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ABSTRACT

This study deals with the breaking of waves on coastal reefs, with
special emphasis on energy dissipation (wave height attenuation), wave
spectrum modification and the characteristics of wave set-up.

It has an engineering perspective; its main objective is to provide
the practicing engineer with much needed information on the design condi­
tions for coasta1 structures.

A1though the prob1em is three-dimensiona1 in nature considerations here
are 1imited to two-dimensiona1 conditions.

The study consists of a review of existing 1iterature, further deve10p­
ment of theoretica1 concepts, a field study and a hydrau1ic model study.

Chapter 1 is an introduction. It gives a short description of the
hydrodynamic processes associated with waves breaking on a reef and it
describes the goals and scope of investigations.

Chapter 2 contains a discussion of some relevant aspects of non1inear
waves. The distinction followed by vlhitham(1974), who distinguishes two
main classes of waves as hyperbo1ic waves and dispersive waves, is followed.
Of particular re1evance is the concept of group velocity in nonlinear waves
as an element for the computation of energy flux in both field and model
experiments.

Chapter 3 is devoted to the significant part bottom friction p1ays in
wave dissipation over a shallow reef. The starting point of discussion is
the bottom friction in linear waves. The bottom friction coefficient
appears to be a function of both the wave Reynolds number and the relative
roughness of the bottom. The effect of nonlinearity on bottom friction is
eva1uated by considering bottom friction 10sses for a solitary wave and by
evaluating the effects of shoa1ing, breaking, and currents on the bottom
friction coefficient.

The various aspects of energy dissipation in breaking waves are
discussed in Chapter 4. After a general discussion of the behavior of
waves before and after breaking, the simi1arity between energy dissipation
in a breaking wave and in a bore is considered in more detail. This simi-
1arity is used to define a breaking 10ss parameter ç, the value of which
has been eva1uated in this study from both field and model data. It appears
that the proposed parameter is a usefu1 concept in the evaluation of energy
10sses from wave breaking.

Chapters 5 and 6 deal with aspects
prob1em is treated as a stationary one.
stresses required for the determination
aspects are also considered. Chapter 6
lating wave train on the wave set-up on

of wave set-up. In Chapter 5 the
In the eva1uation of radiation

of the wave set-up, non1inear
deals with the effects of a modu­
the reef.
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Aspects of the wave spectrum and the characteristics of the spectrum
for various water depths are discussed in Chapter 7. Also discussed are
the various possible ways to determine the energy density spectrum from
the time series and the limitations of this spectrum to describe the
characteristic features of waves in shallow water.

Field experiments and thsir principal results are discussed in
Chapter 8 and the results of the laboratory experiments in Chapter 9.
In additiont the limitations of the experimental set-up to deal with wave
attenuation and wave set-up in very shallow water in a scale model are
evaluated.

In Chapter 10 the computational aspects of wave attenuation and wave
set-up are discussed both in respect to the analyses of field and model
data and for prediction purposes. A summarYt conclusiont and recommendations
are presented in Chapter llt the acknowledgements in Chapter 12t and the
bibliography in Chapter 13.
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CHAPTER 1 : INTRODUCTION

In many parts of the world, coastlines are protected from heavy wave
attack by shallow-water areas, or shelves, extending between the coastline
and deep water. In tropical settings such shallow-water areas may be formed
by a coral reef, which may be alive or dead. Examples of this are found in
the Pacific (including Hawaii), Japan, and Australia. In the more temperate
zones such areas may consist of sand or mudflats with elevations of about
mean sea level, examples of which are found along the North Sea coasts of
Germany and The Netherlands.

If conditions as described above exist, the larger waves that approach
the shoreline from deep water will break on the shelf, dissipating large
amounts of energy. Only waves of reduced magnitude can propagate shoreward,
whereby additional energy is dissipated due to breaking and bottom friction.

Wave attenuation on a shallow reef is of great interest to practicing
engineers involved in the design of coastal structures. A phenomenon of
equal and simultaneous interest is called wave set-up. It occurs when the
momentum flux of the breaking waves is transferred into a rise in the mean
water elevation on the reef. This wave set-up in turn allows higher waves to
exist on the shallow reef. Because of the increased mean water level and
its effect on wave height, the wave set-up is also an important design
parameter.

After the long ocean waves have broken on the seaward section of the
reef and have lost a large portion of their energy, a process of regeneration
may take place, whereby waves of lower height and shorter period are created.
The total process of wave breaking and regeneration is very complex. It is
highly nonlinear and cannot be treated mathematically by the more simple
linear wave formulations.

Due to varying bathymetric and hydrodynamic conditions, the amount of
wave set-up usually varies along the shoreline, giving rise to the generation
of currents.

The wave-induced longshore currents along the beach shoreward of a reef
are important agents for the transport of sand along the shoreline. However
this study is limited to the two-dimensional aspects of wave set-up and does
not consider the effects of longshore currents.

Wave attenuation on sloping beaches has been investigated by a number
of researçhers. The data available are to a very large extent laboratory
data. Only a relatively small amount of field data is available. Field data
on the attenuation of waves on coastal reefs are even more scarce. The
appl tcabt lity of laboratory results to prototype conditions meets with
uncertainties because of the scale effects involved. Although much insight
has been gained on the process of wave set-up on a sloping beach during
various studies over the past 20 years, the amount of field data available
to support the laboratory studies is rather insignificant. With respect to
the behavior of wave set-up on a shallow reef, field data are virtually
nonexistent in the literature.
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The grave uncertainties regarding the design parameters of wave
attenuation and wave set-up have led to design procedures which may be too
cbnservative under certain conditions and which may lead to the underdesigning
of structures in other circumstances. The desire to clarify some of the
problems involved in the hydrodynamic processes associated with the breaking
of waves on reefs is the reason for this study.

GOALS

The purpose of this study was to make an in-depth evaluation of the
processes of wave attenuation and wave set-up on a shallow reef and to
develop guidelines for the practicing engineer involved in the design of
coastal structures. Since the process of wave attenuation is linked to the
development of wave set-up, both aspects were studied simultaneously.

Based on existing hydrodynamic laws, the existing theories on wave
attenuation and wave set-up were to be developed further.

Because it was felt that laboratory studies would be insufficient to
obtain reliable quantitative data, great emphasis was placed on the execution
of field investigations. Although such studies meet with many difficulties
and are considerably more expensiv.e than laboratory investigations, the
increased cost was considered justified.

For the study of wave behavior in shallow water, particularly if it
includes breaking phenomena, the use of the Airy theory is no longer valid.
Waves not only change form, break, and dissipate, but they also change their
periodic behavior. The significant wave period on a shallow reef is there­
fore considerably smaller than the significant period of the approaching
waves outside of the reef area.

The nonlinear aspects of the problem have to be given full consideration.

SCOPE OF INVESTIGATIONS

This study consists of four parts:

A literature survey
Theoretical investigations
A field study
A hydraulic model study.

Although most of the literature on wave attenuation and wave set-up
has been examined, it is not intended to present a complete overview of all
previous investigations on this subject. However, to provide sufficient
insi~ht into the problem, the most relevant papers have been s~lected for
discussion. Furthermore, use will be made of data available in the literature
to test the development of theoretical concepts.

In the theoretical investigations the nonlinear aspects of wave
behavior get special attention as they refer to group velocity and energy
flux, shoaling, energy losses due to bottom friction and wave breaking,
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characteristics of the energy density spectrum, and radiation stress. It
appears that bottom friction plays a dominant role in the dissipation process
on the reef and consequently in the wave set-up phenomena. For this reason
much attention will be given to aspects of bottom friction as they affect
wave behavior on the reef.

Wave breaking is a very complicated hydrodynamic process in which
energy dissipation due to internal friction plays a dominant role. However,
the similarity between the diss;pative processes of a breaking wave and of a
bore can be used to analyze energy losses in breaking waves." In the
literature this approach has been followed by a few investigators. In this
study it will be explored further.

The reef off Ala Moana Park in Honolulu was selected as the study site
for the field investigations. Figure 1.1 shows the hydrographical conditions
at the study site and Figure 1.2 the location of the traverse along which
measurements were made.

In this experimental set-up the prob1em is treated as a two-dimensional
one because due to refraction the angle between breaking waves and the reef
edge is usually very small. Thus, a two-dimensional approach seems justified.
However, at times energy from adjacent reef areas did enter the study area
along the selected traverse, making evaluation of the computer model with
observed field data difficult.

During the field tests in 1975-76, waves were measured at seven
stations in depths ranging from llm to less than 1m (Figure 1.3). By
repeating the measurements a number of times on different days, a variety of
wave and tidal conditions was experienced.

The wave measurements were conducted in such a way that computations of
the energy density spectrum could be made at both deep-water and shal10w­
water stations.

In the analysis the energy density spectrum proved to be a very usefu1
tool in the study of the wave attenuation and wave set-up on the reef. In
shallow water, however, the area under the curve of the energy density
spectrum was not quite equal to the tota1 energy per unit of surface area of
the waves; neither was the significant wave height equal to 4~, if mo
represented the area under the curve.

The model studies were conducted in the large wave tank at the J.K.K.
Look Laboratory of Oceanographic Engineering, University of Hawaïi. The
tank, 55m long x 1.22m wide x 1.22m deep, with a maximum water depth of about
lm, was used to test the model of the traverse at Ala Moana at an undistorted
scale of 1:12, which was considered an acceptable scale for the problem under
study. Despite the relatively large scale, however, elimination of scale
effects for the shallow-water portion of the traverse was not entire1y
possible.

The wave generator in the tank was only able to generate monochromatic
waves, which is a handicap in a study of this nature. Attempts to build up
a spectrum in the tank from a series of tests with different heights and
periods were not entirely successful for the shallow-water portion of the
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traverse on the reef because of nonlinear aspects.

There is some evidence that the generator system in the tank gave rise
to the generation of a free second harmonie wave, which affected the results
of the experiments to some degree. Other complications of the model test
set-up were due to the confined body of water in the tank (which affected
the wave set-up measurements), the effect of the side walls (friction), and
the difficulty in simulating the proper bottom roughness.

A critical evaluation of these factors was necessary to verify the
results.

LEGEND:
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......'!I/ BATHYMETRIC CONTOURS IN METERS
BELOW MLLW

LAND

Figure 1.2 Measurement Traverse
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CHAPTER 2: BEHAVlOR OF NONLINEAR WAVES

In this chapter, aspects of wave propagation, wave deformation, and
energy transport are reviewed. First, some properties of linear and non­
linear waves in water of constant depth are discussed. Following this,
attention is given to waves which travel shoreward over a sloping bottom
and onto a reef or shelf.

The propagation of waves over a sloping bottom and over a shallow reef
have strong nonlinear aspects. As long as the w~ves are unbroken, deductive
mathematical theories can bè used to describe their behavior. After the
waves have broken, no mathemati ca1 theory exi sts to fully descri be the
phenomenon.

WAVES IN WATER OF CONSTANT DEPTH

Waves can be classified in many different ways: short period versus
long period, periodic versus nonperiodic, deep water versus shallow water,
etc.

Whitham (1974) distinguished between hyperbolic waves and d;spers;ve
waves. This classification is considered particularly useful for this study
and will be reviewed briefly in this chapter. Hyperbolic waves are formulated
mathematically in terms of hyperbolic partial differential equations. Dis­
persive waves are identified by the type of solution, rather than by the
governing differential equations. The latter group contains many different
kinds of waves.

In the following sections the symbols used for differentiation are

d<t> _ Ai • a2<b -,j.. •ax - "x ' W - "'tt'

where <t> is an identifiable characteristic that is propagated through a medium.

Hyperbolic Waves

In hyperbolic waves the frequency is independent of the wave number.
The prototype of this category is often taken to be the wave equation

( 2 • 1 )

in which Co = constant, although most of the waves are not governed by it.

The simplest form of a hyperbolic linear wave equation is

(2.2)
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Co = constant, with general solution

(2.3)

This is the long wave equation in one direction (+x) on1y.

The non1inear counterpart of equation 2.2 is

~t + c(~) ~x = 0 (2.4)

in which c(~) is a function of the 10cal disturbance~. One of the main
characteristics of this nonlinear phenomenon is the eventua1 breaking of
waves into shockwaves.

Long waves of sma1l amplitude in two opposite directions are governed
by the equation

(2.5)

with general solution

~ = f(x - c t) + g(x + c t)o 0
(2.6)

where f and gare arbitrary functions. The solution is a combination of two
waves: one with shape described by the function f moving to the right with
speed co; the other with shape 9 moving to the left with speed co.

Here the speed Co is constant, independent of the wave frequency and of
the wave number. Long-period osci1lations of a reef, as induced by the modu­
lations of the train of short-period waves, are basica11y governed by this
equation.

The solution of hyperbolic wave equations is associated with the
existence of rea1 characteristics, a10ng which the special properties of the
wave propagate. In an x vs. t diagram, characteristics are represented by
lines for which dx/dt = c(~). A10ng such a 1ine the property ~ often
remains constant, a1though this is not abso1ute1y necessary.

The basic idea of wave propagation is that some recognized feature of a
disturbance moves with a finite velocity (Whitham, 1974). For hyperbo1ic
equations the existence of characteristics corresponds to this idea.

Dispersive Waves

The prototype for dispersive waves is based on the type of solution,
rather than on the type of equation. Whitham (1974) defined a 1inear dispersive
system as any system which permits solutions of the form

~ = a COS(KX - wt) (2.7)

8



where the frequency w is a definite rea1 function of the wave number K;
the function W(K) is determined by the particu1ar system. The phase speed
is then w(K)/K and the waves are usua11y said to be dispersive if this
phase speed is not constant but depends on K. The term refers to the fact
that a more general solution may consist of the superposition of severa1
modes of equation 2.7 with different va1ues of K.

It may be noted that equation 2.7 is a1so a solution of the
hyperbo1ic equation 2.1 with W = ± CK, a1though this does not constitute
a dispersive solution since c = wIK = constant. However, there are cases
of genuine overlap between the two classes.

In dispersive waves the dispersion re1ation

W = W{K) (2.8)

is characteristic of the phenomenon. The general solution for 1inear wave
fits into this category with the we11-known dispersion re1ation

W2 = gK tanh K h (2.9)

where h is the undisturbed depth.

A system of nonuniform osci11atory waves may be described by

~ = a(x,t) cos e(x,t) (2.10)

where a and e are functions of x and t. The function e(x,t) is the phase
which measures the point in the cyc1e of cos e between its extremes ± 1;
a(x,t) is the amplitude. The uniform wave train, (2.7) is a special case
with a = constant, e = KX - wt, W = W(K). In the more general case of
equation 2.10, a loca1 wave number k(x,t) and alocal frequency w{x,t)
can be defined by

ae ( aek(x,t) = ax'w x,t) = -ar (2.11)

Assuming that they are still re1ated by the dispersion re1ation, an equation
for e is then

~ + W (ae) = 0at ax (2.12)

and its solution determines the kinematic properties of the wave train. It
may be more convenient to e1iminate e from equation 2.11 to obtain

~+ aw = 0at ax (2.13)

This re1ation is a basic one for a1most-periodic waves. The wave number
k = 2n/L denotes the number of waves per 2n units of distance. It may be
considered a density of waves. Simi1ar1y, w may be considered the flux of
waves, and equation 2.13 is a statement for the conservation of waves.
Substituting W = W{k) gives

9



~ + c (k) ~ = 0 [C (k)at 9 ax ' 9
= aw = d W(kn

ak dk J (2.14)

where cg(k) is the group velocity, which is a function of k. It appears
that the group velocity is the propagation velocity for the wave number k.

This equation for k is non1inear and is equa1 to the hyperbo1ic equation
given by equation 2.4 even though the origina1 prob1em is 1inear. It may
therefore be interpreted as the wave equation for the propagation of k with
speed Cg(k), and it may be conc1uded that hyperbo1ic characteristics are
inc1uded in dispersive waves.

The group velocity p1ays a dominant ro1e in wave propagation. Both the
characteristic k (wave number) and the energy propagate with the group
velocity. An observer fo110wing any particu1ar crest moves with the phase
velocity, but sees the 10ca1 wave number and frequency changing. An
observer moving with the group velocity sees the same 10ca1 wave number and
frequency, but crests keep passing him.

Nonlinear Waves

In 1847, Stokes showed that the surface e1evation n in a p1ane periodic
wave train, progressing with constant shape in deep water cou1d be expanded
in a Fourier series, in powers of the amplitude (Whitham, 1974):

n = a cos (KX - wt) +~ a2 cos 2(KX-wt) + ~K2 a3 cos 3(KX - wt) + ... (2.15)

where
(2.16)

The 1inear result, w2 = gK, is in agreement with 1inear theory for deep
water waves.

There are two important aspects inc1uded in this resu1t. First, it
proves the existence of periodic solutions in non1inear waves, where the
dependent variables are functions of e = KX - wt, but where the functions
are no longer sinusoida1. Second, it shows that the dispersion re1ationship
invo1ves the amplitude. The latter has an important effect on the behavior
of non1inear waves.

The derivations for arbitrary depth are considerab1y more involved;
one of the important resu1ts is the dispersion re1ation (Whitham, 1974):

2 [9 tanh'' KhO - 10 tanh" «h + 9J
w = 1 + 0 K2 a 2 + ...

gK tanh KhO 8 tanh" «h
o

(2.17)

where ho is the still water depth. For K2 h02 » 1 Stokes' original
resu1ts for deep water, equation 2.16 , is obtained.
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In 1895, Korteweg and de Vries made a very significant contribution
to the deve10pment of wave theory. They showed that long waves in water
of re1ative1y sha110w depth can be described by a non1inear equation, in
which both the aspects of non1inearity and dispersion are represented.

If the non1inear terms are approximated to the first order of a/ho'
Korteweg-de Vries equation.has the form:

nt + Co (1 + ~;) n + \) n = 0 ( 2.18)o x xxx

the

in which \)= 1c h 26 0 0

The 1inearized form of this equation has the dispersion re1ationship,

Co K
w = (2.19)

Many exact ana1ytic solutions have been found for equation 2.18.

Korteweg and de Vries showed that periodic solutions,

n = f( e)
(2.20)

and e = KX - wt,

cou1d be found in c10sed form and without further approximation in terms
of Jacobian e11iptic functions, cne. These solutions are called cnoida1
waves, and they confirm the existence of periodic solutions, as found by
Stokes.

The Korteweg-de Vries equation is 1imited to waves propagating in one
direction on1y, in contrast to the Boussinesq equations, which inc1ude waves
moving in the opposite direction (Whitham, 1974).

The 1inearized form of the Korteweg-de Vries equation has the form

(2.21)

with solutions

n = a cos (KX - wt) 1
I

and w = C K - \)K3

1
(2.22)

0

.where \) = .1 h2"6 Co 0

The dispersion re1ation in equation 2.22 agrees with equation 2.19 for
sma11 va1ues of K. However, the former has bounded phase and group ve10cities
if the va1ues of K become large, in contrast to the latter.

In addition to the periodic solution, Korteweg and de Vries (1895) found
a solution for the 1imiting case, where the period becomes infinite, repre­
senting a single hump of positive e1evation n. This is the solitary wave.
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For depth ho and maximum elevation no'

(2.23)

and [
1 nolc = c 1 + _--

o 2 ho
(2.24)

Co being the speed of linear shallow-water waves. Equation 2.24, for the
velocity of propagation c in terms of the amplitude a, is the remnant of the
dispersion relation in this non-periodic case.

The Korteweg-de Vries equation is a powerful tool in the treatment of
sha1low-water waves because it combines nonlinearity with dispersion. It is
a useful equation for evaluating wave conditions on a shal10w reef.

The dependence of the dispersion re1ationship on the amplitude generates
a number of interesting phenomena. Dne is that, in non1inear waves, there
are generally two group velocities instead of one. This will be further
discussed below.

Studies by Kruskal (1974) and others have shown that solitary waves
(called "solitons") may fonn a solitary wave train, in which individual waves
interact but retain their form after joint interaction. Because the wave
speed is a function of the wave amplitude, larger solitary waves will
eventually overtake and pass through smaller ones, with the only effect of
the interactions being a phase shift.

Here, the term "solitons" is a1so used in a somewhat broader
perspect;ve, as a series of short-period oscillatory waves following a lead­
ing crest in shallow-water waves. Sometimes free, second harmonic waves in
a laboratory wave flume are also referred to as solitons (Hulsbergen, 1974).

Modulations of a Wave Train

Whitham (1974) showed that modulations of a linear wave train can be
described by the equations

and

~+ aw = 0at ax
aa2 + ]_ (c a2) = 0at ax 9

(2.25)

(2.26)

where a = amplitude
w = wo{k) is given by the linear dispersion

relationship
Cg = wi{k) = linear group velocity.

12



The concept can be extended into the nonlinear case. The crucial qualitative
change of nonlinearity is the dependency of w on a which introduces a coup­
ling of equation 2.25 and equation 2.26. For moderately small amplitudes,
w may be expressed in Stokes' fashion:

w = wo(k) + w2(k) a2 + ....

and equation 2.25 becomes

~~ + {Wo I (k) + W21 (k)a2} ~~ + wz(k) 'Oaax2= o.

For small amplitudes, equations 2.25 and 2.26 develop further into:

(2.27)

'Ok I 'Ok aa2at + Wo (k) 'Ox+ Wz (k) ax = 0 (2.28)

and

aa2 + W I (k) aa2 + ..(k) z ak = 0
at 0 ax Wo a 'Ox (2.29)

from which one finds the characteristics

(2.30)

In the case W2 wo" > 0, the characteristics are real and the system is
hyperbolic. The double characteristic velocity splits under the nonlinear
corrections providing the two velocities of equation 2.30.

If W2 wo" < 0, the characteristics are imaginary and the system is
elliptic. This leads to problems of instability: small perturbations will
grow with time. (Remarkably enough this is the case with Stokes' waves on
deep water.)

The modulation equations for the fully nonlinear case can be developed
by applying the variational approach to the modulation theory (Whitham, 1974).
In the hyperbolic case the characteristic velocities dx/dt are used to
define the nonlinear group ve10cittes which is an extension of the linear
case. The development of the double characteristic velocity of the linear
theory into two different velocities has far-reaching results. It predicts
the eventual sp1itting of a modulation of finite extent into two separate
disturbances. In problems where the linear group velocity is positive the
two nonlinear group velocities will usually be positive also (Whitham, 1974).

Further Considerations on the Group Velocity

The concept of group velocity is relevant in a modulating wave train
where wave properties (k, energy) are propagated with a characteristic speed.

13



For linear wave theory one has

c (k) = dw
gr dl<

which gives the relationship

(2.31)

(2.32)

where

n = 1/2 ~ + sin~k~kJ .

In a 1inear uniform wave train, the concept of group velocity as the
propagation speed of the property k loses its meaning since ak/at and aw/ax
are both equal to zero. The propagation of energy still takes place, however,
and even though no groups of waves are physically present in the train, the
term IIgroupvelocityll is still maintained and its value used for the determina­
tion of the energy flux.

In a nonlinear strictly periodic wave train, a similar situation occurs.
The group velocity loses its meaning in identifying the speed at which the
quantity k is transported; yet it remains significant because it specifies
the transport of wave energy.

It is assumed that the two values of the characteristic velocities in
nonlinear waves have no significance for the strictly periodic wave train;
only if for some or other reason a modulation occurs, the two different group
velocities start to play a part.

In the near linear case the mean of the two characteristic velocitiès
will give a good approximation for the average group velocity as a measure for
energy propagation. For Stokes' waves of small amplitude the average value
of the group velocity (equation 2.30) becomes

c = w • (K)gr 0

which is equal to the group velocity for linear waves.

For strongly nonlinear waves this is no longer acceptable.

(2.33)

Some Specific Relations for Periodic Waves of Finite Amplitude

Various papers have been published dealing with the propagation of
nonlinear waves in water of shallow depth. In this section the results of
some of these studies will be reviewed.

In Longuet-Higgins (1974a) a number of exact relations were proven for
periodic waves of finite amplitude in water of uniform depth.

The speed, momentum, energy, and energy flux are considered and new
relationships between certain fundamental integral properties of waves were
presented.

14



One of the unexpected findings of another paper by Longuet-Higgins
(1974b) was that the speed and energy of solitary waves attain maxima for
waves of less than the maximum amplitude. This property may have implica­
tions for the manner in which waves break in shallow water. Longuet-Higgins
showed that a similar property is relevant to all gravity waves of finite
amplitude; the symbols of Longuet-Higgins are used below.

The rectangular coordinates (x,y) are chosen with the x-axis horizontal
in the direction of wave motion and the y-axis vertically upward. The
equations of the free surface and the bottom are y = n and y = -h, respec­
tively. The velocity (u,v) is assumed irrotational and periodic in x with
wavelength À. The axes are chosen so that the mean elevation n is given by

À
Àn = f n dx = M = 0

o
(2.34)

so that the origin is at the mean surface level and h equa1s the mean depth.

Similar1y, by choosing axes moving with the required horizontal
velocity, the mean velocity U, defined by

À
ÀU = f u dx =o

x=À
[<p]x=O = c (2.35)

may be made to vanish at one particu1ar level and, hence, since the motion
is irrotational, at all levels within the fluid. The vanishing of n and u
implies that both Mand C must a1so vanish, whereas for the solitary wave
both quantities are positive. Other quantities are given per unit of width
and are defined by Longuet-Higgins in the fol10wing way whereby the density
is taken as 1. Mass flux is

n
I = f udy

-h
(2.36)

whereby the overbar denotes the average over one wave1ength or period.
Mean kinetic energy is:

T (2.37)

Mean potentia1 energy is:

n
V = f g y dyo (2.38)

Radiation stress (excess flux of momentum due to the waves) is:

Sxx = ~ (p + u2) dy - } gh2
-h

(2.39)
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Mean energy flux is:

F
n 1= f [p + 2 (u2 + v2) + gy] udy
-h

(2.40)

Longuet-Higgins established some simple relationships between these various
quantities. He gave short proof of a relationshipa1readyestab1ished by
Levi-Cività in 1924 showing that

2T = c 1 (2.41)

where c is the phase velocity.

Furthermore, he proved that

Sxx = 4T - 3V + h ub2

where ub denotes the velocity on the bottom and that

F = (3T - 2V)c + } (ch + I) ub2 •

(2.42)

(2.43)

In deep water the fluxes of mass, momentum, and energy are respective1y
given by

I = 2T (2.44)~
c

and
Sxx = 4T - 3V (2.45)

and
F = (3T - 2V)c (2.46)

whereby the first remains true for water of any depth. It is emphasized
that all of these relations are exact and do not depend on any approximation
in the wave theory.

It is worth noting that if a different condition is applied--instead of
C = 0 the condition I = 0 (the total horizontal mass flux is zero) ;s
introduced--an equation different from equation 2.41 is obtained, viz

2T = -Qc/À (2.47)

where if -Q is the mass flux in the steady flow re1ative to an observer
moving with the phase speed c:

n
-Q = f (u - c) dy .

-h
(2.48)

Under certain physical circumstances this is appropriate.
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Another interesting expression found by Longuet-Higgins is

À
2T = c/À J {c - [1 + (nI)2J 1/2[2R - 2g (h + n)J1/2} dx

o (2.49)

where

R = p + } [(u - C)2 + v2J + g(y + h)

which represents the tota1 head of the re1ative motion, and nl = dn/dx.
This expresses the kinetic energy as an integra1 invo1ving on1y the surface
e1evation n and other constants of the motion.

For deep water and sma11 amplitude waves, the expressions for Sxx and F
in equations 2.42 and 2.43 reduce to

Sxx = } E (2.50)

and
F 1

= 2" Ec , (2.51)

the usua1 formu1as, since 1/2 c equa1s the group velocity for deep water.

In'the second part of the paper on the mass, momentum, energyand
circu1ation of a solitary wave, Longuet-Higgins and Fenton (1974) defined a
new parameter

w
2 2

= 1 _ q crest . q trough
c2co

(2.52)

where qcrest and qtrough denote the partic1e speeds at the wave crest and
wave trough, respective1y, and Co denotes the speed of gravity waves of
infinitesima1 amplitude. The authors computed the various wave parameters,
defined earlier, as a function of w. '

~IAVES TRAVELLING OVER A SLOPE ONTO fl. REEF OR SHELF

When waves move into areas of decreasing depth a number of different
transformations occur

1. Studies by Madsen and Mei (1969) and by Johnson (1972, 1974) have
shown that, if a solitary wave progresses over a slope onto a
she1f, and if no breaking occurs, the initial wave may disintegrate
into a train of solitary waves of decreasing amplitude.

