)

For a steep slope, m = 1/10, and assuming vy, = 1.2, equation 4.104 gives
h/hp = 0.79.

This implies that for depth ratios h/hp > 0.79 no energy dissipation
due to turbulence occurs and a plotting of H/Hp against h/hp therefore will
show a low degree of wave attenuation for high values of h/hp.

The above effect is particularly noticeable for steep slopes. For
gentle slopes, e.g. m = 1:50 and yp = 0.7 the particular value of h/hp
[from equation 4.104 ] is 0.975 and the effect of the described phenomenon
will be hardly visible in a H/Hp versus h/hp relationship.

Energy Losses Due To Breaking And Bottom Friction For A Horizontal
Bottom

With bottom friction and breaking both being important the governing
equation for the gradient in energy flux is equation 4.55 :

dF .
& - (et

Assuming the Tinear wave expression for energy density to be valid,
one has F = Enc = 1/8 pgH?nc.

With nc considered constant (horizontal bottom) the differential
equation becomes

3
1 2 R A T
7 P9 ncH 4 3 fw P [T sTnh K h} o PR (4.105)

This equation can be integrated for a horizontal bottom.

Setting: A = 1/4 og nc 5
B = & it 3
3 ° T sinh k h) » (4.106)
c = SLPgw _ Cpg
8mv2 4T/2 J
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A, B and C are constants if the bottom is taken as horizontal.
Equation 4.105 1is then simplified to

Ag% = -BH - CH ‘
_ dH c wla
H(BH + C) A y (4.107)
H(x) X
aH . =i dx
H(BH + C) A
X0 J

0

This integral can be solved directly and gives:

H(x)
- % n [BHT*C] = - (x-x)- (4.108)

H

If xo = 0 then x - x5 = x

and ( (o)
B H(x) + C] H(o . C
o 15 Hito) +d H(x) A X
BH(x) +c Mo . R
H(x) B H(o) + C
£ x
C _ [B H(o) + C] eA - B
H(x) H(o)
& x
1 1 B B
= g tFl e -7 (4.109)
H(x) [Ho CJ C
In case friction is neglected
B.o
and -S-x
g : = % A (4.110)

so that the wave height decreases exponentially with distance.
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A sloping bottom may be schematized to a series of horizontal steps.
Integration may then be carried out along the horizontal steps; at the end
of each step a change in wave height due to shoaling is to be taken into
consideration.
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CHAPTER 5: RADIATION STRESS AND WAVE SET-UP

RADIATION STRESS IN LINEAR WAVES

Studies by Dorrestein (1961b), Lundgren (1963) and Longuet-Higgins and
Stewart (1963, 1964), and others are based on the phenomenon that the
presence of water waves in a body of water induces an excess flow of
momentum. This was called radiation stress by Longuet-Higgins and Bowen
and wave impulse by Lundgren. Dorrestein also related it to the concept
of radiation.

In this paper, Longuet-Higgins and Bowen's terminology will be used.
An expression for the radiation stress may be found by considering the
conservation of horizontal momentum in a wave regime.

Consider an undisturbed body of water of uniform depth and two-
dimensional conditions as in Figure 5.1. The z-coordinate is taken vertical
upward with zero at the undisturbed water level. The bottom is at level - h
and width = 1.

Consider a section 8x of the fluid and the forces acting on this
section. The pressure p at any point is equal to the hydrostatic pressure
p

0

Pp = -092Z. (5.1)

The force from left to right per unit of width on the section & is then
equal to

Because of Newton's second law of motion, a force is equal to the flow of
momentum and therefore the force from left to right may be considered as
the horizontal flow of momentum between the bottom and the surface in an
undisturbed body of water. Reference is made to Longuet-Higgins (1972).

z

T
o -
= | T x Figure 5.1
| |
) _,i i Undisturbed Body of Water
| |
| |
-h [
SN NS
X
Sx
x+ §x
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In an undisturbed body of fluid the quantity

0
J pdz
-h

is independent of x and the flow of momentum across the plane x + &x

is the same as across the plane at x; there is no net change in the flow
of momentum between the two planes. In other words the gradient in the
x-direction of the flow of horizontal momentum is zero.

Consider the momentum flux in a system of linear waves of constant
amplitude [Figure 5.2] described by the equation
n = acos (kx - wt) (5.2)

where a is the wave amplitude, k = 2n/L the wave number and w = 2n/T
the angular frequency.

-h
S S S

Figure 5.2 Linear wave system

The particle velocities in the wave have orbital velocity components
u and w in the horizontal and vertical direction given by

u = —3  cosh k(z + h) cos (kx - wt) (5.3-a)
sinh kh

w = —3  sinh k(z + h) sin (kx - wt). (5.3-b)
sinh kh
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The instantaneous flow of horizontal (x) momentum across a unit
area of vertical plane perpendicular to the direction of wave propagation
is given by p + pu? and the total flux of horizontal momentum across the
plane x = constant is expressed by

n
I (p + pu?)dz
-h

The principal component Syx of the radiation stress is now defined
as the time average of this integral minus the flux in the absence of waves

n 0
= 2 L
SXx 3; (p + pu?)dz -d'podz : (5.4)

The overbar denotes the time average of the function; it is to be noted
that the time average of

0

S p.dz

-h ©

is the function itself. A solution of equation 5.4 is simplified by
separating the right hand side of this equation into three parts:

- (1) (2) (3)
Sxx Sxx ¥ Sxx * Sxx (5.5)
where
S (M. ? u?dz (5.5-a)
XX h P :
() _ °
Sox = f% (p - P,)dz (5.5-b)
n
sxx(3) = [ pdz . (5.5-c)
0

As to the first integral Sxx(])’ Longuet-Higgins reasoned that since the
integrand is of the second order, the upper limit z = n may be replaced by
the mean Tevel z = 0, because the additional range contributes only a third
order term.

Thus disregarding the third order terms,

m - " L 9
Syx = [ opuddz = [ pu?dz . (5.6)
‘h -h
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Since the 1imits of integration are now constant, the overbar denoting
the time average is in the integrand.

(2)

For the part Syyx the time averaging can also be moved inside the

integral which gives

0
S = L (7= pp)dz (5.7)

The part Sxx(z) arises from the change in pressure within the fluid.

An expression for p can be found directly from a consideration of the
vertical flux of vertical momentum (Dorrestein, 1961b).

The mean flux of vertical momentum per unit of area across a horizontal
plane, p + pw?, must balance the weight of the column of water above that
plane

p+ow’ = -pgz = pg (5.8)
so that

P-p, = -ow . (5.9)
p is generally less than the hydrostatic pressure pg,.

Substituting equation 5.9 into equation 5.7 yields
2 . ¢

Syx = j;(-pw )dz (5.10)
and combining equations 5.10 and 5.6 gives

s Mys @ o 1702 - W) (5.11)

XX XX _hp : ‘

Since u > w the value of this expression is > 0. Substituting equations
5.3-a and 5.3-b into equation 5.10 gives

(1) (2) _ 1 pa’w*h _ pga’kh tanh kh
Syx. ¥ Sxx = TONEME - SinhZ kh

2 kh
E STnh2 kh (5.12)

2 2
after introducing w? = gk tanh kh and E = pda_ - prH (mean energy per
unit of surface area). In deep water the
particle orbits are circles and u? equals w” so that equation 5.11 becomes
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sxx“)+sxx(2) - 0 . (5.13)

In shallow water the water particle-orbits become elongated ellipses and
w? becomes small compared to uZ. In that case

s (‘)+sxx(2) - 29212- - g H® (5.14)

XX 8

This result fo]1?§3 from equation 5.12 if sinh 2kh - 2kh. The remaining
contribution Sy, represents the time average of the pressure p integrated
from z=01to z = n.

To the first order the pressure p near the free surface equals the
hydrostatic pressure

p = pg(n-z)
so that
(3) _ n _ n
- = [fpdz = [ pg (n-z)dz
0 0
_ — 20 - 1
= pglnz 5] = 7 P9 n (5.15)
0
and
(1) (2) ) IS wryliers 1.2
Sxx + Sxx + Sxx -_.rf]' p(u? -w?)dz + > P9 n® . (5.16)

For a linear wave: E = pg n? and therefore

s (3 .

- E (5.17)

n|—

The sum of the three components finally gives

S = E e+ 1] (5.18)
which for deep water (kh >> 1) approaches
S, = 7E (5.19)
and for shallow water (kh << 1)
o = SE . (5.20)
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It is of interest to consider in a similar way the flow of momentum
in the y-direction, if y is taken parallel to the wave crest and perpen-
dicular to the direction of propagation.

Considering the flow of y-momentum in the y-direction an equation
similar to equation 5.4 is obtained:

n 0
= + 2 =
Syy J (p + pv?)dz fh podz (5.21)

where v is the orbital velocity in the y-direction.

Similarly to the previous procedures set

_ (1) (2) (3)
= S + ¥ .
SYY yy Syy SYY (5.22)
where \
n
s () - 1 ovede
¥y ‘h
2) . 9
S = [ (p-op,)dz . (5.23)
Yy -h 0
3 - 7
- = [ pdz .
Y -h )

For ?savity waves travelling in one direction it can easily be seen that
Syy( = 0, because the velocity component v is zero at all times.

yhe portions Syy(z) and Syy(3) are equal to the values of Sxx(z) and
Sxx(3 respectively.

Thus

(2) % 4
Syy -ﬁ ow? dz . (5.24)

Substituting equation 5.3-b into equation 5.24 gives

2
(2) _ _qa kh 1
Syy - 7~ Lsivn 2xh - 7] - (5.25)
& -} 5.26
Furthermore, Syy 5 E (5.26)
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and adding yields

- pg a? kh
Syy 7 Lstnn 2xn)

kh
“sioham - (5.27)

In deep water (kh >> 1) Sy.y + 0, while for shallow water (hk << 1):

1
= D E - .
Syy 5 (5.28)
Of further interest is the flow of x-momentum in the y-direction and the
flow of y-momentum in the x-direction

n

Sxy = Syx = [ puvdz . (5.29)

In this case there is no contribution of the mean pressure. Since uv = 0
at all times

SXy = Syx = 0 . (5.30)

The results of the calculations can be expressed in the form of a
radiation stress tensor S

2kh 1

sinh 2kh T 2 0
s = (5.31)
. kh
sinh 2Kkh

It may be noted that the radiation stress as defined above has the
dimension of a force unit of Tength (N/m). It also has the dimension

of energy per unit of area (J/mz).

RADIATION STRESS IN NONLINEAR WAVES

In the previous section, expressions have been derived for the
radiation stress under the assumption of linear waves. In this section,
nonlinear wave characteristics will be considered. Such approach may be
of interest in view of the nonlinear wave Ccharacteristics on a shallow
reef. Therefore, an evaluation of the nonlinearity of the wave on the
value of the radiation stress may be in order.

In the following, the radiation stress will be evaluated for three
types of nonlinear waves: solitary wave, long wave in shallow water, and
cnoidal wave. The evaluation is based on the definition of radiation
stress by Longuet-Higgins (equation 5.4)
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n 0
= 2 -
SXx 3; (p + pu?)dz j;po dz

in which p, is the hydrostatic pressure in the body of water without the
presence of waves. Consequently

n
= 2 = _1_ 2
S -fh (p + pu?)dz > pgh? . (5.32)

In this section considerations will be limited to the radiation stress
component in the direction of wave propagation.

Pseudo-Solitary Wave

In the area near breaking, waves often assume the form of a solitary
wave. This wave form is therefore an attractive model for the shallow
water wave phenomenon. However, the use of the solitary wave as a model
for shallow water waves has one disadvantage: as the limiting case of the
cnoidal wave theory the period increases to infinity and the periodicity
of the solution vanishes. Certain adjustments (approximations) will have
to be made to cope with this Timitation. The corresponding periodic wave
is denoted a pseudo-solitary wave.

The basic parameters are shown in Figure 5.3: undisturbed water
depth, h, and maximum elevation (wave height), H.

S/ 7. S S S

- Figure 5.3 Solitary wave in water of constant
depth

For the analysis it is assumed that the zero for the vertical (z) -
coordinate is in the undisturbed water level.
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To arrive at an expression for the integral,

n 2
S (p+ pu”) dz

in equation 5.32 the equations for the conservation of mass and of

momentum will be utilized.

Conservation of mass gives

Moving with the wave

(5.33)

= =-C%-, C being the speed of propagation,

an . an
ot X
and
n
cdnsd oz = 0
x d h
from which n
cn = J udz + C]
-h

where C1 is an integration constant.

C] appears to be zero because n =0 and u =0 at x = =
correct only for true solitary wave.)

Conservation of Momentum gives

n n

9 ) 2

5 [ eudz+ as (pu? + p) dz
-h -h

Following the same procedures as above and using equation

2dn, d 0 _
-C a—;+—&-fh(u +%)dz = 0

2 =

no b
c?n = :L (u? + 5) dz + C2
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(This is strictly

n
o

5.34 gives



The integration constant C, is determined by setting n = 0, and u = 0,
for x = + ., where p = -pgz (for true solitary wave)

0
= B
0 J = dz + C2
-h
0 0
C2 = -J %-dz = + J gzdz
-h -h
- 1 12
Cb = -3z9n
This gives n
¢tn = J (u? +B) dz - 1/2 oh? (5.35)
or -h
n
pc?n = (pu? + p) dz - 1/2 pgh? . (5.36)

I —

="

The time average of equation 5.36 for the pseudo-solitary wave, assuming
that equation 5.35 remains valid, gives

T (pu? + p) dz = opc*n + %oghz (5.37)
-h

which gives for the radiation stress

= 2=
Sxx octn . (5.38)

For a real solitary wave N would be zero, but for a pseudo-solitary
wave n has a value different from zero. In order to calculate n for a
pseudo-solitary wave, take

- _ N
no= e | (5.39)

in which V is the volume of water contained in a solitary wave per unit
of width, c its velocity of propagation and T, the assumed wave period.

The value of T should be long enough so that for example 98% or more
of the total volume V be contained within the distance + 1/2 ¢ T from the
center of the wave. The error made by using equation 5.39 is then 2% or
less.
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Suppose that 98% of the volume is contained between two vertical
planes at distances of x = + 3.8 h from the center of the wave. This
gives a value for the minimum wave period:

3.8h<1/2¢T

and

7.6 h

T > :

(5.40)

To quantify the volume of water per unit of width contained in a
solitary wave the Boussinesq expression

1/2

Vo= (‘TG h?® H) (5.41)

is used.
This gives 16 5 u11/2
_ (7; h® H)
n = (5.42)
cT

and oe (%g_h3 H)1/2

S =

XX -
. pc 4 . 3/2 /2
SXx 1./%; h H 5 (5.43)

Comparison of Radiation Stress for a Pseudo-Solitary Wave and
for a Linear Shallow Water Wave having the Same Wave Height

It will be of interest to compare the radiation stress for a pseudo-
solitary wave with the value for a linear shallow water wave with the same
height H, for which

Sph = e - e 5.0

where (Sxx)] denotes the radiation stress for a linear shallow water wave.
Denoting (Sxx)s the radiation stress for the pseudo-solitary wave, the
ratio between the two stresses becomes

Oxds - £ 8 432 (5.45)

r
H a7
(SXX)] 3/3

129



Writing c = Fr/gh

in which Fr represents a Froude number, one has

H gT 3/§ H

/o e @ (5.46)
gT2 373

In a solitary wave as in all nonlinear approximations the Froude
number is determined by the ratio (H/h) so that the ratio between the
radiation stresses is determined by the relative wave height and a
dimensionless coefficient, h/g T2. If the condition of equation 5.40 has
to be met this gives

"y

L P R
9" = g(7.6)% n2
c2
and
h Fr
/_gTT < 45 (5.47)

which condition can usually be met for shallow water waves over a shallow
reef.

A graphical presentation of equation 5.46 1is given in Figure 5.4 in
which the ratio is plotted against the relative wave height H/h.

To compose this diagram data presented by Longuet-Higgins and Fenton
(1974) have been used. The relationship between H/h and the Froude number
taken from their study, is presented in Table 5.1.

The results are as follows. The ratio ry generally obtains high
values (>>1) for low values of the relative wave height and low values
of the parameter vh/gT? .

For relative wave heights H/h>0.6, the radiation stress ratio

"y > 1 for > 0.04

and

ry < 1 for < 0.04
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Figure 5.4 Ratio Between Radiation Stress in Solitary Waves
and in Linear Waves of the Same Height

The parameter /ﬁ/gT2 therefore has a significant effect on the value
of r4. For conditions near breaking e.g. H/h ~ 0.7, the following approxi-
mate values can be read from the diagram:

,

= 0,02 0.5

&

= 0.7 A 0.04 r 1.0

pe =
&

= 0.06 ry = 1.5
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TABLE 5.1*

CALCULATED VALUES OF %—AND CORRESPONDING FROUDE NUMBERS FOR SOLITARY WAVE

H
h Fr
0.04986 1.02456
0.09946 1.04829
0.14873 1.07120
0.19765 1.09333
0.24617 1.11460
0.29423 1.13510
..0.34176 1.15478
0.38871 1.17363
0.43496 1.19160
0.48040 1.20864
0.52491 1.22467
0.56829 1.23959
0.61036 1.25329
0.65082 1.26557
0.68930 1.27617
0.7253 1.2848
0.7583 1.2909
0.7871 1.2939
0.8108 1.2927
0.827 1.286

* from Longuet-Higgins and Fenton (1974)

For the shallow portion of the reef, the coefficient vh/gT? is expected

to have a low value, e.g. between 0.02 and 0.03 for a variety of conditions,
whereas for the portion of the reef, where the waves start breaking, the H/h
ratio is relatively high. This combination may lead to a low value of ry.

Nearer to the shore, the waves are lower due to energy dissipation
and the relative wave height H/h will be smaller. Consequently the value
of ry may then rise again above the value 1.

It is realized that the above derivations are not mathematically rigid
and that characteristics of true solitary waves have been applied to pseudo-
solitary waves and vice versa.

The main objective is to get an impression of the radiation stress
a nonlinear wave with the characteristics of a solitary wave, in order to
evaluate the effect of wave nonlinearity on radiation stress and wave set-up.

In the following paragraph the comparison will be made in a similar
manner as above using the mean wave energy as a criteria of comparison.
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Comparison of Radiation Stress for a Pseudo-Solitary Wave Train
and a Linear Shallow Water Wave Train with the Same Mean Energy

The previous derivations were made for waves with the same wave
height. It is also of interest to compare the radiation stress of a pseudo-
solitary wave and of a linear shallow water wave with the same amount of
mean energy. In order to do that the ratio radiation stress - energy per
unit of surface area is determined for both waves. For the linear shallow
water wave, this gives

(5;1)] - 2. (5.48)

Using the Boussinesq expressions for the volume and total energy of
the solitary wave:

v o= (2l 12
per unit of
and crest width
B = 8 0a H3/2 h3/2
3/3

the ratio between radiation stress and energy density for the pseudo-
solitary wave is

: |
(), - i (5:4)
S

The ratio of the radiation stress for a pseudo-solitary wave train to a
linear shallow water wave train with the same mean energy density (per unit
of surface area) re is then the ratio of equations 5.49 to 5.48 which gives

= Fee . (%), ' (5.50)

Based on the numerical data of Table 5.1, Figure 5.5 gives a graphical
representation of e against H/h.

In this diagram the period is not involved. It may be noticed that

the value of re is > 2.0, where re increases for decreasing values of H/h.
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.Figure 5.5 Ratio between Radiation Stress in Solitary Waves
and in Linear Waves of Equal Energy. (E)

Long Waves

The following assumptions are made for this case:
- hydrostatic pressure distribution

- horizontal component of orbital velocities
independent of vertical elevation [u = u(x)]

Starting from equation 5.4

S g y p
¢
xx J(R+u2)dz-J_°dz
_ o ¢ P
implies that n = 0. -h -h
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Introducing

p = -pg(z-n) (5.51)
leads to
, . N
2= el ¢ wdaz - Lo
“h
s 0 n n
XX 2 (z-n)dz + d 2 1 . h2
- -g(z-n)dz - g(z-n)dz + | u%dz - 7 gh
-h o -h
0 0 n non
XX 22 z2 b o 1
o ° 9y | tonz l - 9% | tanz |4-J u?dz - 7 gh?
-h -h o o -h

— T
S [
‘%5 o %'gnz +gn? + ) udz

n
Syx 1 8
o= 4 > gn? + j u2dz (5.52)

-h

= I
“os e (5.53)

The term with u? of equation 5.52 gives

n n
[

f N oc2dz = c’n’ iz = 2o
) T )~ | 1G]
= -h
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y 2
This is in first approximation equal to ET?— . The result of this
approximation is

. -
XX . 1 o2 4 E2n°

) =tz t T

xx o 412, c2n? Fr?

P9 2 c2

TR n? (1 + Fr2) (5.54)
pg 2 . .

For a small amplitude wave Fr = 1, and

S —
XX
= 3/2n* = 3/2E
Y fen /

which conforms to shallow water wave formulation of linear waves.

Cnoidal Waves

Manipulation of equation 5.4 Tleads to

n
S 0
XX P 2
5 J (p + u?)dz + f gzdz
-h -h
n n
SXX P 2
- J (p + gz + u}) - J gzdz
-h o
n
S_X)i - (R+ + z)dZ - l —2 (5 55)
5 ot 9ztu > gn° . .
-h
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The momentum equation is written in the form

n n

9 9 P 2 21 -

3% J udz + % [J (p * 9z + u*)dz - 5 gn’] 0. (5.56)
-h -h

Venezian (1977, personal communication) derived the following equation for
the cnoidal wave:

- u?) (5.57)

n
J (g'+ gz)dz = gn? + ghn - %—(h+n)3 (uxt *uu
-h

in which the subscripts x and t of u denote the partial derivatives to x
and t. Consequently, one can write

S ST -

=X = (hm)u? + zgn? + ghn - 3 (hn)® (u, + uu - u?).(5.58)

XX

For progressive waves the following simplifications are introduced:

chn
cn h X
u = = c(V-g)5 u, =
g oy X (h+n)?
n 2n 2
e = ¢h -2 SR X _, Uy = =R - (5.59)
(h+n)2  (h+n)?
This gives
Syx c2n? TP T 1 thnxz
o T hm I tganttgcihin, - gcthie
o
b S " I e Sl [Py~
Y B L Nx
XX o 2 (Vi key o pr2 2 2
o0 = (2 + Fr2) 3 Fr2 h2 nZ - (5.60)
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Comparing this result with the previous one for lona waves the
correction term with ny”* may be noticed. The latter approaches zero for
Tow values of nyZ.

Using a Tinear approximation for the correction term may be
inconsistent with the use of nonlinear theory and with the realization that
higher order components may contribute significantly to n,2. However one
may still obtain a first order impression of the value of the correction
term in this way. One obtains

ne = ;— a’k? = n’k? (5.61)
which leads to

SXX — rl 2 1 2,2

0g = n ['2' + F (] = § h<k )J . (5.62)

For the shallow water on the reef (h~Im) and a wave period of e.a. T=10sec:
k = 2n/L = 2n/cT ~ 0.2 m~! and the correction term is of the order

1 0.04 = 0.013

1 h2p2 1
h k 3 -

3

which is small for the conditions considered.

Neglecting the correction term gives
S
XX T [+ F2)

which equals equation 5.54 .

In summary it may be concluded that the differences between the values
of the radiation stress for linear and nonlinear waves may not be insignificant
The results of the long wave approach and cnoidal wave approach differ only
slightly; both solutions indicate that the radiation stress for nonlinear waves
will be higher than for linear waves.

It is not clear what significance the results for the pseudo-solitary
wave have for the purpose of calculating the radiation stress for breaking
waves. There are two reasons for this. Firstly the use of the solitary wave
characteristics for defining the boundary conditions for the pseudo-solitary
wave will have induced errors of approximation. Secondly in the zones of
. breaking and broken waves the structure of the solitary wave is destroyed and
the formulas may not be applicable any more. Therefore the high values
obtained for the ratio coefficients ry and rg may not be realistic for calcu-
lation purposes.
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WAVE SET-UP

Derivation of Equations

Derivation of equations for wave induced set-up have been given by
Dorrestein (1961b), Longuet-Higgins and Stewart (1963, 1964) and others.

For the purpose of this study it was helpful to use Battjes' (1974a)
treatise on subject, also because he evaluated the effect of a weak
horizontal flow on the set-up equation.

The equations are derived for situations in which the bottom slope
is small.

In this section it is assumed that the local conservation equations
can be averaged over a time interval which is large compared with a wave
period, but which is short in relation to the time scale of the gradual
variations. The specific effect of wave induced modulations on the wave
set-up will be discussed in a following chapter (6). As is customary in
the literature, averages will again be indicated by an overbar and fluctua-
tions about these averages by a prime.

Phillips (1966) introduced separate notations for the horizontal
coordinates, the horizontal velocities, etc. He used the Cartesian tensor
notation with xj representing the horizontal coordinates and qi the horizontal
velocities (i = 1,2). The total velocity vector is | = (3,w).

For the vertical coordinate, z=0 is taken in the undisturbed water
Tevel.

The mean elevation above the plane z=0, , is allowed to vary in
accordance with the equation for the balance of horizontal momentum.

The equation of the bottom is z = -hg (x;, x2) and the instantaneous
depth hg + n- with its mean value hg + -, written as h.

Assuming that only the organized wave motions contribute significantly
to the unsteady velocity field, expressions may be derived for the conserva-
tion of mass and of vertical and horizontal momentum.

In the conservation of mass equation, the time-mean mass flux per unit
of width, Mj, is thought to consist of part (MC) due to the mean current,
and a part IMW) due to the waves.

Conservation of Vertical Momentum

The equation for the conservation of vertical momentum for nearly
horizontal slowly varying mean flows leads to an equation for the mean
pressure at an elevation (z). This expression was first derived by
Dorrestein (1961b)

;zzs- = pg(n-z) - ow?(z) (5.63)
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a result identical to equation 5.9 which shows that the mean pressure is
less than the hydrostatic value by an amount py2(z), w(z) being the
instantaneous vertical velocity at elevation z.

The vertical velocity vanishes at a rigid horizontal bottom, in
which case

pg = pg(m+hy) = opgh . (5.64)

At gently sloping bottoms w? is very small and its effect on the
bottom pressure pg may be neglected.

Conservation of Horizontal Momentum

For the conservation of horizontal momentum consider a control volume
of unit horizontal area, extending vertically from the bottom to a height
above the free surface. The balance of horizontal momentum for this control
volume is, neglecting lateral shear stresses,

3 5 ahy
aF [ Pa;dt o S [pqiqj +p Gij]dz + T -Pp = O (5.65)
-h J -ho i
in which 6ij is the Kronecker delta defined by
Gij = 1ifi = J
= 0ifi # J . (5.66)

1i is the horizontal component of the shear force per unit of horizontal
area excited by the water on the bottom. For gently sloping bottoms this
is equal to the tangential stress at the bottom (Dorrestein, 1961b). Taking
time averages and setting

7
. = [ pq, - dz (5.67)
1 -h 1
0
gives
8M1 3 n _ aho
=t a; -ﬁ (paj aj + p 8;5)dz + 7T, - pgh 5%, = 0. (5.68)
0
Defining a mean velocity U,
M, M+ Mi"‘ v .
Uy = oh = T on  ° Ui * oh (5.69)
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the momentum balance for the mean flow can be written in the form

oM, o

i -
¢ * axJ (U M, + S, ) + T; + pgh ax - 0 (5.70)
in which the quantity Sij is defined by
n MMV
= [P _ 2 _ 1 J
Sij j (pqiqj +p Sij) dz - 1/2 pg h 6ij vk (5.71)
-h,

Sjj represents the contribution of the unsteady flow to the mean horizontal
flux of horizontal momentum and q'; , q3 the fluctuations of the horizontal
velocity components.

For the two dimensional situation with waves approaching perpendicular
to the shoreline and with parallel depth contours:

n
W) 2
s = j(oq'z +p) dz - 1/2 pg h? - (lpﬁ)_ (5.72)
_ho

Comparing equation 5.72 with equation 5.4 , the following
differences may be noted:

1) the depth h is represented by h + n; earlier h represented
the still water depth;
(M;W)?2

2) the term > is a correction term accounting for the effect
of mass transport in nonlinear waves. Because M is of second
order

(M.")?
;h usually need not be taken into account.

Further evaluation of the integral of equation 5.71 1leads to

n T

= = 2 _]_ 12

ifnl=n-n

and for two dimensional waves:
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- 2

n
¢ —

S = J o(u? - w?)dz + %-pgn1 (5.74)
h

which is the same as equation 5.16 if the still water depth is replaced by
hg + M.

Steady State Conditions
If the flow is irrotational and steady (after averaging over the waves)

and only two-dimensional conditions are considered, the pertinent equations
may be reduced to:

g%- - 0 (5.75)
and i
d ds
-r (UM) + ot T + pgh 5 = 0 (5.76)

in which the x-direction is taken shoreward perpendicular to the coastline.

Since M is the total mass transport (averaged over one or more wave
lengths) and U is the average mass transport velocity

M = phU
and the equation becomes

d 2 ds ., — dn _
< (phU ) + S FTtregh g = 0 . (5.77)

In the literature it is generally assumed that the term T, which is the
average bottom shear stress over one or more wave 1engths, is small compared
to the other terms. In Tinear waves the value of T is indeed equa1 to zero
but in nonlinear waves the value T could make a contribution that is not
insignificant.

First assume T = 0 and constant depth and write equation 5.77 in the

d(ph?) , ds dh  _ .
—dax taxtehg = O (5.78)

form:

Integration gives for constant depth:
ohU? + 2 ogh? + S = constant (5.79)
which equation is identical to the one derived by Whitham (1974).

If the depth is changing the gradient dn/dx cannot be replaced by
dh/dx; consequently the expression with dn/dx has to be retained.
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Whitham (1974) set the mass transport velocity U equal to the sum of
a velocity from steady flow B and a velocity induced by the waves, E/pch

_E_
poch

For the waves to drive a mean current there should be an imbalance
between the divergence of the radiation stresses on one hand and the horizontal
pressure gradient, associated with the wave-induced changes in mean water
level (wave set-up) on the other hand. Battjes argues that such an imbalance
is impossible in steady irrotational flows referring to the work of Bowen.

In the unsteady case (wave modulation) this is no longer the case, however.

Uu = g+ (5.80)

Waves on a Beach or Shallow Reef under Stationary Conditions

Waves approaching a beach or a shallow reef at right angles, assuming
a closed landward boundary and no longshore currents, will, for continuity
reasons, create a situation for which

u = o ‘ (5.81)
at all times.

This is true if steady state conditions prevail and averages are deter-
mined over long enough time intervals; it is not necessarily true, however,
if shorter time spans are considered whereby time dependent fluctuations

u = U!
occur. The latter is the case in the study of the effect of wave modulations.

For the mean current being equal to zero and the shear stress T being
neglected, obtain:

ds dn

or _
ds o i
_d—)? + Og(ho P n) dX 0 . (5.82 b)

Inclusion of the shear stress leads to:

Stoegh +M Per = 0 . (5.82-c)

For horizontal bottom and h = h, + n, equation 5.82-b gives after
integration

S + %-gh2 =  constant . (5.83)

For a sloping bottom, h0 = ho(x) the differential equation is written
in the form
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%§~+ pg[hy(x) +n] gg = 0 (5.84)

and integration has to be done numerically. As a boundary condition M is
assumed to be zero in deep water.

If n is small compared to the undisturbed depth hy, the following
approximation is acceptable:

dsS dn
o pgho(x) d—z = 0 (5.85)

with solution

S + J g ho(x)dﬁ = constant . (5.86)

Longuet-Higgins and Stewart (1964) and Lundgren (1963) have given proof
that for linear waves:

o ka2
N % - Z5inh 2kh (5.87)

where T may be chosen to be zero in deep water.
This can also be written as Whitham (1974)

(2n - 1) £ . (5.88)

T pgh

n| —

Numerical integration of equation 5.84 may be conducted along a
sloping bottom and along a horizontal reef, starting from deep water. The
distance along which integration takes place is divided in sections Ax with
bottom assumed horizontal.

The Effect of Bottom Shear Stresses on Wave Set-up

The effect of bottom shear stress on wave set-up manifests itself in
two different ways:

1) 1in terms of energy dissipation
2) in terms of momentum balance.

The Effect of Shear Stress in the Energy Equation

Energy losses due to bottom friction are one of the two principal
modes of energy dissipation in shallow water. Reference is made to Chapters
3 and 4 of this study.

The rate of energy dissipation due to bottom friction becomes particu-
larly significant for waves in water of shallow depth, e.g. hg < 2.0m.
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The Effect of the Shear Stress in the Momentum Equation

If the effect of bottom shear stress is retained in the momentum
equation, equation 5.82-b is modified to equation 5.82-c .

ds — dn , = _
a+09(ho+n)a§‘+T = 0

For water of constant depth (approximately the conditions on the shallow
reef) integration gives:

S+ pghol + 3 pgn? + S Tdx = C (5.89)

where C is an integration constant.

The term S T dx reduces to zero for linear waves, because positive
and negative contributions of the shear stress cancel each other.

In the case of nonlinear waves, however, there may be a residue after
integration over a full wave cycle which gives a contribution to the momentum
equation.

Radiation Stress in Pseudo-solitary llave with Yeak Compensating Current

The analysis regarding the radiation stress in a solitary wave, as
presented earlier does not take into account the effect of a weak compensating
reverse current.

Such reverse current will have an effect on the momentum flux which
leads to the following considerations.

Suppose a weak countercurrent U is superimpnosed on a pseudo-solitary

wave. Assume at this time that the depth is constant (see Figure 5.6). Such
countercurrent may be generated by a reverse mass transport q per unit of

_C 9

A

ye— h

I KL ELE T, ST

— X

Figure 5.6 Countercurrent in solitary wave
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width such that along the wave
n
q = - J Udz = constant

..ho

If u represents the wave-induced current, the equation of continuity
has the form

n

an ij (u-U) dz = O (5.90)
h

which from the condition set above may be reduced to

n
on 3 -
a—+'a—XJUdZ = 0 (5.9])
-ho
which is equal to the continuity equation for zero flow.

Movina with the speed of the wave and assuming the wave to be of
constant form implies:

on on =
T dt + ™ dx 0
and
on _  _ an
ot €a 3x (5.92)

where c, and n refer to the wave characteristics as they occur with the
superimposed current, with reference to a fixed coordinate system.

on

Substituting the expression for 5E'int° eguation 5.91 aives
n
an 4 3 -
B B T By J udz = 0
-h
0
and f
-c,n + J udz = C]
'ho
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Cy being an integration constant. Boundary conditions for the solitary wave
provide u = 0 at n = 0 from which it is found Cy = 0.

The momentum equation for a horizontal bottom, neglecting the bottom
shear stress is

n n
Flw-vne+Z[Erw-vwlea - o (5.93)
-ho -h0

which because of the condition implied for U, gives

n n
2 ludz+2 [ [RB+(u-0)?2]dz = o0
ot X o}

'ho 'ho

This leads to:

n
m, 3 [rp - u)2 =

tc, 5t + 5 J [p + (u - U)?] dz 0

o
and
_Cza_n+i [P—+(u-U)2]dz - 0
a 9x 9X P

—hO'

Integration gives

3
o

2
C +
a n

S——

[§+ (u-U)2]dz =
-h
0

_ The integration constant C2 may be determined by setting u = 0 for
n = 0; this gives

1

;b = 329 ho2 * Uo2 h,
where Uy is the mean velocity at n = 0.
This gives: ! 1
J [%+ (u-V)*] dz = Ca2“+ 7gh02 +U02 ho * (5.94)
-h,

147



Passing on to pseudo-solitary wave characteristics and taking the
time average over one wave period the equality

n

B _ - =1 2 2
f[°+(u U)2] dz cin+tzah?+U2h

2

a
'ho

is assumed to be approximately valid.

Defining furthermore

n
S
[
| B+ u-v2dz = XX+ ignz+y?h (5.95)
"ho
gives for the radiation stress
Sxx = pc;'ﬁ (5.96)

a result equal to what was found in equation 5.38 .

Assuming the waves moving into shallow water providing for a wave
set-up n, and a wave elevation n + n' above the undisturbed water level, the
balance of horizontal forces leads to the equation

n+n!

0 (5.97)

[}

]
~
+
O

2 [ [p + o(u - U)2]dz
_ho

oh
where T represents the mean bottom shear stress and the term Py 75?-the
horizontal component of the pressure force along the bottom.

Defining in this case:

n+n!
J [P+ p(u-U)2ldz = Sex * % og(h, + n)? + pU02 (hy+n) (5.98)
_ho
where .3
Syx = PCam
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gives

39S 3(h_+n) 3pU %2(h_+ n) 3h
XX 0 0'o0 L == 0
sx_ t pg(h, +n) a—— 5 = -1+ og(ho+n) g s
and
39S opU 2(h_ + n)
XX on 0 0 -
=5 + pg(h0 + 1) % + o +T = 0 (5.99)

which is the same as equation 5.77

WAVE SET-UP ON A BEACH

In the previous sections the concept of radiation stress has been
approached in various degrees of approximation: both linear and nonlinear
waves were considered and the effect of return flow on the radiation stress
was evaluated.

Earlier, attention has been given to various models of wave dissipa-
tion. Since radiation stress is related to wave energy density and the
latter again is coupled to the process of wave attenuation, it is obvious
that various models can be developed to calculate the wave set-up.

It has furthermore been suggested that the shear stress in the
momentum equation may play a part in the process.

In this section the wave set-up on a plane beach is evaluated while
regular waves are considered.

Results of Previous Studies

A distinction is made between the zones outside and inside the breaker
point. Outside the breaker point the flow is considered irrotational,
except near the bottom where shear stresses extract energy from the wave
regime.

The calculation of the changes of the mean water level outside the
surf zone is facilitated if the effects of the shear stress, both in terms
of energy dissipation and momentum are neglected.

In that case the wave set-down outside the surf zone may be computed
from equation 5.87 :

o B talgpR s
n 2 sinh 2kh

where n is chosen to be zero in deep water and the water depth is taken to
be the depth at mean sea level. .
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For definition of symbols used in this Chapter reference is made to
Figure 5.7.

BREAKER POINT

Figure 5.7 Definition Sketch for Wave Set-Up
on a Plane Beach

Inside the breaker zone, energy dissipation must be taken into
account.

A semi-empirical approach to the problem was first given by
Longuet-Higgins and Stewart (1964). They postulated that after breaking
the wave height H would decay in constant proportion to the undisturbed
depth. This was later modified by Bowen et al. (1968) who assumed that H
would be proportional to the mean total depth, including the effect of the
set-up:

H = «y(h+m) . (5.100)

This may be a fair approximation under certain condition§ (e.g. for
relatively steep slopes). It is furthermore assumed that inside the
breaker zone the shallow water approximations for the wave equations apply.

Considering perpendicular wave incidence:

.3 . 3 2
SXX = 5 E = g5 09 H (5.101)
and using equation 5.100
S = megy? (h+m)? (5.102)

Substitution of this expression in equation 5.82-b and neglecting the
effect of shear stress gives

dn . _

ax o (5.103)
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indicating a set-up in the surfzone with a gradient proportional to the
local bottom slope.

Experiments by Bowen et al. (1968) and by Van Dorn (1976) have
confirmed the validity of this general relationship.

The total rise of the mean water level in the surf zone can be
calculated by integrating equation 5.103 from the breakpoint to the point
of maximum set-up. Battjes (1974a) obtained
.

Mmax =™ = T3 Mooy ¥ hp) (5.104)
1+5%

8

where hp is the depth at the breaker point with respect to mean sea level
and np 1s the set-up at the breakerline.

This gives

— _ < =
Max = Tp *gYilh +7) . (5.105)

The set-up at the breaker]ine'ﬁb is estimated from equation 5.87

a, 2 H, 2
7os -4 b = . b (5.106)
b & Thy +7) 6 Thy + 77 :

With the substitution of H = y(h, +7) Battjes (1974a) found

_ 5
Nax - 167Y Hb ~ 0.3y Hb . (5.107)

Van Dorn (1976) represented results of a series of laboratory
experiments with periodic waves breaking on a uniformly sloping impermeable
beach, with different beach slopes and wave periods. Slopes were 0.022,
0.040 and 0.083, whereas wave periods varied from 1.65 to 4.80 sec.

The slopes of the set-up lines m = 3n/3y, appeared to be constant and
independent of frequency for the 0.022 and 0.040 beach slopes.

Tests with the 0.083 slope showed some dependency on frequency.
Some results of Van Dorn's experiments are shown in Fiqure 5.8.

A reasonable fit for the dependehcy of mean surface slope m, and the
beach slope S, was

m = 3.4S%. (5.108)
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Figure 5.8 Wave Set-up and Set-down on a Beach
(from Van Dorn, 1976)
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Using equation 5.103 this requires:

3y%/8 = 3.4 5/(1 - 3.45) (5.109)

and integration gives

Mmax -~ Mp * {3-45/(1 - 3.45)}(n + hy) | (5.110)

Comparing computed values, using equation 5.110, and observed values
Van Dorn concluded that the disparity between the two was too great to
consider equation 5.110 a satisfactory prediction equation.

Nevertheless he considered equation 5.110 a better prediction model
than Battjes's result (equation 5.107) which predicted values much larger
than the ones that were observed.

Hwang and Divoky (1970) developed a model for energy dissipation of
waves that is similar to the one developed in this study. The energy dissi-
pation was related to that of a bore of equal local height.

Their computed wave set-up profiles are convex upwards while
expe;imenta] results usually show a near Tinear relationship. (See Figure
5.9.

Wave Set-up on a Beach Calculated from Dissipation Model

In this section the wave dissipation equation developed in Chapters
3 and 4 will be used as a model for analysis. It was found that energqy
dissipation on a slope or reef is primarily due to bottom friction and
breaking losses.

Neglecting wave reflection energy flux in the direction of wave
propagation is reduced in the rate

a = - (€f+€b) = - et (5.]]])

where et is the mean total rate of energy dissipation per unit of area.

Assuming that the sloping bottom may be approximated by a step function
according to Figure 5.10, integration may take place over the step length
Ax, assuming the group speed is constant over this section '

From F = E cgr (5.112)
and
dF d
e - cqr£ = -e (5.113)
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Figure 5.9  Comparison Between Calculated and Observed Wave Set-Up
(from Hwang and Divoky, 1970)

the loss of energy AE over a distance Ax is,
_ AX
AE = - €&y o - (5.114)
gr
Including a nonlinearity parameter & by writing

%_Og H2 = &§ . E (5.115)
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Figure 5.10  Scheme for Calculation of Energy Dissipation
Along Sloping Bottom

one has
1 /1
E = 5‘(§'09 H2)
and
8
Hy2 - H,2 = ‘£5tcA—x (5.116)

gr
if H; and H, are the wave heights at the beginning and end of a section.

In a more general form integration between section division points
j and j+1 (Figure 5.10) gives:

2 86. Afj_
2 - 17 J _

Hj+] Hj - €t ¢ (5.117)

. qr.

RN

in which €4 = Ef + €
H.
2 p v 3 C 2
g = = f = - ) 4+ pgwH? . (5.118)
t 3 wm ‘2 sinh kj hj 8n/7

The effect of shoaling is taken into account by setting at the
division point j+1

HZ (Hl )2
..q C = : o
J+l ar; Jj+1 41
or 1 cC_ .
- r
g = Hegfa—t (5.119)
grj+]
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Inserting this into equation 5.117 gives:

c 2
1 2 gr. 1 86 AX .
(H. ) = ____.J_ H. - .__\l € .___L
i+l Car J Pg "t c,.
ja L 5
and
1 2 12 Cgr‘j 86:] AXJ
(Hj+1) = Hj = " 59 ftC : (5.120)
9541 97541
1
The computations can be carried forward to compute H.+2 and H.+2
in the same manner and so on. J J

Outside the breaker zone energy dissipation is only due to bottom
friction. In that area the total energy dissipation factor ey is replaced
by €¢, which simplifies the calculations.

To compute the wave set-up a correction factor may have to be applied
to the linear formulation for the radiation stress, as discussed in the
beginning of this chapter.

However no experimental verification for this has been obtained in

this study. A linear formulation is usually considered a close enough
approximation. Equation 5.18 may be written in the form

s; = (g -1/2)

Wave set is then calculated by using one of the two set-up equations,

ds =
ax T e9 (h+n) ax

|
o

or

L+ og (h4m)

SE

T = 0
Integration of the wave set-up equation without shear stress gives:

- _ AS
A = - Sqthey (5.121)
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A consequence of using frictional dissipation outside the breaker
zone is that the amount of "wave set-down" is reduced whereby the location
of minimum water level shifts in shoreward direction.

Inclusion of a positive resultant shear stress in the momentum
equation tends to reduce the wave set-up and to increase the wave set-down.
A negative resultant shear stress has the opposite effect.

WAVE SET-UP ON SLOPING BOTTOM AND SHALLOVW REEF

The conditions comprising a sloping bottom and shallow reef are of
particular relevance to the purposes of this study. The basic difference
with the previous section is that the sloping bottom is connected with a
shallow, horizontal or nearly horizontal reef.

For the calculation of the wave set-up three zones, referred to as
zones a, b, and ¢ in Figure 5.11, may be considered.

BREAKER REEF
OUTER REGION ————4¢— REGION —<¢—— REGION ——
ZONE "a" ZONE “b" ZONE "c"

STILL WATER LEVEL

Figure 5.11 Definition Sketch for Wave Set-Up on a Reef

Zone "a" is located outside the breaking point. Since regular waves
are the basis for analyses in this chapter, the breaking point is always
at the same location for given wave conditions.

Zone "b" is situated between the breaking point and the outer reef
edge and is usually characterized by the presence of broken waves over this
entire section.

Zone "c" extends over the shallow reef, shoreward of zone "b". Over
a portion of the horizontal reef, waves will continue to break whereby wave
energy is dissipated.

After a certain distance waves stop breaking and are being regenerated
with oscillatory type wave conditions.
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Results of Previous Studies Using Simplified Models

one a

The treatment of zone a is similar to what has been discussed
before regarding waves breaking on a plane beach.

Wave set-down in this approach is calculated by the theoretical
set-down formula expressed by equation 5.87 .

Zone b

For the calculation of wave set-up over the zone b, the simplified
model again assumes that the wave height along the slone is proportional
to the actual mean water depth (including the wave set-up), such as is
expressed by equation 5.100 .

The wave set-up at the edge of the reef ﬁ} may then be found by
integrating equation 5.103 over zone b:

nl" hr 3.-»
dn = 8! dh 5.122
Ja = -] 2 (5.122)
_ 1+gv
b hy
which gives ( 3
22
- _ = 8
N, = nyt - 3 (hb - hr) . (5.123)
gY
This may also be written in the form
_ _ 8 !
N, = nyt (1 + §§70 (hb - hr) . (5.124)

The value of np may be computed from equation 5.87 , utilizing
Tinear wave theory. Equation 5.123 has been presented by Tait (1972);
the values of the depths hy and h,. include the effect of tide.

Zone ¢

For the calculation of wave set-up over zone c it is no longer
applicable (with a sufficient degree of accuracy) to assume a proportionality
between water depth and wave height.

Consequently a simplified model such as applicable to the plane beach
and to zone b will no Tonger provide a reasonable approach to the problem.
For zone c a fair knowledge about the process of energy dissipation along
the reef is required.
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Wave Set-up on a Reef, Calculated from Dissipation Model

The dissipation model again refers to the concepts developed in
Chapters 3 and 4.

Similar to the procedures suggested for a plane beach a numerical
approach is proposed whereby the slope is schematized to a step profile.

Zone a

Regarding the calculations for zone a, inclusion of bottom friction
in the analysis will lead to a slight reduction of wave height before the
breaking point, and as a result the beginning of breaking will shift somewhat
landward, thereby reducing the lenath of zone b and diminishing the wave
set-up at the edge of the reef.

Zone b

For the calculation of wave set-up along zone b the numerical
approach developed for the plane beach is also applicable.

A somewhat different approach may also be followed. In this approach
the slope is not schematized to a step profile, but regular shoaling is
taken into consideration.

Assuming shallow water waves whereby

F = E ¢ = EcC s
ar
one has
dF  _ dc dE _
a = Ea"' Ca‘)—(' = = Et i (5-]25)

The integration is carried out over sections for which the value of
€4 may be considered constant. '

Setting
c = Fr/gh

and assuming the Froude number F also to be constant, leads to

+E FY‘»@I %+ Frv/gh g_)E( = -, (5.126)
2/F |

+ Edh, dE “t

—ﬁ__+ éc - - (5.127)
X X Fr‘/ﬁﬁ
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or
dE -E Id h] €t
de _  -E dh} _ . (5.128)
dx 2h |d Frrah

Using the shallow water relationship

S = 3/2E
gives:
3/2 ¢
S - opE - JIE £ (5.129)
Fr/gh
Writing T0g K = &E (5.130)
and inserting this expression into equation 5.127 gives
s . 3oaman Yo (5.131)
dx 32 § h dx Fr/gh

Assuming equation 5.82-b 1is applicable as a wave set-up model,

gi+p<1(h+ﬁ)% = 0
leads to:
3pahdn 2% _ &7
328 h dx - = -pg(h+7) . (5.132)
Fr/ah dx
Integration over a step Ax gives
e o D 3 H2 (dh -
(h +7) &n = + e la;} (5.133)

2 pg Frv/gh

In this equation €¢, H, Fr, § and h are all dependent on x, but may be
considered constant over the step Ax.

For the calculation of H use is made of the energy equation 5.128 in
combination with equation 5.115 whereby the proper value of § is to be
introduced. & can be determined from experiments or may be calculated from
an appropriate nonlinear wave model.
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Integration of equation 5.132 over step x gives

-Edh %t
AE = |57 90 - ——| Ax (5.134)
[2“ * Fr/@ﬁ]

and making use of the relationship 5.133 :

2 H 2 € _]
Ho - Hy = |- 1s2 [QDJ . s (5.135)
1 dx pg Fr/gh

2
in which H] 2 is the average of H] and H2 squared.
2 2

If the step Ax'is sufficiently small, H, > may be replaced by Hy in

the right hand side of the equation, so that °’

" 2

2 2 1 ldh] 85t

H, - H : [: - |7 - = Ax (5.136)

where Hy and H, represent the wave height at the beginning and at the end of
the section ovgr which integration takes place.

Similarly to the development in an earlier section the more general
formulation may be used:

2
2 2 H. €
Hipq - H, = [i -J—-{QD} o S s (5.137)
J+1 J ' ZhJ dx og FY‘-\/E]TI—- J
J 7l
in which
H. T
2 & D T ] 2
€ = Zfwt . + pg w H.2 . (5.138)
t 3 m l2 sinh kj hjl 8n/7 J

For the computation of the wave set-up, equation 5.133 is used in
conjunction with equations 5.137 and 5.138 .

It may not always be justified to omit the shear stress term from the
momentum equation, as implied by utilizing equation 5.82-b . On the
contrary there are indications that such omission induces an error.
Inclusion of the shear stress term changes the differential equation for
wave set-up into
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(=9

Bopg (M) §+7T = 0

which in turn modifies equation 5.133 into:

(7)) a7 = : @) T,

Regarding the value of T to be used in the calculations further
discussions are presented in later chapters as related to the results of
field and laboratory investigations.

Zone c

Regarding energy dissipation on the shallow reef both energy losses
due to wave breaking and bottom friction must be taken into account. 1In
laboratory studies, depending on the scale selected, friction from side walls
of flume, from viscous effects and from surface tension effects may have to
be considered as well.

For the calculation of energy losses over a shallow reef, equations
5.137 and 5.138 are considered applicable.

The value of ¢ is slowly decreasing from the reef edge landward, but
may be considered constant over short sections.

For the calculation of wave set-up on a shallow horizontal reef, the

following approximations of the set-up equation are feasible, considering
steady state conditions:

M SiogmP = o

and h = constant

@) S.pgmmd - o

(3) %§-+ og (h+n) gg +7 = 0

(8) 85, o5 (hi) &4 dlolem U] .

() %§-+ pg (h+n) gg - QLQiD%EP_EEJ +T = 0

In the above equations S represents the principal component of radiation
stress in the direction of wave propagation.
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In the first model, the wave set-up is considered small compared to
the depth and is therefore neglected in h; the Tatter represents the depth
with respect to still water level conditions.

The second model is a refinement of the first in that the wave set-up
n is accounted for in the actual mean water depth (h + m). In the third
model the mean shear stress is included in the momentum equation. The fourth
and fifth model take into account the effect of the wave induced currents,
which are generated in the form of return flow to compensate the wave induced
mass transport. The case of the pseudo-solitary wave describes this. For a
non-steady state solution, an additional term with a time derivative has to
be added to model (5). This is discussed in Chapter 6.

The radiation stress function to be used for the shallow reef depends
on the assumptions utilized for describing wave behavior. In the current
Titerature on this subject, it is usually assumed that the radiation stress
can be computed from linear wave theory, whereby for shallow water a relation-
ship S = 3/2 E, is valid.

The validity of such Tlinear approximation may be evaluated as follows.

For a shallow nonlinear water wave with wave height H, the linear
approximation for the radiation stress is given by equation 5.20:

(5,,); = Geat) « ()

The effect of nonlinearity on radiation stress for a cnoidal-type wave
may be expressed by equation 5.60 which can be reduced to

(Su)p = ean 2 (5 + Frf) .

Comparing the two expressions one has for nonlinear waves of the
cnoidal type:

- 2
Pg N . < %- pg H

and (5.140)
2 3
(%‘ + FY‘ ) > ?

Because of these two inequalities involved, it cannot be determined in
advance if (Sxx)2 will be smaller or larger than (Sxx)l .

The assumption
(Sxx)] = (Sxx)2

may therefore be an acceptable approximation.
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WAVE SET-UP IN IRREGULAR WAVES

In the preceding sections radiation stress and wave set-up have been
considered for regular (monochromatic) waves.

For those conditions, formulas have been derived that relate wave
set-up to radiation stress and radiation stress to energy.

In nature waves may usually be described as irregular waves because
they show a distinct irregular behavior.

The irregularity of the waves is demonstrated by the following
characteristics:

* irregularity in wave height and period;
* irregularity in wave direction; and
« - breaking point develops into breaking zone.

As to the second aspect, it can be shown that a directional spectrum
gives rise to short crestedness of the waves, which in turn affects the wave
set-up (Battjes, 1974a). Since in this study the analysis is limited to a
two-dimensional situation, this aspect will not be discussed further.

Irregularity in wave height and wave period is characteristic of waves
in prototype conditions.

The problem can be treated in two possible ways:

« by considering the wave height and wave period
probability distributions;

* by considering the distribution of the mean wave
energy over the various frequencies in the wave spectrum.

Further discussions on each of these two approaches is given in
Chapter 7, whereas in Chapter 8 the analysis of some relevant field data
is presented.

The second way provides a means to relate radiation stress of irregular
waves to mean wave energy. More than one method exists to derive the wave
spectrum from the (digitized) time series of water level observations. One
of them is the Fourier analysis whereby the time series is analysed into a
large number of Fourier components each with its own amplitude and phase.

An important characteristic of the wave spectrum is that the area under
the curve multiplied by pg equals the total mean energy of the particular
wave record (assuming linear wave conditions), which value in turn equals
half the sum of the squares of the amplitudes of all real Fourier components.
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This means that the mean energies of all spectral frequency components are
added to provide the total mean energy of the wave record.

The above discussed characteristics of the wave spectrum indicate that
since energies of the spectral components may be added linearly to give the
total mean energy of the waves the radiation stress of the sum of all wave
components is related to the total mean energy of the waves by

~

SXX = J (2n - 1/2) dE (5.141)
0
S = 09| (20 - 1/2) 6(f) af (5.142)
0

where G(f) represents the mean energy per unit of frequency, and where the
parameter n = cgr/c is dependent on the frequency f(=1/T) and on the depth h.

For shallow water this develops into

~

Sxx = 3/2p4g J G(f) df = 3/2E (5.143)

0

as for monochromatic wave conditions.

Equation 5.142 s correct for linear waves when the Fourier spectrum
is a true representation of the distribution of the mean energy over the
various frequencies.

When waves have strong nonlinear characteristics the Fourier spectrum
does not give a fully correct representation of the energy distribution over
the (free) harmonic components; some anomalies may be expected from this.

A similar consideration may be given to the correctness of equation
5.142 vregarding the determination of the radiation stress in nonlinear,
irregular waves.

For practical purposes the error is usually not significant enough to
be of great concern.

Finally for the calculation of the wave set-up the fraction of broken

waves in the breaking zone must be known. Aspects of this problem will he
discussed in Chapter 10.
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CHAPTER 6:  THE EFFECTS OF WAVE MODULATION ON WAVE SET-UP

INTRODUCTION

In the previous chapter equations for radiation stress and wave
set-up have been presented for steady state conditions, whereby the time
derivatives for wave set-up, radiation stress and energy were considered
zero. ‘

Closer examination of a record of ocean waves shows that wave
height and wave period vary with time and that waves usually travel in
groups of higher and lower energy content. The wave modulation has a
distinct effect upon the wave induced mass flow in the wave regime and, in
case of waves breaking on a reef, on the wave set-up on the reef.

In the following the magnitude of this effect will be evaluated,
utilizing the basic equations of conservation. If the depth of water on
the reef is shallow the nonlinear and shallow water form of these equations
may be utilized.

GENERAL FORM OF A PERIODIC WAVE TRAIN

The most general form of a periodic wave train is presented by
Whitham (1974):

) Bx - Yyt + ®(6,z), & = kx - wt,

no= NG - (6.1)
where ¢ is the velocity potential and ®(6,z) and N(8) are periodic
functions of (8).

The parameter B is the mean of the horizontal velocity [%%J whereas y
is related to the mean height of the water.

In the uniform case, a frame of reference can be selected, in which
B = 0 and the mean height is zero.

In the modulation theory, changes in the mean velocity and mean height
are coupled with changes in the wave amplitude. Accordingly B, y and a
related parameter for the mean wave height must be left open.

The nonlinear coupling of amplitude modulations with mean velocity and
height is an important physical characteristic of this phenomenon.

Exact expressions for ®(8,z) and N(6) are not known, but the periodic

functions ®(6,z) and N(6) may be expanded as Fourier series. Pursuing the
Stokes development:
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An

@(G,Z) ?

n
[ e A

cosh nkz sin né
(6.2)

n
N(8) h + acos6 + § a_ cos nb

in which a is an amplitude and h the mean height of surface above horizontal
bottom.
The ultimate parameters will be the triads (w,k,a) and (y,B8,h).

Whitham (1974) found for the eventual expression for the average
Lagrangian for a horizontal bottom:

= 22
L= ely- %62) h - %pghz ¥ %E {giwtanﬁkkh ']}
1 K2E2 [9T* - 10T + 9} :
e T ot (6.3)

The term 0 (E®) identifies a third order correction term in E, where
E=1/2 pga?. Furthermore T = tanh kh.

E is the energy density for linear waves moving into still water; it
is a convenient parameter in the place of a.

In general, changes of the mean quantities (y,B,h) are coupled to the
wave motion.

It is consistent to replace h by the undisturbed depth hg in the
coefficient of the term with E?(a"*) and replace T by To = tanh khg in that
term. In the other terms it is important to keep h instead of hg. If the
bottom is not horizontal it is not useful as a reference value for the

potential energy. In that case the term 1/2 pgh? is to be replaced by
1/2 pgn® - 1/2 pghy® if z =n= mean surface, and z = -h, = bottom.

THE MODULATION EQUATIONS

In case of a modulated wave train the term Bx - yt must be replaced
by a pseudo-phase y(x,t), whereby y and B are defined by

Y o= b, B o=y, (6.4)

where the subscripts t and x denote differentiation to t and x.

This is similar to a uniform wave train, where kx - wt represents the
phase 6(x,t) and where k = 36/3x and w = -36/5t.
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The following expressions are presented by Whitham for a horizontal
bottom:

y 2
9To 1OT0 ¥ 9

(w - BK)2 _ k’E 2
ok tanh kF - 1+ g - + 0(E?) (6.5)
0
and
= 1324. h+l 1_-IO_Z'§E+0(E2) (66
Y 2 g 2 To 0 . .6)
It seems convenient to express coefficients depending on Ty in terms of:
wo(k) = (gk tanh kho)'/% |
_ -1 1/2
colk) = (gk™! tanh kho) 5
Cgo(k) = 7 colk) \] * Sinh ZEho}
where cqg (k) and cy(k) represent the group velocity and the phase velocity

for 1ine8r waves, moving in still water hg.
This leads to:

. - %Bz+gh+§[__-1J5§_+o(sz). (6.7)

0
This is a Bernoulli type of equation for the mean potential ,

modified by the wave contribution, proportional to E.

CONSERVATION EQUATIONS

Basic Equations, Neglecting Energy Losses

Some important conservation properties whereby tentatively energy
dissipation is ignored are the following (Whitham,1974). The bottom is
assumed to be horizontal and is used as a reference level for potential
energy.

Flux of Mass (M)

M = ohg + c£+ 0(E?) . (6.8)

0

The waves add a net contribution E/c, to the mass flow; the mass
transport velocity U is accordingly

och (6.9)
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Energy Density (E.D.)

E.D. = JohU? + %pghz + E + 0(E2) . (6.10)
Energy Flux (E.F.)
f2¢
E.F. = phU(—U2 + gh) + Ul——gg - ]E + (U + cgo)E
+ 0(E?) . (6.11)
Momentum Flux (M.F.)
, 1 2¢gy 1
M.F. = phU? + Eoghz # o= 5|E + 0(E2) . (6.12)
0

E is the energy density contributed by the waves and the term.

2¢
[__gg-l]E = S

< 2

is the radiation stress as defined by Longuet-Higgins and Stewart (1962, 1963).

The term

2c
u[ o _ 1}5 = Us

cO 2

contributes a rate of working US in the energy flux equation: this is a wave
interaction term in addition to the usual term (U + Cg, )E.

A set of corresponding conservation equations is the following

ke + w,o = 0 (wave number) (a)1
(oh)y + (ohU), = 0 (mass) (b)
(phU)t + (phU? + szgh2 + S)X = 0 (momentum) (c)f (6.13)
(50hU% + Jogh® + E), + {ohU(Ju* + gh)
+ US + (U + cgo)E}X = 0 (energy) - (d)J
It appears that the general form of a conservation equation is
R, 0 (6.14)

in which Q represents the conservation quantity and T the flux of Q.
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Equation (a) of the set represents the conservation of wave number,
as discussed in Chapter 2. It is equal to equation 2.13 . Equations b,
c, and d express the conservation of the quantities defined in equations
6.8, 6.10, 6.11 and 6.12 .

Equation 6.13-d , the conservation of energy equation, is in a form
which does not account for energy losses due to bottom friction and
turbulence.

Conservation of "Wave Action"

One of the characteristics of equation 6.13-d is that due to the
interaction with the mean flow, the wave energy E alone is not conserved,
even if energy dissipation is neglected.

It has been shown (Bretherton and Garrett, 1969; Jonsson, 1977, 1978b)
that in the absence of dissipation the quantity E/wy is conserved, where
wy is the relative angular frequency, which for the two-dimensional case
is defined by

w., = Wy - k U (6.15)

where w, is the value of the wave frequency in the absence of a current, and
k the wave number.

The energy conservation equation then reads:

E E -
. S o

The expression E/w, has been called "wave action" and equation 6.16 then
states that "wave action" is conserved (Bretherton and Garrett, 1969;
Whitham, 1974).

In case energy dissipation plays a significant role in wave trans-
formations and the boundary shear stress is of significant value, equations

6.13-c and 6.13-d have to be modified to include respectively the shear
stress and the energy dissipation.

The two-dimensional momentum equation is

(ohU), + (ohU? + %pghz +S) +T = 0 (6.17)

where T is the time averaged bottom shear stress over one or more wave
periods.

The energy equation for two-dimensional flow then has the form

(%phU2-+%pgh2-+E)t + {phU(%U2-+gh) + Us+(U+ch)E}X tey® 0. (6.18)
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where €4 is the rate of energy dissipation per unit of (horizontal) area
of t2§ bed, under the combined action of waves and currents (see also Jonsson,
1978b).

If the flow exerts a mean shear stress T on the bottom and there is
ener?y dissipation to waves at a rate et, then €4 may be written (Phillips,
1966):

eq = UT+ €4 (6.19)

From the above equations an energy balance for the wave motion can be

obtained:

Ey + {E(U + Cgo)}x +SU +e = 0 . (6.20)

In terms of "wave action" (see above) equation 6.20 may be replaced by:'
H o fEwreg) +t - o (6.21)
L”r t Op %o x Y

Using 6.19 , equation 6.21 may also be written by the form:
e, - Ut
[LJ +{£ (U+cgo)} v - g (6.22)
Dpl ¢ ' X r

For steady state phenomena, where the variation of E with time is
negligible, equation 6.22 1is reduced to: '
Ed-UT

E
— (U * _ = 0 . (6.23)
{“’r : Cgo)}x ! “r

as presented in Jonsson (1978b).

Long Wave Equations

The pair b, c, of the set of equations 6.13 can be viewed as determining
the changes in h and U induced by the waves.

These equations are basically the long wave equations with an additional
term S.

They may be used to compute the changes of h and U induced by the wave
train.

For many purposes it is sufficient to take S as a known forcing function
already determined from the linear dispersive theory for the distribution of
k and E.

The linearized forms of these equations (assuming U and n = h - ho to be
small) are:
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, ht + hOUX

n
o

(6.24)

U, + gh, - (6.25)

B _ 0 S
n = h - hO = - —gh — C 2(k) Oh (6 v 26)
0 9% 0
-Co 1K)
E g S
U = B+ —m— = 0 . (6.27)
OCoho ghy - Cgoz(k) pho

For these solutions to be valid the group velocity Cq (k) and the phase
velocity co(k) should not be too close. 9

The particular solutions, equations 6.26 and 6.27 are to be added to

the solutions of the homogeneous equations, which are functions of
[x +(/gh,) t1.

STOKES WAVES ON A BEACH

For a uniform wave train approaching a beach

W= wy = (gk tanh kho)]/2 = constant (6.28)
E _
5;cgo =  constant (6.29)

which are sufficient to determine the distributions of k(x) and E(x) in
terms of the depth distribution h, (x). Since wg is constant, equation 6.29
can be interpreted as one of cons%ant energy flux, (Ecg ) provided energy
losses are not considered. 0

In the latter case the results are:

2¢
1 90 E
n = h-=onh = e - 1| — (6.30)
0 2[ oA } pgh0
and
E
u = 0, B = - . (6.31)
pcoh0

Equation 6.30 which only applies outside the breaker zone is
equivalent to equation 5.87 derived by Longuet-Higgins.

Inclusion of energy dissipation modifies the results.
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In case waves approach the beach in a modulating wave train the
energy densities at specific locations are functions of time.

In principle the solution of the problem consists of the particular
solution in addition to the solution of the long wave equations.

In areas of sufficient depths, where the values of n and U are
relatively small, the linearized equations 6.24 and 6.25 may be used
to represent the long wave solution.

For the particular solution, equations 6.30 and 6.31 will be
useful, in which, E, n and U are then functions of t.

The ratio n = cq (k)/co(k) is also a function of k and therefore of t,
since ok/3at # 0.

It will simplify the solution if an average value of n may be
introduced to solve equations 6.30 and 6.31

In the shallow water region before breaking the above approach is still
valid as an approximation. Observations and calculations indicate that near
the breaking point the bottom shear stress affects the amount of the wave
setdown. Computations without the shear stress are only reliable for
relatively short wave periods, when the bottom friction is small.

WAVES APPROACHING A SHALLOW REEF

For the purpose of describing modulation behavior, four different
regions may be identified as waves propagate from deep to shallow water and
onto a reef. They are: the deep water region, where the waves are dispersive
and linear; the intermediate region, where the waves become less dispersive
as the water depth increases; the region just before and after breaking on
the sloping section; and finally, the reef section. [See Figure 6.1]

In the deep section waves are approximately linear and wave set-up may be
taken equal to zero

The solution of the problem of the modulated wave train in the inter-
mediate region is complicated because of the unsteadiness of the momentum
flux associated with individual waves in the train.

The phenomenon of wave set-up under those conditions has received only
1ittle attention in the literature.

The investigations by Li-San Hwang (1970) "Wave Set-up of Non Periodic
Wave Train and its Associated Shelf Oscillation" are particularly relevant.
In this study a set of experiments was performed in the laboratory for
measuring the wave set-up in the non periodic wave train. The oscillations
on the connecting shelf were also investigated. Reference is made to
Figures 6.2 and 6.3 from this study, in which the experimental arrangement
and the wave set-up and set-down measurement in various stations along the
traverse are shown.
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Figure 6.1 Characteristic regions for wave modulated set-up
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Figure 6.2 Experimental arrangements in Hwang, 1970

It was found that wave set-up and set-down occur on the reef and on the

slope respectively (as expected)
modulating character.

The latter can be seen from equations

, and that both set-up and set-down have a
6.30 and 6.31

if the energy density E is of a modulating nature.

The particular solutions of equations

6.30 and 6.31 do not give

difficulties:; however, the effect of the associated long wave phenomenon on
the sloping bottom is more difficult to determine.

Consider for example the conditions at Station 7, as shown in Fig. 6.1
which may be considered boundary conditions for the intermediate section

shoreward of Station 7 with
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£ ()

ng(t) = {zn - 1) odh (6.32)
E (t)
U (t) = D_JZE (6.33)

where E.(t) represents the modulating part of the energy density at Station
7 and hy the still water depth at that location.

The values ng(t) and Uy(t) are then to be considered boundary conditions
for the long wave problem in the intermediate section; the boundary values
no(t) and Up(t) propagate shoreward with the speed of the long wave vghg; on
the slope, the characteristics of n(t) and U(t) vary as function of the
location x.

Since in the intermediate depth range the energy modulation of the
propagating wave train travels with the group speed cgo(k), the latter is
different from the long wave speed vVghg.

In a subsequent Station 6 (See Fig. 6.1), the long wave, induced by
no(t) and UQ(t) at Station 7 and the group of waves representing the high
energy portion have a phase difference and arrive at different times.

Since Station 6 is located on the slope and has a smaller depth, the
energy of each of the individual waves in the group has most likely increased
due to shoaling.

For the section landward of Station 6 the conditions at Station 6 could
again be considered as a boundary condition for a long wave generated here.

The latter has a larger amplitude than one originated in Station 7 and
a phase shift regarding to the latter, because of the difference between
the group speed and the speed of the long wave on the slope.

In addition to propagation and shoaling of long waves on the sloping
bottom, reflection of the long wave phenomenon also will have to be con-
sidered.

Unlike the (almost) complete dissipation of energy of wind generated
waves breaking on the beach, long waves are partially reflected, from the
slope and near-completely from the landward boundary of the reef section
(if no breaking of the long wave occurs).

Analytical treatment of this problem has not been attempted here.

A related study is by Li-San Hwang, Samuel Fersht, and Bernard Le Méhauté
(1969). In this study the transformation and run-up of explosion generated
wave trains on a sloping beach are investigated analytically, however, the
effect of wave set-up is not taken into account.

Analytical treatment of the third and fourth region must include

nonlinear characteristics and energy dissipation. The latter includes energy
losses due to breaking and to bottom friction.

176



In the following section the nonlinear equations are evaluated for
the very shallow sections.

The equations will be simplified for this particular region of
application.

WAVE SET-UP IN A MODULATING WAVE TRAIN ON A SHALLOW REEF

The problem is treated as a two-dimensional problem, as in previous
sections. It is greatly simplified if a horizontal bottom is considered,
which is approximately the case for the traverse at Ala Moana under study.
The equations of continuity, momentum and energy as presented in equations

6.13-b, c and d will be analyzed for the shallow reef section under this
assumption.

The equation of continuity, equation 6.13-b gives:
(oh)y + (phU), = 0

which for constant o is:

oh oU oh  _
At h§§-+ Ug; = 0 . (6.34)
Since h = h0 +n,
this equation is equal to:
an U L yen .
ot + (g + n) 5+ U H (6.35)

which for small values of U leads to

an U .
5t + (hy + 1) 5 0 . (6.36)

The momentum equation (equation 6.13-c) for a constant value of p neglecting
shear stress and assuming horizontal bottom develops into

a(hU) , 3(hU2) , . ah, 13s . |
ot * oX *+ gh oX T p 9X 0 (6.37)

which leads to

3u , on U , 200
(hy + n) 3¢t Ust * 2(ho tn) U + U ox
on , 135 _
+glhy + )5+ 555 0o . (6.38)
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If the shear stress is included, this gives for horizontal bottom:

ol an oU on
(hy +n)gg + Usg + 2(hg + 1) gy + U5
on . 18S .1
+g(h +n)g s a %‘ = Q (6.39)

The energy equation is first considered without regard to energy
losses.

In that case 6.13-d is valid:

] 2 ] 4 ] 2 —
{ﬁphU + ﬁpgh + E}t + {phU(EU + gh) + US + (U0 + cgo)E}X = 0

Writing this equation in terms of n and U for shallow water, and assuming a
horizontal bottom, whereby cgo( ) = co(k) = vghg, and S = 3/2 E, leads to:

o(hy + n)U3T + o022 + og(h, + )T + 3
59'{%' (hy + n)U? + pg(hy + n)? }
53 { (hy+n)U + %pu } %Ugg
+ St g ey = O - (6.40)

If energy losses are included, the equat1on may be adjusted, using the
results of Chapters 3 and 4 where the major causes for the energy dissipation
per unit of time are considered energy losses due to bottom friction and due
to breaking:

S ™
. 2 o wH ’ g 2
By = 3™ E’[?“ETEF‘EE‘J * oguH
) 8mv2

Introducing these values into the shallow water equations and considering
equation 6.19 the energy equation for horizontal bottom then develops into:

2 3S
{%OUZ + pg(h, + n)} 5%'+ o(hy + n)U§{'+ 3 3¢

1 3 3 :

+ {209(h0 + n)U + §pu3} 52—+ {—p(h + n)U?
5 2 3S

+ pg(hy + n)?2 } U & (§U + §Cgo)ax

5 BU + P {2 (1)3H3 C 2} =
259 4+ B Sy 2 — + ——quH®} + Ut
il T |3 8s1nh3kh0 8,7

0. (6.41)
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For the steady state condition with U, 3U/3t 3n/3t and 3E/3t equal
to zero the equation reduces to

9(cq.E) 33
90 - /2 w°H z 2 -
—— 2 i) = 0L (6.42)

The three equations governing the wave set-up on a horizontal reef are
then equations 6.35, 6.39 and 6.41 .

These equations are complex and a solution is not easily obtained.

For waves moving into still water of depth hg, and with n and U%/2g
small compared to hg, equations 6.35 and 6.39 may be linearized as
discussed earlier.

For many purposes it is sufficient to take S as a known forcing term
already determined from the linear dispersive theory for the distribution of
k and E. For waves in shallow water this corresponds to S = 3/2 E.

In order to obtain a simplified, but still useful solution for the wave
set-up on a shallow reef, the following simplifications are further intro-
duced:

In the continuity equation, the last term is small compared to the
middle one; this leads to equation 6.36 .

N 4 (f U .
3t * (ho * ”)ax 0

A further reduction of the equation by considering n small compared to hg
may not always be justified for the shallow reef.

In the momentum equation the following simplifications seem appropriate:
. 3
1) U%%—1s small compared to (h  + n)5%
2) U? is small comapred to (h0 +n)
oU . an
3) 2(h, +n) Uz is small compared to g(h, + n)s

Elimination of the smaller terms from the momentum equation gives:

(h0+n)U%+ g(ho+n)%%+%§+% = 0 . (6.43)

For the energy equation the following reduction of terms seems reasonable:

1) %pU2 is small compared to pg(ho +n)

on

ol .
2) p(h0 + n)Ugf is small compared to pg h, 3t

3) %pU3 is small compared to 2pg(h0 + n)U
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4) gp(ho + n)U? is small compared to pg(h0 + )2

5) %U is small compared to %cgo.
The result is the following:
an , 23S an 20U
eg(hy + n)gg + 3 57 + 209(hy + n)Uz3- + og(hy + n)*z
2 oS , 5 <ol —
+§Cgo'57+-3—557+ €t+UT = 0 . , (6.44)

The set of reduced equations is then 6.36 , 6.43 and 6.44 .

As to the solution of these equations the method is further simplified
by determining the values of U, 3U/3x and 3U/5t from a solution of the
linearized homogeneous equations.

This is a relatively simple procedure for a horizontal reef. Boundary
conditions are U = Uo(t) at the seaward end of the reef and U = 0 at its
landward boundary.

The value U = Uy(t) is obtained from mass transport of waves breaking
on the reef with varying indensity E.

The values for U, 3U/3t and 5U/3x are then introduced to solve for n.

An interesting aspect of the use of linearized equations to solve for
U(x, t) is the possibility of obtaining resonance, by which the vertical
oscillations on the reef are amplified. In a two-dimensional situation »
closed at shoreward end, resonance occurs if the average period of the
oscillations

T = A (6.45)

/ahg

if 2 represents the length of the reef from the seaward edge to the landward

boundary and T the period of the primary mode of oscillation.

If this period corresponds to the average distance in time of successive
wave groups that break on the reef, then resonance occurs and the linearized
equations 6.24 and 6.25 may no longer be suitable to determine the
characteristics of U. Under those circumstances wave induced velocities due
to the activity of wave groups become significant and a bottom shear stress
term T is then required to obtain a finite solution for n.

If such high velocities would occur the elimination of terms with the
order U? from the momentum and energy equations must be re-evaluated.
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CHAPTER 7:  WAVE SPECTRUM AND WAVE VARIABILITY

INTRODUCTION

The waves of the sea are characterized by a variability in height,
period and direction: they have a random character.

In the open ocean the randomness of the sea is best treated as a
Gaussian or normal process, whereby it is assumed that the existing sea
state is a result of a very large number of causes, the effects of which
are superimposed upon one another. Only in the cases of large waves or
breaking waves does this approach meet with serious difficulties.

The randomness of the waves can be described by statistical methods.
Assuming stationarity and ergodicity for the random process statistical
distributions may be derived from the time series describing the water
level at a given location. For a Gaussian process it may be expected that
the instantaneous water level observations with discrete time steps conform
to a Gaussian distribution.

Investigations on the statistical distribution of maxima of a random
function (Cartwright and Longuet-Higgins, 1956 ), indicate that the type of
distribution that best describes the variability of the maxima is dependent
upon the characteristics of the spectrum. A narrow band spectrum relates to
a Rayleigh distribution; for a wide band spectrum the distribution becomes
Gaussian.

When waves approach shallow water, shoal and break, the statistical
parameters describing water level and wave height variations will change.
In this study, the nature of these distributions in shallow water will be
investigated.