2. Periodic waves propagating into sha110w water are like1y to
demonstrate cnoida1 wave characteristics, as shown in a study
by Svendsen and Buhr Hansen (1976).
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3. In case the wave height exceeds a critica1 level, the waves
are subject to breaking on the slope or on the she1f. For the
stage after breaking satisfactory theories that describe the
process in detail have not been deve10ped.

Solitary waves propagating (in unbroken form) into shal10w water show
remarkab1e behavior; this is of interest in exp1aining some basic wave
behavior previous1y not we11 understood.

The study by Madsen and Mei (1969) was based on numerica11y solving a
set of approximate equations for long waves over uneven bottom. The
resu1ts showed that, as a solitary wave c1imbs a slope, the rate of
amplitude increase depends on the initia1 amplitude as we11 as on the
ang1e of the slope. The equations used are equivalent to those derived by
Mei and Le Méhauté (1966). Of particu1ar interest is their finding of the
transformation of the solitary waves when propagating on the she1f into
more than one wave, each wi tb different amp1 itudes.

In an earlier study, Zabusky and Kruska1 {1966} found numerical1y that,
based on the Korteweg-de Vries equation and spatia11y sinusoida1 initia1
data, a steepening of each crest was fo110wed by a disintegration into a
series of solitary waves which interact with those from the neighboring
periods in a complicated manner.

Madsen and Mei (1969) called attention to a common feature of waves
prior to disintegration: a wave crest is steeper at the front and flatter
at the back; the stepped bore (with a horizontal back) may be tonsidered
as a 1imiting configuration of this kind (see a1so Peregrine, 1966).

The more recent studies qive further c1arification of the behavior of
solitary waves traveling onto a she1f. Johnson (1972) considered the
problem of a solitary wave moving onto a shelf and derived a Korteweg-de Vries
equation with variable coefficients for this condition. By making use of
forma1 asymptotic methods, a single equation could be derived to describe
the phenomenon. Johnson found that, if a solitary wave moves over the
uniform depth (d = 1) without changing shape before reaching the shelf, it
breaks up into a finite number of solitons (n) on the shelf provided that

-4
"9= (2.53)

where do is the depth of the shelf and n is an integer (n ~ 1). The shelf
must be shallower than the uniform depth (do < 1); the number n of solitons
formed is independent of the shape of the shelf formation.

If there is no integer solution for equation 2.53 for given do, the
situation is more complicated. It appears from the analysis that an
oscillatory wave will be formed in addition to the solitary waves. If the
solution of 2.53 for given do lies between two integers, No and No + 1,
eventually No + 1 solitons will appear on the shelf, together with an
oscillatory wave. For n = 1, do = 1, as expected.

18



The soliton amplitudes are

n(n + 1) m = 1,2, ... n (2.54)

if A is the amplitude of the initial solitary wave.
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Figure 2. 1 Two and Three-Soliton Formations on Shelf
(from Johnson, 1972)

19



In Figure 2.1 two-soliton and three-soliton formations are depicted
from Johnson (1972). Here do = 0.451 and s is a characteristic coordinate.

Similar studies in this area have been conducted by Kruskal (1974) and
others. The formation of solitons following a crest of shoaling wave has
been observed in nature (Walker, 1974b). Figure 2.2 shows the formation of
solitons at Waikiki Beach.

Johnson also found that in the case of slowly varying and decreasing
depth, a uniformly valid solution can be obtained in the form of a slowly
varying cnoidal wave. The result is in agreement with the theoretical and
experimental work of Svendsen and Buhr Hansen (1976).

Figure 2.2 Formation of Solitons at Waikiki Beach

20



Shoa1ing and Breaking

When waves break on a slope three situations may be considered:

1. Waves break on the slope before they reach the sha110w reef.
In the studies of Svendsen and Buhr Hansen (1976) which deal
with a slow1y decreasiag depth, this situation occurred with
the cnoida1 shoa1ing waves. They defined the point of breaking,
which is difficu1t to define, even in a laboratory setting, as
the point where the crest of the waves reaches its highest
e1evation.

In the case of re1ative1y steep slopes the waves may retain
an initia1 solitary wave form and break in a simi1ar manner
as the cnoida1 wave type.

2. Waves break on the edge of the reef. A1thou~h the regime of
breaking is strict1y outside the area of app1icabi1ity of the
Korteweg-de Vries theory, by considering the near vertical face
of the breaking wave in sha110w water as a moving front, the
Korteweg-de Vries equation can be used to define the wave
behavior on both sides of the moving face.

The solution to this prob1em is formed by the Airy function
and the integrated Airy function (Figure 2.3). It shows an
asymptotic behavior ahead of the disturbance and an osci11atory
pattern fo110wing the wave crest.

3. The broken wave on the reef has the appeàrance of a bore.
This similarity may be used to define a breaking 10ss
coefficient ç, the va1ue of which can be determined experimenta11y.

A bore can be treated as a hydrau1ic jump by using a coordinate system
that moves with the speed of the waves. In a hydrau1ic jump a conservation
of mass and of momentum is required; the conservation of energy is no
longer a usefu1 concept because much energy is dissipated by interna1
friction. Depending on the difference in water depth before and after the
discontinuity the resu1ting bore may take two distinct forms.

The weaker bores have a smooth but osci11atory structure (Figure 2.4),
whereas the fu11y deve10ped bores have a rapid, turbulent change with no
coherent osci11ation (Figure 2.5). The first experiments in this area were
documented by Favre (1935). The change in type seems to occur sharp1y at
a depth ratio of h2/hl ~ 1.28 corresponding to a Froude number of
F = c/19hl :::1.21. (Whitham, 1974)

When waves break on a shallow reef, theoretica1 and empirica1 evidence
indicates that at the breaker point h2/hl is of the order 2. At the
beginning of breaking, the type of bore wi11 1ike1y be what is called a
turbulent bore. When propagating over the reef, however, energy is dissi­
pated by bottom friction and turbulent dissipation, whereby the ratio
h2/hl decreases with trave1ing distance. When the ratio h2/hl ::: 1.3 - 1.2,
a change in behavior may be expected in which the usua1 breaking stops and
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(from Kalkwijk, 1972)

the wave,front develops into an undulating bore.

Exper inents suggest that this process usually occurs only over a
relatively short distance. The waves become oscillatory again, with
significant1y reduced periods as compared with the intia1 wave; they may
break for the second time if the water depth decreases further a10ng their
path of movement.

In Yamaguchi and Tsuchiya (1976), the shoa1ing of finite amplitude waves
is discussed. In addition, both Stokes' waves and cnoida1 waves are con­
sidered and a comparison is made between numerical and experimental resu1ts.
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In determi ning the energy f1ux of finite amp1 itude waves a diffi culty
arises as to the determination of the wave ce1erity in the extension to the
high order approximate solution. The first approach is that the average
horizontal water partic1e velocity over a wave1ength vanishes if an
observer moves with the waves, and a second is that the average momentum
over a wave1ength vanishes with the addition of a uniform motion. A similar
difficu1ty was found by longuet-Higgins and Fenton (1974).

A number of expressions for the energy flux are presented in this paper
based on the Stokes' and cnoida1 theories and using the first and second
approach mentioned above. Based on laitone's (1963) cnoida1 wave theory,
the mean energy flux Wl2 is given by

Wl2 = pg h2 ;gn G~2 {K2 -1 - 2 (K2 _ 2) ~_ 3(~)2} (*)2 +

(2.55)

where K is the modulus of the e11iptic function, and K and E are the
complete e11iptic integra1s of the first and second kinds, respective1y.

Cnoida1 wave theories using both of the definitions coincide with each
other for sma11 ratios of h/lo. The comparison between the change of wave
height computed from Chappe1ear's cnoida1 wave theory by the second defini­
tion and that from laitone's theory is given in Figure 2.6, in which the
ratio H/Ho from Chappelear's theory becomes greater than that from laitonels
theory with increase in deep water wave steepness Ho/lo. The ratio H/Ho at
the breaking point, calculated from Stokes' criterion by laitone's theory,
becomes considerably smaller than that by Chappelear's theory.

The results of numerical computations were compared with experimental
data on wave shoaling from hydraulic model testing. In the laboratory much
care was taken to obtain the correct mass transport and to avoid undesired
reflections.

In comparing the resu1ts of laboratory investigations with the numerical
data, the effect of wave damping due to bottom friction was taken into
account, assuming a laminar wave boundary layer. Figure 2.7 shows some
results, comparing experimental data wi th Stokes' waves. The comparison is
reasonable: hl and Hl are the water depth and wave height measured at the
most offshore site, where hi is the depth measured at the slope and Hi the
wave height at that location.

In the work of Svendsen and Buhr Hansen (1976), an experimental descrip­
tion is presented for the transformation of periodic waves breaking on a
gently sloping beach. The data include the variation of wave height, phase
velocity, wave surface profiles, and the maximum value of the ratio between
wave height and water depth (H/h)max near the breaking point. The results
are compared with the theories of sinusoidal and cnoidal wave shoaling.
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The latter theory in most cases agrees with experimental results if
the energy losses along the bottom and the walls of the wave tank are
included. Furthermore, an empirical relationship is established between
wave length to water depth ratio L/h at the breaking point and the deep
water wave steepness Ho/Lo. The maximum wave height to water depth ratio
at breaking showed considerab1y. less scattering than found previously when
plotted against the dimension1ess parameter S = h L/h, h being the bottomx x
slope (Figure 2.8).
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The ratio l/h at the breaking point appears to be related to the deep
water wave steepness. Experiments show that this relationship can be
described by

=
-1/2

2.30 (::.) (2.56)

The parameter S = hx(l/h}S then becomes proportional to the similarity
coefficient s = tan al v'Ho/lo proposed by Battjes (1974a).

The experiments described in the paper by Svendsen and Buhr Hansen
(1976) were carefully conducted with sophisticated instrumentation. The
authors suggested that one possible reason for the many discrepancies in
the results of tests on the shoaling of waves by various investigators is
that in many instances the tests were performed on slopes that were
acually too steep to allow the shoaling assumption to be valid. Svendsen
(1974) showed that a consistent shoaling theory requires that S = O(h/l)3.
The shoaling condition implies that S is too small to be of importance.

Another important factor cited by Svendsen and Buhr Hansen is the
effect of the friction losses, which can be shown to have a considerable
effect on the shoaling process, particularly in a relatively narror labora­
tory flume. In the calculation of friction losses in the experiments,
particle velocities determined by the linear wave theory were used. It was
observed from their study that as long as the deep water wave steepness is
less than 3 to 4 percent, the linear wave theory seems to work well in
deeper water. This is of particular interest because the cnoidal theory
cannot be applied for h/lo ~ 0.10.

Some results ,of the experiments are shown in Figure 2.9; deviations
from the linear wave theory are particularly visible in graph b. The
effects of friction on wave shoaling are shown in Figure 2.10. The wave
steepness here is 3.58 percent. Sinusoidal theory gives a minimum value
HlHo = 0.913 against 0.85 measured.

If the deep water wave steepness increases, the wave height to water
depth will increase to large values outside the cnoidal region. At Ho/lo
= 6.4 percent, the waves actually 'break at h/lo - 0.10 so that the entire
shoaling process has been determined by the linear theory. However, the
linear theory cannot handle the larger values of H/h and a second or third
order Stokes shoaling theory would be appropriate.

The theory of cnoidal wave shoaling used in the Svendsen~Buhr Hansen
paper was developed by Svendsen and Brink-Kjaer (1972). The combined
linear-cnoidal shoaling model fits the experimental data surprisingly well
in those cases where the H/h ratio remains small for h/lo > 0.10
(Figure 2.11). The predictions follow the development all the way to the
breaking point, although the theory is not strictly applicable there.
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The absolute value of the energy flux was determined from the wave
height in the constant depth part of the flume, which may not be correct.
Svendsen and Brink-Kjaer (1972) matched the two theories by assuming
continuity in energy flux, which leads to a discontinuity in wave height
at the matching point. Svendsen and Buhr Hansen (1976) matched the wave
heights at the matching point, which then necessarily led to a discontinuity
in the theoretically determined energy flux.

Walker (1974a,1976) did a study on wave transformation in a hydrau1ic model.
The primary objective of his study was to ascertain the inf1uence of wave
height and wave breaking on wave refraction over a three-dimensiona1 shoa1.
Wave shoa1ing, decay in the breaker zone, and phase velocities were ana1yzed
in a base test series over a bottom slope of 1:30. Wave shoa1ing observed
over this slope was 25 percent greater than that predicted by the Airy theory
at the breaking point for wave steepness H IL = 0.030 and 50 percent greatero 0
than that predicted for Ho/Lo = 0.002. Measurements indicated that the
nonbreaking ce1erity could be expressed by c = (1 + .25 H/h) ca' where ca is
the Airy celerity. The ce1erity in the breaking region was higher and
corresponded with c = 1.33 /9h .

The resu1ts of the wave shoa1ing tests by Walker are presented in
Figure 2.12, in which values of H/Ho are p10tted against the depth over deep
water wavelength ratio. In Figure 2.13, test results are compared with some
theoretica1 va1ues for selected steepness ratios Ho/Lo' In Walker's analysis

bottom friction is not taken into consideration.
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Shuto (1976) ana1yzed the behavior of non1inear long waves in sha110w
water. He derived an equation which inc1udes non1inearity, dispersion,
topography, and bottom friction, and the resu1ts may be considered as a
fundamental equation for waves in sha110w water. In the derivations the
horizontal velocity of the 1inear long waves is used as the representative
velocity. Since it has a uniform vertica1 distribution, it is easi1y
connected with the surface e1evation n·
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In addition to several solutions in analytical form, the change in
wave height of cnoidal waves is given in Shuto's paper. An example of the
results of a computation for a shallow-water wave on a 1:20 slope is given
in Figure 2.14; the predicted wave height is given with and without friction.
The solid line is for conditions with friction and agrees reasonably well
with experimental results. Scattering of the experimental data is considered
to be due mainly to the ref1ection from the slope and the wave absorber
installed at the end of the flume. The friction coefficient is estimated
from known characteristics of wave and bottom conditions and a comparison is
made between the values of the friction factor based on varying theories.
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Figure 2.14 Change in Wave Height on a Slope
(from Shuto, 1976)
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CHAPTER 3: BOTTOM FRICTION IN A WAVE REGIME

In the energy dissipation of waves approaching the coastline, two
phenomena play a major role: bottom friction and energy losses from turbu­
lence due to breaking. In thi~ chapter, energy losses due to bottom friction
will be considered. First some of the basic concepts of boundary friction
phenomena for a steady flow situation will be reviewed; following this,
bottom friction under oscillatory.flow will be considered for both smooth
and turbulent-rough boundary layers. After that the effects of nonlinearity,
shoaling and wave breaking, and the effect of a superimposed current on the
bottom friction pa·rameter will be investigated.

Results from field and laboratory experiments will be discussed and a
comparison with theoretical values will be made in Chapters 8 and 9 of this
study.

BOTTOM FRICTION IN STEADY FLOW

Boundary friction in steady flow is related to the boundary layer that
is being developed. Two situations may be considered:

(a) The formation of a boundary layer in a flow regime with infinite
height and length.

(b) The development of a boundary layer in uniform flow with confined
boundaries, such as the flow through pipes. Channel flow with
open water surface may be considered a special case of this
category.

For the velocity distribution in the boundary layer the Reynolds number
plays a dominant role. Depending on the type of problem the characteristic
length and velocity dimensions that determine the Reynolds number may be
defined in different ways.

In flow over a horizontal plate in an infinite flow regime, the Reynolds
number may be defined by the product of the velocity in the main flow, U, and
the distance from the beginning of the plate, ~

Re = U~
v

if \)is the kinematic viscosity.

In a confined flow regime the diameter of the pipe D, the depth of water
in the channel, h, or the hydraulic radius R may be used to determine the
Reynolds number.

In 'pipe flow or channel flow the transition from laminar to turbulent
flow occurs at a Reynolds number
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Re = UR - 500
\)

Flows with higher Reynolds numbers than this value are likely to be turbulent,
although the transition between one flow regime to the other is not sharp but
depends on experimental circum~tances.

The transition from laminar to turbulent flow starts in the middle of a
pipe or at the surface of an open channel. As the Reynolds number increases,
a greater portion of the profile is occupied by the turbulent flow regime,
whereas the flow near the boundaries remains laminar over considerably higher
values of the Reynolds number.

In the turbulent regime, the boundary friction depends on both the Reynold!
number and the relative roughness of the pipe wallor channel bottom.

As a measure of boundary roughness, Nikuradse's sand roughness k iss
usually employed. In the case of a sand covered bottom, the value of ks
equals the diameter of the sand grains; in case of bottom ripples or other
bottom irregularities, a value for ks a few times the ripple height or bottom
irregularity is applicable.

Motzfeld (1937) found that ks values equal to four times the ripple height
or bottom irregularity should be applied, whereas Bretschneider and Nakazaki,
from measurements of the vertical wind velocity distribution over a rock farm
in Hawaii found that the bottom roughness characteristics corresponded to
ks = 3.3 d, where d is the average vertical rock dimension. (Nakazaki, 1980).

The thickness of the laminar boundary layer 0 plays a significant role in
boundary friction. For increasing Reynolds numbers, the value of 0 decreases;
for very large Reynolds numbers,the value of the laminar layer disappears,
although possibly very near the boundary a very thin laminar layer may be
retained.

The bottom friction is strongly affected by the relative values of ks
and O.

If the roughness is small compared to the thickness of the laminar layer,
the value of the roughness has no effect on the boundary friction. If on the
contrary the roughness is large compared to the thickness of the laminar layer,
the latter loses its inf1uence on the boundary friction.

According to Rouse (1938), the thickness of the 1aminar layer 0visc may

be expressed by

o . 11.6
\) (3.1)= -

V1SC ft
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where l is the shear stress near the boundary and p the density of the f1uid.
Experiments show that for

< 0.25 (3.2)

the effect of roughness on boundary friction may be neg1ected, whereas for

> 6 (3.3)

the boundary friction is on1y determined by the re1ative va1ue of the rough­
ness parameter (re1ative with respect to the radius of the pipe or the depth
of an open channe1). Reference is made to Figure 3.1

3
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Figure 3.1 Variation in Roughness Effect with Re1ative Thickness
of the Boundary Layer. Va1ues of ro/k range from
15.0 to 252.0. (from Rouse, 1938)

Uti1izing the va1ue of Ó. as expressed in equation 3.1, the criterion
V1SC

of equation 3.3 mayalso be written as

~ > 70
\)

(3.4)

The expression ~ is called the shear stress velocity U* and the parameter

ksU*
has the characteristic of a Reyno1ds number.

\)
This boundary Reyno1ds
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number plays a significant part in sediment transportation problems in open
channels.

For wide open channel flow the resistance coefficient f, defined below,
may be expressed as a function of the Reynolds number and the ratio ~ ,

s
whereby the hydraulic radius is replaced by the depth of the water:

f = fnct (Re, ~)
s

(3.5)

whereas for turbulent-rough boundaries the relationship is reduced to

f = fnct ( ~ )
s

(3.6)

Analogous to the results of pipe flow experiments, it is found:

1 2h-- = 1.52 + 2.04 10910 r-
If s

(3.7)

For pipe flow and open channel flow the friction parameter f, of above, is
related to the mean velocity IT of the flow in the pipe or in the channel by
the expression:

T = (3.8)

In open channel flow the Chezy coefficient C is commonly used to determine
the mean velocity:

TI" = cIRS (3.9)

in which S is the slope of the energy gradient, which for uniform and steady
flow equals the slope of the channel. For wide open channels the hydraulic
radius R becomes virtually equal to the mean depth h, so that

TI" = CM (3.10)

where h is the depth of water in the channel. The boundary shear stress in
steady flow may then be expressed by

T = pghS (3.11)

From equations 3.10, and 3.11 it follows

hS = T

P9
(3.12)
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whereas from equations 3.8 and 3.12 the re1ationship between f and C, as
defined above, becomes

c = ~ • (3.13)

Since both f and erelate boundary shear stress to the mean velocity
in the channe1, the velocity distribution over the channe1 cross section
p1ays a part in these re1ationships. With the assumption of a constant
shear stress, a derivation of the velocity distribution for turbu1ent-rough
boundaries ~ives (Rouse, 1938):

Uz 11n 30z 1 Z 5.75 1cg 30z (3.14)
U*

= = - 1n - =
K ks K Zo 10 ks

in which

Uz = velocity at distance z from the boundary

U* = shear stress velocity

K = von Karman's universa1 constant (K = 0.4)

1n = natura1 logarithm

Zo = distance from boundary where U = 0z

ks = bottom roughness parameter .

From equation 3.14 the mean velocity over the profile is

U ~ J h
U* z= - 1n - dz
K Zo

0

which may be rep1aced by

TI"
U*zo J h/zo

1n (~) d (~)= Ktl Zo Zo
1

(3.15)

(3.16)

This leads to

1n _h_
ezo

(3.17)
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From equation 3.8 one has

~* = ft (3.18)

so that
r

(3.19)

which leads to equation 3.7

Friction Parameter Related to Velocity Near Bottom

In the above section the friction parameter has been defined in re1ation­
ship to the mean velocity over the flow profile. In certain other prob1ems,
such as wave phenomena, it is advantageous to re1ate the friction coefficient
to the velocity near the boundary. In order to distinguish the latter from
the former, the symbo1 fz is used. The boundary shear stress is then defined
by

(3.20)

where Uz is the velocity measured at a distance z from the wall.

Consequent1y, the value of fz lS related to the distance from the wa11
at which the velocity Uz is determined. To make a comparison between the
values of f and fz' it wi11 be of interest to look at their re1ative va1ues.
For this one has to know the velocity distribution function near the boundary.
In the case of turbu1ent-rough boundaries, the existence of a logarithmic
velocity distribution (equation 3.14) has been va1idated and is therefore
used for the comparison.

From equations 3.14, 3.19 and 3.20, one obtains

1
IT

= 1
KIS"

(3.21 )

and

1

;r;
= 1

KI2"
(3.22)

From equations 3.21 and 3.22, the ratio between f and fz becomes

1n !~h
s
38
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It wi11 be of interest to determine for which distance z ' fran the wall,
at which Uz is measured, f is equal to fz.

Equating f and fz gives

z •
1

- 9~ . (3.24)

For a reef where the depth varies between 1.0 and 2.0 mand which has
an estimated bottom roughness of between 0.25 and 0.5 m, the value of z' based
on equation 3.24 varies between 0.11 mand 0.06 m. This equals the order of
magnitude of the size of the bottom irregularities of a coral reef. If Uz
represents the velocities near the bottom, then the value of f and fz would be
approximately equal (assuming the logarithmic velocity distribution would still
be applicable).

BOTTOM FRICTION IN LINEAR WAVES

The physical meaning of the boundary layer in a wave regime is the same
as for steady flow; it is the region over which velocities decrease to zero
from the main flow to the boundary.

Similar to the development of the boundary layer in steady flow, the
boundary layer conditions in a wave regime are affected by the magnitude of the
Reynolds number and the size of the bottom irregularities. For the wave-induced
boundary layer a distinction is also made between laminar and turbulent flow,
whereby in the latter case smooth and turbu1ent-rough regimes can be distin­
guished. According1y, the bottom friction experienced by waves is re1ated to
the boundary flow conditions.

The boundary 1ayer thickness 0 may be defined (Jonsson, 1966, 1978a) to
correspond with the 10west level above the wal1, where the velocity equa1s the
free stream velocity. See Figure 3.2. For short-period waves, the thickness
of the boundary layer is usua11y not more than 1/100 of the water depth so
that it therefore may be disregarded for the establishment of the flow profile.
Experimenta1 evidence shows that at z = 20, the maximum shear stress is on1y
about 5% of the maximum shear stress near the bottom. For practical purposes,
20 can be considered to be ana10gous to the depth h of a steady flow in an open
channe1. Jonsson found from experiments (Jonsson, 1963) that To = 0.35 Lm for
fu11y developed rough turbulence and To = 0.21 Tm for 1aminar boundary flow in
a wave regime if To represents the shear stress at a distance 0 from the
boundary and Tm the maximum shear stress near the wal1.

The Reyno1ds number in a wave regime may be defined in two different ways
(Jonsson, 1963).
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Figure 3.2 Typical Velocity Profile in the Boundary Layer
(from Jonsson, 1966)

1 ) Re =
Ub8

(boundary layer thickness Reynolds number) (3.25)-\)

RE =
Uba8

(amplitude Reynolds number) (3.26)--
\)

2)

in which

Ub = the maximum velocity of the main fluid motion near the bottom

8 = thickness of boundary layer

a8 = the maximum travelling distance of a particle near the bottom
from its zero position

\) = kinematic viscosity .

The wave boundary friction coefficient f was defined by Jonsson (1963) in thew
following manner:

1 A 2
l = fw '2 p Ub (3.27)

where l is the maximum shear stress during a wave cycle and Ub the maximum
value of the orbital velocity near the bottom. Dimensional analysis further
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shows (Jonsson, 1963) that the wave boundary layer thickness 0 and the wave
bottom friction factor fw are related to dimensionless parameters as listed
in Table 3.1.

TABLE 3.1

DIMENSIONLESS VARIABLES IN WAVE BOUNDARY PROBLEM

Flow Regime O/ao fw
A

Laminar case fnct
Uao

fnct
Uao

(-) (-)v v

a a
Rough turbulent case fnct (~) fnct (~)

ks ks
A A

Smooth turbulent case fnct
Uao

fnct
Uao

(-) (-)v v

Another way to define the friction factor for wave boundaries is by
setting

(3.28)

in which the symbol Cf is used to distinguish between equations 3.27 and 3.28.
T is the instantaneous bottom shear stress and Ub the instantaneous velocity
near the bottom given by

A

Ub = Ub sin wt (3.29)
A

Ub being the maximum value of Ub' The rate of energy loss per unit of time
is given by

and the mean rate of energy loss over a wave period is

(3.31)

It has often been implied that in equations 3.27 and 3.28 Cf = fw' but this
is not the case primarily because of a phase shift between Ub and T. However,
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Jonsson (1963) showed that for the rough turbulent boundary fw ~ Cf' but

that for the 1aminar case fw 1 Cf'

Kajiura (1968) defined the bottom shear stress again different1y:

(3.32)

in which
A

C = C cos e (3.33)

e being the phase ang1e between the orbita1 velocity near the bottom and the
bottom shear stress.

The mean rate of dissipation is then given by

1 A A 3
Ef = 2 C p ub cos e (3.34)

When compared with equation 3.31 it is seen that

3n A

Cf = Lr C cos e . (3.35)

In the expressions above, the symbo1 A signifies the maximum va1ue of the
parameter.

Sawaragi, et al. (1976) gave the re1ationship between C and Ub/WZo
(Figure 3.3) and showed that the phase shift in the friction parameter e, as

A

U 30a
defined by Kajiura, is significant for high va1ues of ~ = ~ (Figure 3.4).

W 0 s
The Nikuradse roughness parameter ks and the corresponding va1ue of Zo are

defined as in the case of steady uniform flow (zo = io ks)'

The Laminar Solution

For a 1aminar boundary 1ayer flow, the equation of motion can be reduced
to two principle terms (Lamb, 1963):

au = v a2u
at ~

(3.36)

in which u is the horizontal velocity in the boundary 1ayer and the Z the
vertica1 coordinate; v is the kinematic viscosity.

For the solution of this equation, it is advantageous to use the ana10gue
of a horizontal p1ate of infinite dimensions that supports a mass of infinite
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height. The plate is oscillating with frequency wand horizontal velocity U,
whereby

u = U cos wt (3.37)

The re1ative water motion near the horizontal plate is identical to the
1aminar boundary 1ayer underneath a wave field. For the solution to be
practica11y va1id, the height of the fluid mass does not have to be infinite
but wi11 have to be several times the thickness of the 1aminar boundary layer
that deve10ps.

The differentia1 equation is solved by separation of variables.

For the simu1ated case with ve10cities Ui, the boundary conditions are:

z = 0
A

Ui = U = U cos wt

z = 'V Ui = 0

and the solution is

Ui (3.38)

For the flow with fixed boundary and oscil1ating f1uid, one has

u = U - Ui

with solution

A -Jivz .
U e cos (1*z - wt) .