An entirely different way to describe a random sea is by means of the
energy density spectrum. This describes the distribution of the mean energy
per unit of frequency over the range of spectral frequencies present in the
random sea.

The wave energy density spectrum is a very powerful tool 1in wave
analysis. It is also very useful in analyzing the changing of wave behavior
in water of shallow depth, although the nonlinearity of the phenomenon poses
some unresolved problems.

There are two principal routes that can be taken to determine the wave
spectrum from the time series. One is by treating the time series as a
Fourier series; the other one is by taking the Fourier Transform of the auto-
covariance function. The latter function itself gives additional insight
into the nature of the wave motion on the days of observations.

The problem of nonlinearity can be partly solved by computing the zero-

upcrossings spectrum rather than the energy density spectrum, as will be
further discussed in this chapter.
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WAVE SPECTRUM FROM FOURIER ANALYSIS

If a (real) time series x(t) is considered, which function is defined over
a finite interval of time, the function may be expressed as the sum of an infinite
number of sinusoidal components, each with its own amplitude and phase. Of
special interest for analyzing practical problems is the discrete series, whereby
x(t) consists of a series of discrete points at equal time intervals.

The discrete signal may be regarded as having been derived from a con-
tinuous signal x(t) of duration T by sampling the values of the signal at
spacing At, obtained by dividing the total length of the time series by n,

so that At = %—.
Defining time by t At =
length At.

% t, t represents the number of timesteps of

There are several forms in which the discrete Fourier series can be
written. One of them is

j_n—l
a 2
- _0 2m . o W &
x(t) = o+ jZ1 (aj cos SF gt + by sin T jt)
) (7.1)

+ —%%g-cos mt

whereby the suffix j refers to the successive Fourier components with

: I
amplitude aj and frequency AT

The value for the Fourier coefficients can be obtained from

a. == J x(t)cos =jt; j=0,1, ...n/2 (7.2-a)
J N &2 n
t=0
and
b, == ] x(t) sin==jt; j=0,1, ...n/2 . (7.2-b)
J N4z n
t=0
On substituting t = 0, 1, 2, ... n-1 in equation 7.1, a set of n equations

is obtained by which the n unknowns of the Fourier series may be determined.

The upper boundary of the sum E%l is an integer. If n is even, Eﬁ—
should be the lower number; if n is odd, the last term does not appear. This

term corresponds with j = %-and the frequency jf] = j%-= %-%—represents the
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highest frequency at which the discrete series can be sampled; it is called
the Nyquist frequency fN .

If the timestep is At, this frequency is equal to fN = ﬁ%ﬁ; . The time
distance At between the data points does not allow to sample at higher frequencies.

The complex form of the discrete series may be written as

(Ol
n-1 17T-Jt

(t) = i
X jzo c; e

(7.3)

whereby the values of the Fourier coefficients cj may be computed from

E x(t)e " . (7.4)

This form is very suitable for computer handling.
The complex form is symmetrical in structure.

If x(t) is real, the Fourier line spectrum |cjl or |cj|2 as function of
j is symmetrical about fN . The part for g-< J < n represents the complex part
and is equal to the values of chl orlcjl2 for negative values of j (- %-<j < 0).

A continuous spectrum is obtained from the line spectrum by computing the
energy density of each component by taking

2
_ eyl

55 = —2F

(7.5)

The basis of the energy considerations lies in Parseval's theorem:
+1/2T

n
1 x2(t)dt = § |csl? (7.6)
-1/2T =

stating that the mean energy of the series is equal to the sum of the squares
of all its Fourier coefficients.

This is true for the continuous as well as for the discrete series,
provided in the Tlatter all frequencies up to the Nyquist frequency are included.

A direct way to arrive at the continuous spectrum is by treating the time
series x(t) as a function on an infinite interval and decomposing this function
into its Fourier components by means of the Fourier Integral and its converse,
the Fourier Transform.
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For a continuous function, the latter is defined by

X(f) = fx(t) e-iomftyy (7.7)

v
The application of the Fourier Transform to a time series of restricted
length meets with difficulties since such a series does not have a transform
in the strict sense.

Nevertheless, one may define

1/2T
X(f;T) = [ x(t;T) e_iznftdt (7.8)
-1/27
and conversely
4V
x(t3T) = J X(F3T) e 12T tqs (7.9)
-

whereby the symbol T identifies the limited length of the time series.

It can be easily verified that the relationship between Cj and X(f;T)
has the form:

AF
f: +
iz Y
XTI g5 = ¢.2 . (7.10)
F, AL T ’
i~ 2

An analysis of the statistical properties of the Fourier coefficients shows
that the Fourier coefficients have too much variance compared to their mean to
provide statistically significant results.

What can be done about this?

A longer time series will not help. This simply reduces the distance Af

between successive values of Cj’ but it does not improve the accuracy of Cj'

Improvements can be found in different ways. One method is taking a group
of cj's together and determining the mean value for this group. Such procedure

improves accuracy but reduces the resolution of the obtained values.
Confidence Limits

It can be shown that for a Gaussian random process the Fourier coefficients
aj and bj, as defined by equations 7.2-a and 7.2-b, are random variables with a

mean of zero and a standard deviation 0j- Defining Ajz = ajz ¥ bjz » the random
variable
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has a xz distribution with two degrees of freedom.

It has been mentioned that an increase in accuracy of the spectral estimate
is not possible by increasing the length of the time series.

An appropriate way is to take the mean value of a number of consecutive
estimates in a bin. If the number of spectral estimates combined in a bin

is m, it can be shown that the variable llii%F1 , where G(f) is the spectral
9
estimate and sz = cjo, has a x2 distribution with v = 2m degrees of freedom.

A confidence interval may be defined from the probability statement:

2 v G(f) 2 _
pr 62 5_0_2——5X]_a/2}- (1 - a) (7.11)
f

whereby (1 - a) is the probability that the value of E—Q%;l is located between
o
f
the two indicated values.
If for (1 - a) a value of 95% is chosen, the appropriate values of

2 2 .
Xg.025 @Nd Xq_g75 Mmay be computed.

After some manipulation:

Pr {22_611‘1 <o < 2800 0,95 (7.12)
X0.975 X0.025

which gives the desired limits for cfz.

It has certain advantages to plot the wave spectrum on a log scale for
G(f) so that the variations in energy density for the high frequency part of
the spectrum become more evident. In addition, the confidence 1imit band may
be shown by one bar, valid for all frequencies. This is evident for the
selected interval form the relation

log l’?‘ﬂﬂi log cfz < log 122(_1‘_)_ (7.13)
X0.975 X0.025
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or

109 2" + Tog G(f) < Tog ofz <
X0.975
log ——— + log G(f) - (7.14)
X0.025

Reference is made to Figure 7.1 where the confidence intervals are
schematically shown.

f
CONFIDENCE BAND FOR FREQUENCY f
I3
o
°
SPECTRAL
ESTIMATE
4=f
fl
Figure 7.1 Fourier spectrum with confidence intervals.

The values of —731——-(<1) and Zv (>1) are independent of frequency

X0.975 X0.025
f if the logarithmic scale for G(f) is used.

WAVE SPECTRUM FROM AUTOCOVARIANCE FUNCTION

General Description of Method

A different approach to arrive at the wave spectrum from the time series
is by means of the autocovariance function.

The latter is defined by

+1/2T

c, (t) = 1im %— x(t)x(t + t)dt (7.15)
X T+
-1/2T

whereby x(t) and x(t + t) have a zero mean.
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For a discrete time series of n data points, a sample covariance function
cxx(r) may be defined by:

1 n-1
cxx(r) = ﬁ-tzox(t)x(t + 1) - (7.16)

It can be shown that the sample spectrum Cxx(f) may be obtained by taking the
Fourier Transform of the sample autocovariance function:
n-1

-1'—2“ Jt
€, {F), ZOCXX(T) e 'n . (7.17)
T:

Calculation of the estimated spectrum takes place by multiplying the auto-
covariance function with a window w(t) and taking the Fourier Transform of the

product CXX(T) w(t), see Figure 7.2.

C“(T) (a) AUTOCOVARIANCE FUNCTION

AN P O

\/ Wi®
Sw(T) (b) LAG WINDOW

RECTANGULAR (BOX) WIND
COSINE WINDOW

0 M

Figure 7.2 Autocovariance function (a) and lag
window (b).

In the frequency domain, this accounts for the convolution of the functions
Cxx(f) and W(f) by which a higher degree of accuracy for the estimated spectrum

is obtained. The result is the so-called smoothed spectrum. The smoothed
spectrum G(f) may be found (Loomis, 1977 ) from
2T

M
G(f) = ZMw(r) ¢ (1) e 1 IT (7.18)

and because of the symmetrical form of CXX(T) and w(t) gives:
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M
G(F) = w(o) c, (o) +2] w(t) c, (1) coszTTT it (7.19)

=1
where the boundaries -M, +M denote the length of the lag window.

It is customary to consider only real frequencies f > 0. Because of the
symmetry involved for real functions x(t):

G(f) = 2 G(f) ~ (7.20)

The choice of length and form of the lag window affects the accuracy

obtained, and is related to the degrees of freedom of the XZ distribution
that describes the probability density function for the smoothed spectrum.

A wide window corresponds to high resolution and low accuracy, whereas
a narrow window has a high accuracy and low resolution.

Reference is made to Jenkins and Watts (1968).

A comparison between the wave spectra obtained from each of the two
methods described is presented in Figure 7.3.

The time series used as a basis for the calculations is the one obtained
at station #7 in the traverse along Ala Moana reef on September 14, 1976. In
order to allow adequate comparison in the high frequency range energy densities
are plotted on a logarithmic scale.

Figure 7.3 shows a good agreement between the two methods, the only
marked difference occurring near f + 0, which may be due to the convolution
process applied in the second method.

Due to the advantages of Fast Fourier procedures in the computer handling
of the data, the Fourier coefficient method will be applied for the calculation
of the energy density spectra from the observed wave records.

Usefulness of Autocovariance Function and Spectrum

Although the autocovariance function and the corresponding spectrum
are formally equivalent as to the amount of information they contain, use
of the spectral format is usually preferred for the presentation of this
information.

Battjes (1977) lists the following advantages for the use of the spectrum
(apart from computational efficiency):

" - the spectrum localizes the contributions to the variance of the
process in terms of frequency and wave number, and it thereby
gives more insight into the underlying structure of the process
than is possible through the autocovariance function;
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Figure 7.3 Fourier spectrum compared with A C V - spectrum

for September 14, 1976.
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- as a corollary, the structure of a given process, as revealed in
its spectrum, usually can be more simply explained in terms of
causative factors than in the case of the autocovariance function;

- the calculation of the effects of lTinear operators on the process
is far simpler in the spectral domain (algebraic multiplication)
than through the use of covariances (convolutions);

- the statistical theory of the sampling distribution of estimates
from a finite sample, and the results obtained, are less compli-
cated for spectra than they are for covariances."

The above advantages are particularly true for waves in deep water,
where a linear spectral representation usually gives a true representation
of wave characteristics, except in cases of very large or breaking waves.

In water of shallow depth, the advantages become less obvious. When
dealing with nonlinear waves, the uncertainties about the physical meaning
of the energy peaks in the higher frequency range, as discussed elsewhere
in this chapter, take away some of the effectiveness of the energy spectrum

as a description of the true nature of the wave characteristics.

Under these conditions, the presentation of the autocovariance function
may supply additional information that may be helpful to characterize the
wave motion.

Figure 7.4 shows the autocovariance function for one of the data sets
of station #7 on Ala Moana reef, the spectrum of which is shown in Figure

7.3. The swell type nature of the waves becomes evident from the strongly
oscillating characteristics of the autocovariance function.

ZERO-UPCROSSING SPECTRUM

Definition of Zero-Upcrossing Spectrum

The description of wave behavior by means of the energy density spectrum
is most adequate when the wave motion can realistically be described by the
superposition of linear waves with different frequencies. Under those
conditions, the dispersion relationship w = f(k) defines the dispersive
nature of the waves, whereby various components have different phase speeds.

For the conditions described above, the energy density values in the
high frequency parts of the wave spectrum are physica]]y existent, short

waves having propagation characteristics conforming to their wave length or
period. Figure 7.5 shows typical spectra for Ala Moana reef on August 25, 1976.

When waves in deep water become high and steep and nonsinusoidal, the

underlying assumptions of the energy density spectrum are no longer fulfilled
and deviations from the ideal situation are to be expected.
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Figure 7.5 Typiéa] wave spectra for Ala Moana Reef
August 25, 1976.

Waves traveling into very shallow water becomes strongly nonlinear and
approach the cnoidal or solitary wave form.

An energy density spectrum of such wave conditions will show peaks in
the higher harmonic components that arise from the higher harmonics in shallow
water as shown in Figure 7.5. The difference with the spectrum for Tinear
waves is that these harmonics are coupled to the phase speed c of the cnoidal
or solitary wave and do not constitute free waves with their own propagation
characteristics.

After waves break on a shallow reef, higher harmonics are usually formed
originating from the breaking wave front. Such waves are not coupled but behave
as free waves; however, the water depth in which these waves are generated is
larger than the mean depth because they ride on the crest of the waves.

In an energy density spectrum for shallow water waves, one is not able to
distinguish between coupled and free harmonic components. In using the spectrum
as basis for the computation of the energy flux, additional information on the
wave behavior must be known.
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This problem is partly solved by calculating the zero-upcrossing spectrum.

In the Tatter, the energy of all consecutive waves, the height of which is
measured with the zero-upcrossing method, is computed. For each wave, the mean
energy divided by pg is computed from

_ 1 2
E; = 55 H; (7.21)

i

oo|—

whereby the index i denotes the sequence number of the individual waves in the
wave record. The factor %—is introduced to account for the nonlinearity of the
individual wave form.

To calculate the physical energy of the wave, multiplication with pg is
required.

The energies of all waves for the period interval Tj’ Tj+1 and for the
frequency interval %L-, TJ—— are summed and divided by the frequency interval
J J+1
1 1
A. = i
f T} Tj+]
to give
m
1 1452
iy 5 8 M
S(f) = N A (7.22)

where N is the total number of waves in the record and m is the total number of
waves in the frequency interval Af.

In order to simplify matters, the correction factor %-is taken constant
for all waves; its value can be determined by comparing the total mean energy
of the zero-upcrossings spectrum with the area under the curve of the energy
density spectrum as defined in the previous paragraphs.

Advantages and Disadvantages of the Zero-Upcrossing Spectrum

The most important advantage is that the waves for which the spectrum is
calculated do not need to have linear characteristics. Fach individual zero-
upcrossing wave is defined by itself and requires no knowledge of the rest of
the time series.

Furthermore, it may be expected that a spectrum defined in this manner
will be relatable to zero-upcrossing statistics. The zero-upcrossing spectrum
will contain an inherent relationship of height to frequency of the wave record.

A major disadvantage of the method is similar to the disadvantage of the

zero-upcrossing method in general: it eliminates higher frequency components
from the record that do not have a zero-upcrossing characteristic. Consequently,
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a great deal of higher frequency components will not be accounted for and
will not show up in the spectrum.

Another serious difficulty occurs when a long period wave of appreciable
amplitude is present in the record. This wave will elevate the time series
above or below the mean water level for prolonged periods of time so that
many zero-upcrossings are not counted. The low frequency wave will not
show up in the spectrum if the high frequency components dominate.

A final disadvantage is associated with the accuracy of the spectral
data points.

In the previous two methods of spectral analysis, higher accuracy of
the spectral estimate is obtained by taking the mean of a number of spectral
estimates at consecutive frequencies or by using a convolution process.

In the zero-upcrossing procedure, the number of data points is consider-
ably less (e.g. 15 times less) than the number of data points used for a
Fourier spectrum.

Although the accuracy of the zero-upcrossing method can be improved by
increasing the frequency bandwidth for which spectral estimates are determined,
one cannot go too far in this direction because of its associated effect of
losing resolution.

The spectral estimates of the zero-upcrossing spectrum therefore show
more irregularity then those of the smoothed Fourier spectrum.

Comparison of the Zero-Upcrossing Spectrum with the Fourier Spectrum

In this study, the usefulness of the zero-upcrossing spectrum has been
explored for the Ala Moana reef data. The following results have been
obtained.

Both the Fourier spectrum and the zero-upcrossing spectrum have been
calculated for the wave records at Ala Moana reef. Results for probe 4 are
presented in Figure 7.6 as an example.

Both spectra contain equal energy and are therefore directly comparable.

Generally, the Fourier spectrum has more energy in the high and Tow
frequency ranges, as may be expected. It is found that in most cases, both
spectra have their peak density at the same frequency.

The greater inaccuracy of the spectral estimates for the zero-upcrossing
spectrum is also visible in this figure. There is a reasonable agreement
between the two types of spectra for the medium frequencies. The deviations
between the two are highest for the high frequency ranges.
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Figure 7.6 Fourier spectrum (A) and ZUS (0) for September 7,

Probe 4, Ala Moana, 1976.
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WAVE HEIGHT VARIABILITY

Distribution of Water Level

The characteristics of a Gaussian random sea conform to a Gaussian
probability distribution for the discrete time series h(t):

/2m o

The function has two independent parameters: the mean value u of the time
series and the standard deviation o.

This distribution was used to test the probability distribution of the
water elevations for station #7 of the Ala Moana reef observations. Figure
7.7 gives examples of this analysis. It was found that based on the appli-

cation of the X2 goodness of fit test the hypothesis of a Gaussian distribution
for water levels appeared to be valid in a number of days of observations, but
had to be rejected for other days.

(a) FIRST RUN (b) SECOND RUN
2.5
3.0 T :
LEGEND:
- 2.0 1 o——e OBSERVED
= | N | N [P THEORETICAL
=z
E 20K
(723
=
w
(=]
>
-’: & .'o." Bl
sl
: /
s
(¢2]
o
o
a .
e J
-0.9 (o] 0.9 0.9
WATERLEVEL IN m
a)September 16, 1978 b)September 16, 1978

First Run Second Run

P.D.F. is near Gaussian P.D.F. is not Gaussian

Figure 7.7 Digitized water level observations
compared with Gaussian distribution.
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Regarding the distribution of water level for the stations in shallower
depth, it was found that the latter deviates considerably from the Gaussian
distribution. Reference is made to Figure 7.8 where the observed water level
distribution for probe 4 is compared with the Gaussian distribution.

10.0

LEGEND:
e——e OBSERVED
....... THEORETICAL

PROBABILITY DENSITY IN m"'

1 1 1 "-.. |
0.1 0.2 0.3 0.4 0.5

WATERLEVEL IN m

Figure 7.8 Probability density of sea level elevation, September 7,
Probe 4 with Gaussian distribution, Ala Moana, 1976.

Distribution of Wave Height

For the distribution of wave height, a distinction is usually made between
short-term and Tong-term phenomena. In this study, only the short-term aspects
of the sea state are considered.
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For the measurement and counting of wave height and period, the zero-
upcrossing method has been shown to give a statistically acceptable method
which is also satisfactory from an engineering point of view.

The definition sketch for zero-upcrossing height and period is shown in

Figure 7.9. A wave height H is defined as the total range of h(t) in a time
interval between two consecutive zero-upcrossings of h(t) (Battjes, 1977 ).

h(t) LEGEND:

""""""""""""" o ZERO -UPCROSSING
H ] CREST
AAAI/N" o TROUGH
/[ xv/jl"

Figure 7.9 Definition sketch for zero-upcrossing
height and period.

(from Battjes, 1977)

The underlining of the variables h(t) and H signifies that the variables
are of random nature.

It has been shown (Cartwright and Longuet-Higgins, 1956 ) that for a narrow
band spectrum, the probability density function for the wave height conforms
to a Rayleigh distribution.

The Rayleigh probability density function is a one-parameter distribution;
it attains various forms depending on the parameter used for defining the
distribution, the latter can be the mean wave height, root mean square wave
height, significant wave height, or mean energy.

In terms of the root mean square wave height (Hrms)’ the function is given

by
-
2
fFHy = Se ™ (7.24-a)
HY‘mS

In terms of the relative wave height n = H'4 the function is:
rms

f(n) = 2n e . (7.24-b)
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In terms of the mean energy m_of the time series, the equation reads:

0

f(H) = Z.—::_- e (7.24-C)

0

The applicability of the Rayleigh distribution to the distribution of wave
height is limited to a narrow band function.

The bandwidth of a wave spectrum may be described by its spectral width
parameter defined by

(7.25)

whereby mys Mo and m, are respectively the zero, second and fourth moment of
the spectral density function.

The spectral moments are defined by

N

m = | f"G(f)df . (7.26)
L

A narrow band spectrum corresponds to € = 0, whereas a wide band spectrum
relates to € = 1.

It can be shown, that depending on the value of the spectral width
parameter, the probability density function of the peaks may vary from
Raleighian (for € = 0) to Gaussian (for € = 1).

Reference is made to Figure 7.10 (Price and Bishop, 1974 ), where x
denotes peak elevation above the mean.

A narrow band spectrum has another important characteristic. It can be
shown that for a Rayleigh probability density function, the significant wave
height is directly related to the mean energy of the time series:

Hy = 4.0 ﬁﬁ; ’ (7.27)

The significant wave height is then defined in the usual way as the mean
value of the one-third highest waves of the record. If the zero-upcrossing
method is used, it is identified by HZ 1/3° In order to test the applicability

of equation 7.27, the significant wave height HZ 1/3° and the standard deviation
of the time series (02 = mo) have been computed. The relationship between the
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(from Price and Bishop, 1974)

significant wave height and the standard deviation is shown in Figure 7.11.
The best fit of the equation for all data (wave height in meters) is

H = 3.5740 + 0.031 . (7.28)

z,1/3

H
Values of —Eﬁgii for deep and shallow water are presented in Table 7.1

in which also standard deviations are listed. In addition, computed values of

H H
—Elllé-and —Z22MaX 5 e presented, where ﬁé is the mean zero-upcrossing wave height

A, z,1/3

and Hz max the maximum zero-upcrossing wave height in the wave record.
b

The theoretical value of 4.0 for the coefficient in equation 7.27 has to
be replaced by 3.57 but overall the linear relationship between Hz 1/3 and

o is observed.

The fact that the Rayleigh probability density function is based on one
single parameter makes it less useful if conditions in the field do not com-
pletely satisfy the underlying assumptions of this distribution.

A useful probability distribution of wide application is the Weibull
distribution (Weibull , 1951 ):

F(x) =1 -e ™ (7.29)
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TABLE 7.1

VALUES OF HZ!‘@, HZ"ﬁ, AND | Z:max

(¢}

4

Hz1/3

FOR DEEP AND SHALLOW WATER AT ALA MOANA REEF

of the time series (Hz,]/3/°)

Ratio of significant height to standard deviation

Shallow water mean: 3.88, s = 0.52
Intermediate water mean (probe 6): 3.37, s = 0.28
Deep water mean (probe 9): 3.56, s = 0.13
PROBE | 07-30-76 | 08-04-76 | 08-25-76 | 09-07-76 09-14-76 | 09-16-76 | 09-23-76
1 3.48 4.94 3.35 4.56
2 3.37 3.36 3.93 3.35 3.25 3.89
3 3.83 3.26 4.70 3.73 3.63 4.25
4 3.13 3.73 4.67 4.58 3.58 4.37 3.78
5 3.63 3.86 3.90 3.69 3.70 4.00 4.85
6 3.25 3.25 3.85 3.40 3.12
7 3.56 3.77 3.46 3.47 3.53
Ratio of significant-height to mean height (H, 1/'.3/'1_4'2)
Shallow water mean: 1.70, s = 0.13
Intermediate water mean (probe 6): 1.76, s = 0.11
Deep water mean (probe 9): 1.72, s = 0.11
PROBE | 07-30-76 | 08-04-76 | 08-25-76 | 09-07-76 | 09-14-76 | 09-16-76 | 09-23-76
1 1.75 1.82 1.62 1.84
2 1.61 1.63 1.85 1.55 1.50 1.82
3 1.62 1.70 1.58 1.82 1.67 1.70 1.92
4 1.58 1.65 1.56 1:73 1.67 1.69 1.71
5 1.42 1.66 1.79 1.66 1.64 1.76 2.01
6 1.96 1.69 1.72 1.72 1.73
7 1.60 1.87 1.65 1.67 1.79
Ratio of the height of the largest wave in the record
to the significant height (Hz max/HZ ]/3)
Shallow water mean: 1.88, s = 0.38
Intermediate water mean (probe 6): 2.40, s = 0.54
Deep water mean (probe 9): 1.80, s = 0.13
PROBE | 07-30-76 | 08-04-76 | 08-25-76 | 09-07-76 09-14-76 | 09-16-76 | 09-23-76
1 2.70 2.01 2.34 2.08
2 2.41 2.36 1.89 2.70 2.46 2.37
3 1.75 2.00 1.76 1.71 153 1.54
- 1.63 1.54 1.51 1.48 1.66 1.71 1.77
5 1.44 1.49 1.98 1.84 1.65 1.71 1.48
6 2.15 3.32 2.42 1.96 2.14
7 1.69 1.65 1.94 1.80 1.91
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and the corresponding probability density function is

f(x) = aB x e : (7.30)
It may be observed that for o = 1 and 8 = 2 the function becomes equal to the
Rayleigh distribution, so that the latter represents a special case of the
Weibull distribution.

Comparison Between Theoretical and Observed Values

Observed wave height distributions from the wave records at Ala Moana reef
are compared with theoretical values. In the following, some results of this
analyses are summarized.

Figure 7.12-a and 7.12-b show observed wave height distributions for two
days of wave observation in station #7 of the Ala Moana traverse, together with
the computed Rayleigh distributions for this data. The parameter used for the
theoretical curves is the root mean square wave height.
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20
2.0
I
& LEGEND:
= e——e OBSERVED
s | %t eeseees THEORETICAL
-
®
z
& 10
>
[
ad
H
<
(-]
(=]
T os
o |
o 1.20m (o] 1.50m

a) September 16, 1978 b) September 16, 1978
First Run Second Run
P.D.F. is Rayleighian P.D.F. is Rayleighian

Figure 7.12-a Observed wave height distribution

compared with Rayleigh distribution.
(Station 7)
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Figure 7.12-b Observed Wave height distribution
compared with Rayleigh distribution.
(Station 7)

Figure 7.12-a shows a good agreement between predicted and observed values.

An application of the XZ - goodness of fit test to the data indicates that at
the 95% significance level the hypothesis of a Rayleigh distribution is not
rejected.

Figure 7.12-b shows the same type of comparison on a different day.
On the same basis, the hypothesis has to be rejected for that day.

The results are likely to show larger differences between observed and
predicted values when considering wave records in shallower water. Particularly
after breaking when higher harmonics are being generated, the usefulness of the
Rayleigh distribution as a description of the wave height distribution is
likely to fail.

A testing of the Weibull distribution as probability density function
(with its two independent parameters instead of one) has indicated that this
distribution is able to adequately describe the actual distribution of wave
heights in the various stations.

However, for this it is necessary to fit the value of the two parameters
of the theoretical function to the observed distributions.



WAVE PERIOD VARIABILITY

Distribution of Wave Periods

Bretschneider (1959) found that the square of the period follows a
Rayleigh distribution. The results of analysis for the Ala Moana wave data
indicate that the first power of the periods more closely fits the Rayleigh
distribution. Reference is made to Figure 7.13 where histograms of wave
periods are presented for two days of observation.
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Figure 7.13-a Distribution of wave periods against distance from a
datum, Ala Moana, August 25, 1976.
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Figure 7.13-b Distribution of wave periods against distance from the
datum, Ala Moana, September 7, 1976.
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An even better description of the wave period distribution is obtained
if a Weibull probability density function similar to equation 7.30 is used:

f(T) = aBTB_] exp (-aTB)

whereby the periods are fitted by linear regression to obtain the appropriate
values of o and B. (Lee and Black, 1978 ). In this way, the linear correla-
tion coefficient between observed and predicted data, exceeds 0.98 for most
cases.

However, values of B vary considerably on a day to day basis; its mean
value is

g = 1.665 + 0.219

Relationships Between Period and Spectral Characteristics

Following Battjes' (1977) description, the time interval between consec-
utive zero-upcrossings, often called the "zero-upcrossing wave period" is a
random variable, written as T. Its expected value, the mean zero-upcrossing
period is called TZ.

Analysis by Rice (1944) has shown that the value of Tz may be expressed
in terms of the zero and second moment of the energy density spectrum:

T = E(T) = (=2) : (7.31)

The shape of the probability distribution of T is rather sensitive to variations
in the shape of the spectrum.

Consider furthermore the maxima of b_(t). The ratio between the average
time interval between consecutive maxima, Tm’ and the mean zero-upcrossing

wave period TZ,

==

(0<r<1) (7.32)

5
"
N

is a parameter which describes to a certain degree the irregularity of the
process h (t).

For a narrow band spectrum, r = 1.

Broad banded spectra show a much greater irregularity whereby the value
of r can approach zero.

Another way to look at the wave motion as a random process is by considering
the correlation between the function h (t) and its second derivative. (Battjes,
1977 ).
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The coefficient of linear correlation (p) between these two can be expressed in
terms of the moments of the energy density spectrum:

'

p= - -—-—————(mom4)]/2

(7.33)

A narrow spectrum corresponds to a slowly modulated sine curve as process
realization, whereby h (t) and its second derivative are strongly negatively
correlated, whereby p -~ -1. With increasing spectral widths, the value of

m
- becomes smaller and p approaches zero.
(m0m4)]/2

It can be shown that for Gaussian processes

T = (=) (7.34)

T m
r = Tﬂ.: 2 _ -0 . (7.35)
z \/mom4

For Gaussian processes, this provides a 1link between the two approaches.

The bandwidth € has earlier been defined by

er” =1 - =1-p (7.36)

=1 - (M ‘
€ 1 (T ) (7.37)
If the process is not completely Gaussian it may be expected that esf €1

For the Ala Moana reef data, it is generally found (Black ,» 1978a) that

€1 > & shallow water

€r < € offshore probe

S
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Comparison Between Theoretical and Observed Values

From the wave records at Ala Moana reef the values of Tm and TZ have been
computed and compared with corresponding values obtained from the spectrum.

In addition, values of the significant wave period have been computed in
two different ways: the value TH as the mean period of the one-third

z,1/3
highest of waves from the wave record, and the value TZ 173 as the average value

of the one-third highest periods of the wave record. |

The computed values of TZ and Tm as obtained from the wave records deviate

considerably from the theoretical relationship, presented in equations 7.31 and
7.34. Marking the observed values with the index (o), the following relation-
ships have been obtained:

m 1/2
T =1.14 () for deep water
z(o) m,
1/2 (7.38)
m
T = 1.64 (=2) for reef area
z(o) m,
and
% 1/2
2
T = 1.40 (=) for deep water
m(o) my
172 (7.39)
m
" 2
Tm(o) = 1.33 (m4 for reef area

The observed ratios between TZ and Tm as obtained from the wave records for deep
and shallow water are:

T
TﬂKQ%—= 0.361 for deep water
z(o
(7.40)

Tm(o)
Tr———'= 0.353 for reef area
z(o0)

€ for the Ala Moana data varied between 0.83 and 0.97 whereas

€1 Was found to vary between 0.88 and 0.96.
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T

H
The mean values of the ratio ——5f11§-obtained from the data at Ala Moana
z
reef are
T 1.30 £ 0.13 shallow water
"y 173
——f’-—— = (7.41)
z 1.56 £ 0.12 offshore
This compares with 1.14 + 0.11 obtained by Goda (1974).
12,173
For the ratio T——L———— , the following values were obtained:
H,,1/3
Tz,1/3 i ’].35 + 0.14 shallow water (7.42
T B -42)
Hy,173 11.11 £ 0.04 offshore

MEAN WAVE ENERGY AND ENERGY FLUX AS RELATED TO WAVE SPECTRUM

Considerations About Mean Energy in Linear and Nonlinear Waves

The energy density spectrum describes the distribution of mean energy per
unit of frequency over the various band widths present in the spectrums. The
mean energy present between the frequencies f] and f2 (Figure 7.14), is given by

fs

rol = 6(f)df (7.43)
1-27 .
1

a quantity represented by the area under the curve between the ordinates f]

and f2‘

» The total mean energy of the time series is then represented by the total
area under the curve from f = 0 to f = fN:

N
J G(f)df =m_ . (7.44)
0

The above description of energy refers to the characteristics of the time
series defined by
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(a) LINEAR WAVES
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: E/ p9

"
Q

f
0% : m, = j'" G (t)df
o

f
Flo- Jf NG(f)c (f)af
() .

fi f2 fn

a) Energy Density Spectrum For Linear Waves

(b) NON LINEAR WAVES

G(f)

N E/pg ~ o

:
0> = m, = f"e(f)df
o]

f
F‘#f"G(f)cg,(f)df

f, f2 f'n

b) Energy Density Spectrum For Nonlinear Waves

Figure 7.14 Energy Density Spectrum For Linear (a)
And Nonlinear Waves (b).
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2oy

T
Mean energy = h™(t) = }-] hz(t)dt (7.45)

)
in which T is the length of the record.

To relate this value to the mean energy present in linear waves, linear
wave theory gives for the mean total energy present in a wave train with
amplitude a:

E = % oga’ - (7.46)

For a sinusoidal signal energy computed according to equation 7.45 gives:

n%(t) = ]g a? (7.47)

which becomes identical with equation 7.46 except for the factor pg which is
required to obtain the dimension of physical energy.

For Tinear waves, the area under the curve of the energy density spectrum
is therefore a measure of the total energy contained in the waves.

Physically, this mean total energy is composed of potential and kinetic
energy, which for linear waves are equal in magnitude.

Expression 7.45 then corresponds to two times of the potential energy of
linear waves, which then presents the total mean energy of such waves.

In nonlinear waves, the above procedure presents difficulties.

The energy computed from the wave record by applying equation 7.44 is
actually twice the potential energy of the wave motion, and is not necessarily
equal to the mean total energy (potential + kinetic) of the waves, because
potential and kinetic energy are not evenly distributed.

Longuet-Higgins (1974b)has computed that for solitary waves and large

%—ratios the potential energy is about 45% of the total energy of the wave.

If a signal would consist of a sequence of solitary waves and the wave
spectrum would be computed, the total area under the curve would only represent
90% of the total wave energy. For shallow water waves, where the wave shape

is close to a solitary form, a correction factor of ﬁl§-~ 1.11 then has to be
applied to determine the mean energy from the area under the curve.

Energy Flux as Related to the Energy Density Spectrum

For a train of linear waves, the transport of energy in the direction of
wave motion per unit of width F is related to the mean energy E and the group
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velocity by

F=E Cgr ‘ (7-48)

If the wave train is composed of waves with different amplitude and period
and energy is distributed over the frequencies according to Figure 7.14-a the
portion of the energy flux which is related to the frequency band df is given
by

dF' = G(f)df
(F)F (eg)
where (cgr) denotes the group velocity that corresponds to the frequency f.
f

The total energy flux can then be computed from

fN
F' = J 6(f) (cg,.) df . (7.49)
grie
0

The basis for the above calculations is that all harmonic components,
including those with higher frequencies, behave as independent free waves
each having its own group velocity.

For linear waves, the mean group speed Cgr to be used for the calculation
of the energy flux is obtained from the equations

i Y
E'c__ = I G(f) (c,.) df = f [ G(f) d(f) ] ¥ G

gr gr's ] “qr
0 (0]
or
fN

G(f) (Cgr)f df

—_— Y0

cgr - fN .. (7.50)
[ G(f) df
0

For waves in intermediate depths and nonlinear characteristics, the above
approach poses a problem. As discussed earlier, the energy contained in the
higher frequency ranges may come from higher frequency components which are
coupled to the primary waves of lower frequency, and therefore have the same
phase speed as the major waves. Calculation of the energy flux based on the

previously described method then is not completely correct (see Figure 7.14-b).
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In very shallow water, the problem mentioned becomes less significant
because waves lose their disperse nature and propagate all with the same
phase speed, which is equal to the group velocity.

In computing the energy flux from the wave spectrum, the nonlinearity
of the waves may introduce errors, in the mean total energy E of the waves
as well as in the evaluation of the group speed.

In experimental ‘procedures, those effects have to be taken into con-
sideration.
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CHAPTER 8:  FIELD EXPERIMENTS AND ANALYSIS

The previous chapters have been concerned with the description of the

problem and with its theoretical background.
Where appropriate, work of other investigators that was relevant to this

study was reviewed and compared with the theoretical developments carried out

for this study.
Results of the experimental part of this study have been used incidentally
in chapters 4, 5 and 7 to verify or illustrate theoretical concepts.

This chapter will give a discussion of the experimental set-up in the
field and will further analyze results that have been obtained.

EXPERIMENTAL SET-UP

The field experiments were conducted across the offshore shallow coral
reef at Ala Moana Beach Park in Honolulu. The site is situated west of Waikiki
Beach and southeast of the entrance to the small craft harbor "Kewalo Basin,"
situated on the south shore of the Island of Oahu (Figure 8.1).

Site conditions and bathymetry were shown in Figures 1.1, 1.2 and 1.3.
An aerial photograph of the site, showing wave conditions as they prevail on

the reef, is presented in Figure 8.2.
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Figure 8.1 Study Site on Island of Oahu
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Aerial Photograph, Ala Moana Reef

Figure 8.2
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Waves were measured in seven stations placed in depths ranging from about
0.6m to 11.0m situated in a traverse perpendicular to the depth contours.

In Stations #1 through #5 situated on the reef and in Station #7 situated
offshore, the waves were measured with capacitance wave recorders. In Station
46 which was situated in the first breaker zone, waves were measured by filming
the motion of a floating buoy from a high point on shore, west of the harbor
entrance.

A concrete bench mark was established on the shallow reef as a reference
point for station identification.

Reef bathymetry was determined by leveling with reference to a bench mark
on shore during low tide conditions.

The offshore bathymetry was taken from a current hydrographic chart; the
offshore profile in the traverse was measured from a vessel, using an echo
depth recorder. At the site the offshore bottom consists of a stable coral
reef.

Most data were collected in the summer and fall of 1976, during the period
July 30 to September 23, 1976. A total of 10 experimental runs were made, of
which 3 runs were rejected because of some likely error.

During this first series of measurements, the mean water level at the
various stations was measured indirectly by determining the mean of the time
series of the wave records.

A second series of measurements was carried out in the fall of 1978. The
main purpose of this effort was to verify data on wave set-up, obtained during
the first series. During this measurement program, waves were measured in the
offshore station similar to the measurements in 1976. At the five reef stations,
however, the mean water level was measured in a different manner by means of
a damped manometer, carefully leveled and secured on the reef, but no wave
gages were employed at these stations. See Figures 8.3, 8.4 and 8.5. During
that same period, one tide gage was established at Station #1 and one inside
Kewalo Basin, from which level differences between the two gages could be
obtained. Reference is made to Figures 8.6 and 8.7.

During the experiments winds were usually from the northeast, with an
average speed of 7 - 8 m sec™1.

Waves had a dominant period between 12 and 18 seconds with significant
heights up to 1 m. Their direction was usually at a small angle with the
coastline. On certain days wave energy from adjacent reef areas entered the
measurement traverse, and affected the results of the two-dimensional analysis.

A11 instruments and recording equipment for the reef stations were
transported and deployed from a small mobile platform equipped with four jack-
up legs, the "reef buggy." During transport the four legs were raised to a
high position (Figure 8.8). At the project site, the legs were lowered on the
reef and the platform was raised above the water level out of the reach of the
waves.
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Figure 8.3 Manometer For Wave Set-Up Measurement
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Figure 8.4-a Reading of Manometer for Wave Set-Up

Figure 8.4-b Manometer Fixed to Staff-Gage in Kewalo Basin

218



Figure 8.5 Socket for Manometer Fixed to Reef

The platform consisted of a 3x2 m2 life raft sandwiched between two
rectangular frames of angle iron. On top of this a bolted wooden platform
served as deck. On each corner a seven foot tall metal pipe was attached
to the frame with a hand operated winch and pulley. The winches allowed
the Tegs to be raised or lowered. Figure 8.9 shows the reef buggy in position
over the reef.

For the reef stations the capacitance wave gages were mounted on tripods
(Figure 8.10). The wave information was cabled to the reef buggy and recorded
on a Sangamo Model 3400, 16 channel portable tape recorder. A portable
generator was used as a power source.

The offshore capacitance wave gage was mounted on a vertical pile in 11m
of water. The pole was hinged to a heavy concrete anchor block on the bottom
and wired to stabilize its vertical position (Figure 8.11).

After use the pole could be Towered and secured on the sea bottom to
avoid damage from ships and floating objects.

Wave information from the offshore probe was transmitted by cable to a
Sanborn strip chart recorder on board of a craft (See Figure 8.12).

Breaking wave conditions in Station #6 with depth of about 2.0m made it
impossible to use capacitance gages as employed on the reef. For this reason
the motion of a floating buoy tethered to a coral head, was filmed from a loca-
tion on shore. Data were recorded on magnetic tape, strip chart, and film.

A11 of these had to be calibrated and prepared for computer analysis.

219



Figure 8.6 Float-type Tide Recorder at Kewalo Basin

Figure 8.7 Bubble-type Tide Recorder for Tide on Reef
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Figure 8.8 Reef Buggy Under Way to Measurement Site

The strip chart data from the offshore probe was digitized at 2.605
points per second.

During the second series of measurements in 1978, emphasis was on
determining the wave set-up over the reef; waves were only measured in the
offshore station in the same way as during the first series of measurements
in 1976.

At the reef stations, only visual estimates of the wave height were
made in addition to the water level observations. Current velocities on
the reef were measured using a submerged bottle as a float attached to a
string with distances marked on it.

Detailed information on data calibration and data handling is presented
in Black (1978a) and Wentland (1978).
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Figure 8.9 Reef Buggy in Position Over Ala Moana Reef
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Figure 8.10 Capacitance Wave Staff on Reef

CAPACITANCE -TYPE RECORDER
WAVE GAUGE

OPERATIVE POSITION
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Figure 8.11 Offshore Capacitance Gage
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Figure 8.12 Recording Equipment Aboard Research Vessel

METHODS OF ANALYSIS

The analysis is based on the calibrated time series of water elevation
for the various stations. Waves were usually recorded continuously during
approximately one hour of measurement. The data were digitized for computer
handling at 2.5 points per second.

The digitized tapes were converted into files of 8096 data points: in
the analysis 4096 points (corresponding with ~ 27.3 minutes of record), were
used for the computation of the wave spectrum.

Although wave conditions during the one hour of measurement will vary
slightly, partly because of the changes in tide, for the analysis the time
series is considered as part of a stationary process.

During the 1976 series, the tide elevation was assumed to correspond with
predictions from the tide table for Honolulu. During the 1978 experiments, in
order to improve accuracy, two tide recorders were employed on the site and
water levels on the reef were measured with the visually read manometers.

The time series of water elevation were analyzed in two different ways:

a. by calculating the statistical distributions of water level,wave
height, and wave period,

b. by computing the wave spectra to provide information on the
distribution of energy over various frequency components.
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To obtain wave elevation data the mean was subtracted from the data
points to obtain the deviations from the mean water level.

To obtain wave heights and wave periods a zero-upcrossing method was
used. The wave height estimated by the zero-upcrossing procedure is de-
pendent on the digitizing interval. To reduce the error a parabolic inter-
polation was applied which fitted a parabola to three data points (Black, 1978a)

Because the data is in digital form, it is also necessary to interpolate
for the time at which the record crosses the mean.

For the computation of the wave spectra a F.F.T. procedure was used.

A small change in tide level during a series of measurements produces
a trend in the data. To remove this trend the time series was fitted to a
straight Tine by linear regression, which was then subtracted from the
record before data reduction.

Wave heights in Station #6 were obtained by filming the motion of a
tethered bouy (Brower, 1977). The filmed record was obtained with an 800 mm
Tens on a spring wound Bolex 16 mm motion picture carera at 8 frames per
second.

The film was projected against a grid and the motion of the bouy was
obtained from a frame by frame analysis. The scale was obtained from the
known diameter of the bouy. The digital information was punched into
computer data cards in blocks of 256 data points. The digitizing interval
was 4 points per second.

WATER LEVEL, WAVE HEIGHT AND WAVE PERIOD VARIABILITY

For seven days of observation in 1976 parts of the calibrated time series
are shown in Figures 8.13 to 8.19. The following general characteristics may
be observed.

The waves in the offshore Station #7 usually show a group behavior with
groups of low and high waves following each other.

Such group behavior induces a modulating effect in the mass transport
associated with the breaking waves on the reef. This in turn induces a long
period oscillation on the reef, as visible in the records of probe 5 on July
30, 1976 and to a lesser degree in probe 3 on August 4, 1976. The period of
these oscillations is of the order of a few minutes. Waves at Station #5
can be higher or lower than waves at Station #7, depending on shoaling and
dissipation characteristics of the incident waves.

Due to the energy dissipation, waves reduce in height from Station #5
to Station #1.

The time series of Stations #5 through #3 usually show steep, almost
vertical upcrossing characteristics, which are indicative of wave breaking.
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Wave Records, Ala Moana, July 30, 1976
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Figure 8.14 Wave Records, Ala Moana, August 4, 1976

227



SCALE IN m

0.62

Figure 8.15

PROBE 7

PROBE 5

PROBE 4

LA MA!\AAlkuk

PROBE 3

o A, A Pt Pl

PROBE 2

e e Ty e S R A

PROBE |

N WYY UV U U N W Y

1 1 1 1 1 1
330.00 3680.00 390.00 420.00 450.00 480.00

TIME IN sec

228

Wave Records, Ala Moana, August 25, 1976



SCALE IN m

1.36 -

1

0.68 | LMLA:_AL
l PROBE 2

1

PROBE 5

PROBE 4

PROBE 3

J.wa

‘MLA‘A"UA“’AV’LVWM'A

PROBE |

1 1 1

360.00

Figure 8.16

390.00

Wave Records, Ala Moana, September 7, 1976

420.00

450.00 480.00 510.00

TIME IN sec

229



IN m

SCALE

1.97

1 1 1 1

PROBE 7

PROBE 5

! PROBE 4
0.99
l ' E PROBE 3

PROBE 2

360.00 390.00 420.00 450.00

TIME IN sec

Figure 8.17 Wave Records, Ala Moana, September 14, 1976

230

480.00

510.00




IN m

SCALE

2.40 - LvMﬁA-<L=ﬁdJ&*hchNH::#VNJ‘w;#’\::#¥<:ﬁav=J£HA-JQLL\==#“

PROBE 7

PROBE 5

PROBE 4

231

1.20 -
ol |
PROBE 2
PROBE |
1 I Il 1 1 1
360.00 390.00 420.00 450.00 480.00 510.00
TIME IN sec
Figure 8.18 Wave Records, Ala Moana, September 16, 1976



E
z PROBE 3
w 0.74
i |
<
(&}
w
o
PROBE 2
o A A AL Lnk A N L
A aw it SAn A AR AT A R
PROBE |
AA MAAAL ALLAA‘AALAAL A
Sw=—=a vl A= AR A NI T TRV W W e O
1 1 1 1 1 1
360.00 390.00 420.00 450.00 480.00 510.00
TIME IN sec
Figure 8.19 Wave Records, Ala Moana, September 23, 1976

lations following the crest.
oscillations, the characteristics of the primary wave sys
the records of the shallow water probes on the reef.

PROBE 7

PROBE 5

, ’ [ PROBE 4

Most breaking waves are characterized by a set of high frequency oscil-
Despite the presence of these high frequency
tem is retained in

Water Level Distribution

If f(h) signifies the probability density function for the discrete time
series h(t), this function is defined by the probability statement
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Pr {h < h <h+dh} = f(h) dh . (8.1)

It can be reasoned that the water level fluctuations in ocean waves are
likely to be described by a stochastic Gaussian process. If the mean value
is reduced to zero the probability density function then conforms to the
Gaussian distribution

-h2
1 260
f(h) = Bl . (8.2)
V21 o
The probability density function is characterized by its moments, the

n-th moment being defined by

M= f h" f(h) dn . (8.3)

The first moment signifies the mean, the second moment the standard deviation.
The third moment gives the skewness, which describes the asymmetry of the
distribution and is defined by

§ = e | (8.4)

The fourth moment defines the kurtosis. The latter measures the peakedness of
the distribution:

K = _4 . ‘ (8.5)

For a Gaussian distribution S = 0 and K = 3.0.

A positive skewness value indicates that the function is skewed toward
the left, and a negative value means that it is skewed toward the right.

Examples of probability density functions for the Ala Moana reef data
have been presented in Chapter 7. For the offshore probe, the distribution
is not strictly Gaussian but deviations are relatively small. For the reef
stations, however, considerable deviation from the theoretical Gaussian
distribution was observed. Compare Figure 7.8. A positive skewness coef-
ficient may be noted in this figure.

Considering all records of 1976, the skewness coefficient ranged from
-0.25 to +3.29.

Its variation along the traverse is shown in Figure 8.20.
The skewness is the greatest at probe 1 under onshore wind conditions.

The kurtosis coefficient is nearly 3.0 offshore (varying between 2.93 and 3.69)
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Figure 8.20 Sea level elevation skewness against position on the
reef, Ala Moana, 1976.

conform to a nearly Gaussian distribution and increases with decreasing depth

with its maximum value in Station #1, varying between 6.04 and 9.77 (Black,1978a)
As a result of the analysis, it is concluded that the Gaussian distribution

is not valid for very shallow water. For the deep water probe (Station #7), the

distribution may be considered nearly Gaussian.

Wave Height Distribution

Using zero-upcrossing analysis, the distribution of wave heights have
been examined for various records. Some results have already been presented
in Chapter 7 for discussion purposes.

Wave height distributions have been compared with the Rayleigh distri-
bution, the truncated Rayleigh distribution and the Weibull distribution. A
method to arrive at a wave height distribution using the energy dissipation
model, described in Chapters 4 and 5, is also discussed.

A detailed analysis of the Ala Moana data with respect to the first three
distributions is presented in Black (1978a).

Rayleigh Distribution

Wave heights for all Ala Moana stations were compared with the Rayleigh
distribution. The heights were broken up into 20 bins of width
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AH = Hz,max

30 (8.6)

and the number in each bin was counted.

For the gcodness of fit test, a X2 criterion was used, where

(- 0,)%/E, (8.7)

I o~—m3

2 -

Xm-1 ",

i

and m is the number of bins

Ei is the theoretically expected number of waves in the bins, and

01 is the observed number.

The number of degrees of freedom for the x2 distribution is m - 1.

For the offshore station two out of five wave records did not exhibit a
Rayleigh distribution using the above given criterion. Since the Rayleigh
distribution is based on the assumption of a narrow band spectrum, a filtering
procedure was applied by removing all waves with period less than 2 seconds
from the record. The height of a wave with period less than 2 seconds was
compared with the height of the wave immediately following and the larger of
the two was retained. The goodness of fit appeared to be considerably improved
if the short period waves are eliminated. For the offshore probe all records
exhibited Rayleigh characteristics when this procedure was followed.

For the reef stations correspondence with a Rayleigh distribution is less
satisfactory. Of the total of 31 wave records in shallow water, nine exhibited
Rayleigh characteristics. Filtering did not improve the correspondence; on the
contrary, it reduced the number of fitting distributions from 9 to 6.

The Truncated Rayleigh Distribution

In the truncated Rayleigh distribution, it is assumed that the initial
distribution in deep water is Rayleighian and that in shallow water the height
of the waves are Timited by depth. Such distributions have been Froposed by
Kuo and Kuo, (1974) and by Battjes (1972b) and Battjes and Jansen (1978).

The form of the truncated Rayleigh distribution proposed by Kuo and Kuo
(1975) is:

2
f(x) = 2xexp(-x) X <Xy

(8.8)
f(x)

]
o
x
\%

U_><
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where

H
—— and x
Hrms b Hrms

are dimensionless wave heights.

For the determination of Hb a breaking criterion must be selected. Kuo
and Kuo (1975) proposed:

Hy = 0.63 hb : (8.9)

For the Ala Moana Reef it was found that

H, = 0.64 h, (8.10)

if H
b
for Stations 4 and 5. This is in close agreement with equation 8.9.

represents the mean of the minimum and maximum breaker height, averaged

In applying the distribution given by equation 8.8 to probe 4 of the Ala
Moana data, it was found that just inside the first breaking region the truncated
distribution gave a good description of the actual distribution.

The Weibull Distribution

Since the Weibull distribution has two parameters (o ,B), its ability to
describe observed distributions is greater than of the Rayleigh distribution.

By curve fitting, values of o and B8 can be determined so that well fitting
distributions can be obtained for the description of the wave height distribu-
tion.

In Lee and Black (1978) the characteristics of the Weibull distribution
are discussed and the usefulness of this distribution for wave heights is
demonstrated.

The variability of the coefficients o and B and the lack of theoretical
foundation for the Weibull distribution reduce the value of this distribution
for prediction purposes.

The distribution also appears useful to describe the variability of wave
period and to identify the shape of the wave spectrum.

Table 8.1 summarizes the results of the curve fitting of the Ala Moana
wave height data to the Weibull distribution. In all cases the linear cor-
relation coefficient p is nearly 1.0 so that given the proper values of o
and B, the Weibull distribution is applicable for all stations.

Beta is usually smaller than 2.0 which indicates that the distribution
is somewhat flatter than the Rayleigh distribution.
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TABLE 8.1

RESULTS OF CURVE-FITTING OF THE ALA MOANA
WAVE HEIGHT DATA TO THE WEIBULL DISTRIBUTION

JULY 30 AUG 4 AUG 25 SEPT 7 SEPT 14 SEPT 16 SEPT 23
PROBE
NO.
a B 912 a B 912 a B 912 a B 912 o B P]z (V] B 0]2 a B 912
1 8.591]1.656 .983"2.594 1.439( .996 3.623(1.875] .992 [12.131(1.597| .991
2 2.4461.848 | .991 ([5.497(1.786 | .996 || 3.540{1.340| .999( 3.130/2.054 | .976 || 2.479(2.043| .982 || 2.071{1.509| .995
3 1.088(1.645| .998 ||4.616|2.183 | .985(|1.238|1.611| .992| 1.432(1.985| .994 || .957|1.877| .997 || 1.074]1.403| .99
4 (1.34 |12.12 |.997 || .739|1.988| .997 ({1.303/1.879| .989 || .998(1.769| .990/ 2.1412.037| .995 || 1.134[1.891| .995 ([ 1.349]1.708| .999
5 .38212.18 (.978 || .345)2.082| .993 |[1.183]1.561 | .994 (| .973/1.780| .998| .656]1.891| .999( .695|1.776| .992|| .959/1.136| .989
7 .41212.01 .998 [ 1.171[1.283| .995 .405)1.786| .995(| .726/1.628] .997|/1.038]1.581| .995




The mean values of B are

+

1.770 + 0.262 all stations

1.534 + 0.195 all stations, onshore winds

I+

1.983 + 0.101 for breaker zone.

1+

As a matter of comparison, B = 2 for the Rayleigh distribution.

Values of a can be determined if the values of B and of the mean wave
height are known.

Another useful equation for the relation between o and B8, given by
Black (1978a), is

o = 2t x ° (8.11)
where xp is the peak of the distribution of x.

As to the overall usefulness of the Weibull distribution to describe wave
height variability, it may be concluded that the distribution is very adequate
to describe observed data. However, because of the variability of the coef-
ficients o and B and the lack of theoretical foundation for this distribution,
it is of lesser significance for prediction purposes.

Wave Height Distribution in Shallaw Water Calculated from Distribution
in Deep Water

The concepts of energy dissipation, developed in Chapters 3 and 4, also
provide a basis for the derivation of a wave height distribution for waves in
shallow water, whereby conditions in deep water provide the input for the
calculations. The latter can be in the form of a joint probability density
distribution for wave height and wave period.

For each combination of H and T, the joint probability

f(H,T) dH dT
determines the relative frequency that such combination exists.
Using the energy dissipation model, a wave with characteristics H, T

may be carried into shallow water and its attenuation of wave height can be
assessed.

This model requires a breaking criterion as well as a criterion that
defines the end of breaking for a given wave.

The approach discussed above is only strictly valid if no energy transfer
takes place from the frequency band considered to higher frequencies. In
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reality such transfer of energy does occur, however, and corrections have
to be applied to account for this. The latter makes this procedure less
useful for engineering purposes.

Wave Period Distribution

The wave period distributions were compared with the following theore-
tical distributions:

* the Rayleigh distribution,

* a symmetrical probability density function proposed by Longuet-
Higgins (1975),

* a Weibull distribution.

Due to the formation of secondary waves when waves move into shallow
water and break, there is a nonlinear change in period behavior during this
process, which affects the period distributions.

Rayleigh Distribution

Although Bretschneider (1959) found that the wave length or period
squared follows a Rayleigh distribution, analysis of the Ala. Moana wave data
suggests that the period to the first power offers a better approximation,
although there is a considerable variation in the peakedness of the distribu-
tion with the position on the reef (Black, 1978a).

Longuet-Higgins Distribution

The observed period distributions have a positive skewness (with tail to
the right) and therefore do not fit Longuet-Higgins (1975) theoretical
distribution (Black, 1978a).

Weibull Distribution

Similarly to the procedures followed for wave height, the Weibull distri-
bution with its 2 parameters offers an attractive model to describe the period
distribution. Again, the lack of a theoretical foundation makes this model
less valuable for prediction purposes (Black,1978b, and Lee and Black, 1978).

Variation of Significant Wave Height and Wave Period Along the
Measurement Traverse

For each station and for each day of measurement the significant wave
height was computed.

Figure 8.21 shows the ratio between the significant wave height at the
various reef stations and at Station #7 in deep water.
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Figure 8.21 The significant height normalized by the offshore value

240

against position on the reef, Ala Moana, 1976.




This ratio usually has its maximum value at Station #6 and rapidly decreases

in shoreward direction. The increase in wave height is primarily due to

shoal

ing, whereas the reduction in wave height is dominated by turbulent

dissipation.

Although all days of measurement demonstrate the same overall trend,

there are also some discrepancies. On September 14, 16 and 23, 1976, an
increase in wave height may be observed from Station #4 to #3, which can

only

be partly explained from shoaling. Visual observations of the wave

directions on the reef suggest that at times wave energy from the adjacent

reef

section between the traverse and the harbor entrance affects the

measurements along the traverse due to wave refraction.

The variation in significant wave period along the traverse is shown in

Figure 8.22. The significant period is again normalized by dividing it by
the deep water value. There are significant differences of period behavior
for the various days of observation. Input of wave energy from adjacent
areas may also play a role in the observed period behavior.
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Figure 8.22 Significant period normalized by the deep water value,
against distance from the datum, Ala Moana, 1976.

THE WAVE SPECTRA

The wave spectrum is a powerful tool in wave analysis. In Chapter 7 the

theoretical background of the spectrum and the various methods of calculation
were discussed. In the following section the results of some calculations
will be presented.
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Since the characteristics of the discrete time series (length and sampling
interval) are related to the required charactertistics of the spectrum, the
following aspects are considered for the determination of the required record
length and sample distance.

|

Because of computer efficiency, a Fast Fourier Transform technique
is used.

The resolving power of the spectrum should be such that in the Tow
frequency range a distinction can be made between the lTowest swell
frequency to be expected (f =~ 0.05 Hz) and the Tower frequency
components such as surf beat (f < 0.03 Hz). A minimum of four
independent spectral density estimates between zero frequency and
f = 0.05 Hz is considered desirable. This criterion implies that
the width of the spectral filter should not exceed 0.0125 Hz.

In order to improve the accuracy of the spectral estimates, two
possible methods may be employed for the Fourier spectrum:

(i) Averaging over the ensemble, whereby the time series is cut
into a number of shorter series of equal length and an
average value is computed for all spectral estimates for
the same frequency;

(ii) The time series is viewed as one realization of the sto-
chastic process and the averaging takes place over a number
of adjoining elementary frequency bands.

In this study the second method is followed. Assuming a x2 dis-
tribution of the spectral estimates, the number of degrees of
freedom should be sufficiently high to obtain results of adequate
accuracy.

The number of degrees of freedom was chosen to be 40, which cor-
responds to averaging over 20 adjoining elementary frequency bands
of width %3 T being the length of the time series.

In view of requirement (2), this leads to an elementary band width
of

v . 0.0125 _
A 2 T 0.00625 Hz .

The corresponding length of the time series is then
T = i 1600 seconds .

The sampling interval At to be selected should be small enough so

that water level and wave height statistics based on the record do
not contain serious errors. The time step is furthermore related to
the Nyquist frequency by
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fy =7 - (8.12)

The choice of At and the corresponding value of fN would require that

the amount of energy to be cut off beyond the Nyquist frequency should
be negligible.

Since part of the data is collected in analogue form, from which

digitizing has to be done, the value of the time step should not
be smaller than necessary.

In view of the above considerations, a time step of 0.4 seconds was
selected for the reef stations, corresponding to a sampling rate of
2.5 per second. For the offshore station the digitizing was done
with 2.605 points per second, which requirement was associated with
the digitizing procedures for the offshore record.

A time step At = 0.4 seconds corresponds to a Nyquist frequency

fN = 1.25 Hz

The above criteria lead to a number of data points for each record

of 2%~ 4000.

In view of the fact that F.F.T. procedures are particularly effective
if the number of data points is an integer power of 2, this gives

N = 4096

and

T = 1638.4 sec

The corresponding number of data points on the wave spectrum is then
N/2 = 2048

The elementary frequency based width is then

1

U T

= 0.00610 Hz

and the width of the filler band
Af = 20 x Af' = 0.0122 Hz

The latter value is well in agreement with the requirement listed under
(2).
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6. The total length of the time series to be used for analysis is
limited by the requirement that the assumption of stationarity is not
violated. The selected duration of 1638 seconds is not considered
too long for this criterion.

Although during the execution of the experiment time series of about
one hour were measured, only a part of this series was actually used
for the analysis. This also provided a means to remove bad data
from the record and so obtain uniformity for all record lengths.

Spectra from Field Measurements

The computed spectra for the Ala Moana data are shown in Figures 8.23
through 8.29. In each figure the energy density spectra for Stations #1 -
#5 on the reef and Station #7 in deep water are summarized.

The results of the computations for Station #6 are not always included
in the analysis because of uncertainties regarding the accuracy of certain
floating bouy measurements. Although the spectra for Station #6 often fitted
well with the other measurements, some probable errors occured which are
attributed to the inertia of the bouy in breaking waves.

The offshore station usually has a relatively narrow band around the
peak frequency with low energy densities for the lower and higher frequencies.

Going shoreward from the offshore station, energy densities tend to
increase due to shoaling and to decrease due to energy losses (bottom friction
and breaking losses).

The total area under the curve equals the total mean energy of the wave
record(]), divided by pg:

{ee)

h&t) = | 6(f) df = o

0

which is equal to the variance of the time series. The maximum of 02 usually
occurs at Station #6.

Inland of Station #6 energy dissipation usually exceeds the effect of
shoaling. Consequently, the total mean energy decreases over the reef.

In Stations #1 and #2 the spectrum is usually very flat but the energy
density is still somewhat higher near the peak frequency of the offshore probe.

The energy density in the low frequency bands for the stations on the reef
is in most cases higher than the energy density for the offshore station. For
the very low frequencies energy losses are small and shoaling effects are
considerable. In addition, some wave reflection from shore may occur.

(1) For high nonlinear waves in shallow water (solitary waves) this is not
completely correct. See Chapter 7.
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estimate has 40 degrees of freedom, Ala Moana,
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In the very low frequency range (< 0.02 Hz), energy in the spectrum may
be associated with a "beat" effect: the generation of a long period oscil-
lation on the reef due to group behavior of the incoming waves.

In order to increase the plotting accuracy for the lower energy densities
in the high frequency range, the field spectra were plotted on a similogarithmic
scale. In the figures the confidence Timit for a 95% probability is also shown.

The Tatter is based on a X2 distribution with 40 degrees of freedom (see also
Chapter 7).
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Figures 8.30 through 8.36 show cumulative energy contours. The cumulative
energy is given by

f
G(f) df = cum energy (8.13)

0
whereby the upper boundary f is let to vary.

Seven frequencies between f = o and f = fN were selected in such a way that
the energy amplification or attenuation could be examined in greater detail.

The figures show the contours of cumulative energy versus position on
the reef. The uppermost curve is for f = 1.25 Hz (Nyquist frequency) and
thus gives the total mean energy in the spectrum.

The cumulative energy contours in Figures 8.30 through 8.36 are obtained
from the spectrum. For Stations #1 - #5. interpolation is done by straight
lines, which is not expected to give erroneous results

Because of the uncertainties involved in the accuracy of the spectrum
for Station #6, only the total mean energy is shown for that station (in
order to indicate the considerable effect of shoaling) and connecting
lines were drawn between Stations #5 and #7 for values of f < fN‘

The various days of measurement appear to have similarities but also
show distinct differences. Most energy appears in the frequencies below
0.4 Hz, and very little energy is present above 0.8 Hz.

In the following sections further consideration will be given to the
changes in the energy spectrum on the reef, due to energy dissipation.

The Shape of the Spectrum

Lee and Black (1978) have shown that the shape of the spectra for the
various stations on the reef may well be described by the Weibull distribution
curve, if the coefficient g is allowed to vary.

Figure 8.37 shows the theoretical spectra based on the Weibull distribu-
tion curve for varying values of B8, and for unit variance.

A comparison with the observed spectra shows that this model is suitable
for a description of the calculated spectra.

By means of curve fitting, the values of a and B were computed for the
various days of measurement. The results are summarized in Table 8.2.

It is seen that B averages 1.79 + 0.22 on the reef as against an expected
value of B = 4 for deep water waves in a generating area (Bretschneider, 1959).

The form of the wave spectrum may be described by

6(f) = Ea 8F P71 exp(-af ®) (8.14)
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Figure 8.37 Theoretical spectra with the shape of
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(from Black, 1978a)
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TABLE 8.2

RESULTS OF CURVE-FITTING OF OBSERVED
WAVE SPECTRA TO A WEIBULL DISTRIBUTION

30 JULY 1976 4 AUG 1976 25 AUG 1976 7 SEPT 1976 14 SEPT 1976 16 SEPT 1976 23 SEPT 1976

PROBE
.| g B |02 o B 1oy a B o2 B ez B (e a B |02 a I [P
1 45.36 |1.380(.92 [ 17.29 |1.886|.90 20.75 {1.700].92 {| 11.23 |2.049].91
2 10.96 [1.778(.91 || 25.09 |1.362|.89 || 16.44 [1.704(.91 || 25.67 |1.647).90 || 36.18 |1.368|.90 || 13.15 [1.837].91
3 12.14 [1.725(.89 || 36.05 |1.443|.92 || 14.71 [2.025/.91 || 20.20 |1.746/.90 || 19.63 |1.861|.91 || 31.63 |1.727].87
4 19.805|1.803|.87 || 12.38 [1.966(.90 || 25.08 |1.697|.91 || 18.24 |1.892(.91 || 18.93 [1.578].90 || 16.41 [1.810].91 || 25.70 |1.545].91
5 |6.826)2.028|.91 5.950(2.185(.91 || 11.34 [1.915/.93 7.263|2.065(.93 7.636(2.120{.93 || 12.95 [1.909].91 || 12.42 |1.916/.91
7 3.789|2.252].96 5.485|2.062|.95 ]I 2.69212.251|.97 3.519|2.059| .97 4.178/2.162|.94

(Entire spectrum, fN = 1.25 Hy»a = a- 10'3)




where E is the total energy of the spectrum (with dimension [22]), f the
frequency and G(f) the spectral density; a and B determine the shape of the
spectrum and have been determined by curve fitting.

The procedures on energy dissipation will provide values of E across the
reef.

It can be shown that the coefficient o is related to the coefficient B
and to the peak frequency fp.

Based on the observations and curve fitting of B the best estimates for
the shape of the spectrum are the following:

(1) Swell spectrum (12 m depth)

6(F) = 4 £y £, (576" exol-g (/R (8.15)

(2) Shallow water, offshore edge of reef (1.5 m depth)

6() = 3 Ey £, (7/5)72 el (/7)) (8.16)

(3) Shallow water, near shore side of reef (0.75 m depth)

- -2 -1
6(F) = 2 £y £ (F/F,)™ exp [-2 (F/F)7] (8.17)

For a more detailed analysis of curve fitting procedures and the general
characteristics of the Weibull spectrum, reference is made to Black (1978a, b) and
Lee and Black (1978).

ENERGY DISSIPATION COEFFICIENTS

The main forms of energy dissipation for waves approaching a shallow reef
are bottom friction and  turbulent dissipation. The theoretical back-
ground of these phenomena was discussed in Chapters 3 and 4..

In the offshore section, between Station #7 and the breaking point,
the energy dissipation is governed by the bottom friction. Inshore of the
breaking point the energy losses due to turbulence dominate.

Dissipation of energy may be expressed by the relation (see Chapter 4):
%% = -(eg + &)

whereby %5—15 the gradient in the energy flux ,

and €¢ and € denote respectively the mean rate of energy dissipation per
unit of area due to friction and turbulence.
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One of the major objectives of this study is to quantify the respective
loss coefficients from experiments. The values of €¢ and €, may be evaluated

from both field and model data. In the following, the analysis of the field
data will be discussed.

The values of €p and €f Were defined by

3
< fe b wa
€ 7 3 fw m ( sinh Eﬁ)
and
€y = ~b fols) sz
8m/Z
where

€t £y = € (total dissipation).

The expression for €f is based on a linear wave model and on the assumption

that the bottom shear stress is proportional to the square of the orbital
velocity near the bottom.

If the waves are nonlinear a certain deviation from the 1inear friction
coefficient may be expected. Similarly, deviations may be possible if waves
are breaking (Chapter 3).

From the results of the experiments and from a comparison with results
obtained by other authors, it will be established if nonlinearity and breaking
will have significant effects on the friction coefficient.

Analysis of Field Data for the Determination of Energy Loss Parameters

Regarding the procedures to determine fw from the field experiments, the
following considerations are of importance.
The computations may be carried out by using the normalized zero-upcrossing

spectrum, which is known from observations and by considering the energy
losses to which the waves within a frequency bandwidth Af are subjected.

The normalized zero-upcrossing spectrum was defined by
2
4 if
_ 1 1i=] !
S(F) = 5 —&Fw

1
g H

nes13

where m represents the number of waves in the bandwidth Af and N the total
number of waves in the record. (See Chapter 7).
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The normalization parameter & is related to two characteristic aspects
of the waves viz. the nonlinearity of the waves and the zero-upcrossing
procedure, by which energy in high frequency components (which do not have

a zero-upcrossing) is e]iminated.(1) The first effect tends to make § > 1,
whereas the second effect tends to make & < 1.

The resultant effect may make § either smaller or larger than 1. Results
of calculations of & are listed in Table 8.3.

The change in the energy S(f) Af over a section Ax is not only caused by
energy losses due to friction and breaking, but also to a shift of energy
toward other frequencies.

If for each frequency band Af, both the numerical value of & and the
amount of energy shift would be known or could be calculated independently,
the sum of the friction losses and breaking losses could be calculated for
this frequency band.

Here a simplified method of calculating friction and breaking losses
will be utilized, whereby this effect of interfrequency energy exchange is
neglected.

The first assumption is that for a given section the friction coefficient
for all waves has the same value, representing an average value.

Although for steady wave motion the friction coefficient is frequency-
a
dependent, and fw is related to Eg for turbulent-rough boundaries, in a random
S
succession of waves of varying period the boundary resistance is Tikely not to
respond to individual waves but rather to the spectrum as a whole. Therefore,
the assumption of a mean value of the friction coefficient for all waves of the
spectrum seems not too objectionable.

The second assumption relates the normalization factor & to the whole
spectrum by taking:

2 . 2
Hi = variance = ¢

0| —~

N
)
T

=2|—

1
5

The third assumption is that the energy flux associated with an individual
wave Hi is reduced by friction and by breaking, if it occurs.

By introducing the known calculated values of & at the beginning and at
the end of a section, an energy balance equation may be obtained.

The result is one equation with one unknown if only bottom friction is
considered, or with two unknowns if both friction and breaking are involved.

(1) A possible third aspect is related to the period distribution of the
zero-upcrossing waves.
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TABLE 8.3

VALUES OF NORMALIZATION COEFFICIENT & FROM MEASUREMENTS

1.1 ,2 .
Date Probe NigH Variance s
(n?) (n)

7-30-76 5 .0283 .0296 .9561
4 .0083 .0134 .6181

8-4-76 7 .0281 .0356 .7909
: 5 .0324 .0370 .8754

4 .0164 .0198 .8300

3 .0121 .0139 .8653

2 .0040 .0055 .7220

8-25-76 7 .0123 .0156 .7863
6 .0195 .0329 .5936

5 .0103 L0117 .8762

4 .0096 .0068 1.4110

3 .0025 .0036 .6795

2 .0017 .0024 .7000

1 .0008 .0011 .7250

9-7-76 6 .0220 .0339 .6488
5 .0123 .0150 .8242

4 .0129 .0107 1.2070

3 .0109 .0091 1.2000

2 .0023 .0026 .8786

1 .0038 .0027 1.4034

9-14-76 7 .0332 .045] .7364
6 .0695 .0790 .8805

5 .0189 .0228 .8322

4 .0056 .0073 .7570

3 .0079 .0095 .8304

2 .0029 .0040 .7349

9-16-76 7 .0194 .0265 .7309
6 .0291 .0424 .6859

5 .0186 .0204 .9109

4 .0105 .0094 1.1149

3 .0124 .0163 .7657

2 .0026 .0053 .7263

1 .0037 .7100

9-23-76 7 .0128 .0179 .7124
6 .0227 .0396 .5725

5 .0186 .0155 1.2012

4 .0090 .0108 .8353

3 .0136 .0144 L9426

2 .0049 .0058 .8581

1 .0049 .0043 1.1522
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The above procedure partly accounts for the generation of higher harmonies
due to the introduction of the values of §. It does not account, however, for
the energy losses of these higher harmonies over the section considered.

It is felt that the above simplifications are justified in the light of
other unknowns and uncertainties.

If only friction is involved, which is predominently the case for the
Section 7 - 6 of the measurement traverse, the value of the friction coef-
ficient fw can be determined from the above precedures.

If both friction and breaking occur, it leads to an equation of the type:

pf,+azc =1 (8.18)

whereby p and q are numerical values obtained from the analysis.

Relationship 8.18 is established by assuming a value of one of the two
parameters; eg. ¢ and determining the other (fw) by matching the computed and

measured energy value for the station at the end of the section considered.

Graphical representations of the relationship 8.18 are given in Figure
8.38. It should be noted that the relationship fw - ¢ is not a relationship

between the actual values of these parameters, but rather it indicates the
various combinations of the two parameters that produce the same loss of
energy.

In the procedure for selecting the most 1ikely value of ¢ , use

is made of Figure 4.24 where the parameter Eigr is plotted against the breaking
H

height index Yy * Fo
b

o

By evaluating Yp and making assumptions for Fr and o (see Chapter 4),
the value of ¢ may be determined.

For example, Yp = 0.65, gives c(fr = 0.8. Assuming o = 0.75 and Fr = 1.2

one finds ¢ = .5 which appears to be a fair value for the waves breaking on the

reef slope (Section 6 - 5 of traverse). For the inner reef sections with smaller
depths, lower values of ¢ may be expected. Although both Fr and o decrease in shore-
ward direction across the reef, o is expected to decrease more rapidly than Fr.

In the calculation of the energy flux the effect of non]ingarity of
the waves is to be evaluated, both with respect to the calculation of the
mean energy and of the group speed.

A further discussion on the computational procedures used for this analysis
is presented in Chapter 10.
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EXPERIMENTAL VALUES OF FRICTION AND BREAKING COEFFICIENT

Based on the above described procedures values for the friction coefficient
and breaking coefficient were computed for the various sections of the traverse.

The relationships between fw and ¢ as represented in Figure 8.38 give rise
to the following discussion.

It is to be noted that a diagram of this type only exists if both friction
and breaking losses occur in the section considered.

Data from various sections often show considerable variation for the various
days of observation.

The steepness of the curve, representing the relationship between fw and ¢

is a measure of the relative importance of breaking in the energy loss equation:
a close to vertical line in these diagrams corresponds to a relatively small
amount of energy loss due to breaking compared to friction. In random waves
this usually means that the number of breaking waves is only a small percentage
of the total number of waves in the record, so that the value of fw is only to

a very minor degree affected by the selected value of z.

From this observation, breaking would be most prominent in Section 5 - 4
which is the section near the edge of the reef. Based on the theoretical curve
of Figure 4.24 it is assumed that ¢ = 1 is a practical upper limit for this
parameter. The low values of both fw and ¢ for 9-7-76 and 8-25-76 are hard to

explain except by experimental errors due to deviations from the assumed two-
dimensional conditions.

Based on the graphs of Figure 8.38 and the selection of a proper value of
¢z, values of fw can be determined. For most of the data a value of ¢ = 0.5 will

produce reasonable values for the friction coefficient. The results of this
analysis are listed in Table 8.4.

It is of interest to compare these results with values found in the
literature. For this the experimental and analytical work of Jonsson (1966),
Riedel, et al. (1972) and Kajiura (1968) is of interest (See Chapter 3).

These authors found that for the turbulent-rough regime the friction
a

coefficient may be expressed as a function of the parameter Eg" where ag is
s

the maximum horizontal excursion of a water particle near the bottom from the
mean position and k¢ is the bottom roughness.