The solution contains a trave1ing wave in the z-airection, for which the
amplitude decreases in an exponentia1 rate. The speed at which this wave
trave1s is c = 2wv and the length of one complete oscil1ation is obtained
from

u = U cos wt - (3.39)

Jj; À = 2ïT

so that

À = 2ïTfIi. = 2 rn (vT)1/2 (3.40)

At z = À the osci11ating wall velocity "or defect veloct ty" is reduced to
R,-2ïTof its value at the boundary. The 1ength [%1; is the so-ca11ed Stokes
length, a1so called Idecay-1ength" and represents a reduction of amplitude
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in the ratio e-1• The value ~ is also a measure for the thickness of
the laminar boundary layer for which various authors have used different
definitions. The wave length À is 2TI times the Stokes length.

Longuet-Higgins (1957) defined the thickness of the laminar boundary
layer by

(3.41)

Jonssonls (1966) definition of ö (see Figure 3.2) gives

Iw TIV"2V- ö = 2"

so that

ö = ~ ~ = ft (vT) 1/2 .

Brebner (1966) used

ö = 4.6 ( 2; )112 = 4.6 (VnT )1 12 .

(3.42)

(3.43)

Brebner's value corresponds to a distance from the boundary at which the
horizontal defect velocity is reduced to 1% of its value at the boundary.

The,shear stress at the boundary, which is a measure for the force per
unit of area necessary to move the plate, may be obtained from

T = u I~Iaz z = 0

]l being the viscosity coefficient pv. After differentiating the maximum
value of the shear stress is

T = ± pv1/2 w1/2 ~ (3.44)max '

It furthermore appears that U lags 45 degrees behind the wall shear stress.
With

2' Tmax
"2pU

one finds the friction factor for laminar flow:

2f =-
w !RE (3.45)
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For linear wave motion, the maximum traveling distance of a particle
from its mean position near the bottom (free stream particle amplitude) is:

A "_ UT _ U
aö - 21T - hl (3.46)

Utilizing Jonsson's (1966) expression for the value of ö (equation 3.42) and
combining it with the expression for RE, one obtains

1T= (3.47)

This relationship illustrates tht physical meaning of RE: it is a measure
for the square of the relationship between the flow amplitude at the bottem
and the theoretica1 boundary layer thickness.

As to the question when the roughness at the boundary starts to have
influence, Lhermitte (1958) set

ksT > 0.25 (3.48)

Jons$on defined the start of the laminar-rough regime at

(3.49)

which ;s equivalent to equation 3.48.

By analogy with steady hydraulics, Jonsson (1966) originally expected
the 1aminar-smooth turbulent transition regime to lie in the range
250 < Re < 500.

Since for laminar flow Re = 1T~ (using equation 3.42), the lower

limit (Re = 250) gave RE = 1.26 x 104

Jonsson reasoned that the oscillatory boundary flow should be fully
turbulent for Reyno1ds numbers RE larger than 2 x 104. However, the validity
of this limit has been questioned. Newer theoretical and experimental results
suggest that the above figure is too low by a factor of about 10 for smooth
wa11s. It seems justified to assume that the laminar-smooth turbulent transi-
tion regime goes from RE = 104 to RE = 3 x 105 (Jonsson, 1978a).

The Turbulent-Rough Boundary Layer

For rough walls, information on transition is limited.

Jonsson (1966) found that for very rough walls the lower limit for fully
developed turbu1ence can be approximated by
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a 0.33

RE = 5500 ( k: ) (3.50-a)

Sleath's (1974) adaptation of the measurements by Li (1954) and Manohar
(1955) as transformed by Jonsson (1978a) gave

(
a) 0.45

RE = 4130 kÖ
s

(3.50-b)

4For design purposes RE = 10 seems reasonable.

For less rough walls Kajiura (1968) concluded, based on Kalkanis' (1964)
data for three-dimensional wall roughness, that fully developed rough turbu­
lence existed for

, ( aö )RE = 2000 k; (3.51)

Kamphuis expressed the lower limit of the rough turbulent regime in
terms of a roughness Reynolds number

U* k
v s = 200 to 70 (3.52)

aö
The former value holds for - < 100, the latter for larger values of

ks
aö
r.- (Jonsson, 1978a).
"s ,

The mathematical treatment of the turbulent boundary layer is more
complex because the Reynolds stresses have to be taken into consideration
and assumptions for the value of the eddy viscosity have to be made.

For rough turbulent flow, the friction factor is independent of the

Reynolds number; one has fw = f(::).

Kajiura'(1964, 1968) theoretically derived expressions for the wave
induced shear stresses for the smooth turbulent and rough turbulent flow
regimes. In Kajiura's approach, assumptions were made for the eddy viscosity,
whereby the boundary layer was divided into three regions: an inner,
overlap, and outer layer. A limitation of the theory is that it assumed an
average state of turbulence over the wave period (Riedel, et al., 1972).
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For the turbu1ent-rough flow regime, Kajiura obtained:

1 1 aó
= - 0.254 + log r- .

4 Fw s
(3.53)+ log

4.05 Fw
Kalkanis (1964) assumed a form of the equation of the turbulent boundary

1ayer a1most simi1ar to that given by Lamb for the 1aminar boundary layer, viz
'"U - u = U f1 (z) sin(wt - f2 (z» (3.54)

in which u = velocity in the boundary layer at a distance z above the bed,
'"U = orbita1 velocity at the limit of the boundary 1ayer and U = the amplitude

of this velocity. From experimental resu1ts, he arrived at va1ues of fl(z) and
f2(z).

A simi1ar approach was followed by Manohar (1955), who in the equation of
motion, rep1aced the kinematic viscosity by the eddy viscosity:

'" -BlzU - U = U e sin(wt - Blz) , (3.55)

where

BI = (~E) 1/2

and

E = eddy viscosity .

Bijker (1967) fo110wed a similar approach. However, for Blz he chose an
arbitrary function Z of z. Bijkerls ana1ysis was aimed at determining the
combined shear stress of waves and currents. He started from the assumption
that for the calculation of the resultant bed shear, the orbital velocity at
a certain level cou1d be superimposed on the velocity of the main current at

ek
that level. For the latter he chose the distance Zl = 3; in which ks is
the bed·roughness.

Horikawa and Watanabe (1968) reported on measurements of the velocity
distribution near a rough wall in a turbulent boundary 1ayer. Their resu1ts
agree with the theory deve10ped by Kajiura. Measurements by Jonsson (1963)
also correspond with Kajiurals theory.

The measurements by Jonsson (1963) and Jonsson (1966) were conducted in
a

an oscil1ating water tunnel where large values of ~ cou1d be obtained.
ks

Jonsson found that the velocity distribution near the wal1 confirms to the
turbulent velocity profile in an open channel (equation 3.14). If the
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.
logarithmic profile is assumed to extend to the main flow, he found the
following expressions for the boundary layer thickness and the wave friction
factor:

(3~SÓ) • log (3~sÓ) = 1.2
aó

ks

and

1 + log 1 -.0.08 + log
aó

=
ks4Fw 4Fw

{3.56}

{3.57}

Equation 3,.57is slightly different from equation 3.53 developed by Kajiura.

Riedel, et al. (1972) carried out shear stress measurements on both
smooth and sand roughened beds in an oscillating water tu~nel. Thejr results
are based'on tests carried out under very controlled conditions. For the
rough turbulent flow, they found:

(
k )0.77

= 0.25 ~ ;aö
aó

0.1 < lÇ < 25 (3.58)

1 + log 1 aö
= 0.122 + log - ;

ks. rr
,- ,4.95 V·w

(3.59)

- -
Th~ rësults of Jonsson (1966), Kajiura (1968) and Rjedel, et al. (1972)

are shown in Figure 3.5.

The assumption of a logarithmic velocity profile for the oscillatory
aó aó

boundary layer is reasonable for 1(-" > 25. For k < 25, this assumption
s s

needs to be modified (Riedel, et al., 1972).

Kamphuis (1975) reanalyzed the Canadian data. His new relationship
a

f versus kÓ is much croser to'Jonssonls (1966) results as expressed inw s
equation 3.57.

He proposed the following approximation to the Canadian measurements:

( )

- 0.75 a
fw = 0.4. :: (for k: < 100) • (3.60)
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Jonsson (1978a) suggested that the app1ication of this formu1a perhaps
a

shou1d be restricted to the interval 2 < ~ < 20, where agreement with
s

equation 3.57 is very good.

aê
be used for k

s
va1ue fw = 0.30.

Jonsson furthermore suggested that his formu1a (equation 3.57) shou1d
aê

> 1.57. For va1ues of k < 1.57 he suggested a constant
s

Kajiura (1968) proposed a constant va1ue fw = 0.25 for

aê
~ < 1.67. For a comparison of resu1ts, reference is made to Figure 3.6 .
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Smooth Turbulent Case

There is only a limited amount of data available for this case. Jonsson
(1966) arrived at the following expression:

1 + 2 1og 1 = log RE - 1.55
4{Ç 4Fw

(3.61)

A good approximation for equation 3.61 is:

fw = 0.09 RE - 0.2 . (3.62)

The criterion for fully developed turbulence has been discussed above.

Transitional Regime

In the transitional regime, the wave friction factor fw depends on both

. a6
the Reynolds number (RE) and the ratlo r-. Similar to the case for steady

s
flow, the value of fw depends on the ratio between 0 and kso Jonsson (1966)

gives for the relationship between f and ~ :
w s

0.0604
1 2 226og -

ks

(3.63)

a relationship similar to the results for steady flow if the depth as taken
is equal to 20.

Experimental results of Riedel, et al. (1972) are presented in Figure
3.7. This diagram resembles the Moody diagram for unidirectional flow. The
horizontal axis shows the Reynolds number RE and the vertical axis the friction

a
factor fw' Lines for given ~ values are shown as horizontal lines and

s
indicate independence of RE beyond a certain value of the Reynolds number.

a6
This value of RE is higher for higher values of -- •

ks

Experimental results by Jonsson (1963) and Riedel, et al. (1972) on these
relationships are similar but not quite identical.

Figure 3.7 also shows that for high values of the Reynolds number fw is
a6

only dependent on the ratio r-.
s
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ENERGY LOSSES IN WAVES DUE TO BOTTOM FRICTION

Bottom friction causes waves in shallow water to lose energy. Assuming
linear wave theory and constant wave period, an expression can be developed
for the rate of energy dissipation.

Suppose F(x) is the energy' flux per unit of crest width and Ef{x) the
mean rate of energy dissipation per unit of area.

Assuming stationary conditions and a horizontal bottom, one has

d F{x) + () = O.dx Ef X (3.64)

The above equation is valid for a sloping bottom when waves travel
perpendicular to the shore and depth contours are parallel to the coastline.

When waves come in at an oblique angle over a sloping bottom, refraction
has to be taken into consideration and equation 3.64 has to be modified.

However, in this analysis the discussion is limited to the two-dimensional
situation.

Utilizing equation 3.28 for the bottom shear stress

the rate of dissipated energy per unit of area can be calculated from

(3.65)

where the overbar denotes the time average. The friction coefficient Cf
usually has a value from 0.02 to 0.04, but on shallow reefs it can become
significantly larger.

Using linear wave theory, the bottom velocity at a fixed point can be
expressed by

1TH 1
Ub = T sinh kh sin wt (3.66)

which gives

1 (1TH )3 4
Ef = 2 Cf P T sinh kh 31T • (3.67)

The energy flux F{x) for linear waves and horizontal bottom can be
written in the form
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_ 1 2
F(x) - Enc = 8 pg H nc (3.68)

so that for a horizontal bottom

dF(x)
dx = 1pg H dH rrc

4 dx (3.69)

The energy ba1ance equation then deve10ps into:

2
1pg H dH nc + 2n Cfp H3 = 0
4 dx 3(T sinh kh)3 (3.70)

or

dH + B dx = 0
H2

(3.71)

in which

B =
3 gnc (T sinh kh)3

(3.72)

Integration of equation 3.71 gives

1- HTXT + Bx = constant 1=
- Ho (3.73)

where Ho is the wave height at the beginning of a section and

1 =HTXT
1HTöT + sx (3.74)

If waves are approaching the shore1ine over a sloping bottom, the actua1
bottom profile can be replaced by a step-profile with stepwise horizontal
sections with decreasing depth. Equation 3.74 may then be applied to each of
the horizontal sections. At each step an adjustment af wave height has ta be
made because af the change in graup velacity due ta the change in depth.

EFFECTS OF NONLINEAR WAVE CHARACTERISTICS ON THE LINEAR BOTTOM FRICTION
COEFFICIENT

In the previaus sectians, waves were assumed ta have linear character­
istics. The rate of energy dissipatian cau1d then be described by equations
3.64 and 3.67.
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When waves become nonlinear, e.g.~ when they enter into shallow water,
it is customary to retain the linear formulation for the calculation of
energy dissipation.

However, the effects of nonlinearity will then require that the (linear)
bottom friction coefficient be adjusted in order to account for the different
rate of energy dissipation in nonlinear waves.

In this section, an evaluation will be made on the manner in which this
apparent friction coefficient will deviate from the coefficient valid for
linear wave conditions.

The considerations will take into account the effect of the magnitude of
orbital velocities as well as the effect of increased turbulence.

Effect of Nonlinear Orbital Velocities

In defining the wave bottom friction coefficient, the use of equation
3.28:

1: =

is most useful for the evaluation because a direct relation is assumed
between the shear stress and the instantaneous bottom velocity.

It is realized that this direct relationship has physical and mathema­
tical shortcomings because the phase difference between shear stress and
orbital velocity is ignored. Nevertheless, the equation is_useful to obtain
some quantitative values.

In the following, the index "b" is dropped from the "U" for reasons of
simplifying the notation. The rate of mean energy dissipation was found from
equation Ef = 1: U , which for linear waves gave

2 A3 2 ( 1TH ) 3
Ef = 31T P Cf U = 31T P Cf T sinh kh

The evaluation of the effect of nonlinearity is based on the equality of
the mean energy dissipation during one wave cycle. Where in linear waves the
bottom velocity at a given location may be described by a sine or cosine
function, in nonlinear waves the function U = f(t) deviates from a sine or
cosine curve. In a higher order Stokesl wave, the velocity U may be written

U = UR, + UI (3.75)

where Ut is the linear botom velocity and UI the higher order part of this
velocity. The mean rate of energy dissipation is

1 f T 21Ef = T Cf P IUt + UI 13 dt
o

(3.76)
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In this expression the integrand is always positive because both
positive and negative bottom velocities contribute to the energy dissipation
process. Further analysis gives

e I T
E = ~ I [u 3,+ 3 U 2UI + 3U UI2 + U13] I dtf 2T R, R, R, •

o
(3.77)

Assuming that UI is relatively small compared to UR, the term with UI3
may be neglected, being of higher order than the previous terms. The third
term, including the integral

1 I T U UI2 dtT R,
o

is small compared to the first two terms and is also dropped in this analysis.

This leaves

(3.78)

If the dissipated energy in a nonlinear wave is set equal to the amount
A

dissipated in a linear wave with the same value UR, (the maximum value of the
first mode), an equivalent friction factor elf may be defined as follows:

U 3
R,

(3.79)

From this the ratio between elf and ef may be calculated:

r T

Cl 3 J I U/ UI Idt
f 1 + 0 (3.80)Cf =

IJ UR,3 Idt

Equation 3.80 may be used to determine the effect of nonlinearity on the
friction coefficient for the case of higher order Stokesl waves, in case UI
is relatively small compared to UR,.
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A similar procedure may be followed if instead of Stokes' waves a
cnoidal shallow water wave is employed.

In the above considerations of the behavior of the bottom velocities,
their deviation from linear behavior served as a basis for analysis.

Near the bottom the deviations from the linear characteristics are
usually small and therefore the effect of nonlinearity on the bottom friction
coefficient will be small also.

Effect of Turbulence Induced by Wave Breaking

In the area of breaking, waves are highly nonlinear and therefore the
considerations of the preceeding paragraph apply. In addition, however, there
is an additional nonlinear effect which may have to be taken into account.

In the process of breaking, considerable energy is transformed into
turbulence energy which in turn is inducive to energy dissipation due to
internal friction.

In order to determine in which manner the increased degree of turbulence
affects the magnitude of the bottom friction coefficient, the following three
cases may be considered:

a. Increased turbulence over the full depth, but excluding the
bottom boundary layer.

b. Increased turbulence over the full depth of water extending
into the wave boundary layer.

c. Turbulence confined to an upper layer, a less turbulent
central layer and a bottom boundary layer (three layer
model).

In case (a) the fluid motion in the immediate vicinity of the bottom will
not be affected by the higher degree of turbulence in the upper layers. The
effect on the bottom friction coefficient is then minimal. Observations
carried out in the present study as well as reports by other investigators
suggest that this situation may indeed develop, although criteria for this
condition have not been established.

Most likely this condition occurs in spilling breakers.

The second case (b) may be expected when plunging breakers and a fully
developed bore prevail. Under those conditions the value of the battom friction
coefficient will be affected, both during the breaking process and possibly also
to some degree after breaking and during regeneration.

Model (c) has been proposed by Huntley (1976) after single point measure­
ments of velocity fluctuations in the surf zone. lts effect on the bottom
shear stress would be similar to model (a).

58



In the following, the effect,of turbu1ence on the bottom friction
coefficient wi11 be assessed for model (b) in a way simi1ar to the effect
of nonlinearity, as discussed in the previous section.

The friction coefficient is again defined by equation 3.28, with U the
time dependenf orbita1 velocity near the bottom.

In this equation for the bottom shear stress, the value of U is
considered a 'mean velocity over a short period of time; turbulent fluctua­
tions of the near bottom velocity increase or decrease the instantaneous
values of this velocity.

,','If ij' is the mean veloc ity over a short period and UI the turbulent
f1uctuation, then at any time

, ",'
(3.81)

The instantaneous boundary shear stress is then given by

T = !,Cf p I (ij' + U I ) I (ij' + U I )

and the mean ratë of energy dissipation:

.,
(3.82)

" ,

= lJTlc P
T 2 f

o

(3.83)

Because the frequency of the turbulent fluctuation UI is much higher
than the frequency of IT, evaluation of equation 3.83 may be possib1e in two steps;
first averaging over a duration T, during which ij' may be considered constant,
and secondly averaging IT over the wave cyc1e T.

Averaging over a time period T with constant ij' gives

J
T 3! 0 I(IT + U')I dt

(3.84)

Assumf nq again that the magnitude of the third term is saal l compared to
the first term of the last equation, the former may be neglected.
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As far as the second term is concerned, define

where 02 is the variance of the fluctuation UI. Then the equation
develops into

(3.85)

Consider the variation of U over the wave period Tand define

(3.86)

where Cf" is the friction coefficient as affected by the turbu1ence.

From equation 3.86

C 11
f
Cf = 1 + (3.87)

If it is assumed that

o = ct IT (3.88)

where ct is a constant, equation 3.87 is reduced to

C 11

f =1+3cl
Cf

and the effect of increased turbulence is directly re1ated to ct2• There is
no information avai1ab1e regarding the va1ue of ct and its variation with time
in a breaking region. A reasonab1e guess cou1d be ct = 1/4 - 1/2 for which
C 11 C "
!f = 1.19 - 1.75 but higher va1ues of ct and thus of !f seem possib1e.

(3.89)
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It may be feasib1e to suppose that a is re1ated to the Froude number:

a = f (Fr) (3.90)

and

C 11

f = 1 + 3 [f(Fr)]2 •
Cf (3.91)

Ca1cu1ations of the va1ue of the friction factor based on observations
in this study confirm that in breakers of the p1unging type an increase in
the friction factor is 1ike1y to occur.

The above demonstrates that the effect of increased turbu1ence on the
bottom shear stress coefficient can be significant, provided the turbu1ence
extends we11 into the near bottom f1uid 1ayers.

Because waves in a breaking regime are by nature nonlt'flei,r"effects of
both non1inearity and turbu1ence will both have to be taken into consideration.

The above considerations are particular1y va1id in the ,region of actua1
break in'g.. '

During the execution of model experiments under this study, some evidence
has been found that an increased level of turbu1ence persists when breaking
waves have passed throuçh a section, increasing the value of the bottom friction
coefficient for thi:l,tsection.

EFFECTS OF'UNI-DIRECTIONAL CURRENT

Simi1ar1y to the effects of nonlinearity discussed in the previous
paragraphs, the' presence of a uni-directional or slowly varying current on
the waves also varies the value of the apparent friction coefficient. Such
current may be from an outside source (tide, wind) or may be generated by the
waves' theinse1vés. '

In this paragraph the presence of such a current is assumed and its effect
on the apparent bottom friction coefficient is evaluated.

The prob1em of the bed shear in a combined regime of waves and currents
has been discusseçl by Jonsson and Lundgren (1961). They suggested a super­
position of the uniform current velocity and the orbita1 velocity inmediate1y
above the boundary 1ayer. They app1ied the 10garithmic velocity distribution
in the'turbu1ent boundary 1ayer between the main f1uid flow and the bed.

Using similar procedures as deve10ped in the preceeding paragraphs, the
apparent friction coefficient Cf* can be ca1cu1ated frOJa,,'ttta~a:t~n

1
"2" I

TI ~ 3 I 1 Cf P
U dt = "2" -T-

o
(3.92)
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-+

where Cf is the instantaneous friction coefficient, U the wave-induced
-ê-

velocity near the bottom and Uê the steady uni-directional current at a
distance ê from the boundary.

The vector signs indicate that superposition of the velocities is
accomplished in vector form.

To calculate Uê a logarithmic velocity distribution is assumed.

From equation 3.92 one obtains

C *f
Cf

( I (~ + ~ö) 3[ dt

= ~=------------------

I

To

I ~ 3 I dt

(3.93)

The presence of a uni-directional current superimposed on the wave-induced
currents demonstrates itself as an increase of the apparent friction coefficient
as evidenced from equation 3.93.

The outcome of equation 3.93 is a function of ( Jö ,6 ) ,where Û is the

maximum value of the orbital velocity and 8 the angle between the wave
orthogonal and the uni-directional current. The integral may be evaluated
numerically.

Bijker (1967) followed a somewhat different approach in determining the
bed shear under the combined action of waves and currents.

In his analysis the superposition of orbital velocities and main current
is carried out at a level z' above the bottom, where

(3.94)

in which ks is the bottom roughness and e the base of the natural logarithm.

At that level the orbital velocities have a value pU where p was evaluated
theoretically and experimentally, respectively at 0.39 and 0.45. He found for
the value of the ratio between the mean resultant shear stress and the bed
shear due to currents only the expression

= 1
"2

+ 1 ~2 U
2 Vl (3.95)
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where

= pKIä
If

in which

Lr = mean value of resultant shear stress

LC = shear stress due to current only

V = mean velocity of uni-directional current

u = amplitude of orbital velocity near the bottom

K = von Karman's universal coefficient

C = Chezy coefficient

f = Darcy Weissbach friction coefficient

~ = dimensionless coefficient .

The result of equation 3.95 is only to a small degree dependent'on the '
angle between the wave orthogonal a~d the current.

Using this result the ratio between the mean resultant shear stress and
the mean shear stress induced by the waves only is then given by

(1 1 r,2 A2 )+ 7 LCLr "2
=

LW 1 22" P Cf U

.By defining LC in the usual manner

= 1 fp V2LC 8"

(3.96)

(3.97)

and assuming a sinusoidal behavior of U, equation 3.96 may be developed into

(3'.98)

This approach provides another avenue for calculating the effect of a
current on wave-jnduced shear stresses.

This approach can be extended into the evaluation of dissipated energy
from which an apparent shear stress coefficient, as defined earlier, can be
calculated.
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Apparent Shear Stress Coefficient for Waves and Weak Current

The rate of energy dissipation per unit of area due to bottom friction
in a wave-current regime can be expressed by:

(3.99)

where the overbar denotes the time average and Lr is the instantaneous resu1ting
-+ -+

shear stress. Uó and U are defined as before.

-+ -+
Assuming independence between Uó and U, one may write:

-+ -+ -+-+
Ed = Lr' Uó + Lr' U (3.100 )

Setting
-+ -+ -+
L = L + LIr c w

and assuming sinusoidal behavior of U one obtains:

-+ -+ -+
Ed = Lr' Uo + TC'

-+
U +

-+ -+
L I • UW

-+ -+ -+ -+
Ed = Lr' Uo + LIW' U (3.101)

For weak superimposed currents, it may be assumed that

(3.102)

where Ef is the energy dissipation due to bottom friction in waves without a
current. This gives

'+ -+
Ed = Lr' U6 + Ef (3.103)

In a two-dimensiona1 situation, when waves travel in the direction of the
current:

-+ -+
Lr • U6 = Tr' Uó
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so that

Ed = Lr • U + Efa
Writing

1 * lu31Ed = 2" c pf

and

= 1
Cf P lu31Ef 2"

gives

* -=trUaCf
= 1 +

Cf· Ef

which is the desired re1ationship.

(3.104 )

(3.105)

BOTTOM FRICTION IN SOLITARY WAVES WITH HORIZONTAL BED

The effect of bottom friction on the deformation of the finite amplitude
long waves on a horizontal bed can be mathematical1y modelled by associating
the empirical friction term of steady f10ws with the Boussinesq equations.
(Erdal Özhan and Hiroyoshi Shi-igai, 1977).

For waves trave1ing in one direction on1y, the modified Korteweg-de Vries
equation is app1icable. >

The frictional behavior of the bed in the motion of solitary waves was
ana1yzed by Özhan and Shi-igai by considering the ana10gy with the steady flow
past a flat p1ate.

Keulegan's ,(1948)ana1ytica1 resu1t for solitary waves,>which gives the
wave height attenuation with traveling distance, app1ies to the smooth bottom
on1y and does not ho1d for turbulent-rough boundary conditions.

In the fo110wing, resu1ts of Özhan and Shi-igai (1977) wi1l be brief1y
discussed.

In the analytica1 considerations, a frictiona1 force (on a f1uid element
of unit mass) was added to the right-hand side of the equations of motion
defined by:
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(3.106)

where Ub is the particle velocity at the sea bed and f a friction coefficient.

In the equation of mct ton ,' the velocity U is the average over-depth
horizontal partical velocity.

The Boussinesq equation with friction tenm was developed into a
non-dimensional form and computations were carried out based on the modified
equation. The results of the computations were compared with the results of
laboratory data.

In the computer analysis, the friction factor was introduced as a constant
coefficient, so the effect of a variable ~ ratio over the complete wave was

ks
not taken into account.

In order to present the results in a form comparableto Jonsson (1963)
and others, a Reynolds number was to be specified. In analogy with flat
plate theory, the Reynolds number was defined by

R~ = J u~ d ~ (3.107)

whère ~ is the excursiön Terigthof the bottom particles. By using the
relationships:

d ~ = Ub dt and dt = dx-c
equat t on 3. 107 could be written in the form

. . 'J ~ - ,... 1 2
R~ c' =. vc ' . Ub dx

max _'V
(3.108)

By using the s~con~dorder expressions for Ub and c as developed by Lat tone
(1960), the following result was'obtained:

In,analogy to the theory of the wave induced bottom friction in a
aê

turbulent-rough regime (where the independent parameter is ~), this variable
s

~maxis here computed as the ratio ~,where
s
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~max = [ u: dx = t d m1/2 [1 - k(~)+ ~~ (~/ + 0 (~n
(3.110)

The general functional form of the friction coefficient may then be written

f = f1 (Rl;max '
~ax )
ks

or

f = f2 [ (gH) 1~2 H ks
,~]Cl

in which d = depth at ± ~ •

(3.111)

(3.112)

In the analysis, the rough-bottom friction coefficients were computed
so as to provide the best fit of the computed wave height attenuation curves
with the measured ones·

Friction coefficients were plotted according to equation 3.111 and results
are shown in Figure 3.8. In this figure the curves limiting the completely
rough flow region as suggested by Kamphuis (1975) are also shown. For the

~maxrough turbulent flow region, the relationship between f and -- is similar
ks

to results found by other investigators. See, for example, results by Riedel,
et al. (1972), shown in Figure 3.7.
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Figure 3.8 The Friction Coefficient Diagram for the Solitary Wave
(from Özhan and Shi-igai, 1977)
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CHAPTER 4: WAVE HEIGHT ATTENUATION IN BREAKING WAVES

ASPECTS OF WAVE BREAKING

Wave breaking is an essential element of wave attenuation, because
it usually accounts for the major portion of energy dissipation in waves
approaching the coastline.

It is outside the scope of this paper to give a complete overview of
the history and state of the art of wave breaking, but a short summary may
be useful. Reference is made to relevant studies on thisaspect. Signifi­
cant recent contributions have been made by Galvin (1968, 1972) and Battjes
(1974a).