Their results are based on linear wave motion and steady conditions.
In order to use the same type of relationship for a random wave motion, as
experienced in the field, a representative wave has to be selected, the

parameters of which are used to compute the (1inear) bottom velocity U .. and
the corresponding value of ag-
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TABLE 8.4

RESULTS FROM FIELD EXPERIMENTS REGARDING f_ AND Z

U a
£ MAX s
SECTION DATE w T* L RE
(m sec™)) kg

7-6 8-4-76 . % .42 2.15 2.30 x 103
8-25-76 . . .27 1.39 9.49 x 108

9-14-76 - - .46 2.43 2.88 x 107

9-16-76 115 50 .38 2.12 2.07 x 103

9-23-76 z s 31 1.95 1.57 x 10

7-5 8-4-76 .09 .50 .42 2.15 2.30 x 102
8-25-76 m 0 -27 1.39 9.49 x 104

9-14-76 - .50 .46 2.43 2.88 x 10

9-16-76 - = .38 = - s

9-23-76 .09 .50 23 1.95 1.57 x 10

6-5 8-25-76 .81 .50 .82 3.95 8.33 x log
9-7-76 .48 .50 .61 2.66 4.15 x 102

9-14-76 .63 150 1.50 6.06 2.33 x 10¢

9-16-76 .33 .50 1.17 5.46 1.63 x 108

9-23-76 16 150 .95 4.77 1.17 x 10

5-4 7-30-76 .09 .4 1.16 7.34 2.18 x 10°
8-4-76 .05 4 1.89 8.70 4.20 x 108

8-25-76 .03 .06 .83 4.28 7.03 x 107

9-7-76 .08 2 290 4.33 1.49 x 108

9-14-76 19 4 .80 3.43 1.55 x 108

9-16-76 ) 4 1.07 5.41 1.00 x 105

9-23-76 16 4 1.10 5.51 9.13 x 10

4-3 8-4-76 .14 .3 .92 4.80 1.13 x 108
8-25-76 18 3 .65 2.80 4.65 x 10;

9-7-76 .015 .04 -97 4.20 4.73 x 10

9-14-76 - H .66 2.79 4.73 x 103

9-16-76 . s -90 3.66 8.46 x 10

9-23-76 - - .85 2.86 6.24 x 10

8-2 8-4-76 - - .73 3.27 6.07 x 103
8-25-76 - s .60 3.20 4.94 x 10;

9-7-76 x . 72 3.51 6.45 x 10;

9-14-76 .18 .3 .51 2.02 - 2.62 x 107

9-16-76 .21 3 .66 3.18 5.42 x 10;

9-23-76 m 3 .69 2.66 4.69 x 10

3-2 8-4-76 .63 .3 .61 3.10 4.98 x 103
8-25-76 3 3 135 1.41 1.28 x 10;

9-7-76 -43 3 .62 2.83 4.51 x 10;

9-14-76 .61 3 .53 1.73 2.35 x 10;

9-16-76 159 3 166 2.10 3.54 x 107

9-23-76 15 3 .69 2.17 3.81 x 10

2-1 8-25-76 1.0 .3 .25 .99 6.32 x 10
9-7-76 s - 139 2.02 2.02 x 107

9-16-76 .45 .3 .38 1.38 1.36 x 10

9-23-76 - - .50 2.05 2.64 x 10

* Assumed values of
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For this, rather subjectively, the significant wave height and wave period
have been selected.

Since the bottom of the traverse is sloping, the representative depth and
wave height are selected in the middle of the section.

Evaluation of the wave Reynolds numbers indicate that for all field data, 4
the wave Reynolds number, based on the previously defined criteria, is above 107,
so that a turbulent-rough regime may be expected.
a
Figure 8.39 shows the relationship between fw and Rg" for an assumed
S
value of kS of 0.25 m. The latter value was estimated based on the relatively

rough bottom conditions. Reference is made to Figure 8.40 showing underwater-
photographs of the reef bottom taken by Dave Wentland in the summer of 1978.

Figure 8.39 shows the curves proposed by the three authors mentioned. A large
number of data points fall within or near the curves by these authors, but
there are also some significant deviations for which there may be acceptable
explanations.

The two points with extremely low friction coefficients could have been
plagued by experimental errors, as discussed before (including three-dimensional
effects). These points refer to Sections 5 - 4 and 4 - 3, respectively.

The high values for Section 6 - 5 may be explained by the fact that this
section is characterized by plunging breakers. According to discussions in
Chapter 3 regarding the effect of breaking on the value of the friction
coefficient, higher values than applicable to regular waves of Tow amplitude
may be expected in a breaking wave regime.

Overall the agreement seems to be closest to the curves proposed by Jonsson
(1966), but a change in the estimated value of kS may affect this.

The high values of fw found for the nearshore reef section (1 - 2) are
a

in agreement with the increase in f for lower Eé-va1ues. However, they are
S

considerably higher than Jonsson's proposed maximum value of 0.3 for low
a

?g values (Jonsson,1978a). The turbulence induced by breaking on the reef may
3

be responsible for this.

It is of interest to note that the computed values of the friction
coefficients for the shallow reef may include significant errors for the
following reasons:

Wave energy values are small and are affected by input from offshore
winds.

The problem is not completely two-dimensional; observations on
September 14, 16 and 23, 1976, show an energy level at Station 3
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Figure 8.39 Wave Bottom Friction Coefficient From Field Experiments

which is higher than at Station 4. This cannot be explained from
shoaling and suggests energy input from adjacent reef areas.

The highly irregular reef surface makes it difficult to properly

estimate ks'

In the calculation of the energy dissipation coefficients from the field
data, a difficulty arose as to the determination of the number of waves that
were subject to breaking and consequently had breaking losses.

Use of the theoretical and empirical criteria to determine if a wave breaks
and where, provided an insufficient number of breaking waves in the record, and
would Tead to erroneous results.

Another way to evaluate the number of breakers in a record is by means of
a visual analysis of the wave record. Particularly in Stations 4 and 3 the
breaking waves in the record were clearly identifiable by their steep rising
fronts.

Using this number of breaking waves in relation to the observed probability
density function of wave heights for the station considered, a value for the
H

ratio y' = 7? could be established, H, being the Towest wave height that would
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H
break at that station. The value y = 7?—, Hm being the maximum wave height

in the record, was also determined.

Values of yi and yé established in the above described manners are listed
in Table 8.5

The values of yé are usually Tower than expected based on existing theories

such as discussed in Chapter 4. The use of the actual time series has shown to
be informative as to the nature of the waves in a specific station.

Additional research into the nature of turbulence in a wave breaking
regime is required to further explore the effect of turbulence on the bottom
shear stress.

As expected the effect of the wave Reynolds number does not have a
significant influence on the friction coefficients for the field. Reference is
made to Figure 8.41 where the horizontal coordinate is the wave Reynolds

number RE.

a
The calculated values of Eg-are listed with each of the data points.

s
Trends are as shown in Figure 8.39.

uT U
For the computation of the value ag = 72;—= 7?- , linear wave theory
is used, whereby the values of the significant wave height and the significant

wave period are used as basis for the computation.

In summary, it may be concluded that the Tinear friction coefficient fw

is considered a useful parameter for the estimation of friction losses in
shoaling and breaking waves, that the order of magnitude of it corresponds
well with the results of other investigators, except in the area of plunging
breakers, when a higher value of the friction coefficient must be expected.

For practical purposes, the mean friction coefficients for the various
sections of Ala Moana Reef are listed in Table 8.6 below, in which corresponding
values of ¢ are also given.

CALCULATION OF THE WAVE SPECTRUM IN SHALLOW WATER FROM THE SPECTRUM IN DEEP WATER

In this section, a method will be suggested to calculate the wave spectrum
in shallow water if the wave spectrum in deep water is known. When waves travel
into shallow water they are subject to shoaling, friction and breaking. Because
the process of wave breaking is highly nonlinear there is a need to use actual
wave heights rather than spectral components for the calculation of the energy
losses.

The analysis of the field data has provided insight into the dissipation

mechanics (friction and breaking) and has resulted in providing numerical va]ges
for the friction and breaking coefficients, which may be used in the calculations.
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Figure 8.40 Underwater Photographs of Reef Bottom
at Measurement Site
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¢Le

TasLe 8.5(1)

BREAKING HEIGHT INDEX y', FROM OBSERVATIONS

(VISUAL INSPECTION)

(COMPUTER RESULTS)

(FROM Z.U.C. ANALYSIS)

DATE PROBE OBSERVED NO. OF NO. OF H H H
Y'1 NO. OF BREAKERS Y's BREAKERS _%éi mean _1€1g
BREAKERS FOR v'y FOR v'p

7-30-76 5 .30 27 140 .56 26 .56 .40 .63
4 .34 19 158 .60 20 .52 .33 .66

8-4-76 5 .35 52 108 .50 56 .56 .34 .69
4 .35 62 106 .46 67 .52 .31 .62

3 .32 50 102 .40 55 .47 .28 .59

2 .30 43 22 .25 a4 .25 .16 .35

8-25-76 5 .21 65 19 .26 70 .33 .19 .48
4 .28 80 145 .43 84 .57 .37 .66

3 .23 49 98 .29 48 .26 A7 .36

2 .24 30 44 .225 30 .21 .13 .27

1 .25 27 13 .235 28 .15 .10 .26

9-7-76 5 3 33 29 .31 33 .32 19 .42
4 .24 77 150 .45 78 .60 .35 72

3 .27 58 139 .49 61 .54 .30 .68

2 .20 39 68 .24 39 25 14 .34

1 .15 61 47 .21 63 .28 .16 .39

9-14-76 5 .31 51 68 .35 56 .38 .24 .47
4 .20 62 121 .28 67 .33 .19 .40

3 .36 43 156 .44 46 .43 .26 .57

2 .22 19 19 .32 18 .24 .16 .32

9-16-76 5 .47 38 74 .70 41 .65 .37 .87
4 4 53 65 .42 55 .47 .28 .58

3 .56 45 m .60 49 57 .33 72

2 .50 14 3 .36 14 .28 .18 .36

1 .40 22 3 .36 20 .26 .16 .36

9-23-76 5 w30 60 94 .50 64 .69 .34 .88
4 «33 61 105 .41 65 .46 .26 .59

3 .25 68 148 .45 74 .45 .23 .57

2 .16 57 130 .28 58 .33 .18 .46

1 A7 59 122 .31 56 .36 .20 .49

M See also Table 10-1
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TABLE 8.6

MEAN VALUES OF FRICTION AND BREAKING COEFFICIENTS
FOR ALA MOANA REEF TRAVERSE, IN ROUND FIGURES

Section ty 5
7-6 0.1 0.5
6 -5 0.5 0.5
5-4 0.1 0.4
4 -3 0.1 0.3
3-2 0.4 0.3
2 -1 0.7 0.3

The spectrum at the deep water Station 7 will be used as input from which
spectra for the inshore stations will be calculated. A comparison can then be
made between the spectra obtained from field measurements and the ones obtained
from the dissipation model. A satisfactory agreement would indicate that the
coefficients used give an adequate description of the dissipation.

In the method followed the assumption is made that the energy G(f)-Af
contained in a frequency band Af, may be considered to represent the energy
of a single wave with the appropriate amount of mean energy. It is further-
more assumed that the transfer of energy from one frequency band to higher
and lower frequency bands is negligible compared to the combined effect of

shoaling and dissipation.
For the input spectrum, either the Fourier spectrum or the zero-upcrossing

spectrum may be considered. The latter has certain advantages, because it deals
with real waves and not with spectral components.

If S(f) represents the zero-upcrossing spectrum, its value is obtained
from

O] —
Z|—r13
l_l

s e}
~nN

> o9
—

S(f) = (8.19)

(1) In Chapter 10, aspects of interfrequency exchange of energy are discussed.
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where m is the number of waves in the frequency band Af, N the total number of
waves in the record and § a normalization coefficient, which makes the total
mean energy equal to the variance.

This may be written

_ 1.
S(f) af = 3

=23

(8.20)

oo —

where a;?-is the mean of the squares of all wave heights in the frequency
band Af.

This provides the representative value of ﬁ} that is useful for the
calculations:

Hi2 = 86 S(f) of

N

o (8.21)

The use of the zero-upcrossing spectrum has two major disadvantages,
however. High frequency components that do not have a zero-upcrossing, are not
counted; furthermore, the accuracy of the zero-upcrossing spectrum is considerably
less than that of the Fourier spectrum.

The zero-upcrossing spectrum therefore shows more erratic features than
the Fourier spectrum. It may be advantageous to combine the zero-upcrossing
concept with the Fourier spectrum by taking the area between two frequencies
from the Fourier spectrum. If the Fourier spectrum is identified by G(f),
then a spectral-ratio coefficient Gf may be defined by

_ G(f
% L Bley

where Gf > 1 for higher frequencies and Gf < 1 for medium and lower frequencies,
so that

G(f) = &, S(f) (8.22)

and equation 8.21 is modified to

—_—

2 .42 _gs N
Hera H; 8 5 G(f) Af -
or
g & G(f) af
Hrms = 8 3 - (8.23)
L |

where Hrms refers to the frequency band Af selected.
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The ratio %—may be determined from the probability density function of

the wave period f(T). For the period interval AT or the corresponding
frequency interval Af

T?e)]atter is related to the probability density function of the wave frequency,
f(f) by

f(T) dT = f(f) df

so that
m _
N f(f) Af (8.25)
2 - & G(f) Af
Hms = 85, F(F) af
2 - S8 G(f
Hyms 8 §; T(f (8.26)
Consequently
S
2 1°f
G(f) = Hrms (§'7T f(f)) . (8.27)

The values of Gf, § and f(f) for Station 7 (the input - station) may be
obtained from the measurements at Station 7.

If the factor between parenthesis is a constant from Station 7 on shore-
ward, the change in spectral density may be obtained from

H2
G(f)g rms g
rms
7

This ratio can be calculated by computing the change in Hims for the band
Af considered, as the waves travel into shallow water.(]

Experiments show that the coeffficient § is not the same for all statioqs.
Similarly Gf and f(f) also show some differences. Therefore, equation 8.28 is
an approximation.

If one would refrain from the requirement that the zero-upcrossing

spectrum would have equal energy compared to the Fourier spectrum the results
would be as follows.

(1) A method for this calculation is developed in Chapter 10.
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Define

- 2
} i

S (F) = M (8.29)

Equation 8.21 is then reduced to

oo|—

2 N

H,” = 8 S' (f) Af = (8.30)

il S' (f

Hi = 8 F (8.31)
and

« we K&

s'iE) = e, B (8.32)

which equation is valid for the frequency band Af at the frequency f.
Similarly to equation 8.28 one obtains for the interval Af:
; 2 |

S (flg rms g .

— = . (8.33)

S (f)7 Hrms7

In order for equation 8.33 to be valid, only f(f) must be constant when the

waves move into shallow water. This is a reasonable assumption only if the
generation of higher frequency components in the breaking process may be neglected.
This corresponds with the assumption made earlier that interfrequency energy
exchange is neglected in this procedure. .

Results of some calculations are shown in Figures 8.42 and 8.43.

Although results are generally agreeable, the model appears to have
shortcomings because the interfrequency energy transfer is neglected.

The following aspects are of interest.

Energy in the very low frequency bands (f < 0.0375) is associated
with the long period oscillations on the reef, induced by the
variable mass transport induced by the breaking waves. This energy
is part of the energy transfer process and comes mainly from the
energy densities around the peak frequency. The amount of energy
contained in these very low frequencies is relatively low and
neglecting this energy shift does not give rise to serious errors.

Good agreement can be obtained for the frequency bands with high
energy density if proper dissipation coefficients are selected.
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ENERGY DENSITY IN mZsec

However, the value of these coefficients will actually be too high
if the energy shift to higher and lower frequencies is not taken into
account. If correct values would have been used, the results of the

computed spectrum would be higher than the values actually present
in the spectrum.
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Figure 8.42 Observed and Calculated Spectra for Various
Probes on Ala Moana Reef, August 25, 1976
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If interfrequency exchange of energy is neglected, significant
deviations may be expected in the high frequency bands. In order

to correctly evaluate the differences obtained, it is necessary

to take into account that certain peaks of the Fourier spectrum

in the high frequency domain are induced by nonlinearities in the
wave form and are not related to high frequency oscillations

induced by the breaking process. Use of the zero-upcrossing
spectrum does not completely solve this problem because in this
spectrum the energy density for higher frequencies is underestimated.

WAVE SET-UP
Wave set-up on the reef was measured during two efforts

(a) In the summer of 1976 from the measurement of water surface eleva-
tions (as described in the previous sections) wave set-up was
measured indirectly by determining the mean value of various time
series; leveling of the wave gages was done from the reef buggy.

(b) In the summer of 1978 the mean water Tevel in a series of reef
stations was measured directly by determining the mean value of
a series of manometer readings (Wentland,1978). The manometer

stations were established i1n fixed positions (1A - SA) on the reef
(see Figure 8.44) by providing them with a concrete footing with a
short piece of galvanized steel pipe, in which the manometer could
be mounted during the experimental runs (Figure 8.3). Leveling of
manometer levels was done along the reef during low tide from a
fixed benchmark on shore.

To dampen the wave-induced oscillations of the waterlevel inside
the manometer tube, the valve at the foot of the manometer was
partly closed.

A tripod mounted capacitance wave gage was used to calibrate the
manometer readings.

The wave set-up measurements in Station 1A were correlated with the
observations of the tide level in this location by means of a
nitrogen bubbles tide level recorder. The recording instrument was

established on shore and was connected with Station IA with a hollow
plastic tube, ¢ = 19 mm, laid on the reef bottom.

The accuracy of the obtained data relies heavily on the accuracy of the
leveling procedure. During the 1976 measurements when the leveling instrument
was installed on the reef buggy, the elevations could not be established with
great accuracy due to the lack of stiffness of this platform raised above the
water.

The leveling in 1978 was done with extreme care. Because the bases of
the stations were fixed to the reef, the surveys could be repeated a few times
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to obtain greater accuracy. It was therefore expected that the values on
wave set-up obtained in 1978 have much greater accuracy than those obtained
in 1976.

It was verified by calculations that the difference between the mean
waterlevel inside the harbor and in the open ocean is at all times very small,
so that the former could be used as a reference level for the open ocean.*

Verification of the wave set-up measurements by means of calculations
confirmed that the measurements of 1978 were trustworthy but that the 1976
wave set-up data contained obvious and unexplainable errors. Therefore, the
1976 wave set-up data were not used for analysis and have been omitted from
this paper.

The results of the 1978 measurements on wave set-up are shown in Figure
8.45. Visual manometer readings were taken simultaneously at all reef stations
during a 15 minutes period. The readings were taken at 15 second intervals and
a mean value was determined from the 60 observations for each station. On
three of the four days, the measurements were repeated shortly after the first
run. The differences between the mean values during the first and second run
were small and can be accounted for by the difference in mean tide level during
the two runs. On September 16 and 30, 1978, waves were measured at the offshore
probe as during the 1976 measurements. Wave spectra were computed from the
four time series. The results are presented in Figures 8.46-a and b .

The wave characteristics on the two days of observation show some
interesting differences. The spectra on September 16, 1978 are relatively wide-
banded. There are no significant differences between the two runs (Figure 8.46-a).

On September 30, 1978 the spectra had typical narrow band characteristics,
whereby the considerable increase in mean energy between the two successive
runs is to be noted.

Some insight into the nature of the waves is provided by the autocovariance
functions (see Figure 8.47-a and b).

The one for September 16 reveals irregular wave characteristics, because
the function cxx(r) decreases relatively fast. (Figure 8.47-a)

On September 30, 1978, Figure 8.47-b shows a dominating swell pattern that
corresponds with the narrow band spectrum.

*
This is only true if no wave breaking occurs in the harbor entrance.
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Verification of Observed 1978 Wave Set-Up Data on Reef with Calculated
Values

Regrettably during the 1978 wave set-up measurements, no detailed wave
measurements were made on the shallow reef, which could serve as input data
for the calculation of mean water levelvariations across the reef and then
could serve as verification of the observed water levelsas compared to
calculated values.

During two specific days, respectively, September 16, 1978 (first run)
and September 14, 1976 the water level variances at the deep water probe
(Station 7) had approximately the same value (respectively 0.0447 and

0.0451 m’). (Reference is made to Table 8.7) Tide conditions were also equal.

By assuming that the process of wave attenuation across the reef would
also be similar on those two days, the wave data of 1976 could be used to
verify the wave set-up data measured in 1978.

Admittedly there is no proof that such similarity indeed existed and
a strict agreement should therefore not be expected. Nevertheless the above
process is likely to indicate whether or not serious errors may have occurred
during the 1978 measurements.

The comparison between the measured values of the wave set-up on
September 16, 1978 and the calculated values based on wave data from
September 14, 1976,as described above, is shown in Figure 8.48. To make the
two graphs comparable, the measured wave set-up in Station 5 was used as a
level of reference for both graphs.

The basis of the differences in mean water level over the reef was the
simplified wave set-up equation:

ds dn _
x T oegh g = 0 (8.34)

whereby the linear relationship
S=3/2E

was used for the calculation of the radiation stress on the reef. Figure 8.48
shows that there is no large differences between observed and calculated
values, so that the 1978 wave set-up data are likely to represent realistic
values.

Unfortunately the measured data are few and do not cover a wide range of
conditions. Besides they were taken during conditions of relatively low wave
energy. Therefore, they are not suitable to test a variety of computational
models for the calculation of wave set-up. To do this, one has to revert to
the results of the hydraulic model experiments, whereby one can verify whether
or not the field data points fit the general trends.

In the above comparison, the wave set-up at the reef edge (Station 5) was used
as a basis of comparison. In order to see whether or not the measured data fit
the calculated values of the total amount of wave set-up, using the deep water
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TABLE 8.7

VARIANCE, WAVE HEIGHT AND WAVE SET-UP CHARACTERISTICS FOR 1976 AND 1978

Wave Set-Up at

Date Variance of | pavemorgnt st | Wave period at Station 5 (cn)
at P;obe 7 Probe 7 Probe 7 Measuyad calculated
(m”) (m) (sec)
Aug. 4, 1976 0.0353 0.67 8.95 not measured not calculated
Aug. 25, 1976 0.0166 0.47 9.05 not measured not calculated
Sept. 14, 1976 0.0451 0.73 10.65 not measured not calculated
Sept. 16, 1976 0.0268 0.56 9.76 not measured not calculated
Sept. 23, 1976 0.0779 0.47 10.13 not measured not calculated
Sept. 16, 1978 0.0447] 0.83 6.48 0.61 0.55
0.04322 1.07 7.31 1.82 0.88
Sept. 30, 1978 0.0658 1.32 11.56 1.22 1.82
0.08602 1.28 11.81 1.82 2.68

1 First Run

2 Second Run
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Figure 8.48 Comparison Between Measured and Computed Wave Set-Up for Equal
Energy

mean sea level as a reference level, calculations of the total amount of wave
set-up have been made using a simplified model.

Wave Set-Up at Edge of Reef (Station 5)

In order to evaluate the measured set-up in Station 5 for the 1978
measurements, wave set-up in Station 5 was calculated using the following
criteria.

(1) Calculations were carried out for a representative wave height,
having the same mean energy as contained in the wave spectrum for
the offshore probe;

(2) Energy losses were included in the calculations using the dissipation
model developed in this study;

(3) Radiation stress was calculated from linear wave theory;

(4) Wave set-up was calculated based on the simplified model given in
the previous section:

(5) The location of the breaking point was assumed to coincide with that
of the significant wave height (rather than that of root mean square

wave height). The value of y' = 7?— was determined from Battjes (1974),
(Figure 4.2 ).
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The results of the calculations are presented in Table 8.7 (for the 1978
measurements) and in Figure 8.49 and show a reasonable agreement between observed

and calculated values (considering the use of the simplified model). (M)

Wave Set-Up on Reef

A simplified expression for the wave set-up on the reef itself may be
obtained by assuming the depth over  the reef  constant. This is not completely
correct, but the slope of the reef bottom is very small and depth differences
are of minor importance. It is furthermore assumed that the values of the
wave set-up are small compared to depth for all locations on the reef.

The differential equation 8.34 can then be directly integrated between
the edge of the reef (Station 5) and the shoreline

E)_]g'ﬁ' (S] - 55) + (ﬁ] - 55) = 0 (8.35)

whereby the index 1 indicates a station nearshore and the index 5 refers to
Station 5 at the edge of the reef.

At location 1 close to shore, the mean wave energy is very small because
most energy is dissipated by friction and breaking.

Therefore, assume

S'l = 0
so that
-
AT] = n] - ns = Dgh SS . (8.36)
Furthermore

S = %—E = %-pg (var)

which gives

3
_ = (var)
An = -2————h—'5— (8.37)
as a reasonable approximation for the wave set-up over the reef.

At the offshore station, the mean wave energies on September 14, 1976
and September 16, 1978 were almost identical.

Assuming full similarity for wave attenuation on these two days of
observation, An can be calculated.

On September 14, 1976 the mean energy (variance) measured at Station 5 was:

(var)5 = 0.0223 m@

(1) An improved model is discussed in Chapter 10.
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Estimating an average depth of 0.9 m,

3
2-0.0223 "
0.9

An = 0.037m = 3.7 cm .

On September 16, 1978 the observed difference in mean sea level between

Stations 5 and IA was 0.10 ft = 3.0 cm; this may be considered a reasonable
agreement.

In the previous paragraph, the wave set-up between deep water and the
reef edge was calculated. For September 16, 1978 its value was 0.6 cm.

The total calculated set-up would then be 0.6 cm + 3.7 cm = 4.3 cm which
compares reasonably well with the total observed value of 3.6 cm.

The simplified model of wave set-up seems to provide adequate results.

It will be of interest to determine what the order of magnitude of the
possible maximum wave set-up over the reef section could be for the same tide
conditions, using the previous approach. For this the maximum mean energy
in Station 5 is computed from the maximum wave height.

In view of the results of the field experiments, the assumption is made
that the maximum breaking wave height in Station 5 is related to the Tocal
depth by

H

- 0.8 hy .

With hb

mean energy, it is furthermore assumed that this value is close to the
significant height and that the Hrms value may be computed from

1.22m this gives Hy = 0.98 m. In order to compute the

= — = —— = 0.69m

The variance at Station 5 is then

1 2

(var)s = 5(0.69)2 = 0.0595 m

and the maximum wave set-up over the shallow reef

- _ 1.5 - 0.0595

An = 0.9 0-099 m v ]0 cm.

This represents a mean value of the set-up, to which & dynamic component
of the wave set-up must be added. It is to be noted that the computations are
based on a two-dimensional model. This assumption is not completely justified;
the effects of refraction and local circulation may have some influence on the
prevailing conditions.
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A more precise calculation of the wave set-up on the reef may include
a nonlinear radiation stress, S ne’ and a mean shear stress, T, in the

momentum equation

d Snl

9X

% . .
+ pgh oL + T = 0 (8.38)

where T is the mean shear force exerted by the fluid on the bottom, being
positive in the direction of wave propagation.

This gives
mn 1 asnz T
ax " pgh 3x ~ pgh

Since g%- is negative, the first term of the right hand side of the equation

is positive and its value is decreased by a positive value of T.

The nonlinear radiation stress usually being larger than the linear one,
the introduction of S 1nstead of S and the inclusion of a positive shear

stress partly compensate one another. (])

Total Wave Set-Up on Ala Moana Reef from Tide Gages

During the 1978 experiments, a tide station was functioning in Kewalo Basin

and another was established at Station 1A on the reef. The two recorders
were in operation for almost two months but were not always providing reliable
data; about two weeks of observations proved to be useful for set-up calcula-
tions.

Figure 8.50 shows the waterlevel inside the harbor and out on the reef
on August 16 - 17, 1978. The difference between the two is assumed to be
close to the actual wave set-up, which showed only small variations over a full
tidal cycle (Wentland,1978).

For all days with useable tide records, set-up values were determined at
0:00, 6:00, 12:00 and 18:00 hrs. The maximum value of the wave set-up
established in this manner was 10.7 cm, which compares well with the previously
calculated values.

There is no sufficient field data available to evaluate the magnitude of
three-dimensional effects on wave set-up.

MODULATING PART OF WAVE SET-UP
The results of.the field measurements indicate that oscillations of the

wave set-up around a mean value occur. This modulating part of the wave set-up
was found to have the same order of magnitude as its mean value.

(1) The effect of the resultant shear stress is discussed in greater detail in
Chapter 9.
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Figure 8.51 shows a portion of water level records on August 25, 1976.
The long period oscillations are indicated by dotted lines; in all stations
the mean water Tevel shows a modulating behavior with a period of oscillation
of about one minute. On another day of record, August 4, 1976, a longer
period of about 2 minutes was observed. Figure 8.52 shows another example
taken from mancmeter readings at 5 second intervals by Dave Wentland in

Station 1A. This figure shows a dominant period of oscillation of about 1
minute, but a much longer period of oscillation can also be detected.

Figure 8.51 shows a progressive wave behavior with shoreward propagation
for the long period oscillations. The lines connnecting wave crests and wave
troughs may be considered characteristics for which g%—= ¢, the speed of long
wave propagation in shallow water ¢ = vgh .

The observation of progressive wave behavior is not completely expected.
In a strictly two-dimensional situation, reflection of the Tow amplitude, long
period oscillations could generate a standing wave pattern whereby the
vertical oscillations would show the same phase for all stations.

Progressive wave characteristics may be dominant because of two different
reasons: energy losses due to friction and flow toward adjacent reef areas.
Calculations indicate that the reduction in amplitude due to friction for
waves traveling across the reef is of the order of 20%. The energy losses
due to friction therefore only partly account for the observed wave behavior.
The second possibility is 1ikely to also play a role in the long wave behavior
in the study area. It was observed that water flows from the reef into the
entrance channel to Kewalo Basin (see for location Figure 1.1 ); furthermore,
some flow may also be diverted eastward into the deep channel between the
shallow reef and the coastline.

During the 1976 measurements, the amplitude of the oscillations in the
Stations 5 to 3 was of the order of 6 to 9 cm, with decreasing amplitude
towards the coast.

On October 13, 1978 Station 1A exhibited an oscillation of approximately
7.5 cm amplitude.

Physical Background of Modulations

It has previously been suggested that the modulating part of the wave
set-up is associated with varying mass transport in breaking waves.

Incident waves often show groups of high and Tow waves following each
other, the variation in mean energy inducing a variable mass transport
shoreward. The oscillatory nature of the wave induced flow induces a vertical
displacement of the water surface in the form of a long periodic wave. The
period of this wave is related to the period of the pulsating flow.

The characteristics of the long progressive wave may be deducted from the
characteristics of the induced current.
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Whitham (1974) defined the mass transport velocity in nonlinear waves
by -

u = B+ (8.39)

E
pch

whereby waves add a net contribution %—to the mass flow. For waves of

constant height traveling towards a beach, the mean mass transport velocity
over one or more wave periods equals zero:

U =20

because of mass conservation, so that
_ E
8 pch

If the waves approaching the beach form a modulating wave train, the
mean value of U over long periods of time is still zero, but there is now a
mass transport variation due to the variation of wave energy with time.

In a strictly two-dimensional situation

E - E .
__max min _ E(a)

where E(a) represents the amplitude of the energy variation.
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The above formulas are for nonlinear waves and may be assumed to be valid
up to the point of breaking.

If water may be discharged through adjacent reef areas (such as is likely
to occur in the study area), the mean value of the mass transport current will
be different from zero and may be expressed by the relation

u = g +E@) (8.41)

pch

whereby the value B' is related to the resultant landward flow discharging
to adjacent reef areas.

Resonance

In a strictly two-dimensional situation and a relatively narrow coastal
reef (friction neglected) reflection of the Tong period oscillation against
the coastline causes the generation of a standing wave from the superposition
of the incoming and reflected wave. In various stations on the reef, the
water level fluctuations will then have the same phase, but a different
amplitude depending on the distance from the coastline.

Resonance occurs if

T= %K (8.42)
/gh

where T is the natural period and % is the distance between the reef edge and
the coastline; c is the velocity of propagation for linear shallow water waves.

The more general formulation for the natural period of a shallow reef in
a two-dimensional situation is

T = all (8.43)
(2n + 1) /gh

where n is the number of nodal points inside the reef.

A strong increase in amplitude of the long wave may be expected when the
exciting fluctuating current has the same period as the resonant period.

In the current study,

2 ~ 400 m

h ~ 0.8 m.
For the first mode of oscillation, n = 0 and T = 572 sec = 9.5 minutes.
For the second mode (n = 1), T = 3.2 minutes.

Higher harmonics (n > 2) are usually not able to generate significant
amplifications.
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If wave groups arrive in accordance with the above calculated periods,
amplification of the long period oscillation may be expected.

The natural period is dependent on depth and therefore on the tide. In
Hawaii, tidal variations are small and the effect is insignificant.

In case resonance occurs and wave amplitudes build up, velocities become
larger and friction losses become significant.

Approximative Calculation of Shelf Oscillations

In the following, an approximate calculation is carried out to determine
the amplitude of the long period oscillation.

For this, equation 8.40 is assumed to be valid.

For a progressive long wave horizontal particle velocities are in phase
with the vertical displacement. For small amplitude waves (n<<h)

U= fc (8.44)

where U is the mean horizontal velocity over depth.

The amplitude of the shelf oscillations in that case can be directly
calculated from the energy oscillations by equating equations 8.40 and 8.44:°

B Ega} |
Umax - - hC (8.45)
from which
a’ E(322 (8.46)
pC

E(a) is the amplitude of the wave energy oscillation.

In terms of the variance

E(a) = pg V (a) ‘ (8.47)
and
a = Wal (8.48)

where V(a) is the amplitude of the variance.

A study of several wave records reveals that the amplitude of the variance
is of the same order of magnitude as its mean value.
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Examining the wave record of August 4, 1976, the variance at Station 5

was 0.0337 m2, whereas the depth at that station was 1.32 m and applying
equation 8.48 gives

0.0337
1.32

= 0.025m = 2.5 cm

where a is the amplitude of the long wave oscillation.

This is a mean value for the whole record. During parts of the time
series, the value of a may be considerably higher; during other parts it may
be lower.

It is estimated that a ~ 0.05 m.
max

For Station 4 similar calculations give

0.020
T.05 ~ 0.02 m
with a possible maximum value B ™ 0.04 m.

Visual analysis of the corresponding 1976 wave records give estimated
values for the long wave amplitude between 0.06 m and 0.09 m. This is consid-
erably higher than the values found above.

Possible explanations for the differences are:

. a resultant shoreward flow diverted to adjacent reef areas,

« the influx of wave energy (and flow) from adjacent areas,

.+ equation 8.40 giving too low values for the mass transport
velocity in the breaking zone.

For August 25, 1976 the calculations gave the following results:

Station 5:
a = L0222 - o.0nm
a oy C 0.02 m (estimated)
Station 4:
a = LT - o.0145m
Qoo 0.03 m (estimated) .
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In the Fourier analysis, the value of energy of all components up to 0.007 Hz
was determined:

0.00054 m°

2

Sta 5: AV

0.0028 m

Sta 4: AV

Summarizing all energies in the low frequency ranges to represent one wave
with amplitude a, gives for the value of a, respectively

0.033 m

Sta 5: ag

Sta 4: a 0.075 m

e

The latter values can be considered to represent measured values for
"a" for the stations. These values correspond well with the values found
visually, but are considerably higher than the ones calculated above.

The reasons listed above may be cited as possible causes for the
deviations.

301



CHAPTER 9:  HYDRAULIC MODEL EXPERIMENTS

INTRODUCTION

In addition to the field experiments on Ala Moana Reef, the results of
which have been described in the previous chapter, hydraulic model experiments
have been carried out in the wave flume of the J.K.K. Look Laboratory of the
Department of Ocean Engineering. The main objective of this additional part
of the study was to determine if model testing of wave attenuation and wave
set-up on a shallow coastal reef would provide reliable results. If that
would be the case, the range of test conditions can be significantly ex-
panded beyond those experienced in the field so that wave attenuation and
wave set-up values may be determined over a larger range of conditions.

Unfortunately, in the available wave flume only monochromatic waves
can be generated so that tests with random waves could not be conducted.

Because of this limitation the comparison between field and model data
needs to be considered with caution. During the course of the study it was
confirmed that the various wave components of the spectrum show a different
attenuation behavior and that representation of the wave spectrum in the model
by one monochromatic wave does not necessarily lead to the same result.

For the calculation of wave attenuation and set-up in engineering design
it is of practical interest to determine if a wave spectrum can be replaced
by one characteristic monochromatic wave.

Because of the absence of a random wave generator in the laboratory,
the model experiments by themselves were not able to answer this question.
However, the combination of model studies, field studies and theoretical
analysis provided a framework for evaluation of this question.

The hydraulic model experiments can be divided into three groups:

a. bottom friction and breaking loss experiments;

b. wave set-up experiments;

c. simulation experiments.

The first group of experiments was conducted to obtain bottom-friction
coefficients and energy dissipation coefficients from wave breaking. The
analytical models developed in Chapters 3 and 4 served as basis for the
analysis. The values of these coefficients, obtained in the laboratory set-
ting were compared with those in the field to obtain insight in possible
scale effects.

The second group of experiments was aimed at providing data on wave

set-up. It appeared that manometers with small diameter plastic tubing
were useful for obtaining adequate data on wave set-up.
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The third group of experiments, the simulation experiments, were carried
out as an attempt to compose a wave spectrum from a series of tests with
monochromatic waves. Because the problems of shoaling and breaking are
highly nonlinear, it was not completely obvious if such procedure was justi-
fied in this case. It was indeed found that for the stations on the shallow
reef such composition procedure did not provide reliable results.

Results of the simulation tests are discussed in a separate paper by
Lee and Black (1978).

EXPERIMENTAL SET-UP AND DATA ANALYSIS

The wave flume, in which the experiments were conducted, is 54 m long,
1.22 m wide and allows a maximum water depth of about 1 m.

The monochromatic waves are generated with a parabolicly shaped plunger
type wave generator, moving in a vertical direction.

The maximum wave height in the model is about 0.3 m, whereas the period
ranges from 0.5 seconds to over 4 seconds.

The vertical side walls of the flume consist partly of glass panels and
partly of rubber cloth. The panels are supported by frames at distances of
1.22 m. Reference is made to Figure 9.1.

-
-

1.8 mI I j
P ! g S 7SS

— 54 m

— .22 m
r22m] [TTTTTTTTTITTITTIITL] lllﬁ
PLUNGER-TYPE WAVE GENERATOR

Figure 9.1 Wave Flume J.K.K Look Laboratory (schematic).

Waves generated in the tank being monochromatic and cylindrical,
represent a two-dimensional wave approach.

The size of the tank allowed the construction of a 1:12 scale model of
the reef traverse in the tank. The section of the reef traverse to be re-
presented in the model would include the offshore station (probe 7) at a
prototype water depth of 10.5 m below M.L.L.W.

A high tide level of 0.75 m above M.L.L.W. makes the prototype depth
at the offshore probe 11.25 m, corresponding to 0.94 m in the model.
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The selected scale allows to build about 130 m of reef area (of a total
of about 380 m) into the model; in this section most energy dissipation takes
place, so that this situation is expected to represent an acceptable limitation.

For the scale selected, depths in the model in the offshore areas are adequate
for experimentation, but such is not completely the case for the shallow reef
areas. In the prototype, the shallowest protion of the simulated reef section
has a depth of 0.35 m below M.L.L.W., which at a scale of 1:12 corresponds to
a depth of only 2.9 cm in the model. This depth is too small for the correct
simulation of wave attenuation and wave set-up at tide conditions corresponding
to M.L.L.W.

To reduce the scale effects, most experiments were run with prototype
tide levels of 0.75 m to 0.88 m above M.L.L.W., which increases the minimum
depth in the field to at least 1.10 m and the corresponding model depth to
at least 9.2 cm. This was considered an acceptable model test condition.

The reef body in the model was built of coarse sand, covered with a
5 cm layer of 1-3 cm crushed rock. During test runs to verify the experi-
mental set-up, it was found that under conditions that simulated the actual
tide levels and wave conditions on the days of field measurements, wave
dissipation on the shallow reef was in excess of-~the corresponding dissi-
pation in the field. In order to overcome these discrepancies, the shallow
reef sections were covered with thin metal sheets. This reduced the bottom
roughness in the model and reduced perculation losses from the permeable rock
structure, which reduced the discrepancies between field and model phenomena.

In the model waves were measured with capacitance wave recorders, fixed
in positions that correspond with the Tocations of the field stations.

Two types of cylindrical capacitance staffs were used: one with a
diameter of 1.25 cm and another with a diameter of 0.25 cm.

Both gages provided accurate readings for wave periods larger than about
0.6 seconds (model periods). For shorter periods the readings became un-
reliable. The waves were recorded on two-channel recorders.

The shoreward end of the tank was provided with an effective wave
absorber, consisting of PVC shavings with a wire mesh cover.

For the first series of tests, wave data from the model were obtained
by reading the wave heights from the charts. It was found, however, that this
method was not sufficiently accurate to provide reliable input data suitable
for the determination of friction coefficients.

During the main series of the experimental program the water level varia-
tions were therefore electronically recorded on a tape whereby a record of
12 minutes duration was used for the determination of the mean energy (varis
ance), mean wave heights, significant wave height, etc. Even though the waves
were generated as monochromatic waves, slight variations in wave height over
a period of several minutes appeared sufficiently important to justify the
use of these mean values over longer periods.
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For the measurement of the wave set-up two different methods were employed.
The first method used the mean water level obtained from the 12 minute wave
record as basis for analysis. It was found that this method was inaccurate,
due to run-up and depression around the probes.

To obtain more accruate wave set-up data, manometers were attached to the
outside of the tank which were connected with ¢ = 3 mm plastic tubes mounted
against the inside of the tank with their opening close to the bottom. The
manometers were read visually a number of times and a mean value was determined
from those readings. This method proved to give adequate data. A1l set-up
data reported in this chapter were measured in this way.

For the determination of the Wave Reynolds Number the water temperature
was measured with each experiment. The temperature of the air also was
recorded.

Wave Reflection and Second Harmonic Free Wave in Model

Waves generated in the model usually generate a slight long period
oscillation in the flume which requires the use of a wave record of long
(12 minutes) duration. This modulation is reinforced by reflection from the
landward end of the tank and from the reef slope. In addition, the generation
of a free second harmonic by the wave generator has an effect on the wave
height measurements.

By improvements of the wave absorber, the wave reflection may be re-
duced as much as possible.

A sample of wave records of the tank experiments is shown in Figure 9.2,
in which a second harmonic may be observed. At different stations a second
harmonic free wave will have a different phase relationship with reference to
the primary wave system.

The generation of a second harmonic free wave in a model setting was
discussed by Hulsbergen (1974), who gave suggestions to cope with it. No
attempt has been made, however, to arrange for corrective measures in this
study.

TRANSFER OF ENERGY TO HIGHER HARMONICS DUE TO SHOALING AND BREAKING

The method of wave analysis applied made it possible to compute wave
spectra from the model wave record. This provided insight into the generation
of higher harmonics in the shoaling and breaking process. Second and higher
harmonics are of two different types:

(1) from the nonlinear wave form,

(2) from free higher harmonics generated by the breaking process.

Unfortunately, the Fourier analysis applied to the data does not provide
the means to distinguish between one wave form and the other. A visual

inspection of the wave record is required to determine which of the two types
is likely to be present in the spectrum.
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Figure 9.2 Sample of Flume Wave Record

Energy in the second and higher free harmonics will be derived from the
energy of the primary mode. The reduction of the energy contained in the first
mode (in ratio to the total mean energy of the waves) is therefore an indication
of the relative importance of the higher harmonics in the wave record.

Figure 9.3 gives an example of the reduction of energy in the primary
mode for Stations #6 and #5, as function of the initial wave steepness for two
different wave periods. The data are converted to prototype data.

The solid Tines refer to Station #5 with a prototype depth of 1.6 m. The
ratio between the mean energy present in the first mode and the total mean
energy in Station #5 reaches a minimum for a wave steepness between 2.0 and

2.5 x 10_2 for a period of 6.7 seconds. For a period of T = 10.0 seconds, the
fraction of energy in the primary mode in Station #5 is much lower.

Station #6, located further offshore at a depth of 6.5 m shows similar
features; the effect of wave period is significant.
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Figure 9.3 Energy in first harmonic mode E] as fraction of total mean
energy, LE as function of wave steepness at Station #7.

BOTTOM FRICTION COEFFICIENTS IN MODEL

Basis of Analysis

The mathematical model, used for the analysis of the friction coefficient
in the model is basically the same as the one used for the field data.

It is again assumed that energy losses are predominantly caused by
friction and breaking and that for gradually sloping or horizontal bottoms

the reduction in energy flux is given by

dF _
ax = - (ep ¥ ep)

where the symbols used are the same as in Chapter 8.

The model used for the determination of the friction coefficient fw is

the one described in Chapter 3. It was assumed that in nonlinear and even
in breaking waves, the particle velocities in the immediate vicinity of the
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bottom retain their harmonic characteristics, and that the linear wave model
may therefore be a useable tool for the calculation of orbital velocities near
the bottom and of the bottom friction losses.

In the case of plunging breakers, the bottom friction coefficient may
have a higher numerical value than in nonbreaking waves due to the effect
of turbulence extending into the bottom fluid layer.

Losses induced by breaking waves may be calculated using the analogue
of the bore. For this a breaking loss coefficient ¢ was introduced and
defined in Chapter 4.

Although the waves in the model are basically monochromatic, due to
reflections and other possible flume-effects, variations in wave height over
time occur which are not insignificant. Therefore, a 12 minute time series
was recorded on tape and the characteristic wave parameters (mean wave height,
significant wave height, root mean square wave height) were determined from
this.

For linear and slightly nonlinear waves the mean energy of the waves
may be directly obtained from the record (variance).

For solitary waves with high H/h ratios a correction factor is required
to obtain mean energy values from the variance. For those waves the potential
and kinetic energy are no longer exactly equal to one another.

In the formulation for friction parameter, the wave amplitude or wave
height must be known. This value was obtained from the energy values by

taking
_ E
H = «V%a- (9.1)

where E is the mean wave energy per unit of surface area, obtained from the
time series.

The values of mean energy are also used for the calculation of the energy
flux. For this, the value of the group speed is required.

For deep water and intermediate depths a linear formulation for the group-
speed was used. For shallow water the relation

Cqp = C = Fr v/gh (9.2)

was used with appropriate values of the Froude Number.

In one other aspect, model studies deviate from the field: cross sections
in the model are not only affected by bottom friction but also by sidewall
friction. For proper comparison, a correction for sidewall friction must be
applied.
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The exact evaluation of this effect may be possible by means of care-
fully executed experiments. Such exact approach has not been attempted here
in view of other uncertainties involved in the measurement procedures.

The side walls of the flume consist partly of glass panels.and partly
of rubber-linecd panels. The latter may induce appreciable side wall friction.

Results of Experiments

The tests used for the determination of bottom friction coefficients
are listed in Tables 9.1 and 9.2. Similarly to the procedures developed in
Chapter 8, the reduction in energy flux gives rise to an expression of the

type
1=p fw +q¢z (9.3)

where fw and ¢ are the unknown parameters and p and q numerical values,

obtained from the tests. If no breaking is involved, equation 9.3 consti-
tutes one equation with one unknown (fw , the value of which can then be

determined. In case both friction and breaking are to be considered the
expression gives rise to one equation with two unknowns.
A graphical representation of equation 9.3 is a fw - ¢ relationship

for each test, such is shown in Figure 9.4-a, b, ¢, d. It is emphasized
again that this relationship between fw and ¢ is not a relationship between

the physical quantities fw and ¢z but rather a relationship between a certain
value of fw and a corresponding value of ¢ that produces the same loss in
energy flux.

Since values of fw and ¢ will generally differ for different wave con-

ditions, results of additional tests with different wave heights and periods
do not in general provide additional equations from which the values of fw

and ¢ can be solved.

From the graphs of Figure 9.4, values of the friction coefficients
can be obtained if the values of ¢ are known. Based on the considerations
of Chapter 4 and the analysis developed in Chapter 8, a value £ = 0.5 would
be an appropriate mean value for the model assuming that hydrodynamical
similarity between model and prototype exists.

Friction coefficients fw have been calculated from the model experiments
on that basis, the results of which are listed in Tables 9.1 and 9.2.

In a number of tests, markedly those for section 6-5, Figure 9.4,
maxumum values of ¢ (for fw = 0) are below 0.5. For those tests a value of ¢
equal to E-géé-was used for the calculation of the corresponding value of fw .

This is admittedly a rather arbitrary procedure; it was used because a better
alternative was lacking.
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TABLE 9.1
LABORATORY RESULTS, TEST 1,
REPRODUCED TO PROTOTYPE CONDITIONS
(Uncorrected for Sidewall Effects)

Tide = + .46 m (MLLW)

RUN #
T (sec)

17.5

.56

.66

52

.69

.58

.54

.65

.45

6.5

.35

5.5
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SO SO

MEAN 35 E
DEPTH L™
_(m)
6.58 2.30 4.21 x
1.47 32.10 2.74 x
.92 29.20 2.27 x
.88 16.30 7.09 x
6.58 2.85 7.30 x
1.47 35.20 3.72 x
.92 28.50 2.44 x
.88 12.10 4.42 x
6.58 3.20 9.83 x
1.47 38.10 4.67 x
.92 29.10 2.73 x
.88 13.10 5.49 x
6.58 2.57 6.82 x
1.47 34.90 4.21 x
.92 29.40 2.98 x
.88 13.90 6.66 x
6.58 2.87 9.18 x
1.47 35.00 4.58 x
.92 29.80 3.31 x
.88 16.80 1.05 x
6.58 2.2 5.93 x
1.47 25.70 2.68 x
.92 23.90 2.32 x
.88 16.70 1.14 x
6.58 1.79 4.25 x
1.47 20.90 1.95 x
92 20.50 1.86 x
.88 13.30 7.86 x
6.58 1.81 4.82 x
1.47 20.40 2.05 x
.92 19.50 1.88 x
.88 12.10 7.18 x
6.58 1.06 1.86 x
1.47 12.40 8.39 x
.92 11.70 7.47 x
.88 8.32 3.80 x
6.58 .765 1.09 x
1.47 8.43 4.42 x
.92 7.84 3.82 x
.88 6.05 2.28 x
6.58 .60 7.73 x
1.47 6.10 2.67 x
.92 4.95 1.76 x
.88 3.58 9.19 x
6.58 .355 | 3.19 x
1.47 2.99 7.60 x
.92 2.14 3.87 x
.88 1.32 1.48 x

116
.121
.625
.124

.219

1.050
.285

.148

140

1.020
.248

.0462
179
.750
.446

.125
.176
.350
.203

.135
.327
.145
.326

.200
.325
<129
.643

.230
.301
.165
.641

.373

382

.534
-155

.514

555

.428
133

609

1.070

694

.379

1.280
2.990

5.020

* Assumed values of
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TABLE 9.2
LABORATORY RESULTS, TEST 2,
REPRODUCED TO PROTOTYPE CONDITIONS
(Uncorrected for Sidewall Effects)

Tide = + .76 m (MLLW)

RUN # a
MEAN [ f z
H (m) RE w
DEPTH I'N
T (sec) (m) 3
1 7-6 6.63 4.24 2.50 x .175 .34
H7 = 1.85 6-5 1.83 32.00 4.77 x .108 .15
T=10 5-4 1.30 25.80 3.10 x .470 .50
4-3 1.22 14.30 9.57 x .572 0
2 7-6 6.63 3.56 1.77 x .130 0
H7 = 1.21 6-5 1.83 38.50 6.91 x .127 0
“T=10 5-4 1.30 31.90 4.74 x .346 .50
4-3. 1.22 16.30 1.23 x .629 0
3A 7-6 6.63 1.66 3.86 x .360 0
H7 = .54 6-5 1.83 18.10 1.52 x .164 0
T=10 5-4 1.30 19.80 1.82 x .155 0
4-3 1.22 15.50 1.13 x .482 0
38 7-6 6.63 2.64 9.69 x .330 0
H7 = .92 6-5 1.83 27.70 3.57 x .0359 0
T=10 5-4 1.30 - 28.80 3.87 x .249 0
4-3 1.22 16.60 1.29 x 1.150 0
4 7-6 6.63 4.61 2.12 x .180 B
H7 = 1.28 6-5 1.83 37.70 4.73 x .148 .28
T=14 5-4 1.30 29.70 2.94 x .425 .5
4-3 1.22 15.00 8.41 x 1.190 0
5 7-6 6.63 4.15 1.71 x .126 0
H7 = .92 6-5 1.83 42.50 6.02 x .130 .5
T=14 5-4 1.30 33.70 3.78 x .290 .5
4-3 1.22 17.80 1.06 x 1.190 0
E 6 7-6 6.63 5.69 3.22 x .250 -
H7 = 1.86 6-5 1.83 37.00 4.55 x .150 .26
T=14 5-4 1.30 29.30 2.86 x .435 oD
4-3 1.22 16.80 9.43 x .841 0
7 7-6 6.63 2.73 1.56 x .187 0
H7 = 1.81 6-5 1.83 25.20 4.41 x .120 -2
T= 6.7 5-4 1.30 16.90 1.99 x .590 5
: 4-3 1.22 5.97 2.48 x 2.390 0
8 7-6 6.63 1.94 7.86 x .235 0
H7 = 1.26 6-5 1.83 20.40 2.90 x 151 0
T= 6.7 5-4 1.30 18.10 2.29 x .230 -9
* 4-3 122 9.59 6.40 x 1.210 0 -
9 7-6 6.63 1.33 3.73 x .379 0
H7 = .87 6-5 1.83 12.70 1.14 x .383 0
T= 6.6 5-4 1.30 12.10 1.03 x .166 0
B 4-3 1.22 8.06 4.59 x 1.330 0
10 7-6 6.63 1.43 4.28 x .376 0
H7 = .90 6-5 1.83 13.80 1:.32 x .322 0
T= 6.7 5-4 1.30 14.50 1.46 x .0197 0
* 4-3 1.22 11.60 9.30 x .616 0
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TABLE 9.2 (CONTINUED)
LABORATORY RESULTS, TEST 2,
REPRODUCED TO PROTOTYPE CONDITIONS
(Uncorrected for Sidewall Effects)

Tide = + 1.07 m (MLLW)

RUN # a
H (m) SECTION S 2 RE fu E
T (sec) %m 3

n 7-6 6.94 1.92 7.64 x 103 .230 0

Hy = 1.25 6-5 2.4 19.80 27.4 x 10, -080 .08

Ly 5-4 1.60 20.70 29.7 x 10, -060 .065
. 43 - 1.53 15.10 15.9 x 10 1610 5
12 7-6 6.94 2.72 1.54 x 105 131 0
Hy = 1.75 6-5 2.14 28.50 5.66 x 10, .070 .18
T . B 5-4 1.60 23.60 3.89 x 10 -245 .395
. 3-3 1.53 12.30 1.05 x 10 1.070 0
13 746 6.94 4.22 2.48 x 108 L0511 0
Hy = 1.33 6-5 2.14 47.20 1.04 x 10; -0992 0
L 5-4 1.60 39.80 7.41 x 10, .345 .5
3-3 1.53 21.20 2.09 x 10 -670 5
14 X 6.94 2.61 9.51 x 105 .244 0
Hy = .88 6-5 2.14 27.30 3.48 x 10, .0957 0
= ¥ 5-4 1.60 30.90 4.46 x 103 1240 .095
4-3 1.53 24.10 2.71 x 10 -465 5
15 7-6 6.94 5.81 3.36 x 102 .240 .5
Hy = 1.87 6-5 2.14 40.60 5.34 x 107 1150 1235
iy 5-4 1.60 32.90 3.61 x 105 2390 5
3-3 1.53 24.00 1.91 x 10 2199 0
16 7-6 6.94 4.61 2.12 x 103 .200 .5
Hy = 1.27 6-5 2.14 38.80 5.00 x 10, "140 21
L 5-4 1.60 30.90 3.17 x 105 -490 5
3-3 1.53 17.20 9.84 x 10 1.20 0
17 7-6 6.94 3.88 | 1.50x 10 136 0
Hy = .88 6-5 2.14 43.30 6.23 x 10, -040 -
Y 5-4 1.60 38.90 5.03 x 10, 1370 5
3-3 1.53 25.20 2.11 x 10 1338 0
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Similar to the results of the field experiments, the model friction
a

coefficients were plotted as function of Eé-.
s
Results are presented in Figures 9.5 to 9.9

The estimated kS - values are:

kS = 2.5 cm for Section 7-6 (rock)
ks = 0.45 cm for reef sections (plated).
10 ~ LEGEND:
- o TEST |
- . BREAKING WAVE
i o TEST 2
. BREAKING WAVE
- 2 NUMBERS REFER TO RUNS
12
a
I =3
E 3
. -
0.1 -
0.01 sl

Figure 9.5 Uncorrected Bottom Friction Coefficient fw as Function of
a
= for Section 7 - 6.
S
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Figure 9.6 Bottom friction coefficient fw versus Ef—for Section 7 - 6,
< .

corrected for side wall effect of flume.
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Figure 9.7 Bottom friction coefficient fw versus E—-for Section 6 - 5,
S

corrected for side wall effect of flume.
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Figure 9.8 Bottom friction coefficient fw versus E—-for Section 5 - 4,
s

corrected for side wall effect of flume.
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Figure 9.9 Bottom friction coefficient fw versus = for Section 4 - 3,

S
corrected for side wall effect of flume.
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No efforts have been made to verify the estimated ks values experi-
mentally. If real values of ks differ from the estimated ones, this results
in a horizontal shift of the plottings in respective diagrams.

For the determination of the maximum bottom velocity and of the excursion
distance as » tne mean value of the wave height over the length of the section

is used for the plotting of the data. As for period, the period of the primary
wave induced by the wave generator is used.

Each diagram also presents the relationships for linear waves proposed
respectively by Riedel, et al. (1972), Jonsson (1966) and Kajiura (1968) to
serve as comparison with the data obtained from the model study.

In Figure 9.5 friction coefficients for the Section 7 - 6, uncorrected
for side wall effects, are presented. :

The data referring to breaking waves are marked with a solid symbol.

The uncorrected data seem to correspond reasonably well with Jonsson's (1966)
results. If a correction on side wall effect is applied, however, the agree-
ment with Jonsson (1966) is not so good.

For the side wall correction, a simplified formulation was used because
of lack of precise information: '

fu. = fw T+2m (9.4)

in which fw represents the corrected value of the friction coefficient.
c

A correction in the above manner is most 1ikely too strong and the actual
values may, therefore, be found between the uncorrected and corrected data.

Corrected values for Section 7-6 are listed in Tables 9.3 and 9.4, and
are shown in Figure 9.6.

The corrected data f, are closest to the curve proposed by Riedel, et al

(1972). Correspondingly, corrected friction coefficients for the Sections
6-5, 5-4 and 4-3 are shown in Figures 9.7 through 9.9. It may be seen that
for those sections the obtained values for fy are strongly different from the

results of Riedel, et al, Jonsson and Kajiura. Figures 9.7 through 9.9 also
do not show distinct differences between the data obtained for breaking and
nonbreaking waves.

A comparison between the mean values of the friction coefficient for the
different sections for the prototype and the model is shown in Figure 9.10.
Some of the differences between model and prototype may be caused by the some-
what higher water levels used in the model compared to the conditions in the
field.
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Figure 9.10

Comparison Between Mean Values of Friction and
Breaking Loss Coefficients for Prototype and Model
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TABLE 9.3
LABORATORY MODEL RESULTS WITH SIDEWALL CORRECTION, TEST 1

F f s
RUN # SECTION W T k-
1 7-6 .116 .061 e
6-5 121 .101 32.1
5-4 .625 .556 29:2 -
4-3 124 an 16.3
2 7-6 .219 .15 2.85
6-5 .08 .067 35.2
5-4 1.05 .933 28.5
4-3 .285 .254 12.1
3 7-6 .148 .078 3.2
6-5 .14 117 38.1
5-4 1.02 .907 29.1
4-3 .248 .221 13.1
4 7-6 .0462 .024 2.57
6-5 .179 .149 34.9
5-4 .75 .667 29.4
4-3 .446 .398 13.9
5 7-6. .125 .066 2.87
6-5 176 147 35.0
5-4 .35 .311 29.8
4-3 .203 .181 16.8
6 7-6 .135 .071 2.21
6-5 .327 .272 25.7
5-4 .145 .129 23.9
4-3 .326 .29] 16.7
7 7-6 .200 .105 1.79
6-5 .325 .27 20.9
5-4 125 Rit 20.5
4-3 .643 .574 13.3
8 7-6 .230 121 1.81
6-5 .301 .192 20.4
5-4 .165 .147 19.5
4-3 .641 .572 12.1
9 7-6 .373 .196 1.06
6-5 .382 .318 12.4
5-4 .534 .475 1.7
4-3 .155 .138 8.32
10 7-6 .514 .2n .765
6-5 .555 .462 8.43
5-4 .428 .380 7.84
4-3 .133 119 6.05
n 7-6 .609 .321 .60
6-5 1.070 .891 6.10
5-4 .694 617 4.95
4-3 .379 .338 3.58
12 7-6 1.280 .674 .355
6-5 2.990 2.490 2.99
5-4 .599 .532 2.14
4-3 5.020 4.480 1.32
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TABLE 9.4

LABORATORY MODEL RESULTS WITH SIDEWALL CORRECTION, TEST 2

f f s
RUN # SECTION W W '
1 7-6 .175 .092 4.24
6-5 .108 .086 32.00
5-4 .470 .399 25.80
4-3 .572 .490 14.30
2 7-6 .130 .068 3.56
6-5 127 .102 38.50
5-4 .346 .294 31.90
4-3 .629 .539 16.30
3A 7-6 .360 .189 1.66
6-5 .164 131 18.10
5-4 .155 132 19.80
4-3 .482 .413 15.50
38 7-6 .330 173 2.64
6-5 .0359 .029 27.70
5-4 .249 .21 28.80
4-3 1.150 .986 16.60
4 7-6 .180 .094 4.61
6-5 .148 .118 37.70
5-4 .425 .361 29.70
4-3 1.190 1.020 15.90
5 7-6 .126 .066 4.15
6-5 .130 .104 42.50
5-4 .290 .246 33.70
4-3 1.190 1.020 17.80
6 7-6 .250 RE} 5.69
6-5 .150 .120 37.00
5-4 .435 .370 29.30
4-3 .841 .721 16.80
7 7-6 .187 .098 2.73
6-5 .120 .096 25.20
5-4 .590 .501 16.90
4-3 2.390 2.040 5.97
8 7-6 .235 .123 1.94
6-5 .151 121 20.40
5-4 .230 .195 18.10
4-3 1.210 1.040 9.59
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TABLE 9.4 (CONTINUED)
LABORATORY MODEL RESULTS WITH SIDEWALL CORRECTION, TEST 2

f £ %

RUN # SECTION w we 1:
9 7-6 .379 .199 1.33
6-5 .383 .306 12.70

5-4 .166 .141 12.10

4-3 1.330 1.140 8.06

10 7-6 .376 . .197 1.43
6-5 .322 .257 13.80

5-4 .0197 .0167 14.50

4-3 .616 .528 11.60

1 7-6 . .230 ..118 1.92
6-5 .080 .062 19.80

5-4 .060 .049 20.70

4-3 .610 .505 15.10

12 7-6 131 .067 2.72
6-5 .070 .054 28.50

5-4 .245 .201 23.60

4-3 1.070 .886 12.30

13 7-6 .0511 .026 4.22
6-5 .0992 .077 47.20

5-4 .345 .283 39.80

4-3 .670 .554 21.20

14 7-6 .244 .125 2.61
6-5 .0957 .074 27.30

5-4 .240 .197 30.90

4-3 .465 .385 24.10

15 7-6 .240 .123 5.81
6-5 .150 .116 40.00

5-4 .390 .320 32.90

4-3 .199 .165 24.00

16 7-6 .200 .102 4.61
6-5 . 140 .108 38.80

5-4 .490 .402 30.90

4-3 1.200 .993 17.20

17 7-6 .136 .0698 3.88
6-5 .040 .031 43.30

5-4 .370 .304 38.90

4-3 .338 .280 25.20
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In order to evaluate the effect of fluid viscosity, the values of the
coefficients were plotted against the wave Reynolds Number (RE). Reference
is made to Figures 9.11 through 9.13. RE values are Tisted in Tables 9.2
and 9.3.

Except for Section 7-6, most data points fall within the turbulent-
rough regime as defined by Jonsson (1966); most wave Reynolds Numbers are

higher than 10%.

It appears that viscosity does not account for the relatively strong
differences between the ca]cu;ated friction coefficients and the established

- : $
relationships between fw and E;"

The apparent lack of agreement with respect to the relationship between
a
fw and Fé' for the model data suggests a considerable scale effect in the
s

bottom friction coefficients. This was already expected because of the need
to provide the reef bottom in the model with a flat metal plate in order to
obtain realistic dissipation characteristics, as mentioned earlier.

Possible scale effects of the model include surface tension and viscous
damping. In addition, systematic errors in the measurements may play a part.
For example, it has been established that for waves shorter than 0.6 - 0.7
seconds in the model, the capacitance wave gages were not very accurate. Such
waves contribute to the mean total energy of the waves after breaking because
of the generation of higher harmonics.

The question of the most probable cause of the scale effect in the wave
attenuation over the reef has remained unresolved. No theoretical or
experimental efforts have been made to clarify this further.

However, a comparison between the results of two field tests and one
model test with approximately equal wave energy in deep water is of interest
and is shown in Figure 9.14.

The water level in the model corresponded to a prototype value of 0.75 m
(above M.L.L.W.), whereas in the field the tide was 0.45 m above M.L.L.W.

Both model and prototype show a sharp reduction in mean energy shoreward
of Station 5. In the field, breaking of waves occurred and such rapid decrease
in energy may be expected. In the model, however, no visual breaking was
observed and the rapid decrease in mean energy must have a different cause.

Further study is required to resolve this question of apparent scale
effect.

WAVE SET-UP IN MODEL

Of the two methods used to measure the mean water level (one uging the
mean value of the time series for a given wave probe, and another using a
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laboratory manometer), only the results of the latter appeared consistent and
were used as basis for analysis. The test data are listed in Tables 9.5 and
9.6. -

A view of the experimental data indicates that wave he1ght wave
period and water depth on the reef play a part in géneratlng wave set-up.

Analysis of the experimental data furthermore“suggéSts that a modified
Ursell parameter may be a characteristic "parameter aga1nst which wave set- up
data may be plotted. -

The Ursell parameter is defined by

in which L is wave length, H is wave héight and h is water depth.

For shallow water this parameter becomes

and may be written in the form:

2. 2
B Ll e ]
k= 5 G -

() G

For the problem of wave set-up it is expected that the deep water wave

H
steepness parameter —95- and the average relative depth of water over the
_ gl™ .
reef ﬁé- play dominant roles in the process under investigation.

)
Consequently, a modified Ursell parameter

gT2H

1
zZ 2
G
gT2 Ho

may be of interest for the plotting of the experimental data in dimensionless
form, and a relationship of the type ;
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- = fet X') (9.5)

may be evaluated from experimental data.

For the actual plotting of the model data, it has some advantage to use
the incident wave height at probe 7, Hi’ as a wave parameter rather than the

hypothetical wave of Ho.

Defining therefore
) gTZHi ) 1
=7 22 8

) (%
gl Hy

it is of interest to explore if the function

n
2 = fet (x) (9.7)
i

will be useful to organize the data. In Figure 9.15 the relative wave set-up
ﬁhax . gTzHi
—— is plotted against x = for the model data of Test #2, runs 1 - 17.

i h.2

s

The diagram shows considerable scatter, which may be partly from
experimental error, being largest in the zones of low wave set-up when
accurate measurements become difficult.

Assuming that the curve drawn in Figure 9.15 represents the average
conditions the above relationship, equation 9.7, implies that

n H. h
2 = fet (——;— , Hi) , (9.8)
i gT i
Equation 9.8 and Figure 9.15 may be used to present some other graphical
n H,
relationship, e.g. between Eax and —J% , using HE' as a characteristic
i gT i
parameter. _
"max H.
In Figure 9.16 such a relationship between —p— and -—%f is plotted
h 1 gT
for various values of ﬁi . For the value of hS the average of the depths of

i
Stations 3 and 4 is used.
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TABLE 9.5

; LABORATORY WAVE HEIGHT DATA
(Reproduced to Prototype Conditions)

Test 1
WAVE | WATER | MEAN WAVE HEIGHT AT PROBE NUMBER

“RUN PERIOD LEVEL 7 6 5 ) 3
(sec) (m) (m) (m) (m) (m) (m)
1 0 +0.76 || 1.85 1.30 | 0.79 | 0.49 | 0.25
2 10 +0.76 | 1.2 1.63 1.49 | 0.72 | o0.27
" 3A 10 +0.76 || 0.54 0.61 0.62 | 0.35 | 0.38
3B 10 +0.76 || 0.92 0.98 1.03 | 0.53 | o0.21
4 14 +0.76 1.28 0.73 0.50 | 0.26 | 0.15
-5 14 +0.76 0.92 0.94 0.77 0.39 0.17
6 14 +0.76 || 1.86 1.24 | 0.68 | 0.3¢ | o0.21
7 6.7 +0.76 1.81 1.49 1.16 | 0.30 | 0.10
8 6.7 +0.76 1.25 1.05 1.03 | 0.62 0.18
9 6.6 +0.76 0.86 0.65 0.57 0.35 0.21
10 6.7 +1.07 0.90 0.67 | 0.57 | 0.66 | 0.35
11 6.7 +1.07 1.25 1.07 1.07 | 0.94 | 0.40
12 6.7 +1.07 1.75 1.68 | 1.54 | 0.87 0.38
13 10 +1.07 1.33 2.44 | 2.14 | 1.02 | o0.38
14 10 +1.07 0.89 1.07 1.07 | 0.71 0.40
15 14 +1.07 1.87 1.40 | 0.8 0.44 | 0.42
16 14 +1.07 1.26 0.97 0.65 | 0.72 | 0.18
17 14 +1.07 0.88 0.87 | 0.94 | 0.52 | 0.37
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WAVE SET-UP FROM MODEL EXPERIMENTS
(Reproduced to Prototype Conditions)

TABLE 9.6

Test 2
RUN NEVEL CHARACTERTSTICS WAVE SET-UP (cm)
aﬁﬂiﬁ T(sec) H mean Tmin g5 "max
(m) (cm) (cm) (cm)
1 +0.76 10 1.85 2.4 +11.4 +12.6
2 +0.76 10 1.21 -4.2 + 1.8 + 9.6
3A +0.76 10 0.54 -1.8 + 0.6 + 1.2
4 +0.76 14 1.28 -5.1 + 5.4 +11.6
5 +0.76 14 0.92 -4.2 + 0.6 + 5.4
6 +0.76 14 1.86 -8.4 +17.4 +19.2
7 +0.76 6.7 1.81 -8.4 + 9.0 +10.2
8 +0.76 6.7 1.25 -7.2 - 4.8 + 2.4
9 +0.76 6.6 0.86 -3.6% - 1.2 + 0.6
10 +1.07 6.7 0.90 -0.6 - 0.6 +1.8
Al +1.07 6.7 1.25 -3.6 - 3.0 +1.2
12 +1.07 6.7 1.75 -6.6 - 3.6 +10.8
13 +1.07 10 1.33 -7.8 -7.8 +7.8
14 +1.07 10 0.89 -5.4 - 4.8 +1.2
15 +1.07 14 1.87 -3.6 +10.2 +15.0
16 +1.07 14 1.26 -8.6 + 0.36 + 8.2
17 +1.07 14 0.88 -6.6 - 4.2 +2.4

* Falls inside Station 5
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Although there is considerable scatter, the overall results seem
promising. Considering Figure 9.15 for a given value of x, the relative

n
wave set-up —%§5~ is assumed to have one unique value. This implies that
i
ﬁﬁax Hi hs ‘
for a given value of 0, the product 7 and " is constant
i gT i
hs
(equation 9.7). For the lines indicating - = constant and for hg and H; both
i
H.
having finite values, ——%— can only go to zero for large values of T.
gl
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Beyond a certain period, say T = 30 sec for the corresponding prototype

n - -
conditions, the relation —Egé- = f(y) is expected to lose its physical
i
meaning.
hs
It may also be noted from equation 9.6 that x -~ for o> 0 with
i
ﬁhax hS
presumably a maximum assymptotic value of H for 0o 0.
i 1
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h
The physical significance of the Timiting case = % may be considered as

H.
i
representing a sloping beach without a shallow reef. Such can be
n h H.
demonstrated by plotting MaX  versus o s With 1 as parameter, using
Hy H gt

Figure 9.15 as a given relationship. A graph of this type has been plotted
for corrected model data and is discussed in a following section.

The results of the model experiments confirm that the steepness of the
incident wave and the relative water depth on the reef are important para-

meters of the set-up problem whereby a relatively lesser depth in the reef
leads to @ relativelyhigher wave set-up.

It will be of interest to determine if the results of the model tests,
as discussed above, may be converted to prototype conditions by using the
Froude model scale. In order to answer this question, an evaluation of
possible scale effects for wave set-up must be made.

Possible Scale Effects in the Wave Set-Up Measurements

The interpretation of wave set-up measurements in the model in terms of
prototype data may be affected by possible scale effects. In the conversion

of data, it is assumed that a hydrodynamic similarity exists based on Froude's
model Taw.

A deviation from this assumed similarity may occur if forces or processes
are present for which the translation of model to prototype data does not
conform to the Froude model law. Such forces or processes are surface tension,
viscous forces and internal energy dissipation. In the latter, viscous and
turbulent stresses may play a role.

In a previous section, the likely existence of a scale effect regarding
wave energy dissipation was suggested. The question may be raised as to what
influence such a scale effect will have on the interpretation of wave set-up
measured in the model. In order to evaluate this effect, the governing
differential equation is considered.

Neglecting resulting bottom shear stresses, this equation is written in
its most simple form

on 1 3S _
_X+pg_h_x_0 (9.9)
indicating that the gradient of the mean water level EE— is balanced against
138
pgh 3x

Integration of this equation between Stations 5 and 1 over the reef gives

- = _
mNs = ggn 55 (9.10)
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Since for shallow water the radiation stress S is proportional to the mean
energy E, a scale effect in the gradient of E signifies a scale effect in the
variation of the wave set-up along the reef. However, if all energy is
dissipated and S] + 0, one has

= . 3= O
n] = Ng = Aﬂ-l_s = D_QF 55 (9.1])
and a scale effect in An, . is reduced to a scale effect in S; (and therefore

in E5).

From the experimental results on the bottom friction coefficient it was
concluded that for the deep water Section 7-6 results from model and prototype
had significant similarity and showed no or very little scale effect.

If the assumption is justified that the mean energy in Station 5 also
has only negligible scale effect, the same conclusion holds for the maximum
wave set-up on the reef. Although there is no proof that this is truly the
case, further analysis will be made based on this assumption.

A problem encountered in the measurement of wave set-up in the model is
due to the confined body of water present in the flume. If wave set-up occurs
at one end of the flume, a set-down is experienced on the opposite end because
of the conservation of mass. Corrections must be made to account for this
effect.

Another possible source of scale effect on wave set-up may be related to
the effect of surface tension and the existence of a viscous shear force near
the surface of the water in the model. This may be particularly relevant if a
surface film is present at the surface (from oily substances or other contami-
nants) which enhances the damping of waves.

The damping of waves at sea with surface-active agents™ has been known
since antiquity (Davies and Vose, 1965). Aitken ( 1884) studied the subject
scientifically, showing that wave damping by a surface film.is associated with
its resistance to compression.

Dorrestein (1951) extended Lamb's treatment of insoluble films in capillary
waves and obtained an expression for the damping as a function of the surface
compression modules.

No effort has been made to quantify the magnitude of various types of
scale effects in the interpretation of the model data on wave set-up.

Effects of a Difference in Resultant Bottom Shear Stress on Wave Set-Up
in Model and Prototype

In addition to the consequences of previously described scale effects of
the hydraulic model which arise from the differences in hydrodynamic processes
in model and prototype, differences in measurements may result when the boundary
conditions of the model do not completely conform to those of the prototype.
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Those deviations also may be considered a form of scale effect, better
called "model effect."

In the prototype, conditions are fundamentally three-dimensional. Even
if the site has been selected so as to represent two-dimensional conditions
as closely as possible, small three-dimensional effects may still be present
in the prototype that are not simulated in the fundamentally two-dimensional
model.

A "model effect" in resultant shear stress will occur, if, for whatever
reason, the time histories of the bottom shear stress in model and prototype
are different. In the prototype a small landward mass transport may occur
that is diverted to adjacent reef areas by small longshore currents. If that
would be the case, the resultant bottom shear stress would be affected.

In the two-dimensional model, the landward mass transport induced by the
breaking waves will be balanced by a seaward return flow. However, the
existence of slight permeability in the model reef (versus an assumed imper-
meable reef in the prototype) may affect the distribution of the return flow
in the model, thereby constituting a possible "model effect."

Evaluation of the Effect of a Difference in Resulting Shear Stress on
Wave Set-Up Measurements

If the resultant bottom shear stress is included in the wave set-up
equation, one has

Y Mo, o7 -
= + pgh &L+ T =0 (9.12)

assuming steady state conditions and neglecting the effect of a superimposed
flow.

The effect of T may be evaluated by making use of equation 9.11 and by
comparing computed and measured values of An]_s :

By assuming a linear relationship between the radiation stress and the
mean energy (variance) in shallow water equation 9.11 may be written as

%—(var)5
An = e —————
1-5 h

(9.11-a)

as discussed earlier, where (var)5 represents the variance of the time series
at Station 5.

Assuming that differences between the calculated values of An (based on
equation 9.11-a) and the observed values in the model are solely due to the
effect of the resultant shear stress T, a value of T can be determined.

A possible model for the value of T that seems to give acceptable results
9S

is the hypothesis that T 1is proportional to - B - For a shallow reef this
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can be interpreted as a proportionality between T and the rate of energy
dissipation.

Denoting the dimensionless proportionality constant for the model as Bm "
one has

= . a8
T = - Bm T (9.13)

Inserting this value of T into equation 9.12 gives

ogh 30+ (1 -8 3 .9 . (9.14)

m) 9X

This modifies equation 9.11-a to

(1-Bm) (var)5

(9.15)

= Nojw

Ang_y

Using this equation, the value of Bm can be evaluated from the model results,
using the measured values of Aﬁs_] s (var)5 and h.

In this evaluation, a correction for the effect of nonlinearity on
radiation stress is not applied in order to keep the model as simple as
possible.

The results of this analysis are shown in Figure 9.17, corresponding to
a value Bm = 0.36 and a resultant shear stress

T = - 35
T = =036 & - (9.16)

Calculation of the Coefficient B from the Prototype Measurements

In order to determine if a "model effect" occurs and if differences in
resultant shear stress between model and prototype are present, a similar
approach must be followed for the field observations. Unfortunately, the
number of data points with simultaneous information on wave energy at Station 5
and wave set-up over the reef is limited to only one. It was obtained by
combining the field observations of September 14, 1976 with those of September
16, 1978 (first run) which observations showed equal wave energy for the offshore
station.

Since the values of wave energy and wave set-up do not come from simul-
taneous measurements, the accuracy of the information used is debatable.

Nevertheless, this information is used in this ana]ysis_to obtajn a much
needed comparison. Applying equation 9.15 to the field conditions gives
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(var)5

Ang_¢= (9.17)

where Bp is the coefficient of equation 9.13 applied to prototype measurements.

Using the above field data gives

3
(1 - B) 7 (0.0223)
0.915

0.0305 =

and

Bp = 0.17

The value of Bp is approximately half that of Bm .

Based on the value of Bp , the resultant mean shear stress term in the
field experiments may be expressed by

T, -0.17-g—§ . (9.18)

A tentative conclusion based on only one data point is that the resultant
shear force plays a larger part in the hydraulic model than in the field for
reasons not well understood.

If these differences are classified as model effects, then model measure-
ments can be corrected for model effect by applying a correction factor

1-0.17 _ 0.83

T-03 - 068 - 3

to the portion of the wave set-up in the model that develops over the shallow
reef.

It is hereby assumed that scale effects for the conditions along the
offshore portion of the traverse are small and may be neglected.