In view of the scope of this study, elements of importance are the
following:

a. Location and depth where breaking starts and where
breaking stops (if relevant) .

.b. The type of breaker that may be expected.

c. The energy losses in the breaking process.

Important parameters in the breaking process are the br~aker height ,
relative to breaker depth, deep water wave height, deep water wave steepness,
breaker steepness and beach slope.

A study of the literature reveals that the two parameters which define
the breaking process for the larger part are the deep water wave steepness
and the beach slope. In several earl ier studies which were based on the
solitary wave theory, the effect of beach slope was not included, which led
to erroneous results.

Both for theoretical analysis and for experimental evaluation, the
assumption of a criterion for the beginning of breaking is required. There
are severa 1. ,..

Stokes~(1947) postulated as the limiting conditions for breaking that
the crest paj-t icle velocity exceeds the phase velocity. If that is the case,
the wave becomes unstable and breaks.

Sever'al :i'nvestigatorshave applied this criterion to various wave theories
to determine when breaking starts.

Michell (1893) found that the limiting condition for deep water waves
was met when

( HLoo) = 0.142
. max

(4.1)
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Havelock (1919) extended this to shallow water and found:

Hr = 0.1418 tanh kh (4.2)

McCowan (1894) found the well known criterion for solitary waves in constant
depth:

= = 0.78 (4.3)

For shallow water tanh kh ~ kh so that equation 4.2, applied to the
beginning of breaking, develops into Hb/hb = 0.88.

It is known from experiments, however, that the wave height at the
beginning of breaking, Hb' is related to the depth at that point, hb, by
Hb/hb = Yb, where the ratio Yb is not constant, but relates to deep water
wave steepness and beach slope.

To account for this Battjes (1974a) proposed:

= o. 142 tanh _2p_ kh .
0.88

(4.4)

Tests by Danel (1952) showed that the constant 0.142 in equation 4.4
was closer to 0.12:

Hr = 0.12 tanh kh (4.5)

Reference is also made to Silvester (1974).

For shallow water this becomes identical with equation 4.4 fer Yb = 0.743.

Analysis of breaking criteria on a shallow reef observed in this study
has indicated that Havelock's expression indeed needs modification, because
in its original form it leads to an insufficient number of waves that break.
Field measurements carried out in the current study indicated that Battjes'
modified formula with Yb - 0.7 gave better agreement between theoryand
observations.

Another possible breaking criterion is that the wave breaks when the
vertical acceleration in the wave exceeds the acceleratien of gravity.
Based on that criterion Laitone (1963) found for solitary waves

= 0.827 (4.6)

A third criterion~ postulated by Stokes (1948) states that waves break
when the wave front becomes vertical.
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In experimenta1 work by Svendsen and Buhr Hansen (1976) the point
of breaking was defined at the 10cation where the wave reaches its highest
crest e1evation.

The importance of the bottom slope in the wave breaking criterion was
stressed by Ippen and Ku1in (1955), Galvin (1968) and Le Méhauté and Koh
(1967). The latter rep10tted the results of several wave tank experiments
and deduced the fo1lowing breaking criterion, in which S is the beach slope.

= (
H )-1/4

0.76 Sl/7 LO
o

(4.7)

for 1~50 < S < 1:5

and
Ho

0.002 ~ L~0.09
o

This equation indicates that the relative breaker height increases
with bottom slope and decreases with deep water wave steepness.

Halker (1974a) found that measured wave heights shoaled to greater
breaking heights than were predicted by the empirical curve of Le Méhauté
and Koh.

Galvin (1968) from the study of movies on laboratory type breakèrs .
presented criteria re~arding breaker type in terms of an "offshore
parameter" Ho/Lo (tan a), and an "inshore parameter" Hb/9 T2 tan 0., if tan 0.
is the beach slope. The breaking point was detenmined as the most seaward
location where the wave front is vertical, or if this did not occur, the
10cation where foam first appeared on the crest.

He arrived at the fo110wing classification for the inshare parameter:

TYPE OF BREAKER INSHORE PARAMETER

Col1apsing-Surging
Plunginq.
Spilling

< 0.003
0.003 - 0.068

> 0.068

Spilling occurs when waves break on a small slope for high wave
steepness; in plunging breakers the wave slides up the slope with 1ittle
or no bubble production.

The cOllapsing breaker is between the p1unging and the surging
breaker; minimal air pockets but bubbles and faam are present.

Reference is made to Figure 4.1 .
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Figure 4.1 Cross Sections of Four Breaker Types
(from Galvin, 1972)

Battjes (1974a, b) defined a similarity parameter

ç, = tan Ct

(H/L )1/2o

and examined the value of the parameter in surf processes. He concluded
that this parameter is a good indicator of many overall properties of the
surf zone, such as breaker type, breaker height-to-depth ratio, set-up,
run-up and run-down, reflection and absorption and the number of waves that
are present in the surf zone. lt may therefore tru1y be called a similarity
parameter. This parameter was used by lribarren and Nogales (1949) for
determining whether wave breaking would occur. lts general usefu1ness in
surf prob1ems has also been suggested by Bowen, et al. (1968).

Ga1vin's offshore parameter can be written ç,o-2 in which the index 0

refers to the deep water wave height. Converting Galvin's values to va1ues
of Ç,o'the fo11owing criteria are obtained:
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Surging or collapsing

Plunging
Spi11ing

if
if
if

~o > 3.3
0.5 < ~o < 3.3

~o < 0.5

These results are based on experiments on slopes 1:5,1:10, and 1:20.
Galvin's inshore parameter is not equivalent to the parameter ~b. However,
Battjes re-examined Galvin's results and concluded that the classification
of the breakers could be done equally wel1 with ~b as with Ga1vin's inshore
parameter.

The fo1lowing approximate values were found

Surging or collapsing:
P1unging:
Spi11ing:

~b > 2.0
0.4 < ~b < 2.0

~b < 0.4

Figure 4.2 includes data from several investigators. There appears to be
a weak dependence of Yb on ~o. For low va1ues of ~o (~o < 0.2) Yb seems to
be approximately constant with a value of 0.7-0.8. The va1ues of Yb found
by various authors show considerable scatter, which is partly due to the
difficulties in experimentation. They reflect on the scatter present in
Figure 4.2.
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• IVERSEN
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('-0

•• • ••
• •
4b 0 0
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0.05 0.1 0.2 0.5

oo

•

2

~o

Figure 4.2 Breaker Height-to-Depth Ratio
(from Battjes, 1974a)

Van Dorn (1976) in studying set-up and run-up in a laboratory flume
found that ~b = 0.6 is possibly a better division point between spi1ling
and plunging breakers than the value of 0.4 suggested by Battjes.
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In ca1cu1ating the energy flux connected with a breaking wave, the
velocity of propagation of the breaker is of great importance.

Theoretica1 and experimenta1 ana1ysis revea1s that wave height has
a significant inf1uence on the velocity of propagation.

Keu1egan and Patterson (1940) gave for the ce1erity of sha110w water
waves of finite height:

= (4.8)

For the solitary wave (Laitone, 1963) the velocity of propagation is usua11y
given in the form

c = Ig( h+H) (4.9)

which re1ation is common1y accepted for the va1ue of c near breaking.
Van Dorn (1976) found from measured ve10cities near the breaking point that
the phase velocity cb was c10se1y approximated by .

= (4.10)

in which nb is the crest e1evation above the mean water level at breaking.
It gives considerably lower values than the expression for the solitary
wave (4.9).

Walker (1974a) measured phase velocities in a sma11 sca1e laboratory
model. He found that for the non-breaking waves the phase velocity cou1d
be expressed by

c = 19K (1 + 0.25 ~) (4.11)

as a reasonab1e average from measurements with considerab1e scatter. This
equation may be written in the form

c
Igh

= Fr = H1 + 0.25 11 (4.11a)

in which Fr = 1 + 0.25 Hjh has the identity of a Froude number. It gives a
value Fr = 1.25 for Hjh = 1. Similar1y, the wave ce1erity in the breaking
zone is given in Walker (1974a) by

= (4.12)

in which ns is the local wave set-up. The average va1ue of Frb is 1.22 with
slightly lower values in very shallow water.
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To match the celerities of the surf and non-breaking waves, he suggests
the formula

(4.13)

where l1s:::!0 at ,breaking point H/h:::!1. The factor 1.25 implicitly retains
the influence of wave height on wave celerity.

WAVE CONDITIONS ON A REEF

Shoaling and Wave Attenuation on Ala Moana Reef

In this section same general characteristics of waves breaking on Ala
Moana Reef will be described. The data on which this description is based
were obtained during field observations in the summer of 1976.

Wave Height

High tnc-ident waves break on the reef slope and do not necessarily
generate the highest waves on the reef. Those breaking waves lose much of
their energy so that they enter the reef section with strongly reduced height.

Low waves on the other hand, while remaining unbroken increase in height
during shoaling and reach a maximum magnitude when they arrive at the reef
edge. '

The results of this study have shown that the deep water wave steepness
is the controlling para~eter. See Figure 4.3. These results are obtained
from the model investigations carried óut for this study. In this figure the
wave height divided by depth (H/hs) is plotted against the value H;lgT2 whereby
Hi is the measured wave height in station 7, where the water depth in prototype
is approximately 11.4 m.

This relationship is plotted for stations #5 and #4; the former is
located near the edge of the reef, and the latter approximately 60 m shore­
ward (Figure 4.3).

Although the data show some irregular behavior (particularly for station #4),
the general tendencies of wave behavior are visible.

In station #5 the relative wave height H/hs reaches a maximum value for a
- 2 2steepness parameter Hi/gT of about 0.15 x 10- for the curve hs/Hi = l.O.

Waves pf greater steepness break on the sloping bottom seaward of station
#5 and lose energy traveling shoreward.

Wàves of ver.y low steepness usually remain unbroken and have a lower
height over thè reef.
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Figure 4.3 Wave Height over Depth Versus Steepness of Incident Wave
for A1a Moana Reef, from Data Observed During this Study

A simi1ar trend is to be observed for the wave height in station #4,
a1though 1ess distinct than for station #5. The reason for the generally
lower.wave height in station #4 is the 10ss in energy that occurs in the
wave from station #5 to #4.

The observations in station #5 indicate that the maximum breaking
coefficient Yb = Hb/hb has a mean va1ue of approximate1y 1.5. It is to be
noted that wave set-up is not inc1uded in the depths fOr Figure 4.3. Battjes
(1974a)has shown that the va1ue of Yb is re1ated to the deep water wave
steepness as we11 as to the beach slope.

2 .
The parameter H./gT re1ating to incident wave height is somewhat1

different from the va1ue Ho/9T2, which is based on the deep water wave height.

One cou1d therefore expect a fami1y of curves (depending on the ratio
Hi/hs instead of one, but it is assumed that the general characteristics of
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wave behavior do not change significantly if the wave height Hi is used
instead of the deep water wave height Ho.

Wave CeZerity over Reef

Field observations on A1a,Moana reef regarding the wave ce1erity allow
a Froude number to be calculated from

c = Fr 19h (4.14)

where h represents the mean depth.

The Froude number Fr as defined above is usually > 1 and appears to be
related to wave height.

It was found that the formula

1/2
c = [9(h + Hz, 1/3)] (4.15)

in which Hz, 1/3 denotes the significant wave ~eight and h the mean depth,
best describes wave propagation velocities over the reef.

The corresponding Froude number is
1/2

Fr = [1 + Hz,h1/3 ]

Wave Speetrum

Shoa1ing and wave breaking have significant effects on tota1 wave energy
as we11 as on the distribution of energy over the various wave components.

Generally speaking .there is a noticeab1e shift of energy density to
higher and lower frequency components as waves travel shoreward and break
on the reef.

The 10ss of energy and the change in wave spectrum have been subject of
detai1ed analysis in this study.

, Figure 4.4 shows the change in variance a10ng a sloping bottom with
shallow reef, as obtained from the model investigations carried out under the
present study.

Hensen's Model Studies for North Sea Coast

Hensen (1954) described the resu1ts of a series of model tests carried
out to detennine the design wave height for coasta1 protection works on the
German North Sea Coast.
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Test 2: Runs 9 - 17, reduced to prototype data.

The German North Sea Coast is protected by a shelf of extensive tidal
flats at mean sea level. The storm floods of February 1,1953 demonstrated
that water levels up to 5m above mean sea level may occur during extreme
conditions.

Figure 4.4

The study was undertaken to determi ne the wave height that could be
expected at various levels of inundation of the tidal flats, which informa­
tion would provide the design wave height for the sea defense works along
the North Sea Coast.

This problem shows much resemblance with the present study. Although
water depths over the shallow reefs in Hawaii are usually significantly
smaller than the ones used in the German study, the nature of the problem
is similar.

The experimental set-up in Hensen's study is shown in Figure 4.5.

The tidal flats have a width of 60Om, whereas the offshore section
(with horizontal bottom and a depth of 10.6Om below M.S.L.) covers a
distance of 120Om.

The study was conducted at an undistorted sca1e of 1:20. Both wave
height and water e1evation,above M.S.L. varied between 2.0Om and 5.0Om.

A water level of +2.0Om in the field and a scale of 1:20 provides a
water depth over the shelf in the model of O.lOm.
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Figure 4.5 Test Conditions for North Sea Dike
(from Hensen, 1954)

In the model experiments carried out for the present study, the scale
was 1:12 and a depth of 1:20 m in the field was therefore also represented
by a model depth of 0.01 m, which is identical to the depth used in the
German tests for the lowest water level.

Some significant results of Hensen's investigations are shown in
Figures 4.6, 4.7 and 4.8. Figure 4.6 shows the wave height on the shelf
as related to the water depths over the shelf for waves with periods larger
than 9 seconds.

Although several curves could be drawn between the data points, there
is a clear upper limit indicated by the solid line in the diagram.

Hensen's study does not indicate at which location the waves over the
shelf have been measured. This makes a strict comparison with the results
of this study difficult, since wave attenuation over the reef accounts for
a reduction in wave height in the direction of wave travel.

3.0 .c. ,-~ /
~ Ç) ,-

0:: '\ ...,..(LlJE>
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LIJ 11..
x...J
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o
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WATER DEPTH OVER TI DAL FLAT IN m

Figure 4.6 Wave Height on Tidal Flat as Related to
Water Depth (from Hensen, 1954)
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Figure 4.1 Results of Hensen's Experiments in Dimensionless Parameters
(Model Scale 1 :20)
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Figure 4.8 Wave Height on Shelf as Related to Wave Period
(from Hensen, 1954)

Nevertheless an attempt is made to make an overall comparison, by
replottJng Hensen's data in a dimensionless diagram similar to Figure 4.3,
where the change in relative wave height, H/h, is related to the steepness

2parameter of the incident waves, Hi/gT , for varying relative water depths
on the shelf, h/Hi.

The results are shown in Figure 4.7.
Hensen's data show that the ratio H/h is

higher~ater levels than for the lower ones.
tion over the reef between the reef edge and
dependency on wave height is to be expected.
have been involved.

somewhat higher for the
In view of the wave dissipa­

the point of measurement this
Some scale effects mayalso

Wave Period

Hensen's (1954) study isbasedon linear concepts as far as wave
period is concerned. Consequently, wave period is related to the primary
wave only and does not include the secondary waves and higher frequency
components generated in the shoaling and breaking process.

If the latter are taken into consideration and periods are measured
by a zero-upcrossing method, a tendency for decrease in mean wave period
would have been observed.
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,In his study Hensen (1954) found that the effect of period on .
wave height over the shelf is evident for low periods, but that for .
periods over 9 seconds the water level is the dominant parameter (see
Figure 4.8).

Transformation of Waves After Breaking
, '

The process of wave breaking is characterized by intense energy ~
dfsstpat lon resul t inç in adecrease in wave height and ultimately al so in
a change of characteristic wave periode '

The problem has been treated both experimentally and theoretica1ly in
the 1iterature; a distinction is to be made between waves breaking on a
slope (beach) and on a horizontal bed. In the fo1lowing, some relevant
studies on wave transformation after breaking wil1 be discussed. However,
considerations are 1imited to regu1ar waves. The effects of the changes in
wave spectrum wi11 be discussed in a later chapter. ' ,

, Horikawa and Kuo (1966) studied the wave transformation inside the
surf ione both theoretica11y and experimenta11y. The theoretical curves,
computed numerica11y, had a consistent agreement,with experimenta1 data
irrcase of wave transformat lon on a horizonta1 bottom, but for the wave
di ssfpattorr'on auntfornly sloping beach the analytical resu1ts were
inadequate to describe the'actua1 phenomena.

Their theoretica1 ana1ysis is based on the fo110wing assumptions:

a. The 2nd order approximatioq of solitary wave theory
introduced by Laiton~ was adopted to express the
characteristics of the broken waves progressing in the
surf zone .

b. The wave is attenuated by the effects of turbu1ence
and bottom friction.

c. The friction coefficient was assumed to be constant
over the surf zoné.

d. The turbu1ence is isotropic and decreases exponentia1ly
with the travelling distance from the breaking point.

The effects of bottom friction were accounted for in the usua1 manner
by introductio~ of a bottom,friction coefficient.

The energy dissipation due to turbu1ence per unit of volume and per
unit of t~.mewas expressed by

w = (4.16)

where W is the rate of energy dissipation due to turbu1ence per unit of
volume

u = coefficient of f1uid viscosity
UI = fluctuation of horizontal velocity component
À = microsca1e of turbu1ence or dissipation length.

81



Assuming the kinetic energy of turbulence to decrease in an exponential
manner with the distance from the breaking point, it is possible to express
the decay of turbulence by the relationship

(UI)2 = a expo ( - ~x/L) (4.17)

where S indicates the damping coefficient of turbulence, X the distance
measured from the breaking point and L the wave length. They found that the
dissipation 1ength may be expressed by the fo11owing re1ation:

= loYJS (4.18)

Assuming furthermore that

Ui = = k(z + h} dudz (4.19)

in which the mixing 1ength ~ is taken proportiona1 to the distance from the
bottom, k Von Karmanis Universa1 constant and u the horizontal component of
the partic1e velócity of the wave, it was found that

W = 1.5 pk;S (z + h)2 (~)2 (4.20)

and
rv n

J J W dz dx =
-rv -h

(4.21 )

where
dEt .
dt lS the rate of energy dissipation due to turbu1ence •

The requirement of energy conservation is expressed by the expression:

= _ [dEb dEtJ
dt + dt (4.22)
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in which

= the time rate of energy dissipated in the solitary
wave (per unit of width).

= rate of energy dissipation due to bottom friction.

Introducing the appropriate expressions in equation 4.22 an
expression is found,for the change in wave height due to ener9Y dissipation.

Figure 4.9 presents a sample of experimenta1 resu1ts and Fi9ure 4.10
the theoretica1 curve for 6 = 5 for a horizontal bottom. In this diagram
the dimension1ess-wave height H/h is p10tted against the dimension1ess
horizontal distance x/(T Igh). The agreement between theoretica1 and
experimenta1 resu1ts is satisfactory.
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Figure 4.9 A sample of experimenta1 resu1ts. (Horizonta 1 Bottom)
(from Horikawa and Kuo, 1966 )
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Comparison of the experimenta1 resu1ts with the
theoretical curve. (Horizontal Bottom)

(from Horikawa and Kuo, 1966)
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The authors also compared their results with field data, obtained by
Ijima by means of stereophotography of waves in the surf zone on the
Niigata West Coast. Figure 4.11 shows a comparison of various curves.

1.0 LEGEND:
LABORATORY

0.8

0.6~
<,
J:

0.4

0.2

0
0

_--e THEORY (Cf· = 0.005, P = I )
•••••• IJIMA

FIELD

................ -

Figure 4.11

2X/T Joh
Relationship between H/h and x/(TIgh) obtained fro~
various sources. (Horizontal Bottom)

(from Horikawa and Kuo, 1966)

4

Although the agreement wi th the analytical curve and the field data
is consistent with the results of laboratory investipations, it was noted

.by the authors that the value of the damping coefficient B = 4-5 for the
laboratory was much higher than the value B = 1 for the field.

The discrepancy suggests the existence of a scale effect of
turbulence in the problem under study.

For the uniformly sloping bed the following relationships were
determined from dimensional analysis:

H
Hb = ~ [~:' h:' S1 (4.23)

H
11

(4.24)

where S is the slope and the subscripts 0 and b denote the respective va1ues
in deep water and at the breaking point.

Figure 4.12 presents resu1ts of experimenta1 data for a slope of 1:65.
Each individua1 curve represents the change in wave height as the wave
progresses from deep to sha110w water for wave steepness ratios Ho/Lo
decreasing from 0.065 to Q.025.

Figure 4.13 summarizes the results of wave attenuation, presented as
H/Hb versus h/hb, for severa1 beach slopes. In the same diagram results
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Figure 4.12 Transformation of wave heights inside surf zone with
1/65 bottom slope.
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from experiments by Nakamura, et al. (1966) are plotted for a 1:10 slope
and wave steepness -rattos Ho/Lo between 0.01 and 0.02. Figure 4.13 shows
that for 0.2 ~ h/hb ~ 0.8 and for the 1:10 slope the ratio H/Hb decreases
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w1th h/hb in an a1most 1inear fashion; for the more gent1e slopes, the
wave attenuation is strongest immediate1y af ter breakin!). .

In Figure 4.14 the ratio H/h is p10tted against the re1ative depth
h/hb for various slopes; both the experimenta1 curves and the theoretical
curves are shown; the agreement is not fully satisfactory. There was a
large scatter in the data used.for plotting this diagram. The figure
shows that the relative wave height, H/h has its minimum value at h/hb ~ 0.6
for all slopes considered. It is to be noted that wave set-up is not
included in the data.
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Nakamura et al. (1966) studied wave decaying due to breaking. Their
approach was basical1y experimental. Some resu1ts are presented in Figure
4.15.

They found that after progressive waves over a sloping bottom pass the
breaking point, they advance in the breaker zone in the form of a bore.
When the bottom slope is 1/30 or steeper, the breaking waves arrive at the
shore1ine in that farm; when the slope is 1/50 or gentler the waves reform
to nonbreaking waves after passing the breaker zone.

The relationship between H/Hb and h/hb found in Figure 4.15 is also
p10tted in Figure 4.13 to allow camparison with Horikawa's findings. They
are in general agreement.

The relative length of the breaker zone Lb/Lo is related to the deep
water steepness as shown in Figure 4.16. There is scatter in the data but
the relationship is corv;nc;ng.
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Figure 4.17 shows the dependency of H/Hb of the deep water wave
steepness. It appears that for h/hb > 1 there is a significant dependency
on steepness, whereas in the breaker zone (h/hb < 1) the dependency on wave
steepness is sma11. An average curve conmen for all Ho/La values is 1ike1y
to give a representative re1ationship.
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Another interesting resu1t of this study is Figure 4.18 which shows
the change in wave period in dimension1ess farm. The ratio Ta/Tb which is
the period af''the reformed wave divided by the period of the breaking wave
is present~d as function of hb/Lo for slopes of 1:50 and 1:00. The paper
does not specify how the periad of the reformed v/ave is defined.
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Van Dorn (1976) studied set-up and run-up in shoa1ing breakers. He
included the'measured wave set-up in his data on wave attenuation.

Figure 4.18
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Results are presen~ed in Figure 4.19 in which values of H/Hb are plotted
against (n + D)/(nb + Db) and against x/xb' for three different slopes.

n + 0 represents the local depth corrected for wave set-up and nb +
Db the corresponding value at the breaker point. The value xb represents
the width of the surf zone and the distance x is measured from the
theoretical shoreline, taking wave set-up into consideration.
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Figure 4.19 Wave height versus total water depth
and surf zone width, all normalized
to breaking values

(from Van Dorn, 1976)

For the steep slope S ~ 0.083 he found an almost linear relationship,
whereas for gentler slopes the ratio H/Hb decreases more quickly ilT1!1ediately
after breaking and more slowly for the smaller water depths. The period
does not seem.to have a determining effect on the process of wave decay.

Sy and large Van Dornis results are in agreement with Horikawa's
and Nakamura's. The inclusion of the wave set-up in the actual depth
provides a higher degree of accuracy.
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Have Attenuation, Using "Bore-ApproaChll

Murota (1966) presented theoretica1 and experimenta1 results on the
transformation of surges. His paper deals with the transient deformation
of surges (bores) in open channel. ~ ,

In several estuaries and tidal rivers the rising tide during its
upward propagation develops into a sudden jump of thewater surface.
This phenomenon is called a bore. A similar phenomenon may be
experienced when tsunamis enter shallow water.

Dronkers (1964) described the characteristics of a bore in a tidal
river. From a hydraulic point qf view the bore can be considered as a
moving hydraulic jump which propagates with the ve10city c. If an observer
moves with the velocity of the bore:h~ willobserve the phenomenon of the
stationary hydraulic jump; the well-known formulae for the hydraulic jump
may then be app1ied and be transformed into a moving coordinate system.

The difference in energy level ~H,for a hydrau1ic jump is given by

~H
"

(4.25)

\'1here hl and h2 represent thè depth of water on either side of the jump.

The rate of change of energy, dEl/dt in a bore per unit width is
given oy

= -pqg~H (4.26)

whereby the discharge q per unit of width is defined by

q = (c + vI) hl (4.27)

re1ative to the moving system. c is the velocity of propagation of the bare.

The phenomenon of the bore has a great deal of similarity with the
breaking of wind waves and swell in shallow water and offers an attractive
model for the dissipation of wave energy during breaking. Such approach
was fo llowed by Le Méhauté (1962), Divoky et al. (1970), and Hwang and
Divoky (1970). The concept is also used in this paper to arrive at an
energy dissipation coefficient for waves breaking on a reef.

Therate of dissipation of total energy available in a bore, El, per
unit of width, dEl/dt is related to the rate of energy dissipation per
unit of distance by

= '(4.28)
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Combining equations 4.26 and 4.28 gives

= -1c pgqilH (4.29)

Writing equation 4.27 in the form

q =

where ~ is a representative water depth, equation 4.29 develops into

= t;V-pgtiilH (4.30)

Divoky et al. (1970) combined the Boussinesq solitary wave theory with
the dissipation of energy of a hydraulic jump to arrive at an expression for
wave attenuation.

Hwang and Divoky (1970) used the similarity between breaking wave and
bore to determine wave set-up and decay on gentle slopes.

In their paper the energy dissipation rate is assumed to be a fixed
fraction, S, of that of a bore of the same height.

Use of equations 4.25 and 4.30 leads to

= (dEl)B dX BORE
= 1 H3D

- 4 Bpg Y (y + H)
t t

(4.31)

where H is the height of the bore H = (h2 - hd, Yt is the dep~h below the
trough (Yt = hd and Dis the representative water depth (D = ti) ,

This model furthermore app1ied the usual expression for the momentum
flux. To implement the model the cnoidal wave theory of Keulegan and
Patterson (1940) was used to describe periodic waves in moderate1y shallow
water and gently spi11ing breakers.

For the relationship between total wave energy El and momentum flux M
a 1inear approximation

El
M ~ 3/2 T (4.32)

in agreement with the theory given by Longuet-Higgins and Stewart (1964)
was applied.

For the calculation of the tota1 wave energy El, it was assumed that
this va1ue was two times the tota1 potential energy of the wave.

Resu1ts of computations based on this model with B taken arbitrari1y
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as 0.8 are presented in Figure 4.20, where they are compared with data by
Horikawa and Kuo (1966) for a slope of 1/65.

1.0 LEGEND:
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Figure 4.20 A Comparison of the Hwang and Divoky Model with
Data of Horikawa and Kuo (1966) for Wave Height
Decay in toe Breaking Zone

(from Hwanq and Divoky, 1970)

Considering that the distance between consecutive jumps equals the
1ength of a breaking wave, L, the mean energy per unit of surface aréa
equals

E
El= T

and

dE
':V

= pgnf1H
dx - L

(4.33)

(4.34)

Expressing the energy dissipation in terms of the energy flux, F,
one has for breaking waves

F = = c E (4.35)
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and for a horizontal bottom:

dF c dE
dx

::::
dx

which leads to

dF
ti,

= ~gMH
dx - T

(4.36)

(4.37)·

Equation 4.36 is strict1y not app1icab1e for a sloping bottom since
the term E ac/ax ~ 0, but for slopes of low steepness equation 4.37 is
still a reasonab1e approximation.

Schönfe1d's Approach to Bore Propagation and Energy Dissipation

In this section the method developed by l.C. Schönfe1d (1955) wil1 be
utilized for additional analysis of the bore problem.

Introducing again a coordinate system moving with the velocity, c, of
the bore, the 1aws of conservation of mass and momentum are applied to the
water between two cross sections perpendicular to the flow direction, one
just before and the other one just behind the jump. The derivations below
are for a channe1 with width b. For the two-dimensiona1 case, b can be
taken equa1 to 1; if refraction occurs, b can be considered the distance
between two orthogona1s. Let Ff furthermore denote a friction force.

Hith reference to Figure 4.21, where hl and h2 are the water depth
before and after the jump and VI and V2 the mean veloeities in the bore as
shown, the law of the conservation of mass gives

(4.38)

where c is the velocity of propagation of the bore.

The law of conservation of momentum gives

Ff + ~ pg bh12 + P (c + VI)2 bhl =

~ pg bh22 + P (c + V2)2 bh2 (4.39)

Introducing 4.38 into 4.39 gives

(4.40)

and defines a water depth hm.
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(a) BORE ---c

v­I

( b) HYDRAULIC JUMP

Figure 4.21 Definition Sketch of Bore

(from SChönfe1d, 1955)

Solving (c + Vl) and (c + ~2) from equations 4.38 and 4.40 :

= (4.41)

and

(4.42)

By treating the jump as located in one cross section and treatin~ the
energy losses due to friction separate1y, the friction force Ff may be 1eft
out of consideration obtaining

1hm = "2 (hl + h2) (4.43)
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.The 1aw of'conservat ten of energy is-not sati.sfi.ed,·ifconsi.derations
are l.tmt ted to the mean va1ues of the veloct ties , The bere provokes a
dissipation of energy of the main flow; the rate of dissipation is equa1
to the power set free in the jump. Schönfe1d (1955) considered the shape
of the bore and its energy budget. The bore travel s faster .than the
characteristic wave component in the 10wer water ahead~ but slower than the'
wave componeDt in the upper water arrear. The equilibrium of the profile
can nonethe1ess be attained by the effect of the vertica1 acce1erations and
by considering some characteristic features of the bore (Figure 4.22).

UI"ONENTIAL \
\

>~.' '\ ..' _'" Î I

----­. "

Figure 4.22.

;)))77777777777777777,
Features of Bare

(frbm Schönfe 1d , 1955)

a. The front of the bore may be considered as a wave of
exponential shape

( ..

nl = al exp ± PI (x - ct) (4.44)

The velocity of propagation of such wave in flowing water with
velocity v is

v + / _g_ tang p hPIl 1

which is larger than v + ~,. ttievelocity of propagation of a l onç wave.

c = (4.45)

b. the upper portion of the bore is usually charecter ized by
a sinusoidal wave: .

n 2 = a2 cos k{x ct) .

The phase velocity of such wave in flowing water is

c = v + /t tanh k2h2

which is smaller than the long wave,phase velocity v + Igh2 •

(4.46)

(4.47)
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In order for the two wave systems to move forward with the same speed,
the average level arrear must be greater than the average level ahead, which
arrangements exist in the characteristics of the bore.

Assuming that the phase speed c is the same for front and back waves
gives a consideration for determining the values of PI and k2.

The formula

1
k;

1
PI (4.48)

is a good approximation for not,too great va1ues of the relative height

2{h2 - hl)/(h2 + hl}.

In his paper Schönfeld {1955} presented another characteristic feature of
the bore, the part played by surface tension.

The exponential toe of the bore is preceded by a train of capi1lary
waves with the phase velocity

.c = v +!§:
p {4.49}

when cr is the constant of surface tension between air and water.

He found

1
k; =

cr 2hl
pg h2 (hl + h2) {4.50}

as an expression for the wave number kl of these waves.

In agreement with the above described characteristics of the bore
the energy in the bore is dissipated in three different ways:

(l) The group velocity Cg of the short gravity waves is less
than the phase veloclty. Consequently there is a rearward
transport of energy in the trai1 amounting to

=

= (4. 51)

This power is gradua11y dissipated by interna1 and bottom
friction in the wave train.
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(2)
. ( "Ó,

T,he,g~~upve,loci.~y Cg of the capillar~ ripples is greater
tnan tne phase veloc1ty; hence there lS a forward transmission
of energy in the 'ripplé train amounting to:

Pr = (Cg - c) b ~ T kl2a12

1. T b 8
hl + h2

Pr = (k12aI2) •4 2 (4.52)

This power is gradually dissipated by viscosity in the ripple
train .

. -, ~.

(3) Relative to the moving ,coordinate system the flow appears as
decelerated, which induces extra turbulence and a loss of head.

,,:rhedece'lerat ton loss is total, when it equals 6H [equat iorr 4.25 J.
/i ,A~suming that the 105S is,only partial to the fraction ex, the rate

of energy disstpat ion due to turbul ence .t s given by

P , 1 b (h )3d = 4' ex pg B 2 - hl. (4.53)

Tt ts clear that the train of gravity waves must be fed from ahead
and that. the ripple train must be fed from behind.' The delivered
power P must be the sum of the three dissipations, discussed above:

P P + P + Pd
9 r

When the water is deep the capillary ripples must be very short and
the power transmission negljgible. In a laboratory setting, how­
ever, they may have to 'be considered. In very shiillow water the
phase velocity of the sinusoidal and exponential gravity waves have
to be corrected for capillarity and the phase velocity of the
capillary ripples for gravity. In case capillary power may be
neglected, the available power will be distributed over the two
remaining components, as follows. When the jump is low, the steep­
ness is small and the transition very gradual. There will not be
much energy dissipated through deceleration and most of the
energy available will be invested in the trailing waves. As the
jump grows higher the_deceleration losses increase rapidly and
fina11y take a great deal of the available energy when the jump
has broken and an eddy has formed. Reference is a1so made to the
work of Benjamin and Lighthi11 (1954).

= (4.54)

Energy Dissipation Coefficient for ~Javes Based on Simi1arity With
the Bore

Of the three dissipation mechanisms of equation 4.54 the 10ss due to
turbulence (Pd) is the most significant one for breakin~ waves. From
equation 4.53 an expression may be deve10ped for the rate of energy flux
dissipation per unit~f length.
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The principle mechanisms of energy dissipation under field conditions
are wave breaking (turbulence) and bottom friction.

Assuming stationary conditions and parallel wave orthogonals,
conservation of energy requires:

dF
dx = (4.55)

where dF/dx is the gradient of the energy flux in the direction of wave
propagation.

In this expression Eb relates to the energy dissipation due to breaking
and Ef to the dissipation from bottom friction.

Although there is some nonlinear interdependence between bottom
friction and wave breaking observations indicate that such interaction is
small and that the two mechanisms may be treated independently.

In the following analysis only wave breaking will be considered; the
effects of bottom friction were considered in Chapter 3.

To evaluate the energy dissipation due to breaking equation 4.53 will
be used as a starting point, whereby b is taken equal to one

= (4.56)

For a wave at the breaking point (see Figure 4.23) the difference in water
level on both sides of the bore equals the wave height:

hz - hl = H

and

/

Figure 4.23 Breaking Have Schematized To Bore
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hm = hl + h2 = hl +!!2 2

hl h2 = hl (hl + H)

This 1eads to

1 Á + i~
Pd H3 (4.57)= 4" a pg 19'flî" / __IL ~1 + hl

a is the fraction of the total dissipation rate P that is due to
turbulence (breaking) as defined earl ier.

For periodic breaking waves with bore similarity, the gradient of
energy flux due to breaking is related to Pd by

dF
dx = = (4.58)

if L is the length _of a wave in the breaking zone.

This gives

= (4.59)

Introducing

Hy = llî"
L = cT

2nw = T

c = Frv'9hî"

where Fr is a Froude number, equation 4.59 develops into

= a pg "'(/2 + Y wH2
8nff. Fr 1 , + Y

(4.60)

Introduce a-coefficient ~ according to

= ayl2 + Y
.Fr/1 + y

(4.61)
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which reduces equation 4.60 to

= _s_ pgwH2
8rr/2

(4.62)

The funct ion

ç Fr =
Cl

.rJ2 + Y
Iï + Y

(4.63 )

is dependent on y only and is plotted in Figure 4.24.
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Figure 4.24 Energy 10ss coefficient as a function of
wave height-to-depth ratio

In order to obtain a value of ç from equation 4.63 appropriate
va1ues of Fr and Cl must be assumed.

Equations 4.55 and 4.62 allow the experimental verification of ç from
field and model experiments.

Energy Transfer to Waves of Higher Freguency in the BreakinQ Process

In the previous paragraphs energy losses due to wave breaki ng have
been considered.

An important additional aspect of the breaking process is the nonlinear
transfer of energy from the main wave system to waves of higher frequencies.
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In the total energy budget this;,_t_ransferof energy to higher, frequency'(.-'__(;r
modes is responsib1e for a downwar;;shift in the significantrwave period.
as waves approach shallow water and propagate over the .shalIow reef.

-; .}." ~~.:: .
Experiments taken at A1a Moana Reef under this study have confirmed

this phenomenon. However, the conditions on the_reef..~tAJa Moana usua11y
invo1ved a wave spectrum, a1though often with a narrow:band swe11 , and are
not direct1y comparab1e to conditions used in the laboratory studie$ where
monochromatic waves were generated. . , .

The use of equation 4.54 provides some insight into this process.
For field conditions the capil1ary term is re1ative1y insignificant and is
neg1ected. This gives

(4.64)

For the principle waye the term Pg signifies a Ioss of power, stmt lar-ly to
the 10sses dOe to turbu1ence:(Pd).

Identifying the energy flux of the principal wave system with F* and
neg},ecting friction, the enerqy Iosses for this system may then be found
fr6m the re1ation ..

dF* = -(Eb + Eg)
(Pd + Pg) P= ='dx L - L

or

dF* = - 1.e..9.....ê. (h2 - hd3dx 4 L

Simi1ar1y to equation 4.55 write

dF* 1

dx = -(Eb + Eg) = __ s_ pgwH2
8TI12

where
Sl = ls

Cl

(4.65)

(4.66)

(4.67)

(4.68)

Integrating equation 4.67 over the trave1ing distance Xl - X2 (see Figure
4.25) gives

X2
* * f

1
F2 Fl = _s_ pgwH2dx (4.69)

8TIIlXl

and x2
* * f

1
F2 = Fl _s_ pgwH2dx (4.70)

8TIIlXl
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The total flux of wave energy (inclu'ding secondary waves) at station X2 is
larger than the quanfity F*2 given by equation 4.70 because part of the
energy of the principal wave system is transferred into wave undulations
of shorter period. If the energy flux of the latter system is F** then

(4.71)

If the higher frequency waves have an amplitude a2 and a group speed cgr

F** = (4.72)

and

(4.73)

Using the value of F~ as expressed byequation 4.70 one has:

=
X2

F* J sI H2d 1 2I - _- pgw X + "2 cgr PQ a2
)C, 8n12

(4.74)

For the total energy flux (primary wave system and secondary wave system
together) it was earlier derived that

dF = __ s_ pgwH2
dx = -Eb

8n/2

so that X2

F2 = FI - J _s_ pgwH2dx
8n/2

Xl

(4.75)

Equating equations 4.74 and 4.75 gives
X2

I sI H2d 1 2_- pgw X + "2 c pg a2
8n/2 gr

X2

= FI I _s_ pgwH2dx
8n12

(4.76)
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which leads to:
X2

F~ + J 1 - Cl _s_. pgwH2dx
Cl 8n12

Xl

(4.77)

At the point where breaking starts the energy flux present in the
secondary waves generated by the bore may be considered negligible so that
at that location

=
"..':

which reduces equation (4.77) to

X2J 2(1 - Cl} _s_ wH2dx
Xl Cl çgr 8n12 .

The value of Cl necessary to evaluate equations 4.77 or 4.78 is
related to the re1ative height of the breaking wave y. [See Figure 4.26]

{4.78}

For Cl = 1, a2 = 0, which may be èxpected since all enèrgy is
dissipated in the bore by turbulence and no energy is available to form
secondary waves.

The amount of energy available in the secondary wave system is related
to the value of Cl as well as to the travel distance of the bore.

For surging breakers the value,of Cl will be close to one, whereas for
low breakers its value is small and much energy is available for the
generation of secondary waves. '

Based on research by Favre {1935} weaker bores have a smooth
osci 11atory structure, whereas the fu11y developed bores have a rapi d
turbulent change {see Chapter 2}. The change of type seems to occur rather
sharply at a depth ratio h2/hl - 1.28, corresponding to a H/hl ratio of
- 0.28.

The expectedtrend in the values for Cl is suggested in Figure 4.26.

In case Cl approaches zero this is also the case fór s and equation
4.78 loses its meaning. All energy of the.bore is then dissipated in

short period oscillations.

High Prequency OsciZZations

For the determination of the frequencies of the secondary wave system
two different approaches provide an order of magnitude for the period or
frequency of these oscillations.
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In the first approach, equation 4.48 provides a formu1a for the
computation of the energy in the high frequency band induced by the breaking
wave.

According to Schönfe1d (1955) this formu1a is a good approximation for
determining the wave number k2 if the re1ative height

,H= hm

is not too great. This re1ationship may be used to compute the wave number,
and given the depth h2, also the wave period.

It is assumed (without proof) that the formula gives an acceptable
approximation, even if the ratio H/hm is not very small.

A second approach for determining the period of the short period oscil­
lations following the crest of the breaker is based on the Airy function.
Reference is made to Chapter 2. In this solution the wave number of the
induced oscillations is not constant but it varies with time and location.
If an appropriate value of t is se1ected, the length of the waves and
consequently their wave number can be determined from Figure 2.3.

The above procedure provides some insight into the energy transfer from
the principa1 wave to higher frequency modes and may be used to obtain some
quantitative information on this process.

ENERGY DISSIPATION FOR WAVES BREAKING ON HORIZONTAL REEFS OR SLOPES

The derivations in the foliowing sections are meant to give an overall
verification of the use of the bore concept for energy dissipation in
breaking waves.

'. '.

Experiments by different investigators show that the wave attenuation
during breaking has a different character depending on the slope of the beach.
Therefore, it is attempted to develop approximate expressions for slopes of
varying degrees of steepness.· .

Energy Dissipation due to Wave Breaking on a Horizontal Reef

The relationships 4.61 and 4.62 may be used to determine the energy
dissipation on a horizontal reef. For these ca1cu1ations, expressions for
energy dissipation and for the energy content of the waves are needed.
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For the latter the Boussinesq expression for ,the energy of a solitary wave
per urrit of width is se1ected:

= (4.79)

Although the solitary wave extends itself to + IV and - IV the energy
is contained in a limited part of the wave on either side of the crest.
Under these conditions it may be assumed that the mean energy flux is equal
to

F = T (4.80)

if T is the "wave period" for the pseudo-solitary wave.

I, the average amount of energy per uni t of area is

_[_ pg H3/2 h3/2
3/1E cT (4.81)

For para lle l, orthogonals and neglecting bottom friction,

dF
dx = (4.82)

may be used in conjunction with equation 4.80.

Taking th~ dep~h as constant gives

dF
Qx, = = (4.83)

Using equation 4.62 to define Eb leads to

= .::Z;; pgwH2
8n12

-z;; 1 2_- pg H .
4/2 T

(4.84)=

After some reorganization of symbols:

-1612 h3/2 ~ = d
/ x •

z;;/3 H3 2
(4.85)
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Integration (assuming ç and h constant) gives:

32/2 h3/ <1 _1
çl3 vlf

= x + C (4.86)

in which C is an integration constant. Setting H = Hb at x = 0 and taking
the + x in 1andward direction, the integration constant is defined and the
equation for H deve10ps into

= (4.87)

The assumption of constant ç is on1y va1id for distances of 1imited length.
Since ç = f{y) and y = H/h, the variability of ç for longer stretches has
to be taken into account, and the differential equation 4.86 is then to
be solved taking a variable ç into consideration.

Along a horizontal reef the wava.he iqht attenuates due to energy
dissipation and consequent1y the value of y decreases also; this therefore
affects the value of ç.

In Figure 4.27 the ratio H/Hb is plotted against (XIFÇ)/{A h3/2) in
which A = 3212" jÇ./3 .
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Energy Dissipation
After Breaking On Horizontal Reef (ç = constant)
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Introducing a proportionality between the breaking wave height'at the
beginning of the horizontal section, Hb and the depth over the reef, h,
(Yb = Hb/h), equation 4.87 can also be written in the form

32/2 [r-i - 1]IY b I:;;/j ,
= x

h (4.88)

where x denotes the distance from the point where H = Hb'

Belowa limiting value of H, the waves no longer break and energy is
transmitted only in the sinusoidal waves follo\'lingthe crest.

Equation 4.86 can be solved numerically if a variable 1:;;, correspond­
ing to equation 4.61 " is used.

In order to verify the values of ç, the experiments carried out under
this study, have been useful. However to make the correct evaluation for
1:;;, bottom friction losses in the breaker zone must also be taken into
consideration.

Energy Dissipation On Gentle Slopes

Application of the procedures in the previous section also gives
satisfactory results for gentle slopes (m ~ 1/65).

It appears that for such slopes the derivation of the energy
dissipation as for a horizontal bottom, with h = hb' is adequate.

Reference is made to Figure 4.28, where Horikawa's (1966) observations
for 1/65 - 1/80 slopes are compared with computed dissipation rates based
on the horizontal bed formulation. For a 1:65 slope, with Yb = 0.8, ç =
constant = 0.77 and friction neglected, a reasonable degree of agreement
(with Horikawa's observations) isobtained.

The assumed value of ç = 0.77 is relatively high. However, in such
gentle slopes energy dissipation due to bottom friction, (which has been
neglected so far), p1ays a measurable part. If friction wou1d have been
taken into consideration the value of ç necessary to obtain agreement, will
be significantly reduced.

Energy Losses For Waves Breaking On Slopes Of Modèrate Steèpness

When waves break on a slope of moderate steepness (1:20 - 1 :40) the
procedures developed in the previous paragraphs can still be applied although
with alesser degree of accuracy.

In the first place it may be expected that the expression for total
wave energy, which was based on the pseudo-solitary wave concept becomes a
1ess attractive model of description. It may be preferable to use the
expression for energy density of linear waves, modified with a non1inearity
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coefficient 0, as defined by

1 2oE = "8 pgH (4.89)

1.0
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Figure 4.28 Comparison Between Observed and Computed Data on
Wave Attenuation for Low Steepness Slope
(Horizontal Bottom, Yb = 0.8, ~ = 0.77, Friction
Neglected)

In the second place, the expression for energy dissipation in breaking
waves, equation 4.62,

E =b

was derived for a horizontal bottom.

It is proposed that for slopes of moderate steepness this re1ationship
may still be used although with a slightly different va1ue of ~.

A Froude number re1ated to wave height:
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Fr' c= .(4.90)·

is defined, where H is a breaking or broken wave height. Assuming that
C = cgr is a reasonable approximation, the energy flux can be expressed by

F = 1 1 26" 8" pg H Frl v'QFf
or

F = Frl g3/2 H5/2
08 p (4.91)

Under the simplified assumption that both Fr' and 0 are constant and using

dF
dx =

further development leads to

dF
dx =

= __ 1';_ pgwH2
8n12 ,.

(4.92)

Integration gives

2.~12" F~' [1 _ (HHb)1/2] = x (4.93)
Tv'gHb

",,;<'

where Hb is the height of the wave at the.beginning of breaking.

A graphical representation of this equation is given in Figure 4.29,
where the various,numer~cal parameters are grouped together in a constant

BI ='. ;2.512" Fr'
1';0

After some algebraic manipulation of the right hand member of equation
4.93 whereby the travellin.g distance x is replaced by the decreasing depth,
one finds .

1 h

x 1 . - hb
(4.94)=

T v'gHb 'Yb 12n m

g
0
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Figure 4.29 Energy Dissipation on Slopes of Moderate Steepness
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where in the denominator of the right hand side of the above equation
the simi1arity parameter

= = tan a

IAb/Lo

appears.

This deve10pment leads to the equation

= (4.95)

where the constant Bilcontains all numerical (constant) parameters.

Bil = 5m ~g Frl, =
. -,

51iTm Fr
1;;0

(4.96)

Equation 4.95 is used to verify some experimenta1 data pub1ished by
Horikawa (1966) for a 1:20 slope.

For the eva1uation the following -numer+ce l va1ues for the var+ous­
parameters were used:

Yb = 0.75; a = 0.7S; Fr = 1.lS; 0 = 1.3; ~b = 0.16

Figure 4.24 gives for Yb = 0.7S: I;; Fr/a = 0.94 and r; = 0.61, which makes
...'"~.

Bil, = sm lü.75 1.15
0.61 . 1.3

= 11,.1

For this va1ue of Bila reasonab1e agreement between observed data and
theoretica1 va1ues is obtained, as showrr in Figure 4.30.

The agreement is least satisfactory for h/hb ~ 0.7. A possib1e reason
for thts is a Tessèr rate of enerqydt s'stpat icn in the beqf nrrinquf the
breaking process, when the bore has not comp1ete1y formed.

Breaking Of Waves On Steep Slopes

Experimental evidence (see e.g. Nakamura, et al, 1966 and Figure 4.31) shows
that for steep slopes (e.g. 1:10) a 1inear reduction in wave height develops
after the bore stage has been attained. For a linear re1ationship between
wave height and depth, the expression of energy of a solitary wave
[equation 4.79] can be modified to

r _!L_ pgH3
313"

= (4.97)
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where r is a proportionality coefficient which depends on Yb'
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Figure 4.30 Comparison Between Observed and Computed Data
on Wave Attenuation for Steep Slope.
Wave Energy Proportional to H2.

Yb = 0.9 Fr = 1.3 a = 0.75 ç = 0.66 ~ = 0.13

Assuming this expression to be valid for a breaking wave, the
corresponding energy flux for a wave \I/ith period T is

F = r8 H3-pg-
313 T

(4.98)

Assuming that the relationship

dF
dx = - _ç_ pgwH2

8n12
=

is still valid for the steep slope, one has

113



r8 3H2, tdH = __ s_
'~ HZ

31J
pg T dx 41Z T

or

dH = constant (4.99)dx
t,

which is in agreement withthe presumptions that lead to equation 4.97.
'~

In Figure 4.31 a close ta linear relationship between Hand h is shown
for a slope 1:10; however, the rfr~~tionship between H/Hb and h/hb is not
1inear for va1ues of h/hb > 0.7. "
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Figure 4.31 Comparison Between Observed and Computed Data
for Steep Slope (1:10)
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This may be explained as follows. For a steep slope a plunging
breaker may usually be expected. Over the hori·zontal distance between
the beginning of overturning and the formation of the actual bore, energy
dissipation due to turbu1ence is sma11 and wave attenuation accordingly
is ·minor. With reference to Figure 4.32 dissipation due to breaking
starts at a location x = Xl and not at x = O.

Figure 4.32 Geometry of breaki nq wave

This position Xl can be computed approximately by considering the
parqbo le that is described by the water particles in the crest after the
break in9 point , '

The time it takes to reach the position x can be approximated by

or

t = (4.100)

and the horizontal distance covered

(4.101)

where Frl represents the Froude number as related to the wave heig~t at
breaking.

Xl • ~ Frl Ig Hb

(4.102)
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For

Fr' = ~ = 1.24 (Van Dorn, 1976)

x 1 ~ 1 .76 Hb (4.103)

Furthermore from geometrica1 considerations:

= 1 - h/hb
myb

(4.104)

For a steep slope, m = 1/10, and assuming Yb = 1.2, equation 4.104 gives
h/hb = 0.79.

This implies that for depth ratios h/hb > 0.79 no energy dissipation
due to turbu1ence occurs and a p10tting of H/Hb against h/hb therefore wi11
show a 10w degree of wave attenuation for high va1ues of h/hb.

The above effect is particu1ar1y noticeab1e for steep slopes. For
gent1e slopes, e.g. m = 1:50 and Yb = 0.7 the particu1ar va1ue of h/hb
[from equation 4.104 ] is 0.975 and the effect of the described phenomenon
wil1 be hard1y visible in a H/Hb versus h/hb re1ationship.

Energy Losses Due To Breaking And Bottom Friction For A Horizontal
Bottom

With bottom friction and breaking both being important the governing
equation for the gradient in energyf1ux is equation 4.55 :

"

dF
dx =

Assuming the 1inear wave expression for energy density to be va1id,
one has F = Enc = 1/8 pgH2nc.

With nc considered constant (horizontal bottom) the differentia1
equation becomes

1 dH- pg ncH -4 dx =
3

- 3~ fw p [T sin~Hk h]
__ s_ pgwH2'

8nv7
(4.105 )

This equation can be integrated for a horizontal bottom.

Setting: A = 1/4 pg nc

2n2 f
B w

k h) 3= -p {T (4.106)3 sinh

C = s p 9 w = ç p 9
8n/2 4 T /2
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and

or

and

A, B-and ("are constants if the bottomf s taken as horfzonta}.
Equation ~.105",is thèn stmplt fied to """"

A dH
dx = - B H2 - eH

dH 1
H(BH+CT = - A dx

H{x) x

J
dH = - k J dx

J
H(BH + c)

Ho xo

This integral can be solved directly and gives:

- ~ zn [B HH+ cJ ::Xl = - (x - xol .
If Xo = 0 then x - Xo = x

[B H{x) + Cl H(o)
in [B H(o) + C]H(x) =

B H{x) + C Ho
H(x) B H(o) "+ C =

C
C =[BH(O)+CJeAx BHTXT H(o) -

1
HlxT =

In case friction is neglected

B - 0

so that the wave height decreases exponentially with distance.

117

"

(4.107)

(4.108)

(4.109)

(4.110)



A sloping bot,tommay be schemat ized to a series of horizontal steps.,
Integration may then be carried out along the horizontal steps; at the end
of each step a change in wave height due to shoaling is to be taken into
consideration.
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CHAPTER 5: RADIATION STRESS AND WAVE SET-UP

RADIATION STRESS IN LINEAR WAVES

Studies by üorrestetn (1961b), Lundgren (1963) and Longuet-Higgins and
Stewart (1963, 1964), and others are based on the phenomenon that the
presence of water waves in a body of water induces an excess flow of
momentum .. This was called radiation stress by Longuet-Higgins and Bowen
and wave impulse by Lundgren. Dorrestein also related it to the concept
of radiation.

In this paper, Longuet-Higgins and Bowen's terminology will be used.
An expression for the radiation stress may be found by considering the
conservation of horizontal momentum in a wave regime.

Consider an undisturbed body of water of uniform depth and two­
dimensional conditions as in Figure 5.1. The z-coordinate is taken vertical
upward with zero at the undisturbed water level. The bottom is at level - h
and width = 1.

Consider a ~ection 6x of the fluid and the forces acting on this
section. The pressure p at any point is equal to the hydrostatic pressure
Po

Po = - p 9 z . (5.l)

The force from léft to right per unit of width on the section 6 is then
equal to

J 0 Po dz
-h

Because of Newton's second law of motion, a force is equal to the flow of
momentum and therefore the force from left to right may be considered as
the horizontal flow of momentum between the bottom and the surface in an
undisturbed body of water. Reference is made to Longuet-Higgins (1972).

z

I
I

P---l
I
I
I

Figure 5.1

Undisturbed Body of Water

x=78x
x + 8 x
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In an undisturbed body of fluid the quantity

o
f pdz
-h

is independent of x and the flow of momentum across the plane x + ÖX
is the same as across the plane at x; there is no net change in the flow
of rriomentumbetween the two planes. In other words the gradient in the
x-directien of the flow of horizontal momentum is zero.

Çonsid'er the momentum flux in a system of linear waves of constant
amplitude [Figure 5.2J described by the equation

n = a cos (kx - wt) (5.2)

where a is the wave amplitude, k = 2n/L the wave number and w = 2n/T
the angular frequency.

z

11 a

Figure 5.2 Linear wave system

The particle velocities in the v/ave have orbital velocity components
u and w ih the horizontal and vertical direction given by

aw cosh k(z + h) cos (kx - wt) (5.3-a)u =
sinh kh

w = aw sinh k(z + h) sin (kx - wt) . (5.3-b)
sinh kh
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The instantaneous frow of horizontal (x) momentum across a unit
area of vertical p1ane perpendicu1ar to the direction of wave propagation
is given by p + pu2 and the tota1 flux of horizontal momentum across the
p1ane x = constant is expressed by

Tl
J {p + pu2)dz
-h

The principa1 component Sxx of the radiation stress is now defined
as the time average of this integra1 minus the flux in the absence of waves

=
n
f (p + pu2)dz -
-h

(5.4)

The overbar denotes the time average of the function; it is to be noted
that the time average of

o
f podz
-h

is the function itself. A solution of equation 5.4 is simplified by
separating the right hand side of this equation into three parts:

S = S (1) + S (2)+ S (3)
xx xx xx xx

where
(1) n

Sxx = f pu2dz
-h

(2) 0
S = f (p - po)dzxx -h

(3) n
Sxx = f pdz

0

(5.5)

(5.5-a)

(5.5-b)

(5.5-c)

As to the first integra1 Sxx(l), Longuet-Higgins reasoned that since the
integrand is of the:second order, the upper limit z = n may be rep1aced by
the mean level z = 0, because the additional range contributes only a third
order term.