A verification of the correctness of this assumption is not possible at
this time.

Converting Model Data to Prototype Conditions

If the hydraulic model is considered a true simulation qf Fhe prototype
conditions at Ala Moana Reef so that it can be used for prediction purposes,
a correction must be applied to the model data as discussed above.

In the following, the wave set-up measurements in the model have been

corrected for "model effect" and the results are presented in dimensionless
form in Figures 9.18, 9.19 and 9.20.
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Figures 9.18 and 9.19 correspond to the Figures 9.15 and 9.16 for the
uncorrected model data. Although scatter of calculated results in each of
these figures is significant, it is expected that experimental and procedural
errors are principally responsible for the deviations from the mean trend.

If it is assumed that the average Tine through the data points in
Figure 9.18 represents true conditions, whereby

— 2
"max _ g1 Hi
H K - fCt 2
i h

S
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H. h
relationships between —E%i and —?%- may be drawn with ﬁ§-as parameter.
1 g i

=3

They are shown in Figure 9.19. Because of the corrections, corresponding

n
values of Eéx in Figure 9.19 are somewhat higher than the observed (uncor-
1
rected) information of Figure 9.16.

Validity of Results

The results of Figures 9.16 and 9.19 apply to the conditions at Ala Moana
Reef with corresponding prototype tide levels of 0.76 m and 1.07 m above M.L.L.W.

For water levels considerably higher or lower than these, the wave set-up
may be somewhat different in terms of the dimensionless parameters used.

In the preceding section it was suggested that the difference in resultant
shear stress could be the major reason for a model effect. Other possible
factors influencing the differences between the results of model tests and of
field experiments are:

a. the difference in water level, which in the model corresponded to
0.76 m and 1.07 m above M.L.L.W. and in the field ranged between
0.41 m and 0.57 m above M.L.L.W.

b. differences in bottom roughness and friction coefficient;

c. the difference between monochromatic waves in the model and random
waves in the field.

Comparison Between Model and Field Data

A comparison between results obtained from the model and from some field
observations is given in Figure 9.19. The average of four field observations
on September 16 and 30, 1978 (two runs on each day) is shown. Unfortunately,
these data were the only reliable information on wave set-up in the field for
which simultaneous measurements of wave elevations in the offshore station
were available. During those four observations, the relative wave set-up,
calculated by using the root mean square wave height, ranged from 0.063 to
0.074, with average value of 0.069.

h
The depth-wave height ratio ﬁi varied from 1.35 to 1.89 (average 1.63)
i
whereas the deep water wave steepness parameter —17 varied between 0.038 and
gl
0.048, with mean value 0.045.

To calculate the latter, the wave period corresponding to the peak frequency
of the wave spectrum was used.
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The data point obtained in this manner with a depth-wave height ratio
h
1.63 falls within the lines for > - values of 1.5 and 2.0.

H.,
j

Consequently, the average field data point may be considered in agreement
with the results of the model tests as corrected for model effect.

A Different Way of Plotting the Results of the Model Experiments

The relationship represented by equation 9.8 makes it possible to present

n
the data also in a different form, viz as a relationship between Eax and ﬁi "
H. i i
with the values of -—Jf as an independent parameter.
g7 ‘

Such relationships are shown in Figure 9.20. In this figure only the
functional relationships derived from the average line in Figure 9.18 are
shown; the individual data points are omitted from this diagram.

Presenting the results as in Figure 9.18 allows the extrapolation of

h
curves toward ﬁé' + 0 . A1l lines show a close to linear relationship for
i
hs
low values of n The extrapolated curves cross the vertical axis (where
1'
hs ﬁ}nax
" 0) close together near the point, where . is 0.162.
i i

Thisvalue may be considered to be an approximation for the maximum wave
set-up on a sloping beach, without reef. There is no guarantee, without
further detailed calculations, that such linear extrapolation is justified,
but this method provides at least a first order estimate for the wave set-up
on a s'oping beach in comparison with the wave set-up on a reef.

In Figure 9.21 a comparison is made between results obtained in this
study and those obtained from an elaboration of results by other investigators.
The results of this comparison are plotted with reference to the deep water
wave height H . Results from Van Dorn (1976) and Battjes (1974a) were used

for this comparison.

In van Dorn's results, his_equation5.110 of Chapter 5 was manipulated to

. . . "max Ho .
obtain a relationship between o and — - To be able to do this a slope
0 T
of 0.03 was assumed and results of the Shoge Protection Manual 1973 (Figures
2-65 and 2-66) were used to convert Van Dorn's results into the parameters of
Figure 9.21. The results of this conversion are shown by a dashed Tine,
indicating that the converted Van Dorn data fall somewhat below the extrapolated

reef data of the present study.
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To compare with Battjes' (1974a) results, calculated maximum wave set-up
values from his Figure 6.3 were used for comparison. These results were
calculated by Battjes for a narrow spectrum with an approach only of 15° and
y = 0.8, the root mean square wave height representing the deep water wave
height. Battjes' results are also shown in Figure 9.21.

In comparing the results of Battjes and of this study, it must be realized
that Battjes' calculations are for a narrow spectrum, whereas this study relates
to regular waves in a flume. )

There is , furthermore , a slight effect of the angle of approach, but
Battjes' Figure 6.1 shows that there is only a minimal difference between waves
normal to the beach and those approaching at an angle of 15° to the normal.

Battjes' values for relative maximum wave set-up are somewhat higher than
the extrapolated values obtained from the present study. This would be expected
since in Battjes' model.the effect of a resultant bottom shear stress has been
neglected.

Figure 9.21 shows that the extrapolated reef data from this study gives
values for the wave set-up which are in between the results obtained by Battjes
(1974a) and the manipulated data from Van Dorn (1976). The extrapolated results
imply that there is only a small dependency,of maximum wave set-up on wave
steepness. Further study on wave. set-up on a sloping beach, both. in model and
prototype, is required to arrive at firmer conclusions regarding the validity -
of various models.

Magnitude and Direction'of Resultant Shear Stress T

" The magnitude and direction of the resultant shear stress depends on the
characteristics of the near bottom velocities in the breaking wave regime.

The results of both field and model studies indicate that under the
conditions studied, a resultant positive shear stress (exerted by the fluid on
the bottom) is likely to develop. This result suggests a mass transport
velocity near the bottom in shoreward direction.

In the field, this resultant current pattern may possibly be associated
with some resultant landward mass transport on the reef to be discharged side-
ways intp adjacent areas and through rip channels.

In the model, this explanation does not hold since the situation is
strictly two-dimensional; however, in the model it is not inconceivable that
some landward mass transport over the reef could be associated with return
flow through the porous model reef structure, although the latter was largely
covered by an impervious metal sheet. It is also conceivable that in the
model the return flow is concentrated in the middle portion of the depth.
Reference is made toBijker, et al. (1974).

A mean positive bottom shear stress has a reducing effect on the wave

set-up on the reef. In the study area under consideration, there is reason to
believe that this is the case.
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In order to convert the results of the model tests to prototype data for
design purposes, it is conceivable that such positive shear stress not always
exists and that in a strictly two-dimensional situation, a zero or even
negative resulting shear stress may be possible. This will increase the amount
of wave set-up.

In developing prediction models for design purposes, it may be justified
that the resultant bottom shear stress be introduced as a variable, the results
of the calculations then varying accordingly.

In the previous paragraphs, it was indicated that experimental results
justified the relationship

— = ds
T = -B ax

where the values for B for the field and for the hydraulic model were different.
For the model the relationship

T o= - ds
T = 0.36 ax

gave a realistic approximation of observed values.
In the following, the value of the shear stress will be expressed in terms

of wave height and depth. As a first approximation, consider bottom friction
in the breaker zone to be absorbed in the value of ¢ so that one may write:

dF - 4 2
ar B ¥ = pg w H™ =« (9-]9)
dx b 8r /7
For the shallow reef zone
o = cand S = §-E
gr 2
so that
gg - cg_)E( - c%g_)s( (9.20)
Equating 9.19 with 9.20 gives
2 _dS 4 2m 2
gEa B = pg < H
3 7 dx s /7 T
T being the wave pefiod and
2
dsS 3z H
a | . pg = (9.21)
dx 8/2- cT
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With ¢ = /gh this gives

2
S ook g H (9.22)
8v2 /hT
The corresponding value for the shear stress in the model is:
= . 0:436¢ H2
T = - p@ . (9.23)
V2 /h T

This equation can be used to calculate the wave set-up in the model.

As an example, consider Run 7 of model test #2. Wave attenuation and
wave set-up have been calculated for this test run with and without a resultant
bottom shear stress. Reference is made to Figures 9.22 and 9.23. For the
computation of wave attenuatien, both wave bottom friction and energy
dissipation due to breaking were taken into account.

As may be expected, computed values of the wave height attenuation are
in general agreement with the observed values in the model. As to the wave
set=up Figure 9.22 presents the results of calculations based on the simplified
model, without resultant bottom shear stress.

There is a considerable deviation between observed values and calculated
values of wave set-up based on this model.

Agreement between calculated and observed values can be obtained if a
resultant shear stress T is included in the wave set-up equation. If for this
resultant shear stress the above derived equation 9.23 is used, agreement
between observed and calculated values is obtained for a value z = 0.37. This
is close to the mean value of ¢ used for the calculation of the energy dissi-
pation, although since the bottom friction was abserbed in ¢z, a somewhat higher
value for ¢ had been expected to give adequate agreement between calculation
and measurement.

In order to obtain acceptable agreement between calculated and observed
values for the wave set-up over the reef, a resultant shear stress T was
required over a portion of the offshore slope as well as over the shallow por-
tion of the reef (see Figure 9.23).
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CHAPTER 10:  COMPUTATIONAL ASPECTS OF WAVE ATTENUATION

INTRODUCTION

In the previous parts various aspects of wave attenuation and wave set-up
have been discussed, whereby attention was primarily given to the concepts and
basic equations underlying various computational procedures; so far 1imited
space has been devoted to the computational aspects of the problem.

In this chapter special consideration will be given to the following
problem areas:

- Computation of friction and breaking loss coefficients from measure-
ments.

- Computation of the change in wave height due to friction and wave
breaking.

« Energy losses due to breaking in random waves.

- Interfrequency energy exchange in shoaling and breaking waves.

COMPUTATION OF FRICTION AND BREAKING LOSS COEFFICIENTS IN REGULAR WAVES

In this study considerable effort has been made to determine energy loss
coefficients from measurements. This section deals with analysis of data from
the hydraulic model.

The wave flume of the JKK Look Laboratory, in which the hydraulic model
experiments were conducted, is provided with a monochromatic wave generator
and the analysis was therefore based on regular (monochromatic) waves. However,
due to irregularities in the wave generating system including the generation
of long waves of low amplitude, waves in the flume were not as regular as
desired, so that 12 minutes records were used from which mean wave heights and
root mean square wave heights were determined.

Computation of Friction Losses

The differential equation that governs the friction losses in two-
dimensional waves, without breaking, is

dzxx = - eelx) . (10.1)

The friction dissipation coefficient €¢ Was calculated from linear wave
theory (Chapter 3). Its value was

3
. 2 mH
e = 37 T p<T Sinh K h) (10.2)

where f, = Ce = friction coefficient along bottom boundary.
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In the analysis of model data, it was first assumed that all friction was
concentrated along the bottom. Afterwards a correction to this friction
coefficient was applied to account for losses along the vertical walls of the
wave flume.

Using linear wave theory and assuming a horizontal bottom, it was found
that

1 _ 1
Ax) - H{oy T B (10.3)
in which
gn° f,
B = 3 - (10.4)
3 gnc (T sinh kh)
For a sloping bottom, the distance between two stations Xo and X, may

be divided into a number of steps with horizontal bottom, as shown in Figure
10.1-a. Equation 10.3 may then be applied along a horizontal step. However,
at the locations where a change in depth occurs, the wave height is subject
to the effect of shoaling. The wave height Hy is obtained from the value
H'0 by applying equation 10.3 over the section 0-1 (See Figure 10.1-a):

H1_] = g+ By X (10.5)

0

The shoaling is considered to be concentrated in the steps; e.g. the
wave height H'] on the right hand side of step 1 is computed from the wave

height H] left of the step by assuming that the energy flux is conserved.

This gives:
2 X, 1 2
H] Cgr] = (H ]) Cgrz (10.6)
(o 1/2
i H]_<_g_r£> ) (10.7)
H'] 1 cgr]

Inserting equation 10.5 into equation 10.7 gives:
1/2

C
gr
+ =(1_ o Ax)(c 2) , (10.8)
H 1 H 0 an
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In a similar way:

“]_2 - L+, m (10.9)
H
1
1/2
cgr2 4 ;
= |3 <._T— + By OX ) + B, Ax (10.10)
gr] H'y

and

1/2 1/2

< L + B] Ax) + 82 AXx

c c
H'2 cgr2 Cgr] H'0
1/2 1/2

c c
gr gr

L - (c 3> <—L + 8 Ax> + (;—3) By Ax . (10.11)
H'» gr, H' gr,

Finally one obtains:

L (S o)
RooC\¢ <—+B1Ax>+c By &% &
n gr, H 5 gro
1/2 1/2
Cgrh / Cgrn /
E By Ax + < By BX + ... + Bn Ax . (10.12)
arj ary

If between the stations o and n the friction coefficient fw can be

considered to have constant value, then for each of the sections the factor B
can be expressed as:

B = constant x fw

Following this, the values of the wave heights Hy, H'y, Hy, H's, etc.
can be calculated by use of equations of the type 10.5.

The actual wave height (and energy) at the steps can be calculated by
taking the average value left and right of the steps

_ Hy + HYy

iy = (10.13)
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Hy + H' H + H'

0 o n n
— andHn 8 e
for the wave heights at the stations o and n; H'o and Hn can be computed from
ﬁb and H_:

Consequently, one should also take ﬁb =

2 Ho
H'o = 2 (10.14)
cgr
1 + E?"ll
gro
and
2 ﬁh
Hn = . (10.15)

1/2
1 + | —m—
Car
I + 1

The above allows the calculation of the friction coefficient f,_ from
the measurement of wave height at the stations o and n, ﬁb and ﬁh.

If wave variability in the model is significant, it may be desirable to
work with mean energy values. An equivalent wave height may then be defined
by

1/2
Ho = (%) / (10.16)

from which other wave characteristics, such as orbital velocities may be
calculated. If applicable, a nonlinearity coefficient § may be applied.

The necessity of calculating H'  from ﬁb and of H. from Hﬁ can be
avoided by taking H0 in the middle of section 1 and Hn in the middle of
section n (see Figure 10.1-b).

Equation 10.5 then becomes:

| Ax _
ﬁ? = ﬁ;' t OB (10.5-a)

whereas in equations 10.8 to 10.11, H'o is replaced by H0 and By Ax by

AX
By 72 -
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Equation 10.12 then changes into

; Cgrn 1/2 : » Cgrn 1/2
Eo(2) (e ns) e (2) e
n ary 0 gr,
Cgrn 1/2 cgrn 1/2 N
B, Ax + Br A% + wvvue + B = . (10.12-a)
c 3 c 4 n 2
gry vy

Figure 10.7-a Bottom Slope Schematized to Step Profile

B,

gr |

/PAX/Z'I —>X

Figure 10.1-b  Alternate Bottom Slope Schematization
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Nonlinear Aspects

The above outlined procedure works well if the wave height is small
compared to the depth so that the linear formulations of energy and group
speed are applicable. When due to shoaling waves exhibit strong nonlinear
characteristics, the use of the 1inear formulas give rise to appreciable
errors in the values obtained. In the breaker zone, the propagation velocity
and group speed may be formulated by the equation

c = Cgr = Fr Jgh (10.17)

where the Froude number Fr may vary between 1.05 and 1.3.

The Froude numbers of the shallow water waves can be evaluated from
experimental data.

In the area before breaking waves may also exhibit strong nonlinear
characteristics so that an adjustment to the (linear) group speed may be
required.

In order to compute total mean energy from potential energy, a correc-
tion factor was applied if the wave demonstrated solitary wave characteristics

with E->> 0. In that case, the mean energy was obtained by considering the

fact that the potential energy of such wave is only 45% of the total energy.
(Longuet-Higgins , 1974 ). A correction coefficient of %%g = 1.1 was then

applied to the linear mean energy obtained from a wave record to account for
the nonlinearity.

In the process of shoaling and breaking on the reef, secondary waves are
generated, giving the waves in shallow water a distinct variability. For the
analysis it was therefore considered necessary to digitize the wave records
and to compute the wave spectra eventhough the primary waves were monochromatic.

Energy Losses Due to Bottom Friction and Breaking

If both bottom friction and breaking are important, the differential
equation for the loss in energy flux is

T = e (x) - () . (10.18)

After introducing the appropriate expressions for €¢ and € » equation

10.18 may be integrated for a horizontal bottom. The results of this calcula-
tion were presented in Chapter 4 (equation 4.109). A numerical procedure,
similar to the one described above, may also be applied.

It is of interest to compare the relative magnitude of friction and breaking
{4
in a breaking regime. For this the ratio EE for shallow water may be determined.
f
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The orbital velocity near the bottom in shallow water is

Hc

(Unax = 2n (10.19)

which gives for the ratio between €, and €¢

3/2

24
b3 h . (10.20)

w
& 27 Tw g
To obtain an order of magnitude for the quantities at Ala Moana Reef,
assume some realistic values for the various parameters of equation 10.20:

r = 0.5 w = 0.6
fw = 0.1 h = 1m
H = TIm

“b
This gives = 8 | 3

It appears that in regular waves breaking and friction have approximately
equal weight in the energy dissipation process in the surf zone, where wave
height and depth have equal order of magnitude.

FRICTION AND BREAKING LOSS COEFFICIENTS IN RANDOM WAVES FROM FIELD EXPERIMENTS

In the analysis of field data, the randomness of the waves must be taken
into consideration.

For waves traveling perpendicular to the shoreline (no refraction) with
energy flux per unit of width equal to F, equation 10.18 may be written in the
form.:

3

dF 2 mfH 4 <
o2 ws £ opl 1B - —=— pg fH" . (10.21)
dx 3n W ( sinh kh) 47
Integration over distance Ax for regular waves gives
: 2
AF = [3£ f p< i >+ S pg fHO| Ax . (10.22)
T ¥ \sinh® kh 4/

For the analysis of random waves, two methods of approach may be
considered:

- use of Fourier spectrum

« use of zero-upcrossing spectrum .
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In the latter, individual waves traveling through a section may be
considered, which is a definite advantage for the analysis. Also, the location
where breaking starts can be determined for each individual wave and the sum of
the losses can be determined for all waves. In the following, the wave-by-wave
treatment will be utilized.

Similar to the analysis in Chapters 7 and 8, the following definitions
are applied:

% 09 H, (10.23)

and

Ev = pg * (variance). (10.24)

Set equation 10.23 equal to equation 10.24 by introducing a factor &

E, = sEV (10.25)
so that
E,
§ = 4 (10.26)
Ey

Values of & obtained from the measurements were 1isted in Table 8.3.

The mean value of § obtained for a series of waves is now assigned to
each individual wave. This is necessarily an approximation but no other means
of finding ¢ is available.

By again considering a step-profile and considering the group speed
constant over the distance ij of a section j-(j+1) with a schematization

according to Figure 5.10, one has

AF = (Ej+] - E j) Cgrj (10.27)
which gives for any individual wave, i:
FH, :
H5a = Wy | 379 \simrns) * 2 THi | ¢
JJ V2 9r,
(10.28)

Hj+] may be computed from H'j if all other factors are known.

* Use of the difference equation 10.28 instead of the corresponding differential
equation is allowed only for small values of Ax, e.g.

8ﬂ£ fu H'. Ax
J 5 << 1, for example < 0.01.
3 gnc (T sinh kjhj)
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Furthermore, at the transition j+1 conservation of energy flux requires:

2 2
H™. c = (H'.,q)
j+1 grs J+1 97541
or
Hlj+1 = (10.29)
Combination of equations 10.28 and 10.29 gives
: ., Cor. 167" & € FHY. \°
Hlj+] - Hlj c i 3g . (sinh k % ) &
2 ij
/2 &cf H‘j 3 « (10.30)
grj+'|

For the depth hj’ the mean depth over the section j, j+1 is to be used.

If N waves pass the section j, j+1 of which Nb waves break, the resulting
equation for all waves is:

Cc 2
y . f
? e o= g w2 95 g - ]6"3 8 Ty
LT g Lo Lo C g
i=1 i=1 gri,j+] i=1 9r1,j+1
3N
f. H'.. b AX .
(grnlfjh—) Lo oe g (10.31)
i i=1 Cgry s4 ’

The calculation is carried out for a number of steps ij.
Assuming that energy levels are known from measurements at the beginning
and end of a section, the above procedure allows the calculation of f, if the

value of ¢ is known and vice versa.(1) For this procedure, it is assumed that
the friction coefficient f, has a constant value for the section considered.

The dependency of f,, on frequency is thereby neglected. It is also assumed
that ¢z is constant in this equation.

Calculations based on equations 10.29 and 10.30 have been carried out by
assuming values for f, and determining the corresponding values of z by means

of a iterative procedure.

(1) For small values of Ax, the differences between H0 and H'0 and between

H, and H'n may be neglected.
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The result is an equation of the form
pf, *+ ac =1

from which pairs of (fw, ¢) values may be determined that give the same
energy loss. p and q are numerical constants determined from the analysis.

Reference is made to Chapter 8 for results of these computations.

Unfortunately, it is impossible to exactly determine the value of both
fw and ¢ from this equation.

Where no breaking occurs, it is possible to determine fw because the

losses due to breaking disappear and the analysis gives rise to one equation
with one unknown. When breaking occurs, the friction coefficient may be
affected by the breaking process so that a different value of fw may be found.

If the fw-c curves are crossing the g-axis, an upper limit for z is
found since the friction coefficient cannot be negative.

The order of magnitude of the z-values may be obtained by applying
Figure 4.24. Based on assumed values of z, values of fw may then be calculated.

The above procedure only partly accounts for interfrequency energy
exchange through the use of the experimentally found values of &.

An important aspect of equation 10.31 is that the total number of waves (N)
and the number of breaking waves (Nb) appear in the equation, whereby Nb < N.

This is a significant characteristic of the analysis.

In designing a prediction model, whereby experimentally found values of
fw and ¢ are used as input, the fact that in irregular waves only a fraction

of the total number of waves breaking, has to be accounted for. The probability
density distribution of wave height at the various stations, therefore, plays

a part in this analysis. To determine the number of waves that break in a
subsection, the modified Miche-criterion as proposed by Battjes (1974a)was used:

H '
b 2mh
T = 0.14 tanh gYee (57) (10.32)
Hp
where T is the maximum steepness that can be reached in nonbreaking waves.
For shallow water this reduces to
Hp
=Y - (10.33)
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The coefficient y' may be associated with the lowest breaking wave height
in the record for a station. Values of y' obtained from the field experiments
are presented in Tables 8.5 and 10.T.

Finally, an acceptable formulation was required for the group speed.

At the point of breaking Cgr ~ ¢ and

cqr = Fr VR . (10.34)

At the breaking point Cgr differs significantly from the linear

expression ¢ = Ygh so that realistic Froude numbers have to be taken into
account. The latter were found from the experiments.

Walker (1974a) found from his investigations in a hydraulic model:

¢ = c(a) (1+ Mf‘_“) (10.35)

where c(a) denotes the celerity for linear waves.

For = 1 this corresponds to a Froude number of 1.25.

. e =2

In order to have a gradual increase in group speed from relatively deep
water (12 m) to the breaking point, it was similarly assumed that

_ 0.25 H
cgr = cgr(a) (1 + - )

(10.36)
There is no theoretical foundation for this expression, but introducing
it eliminates a sudden change in group speed from linear to nonlinear wave
characteristics at the breaking point.
It was found that the results of the calculations for the zone before the
breaking zone were not very sensititve to the group speed relationship used.

PREDICTION OF ENERGY LOSSES FROM BREAKING IN RANDOM WAVES

General Considerations

For computational procedures in random waves, it will be extremely useful
if an effective energy dissipation coefficient ¢ can be defined so that energy
loss calculations can be applied to a regular wave train representing the wave
spectrum.

A random wave field has waves of varying height and period. When such
waves approach a coastal reef over a sloping bottom, the larger waves of the
spectrum will break in deeper water than the smaller waves; after the breaking
the larger waves are subject to energy dissipation, whereas at the breaking
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points of the larger waves, the smaller waves continue unbroken, subject to
shoaling and friction until they also break. This process is illustrated in

Figure 10.2

(8) (5)

L | HIGH WAVE

................... LOW WAVE
/T\ /{\

Figure 10.2 Behavior of High and Low Wave Near Breaking

Supposing the largest waves start to break at a station, identified by
(6) in this figure and only a small fraction of the waves break at that
location, the amount of wave energy dissipated immediately shoreward of (6)
is also small. This fraction increases as the depth becomes shallower and
more and more waves start to break. This behavior is schematically shown in

Figure
&) _—( (5) (4) (3) (2)
| | |

P  FRACTION OF
BROKEN WAVES

() (5) (4) (3) (2)

Figure 10.3 Schematized Trend Regarding Fraction of Waves that are Broken
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The consequence of this is that the effect of breaking on energy
dissipation is small at Station (6) and increases in shoreward direction;
further shoreward on the reef, this effect decreases again.

For random waves an evaluation of this aspect must be made in a
quantitative manner in order to correctly assess the breaking losses in energy
dissipation.

Energy losses in breaking waves were defined by equation 10.18.

The rate of energy losses due to breaking per unit of area, €ps Was for

monochromatic waves defined by equation 4.62. For the numerical evaluation
of the randomness of waves in breaking, this equation must be evaluated for a
wave spectrum. In previous chapters the energy density spectrum of the waves

was defined in terms of the frequency f = %— and equation 4.62 may therefore
also be written in the form

.z 2
g, = —— pgf H" . 10.37
b 47 ( )

For the numerical evaluation of € in random wavés, a probability density

distribution for wave height in breaking waves and a criterion for wave breaking
must be known.

Battjes and Jansen (1978)”Mode1 for Energy Dissipation

In a recent paper Battjes and Jansen (1978) developed a dissipation model for
random waves in the breaking zone. A short description of this model follows.

Wave Height Distribution

It is impossible for waves with heights considerably in excess of the
depth h to pass a location with that depth. Waves which would otherwise do so
are reduced in height due to breaking, whereby the limited depth effectively
1imits the larger wave heights in the distribution.

As a model for the wave height distribution, Battjes and Jansen used a

truncated distribution, whereby for each depth h a maximum possible wave
height, H,» was defined by

H, = yh . (10.38)

It is assumed that the heights of all the waves which are breaking or
broken at the point considered (and only these) are equal to H_.

For the shape of the distribution of the non-broken waves, a Rayleigh-type
distribution was accepted.

The above assumption written in terms of the cumulative distribution
function F(H) leads to:
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FIH) = Pr (0 <H} =1 - exp (- 5 H/H) for 0 <H < H_

(10.39)

1 for H <H

in which H is the modal value and the underscore indicates a random variable.

Equation 10.39 represents a probability distribution with two parameters
H and Hm so that all the statistics of the wave heights can be expressed in

terms of (H, Hm). One of those is the root mean square wave height (Hrms)’
defined by

Hoo = Uow H? d F(H)] vz (10.40)

Another is the probability that at a given point a wave height is
associated with a breaking or broken wave. This probability is called Qb’

which on the assumption of a maximum wave height for a given depth equals

Q = Pr{H = H }. (10.41)

Substitution of equation 10.39 into equations 10.40 and 10.41 gives

2 _ e
H _—_— 2 (1 - Qb) H (10.42)

and

QG = exp (- 3 H M) . (10.43)

Instead of (H, Hm) it is also possible to use (Hrms’ Hm) as the two

governing parameters of the distribution. For the purpose of this study,
where energy dissipation is essential, the latter two parameters are preferred
having a clearer physical meaning. This leads to

2

% (H‘”'"S> (10.44)

an Qb Hm

H
from which Qb can be solved as a function of ;ms »
m

A graphical representation of this equation is given in Figure 10.4 by

a solid line. In deep water where Hrms/Hm ~+ 0 equation 10.44 gives

Qb + 0. In shoaling water the ration Hrms/Hm tends to increase and the value
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Figure 10.4  Fraction of Broken Waves (Qb) and

Calculated Values of (Q') from
Observations

of Qb increases (see also Figure 10.3). In the Timit Hrms/H + 1 and Qb -1,

which would imply that all waves are broken and equal to Hm‘

Criterion for Breaker Height

Battjes (1974a) applied Miches' criterion to the maximum height of
periodic waves

tanh kh (10.45)

Ho = 0.14 L tanh (2™) = o0.88k™"
m L
and modified this to
H = 0.88k"! tanh XKL (10.46)
m : 0.88 ° ‘
In shallow water where tanh ykh , YKh  this reduces to
0.88 0.88
Hm = vh
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where y is somewhat adjustable depending on wave steepness and beach slope.
(See also Chapter 4).

k = %? is the positive real root of the dispersion equation

(2rf)2 = gk tanh kh. (10.47)

In application to random waves, equation 10.46 is used with f in
equation 10.47 given as a single representative value, e.g., f, the mean
frequency of the spectrum defined by

) [om f G(f) df
- Iom 6(f) df

(In principle it is also possible to use a distribution of f values leading
to a distribution of Hm values.)

Energy Dissipation in Broken Waves

Battjes and Jansen (1978) following Le Méhauté (1962) developed an energy
dissipation model, based on the similarity with the bore and one very similar
to the model developed in this study.

For the average power dissipated in the breaking process per unit of
area, they presented

1 H3
€b v T Pg fF . (]0.48)

Applying this to random waves, one is interested in the expected value
of the dissipated power per unit of area.

Applying equation 10.48 to broken waves, they obtained
*

- a' ¥ g .

with  being the mean frequency as defined earlier.

In terms of the dissipation coefficient ¢ developed in this study, this
is equivalent to

- r3 2 .
&, = Qb fpgH" . (10.49-b)

£
4v2

*
Here o' is used instead of Battjes' o because of different meanings of o

already used in this study.
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For monochromatic waves with Qb =1 and f = f, this gives

! 2
g = %T' f pg H® . (10.50)

Apparently o' is equivalent to L , with ¢ defined as in Chapter 4.
VZ

The combination of equation 10.49-a or b and equation 10.44 determines
the power dissipated in the breaking process, ¢, as a function of the (unknown)

value of H s (or the local energy density Ep), the known Tlocal depth and some
constants.

Battjes and Jansen compared the results of their theoretical model with
the results of hydraulic model experiments and found that the wave height
variation across the surf zone was predicted reasonably well. Reference is
made to Figure 10.5 which is taken from their study.

F = E
L /o 1 1 1 iR 1 1 1 1 | L /o 1 1 1 1 o 1 1 J
20 O 20 40 60 B8O 100 120 140 160 180 20 0 20 40 60 80 100 120 140 160
x LEGEND: "
. THEORETICAL
cesee EXPERIMENTAL
0.2
0.1 P\ ..eeseen,
le
1 1 L 1 N ! ' | J l___o
T T -
-20 20°"40 60 80 100 120 140 160 180 -20 20 40 60 80 100 120 140 160
X X
o L

Figure 10.5 Experimental and Theoretical Values of Wave Attenuation
and Wave Set-Up. (from Battjes and Jansen, 1978).
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It is to be noted that in Battjes and Jansen (1978) model friction losses
are not accounted for. This icﬁpart explains the difference in quantitative
values obtained for o' and g/ /2, respectively obtained by Battjes and Jansen
and in this study.

Use of the Weibull Distribution for the Calculation of €p in a Random
Wave Field

The results of this study have shown (see Chapter 8 and Black (1978a)
that the Weibull distribution provides an adequate description of wave height
variability in shallow water waves, including the stations where waves are
broken.

The Weibull probability density distribution (Weibull, 1951) for wave
height is given by the general form:

f(H) = o8 H*T exp( -a HP) (10.51)
and is defined by two parameters a and B.

An important difference with the truncated Rayleigh distribution is
that the probability function F(H) does not exhibit a discontinuity at H = Hm’
such as is the case in the truncated Rayleigh distribution.

A disadvantage of the Weibull distribution is that the parameter B must
be known from experiments.

For example, the coefficient B may be obtained from the relationship
between HZ ]/3/Hz (significant wave height over mean wave height) as shown in

Figure 10.6. Furthermore, o can be determined if g and the mean wave height
are given (see Figure 10.7).

When using the Weibull distribution, it is desirable to express the mean
energy dissipation rate (per unit of area) in terms of Hrms rather than in

terms of Hm, since there is no maximum wave height defined in this concept.

Define a ratio factor Q for irregular waves by

= .2
e, = Q 7 TogH s (10.52-a)

or in terms of ¢

= L F 2 L
€ Q g f pg H _— (10.52-b)

The fraction Q is then determined from

[ . HZ £(H) dH
b
Q =

I HZ £(H) dH
(0]

369



MEAN OF WEIBULL DISTRIBUTION

4.0

. 30
Iz
(2]
g
™ 20
1.0

Figure 10.6
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( from Black, 1978a).
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Figure 10.7

Mean of Weibull Distribution Versus B.
( from Black, 1978a).
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or

JH H2 £(H) dH
b
Q = 2 . (10.53)

Hrms

In order to solve equation 10.53, f(H), Hy» and Hrms must be known.

f(H) may be expressed in terms of Hrms and B (coefficient of the Weibull
distribution).

Hrms may be expressed in terms of the coefficients o and B of the Weibull

distribution:

172
H = [r(1+§)] o 1/8 (10.54)

172
st & = [T+ 3]
and

[F(] - %-] i
o = (10.55)

(H. )P

rms

where T represents the gamma function (see Black,1978a).

For B =2, a = 2] which holds for the Rayleigh distribution.

H rms

The wave height Hb is defined as the lowest wave height that is broken;
its value is to be determined from experiments. Waves with H < Hb are there-
fore all unbroken. The value of Hb can be expressed in terms of water depth

Hy = y'h » (10.56)

where y' is to be distinguished from y, defined earlier.

Modified Battjes and Jansen (1978) Model for Energy Dissipation,
Developed from Ala Moana Reef Data

The field experiments conducted at Ala Moana Reef in 1976 provided informa-
tion on the various statistical parameters necessary to evaluate the energy
losses due to breaking.
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Reference is made to Table 10.1 which presents relevant data for Stations
5 through 1 on the reef for the days of measurement in 1976.

Listed in this table are depth at station, maximum wave height (measured),
root mean square wave height (computed) and some derived characteristics.

The data give rise to the following discussion.
Maximum Wave Height

Hy

From the measured values of the maximum wave height, values of y = 5%

have been computed (Column 6).
The mean values for the Stations 5-1 are listed in Table 10.2.

Table 10.2 shows that the mean values of y range from 0.81 at the reef
edge (Station 5) to0.60at Stations 1 and 2.

According to Table 10.1, the maximum value of y = 1.11 was computed for
Station 5 on September 16, 1976, whereas the minimum value of y = 0.46 was
found at Station 2 on September 7, 1976.

The mean value for all stations is y = 0.70.

Root Mean Square Wave Height

Values of the root mean square wave height were computed from

(10.57)

where N is the total number of waves in a record.

H
Computed values of WS ope listed in Table 10.1, Column 7.

M

Minimum Breaker Height

From a visual inspection of the wave record, the number of broken waves
was determined. Breaking or broken waves in the record are characterized_by a
very steep wave front. Although this procedure is not 100% accurate, it is
believed that the method is superior to using an empirical or theoretical
relationship. Independent analysts also arrived at approximately the same
number.

From the number of broken waves and the computed wave height distribution
H

obtained from the measurements, the coefficient y' = 7?—can be determined
(Table 10.1, Column 8).
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TABLE 10.1
STATISTICAL PARAMETERS FOR BROKEN WAVES

€LE

1 2 3 4 5 6 7 8 9 10 n 12 13 14 15
H H H ' H
Date Probe | Depth Hn Hems | y = —%"— ———ﬁms Y= 'hh P Q Q' Y M T Q"
h(m) | (m) | (m) " (m) m
7-30-76 S 1.13 0.90 0.48 0.80 0.53 0.56 0.1209 0.2687 0.075 0.68 0.77 0.620 0.1032
4 0.70 0.59 0.26 0.85 0.43 0.60 0.0694 0.2659 0.049 0.73 0.51 0.505 0.0678
8-4-76 5 1.32 1.1 0.51 0.84 0.46 0.50 0.2129 0.5801 0.123 0.67 0.89 0.574 0.191
4 1.02 0.81 0.36 0.79 0.45 0.46 0.2230 0.5698 0.115 0.63 0.64 0.566 0.1825
3 0.96 0.79 0.31 0.82 0.39 0.40 0.2402 0.6241 0.094 0.61 0.58 0.533 0.1773
2 0.99 0.60 0.18 0.61 0.29 0.25 0.1414 0.4883 0.041 0.43 0.44 0.404 0.0797
8-25-76 5 1.26 0.84 0.29 0.66° 0.34 0.26 0.2405 0.7153 0.083 0.46 0.58 0.494 0.175
4 0.67 0.58 0.28 0.86 0.48 0.43 0.3717 0.7072 0.162 0.65 0.44 0.6364 | 0.286
3 0.74 0.39 0.14 0.53 0.36 0.29 0.0990 0.3676 0.048 0.41 0.30 0.454 0.079
2 0.79 0.39 0.12 0.49 0.30 0.22% 0.0963 0.3487 0.031 0.36 0.29 0.406 0.057
1 0.65 0.31 0.08 0.48 0.25 0.235 0.0584 0.3361 0.021 0.36 0.23 0.337 0.038
9-7-76 5 1.40 0.83 0.31 0.59 0.38 0.31 0.1480 0.4787 0.069 0.45 0.63 0.499 0.119
4 0.79 0.70 0.32 0.89 0.46 0.45 0.3059 0.7168 0.152 0.67 0.53 0.605 0.262
3 0.82 0.79 0.30 0.96 0.37 0.49 0.2096 0.6112 0.084 0.73 0.60 0.492 0.148
2 0.81 0.38 0.13 0.46 0.35 0.24 0.1423 0.5497 0.067 0.35 0.29 0.4 0.122
1 0.90 0.52 0.17 0.57 0.34 0.21 0.2845 0.7502 0.087 0.39 0.35 0.494 0.183
9-14-76 5 1.48 0.92 0.39 0.66 0.42 0.35 0.1892 0.5239 0.092 0.51 0.75 0.519 0.141
4 0.94 0.51 0.21 0.54 0.41 0.28 0.2326 0.5967 0.100 0.41 0.39 0.545 0.177
3 0.44
2 0.86 0.57 0.15 0.66 0.27 0.32 0.0411 0.2105 0.015 0.49 0.43 0.356 0.027
9-16-76 5 0.88 0.98 0.39 1.1 0.40 0.70 0.1399 0.5127 0.082 0.91 0.80 0.485 0.120
4 0.90 0.73 0.29 0.81 0.40 0.42 0.2183 0.5674 0.091 0.62 0.56 0.519 0.153
3 0.82 0.71 0.32 0.87 0.45 0.60 0.1140 0.3914 0.079 0.74 0.60 0.524 0.108
2 0.86 0.58 0.18 0.67 0.30 0.36 0.0369 0.2024 0.018 0.52 0.45 0.394 0.031
1 0.80 0.48 0.15 0.60 0.30 0.36 0.0414 0.2425 0.022 0.48 0.38 0.383 0.036
9-23-76 5 0.88 0.89 0.39 1.02 0.43 0.64 0.2723 0.7929 0.147 0.82 0.73 0.531 0.224
4 0.86 0.70 0.27 0.81 0.39 0.65 0.2019 0.5771 0.088 0.73 0.63 0.426 0.105
3 1.13 0.79 0.33 0.70 0.42 0.74 0.1727 0.5832 0.103 0.72 0.81 0.404 0.095
2 0.90 0.70 0.20 0.77 0.28 0.58 0.1914 0.6518 0.051 0.68 0.61 0.323 0.068
1 0.83 0.62 0.20 0.75 0.32 0.56 0.2066 0.6618 0.068 0.66 0.55 0.363 0.087




TABLE 10.2

H

MEAN VALUES OF y = —h'ﬂ

STATION MEAN VALUE OF vy

0.81
0.79
0.69
0.61
0.60

—MNwWHo

The trends in y' are similar to those of y; usually higher values occur
for Stations 5 and 4 and lower values at Stations 2 and 1.

Statistical Parameters P, Q and Q'

The statistical parameters P, Q and Q' Tisted in Table 10.1 will be used
in a manner similar to Battjes and Jansen's (1978) model.

They are defined as follows:

The quantity P is the fraction of broken waves in a record
P = — . (10.58)

where Nb is the number of broken waves and N the total number of waves. It
may be compared with the parameter Qb defined by equation 10.44.

The quantity Q is defined by
)

qQ = l;J__ (10.59)
L

which is the numerical form of equation 10.53 and where Hbr(i) represents
a broken wave in the record.

*
The quantity Q' obtained from observations listed in Table 10.1 (Column 11)
has been derived from Q by equating

* - -
Q' is used here rather than Q, to identify it as an experimentally determined
value.

374



- £t 7 2
€b Q a7 fngms
and
- nr. & = 2
€, = Q@ —=— TopgH 10.60
b 47 m et
so that
2 = i ol
QH s = O Hy
and
Hrms ’
Q'==.Q <—ﬁ—> ; (10.61)
m
¢ Hrms
To compute Q', the ratio H is taken from observations (Table 10.1,
m

Column 7). The value of Hm needs further clarification.

Use of Observed Statistical Parameters with Battjes and Jansen's (1978)Model

Battjes and Jansen's (1978) model is based on the truncated Rayleigh
distribution with the assumption that no wave is higher than a value Hm, with

the probability for H = Hm being equal to Qb'

In order to apply the concept of a truncated distribution to data obtained
from observations, a difficulty arises as tothe value of Hm at which the

distribution curve is truncated.
The observed maximum wave height of a wave record is likely to occur only
one time and is expected to be larger than the truncated maximum wave height.

In the observed record one may find a probability distribution of H around the
value Hm’ instead of a number of equal values Hm as specified by the theoretical

truncated distribution.

If the observed highest wave in the record is used for the calculation of
Qb from equation 10.44, a value of Qb considerably lower than the fraction of
actually broken waves P will be obtained, such as found in the following
examples.

Consider the conditions at Station 5 obtained from measurements on July 30,
1976 and September 23, 1976 and calculate the values of Qb based on the maximum

observed wave height, H_.
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:
476 m; H_ = 0.900 m; —= = 0.53

July 30, 1976: Hrms = =
m
Q, = 0.032 (from equation 10.44)
P =0.12 (from equation 10.58)
Hrms
Sept. 23, 1976: Hrms = .387 m; Hm = 0.894 m; —ﬁ;— = 0.43
Q < 0.01 (from equation 10.44)
P =0.27 (from equation 10.58)

In both cases Qb << P

Similar results are obtained for other days of observation. Clearly the use of
the maximum observed wave height leads to values of Qb that are lower than

anticipated.
In order to resolve this problem, two approaches may be considered:

(1) Use the observed maximum wave height in the record to represent
Hm and make an empirical adjustment to equation 10.44.

(2) Use for H_ a value, which is less than the maximum observed

wave height and which is more likely to correspond to the
maximum value of the (theoretical) truncated distribution.
This value 1is identified by H'm.

Both approaches will be discussed below.
Adjustment of Equation 10.44

If Q is calculated from equation 10.59, using observational data, and Q'
from equation 10.61, using the observed maximum wave height for Hm’ the data

points for Q', implying a realtionship

H
QI = fct( Ems)

m

can be plotted. See Figure 10.8.

In the same figure, the value of Qb is plotted as obtained from Battjes
and Jansen's (1978) model (equation 10.44).

In calculating Q' and Qb the values of Hy, have clearly different meanings
and, therefore, one should not expect agreement between Q' and Qb‘
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A comparison between Q' and Qb is, therefore, not to be considered as a

verification of Battjes and Jansen's model, in view of the difference in the
meaning of Hm'

In case Hm signifies the maximum expected wave height in a record, its

H
value is related to the parameter y = 7?». Calculated mean values of y are

listed in Table 10.2;for the Stations 5 and 4, a mean value of 0.80 was obtained
from the observations.

Considering the considerable scatter of points in Figure 4.2 where Yp is
plotted against the similarity parameter go , a value of y = 0.80 is not
unrealistic for low values of go ,» such as prevailed during the experiments.

The maximum wave height Hm, thérefore, has advantages for prediction purposes,
since it is related to a predictable value of Y.

A consequence of this is that equation 10.44 is no longer directly appli-
cable. In this equation Hm represents the truncated wave height and not the
maximum wave height - However, this equation can be modified to express the
Hrms

H
record. This modified equation as represented by the dashed line in Figure
10.4 and 10.8 has the form:

relationship between Q' and . Hm being the expected highest wave in the

2
y an Q' Hm
where (10.62)
_ ' Z
y = 0.71 (Q'" - 1)" +1

This relationship is also plotted in Figure 10.4 covering the total range
of Q' from 0 to 1.

In the above equation, y is a numerical parameter based gn.experimenga]
data. Consequently, equation 10.62 must be considered an empirical relation-
ship having no strict theoretical foundation.

Values of Q' obtained from Figure 10.8 or from quatioq 10.62 when combined
with the experimentally evaluated parameters y and ¢ will give the correct
amount of energy dissipation.
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Adjustment of Maximum Wave Height

In this approach it is realized that the characteristic parameter of the
truncated distribution here identified by Hé represents a wave height smaller

than the maximum observed wave height Hm.

In order to obtain a reasonable estimate for H‘m, it is now assumed that
the mean of the two values: Hm’ the maximum wave height and Hb’ the Towest
breaking wave in the record, could be a good approximation. Therefore,

|
Hip = 2'(Hm * Hb) ’

If similar to earlier procedures, a ratio Q" is calculated from

2
H
o)
L m
where Q, Hrms and H'm are obtained from observational data, the relationship
Hrms
" = fet (H' ) (10.63)
m

may be established. A plotting of this relationship is presented in Figure
10.8, averaged by a dotted line.

It may be noted that the curve for Q" is in between the curves for Qb and

Q'; there is still an appreciable difference between Qb and Q".

In order to be able to use equation 10.63 for prediction purposes, the
value of H'm has to be estimated. Defining

gives

The values for v , y' and y" are listed in Table 10.1. Values of y" are .
consequently Tower than those of y, the mean value of y" from the observations
for Stations 5 and 4 being 0.64.

This is on the low side as compared with the values of Yp in Figure 4.2

for low values of the similarity parameter £ , although the scatter of the
data points in Figure 4.2 prevents drawing a definite conclusion.
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This method is conceptually better than the first one in view of the
more realistic concept of Hm and an empirical formulation for Q" could be

developed from the data points, assuming the value of y" could be predicted.

At present it is felt that values of Yy" are too low and that the
parmaeter y, discussed in the previous section is a better prediction tool
because of closer correspondence to the values of Yp of Figure 4.2

Comparing the two approaches, preference must therefore be given to the
first approach, using y and the empirical relationship 10.62.

Procedures

The procedures suggested are now the same as suggested by Battjes and
Jansen (1978) as modified and described above.

Use of the maximum wave height Hm, (equation 10.60) instead of the root

mean square wave height for broken waves (equation 10.52-b),offers a signifi-
cant simplification and is therefore to be preferred above the use of the
Weibull distribution.

The above described method provides the tools for the calculation of
wave attentuation and wave set-up for random waves.

In the calculations, both energy losses due to breaking and bottom fric-
tion must be taken into account. The wave set-up calculations are based on
the procedures developed in Chapter 5.

As an example of calculations, consider observed and calculated values
of wave height for the conditions on August 25, 1976 and September 14, 1976
as shown in Figure 10.9. _

Values of fw, ¢ and y introduced into the calculations are in agreement

with those found from the analysis so that it is not surprising that a
reasonable agreement is obtained. However, in the analysis a wave by wave
calculation is utilized whereby an estimate for the number of broken waves is
obtained from the record and from its probability density distribution of
wave heights, such as discussed before.

For the prediction model the procedures described in the previogs secyion
have been utilized, whereby the root mean square wave height at Station 7 is
used as a deep water boundary condition.

Values of fw and ¢ used in the calculations are listed in the figures.

Observed wave heights in Stations 3 and 4 on September 14 show a discre-
pancy with calculated values. In the field, energy entering thg measuremen?
traverse from adjacent reef areas may have contributed to the higher waves in
Station 3.
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WAVE HEIGHT IN ¢cm

SECTION 1 ¢ ¥
7-6 0.1l 0.5 0.76
6-5 0.80 0.5 0.76
5-4 0.03 0.4 0.76
5-3  0.17 0.4 0.53
3-2 0.1l 0.4 0.53

SECTION  f_ ¢ Y
7-6 0.1l 0.5 1.0
6-5 0.50 0.5 0.76
5-4 0.18 0.45 0.66
4-3  0.15 0.45 0.66
3-2  0.15 0.4 0.66

Wave Height Attenuation (Observed and Calculated)

and Wave Set-Up (Calculated) on Ala Moana Reef for
(a) August 25, 1976 and (b) September 14, 1976,
Using Root Mean Square Wave Height Method.
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The differences do not identify a shortcoming of the model but rather
indicate that in the field wave conditions did not completely conform to a
two-dimensional situation.

The Tocation where wave breaking stops and waves regain their oscillatery
characteristics is i1l defined.

Favre's results (see Chapter 2) indicating that regeneration starts at
a maximum wave height-depth ratio of about 0.25 seems to give a useful
criterion.

Wave Attenuation Calculated by Utilizing the Complete Energy Spectrum,
Neglecting Interfrequency Energy Exchange

In this approach the starting point is the wave spectrum in the offshore
station for which the zero-upcrossing spectrum is utilized. Using this
spectrum as input for the calculations, wave spectra for the shallow water
stations may be calculated as described in Section 8.

With reference to Figure 10.10, a frequency band Af contains an average
amount of energy S(f) Af; this energy may be represented by a single wave,
which is the root mean square of all wave heights in the energy band Af.

It was found (equation 8.21) that for a frequency band Af:

N

H:- = H = 8 8 S(f) af o

i rms
if S(f) represents the normalized zero-upcrossing spectrum.

The energy in the selected frequency band Af is carried shoreward
similarly to the procedures applicable to a single wave.

If in the energy package S(f) Af wave breaking develops, problems
similar to the ones described in the previous section arise.

A1l waves with frequency between f] and f2 or with period between

%L- and %L- have a wave height probability density distribution of their own.
1 s

The largest waves of this package break first, the waves with medium
height follow and finally the smallest waves break.

In order to evaluate the procedures to be followed, the bivariate
probability density distributions for a number of wave spectra are of interest.

The distributions are shown in the form of frequency diagrams (Figure
10.11) for the normalized wave height and wave period obtained from the zero-

upcrossing procedure for various stations, (Black, 1978a).

Although a certain correlation between the wave height and period para-
AT
meter is unquestionable, for each period interval :TE' the wave height

T2
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Figure 10.10 Change in Energy Spectra
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H
parameter ;:5 shows a probability distribution, the shape of which varies

Hz

with the value of TZ .

It may be reasonable to assume that these marginal distributions behave
similarly as the wave distribution for all the waves so that the procedures
described before may be followed.

Using the modified truncated Rayleigh distribution analogue, the maximum
wave height may be obtained from

whereas the value of the Hrms is calculated from energy dissipation.

The combination (Hm, Hrms) provides the required value for Q' (equation
10.62), from which the corresponding value of €, may be calculated using

- ' |4 2
€. = Q' —=— f pgH
b 4v7 m

where f is now the frequency in the middle of the frequency band Af considered.

If appropriate wave attenuation coefficients are used for friction and
wave breaking, the results of the above described calculations will be similar
to the one schematically indicated in Figure 10.10. Near the peak of the
spectrum the computed spectrum is 1ikely to be too high, whereas for the high
and low frequency components the opposite may be the case.

The reason for the apparent discrepancies that will be found is the
interfrequency exchange of wave energy where energy in the area of the peak
of the spectrum is transmitted to Tower and higher frequency components.

INTERFREQUENCY ENERGY EXCHANGE IN SHOALING AND BREAKING WAVES

In previous chapters (4, 7, 8), it has been observed that in the process
of shoaling and breaking, wave energy is transferred from medium frequencies
to lower and higher frequency components. In the calculations carried out for
the determination of energy loss coefficients, this aspect of the phenomenon
has been Targely neglected in order to facilitate the analysis.

A possible way to describe this phenomenon is based on the concept of
source function. Other possible approaches for describing the interfrequency
energy exchange mechanism were suggested in Chapter 4 and are based on the bore
characteristics and on the Airy function.

385



Utilization of Source Function

In studying the growth and decay of wind generated waves, Hasselman,
et al.(1973) have defined the source function S from the law of energy
conservation of an energy package G(f) df of a wave spectrum (Fourier
spectrum):

26D 4B+ 3 {(6(f) df) ey (N} = sdf (10.64)
or

_g% 4 53; (G Cgr‘) = 5§ . (10.65)

In general, the source function S consists of three components:

« an energy input component (Sin)

* a ﬁon]inear interaction compoﬁent (Snz)

« an energy dissipation component (Sd) .
so that

S = Sip *t St Sy - (10.66)

If steady state conditions are assumed and the energy input from the
wind is neglected, equations 10.65 and 10.66 are reduced to:

d -
I (6 cgr) = S, *+Sq (10.67)

where Sd has a negative value.

Since é%-(G cgr) is a measure of the gradient of the energy flux per

unit of frequency, the dissipation part of the source function may be expressed
in terms of €¢ and €p

For a finite frequency band Af:

. d
Sng B¢ = Hi'(G Cor Af) - 34 O
S, b8 = L ac A)+L (e, +e) (10.68)
ng °f dx gr f/ 7 pg ‘°f b’ * ’
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Integration of equation 10.68 over a distance Ax and dividing by Ax
gives:

A(G ¢ . Af) 1
Sng B¢ AX * 5§-(€f * &)
and
AG c_ ) (eg + )
Snl = ___E;SK_ s L f b (10.69)
P9 Ag

from which Snl can be computed for the section Ax.

In the breaking zone €p it H3 and abz $- H2; however, only a small

error is introduced if it is assumed that both €¢ and €, are proportional to

2z
H rms*

Since Hzrm is proportional to G(f) Af (see Chapter 8) define

S

= pg €' G(f) Af (10.70)

so that equation 10.69 is modified to

AG c_.)
- r !
Snl _——ZIQ_—' +e' G . (10.71)

If no energy losses would occur, then

A(G ¢ d(G c
s ~ _(__g_.r_)_ ~ _S—_.g-ri
ng AX dx

would give a first order estimate for Snl' If, however, no energy exchange

between frequency bands takes place Snz ~ 0 and -——329—— ~ 0 as would be
expected.

For shoaling and breaking waves, Figures 10-12 a, b and c demonstrate
the meaning of the terms of equation 10.69.

In this figure the nonlinear energy transfer for the section between
the two stations A and B is schematically shown.

The above procedure allows to compute the nonlinear energy transfer
from the measured spectra in A and B if the dissipation rates s and €, are

known. If no breaking occurs, then €¢ is only of interest.
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A]thbugh the above desired relationships provide some insight into the
phenomenon, it does not provide the tools for calculation of spectra for
prediction purposes when measurements are not available.

For this, one has to revert to other methods, such as to Schonfeld's
bore model, discussed in Chapter 4.

(a)

s
° SPECTRUM IN B
~ —|.€'+(—Ib
7 ~— pg Af
f
(c)
=
[75]

Figure 10.12 Nonlinear Energy Transfer.
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CHAPTER 11:  SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

INTRODUCTION

General Background and Description of Project

In Hawaii many coastal areas have a relatively low elevation and require
protection against wave attack by storm waves. In some of these areas a
shallow coral reef extends between the shoreline and the deeper water. The
reef may be biologically alive or dead. Such coastal reef offers significant
protection to the coast; the large ocean waves break on the edge of the reef and
the wave that reaches the coastline is of reduced magnitude. Not only is wave
energy lost in the breaking process but attenuation of wave height also takes
place due to friction along the bottaom.

After the breaking of waves on the reef's seaward edge, regeneration of
waves may occur over the reef, creating waves of lower height and shorter
period. If wind blows over the reef in shoreward direction, wind energy is
transferred into wave energy but the growth of wind generated waves over the
shallow reef is limited by the depth of the water. ,

The effect of wave breaking and wave attenuation on a shallow reef,
however, also has another aspect: it generates a set-up of the mean water
level over the reef and near the coastline. The increased water depth in
turn may result in greater wave heights near the shoreline. Onshore winds may
further increase the depth of water near the shoreline and in this way also
contribute to a potentially greater wave height. N

The depth over a reef usually varies in the direction parallel to the
shoreline, giving rise to differences in set-up along the coast. The resulting
gradients of the mean water level drive a mean current system. Such currents
are of importance with regard to the transportation of coastal sediments and
also for the onshore-offshore mixing of the water leeward of the reef and the
ocean waters. Quantitative knowledge of the set-up is required for a quantita-
tive prediction of these currents and their effects.

Much study has been done on the nature and magnitude of wind set-up; design
parameters are well defined and they give reliable insight into water level
behavior under the action of wind. On the other hand, although the theory of
wave set-up is well developed, field data were lacking, and the value of
empirical coefficients were ill-defined.

Knowledge of the set-up and the wave characteristics leeward of a reef is
necessary in numerous engineering endeavors, such as the assessment of beach
stability or the design of coastal structure as well as the prediction of the
dynamic response of ships or the design of marine terminals in waters partly
protected by a reef. The existing grave uncertainties with regard to the design
parameters mentioned above have lead to a widespread practice of using conserva-
tive results, which needless to say, results in unnecessarily high cost.

In view of the preceding arguments, the present study was undertaken.
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The study consisted of the following parts:
+ a literature survey;
« a theoretical study;
- field experiments;
« hydraulic model investigations.
It entailed a thorough review of literature relevant to the study. The
theories on radiation stress, wave energy dissipation, and wave set-up were

further advanced in order to provide the required framework for the measure-
ments.

The field measurements were conducted in a traverse across a coral reef
at Ala Moana Park, Honolulu. The majority of the measurements were taken in
the summer of 1976. In 1978, additional measurements were taken to clarify
uncertainties of the 1976 program.

The study aimed at obtaining improved design criteria in regard to the
construction of breakwaters, revetments and coastal protection works on
shallow reefs, which in turn would lead to cost savings for these structures.

Methods Used For Study

In view of the project's goals(1), great emphasis was placed on the field
measurements in this study. The primary parameters measured were the bathy-
metry, the mean water level, and the wave characteristics, in a range line
extending from a point seaward of the reef to the coast. An array of water
level recording stations has been used for this purpose. The arrangement had
to be mobile in view of the intensive use of the sites for recreational purposes
and because of the desirability of making measurements at more than one site.

Although the field measurements provided the primary source of data, a
limited number of laboratory experiments was included in this study. This
had the dual purpose of experimenting under more controlled and under a greater
variety of conditions than would be possible in the field, and of investigating
scale effects by comparing the laboratory results with those from the field.

The analysis of the data on wave set-up is based on the theory of the.
radiation stresses in water waves; it has been aimed at checking the applica-
bility of existing models and at obtaining empirical coefficients.

RESULTS OF INVESTIGATIONS

Theoretical Studies

The study has contributed to a better understanding of the physical
processes regarding the breaking of waves on a shallow coastal reef.

(1) See Chapter 1.
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It has led to the formulation of a mathematical model that gives an
adequate description of this process and that provides the tools for predic-
tive analysis.

The theoretical model encompasses the following aspects:

(1) energy dissipation
(2) energy distribution

(3) wave set-up.

Energy Dissipation

Energy dissipation in waves approaching and propagating over a shallow
reef is governed by two principal processes: bottom friction and energy losses
due to breaking (turbulence).

The equation that describes the energy losses due to these two phenomena
for waves that approach the shoreline at right angles has the form:

v e v e =0 (11.1)
where gg-is the gradient of the energy flux (per unit of width) in the direc-
tion of wave propagation and E¢ and €, are the mean rates of energy dissipation
per unit of area due to friction and breaking, respectively.

In the quantity €¢ the bottom friction coefficient (fw) plays a determining
role. In order to relative fw to the orbital velocities of the waves near the

bottom, a Tinear wave model was applied. In strongly nonlinear waves and in
breaking waves, this introduces some errors in experimentally determined values
of fw from field and model data. However, useful results have been obtained

from this procedure. One of the reasons for this is that in nonlinear and even
in breaking waves the orbital motion along the bottom characteristically retains
its harmonic nature. One exception possibly is associated with a plunging
breaker when the jet of the plunging breaker penetrates the near bottom fluid
layers. Then values for the bottom friction coefficient may be considerably
higher than those obtained for regular wave conditions.

To determine the quantity €ps the similarity between breaking wave and the

phenomenon of @ bore was utilized as a basis for the analysis. This idea has
earlier been developed by Le Méhauté (1962) and was also used by Battjes and
Jansen (1978). The bore model proved to be very useful.

In agreement with the assumptions described above, values of €f and g, are
given by
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3

it & % & [rdde] .2

&y = st g w H2 (11.3)
8mv2
where:

Ty = dimensionless wave bottom friction coefficient

r = dimensionless wave breaking Toss coefficient

H = wave height

T = wave period

h = depth

w = angular frequency

k = wave number.

In the laboratory investigations of this study, monochromatic waves were
exclusively used. The above equations are directly applicable to monochromatic
waves since the wave height H and the period T of the incoming wave are well
defined.

In the case of random waves, such as occurs in the field, an analysis is
required to account for the number of breaking waves in a record in addition
to criteria for energy dissipation and the beginning of breaking.

In the analysis of observational field data, the actual number of broken
waves was estimated from an inspection of the wave record; for prediction
purposes, however, a model for the fraction of broken waves or for the frac-
tion of the energy that is contained in broken waves is required.

Field and model experiments have been used to determine the numerical values
of fw and ¢ required to predict energy dissipation.

In the hydraulic model experiments, attention had to be given to possip]e
scale effects such as induced by surface tension and internal friction particu-
larly for the shallow reef section.

Energy Distribution

The energy density spectrum describes the distribution of the mean wave
energy over the various spectral components present in the wave record. It
appears that due to shoaling and breaking on the reef a redistribution of
energy takes place, whereby energy of medium frequencies shifts to lower and
higher frequencies.

This aspect has been analyzed in this study. It appears that the Source
Function is a useful tool for the description of this phenomenon.
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Wave Set-Up

The calculation of wave set-up is based on:
(1) energy dissipation (discussed above)
(2) conservation of horizontal momentum.
In the analysis, use has been made of the concept of radiation stress.
Although in the course of this study the effect of wave nonlinearity on the
radiation stress has been considered, actual calculations have been made based
on the formulation of this stress for linear waves, in view of other uncertain-
ties involved in the various aspects of the calculations.

Field Measurements

The field measurements were carried out in a traverse at the Ala Moana Reef,
where five wave gages were established over the shallow reef at intervals of 30
to 60 m and one gage installed in relatively deep water.

Waves were measured with capacitance wave staffs. Because of the difficulty
of placing instruments at he outer breaker point, wave heights were remotely
measured there with a telephoto movie camera installed on shore, where the
vertical motion of a floating buoy was observed as a measure of wave height.

Instruments and recording equipment were transported and deployed from a
small mobile platform equipped with four jack-up legs. The instruments were
operated with power supplied from a portable alternator installed on the plat-
form.

Field experiments were conducted during two periods: the summers of 1976
and 1978. Information on wave set-up during the 1976 experiments was not
considered sufficiently reliable so that additional experiments were carried
out in 1978 to broaden the data base.

Wave spectra were computed from the time series using a Fast Fourier
Transform technique. In addition, zero-upcrossing spectra were calculated.

Characteristics of Waves Breaking on Reef

The following general features of waves approaching the coast over a
sloping bottom and a shallow reef have been observed. The incident wave was
usually a narrow-band swell often demonstrating distinct wave group behavior.
As the waves shoal and break, secondary waves are typically formed and are
indicative of a nonlinear wave process.

The process of energy dissipation due to bottom fricton and breaking leads
to reduction in wave height. The wave attenuation is primarily at the expense
of the energy at the peak frequency. In this process, nonlinear transfer of
energy takes place to higher and lower frequencies.
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The lower frequencies demonstrate themselves in the surf beat induced
by the height modulation of the breaking waves. The higher frequencies are
generated in the breaking process in the form of secondary waves following
the crests of the primary waves. The process of interfrequency energy
exchange can be described by the Source Function. Possible models for the
quantitative evaluation of this process are discussed in this study.

The surf beat phenomena may be seen as a modulating, time dependent
portion of the wave set-up.

As a result of the transformations, the mean period of the waves inside
the reef is considerably smaller than the mean period of the incident waves
outside of the reef area. A typical set of wave spectra for August 25, 1976
is shown in Figure 7.5 whereas Figure 8.32 shows the mean energy in various
stations on that day when waves approach the coastline.

Wave Friction Coefficients and Breaking Loss Coefficients

The calculated gradients in the energy flux allow the calculation of the
bottom friction coefficients. For this a number of assumptions had to be made,
which are described in the report.

The wave friction coefficient is defined by the equation

1
T = 5f, 0 U |Up | (11.4)

in which T is the bottom shear stress, fw the wave bottom friction coefficient,
p the fluid density, and Ub the near bottom orbital velocity.

Dimensional analysis indicates that for rough-turbulent boundary conditions
a

the wave bottom friction coefficient is a function of the parameter Eé" where
s

a. is the maximum excursion of a water particle near the bottom from its mean

8
position and kS is the Nikuradse sand roughness.

The results obtained are shown in Figure 8.39. For the calculation of the

value of as for the wave spectrum, the significant wave height and wave period

have been used. If the root mean square values of wave height and period would
have been selected, somewhat different values would have been found. Relation-
ships found by other investigators are also shown. There seems to be a reason-
able agreement between the results of this study and the general trends present
in other studies.

In a number of instances, wave friction coefficients were considerably
higher in the breaking zone.

To compute friction coefficients for breaking waves, values for the break-
ing loss coefficients ¢ must be known. From theoretical considerations, the
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~most Tikely value of ¢ were determined. Mean valuesfor friction and breaking
coefficients for Ala Moana Reef are listed in Table 8.6.

Wave Set-Up

Values on wave set-up from the 1978 measurements are shown in Figure
8.45. The maximum observed value of wave set-up on the reef was 10.7 cm, which
was obtained from two tide gages, which measured the water level respectively
in Kewalo Basin and on the reef. There were about 14 days of reliable tide
gage measurements with 4 observations each day.

Wave Conditions on Reef

The change in wave height for waves approaching the reef may be calculated
taking both shoaling and energy dissipation into account.

Outside of the breaking zone only bottom friction must be taken into
consideration as a dissipating mechanism, whereas inside the breaking zone both
breaking and bottom friction losses must be considered.

The determination of the extent of the breaker zone meets with difficulties
in a random wave field; both the location where breaking starts and where it
ends varies for the different waves of the spectrum. A method to account for
this is related to the probability distribution of broken waves.

With respect to the location on the reef where breaking stops, it was
found that usually breaking does not continue beyond a maximum wave height-
depth ratio of about 0.25.

Observations have shown that the significant wave period at the leeward
side of the reef often is only about one-half of the value of the period of the
incident wave; this phenomenon is due to the generation of secondary waves in
the shoaling and breaking process.

The form of the wave spectrum may be conveniently described by the
Weibull distribution:

6(f) = Ea 8F B exp(-af B (11.5)

where E is the total energy of the spectrum (with dimension [22]), f the
frequency and G(f) the spectral density; o and B determine the shape of the
spectrum and have been determined by curve fitting. The procedures on energy
dissipation will provide values of E across the reef. It can be shown that

the coefficient o is related to the coefficient B8 and to the peak frequency fp.

Based on the observations and curve fitting of g, the best estimates for
the shape of the spectrum are the following:

(1) Swell spectrum (12 m depth)

6(f) = 4 f, (f/fp)'4 eXP[-'%~(f/fp)'3] (11.6)
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(2) Shallow water, offshore edge of reef (1.5 m depth)

} 3 .t 3 -2
G(f) 3y fpy (£/65)77 expl- 5 (£/£,)°7] (11.7)
(3) Shallow water, near shore side of reef (0.75 m depth)
) -2 i -
G(f) 2 By f, (f/f5) " expl- 2 (£/F) 7] . (11.8)

Use of Experimental Results for Prediction Purposes

For practical calculations in design procedures, two approaches may be
followed for the calculation of wave attentuation and wave set-up.

One approach uses the input wave spectrum, calculating energy losses and
wave set-up contributions for the various wave components of the spectrum.
This is a rather laborious procedure.

In another approach the wave spectrum is replaced by one characteristic
wave. Calculations carried out in this study and comparison of calculated
and measured data indicate that sufficient accuracy may be obtained in this
manner.

For the characeristic wave height, the root mean square wave height is
used to calculate wave attenuation and wave set-up because the energy contained
in the root mean square wave height is a direct measure of the mean energy of
the spectrum.

The utilization of this procedure requires a model for the calcutation of
energy dissipation in random waves. Analogous to a procedure developed by
Battjes and Jansen (1978), the energy dissipation due to breaking by random
waves may be obtained from

= e T 12
e, = 0 r FH (11.9)

where Q is the fraction of the energy that is contained in broken waves, f
the mean frequency and Hrms the root mean square wave height.

For the computational procedure it is advantageous to express the energy
dissipated in breaking in terms of the maximum wave height, defined by

H 0.88k"]

m

tanh(y k h/0.88) - (11.10)
This gives

e = Q = P9fRg . (11.11)
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Mean values of y obtained from the observations are listed in Table 10.2,
whereas experimental data indicate that Q' may be computed from

2

, H
_;_;j_ = -(H'”m) Ly =071 (1-Q)%+1, .. ... (1.12)
y- an Q' m

Model Experiments

Model experiments were conducted in the wave flume of the JKK Look
Laboratory. The flume is 54 m feet long and 1.22 m wide with a maximum water
depth of approximately 1.0 m.

A 1:12 scale model of the reef at Ala Moana Park was investigated using
regular (monochromatic waves). From the experiments, friction coefficients and
breaking Toss coefficients were determined, and wave set-up values were
evaluated. A comparison between field and model data indicated that in the
shallow section of the model, scale effects and model effects influence the
results of the wave attenuation and wave set-up.

For the maximum wave set-up, the approximate scale and model effect was
evaluated using a comparison between model and prototype, so that the laboratory
data could be used for prediction purposes of the corresponding prototype.

It appeared that the relative maximum wave set-up (with deep water wave
height as a reference height) could be plotted as a function of the deep water
wave steepness parameter and the relative depth of water on the reef. A greater
water depth is thereby associated with a lesser value of the maximum wave
set-up.

The results of the Taboratory data on maximum wave set-up, corrected for
scale and model effect, are shown in Figure 9.19.

The wave set-up values only include the mean value of the wave set-up and
do not include the time dependant part induced by surf beat. The latter depends
on wave group behavior of the incident waves and on the dynamic response charac-
teristics of the shallow reef. The measurements revealed that the surf beat
had a period of 1-3 minutes, whereas the amplitude of the oscillations had the
same order of magnitude as the mean values :of the wave set-up.

Even though waves in the model were generated monochromatically, reflections,
higher harmonics and tank oscillations caused a measurable variation in wave
height. Therefore, for the plotting of Figures 9.16 and 9.19 root mean square
wave heights were selected to characterize wave height, rather than mean wave
heights.

Calculations on wave set-up based on root mean square wave height values
from a few field measurements provided reasonable agreement between observed
and computed data. On that basis for design purposes, Figure 9.19 may be
applicable to random waves with narrow band spectrum although the results must
be considered preliminary.
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DISCUSSION

Discussion of Data Obtained

In the field experiments, information obtained from the wave staffs was
generally reliable. Although certain measurements had to be discarded
because of errors or failure of unknown cause, the time series used for the
analysis obtained from the capacitance wave recorders appeared to be suffi-
ciently accurate as a basis for analysis.

Calculation of wave spectra from these observations did not introduce any
serious problems.

The measurements of wave height by the use of a floating buoy provided
data that often fitted well with the other information. However, at times
the buoy observations contained apparent errors probably caused by inertia
effects of the buoy in the breaking wave regime.

To acquire accurate data on wave set-up in the field required a great
deal of effort and accuracy. The wave set-up data obtained from the 1976
measurements contained obvious errors. Additional wave set-up measurements
in 1978 were conducted with greater care and provided a better set of data.
Unfortunately, during the latter experiments wave characteristics could only
be measured in the offshore station so that the information of the two data
sets had to be combined to provide information necessary for the analysis.

Accomplishments

The results of the analytical work of the field experiments and of the
model study allowed to develop a mathematical model on wave attenuation and
wave set-up and to make recommendations on the bottom friction coefficient and
breaking loss coefficients in shoaling and breaking waves.

Problems Encountered

The most serious limitation regarding the results of the study was the
lack of a random wave generator in the hydraulic model study; the plunger-type
wave generator was only capable of generating monochromatic waves. Attempts
to compose a wave spectrum from the superposition of a number of linear wave
components was only successful for the deeper part of the profile, but failed
for the shallow section because of strong nonlinear characteristics of the
waves breaking on the reef.

A problem encountered in the hydraulic model was the low accuracy of the
capacitance wave staffs used in the experiments for wave periods less than say
0.7 sec.; results became unreliable because of fluid-wave staff surface inter-
action. The purchase of a completely new set of capacitance wave staffs did
not alleviate this problem.

In the hydraulic model study, scale effects were experienced in energy
dissipation over the shallow reef. In order to partly compensate for this the
reef bottom in the model was covered with a relatively smooth metal sheet in
order to reduce bottom roughness.
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Another problem encountered in the measurement of wave set-up in the model
was the confined volume of water present in the flume. If wave set-up occurs
in one side of the flume, a set-down necessarily occurs on the other end of the
flume for reasons of continuity. Corrections to the wave set-up measurements
in the model are required to compensate for this effect.

CONCLUSIONS AND RECOMMENDATIONS
Conclusions

1. Wave attenuation in shallow water may be adequately described by a
model in which energy dissipation is governed by bottom friction and
wave breaking.

2. Bottom friction coefficients in nonlinear and breaking waves,
determined from experiments in which linear wave theory is used as a
basis of analysis, have values close to those predicted for linear
waves, except for plunging breakers where the turbulence induced by
breaking extends into the turbulent boundary layer near the bottom
so that the oscillatory nature of the flow near the bottom is
significantly disturbed.

3 Determination of bottom friction coefficients from a 1:12 scale model
is unreliable for the shallow reef zone because of scale effects.

4. A breaking loss coefficient ¢ for breaking waves may be derived from
the similarity with the bore.

5. In random waves the fraction of waves that break or the fraction of
the total mean energy contained in the broken waves must be known if
a single wave predictive model is utilized. A model for this is
suggested in the report.

6. For shoaling and breaking waves, interfrequency energy exchange takes
place, where energies contained in the medium frequencies transferred
to lower and higher frequencies.

7. At the offshore station observed water levels usually exhibit a Gaussian
distribution. In shallow water the distribution is non-Gaussian.

8. At all stations, including the shallow water ones, the wave height
variability may be described by a Weibull distribution provided the
parameter B of this distribution is adjusted from experimental data.
At the offshore station, zero-upcrossing wave heights usually exhibit
a Rayleigh distribution.

9. The Fourier spectrum is a valuable tool for shallow water wave analysis,
provided peculiarities of the spectrum which are related to the non-
linearity of waves are interpreted in the correct manner.
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10.

11.

12.

13.

14.

The zero-upcrossing spectrum is an acceptable tool to analyze
shallow water waves, particularly if a wave-by-wave analysis is
called for. The probable error in spectral estimate is higher
than in a Fourier spectrum because of a smaller data base.

Radiationstress in shallow water waves is increased by nonlinearity
of the waves.

The resultant bottom shear stress in the momentum equation seems
to play a role in the calculation of the wave set-up on a shallow
coastal reef.

The maximum wave set-up on a coastal reef depends on the wave
H.

steepness parameter —17- and on the relative water depth on the
gT

reef ﬁ% " Hi being the incident wave at the offshore probe.
i

The dynamic part of wave set-up on a coastal reef, arising from the
group behavior of the indicent waves, is significant and may be of
the same order of magnitude as the steady part of the wave set-up.

Recommendations

1.

The recommendations that follow have reference to additional studies
that will assist in confirming theoretical and experimental data of
the present set-up and expand ‘the applicability of the results to
other conditions.

A part of the recommendations stems from inadequacies experienced
during the present study, whereas another part is concerned with
further advancement of the theories in view of needs emerged during
the present investigations.

During the 1976 investigations, measurements of the mean water level
in the stations on the reef demonstrated intolerable inaccuracies due
to a lack of a well established reference datums.

This deficiency was partly compensated for by the measurements of

1978 when fixed stations were established and visual manometer readings
were made at short time intervals. Unfortunately, the scope of these
investigations had to be limited so that only in the offshore station
adequate accompanying wave measurements could be taken.

It is recommended that another series of measurement be carried out
over the reef, whereby wave heights and mean water level be measured
simultaneously in all stations. Such an approach actually would
represent a combination of the 1976 and 1995 measurements, but with
an extended program of observations.
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In addition to the customary measurements of wave height and mean
water level, the extended program would include:

* measurement of wave induced currents in 3 stations on the
reef;

* simultaneous aerial photographs to evaluate refraction of
waves;

* array of wave probes on reef to measure wave direction.

A repeat of a similar scheme of observations for a different reef
with a different characteristic depth.

A repeat of a similar scheme for a straight beach without reef.

The results of this study would provide the limiting case for the
reef study and would serve to evaluate the validity of the limiting
case which in the present study was based on Battjes' (1974a)
calculations and Van Dorn's (1976) elaborated laboratory data.

The limitations of the present hydraulic model study were due to the
following conditions:

« scale effects in the shallow water zone;

« generation of monochromatic waves only;

* inaccurate wave sensors for low wave periods;
« no information on wave induced velocities;

« no information on wave induced shear stress;
« fixed slope and bed roughness.

Future model studies require improvements in the above mentioned areas,
such as:

« a depth of at least 10 cm in the shallow reef zone,
« wutilization of an irregular wave generator,

+ use of improved wave sensors,

+ measurement of wave induced velocities,

+ measurement of wave induced shearstress by flush mounted
sensors,

. tests under a variety of slope and reef conditions.
For design purposes the calculation methods on wave attenuation and

wave set-up developed in this study can be used. Values obtained for
the numerical coefficients of bottom friction and energy loss due to

401



wave breaking may be used in conditions similar to those at

Ala Moana Reef. If field conditions deviate considerably from
the test conditions, adjustments should be made in the values of
the bottom friction coefficient and of the breaking loss coeffi-
cient.
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