Thus disregarding the third order terms,

S (1)
xx

0-­
= f pu2dz

-h
(5.6)
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Since the 1imits of integration are now constant, the overbar denoting
the time average isin the integrand.

For the part Sxx(2) the time averaging can a1so be moved inside the
integra1 which gives

S (2)
xx (5.7)

The pàrt Sxx(2) arises from the change in pressure within the fluid.

An expression for p can be found direct1y from a consideration of the
vertica1 flux of vertica1 momentum (Dorrestein, 1961b).

The mean flux of vertica1 momentum per unit of area across a horizontal
p1ane, p + pw2, must ba1ance the weight of the column of water above that
p1ane

= -pgz = (5.8)

so that

P P -- _pw2
- .0 (5.9)

P is gene~ally less than the hydrostatic pressure Po'

Substituting equation 5.9 into equation 5.7 yie1ds

S (2)
xx

0--
= f (-pw2)dz

-h
(5.10)

and combi ning equati ons 5.10 and 5.6 gi yes

S (1) + S (2)
xx xx

0----
= f p(u2 - w2)dz

-h
(5.11)

Since u > w the value of this expression is > O. Substituting equations
5.3-a and 5.3-b into equation 5.10 gives

S (1) + S (2)
xx xx = pga2kh tanh kh

sinh2 kh =

2 kh
E sinh 2 kh (5.12)

pga2 __ pg H2
after introducing w2 = gk tanh kh and E = 2 --8 (mean energy per
unit of surface area). In deep water the
particle orbits are circ1es and UT equals ~ so that equation 5.11 becomes
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S (1)+ S (2) = 0 .
xx xx (5.13)

In sha110w water the water partic1e-orbits become e10ngated e11ipses andwr becomes smal1 compared to lJT. In that case

s (1) + S (2)
xx xx = pga2

2 = (5.14)

This resu1t fo11~~, from equation 5.12 if sinh 2kh ~ 2kh. The remaining
contribution Sxx represents the time average of the pressure p integrated
from z = 0 to z = n.

To the first order the pressure p near the free surface equals the
hydrostatic pressure

p = pg(n-z)

so that
n n

= f p dz = f pg (n-z)dz
o 0

= Z2 n 1-
pg[nz - -J = -2pg n2

z 0
(5.15)

and
) () () 0 -- 1 -

S (1 + S 2 + S 3 ~ f p( u2 _ w2 )dz + - pg n2
xx xx xx -h 2 (5.16)

For a 1inear wave: E = pg n2 and therefore

S (3)
xx = (5.17)

The sum of the three components fina11y gives

= 2kh 1
E [sinh 2kh + 2] (5.18)

which for deep water (kh » 1) approaches

(5.19)

and for sha110w water (kh « 1)

(5.20)
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It is of interest to consider in a similar way the flow of momentum
in the y-direction, if y is taken parallel to the wave crest and perpen­
dicular to the direction of propagation.

Considering the flow of y-momentum in the y-direction an equation
similar to equation 5.4 is obtained:

=
n 0
f (p + pv2)dz - f podz
-h -h

(5.21)

where v is the orbital velocity in the y-direction.

Similarly to the previous procedures set

= S (1) + S (2) + S (3)
yy yy yy (5.22)

where
(1) n

S = f pv2dzyy -h

(2) 0

Syy = f (p - P )dz
-h 0

(3) n
Syy = f pdz .

-h J

(5.23)

For(l)avity waves travelling in one direction it can easily be seen that
Syy . = 0, because the velocity component v is zero at all times.

(
The porti?ns Syy(2) and Syy(3) are equal to the values of Sxx(2) and

Sxx 3) respectlve1y. .

Thus
S (2)
yy

0-
= -f pw2 dz

-h
(5.24)

Substituting equation 5.3-b into equation 5.24 gives

S (2)
yy = ~ [ kh _ 1J

2 sinh 2kh 2
(5.25)

Furthermore, S (3)
yy = (5.26)

124



and adding yie1ds

= pg a2 [ kh ]
2 sinh 2kh = kh

E sinh 2kh (5.27)

Indeepwater (kh > 1) Syy -+ 0, whi1e for shallow water (hk« 1):

S ~ 1E (5.28)yy 2

Of further interest is the flow of x-momentum in the y-direction and the
flow of y-momentum in the x-direction

=
n

= f p u v dz
-h

(5.29)

In this case there is no contribution of the mean pressure. Since uv = 0
at all·times.

= = o (5.30)

The results of the calculations can be expressed in the form of a
radiation stress tensor S

S = E

2kh + 1
sinh 2kh 2 o

(5.31)

o kh
sinh 2kh

It may be noted that the radiation stress as defined above has the
dimension of a force unit of length (NIm). It also has the dimension
of energy per unit of area (J/m2).

RADIATION STRESS IN NONLINEAR WAVES

In the previous section, expressions have been derived for the
radiation stress under the assumption of linear waves. In this section,
non1inea r wave cha racteri st tcs wi11 be cons idered. Such approach may be
of interest in view of the nonlinear wave characteristics on a sha110w
reef. Therefore, an evaluation of the nonlinearity of the wave on the
value of the radiation stress may be in order.

In the following, the radiation stress will be evaluated for three
types of nonlinear waves: solitary wave, long wave in shal low water, and
cnoidal wave. The evaluation is based on the definition of radiation
stress by Longuet-Higgins (equation 5.4)
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o
f Po dz
-h

n
= f (p + pu2)dz

-h

in which p ;s the hydrostatic pressure in the body of water without the
presence o~ waves. Consequently

= (5.32)

In this section considerations will be limited to the radiation stress
component in the direction of wave propagation.

Pseudo-Solitary Wave

In the area near breaking, waves often assume the form of a solitary
wave. This wave form is therefore an attractive model for the shallow
water wave phenomenon. However, the use of the solitary wave as a model
for shallow water waves has one disadvantage: as the limiting case of the
cnoidal wave theory the period increases to infinity and the periodicity
of the solution vanishes. ,Certain adjustments (approximations) will have
to be made to cope with this limitation. The corresponding periodic wave
is denoted a pseudo-solitary wave.

The basic parameters are shown in Figure 5.3: undisturbed water
depth, h, and maximum elevation (wave height), H.

z

h

-x

/

'Figure 5.3 Solitary wave in water of constant
depth

, ,

For the analysis it is assumed that the zero for the vertical (z) -
coordinate is in the undisturbed water level.
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To arrive at an expression for the integral,

n 2
f (p + pu ) dz
-h

in equation 5.32 the equations for the conservation of mass and of
momentum will be utilized.

Conservation of mass gives

an + _l_ ~ udz
at ax -h

= o . (5.33)

Moving with the wave

= -c an
ax ' c being the speed of propagation,

and

-c dn + ~
n
f udz = 0dx dx -h

from which n
cn = f udz + Cl (5.34)

-h

where Cl is an integration constant.

C, appears to be zero because n = 0 and u = 0 at x = ±~. (This is strictly
correct only for true solitary wave.)

Conservation of Momentum gives

n n
a f p u dz +.l.. f (ou" + p) dz = 0at ax

-h -h

Following the same procedures as above and using equation 5.34 gives

= o

n
= f (u2 +~) dz + C2 •

-h p
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The integration constant C2 is determined by setting n = O. and u = 0,
for x = ± ~., where p = -pgz (for true solitary wave)

0

0 = f % dz + C2

-h
0 0

C2 = -J % dz = + f gzdz

-h -h

C2 = _1gh2
2

This gives n

c2n = J (UZ + E..) dz - 1/2 gh2p

or -h
n

pc2n
r

(pu2 + p) dz - 1/2 pgh2= J
-h

(5.35)

(5.36)

The time average of equation 5.36 for the pseudo-solitary wave, assuming
th~t ~quation 5.35 remains va1id, gives

n
J (pu2 + p) dz = pc2n + !pgh2
-h-

which gives for the radiation stress

Sxx = pc2n .

(5.37)

(5.38)

For a real solitarywave n would be zero, but for a pseudo-solitary
wave n has a value different from zero. In order to calculate n for a
pseudo-solitary wave, take

-n = v
c T (5.39)

in which V is the volume of water contained in a solitary wave per unit
of width, c its velocity of propagation and T, the assumed wave periode

The value of T should be long enough so that for example 98% or more
of the total volume V be contained within the distance ± 1/2 c T from the
center of the wave. The error made by using equation 5.39 is then 2% or
less.
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Suppose that 98% of the volume is contained between two vertical
planes at distances of x = ± 3.8 h from the center of the wave. This
gives a value for the minimum wave period:

3.8 h ~ 1/2 c T

and
T > 7.6 h

c (5.40)

To quantify the volume of water per unit of width contained in a
solitary wave the Boussinesq expression

v = (li h3 H)l/2
3

is used.

This gives
(1; h3 H)1/2

-n =
c T

and pc (li h 3 H)1/2
3

\x =
T

Sxx = Pf ..!. h3/2 H1/2
/j"

(5.41)

(5.42)

(5.43)

Comparison of Radiation Stress for a Pseudo-So1itary Wave and
for a Linear Sha110w Water Wave having the Same Wave Height

It wi11 be of interest to compare the radiation stress for a p~eudo­
solitary wave with the va1ue for a 1inear sha110w water wave with the same
height H, for which

= lE2 = 3 216 pg H (5.44)

where (S )1 denotes the radiation stress for a 1inear sha110w water wave.xx
Denoting (Sxx)s the radiation stress for the pseudo-so1itary wave, the
ratio between the two stresses becomes

= = c 64 (~) 3/2
rH 9T 31j 11

(5.45)
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Writing ..c = Fr rgn

in which Fr represents a Froude number, one has

(5.46)

In a solitary wave as in all non1inear approximations the Froude
number is determined by the ratio (H/h) so that the ratio between the
radiation stresses is determined by the re1ative wave height and a
dimension1ess coefficient, h/g T2. If the condition of equation 5.40 has
to be met this gives

h < h
grr g(7.6)2 h2

c2

and

fj; < Fr (5.47)
7.6

which condition can usua11y be met for sha110w water waves over a sha110w
reef.

A graphica1 presentation of equation 5.46 is given in Figure 5.4 in
which the ratio,is pJotted against the re1ative wave height H/h.

To coJTiposethls diagram data presented by Longuet-Higgins and Fenton
(1974) have been used. The re1ationship between H/h and the Froude number
taken from their study, is presented in Tab1e 5.1.

The resu1ts are as fo110ws. The ratio rH generally obtains high
va1ues (»1) for 10w va1ues of the re1ative wave height and 10w va1ues
of fhe parameter lI1/gT2 .

For re1ative wave heights H/h > 0.6, the radiation stress ratio

rH > 1 for Ij; > 0.04

and
for Ij;rH < 1 < 0.04
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Figure 5.4 Ratio Between Radiation Stress in Solitary Waves
and in Linear Wavés of the Same Height

The parameter lh/gT2 therefore has a significant effect on the va1ue
of rH. For conditions near breaking e.g. H/h ~ 0.7, the fo110wing approxi­
mate va1ues can be read from the diagram:

r ~
= 0.02 rH "" 0.5

H rn 0.04 1.0h~ 0.7 I gTZ = rH ::::

~
= 0.06 rH "" 1.5
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TABLE 5.1*

CALCULATED VALUES OF * AND CORRESPONDING FROUDE NUMBERS FOR SOlITARY WAVE

H
h Fr

0.04986
0.09946
0.14873
0.19765
0.24617
0.29423

..0_34176
0.38871
0.43496
0.48040
O.5~491
0.56829
0.61036
0.65082
0.68930.·
0.7253'
0.7583
0.7871
0.8108
.0.82T·,

1.02456
1.04829
1.07120
1.09333
1.11460
1.13510
1.15478
1.17363
1.19160
1.20864
1.22467
1.23959
1.25329
1.26557
1.27617
1.2848
1.2909
1.2939
1.2927
1.286

* from Longuet-Higgins and Fenton (1974)

For the shallow'portion of the reef, the coefficient lh/gT2 is expected
to have a 10w value, e.g. bètween 0.02 and 0.03 for a variety of conditions,
whereas for the portion of the reef, where the waves start breaking, the H/h
ratio is relatively.high. This combination may lead to a low value of rH·

. .

Nearer to the shore, the waves are 10wer due to energy disSipation
and the relative wave height H/h will be smaller. Consequently the value
of rH may then rise again above the value 1.

It is realized that the above derivations are not mathematically rigid
and that characteristics of true solitary waves have been app1ied to pseudo­
solitary waves and vice versa.

The main objective is to get an impression of.the radiation stress
a nonlinear wave with the characteristics of a solitary wave, in order to
eva1uate the effect of wave nonlinearity on radiation stress and wave set-up.

In the following paragraph the comparison will be made in a similar
manner as above using the mean wave energy as a criteria of comparison.
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Comparison of Radiation Stress for a Pseudo-Solitary Wave Train
and a Linear Shal10w Water Wave Train with the Same Mean Energy

The previous derivations were made for waves with the same wave
height. It is a1so of interest to compare the radiation stress of a pseudo­
solitary wave and of a linear shallow water wave with the same amount of
mean energy. In order to do that the ratio radiation stress - energy per
unit of surface area is determined for both waves. For the linear shallow
water wave, this gives

(Sxx) = 3/2
E 1

(5.48)

Using the Boussinesq expressions for the volume and total energy of
the solitary wave:

v = (136h3 H) 112

= 8
31J

H3/2 h3/2pg .

per unit of
crest widthand

the ratio between radiation stress and energy density for the pseudo­
solitary wave is

( Sxx )
E s

3 2 (h) -= "2 Fr H . (5.49),

The ratio of the radiation stress for a pseudo-so1itary wave train to a
1inear sha110w water wave train with the same mean energy density (per unit
of surface area) rE is then the ratio of equations 5.49 to 5.48 which gives

= (5.50)

Based on the numerical data of Tab1e 5.1, Figure 5.5 gives a graphica1
representation of rE against H/h.

In this diagram the period is not invo1ved. It may be noticed that
the va1ue of rE is > 2.0, where rE increases for decreasing va1ues of H/h.
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Long Waves

The fo11owing assumptions are made for this case:

hydrostatic pressure distribution

- horizontal component of orbita1 ve10cities
independent of vertica1 elevation [u = u{x)]

Starting from equation 5.4

implies that n = o.

n

= J (~ + u2}dz
-h

o
r P
J po dz
-h
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Introducing

p = -pg(z-n) (5.51)

leads to

n
= J [-g(z-n) + u2]dz - ~ gh2

-h

Sxx
0 n n

= J -g(z-n)dz + J g(z-n)dz + J u2dz - } gh2p
-h 0 -h

0 0 n n n
Sxx

Z2 I Z2

i+J u2dz
1 . .- = -g2 + gnz g2 + gnz - "2 gh2p

-h -h 0 0 -h

n
1 2 2 r 2

= . - "2 gn + sn + J u dz

n

- +} gn2 + J u2dz

-h

(5.52)

The horizontal component of the orbital velocity may be expressed by

u = n
h+n c (5.53)

The term with u2 of equation 5.52 gives

n

( n2 c2dz
J (h+nF
-h

=

n
c2n2 r

(h+nF J dz
-h

=
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This is in first approximation equa1 to c ~2 • The resu1t of this
approximation is

S 1 - c2n2xx = + "2 gn2 + -h-p

Sxx ' - c2 n2 Fr2= + t n2 +pg c2

=

For a sma11 amplitude wave Fr = 1, and

= 3/2 E

which conforms to shallow water wave formu1ation of 1inear waves.

Cnoida1 Waves

Manipu1ation of equation 5.4 leads to

n
0S

J u2)dz + Jxx (Q. + gzdz=p p
-h -h

n n

= J (~+ gz + u2) - f gzdz
-h 0

=
n

f (Q. + 9z + U2)dz _ 1 g-;p "2 n
-h
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The momentum equation is wri,tten in the fonn

TJ n

ddt J u dz + ddX [J (~+ gz + u2)dz - }gTJ2]
-h -h

= o . (5.56)

Venezian (1977, personal communication) derived the fo11owing equation for
the cnoida1 wave:

n

f {~+ gz)dz = gn2 + ghTJ - 1 (h+TJ)3 (Uxt + uUxx - UX2)
-h

(5.57)

in which the subscripts x and t of u denote the partia1 derivatives to x
and t. Consequently, one can write

=

For progressive waves the following simplifications are introduced:

chnx

{h+n)2
u = = h

c (1 - h+TJ); Ux =

= ch
2TJ 2

X = -cuxx (5.59)
(h+TJ)3

This gives

S 2 2 1 1 _1 c2h2~'' xx = f..:..!l:_ + 9hn + - gTJ2 + - c2h2TJ
P h+n 2 3 xx 3 h+TJ

Sxx 22 1 - 1 -~ ~ + - 9 n2 - - c2h TJ 2p 'h 2 3 x

"\x n2 (1+ Fr2) 1 h2 TJ 2~ - '3 Fr2Pg 2 x (5.60)
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Comparing this result with the previous one,for long waves the
correcti on term \'1ithnx2 may be notieed. The 1atter approaches zero for
low values of nx2.

,Using a linear approximation for the correction term may be
inconsfstent with the use of nonlinear theory and wi th the reeltzat ion that
higher order components may contribute significantly to fi7'. However one
may still obtain a first order impression of the value of the correction
term in ,this way. One obtains '

11 2
X = = !5.61)

which leads to

,(5.62,)

For the shallow water on the reef (h-lm) and a wave period of e.g. T=lOsec:
k = 2n/l = 2n/cT - 0.2 m-1 and the correction term is of the order

= 13 .1 0.04 ~ 0.013

which is small for the conditions considered.

Neglecting the correction term gives

=

which equals equation 5.54.
. ,

In summary it may be concl uded that the clifferences between the valu.es
of the radiation stress for linear and non1inear waves may not be tns iqntf tcant
The results of the long wave approach and cnoidal wave approath differ önly
slightly; both solutions indicate that the radiation stress for nonlinear waves
wil1 be higher than for 1inear waves.

It is not clear what significance the results for the pseudo-solitary
wave have for the purpose of calculating the radiation stress for breaking
waves. There are two reasons for this. First1y the use of the solitary wave
characteristics for defining the boundary conditions for the pseudo-solitary
wave will have induced errors of approximation. Secondly in the zones of
breaking and broken waves the structure of the solitary \I/aveis destroyed and
the formulas may not be app1icable any more. Therefore the high values
obtained for the ratio coeff icients rH and "E may not be realistic for calcu­
lation purposes.
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WAVE SET-UP

Derivation of Eguations

Derivation of equations for Wave induced set-up have been given by
Dorrestein (1961Q), Longuet-Higgins and Stewart (1963, 1964) and others.

For the purpose of this study it was he1pfu1 to use Battjes' (1974a)
treatise on subject, a1so'because he eva1uated the effe~t of a weak
horizontal flow on the set-up equation.

The equations are derived for situations in which the bottom slope
is sma11.

In this section it is assumed that the 10ca1 conservation equations
can be averaged over a time interval which is large compared with a wave
period, but which is short in re1ation to the time sca1e of the gradua1
variations. The specific effect of wave induced modu1ations on the wave
set-up wi11 be discussed in a fo110wing chapter (6). As is customary in
the 1iterature, averages wi11 a.gainbe indicated by an overbar and f1uctua­
tions about these averages by a prime.

Phi11ips (1966) introduced separate notations for the horizontal
coordinates, the horizontal ve10cities, etc. He used the Cartesian tensor
notation with xi representing the horizontal coordinates and qi the horizontal
ve10cities (i = 1,2). The tota1 velocity vector is u = (q,w).

For the vertica1 coordinate, z=O is taken in the undisturbed water
1eve 1 .

The mean elevation above the plane z=O, ,is allowed to vary in
accordance with the equation for the ba1ance of horizontal momentum.

The equation of the bottom is z = -ho (Xl, X2) and the instantaneous
depth ho + n· with its mean va1ue ho + n·, written as h.

Assuming that on1y the organized wave motions contribute significant1y
to the unsteady velocity field, expressions may be derived for the conserva­
tion of mass and of vertica1 and horizontal momentum.

In the conservation of mass equation, the time-mean mass flux per unit
of width, Mi' is thought to consist of part (~1C) due to the mean current,
and a part ,MW) due to the waves.

Ooneemiat ion of Yert.ical: Momentium

The equation for the conservation of vertica1 momentum for nearly
horizontal slowly varying mean f10ws leads to an equation for the mean
pressure at an e1evation (z). This expression was first derived by
Dorrestein (1961b)

p(z) = pg(n-z) - pw2(z) (5.63)

139



aresult identical to equation 5.9 which shows that the mean pressure is
less than the hydrostatic value by an amount pw2(z), w(z) being the
instantaneous vertical velocity at elevation z.

The vertical velocity vanishes at a rigid horizontal bottom, in
which case

= = pgh (5.64)

At gently sloping bottoms w2 is very small and its effect on the
bottom pressure PB may be neglected.

Conservation of HorizontaZ Momentum

For the conservation of horizontal momentum consider a control volume
of unit horizonta 1 area, extendi ng verti ca lly from the bottom to a height
above the free surface. The balance of horizontal momentum for this control
volume is, neglecting lateral shear stresses,

d
n

+l
n

f p q. dt f [pq.q. + P Ó •• ]dz + T.at -h 1 ax • -h 1 J 1J 1
0 J 0

in which Ó •• is the Kronecker delta defined by
1J

Ó •• = 1 if i = j
1J

= 0 if i # j

= o (5.65)

(5.66)

Ti is the horizontal component of the shear force per unit of horizontal
area excited by the water on the bottom. For gently sloping bottoms this
is equal to the tangential stress at the bottom (Dorrestein, 1961b). Taking
time averages and setting

=
n
f pqi . dz

-ho
(5.67)

gives

dMi a n -------­
~t + ~ f (pq. qJ'+ p ó .. ) dz
o oXj -h 1 1J

o

+ "T.
1

aho
pgh -­ax.

1
= o . (5.68)

Defining a mean velocity Ui

r'1.1
phU.

1 = =
M.c + r~.w
1 1

ph =
rv ~1.w
U + _1_
i ph (5.69)
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the momentum balance for the mean flow can be written in the form

aMi a a­
-':;--t+ -" - (U .M. + S ..) + T. + pgh "xn.
o oXj J 1 lJ 1 0 1

= o (5.70)

in which the quantity S .. is defined bylJ
n

M.\'J M.w
(pq~qJ~ + P 8 .. ) dz - 1/2 pg h1 8 .• - lph J

1 1J lJ (5.71)I
-ho

Sij represents the contribution of the unsteady flow to the mean horizontal
flux of horizontal momentum and q\, q Ij the fluctuations of the horizontal
velocity components.

For the two dimensional situation with waves approaching perpendicular
to the shoreline and with parallel depth contours:

S..lJ =

n
S = .- I(pql2 + p) dz - 1/2 pg h2 _ (M:J2

-ho

(5.72)

Comparing equation 5.72 with equation 5.4, the following
differences may be noted:

1) the depth h is represented by ho + n; earl ier h represented
the still water depth;

(M·W)2 .
the term lh is a correction term accountinq for the effect
of mass tra~sport in nonlinear waves. Because-M~ is of second
order 1

(M. \'1) 2
1
ph usually need not be taken into account.

.2)

Further evaluation of the integral of equation 5.71 leads to

n
S .. = f p(q!q~ - w2 8 .. )dz + 21pgn12 Ó ••lJ 1 J lJ lJ

-ho

(5.73)

if n1 = n - n

and for two dimensional waves:
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n
r -
J p(U2 - w2)dz

-ho
which is the same as equation 5.16 if the still water depth is replaced by
ho + n.

S = (5.74)

Steady State Conditions

If the flow is irrotational and steady (after averaging over the waves)
and on1y two-dimensiona1 conditions are considered, the pertinent equations
may be reduced to:

dM 0 (5.75)dx =

and

d~ (U~1)+ dS + - + gh dn = 0 (5.76)dx T P dx

in which the x-direction is taken shoreward perpendicular to the coastline.

Since M is the tata1 mass transport (averaged over one or more wave
lengths) and U is the average mass transport velocity

M = phU

.and the equation becomes

d
dX (phU2) + dS + T + pgh dn = 0

dx dx
(5.77)

In the 1iterature it is generally assumed that the term T, which is the
average bottom shear stress over one or more wave 1engths, is smal1 compared
to the other terms. In 1inear waves the value of T is indeed equa1 to zero
but in nbn1inear waves the value T cou1d make a contribution that is not
insignificant.

First assume T = 0 and constant depth and write equation 5.77 in the
form:

d(phU2) + dS + h dh
dx dx P9 dx = o (5.78)

Integration gives for constant depth:

phU2 + t pgh2 + S = constant

which equation is identica1 to the one derived by ~/hitham (1974).

If the depth is changing the gradient dn/dx cannot be rep1aced by
dh/dx; consequent1y the expression with dn/dx has to be retained.

(5.79)
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Whitham (1974) set the mass transport velocity U equal to the sum of
a velocity from steady flow Band a velocity induced by the wavess E/pch

U = B + E
pch (5.80)

For the waves to drive a mean current there should be an imba1ance
between the divergence of the radiation stresses on one hand and the horizontal
pressure gradient, associated with the wave-induced changes in mean water
level (wave set-up) on the other hand. Battjes argues that such an imba1ance
is impossib1e in steady irrotational f10ws referring to the work of Bowen.
In the unsteady case (wave mOdu1ation) this is no 10nger the case, however.

Waves on a Beach or Sha110w Reef under Stationary Conditions

Waves approaching a beach or a shallow reef at right ang1es, assuming
a c10sed 1andward boundary and no 10ngshore currents, wi11, for continuity
reasons, create a situation for which

u = 0 (5.81)
at a11 times.

This is true if steady state conditions prevail and averages are deter­
mined over long enough time intervals; it is not necessarily true, however,
if shorter time spans are considered whereby time dependent fluctuations

U = UI

occur. The latter is the case in the study of the effect of wave modu1ations.

For the mean current being equal to zero and the shear stress ~ being
neglected, obtain:

dS + pgh dn
dx dx = o (5.82-a)

or

ddS+ pg(h + n) ddn = 0x 0 x
Inclusion of the shear stress leads to:

(5.82-b)

~~ + pg(ho + n) ~~ + ~ = 0 (5.82-c)

For horizontal bottom and h = h + n, equation 5.82-b gives after
integration 0

S + } gh2 = constant (5.83)

For a sloping bottom, ho = ho(x) the differential equation is written
in the form
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dS cm-d + pg[h (x) + TiJ -dx . 0 X = o (5.84)

and integration has to be done numerica11y. As a boundary condition n is
assumed to be zero in deep water.

If n is sma11 compared to the undisturbed depth ho' the fo11owing
approximation is acceptab1e:

dS + pgh (x) án = 0
dx 0 dx (5.85)

with solution

S + f pg ho(x)án = constant (5.86)

Longuet-Higgins and Stewart (1964) and Lundgren (1963) have given proof
that for 1inear waves:

-n = 2 sinh 2kh (5.87)

where n may be chosen to be zero in deep water.

This can a1so be written as Whitham (1974)

-n = 1 E- - (2n - 1) -2 pgh
(5.88)

Numerical integration of equation 5.84 may be conducted a10ng a
sloping bottom and a10ng a horizontal reef, starting from deep water. The
distance a10ng which integration takes place is divided in sections 6x with
bottom assumed horizontal.

The Effect of Bottom Shear Stresses on Wave Set-up

The effect of bottom shear stress on wave set-up manifests itse1f in
blo different ways:

1) in terms of energy dissipation
2) in terms of momentum ba1ance.

The Effect of Shear stress in the Energy Equation

Energy 10sses due to bottom friction are one of the two principa1
modes of energy dissipation in sha110w water. Reference is made to Chapters
3 and 4 of this study.

The rate of energy dissipation due to bottom friction becomes particu-
1ar1y significant for waves in water of sha110w depth, e.g. ho < 2.0m.
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The Effect of the Shear stress in the l10mentwn Equation

If the effect of bottom shear stress is retained in the momentum
equation, equation 5.82-b is modified to equation 5.82-c.

~~ + pg (ho + n) ~ + T = O.

For water of constant depth (approximately the conditions on the shallow
reef) integration gives:

1 -2S + pghon + 2 pgn + f T dx = C (5.89)

where C is an integration constant.

The term J T dx reduces to zero for linear waves, because positive
and negative contributions of the shear stress cancel each other.

In the case of nonlinear waves, however, there may be a residue after
integration over a full wave cycle which gives a contribution to the momentum
equation.

Radiation Stress in Pseudo-sol itary l'lavewith \I!eakCompensati nÇ!Current

The analysis regarding the .radiation stress in a solitary wave, as
presented earlier does not take into account the effect of a weak compensating
reverse current.

Such reverse current will have an effect on the momentum flux which
leads to the following considerations.

Suppose a weak countercurrent U is superimposed on a pseudo-solitary
wave. Assume at this time that-the depth is constant (see Figure 5.6). Such
countercurrent may be generated by areverse mass transport q per unit of

-- .. c

u---

Figure 5.6 Countercurrent in solitary wave
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width such that along the wave

q =
n

J Udz =

-ho

constant

If urepresents the wave-induced current, the equation of continuity
has the form

n

an + .1... J (u-U) dz =at ax
-ho

which from the condition set above may be reduced te

o (5.90)

n
~~ + aax f u d z = 0

-ho

(5.91)

which is equal to the continuity equation for zero flow.

Movinp with the speed of the wave and assuminq the wave to be of
constant,form implies:

an dt + ~ dx
at ax = o

and

= ón- c -a ax (5.92)

where ca and n refer to the wave characteristics as they occur with the
superimposed current, with reference to a fixed coordinate system.

Substituting the expression for ~~ into equation 5.91 gives

n

an' ó J u d z 0-ca ax + äX =

-h
0

and n

-c n + J u d z = Cla
-h0
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• . Ir

Cl being an integration constant. Boundary conditions for the solitary wave
provide u = 0 at n = 0 from which it is found Cl = O.

The momentum equation for a horizontal bottom, neglecting the bottom
shear stress is

n

adt I (u - U) dz

-ho

n

+ ~ I [~+ (u - U)2] dzax p

-ho

= o (5.93)

which because of the condition implied for U, gives

n

aat I u d z

-ho

n

+ ~ I [~+ (uax p

-ho

= o

This leads to:
n

+ C an + ~ Jr [Q + (u - U)2] dz = 0a at ax p
-h
·0

and n

c2 an + _l_ J [~+ (u -' U) 2] dz = 0a ax ax p

-ho

Integration gives
n

c~ n + J [Q_ + (u
p , =

-ho

The integration constant C2 may be determined by setting u = 0 for
n = 0; this gives

=

where Uo is the mean velocity at n = o.
This gives:

n
J [~+ (u - U)2] dz =

-ho

C 2 n + 19 h 2 + U 2 hoa 200 (5.94)
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Passing on to pseudo-$o.1 tary wave characteristics and taking the
time averáge over olie'wave per oc;l,the equality

nI [~+ (u - U)2] dz

-ho

= c2 Ti + 1oh 2 + U 2 hoa 2 - 0 0

is assumed to be approximately valid.

Defining furthermore

n
r
J [~+ (u - U) 2] d z

-ho

=
s
xx + 1gh 2 + U 2 h
p 2 ~ 0 0 0 (5.95)

gives for the radiation stress

= (5.96)

aresult equal to what was found in equation 5.38.

Assuming the waves moving into shallow water providing for a wave
set-up n. and a wave elevation n + nl above the undisturbed water level, the
balance of horizontal forces leads to the equation

n + nl

;x J [p + p(u - U)2]d2

-ho

= (5.97)

ahO
where T represents the mean bottom shear stress and the term Pb ~ the
horizontal component of the pressure force along the bottom.

Defining in this case:

n + nl

J [P + p(u

-ho

up]dz = s + -21pg (h + n) 2 + oll 2 (h + n)xx 0 0 0 (5.98)

where
=
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gives

dpU 2(h. + n)
o 0 . =

aX
ah

- "T + pg(ho +n) axO

and
asxx

dn + dPU 2(h + n)
pg(ho + n) o 0 +"T 0 (5.99)--+ =dX dX dX

v/hich is the same as equation 5.77

~JAVE SET-UP ON A BEACH

In the previous sections the concept of radiation stress has been
approached in various degrees of approximation: bath linear and nonlinear
waves were considered and the effect of return flow on.the radiation stress
was evaluated.

Earlier, attention has been given to various models of wave dissipa­
tion. Since radiation ·stress is related to wave energy density and the
latter agatn is coupled to the ·process of wave attenuation, it is obvious
thatvarious models cán be developed to calculate the wave set-up .

..It has furthermore been suggested that the shear stress in the
momentum equation may play a part in the process.

In this section the wave set-up on a plane beach is evaluated while
regular waves are considered.

Results of Previous Studies

A distinction is made between the zones outside and inside the breaker
point. Outside the breaker point the flow is considered irrotational,
except near the bottom where shear stresses extract energy from the wave
regime.

The calculation of the changes of the mean water level out~tde the
surf zone is facilitated if the effects of the shear stress, both in terms
of energy dissipation and momentum are neglected.

In that case the \A,aveset-down outsi de the surf zone may be computed
from equation 5.87

-n = 2 sinh 2kh

where Ti is chosen to be zero in deep water and the water depth istaken to
be the depth at mean sea level.
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For definition of symbols used in this Chapter reference is made to
Figure 5.7.

BREAKER POINT

t-11".J _

-- .. x

Figure 5.7 Definition Sketch for Wave Set-Up
on a Plane Beach

Inside the breaker zone, energy di'ssipation must be taken into
account .

.A semi.-empirica1 app-roach to the prob 1em was first given by
Longu~:t-Higgins and Stewart ·(1964). They postu1ated that after breaking
the wave height H would decay in constant proportion to the undisturbed
depth. This was later modified by Bowen et al. (1968) who assumed that H
would be proportional to the mean total depth, including the effect of the
set-up:

H = y(h + n) (5.100)

This may be a fair approximation under certain conditions (e.g. for
relatively steep slopes). It is furthermore assumed that inside the
breaker zone the shallow water approximations for the wave equations apply.

Considering perpendicular wave incidence:

\x = 1 E = 3 H2
2 16 pg

and using equation 5.100

Sxx = 3 2 (h + n) 216 pg y

(5.101 )

(5.102 )

Substitution of this expression in equation 5.82-b and neglecting the
effect of shear stress gives

On
dx =

3 2
8 y dh

1 + 3 2 dxgy
(5.103)
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indicating a set-up in the surf zone with a gradient proportiona1 to the
loca1 bottom slope.

Experiments by Bowen et al. (1968) and by Van Dorn (1976) have
confirmed the va1idity of this general re1ationship.

The tota1 rise of the mean water level in the surf zone can be
ca1cu1ated by integrating equation 5.103 from the breakpoint to the point
of maximum set-up. Battjes (1974a) obtained

3 2-y8
1 + 3 2 (nmax + hb)

aY
= (5. 104)

where hb is the depth at the breaker point with respect to mean sea level
and nb is the set-up at the breaker1ine.

This gives

= (5.105)

The set-up at the breaker1ine nb is estimated from equation 5.87

a 2 .
1 b

- "4 (hb + n) = (5.106)

With the substitution of Hb = y(hb + n) Battjes (1974a) found

= (5.107)

Van Dorn (1976) represented resu1ts of a series of laboratory
experiments with periodic waves breaking on a uniform1y sloping impermeable
beach, with different beach slopes and wave periods. Slopes were 0.022,
0.040 and 0.083, whereas wave periods varied from 1.65 to 4.80 sec.

The slopes of the set-up 1ines m = dn/dx, appeared to be constant and
independent of frequency for the 0.022 and 0.040 beach slopes.

Tests with the 0.083 slope showed some dependency on frequency.

Some results of Van Dornis experiments are shown in Figure 5.8.

A reasonab1e fit for the dependency of mean surface slope m, and the
beach slope S, was

m = 3.4 S2 • (5.108)
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Figure 5.8 Wave Set-up and Set-down on a Beach
(from Van Dorn, 1976)
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Using equation 5.103 this requires:

3 y2/8 = 3.4 S/(l - 3.4S) (5.109)

and integration gives

= (5.110)

Comparing computed va1ues, using equation 5.110, and observed va1ues
Van Dorn conc1uded that the disparity between the two was too great to
consider equation 5.110 a set isfactory prediction equation.

Neverthe1ess he considered equation 5.110 a better prediction model
than Battjes's resu1t (equation 5.107) which predicted va1ues much 1arger
than the ones that were observed.

Hwang and Divoky (1970) deve10ped a model for energy dissfpation of
waves that is similar to the one developed in this study. The energy dissi­
pation was re1ated to that of a bore of equal local height.

Their computed wave set-up profiles are convex upwards whi1e
experimental results usua11y show a near 1inear relationship.' (See Figure
5.9. )

Wave Set-up on a Beach Calculated from Dissipation Model

In this section the wave dissip~tion equation developed in Chapters
3 and 4 will be used~as a model for analysis. It was found that energy
dissipation 6n a slope or reef iS,primarily due,to. bottom friction and
breaking losses.

Neglectihg wave ref1ection energy flux in the direction of wave
propagation is reduced in the rate

= = (5.111)

where Et is the mean tota1 rate of energy dissipation per unit of area.
,
Assuming that the sloping bottom may be approximated by a step function

according to Figure 5.10, integration may take p1ace over the step 1ength
~x, assuming the group speed is constant over this section

From F = E cgr

and dF dE
dx = cgr dx = - Et

(5.112)

(5.113)
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Figure 5.9 Comparison Between Ca1cu1ated and Observed Wave Set-Up
(from H,,,angand Di voky , 1970)

the loss of energy 6E over a distance 6x is,

6E = 6x
- E: --t cgr

(5.114)

Inc1uding a non1inearity parameter 6 by Io'/riting

1- pg H28 = ó • E (5.115)
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Figure 5.10 Scheme for Calculation of Energy Dissipation
Along Sloping Bottom

one has

E = 1 1- (- pg H2)
6 8

and

= 86 D.X
- -- Spg t cgr

(5.116)

if Hl and,H2 are the wave heights at the beginning and end of a section.

In a more general form integration between section division points
j and j+l (Figure 5.10) gives:

2 86. D.x.
Hj+1

2 = H. I __ J S _ _J_ (5.117)J pg t cqr.
- J

in which St = sf + sb

=
2 wH. 3
f P ( J) + _I;; _ pgwH2

3 \"1 TI 2 sinh kJ' hJ' l"f"81TvL
(5.118)

The effect of shoaling is taken into account by setting at the
division point j+l

2

HJ'+1 cqr.
- J

=

= (5.119)
or
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Inserting this into equation 5.117 gives:

c t;' 88. 6X.~1 2 gr.
(Hj+1) = J __ J E: _J_

e pg t c
grj+ 1 gr.

J-

and

2 c 88. Sx .1 2 1 grj
(Hj+1) = H. __ J E J (5.120)J e pg t cgrj+1 grj+1

1
The computations .can be carried forward to compute HJ'+2 and HJ'+2

in the same manner and so on.

Outside the breaker zone energy dissipation is on1y due to bottom
friction. In that area the tota1 energy dissipation factor Et is rep1aced
by Ef' which simplifies the ealculations.

To eompute the wave set-up a eorrection factor may have to be applied
to the linear formulation for the radiation stress, as discussed in the
beginning of this ehapter.

However no experimental verification for this has been obtained in
this study. A linear formulation is usual1y considered a close enough
approximation. Equation 5.18 may be written in the form

S . = (2n. - 1/2) E.
J J J

~lave set is then caleulated by using one of the two set-up equations,

dS d­
dx + pg (h+n) d~ = o

or

~~ + pg (h+n) ~ + T = 0

Integration of the wave set-up equation without shear stress gives:

LlS (5.121)pg(h+n)
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A consequence of using·frictiona1 dissipation outside the breaker
zone is that the amount of "wave set-down" is reduced whereby the Iocat ion

.of minimum water level shifts in shorewarp direction.

Inc1usion of a positive resu1tant shear stress in the momentum
equation tends to redur.ethe w~ve set-up and to increase the wave set-down.
A negative resu1tant shear stress has the opposite effect.

WAVE SET-UP ON SLOPING BOTTOM AND SHALLOW REEF

The conditions comprising a sloping bottom and
particu1ar reWevance to the purposes of this study.
with the previou$ section is that ~he sloping bottom
sha1100, horizontal or near1y horizontal reef.

shal10w reef are of
The basic difference
is connected with a

For the ca1cu1ation of the wave set-up three zones, referred to as
zones a, b, and c in Figure 5.11, may be considered.

BREAKER REEF
--- OUTER REGION ----+- REGION ~.~- REGION --

ZONE. -a" ZONE -,,-

STILL WATER LEVEL

Figure 5.11 Definition Sketch for Wave Set-Up on a Reef

Zone "a" is located outside the breaking point. Since regu1ar waves
are th~ básis for analyses in this chapter, the breaking point is a1ways
at the'same 10cation for given wave conditions.

Zone "b" is situated between the breaking point and the outer reef
edge and is usua11y characteri zed by the presence of broken waves over this
entire section.

Zone "c" extends over the sha llow reef, shoreward of zone "b". Over
a port ion of the horizonta1 reef, waves wi11 continue to break whereby wave
energy is dissipated.

After a certain distance wáves stop breaking and are being regenerated
with oscillatory type wave 'conditions .
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Results of Previous Studies Using Simplified Models

Zone a

The treatment of zone a is similar to what has been discussed
before regarding waves breaking on a plane beach.

Wave set-down in this approach is calculated by the theoretical
set-down formul a expressed by equati on 5.87 .

Zone b

For the calculation of wave set-up over the zone b, the simplified
model again assumes that the wave height along the slope is proportional
to the actual mean water depth (including the wave set-up), such as is
expressed by equation 5.100

The wave set-up at the edge of the reef nr may then be found by
integrating equation 5.103 over zone b:

nr hr
3 2

J dn I
gY

dh (5.122)=
+ 3 21 8 Y

nb hb

whi ch gives
3 2

= nb +
gY

(hb - hr) (5.123)nr + 3 2gY

This mayalso be wri tten in the form

8 -1

nr = nb + (1 + 3yz) (hb - hr) . (5.124)

The value of nb may be computed from equation 5.87, utilizing
linear wave theory. Equation 5.123 has been presented by Tait (1972);
the values of the depths hb and hr include the effect of tide.

Zone c

For the calculation of wave set-up over zone c it is no 10nger
applicable (with a sufficient degree of accuracy) to assume a proportionality
between water depth and wave height.

Consequently a simplified model such as applicable to the plane beach
and to zone b will no longer provide a reasonable approach to the problem.
For zone c a fair knowledge about the process of energy dissipation along
the reef is required.
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Wave Set-up on a Reef, Calculated from Dissipation Model

The dissipation model again refers to the cQncepts developed in
Chapters 3 and 4.

Similar to the procedures suggested for-a plane beach a numerical
approach is proposed whereby the slope is schematized to a step profile.

Zone a

Regarding the calculations for zone a, inclusion of bottom friction
in the ana1ysis wi1l lead to a slight reduction of wave height before the
breaking point, and as aresult the begirining of breaking wi11 shift somewhat
1andward, thereby reducing the 1ength of zone band diminishing the wave
set-up at the edge of the·reef.

Zone b

For the ca1cu1ation of wave set-up a10ng zone b the numerical
approach deve10ped for the p1ane beach is a1so app1icab1e.

~ somewhat different approach mayalso be fo110wed. In this approach
the slope is not schematized to a step profile, but regu1ar shoaling is
taken into consideration.

Assuming sha110w water waves whereby

F = E c = E c ,gr
one has

dF = E dc + dE = (5.125)dx .dx c dx - Et

The integration is carried out over sections for which the va1ue of
Et may be considered constant.

Setting

c = Fr /9fï

and assuming th~,Froude number F a1so to be constant, leads to

+ E (Fr!9l dh + FrlgJï ,ddE
, 21Fl' .dx , x

) -
= (5'.126)

~ dh + dE
2h dx dx = (5.127)
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or
dE
dx = -E 'ldh) _ Et

2h dx Frv'glï
(5,128)

Using the sha110w water relationship

S = 3/2 E

gives:

dS
dx = 3/2 dE

dx = 3 E dh 3/2 Et
- "4 ti" dx - Fr;gJï (5.129)

Writing (5. 130)

and inserting this expression into equation 5.127 gives

dS
dx = 3 p 9 H2 dh 3/2 Et

32 0 h dx - Frrgn (5.131)

Assuming equation 5.82-b is applicable as a wave set-up model,

~~ + pg (h + Ti)~ = 0

leads to:

3 p q H2 dh 3/2 Et
32 0 h dx- Frrgn

= - p 9 (h + n) §
dx

(5.132)

Integration over a step 6X gives

(h + Ti) 6Ti = 3 Et 3 H2 , dh)
2 pg Frlgf1+ 32 0 h ldx (5.133)

In this equation Et. H, Fr, 0 and h are all dependent on x, but may be
considered constant over the step 6x.

For the calculation of H use is made of the energy equation 5.128 in
combination with equation 5.115 whereby the proper value of ê is to be
introduced. 0 can be determined from experiments or may be calculated from
an appropriate nonlinear wave model.
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Integration of equation 5.132 over step x gives

(5.134)

and making use of the re1ationship 5.133:

(5.135)

2
in which H1,2. is the average of Hl and H2 squared.

. 2 2
If the step 6x''is suff tc'tent ly small, Hl 2' may be rep~aced by Hl in

the right,hand st de of the equat ion, so that '

=
2

I- l [dh) _ 8ó Et l. 6x
L 2h' dx pg Frl9lTI

(5. 136)

wherê Hl and H2 repre'sent the wave height at the beginni ng and at the end of
the section over which integration takes p1ace.

'S'inrl larly to thê'deve10pment in an earlier section the more genera1
formulation may be used:

2
H.
J

= as E ~ 6x.
pg Fr.~ J

J - J

(5.137)

in which

= 2 r w H. J3- fw Q J
3 n l2 sinh kj hj

1;, •
+ _'_J_ pg wH. 2

8nl2" J
(5.138)

For the computation of the wave set-up, equation 5.133 is used in
conjunction with equations 5.137 and 5.138.

It may not always be justified to omit the shear stress term from the
momentum equation, as implied by uti1izing equation 5.82-b. On the
contrary there are indications that such omission induces an error.
Inclusion of the shear stress term changes the differentia1 equation for
wave set-up into
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~; + pg (h+Ti)~~ +:r = 0

which in turn modifies equation 5.133 into:

(h+n) 6n = 3 E:t + 3 H2 (dh)
2pg Fr;gh 32 öh dx

:r6x- -.
P9

(5. 139)

Regarding the value of:r to be used in the calcu1ations further
discussions are presented in later chapters as related to the results of
field and laboratory investigations.

Zone c

Regarding energy dïssipation on the shallow reef both energy losses
due to wave breaking and bottom friction must be taken into account. In
laboratory studies, depending on the scale selected, friction from side walls
of f1ume. from viscous effects and from surface tension effects may have to
be considered as well.

Fo~ the calculation of energy losses over a shal10w reef, equations
5.137 and 5.138 are considered applicable.

The va lue of ç is slow1y decreasing from the reef edge landward, but
may be considered constant over short sections.

For the calculation of wave set-up on a sha110w horizontal reef, the
following approximations of the set-up equation are feasib1e. considering
steady state conditions:

(1) dS + 9 (h) dTi = 0dx p dx
and h = constant

(2) dS + 9 (h+n) ~ = 0dx p

(3) dS + 9 (h+n) ~ + :r = 0dx p

(4) dS + 9 (h+-) dn + d[Q(h+n) UZ] = 0dx p n dx dx

(5) dS (h+-) dn + d[p(h+n) U2] 0- + pg + T =dx n dx dx

In the above equations S r.epresents the principa1 component of radiation
stress in the direction of wave propagation.
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In the first model, the wave set-up is considered small compared to
the depth and is therefore neglected in h; the latt~r represents the depth
with respect to still water level conditions.

The second model is a refinement of the first in that the wave set-up
n is accounted for in the actual mean water depth (h + n). In .the third
model the mean shear stress is included in the momentum equation. The fourth
and fifth model take into account the effect of the wave induced currents,
which are generated in the form of return flow to compensate the wave induced
mass transpo,rt. The case of the pseudo-sol itary wave descri bes this. For a
non-steady state solution, an additional term with a time derivative has to
be added to model (5). This is discussed in Chapter 6.

The radiation stress function to be used for the shallow reef depends
on the assumptions utilized for describing wave behavior .. In the current
literature ~n this subject, it is usually assumed that the radiation stress
can be computed from linear wave theory, whereby for shallow water a relation­
ship S = 3/2 E, is valid.

The validity of such linear approximation may be evaluated as follows.

, ~or a shallow nonlinear water wave with wave height H, the linear
approximation for the radiation stress is given by equation 5.20:

= (~)

The effect of nonlinearity on radiation stress for a cnoidal-type wave
may be expressed by equation 5.60 which can be reduced to

Comparing the two expressions one has for nonlinear waves of the
cnoidal type:'

> 3
2"

- 2 1 2pg n < 8 pg H

and (5.140)

Because of these two inequalities involved, it cannot be determined in
advance if (Sxx)2 will be smaller or larger than (Sxx)l .

The assumption

=

may therefore be an acceptable approximation.
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WAVE SET-UP IN IRREGULAR WAVES

In the preceding sections radiation stress and wave set-up have been
considereQ for regular (monochromatic) waves.

For those conditions, formulas have been derived that relate wave
set-up to radiation stress and radiation stress to energy.

In nature waves may usually be described as irregular waves because
they show a distinct irregular behavior.

The irregularity of the waves is demonstrated by the following
characteristics:

irregularity in wave height and period;

irregularity in wave direction; and

• ' breaking point develops into breaking zone.

As to the second aspect, it can be shown that a directional spectrum
gives rise to short crestedness of the waves, which in turn affects the wave
set-up (Battjes,1974a). Since in this study the analysis is limited to a
two-dimensional situation, this aspect will not be discussed further.

Irregularity in wave height and wave period is characteristic of waves
in prototype conditions. .

The problem can be treated in two possible ways:

by considering the wave height and wave period
probability distributions;

by considering the distribution of the mean wave
energy over the various frequencies in the wave spectrum.

Further discussions on each of these two approaches is given in
Chapter 7, whereas in Chapter 8 the analysis of some relevant field data
is presented.

The second way provides a means to relate radiation stress of irregular
waves to mean wave energy. More than one method exists to derive the wave
spectrum from the (digitized) time series of water level observations. One
of them is the Fourier analysis whereby the time series is analysed into a
large number of Fourier components each with its own amplitude and phase.

An important characteristic of the wave spectrum is that the area under
the curve multiplied by pg equals the total mean energy of the particular
wave record (assuming linear wave conditions), which value in turn equals
half the sum of the squares of the amplitudes of all real Fourier components.
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This means that the mean energies of all spectral frequency components are
added to provide the total mean energy of the wave record.

The above discussed characteristics of the wave spectrum indicate that
since energies of the spectral components may be added linearly to give the
total mean energy of the waves the radiation stress of the sum of all wave
components is related to the total mean energy of the waves by

Sxx = J (2n - 1/2) dE

0

r
(2n - 1/2) G(f) dfSxx = pg J

0

(5.141)

(5.142)

where G(f) represents the mean energy per unit of frequency, and where the
parameter n = cgr/c is dependent on the frequency f(=l/T) and on the depth h.

For sha110w water this deve10ps into

= 3/2 p 9 J G(f) df =

o
3/2 E (5. 143)

as for monochromatic wave conditions.

Equation 5.142 is correct for 1inear waves when the Fourier spectrum
is a true representation of the distribution of the mean energy over the
various frequencies.

When waves have strong non1inear characteristics the Fourier spectrum
does not give a ful1y correct representation of the energy distribution over
the (free) harmonic components; some anoma1ies may be expected from this.

A simi1ar consideration may be given to the correctness of equation
5.142 regarding the determination of the radiation stress in non1inear,

irregular waves.

For practical purposes the error is usua11y not significant enough to
be of great concern.

Fina11y for the ca1cu1ation of the wave set-up the fraction of broken
waves in the breaking zone must be known. Aspects of this prob1em wi11 be
discussed in Chapter 10.

165



CHAPTER 6: THE EFFECTS OF ~~AVEMODULATION ON HAVE SET-UP

INTRODUCTION

In the previous chapter equations for radiation stress and wave
set-up have been presented for steady state conditions, whereby the time
derivatives for wave set-up, radiation stress and energy were considered
zero. .

C10ser examination of a record of ocean waves shows that wave
height and wave period vary with time and that waves usually travel in
groups of higher and lower energy content. The wave modu1ation has a
distinct effect upon the wave induced mass flow in the wave regime and, in
case of waves breaking on a reef, on the wave set-up on the reef.

In the fo110wing the magnitude of this effect wi11 be eva1uated,
uti1izing the basic equations of conservation. If the depth of water on
the reef is sha110w the nonlinear and shallow water form of these equations
may be uti1ized.

GENERAL FORM OF A PERIODIC WAVE TRAIN

The most general form of a periodic wave train is presented by
Whitham (1974):

~ = Sx - yt + ~(e,z), e = kx - wt,

n = N( e) • (6.1)

where ~ is the velocity potentia1 and ~(e,z) and N(e) are periodic
functions of (e).

The parameter S is the mean of the horizontal velocity (~1whereas y
is related to the mean height of the water. J

In the uniform case, a frame of reference can be selected, in which
S = 0 and the mean height is zero.

In the modulation theory, changes in the mean velocity and mean height
are coupled with changes in the wave amplitude. Accordinqly S, y and a
re1ated parameter for the mean wave height must be left open.

The non1inear coupling of amplitude modu1ations with mean velocity and
height is an important physical characteristic of this phenomenon.

Exact expressions for ~(e,z) and N(e) are not known, but the periodic
functions ~(e,z) and N(e) may be expanded as Fourier series. Pursuirig the
Stokes deve1opment:
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'VA
q,(8,z) = ~ __!! cosh nkz sin n8

1 n

N(8)
'V (6.2)

= h + acos8 + r a cos n82 n

in which a is an amplitude and h the mean height of surface above horizontal
bottom.

The u1timate parameters wi11 be the triads (w,k,a) and (y,S,h).

Whitham (1974) found for the eventua1 expression for the average
Lagrangian for a horizontal bottom:

L = ( 1 2) 1 2 1 J (w - Sk)2
P Y - 28 h - ~gh + ~ tgk tanh kh

_1k2E2 {9T~ - 10T2 + 9} + 0(E3)
2 pg 8T~

(6.3)

The term 0 (ES) identifies a third order correction term in E, where
E = 1/2 pga2. Furthermore T = tanh kh.

E is the energy density for linear waves moving into still water; it
is a convenient parameter in the p1ace of a.

In general , changes of the mean quantities (y,S,h) are coupled to the
wave motion.

It is consistent to rep1ace h by the undisturbed depth ho in the
coefficient of the term wi th E2(a~) and replace T by To = tanh kho in that
term. In the other terms it is important to keep h instead of ho. If the
bottom is not horizontal it is not usefu1 as a referènce va1ue for the
potentia1 energy. In that case the term 1/2 pgh2 is to be rep1aced by
1/2 pgn2 - 1/2 pgho2 if z = n = mean surface , and z = -ho = bottom.

THE MODULATION EQUATIONS

In case of a modu1ated wave train the term Sx - yt must be rep1aced
by a pseudo-phase 1jJ(x,t),whereby y and S are defined by

y = = (6.4)

where the subscripts tand x denote differentiation to tand x.

This is simi1ar to a uniform v/ave train, where kx - wt represents the
phase e(x,t) and where k = ae/ax and w = -ae/at.
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The fo11owing expressions are presented by Whitham for a horizontal
bottom:

(w - Sk)2
gk tanh kh =

9T 4 - lOT 2 + 9 2

1 + 0 0 U + O(E2)
4T 4 pg

o
(6.5)

and

(6.6)

It seems convenient to express coefficients depending on To in terms of:

wo(k) = (gk tanh kho)1/2 ~

co(k) = (gk-1 tanh kho)1/2,
1 ( 2kho}

cgo(k) = 2 co(k) il + sinh 2kh
\. 0

where cgo(k) and co(k) represent the group velocity and the phase velocity
for linear waves, moving in still water ho.

This l.eadsto:

y = JB2 + gh + 1[2CgO _ 1J _E_+ O(e) .
2 2 Co pho (6.7)

This is a Bernoulli type of equation for the mean potential,
modified by the wave contribution, proportiona1 to E.

CONSERVATION EQUATIONS

Basic Eguations, Neglecting Energy Losses

Some important conservation properties whereby tentative1y energy
dissipation is ignored are the following (Whitham,1974). The bottom is
assumed to be horizontal and is used as a reference level for potential
energy.

Flux of Nass (M)

ohS + l_ + 0 ( E2) •
Co

The waves add a net contribution E/co to the mass flow; the mass
transport velocity U is accordingly

M = (6.8)

U = (6.9)
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Energy Density (E.D.)

E.D. = ~hU2 + ~gh2 + E + O(E2) . (6.10)

Energy Flux (E.F.)

E.F. = phU(!u' + gh) + U[2~:O - 1JE + (U + ego)E

+ O(E2) • (6.11)

Momentum Flux (M.F.)

M.F. = phU' + ~9h' + [2~:o - 1JE + Q(E') .

E is the energy density contributed by the waves and the term.

(6.12)

[
~c90 _ 1J E = S
Co 2

is the radiation stress as defined by Longuet-Higgins and Stewart (1962, 1963).

The term

U[2C90 _ 1JE = US
Co 2

contributes a rate of working US in the energy flux equation: this is a wave
interaction term in addition to the usual term (U + cgo)E.

A set of corresponding conservation equations is the following

= o (mass) (b)

(6.13)

= o (wave number) (a)

(phU)t + (phU2 + ~gh2 + S)x = 0

(~hU2 + ~gh2 + E)t + {phU(~L + gh)

+ US + (U + Cgo)E}x = 0

(momentum) (c)

(energy) • (d)

It appears that the general farm of a conservation equation is

aQ + aT. = 0
at ax (6.14)

in which Q represents the conservation quantity and T the flux of Q.
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Equation (a) of the set represents the conservation of wave number,
as discussed in Chapter 2. It is equa1 to equation 2.13. Equations b,
c, and d express the conservation of the quantities defined in equations
6.8, 6.10, 6.11 and 6.12 .

Equation 6.13-d, the conservation of energy equation, is in a form
which does not:account for energy losses due to bottom friction and
turbu1ence.

Conservation of 1I\~aveAction"

One of the characteristics of equation 6.l3-d is that due to the
interaction with the mean flow, the wave energy E a10ne is not conserved,
even if energy dissipation is neglected.

It has been shown (Bretherton and Garrett, 1969; Jonsson, 1977, 1978b)
that in the absence of,dissipation the quantity E/wr is conserved, where
Wr is the re1ative angu1ar frequency, which for the two-dimensiona1 case
is defined by

Wr = W - k Ua (6.15)

where wa is the value of the wave frequency in the absence of a current, and
k the wave number.

The energy conservation equation then reads:

(~J + {l_ (U + Cg )}
Wr) t wr' ,0 x = o (6.16)

The expression E/wr has been called "wave act ton" and equation 6.16 then
states that'lIwave actionll is conserved (Bretherton and Garrett, 1969;
Whitham, 1974).

In case energy dissipation p1ays a significant role in wave trans­
formations and the boundary shear stress is of significant val ue, equations
6.13-c and 6.13-d have to be modified to include respectively the shear

stre~s and the energy dissipatio~.

The two-dimensional momentum equation is

(6.17)

where T is the time averaqed bottom shear stress over one or more wave
periods.

The energy equation for two-dimensional flow then has the form

(6.18)
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where Ed is the rate of energy dissipation per unit of (horizontal) area
of the bed, under the combined action of waves and currents (see also Jonsson,
1978b).

If the flow exerts a mean shear stress T on the bottom and there is
energy dissipation to waves at a rate Et, then Ed may be written (Phillips,
1966) :

= (6.19)

From the above equations an energy balance for the wave motion can be
obtained:

.Et + {E(U + Cgo)}x + SUx + Et = 0 •

In terms of "wave action" (see above) equation 6.20 may be replaced by:

(6.20)

[WE) + {.i... (U + cg)} + Et = 0 •
r t wr 0 x wr (6.21)

Using 6.19 ,equation 6.21 mayalso be written by the form:

(_E) + {_E (U + Cg )} + _Ed=---_U_T
wr t wr 0 x wr = o (6.22)

For steady state phenomena, where the variation of E with time is
negligible, equation 6.22 is reduced to:

{ }
Ed - UT

wE (U + Cg) + =
r 0 x wr

o . (6.23)

as presented in Jonsson (1978b).

Long Wave Eguations

The pair b, c, of the set of equations 6.13 can be viewed as determining
the changes in hand U induced by the waves.

These equations are basically the long wave equations with an additional
term S.

They may be used to compute the changes of hand U induced by the wave
train.

For many purposes it is sufficient to take S as a known forcing function
already determined from the linear dispersive theory for the distribution of
k and E.

The linearized forms of these equations (assuming U and n = h - ho to be
smal1) are:
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h ..+ hoUx = 0..t
-S

Ut + gh = x
x pho

(6.24)

(6.25)

A ~olution of these equations is (Whitham, 1974):

n = h - h =o
ho S

-9,-ho----=-C-go-·qkTpho

-Cgo(k) S
gho - cg02{k} pho

(6.26)

U = E
8 + C hp 0 0

= (6.27)

For these solutions to be va1id the group velocity cgo(k) and the phase
velocity co(k) shou1d not be too close.

The particu1ar solutions, equations 6.26 and 6.27 are to be added to
the solutions of the homogeneous equations, which are functions of
[x ±(~) tJ.

STOKES WAVES ON A BEACH

For a uniform wave train approaching a beach

W = = (gk tanh kho) 1/2 = constant (6.28)

l-cW goo
which are sufficient to determine the distributions of k(x) and E(x) in
terms of the depth distribution ho(x). Since Wo is constant, equation 6.29
can be interpreted as one of constant energy flux, (Ecg ) provided energy
10sses are not considered. 0

= constant (6.29)

In the latter case the resu1ts are:

h h = _1[2C90 _ 1] En = pgho0 2 Co
and

U = 0, B = E
pCoho

(6.30)

(6.31)

Equation 6.30 which only app1ies outside the breaker zone is
equivalent to equation 5.87 derived by Longuet-Higgins.

Inclusion of energy dissipation modifies the results.
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In case waves approach the beach in a modu1ating wave train the
energy densities at specific Iocations are functions of time..

In principle the solution of the prob1em consists of the particular
solution in addition to the solution of the long wave equations.

In areas of sufficient depths, where the va1ues of n and U are
re1ative1y sma11 , the 1inearized equations 6.24 and 6.25 may be used
to represent the long wave solution.

For the particu1ar solution, equations 6.30 and 6.31 wi11 be
usefu1, in which, E, n and U are then functions of t.

The ratio n = cgo(k)/co(k) is a1so a function of k and therefore of t,
since ak/at ~ O.

It wi11 simp1ify the solution if an average va1ue of n may be
introduced to solve equations 6.30 and 6.31 .

In the sha110w water region before breaking the above approach is still
va1id as an approximation. Observations and ca1cu1ations indicate that near
the breaking point the bottom shear stress affects the amount of the wave
setdown. Computations without the shear stress are on1y re1iab1e for
re1ative1y short wave periods, when the bottom friction is sma11.

WAVES APPROACHING A SHALLOW REEF

For the purpose of describing modu1ation behavior, four different
regions may be identified as waves propagate from deep to sha110w water and
onto a reef. Theyare: the deep water region, where the waves are dispersive
and linear; the intermediate region, where the waves become 1ess dispersive
as the water depth increases; the region just before and af ter breaking on
the sloping section; and finally, the reef section. [See Figure 6.1J

In the deep section waves are approximately linear and wave set-up may be
taken equal to zero

The solution of the problem of the modulated wave train in the inter­
mediate region is complicated because of the unsteadiness of the momentum
flux associated with individual waves in the train.

The phenomenon of wave set-up under those conditions has received on1y
little attention in the literature.

The investigations by Li-San Hwang (1970) IIHaveSet-up of Non Periodic
Wave Trai n and its Associ ated Shelf Osci llation" are particu1 ar1y relevant.
In this study a set of experiments was performed in the laboratory for
measuring the wave set-up in the non periodic wave train. The osci11ations
on the connecting she1f were a1so investigated. Reference is made to
Figures 6.2 and 6.3 from this study, in which the experimenta1 arrangement
and the wave set-up and set-down measurement in various stations a10ng the
traverse are shown.
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Figure 6.1 Characteristic regions for wave modulated set-up
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Figure 6.2 Experimenta1 arrangements in Hwang, 1970

It was found that wave set-up and set-down occur on the reef and on the
slope respective1y (as expected), and that both set-up and set-down have a
modu1ating character. The latter can be seen from equations 6.30 and 6.31
if the energy density E is of a modulating nature.

The particu1ar solutions of equations 6.30 and 6.31 do not give
difficulties; however, the effect of the associated long wave phenomenon on
the sloping bottom is more difficult to determine.

Consider for example the conditions at Station 7, as shown in Fig. 6.1
which may be considered boundary conditions for the intermediate section
shoreward of Station 7 with
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no(t)
1 Em(t)

(0.32)= -~2n - 1) -pgh
0

Uo(t) =
Em(t)

(6.33)
pCoho

where Em(t) represents the modulating part of the energy density at Station
7 and ho the still water depth at that location.

The values no(t) and Uo{t) are then to be considered boundary conditions
for the long wave problem in the intermediate section; the boundary values
no(t) and Uo(t) propagate shoreward with the speed of the long wave Igho; on
the slope, the characteristics of n{t) and U(t) vary as function of the
location x.

Since in the intermediate depth range the energy modulation of the
propagating wave train travels with the group speed Cg (k), the latter is
different from the long wave speed 19fiO. 0

In a subsequent Station 6 (See Fig. 6.1), the long wave, induced by
no{t) and UQ{t) at Station 7 and the group of waves representing the high
energy portlon have a phase difference and arrive at different times.

Since Station 6 is located on the slope and has a smaller depth, the
energy of each of the individual waves in the group has most likely increased
due to shoaling.

For the section landward of Station 6 the conditions at Station 6 could
again be considered as a boundary condition for a long wave generated here.

The latter has a larger amplitude than one originated in Station 7 and
a phase shift regarding to the latter, because of the difference between
the group speed and the speed of the long wave on the slope.

In addition to propagation and shoaling of long waves on the sloping
bottom, reflection of the long wave phenomenon also will have to be con­
sidered.

Unlike the (almost) complete dissipation of energy of wind generated
waves breaking on the beach, long waves are partially reflected, from the
slope and near-completely from the landward boundary of the reef section
(if no breaking of the long wave occurs).

Analytical treatment of this problem has not been attempted here.

A related study is by Li-San Hwang, Samuel Fersht, and Bernard Le Méhauté
(1969). In this study the transformation and run-up of explosion generated
wave trains on a sloping beach are investigated analytically, however, the
effect of wave set-up is not taken into account.

Analytical treatment of the third and fourth region must include
nonlinear characteristics and energy dissipation. The latter includes energy
losses due to breaking and to bottom friction.
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In the following section the nonlinear equations are evaluated for
the very shallow sections.

The equations will be simplified for this particular region of
application.

WAVE SET-UP IN A MODULATING WAVE TRAIN ON A SHALlOW REEF

The problem is treated as a two-dimensional problem, as in previous
sections. It is greatly simplified if a horizontal bottom is considered,
which is approximately the case for the traverse at Ala Moana under study,
The equations of continuity, momentum and energy as presented in equations
6.l3-b, c and d will be analyzed for the shallow reef section under this

assumption.

The equation of continuity, equation 6.l3-b gives:

(ph)t + (phU)x

which for constant pis:

= o

lt!.+~+~at ax ax = o . (6.34)

Since h = ho + n,

this equation is equal to:

an + (h + n) ~ + ~
at 0 ax ax

which for small values of U leads to

= o (6.35)

an + (h + ) au
at 0 n ax = o . (6.36)

The momentum equation (equation 6.13-c) for a constant value of p neglecting
shear stress and assuming horizontal bottom develops into

a(hU) + a(hU2) + gh ~ + 1~
at dX ax p ax = o (6.37)

which 1eads to

= o (6.38)
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If the shear stress is included, this gives for horizontal bottom:

(ho + n)~~ + ~ + 2(ho + n ) ~ + U2~~

+ (h + )an + 1~ + T
9 0 n ax p ax p = o . (6.39)

The energy equation is first considered without regard to energy
losses.

In that case 6.13-d is valid:

Writing this equation in terms of n and U for shallow water, and assuming a
horizontal bottom, whereby Cgo(k) = co(k) = 19fiQ, and S = 3/2 E, leads to:

( ) au 1 2an ( )aT1 aEo ho + n Uar + ~U ar + pg ho + n at + ar

+ ~~ {~ p (ho + n)U2 + pg(ho + n)2}

an f 1 3} 5 as+axl2pg(ho+n)U+~U +~

+~s~+-k ~3 ax 3 go ax = o . (6.40)

If energy losses are included, the equation n~y be adjusted, using the
results of Chapters 3 and 4 where the major causes for the energy dissipation
per unit of time are considered energy losses due to bottom friction and due
to break ing:

= Ef + Eb

2 o [- fw-3 TI 2
wH J 3 Z;; 2. h kh + _- pgwH .

s in 0 8TII2"
=

Introducing these values into the shallow water equations and considering
equation 6.19 the energy equation for horizontal bottom then develops into:

{
l } an au 2 as-zPU2 + pg(ho + n) at + p(ho + n)Ua-r + 3" at

+ {2P9(ho + n)U + ~U3}~~+ {~(ho + n)U2

}
au 5 2 as

+ pg{ho + n)2 ax + ~tJ+ r90)ax

5 ~U p {2 w3H3 T 2} - (6 41)+ sa + f + __2.._...gwH+ UT = o. .3"~ax TI 3" w 8sinh3kho 8n
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For the steady state condition with U, au/at an/at and aE/at equa1
to zero the equation reduces to

= = o. (6.42)

The three equations governing the wave set-up on a horizontal reef are
then equations 6.35, 6.39 and 6.41 .

These equations are complex and a solution is not easi1y obtained.

For waves moving into still water of depth ho, and with n and U2/2g
sma11 compared to ho, equations 6.35 and 6.39 may be 1inearized as
discussed earl ier.

• For many purposes it is sufficient to take S as a known forcing term
a1ready determined from the 1inear dispersive theory for the distribution of
k and E. For waves in sha110w water this corresponds to S = 3/2 E.

In order to obtain a simplified, but still usefu1 solution for the wave
set-up on a shal10w reef, the fol10wing simplifications are further intro­
duced:

In the continuity equation, the last term is smal1 compared to the
midd1e one; this leads to equation 6.36.

Ê2l + (ti + n)~at 0 ax = o

A further reduction of the equation by considering n sma11 compared to ho
may not a1ways be justified for the sha110w reef.

In the momentum equation the fo110wing simplifications seem appropriate:

1) u~i is smal1 compared to (ho + n)~~

2) U2 is small comapred to (ho + n)

3) 2(ho + n) ~ is sma11 compa red to g (ho + n) ~~ .

Elimination of the smaller terms from the momentum equation gives:

( h + )~ + 9 ( h + ) an + 1~ + To n at 0 n ax p ax p = o (6.43)

For the energy equation the fol10wing reduction of terms seems reasonab1e:

1) ~U2 is small compared to pg(ho + n)

2) p(ho + n)~ is small compared to pg ho ~i
3) ~U3 is small compared to 2pg(ho + n)U
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4) ~(hO + n)U2 is small compared to pg(ho + n)2
5 25) jU is small compared to ~go.

The result is the follöwing:
an 2 as (an aupg(ho + n)at + 3at + 2pg ho + n)Uax + pg(ho + n)2ax

= o (6.44)

The set of reduced equations is then 6.36 , 6.43 and 6.44

As to the solution of these equations the method is further simplified
by determining the values of U, au/ax and au/at from a solution of the
linearized homogeneous equations.

This is a relatively simple procedure for a horizontal reef. Boundary
conditions are U = Uo(t) at the seaward end of the reef and U = 0 at its
landward boundary.

The value U = Uo(t) is obtained from mass transport of waves breaking
on the reef with varying indensity E.

The values for U, au/at and au/ax are then introduced to solve for n.

T = (6.45)

An interesting aspect of the use of linearized equations to solve for
U(x, t) is the possibility of obtaining resonance, by which the vertical
oscillations on the reef are amplified. In a two-dimensional situation ,
closed at shoreward end, resonance occurs if the average period of the
osci11ations

if ~ represents the length of the reef from the seaward edge to the landward
boundary and Tthe period of the primary mode of oscillation.

If this period corresponds to the average distance in time of successive
wave groups that break on the reef, then resonance occurs and the linearized
equations 6.24 and 6.25 may no longer be suitable to determine the
characteristics of U. Under those circumstances wave induced veloeities due
to the activity of wave groups become significant and a bottom shear stress
term T is then required to obtain a finite solution for n.

If such high velocities would occur the elimination of terms with the
order U2 from the momentum and energy equations must be re-evaluated.
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CHAPTER 7: WAVE SPECTRUM AND WAVE VARIABILITY

INTRODUCTION

The waves of the sea are characterized by a variability in height,
period and direction: they have a random character.

In the open ocean the randomness of the sea is best treated as a
Gaussian or normal process, whereby it is assumed that the existing sea
state is a result of a very large number of causes, the effects of which
are superimposed upon one another. Only in the cases of large waves or
breaking waves does this approach meet with serious difficulties.

The randomness of the waves can be described by statistical methods.
Assuming stationarity and ergodicity for the random process statistical
distributions may be derived from the time series describing the water
level at a given location. For a Gaussian process it may be expected that
the instantaneous water level observations with discrete time steps conform
to a Gaussian distribution.

Investigations on the statistical distribution of maxima of a random
function (Cartwright and Longuet-Higgins, 1956 ), indicate that the type of
distribution that best describes the variability of the maxima is dependent
upon the characteristics of the spectrum. A narrow band spectrum relates to
a Rayleigh distribution; for a wide band spectrum the distribution becomes
Gaussian.

When waves approach shallow water, shoal and break, the statistical
parameters describing water level and wave height variations will change.
In this study, the nature of these distributions in shallow water will be
investigated.

An entirely different way to describe a random sea is by means of the
energy density spectrum. This describes the distribution of the mean energy
per unit of frequency over the range of spectral frequencies present in the
random sea.

The wave energy density spectrum is a very powerful tool in wave
analysis. It is also very useful in analyzing the changing of wave behavior
in water of shallow depth, although the nonlinearity of the phenomenon poses
some unresolved problems.

There are two principal routes that can be taken to determine the wave
spectrum from the time series. One is by treating the time series as a
Fourier series; the other one is by taking the Fourier Transform of the auto­
covariance function. The latter function itself gives additional insight
into the nature of the wave motion on the days of observations.

The problem of nonlinearity can be partly solved by computing the zero­
upcrossings spectrum rather than the energy density spectrum, as will be
further discussed in this chapter.
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WAVE SPECTRUM FROM FOURIER ANALYSIS

If a (real) time series x(t) is considered~ which function is defined over
a finite interval of time, the function may be expressed as the sum of an infinite
number of sinusoidal components, each with its own amplitude and phase. Of
special interest for analyzing practical problems is the discrete series, whereby
x(t) consists of a series of discrete points at equal time intervals.

The discrete signal may be regarded as having been derived from a con­
tinuous signal x(t) of duration T by sampling the values of the signal at
spacing ~t, obtained by dividing the total length of the time series by n,

Tso that ~t = n .
Defining time by t ~t = ~ t, t represents the number of timesteps of

length ~t.

There are several forms in which the discrete Fourier series can be
written. One of them is

x(t)

o n-1
J=2

= f + L (a 0 cos 2nTTjt + bJo sin 2nTTjt)
j=l J

a
+ ~ cos TTt

(7.l)

whereby the suffix j refers to the successive Fourier components with

amplitude aj and frequency n1t .

The value for the Fourier coefficients can be obtained from

2 n~l 2TT "ta 0 = - t. X (t) cos -n J ; j = 0, 1, ... n/2
J n t=O

(7.2-a)

and

2 n-1 "2TT Otb . = - L x(t) sm -n J ; j = 0, 1, ... n/2
J n t=O

(7.2-b)
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On substituting t = 0,1,2, ... n-1 in equation 7.1, a set of n equations
is obtained by which the n unknowns of the Fourier series may be determined.

n-1 0 n-lThe upper boundary of the sum 2 lS an integer. If n is even, --2--
should be the 10wer number; if n is odd, the last term does not appear. This

term corresponds with j = ~ and the frequency jf1 = jt = % i represents the



highest frequency at which the discrete series can be samp1ed; it is called
the Nyquist frequency fN .

If the timestep is ~t, this frequency is equa1 to fN = 2!t. The time
distance ~t between the data points does not a110w to sample at higher frequencies.

The complex form of the discrete series may be written as

1 .27T itn- 1- J
x(t) = L c . e n

j=O J
(7.3)

whereby the va1ues of the Fourier coefficients c. may be computed from
J

n-1 _i27T jt
c , = 1 L x(t) e n
J n t=Q

(7.4)

This form is very suitab1e for computer hand1ing.

The complex farm is symmetrica1 in structure.

If x(t) is real, the Fourier 1ine spectrum Ic.1 or Ic.12 as function of
n J J

J 1S symmetrical about fN. The part for "2 < j < n represents the complex part
and is equa1 to the va1ues of Ic.1or Ic.12 for negative va1ues of j (- ~ <j< 0).

J J c..

A continuous spectrum is obtained from the 1ine spectrum by computing the
energy density of each component by taking

[c .12s. = ~J~
J ~f (7.5)

The basis of the energy considerations lies in Parsevalis theorem:

+1/2T

t J x2(t)dt =
-1/2T

n
X

j=l
2[c ·1J (7.6)

stating that the mean energy of the series is equal to the sum of the squares
of all its Fourier coefficients.

This is true for the continuous as we11 as for the discrete series,
provided in the latter all frequencies up to the Nyquist frequency are inc1uded.

A direct way to arrive at the continuous spectrum is by treating the time
series x(t) as a function on an infinite interval and decomposing this function
into its Fourier components by means of the Fourier Integra1 and its converse,
the Fourier Transfarm.
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For a continuous function, the latter is defined by

X(f) = [ x(t) e-i2nftdt .

-~
(7.7)

The application of the Fourier Transform to a time series of restricted
length meets with difficulties since such a series does not have a transform
in the strict sense.

Nevertheless, one may define

J
l/2T

X(f;T) = x(t;T) e-i2nftdt

-1/2T

(7.8)

and conversely

x(t;T) = [~ X(f;T) e i2~ftdf (7.9)

whereby the symbol T identifies the limited length of the time series.

It can be easily verified that the relationship between cj and X(f;T)

has the form:

+ ~f
T IX(f;T)12 '2df = c.
~f T J
-2

(7.10)

An analysis of the statistical properties of the Fourier coefficients shows
that the Fourier coefficients have too much variance compared to their mean to
provide statistically significant results.

What can be done about this?

A longer time series will not help. This simply reduces the distance ~f
between successive values of C., but it does not improve the accuracy of c ..

J J
Improvements can be found in different ways. One method is taking a group

of c.ls together and determining the mean value for this group. Such procedure
impr~ves accuracy but reduces the resolution of the obtained values.

Confidence Limits
It can be shown that for a Gaussian random process

aj and bj' as defined by equations 7.2-a and 7.2-b, are
mean of zero and a standard deviation 0j' Defining Aj2
variable

the Fourier coefficients
random variables with a
= a·2 + b·2 , the randomJ J
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222A. a. + b .
.....L= J J
2 2o• c,

J J

has a x2 distribution with two degrees of freedom.

It has been mentioned that an increase in accuracy of the spectral estimate
is not possible by increasing the length of the time series.

An appropriate way is to take the mean value of a number of consecutive
estimates in a bin. If the number of spectral estimates combined in a bin
is m, it can be shown that the variable v G~f) , where G(f) is the spectral

of
estil1lateand 0/ = oj2T, has a x2 distribution with v = 2m degrees of freedom.

A confidencè interval may be defined from the probability statement:

f 2 v G( f) 2 } _
Pr lXaj2':' 2 .::. Xl-aj2 - (1 - a)

Of

whereby (1 - a) is the probabil ity that the value of ~ is located between
Of

(7.11)

the two indicated values.

If for (1 - a) a value of 9.5%is chosen, the appropriate values of
2 d 2 . b t dXO.025 an XO.975 may e compu e .

After some manipulation:

(7.12)

2
which gives the desired limits for Of .

It has certain advantages to plot the wave spectrum on a log scale for
G(f) so that the variations in energy density for the high frequency part of
the spectrum become more evident. In addition, the confidence limit band may
be shown by one bar, valid for all frequencies. This is evident for the
selected interval form the relation

log v G(f) < log ° 2 < log v G(f)
2 - f - 2

XO.975 XO.025

(7.13)
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or

log 2 \)
XO.975

2
+ log G(f) ~ log of ~

log 2 \) + log G(f) .
XO.025

(7.14)

Rererence is made to Figure 7.1 where the confidence intervals are
schematically shown.

CONFIDENCE BAND FOR FREQUENCY fl

.- j-~
C)

~
~ v

; ... , 2
SPECTRAL Xo.ns
ESTIMATE

f
fl

Figure 7.1 Fourier spectrum with confidence intervals.

The va1ues of 2 \) «1) and 2 \) (> 1) are independent of frequency

XO.975 XO.025
f if the 10garithmic scale for G(f) is used.

rlAVE SPECTRUM FROM AUTOCOVARIANCE FUNCTION

Géneral Description of Method

A different approach to arrive at the wave spectrum from the time series
is by means of the autocovariance function.

The latter is defined by

J
+1/2T

= lim t x(t)x(t + T)dT
T-+I\, -1/2T

(7.15)

whereby x(t) and x(t + T) have a zero mean.
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For a discrete time series of n data points, a sample covariance function
CXX(T) may be defined by:

n-1
Cx (T) = ~ L x(t)x(t + T)

x t=Q
(7.16)

It can be shown that the sample spectrum Cxx(f) may be obtained by taking the
Fourier Transform of the sample autocovariance function:

(7.17)

Calculation of the estimated spectrum takes place by mu1tiplying the auto­
covariance function with a window W(T) and taking the Fourier Transform of the
product CXX(T) W(T), see Figure 7.2.

c: (T)
lUI ( a) AUTOCOVARIANCE FUNCTION

w ( T) (b) LAG WINDOW

COSINE

o M

Figure 7.2 Autocovariance function (a) and lag
window (b).

In the frequency domain, this accounts for the convo1ution of the functions
C (f) and ~/(f) by whi ch a higher degree of accuracy for the estimated spectrum
xx

is obtained. The resu1t is the so-ca11ed smoothed spectrum. The smoothed
spectrum GTfT may be found (Loomis, 1977 ) from

M .2n .
r:;r;:'\ 'i' -1- JTG\f'=Lw(T)C (T)e n

-M xx
(7.18)

and because of thes~mmetrica1 form of CXX(T) and W(T) gives:

187



M
G{fT = w(o) c x(o) + 2 L w(T) cxx(T) cos2nÎT jT

x T=l
(7.19)

where the boundaries -M, +M denote the length of the lag window.

It is customary to consider only real frequencies f > o. Because of the
symmetry involved for real functions x(t):

'"GTfT = 2 GTfT (7.20)

The choice of length and form of the lag windowaffects the accuracy
obtained, and is related to the degrees of freedom of the x2 distribution
that describes t~e probability density function for the smoothed spectrum.

A wide window corresponds to high resolution and low accuracy, whereas
a narrow window has a high accuracy and low resolution.

Reference is made to Jenkins and Watts (1968).

A comparison between the wave spectra obtained from each of the two
methods described is presented in Figure 7.3.

The time series used as a basis for the ca1culations is the one obtained
at station #7 in the traverse along Ala Moana reef on September 14, 1976. In
order to allow adequate comparison in the high frequency range energy densities
are plotted on a logarithmic scale.

Figure 7.3 shows a good agreement between the two methods, the only
marked difference occurring near f + 0, which may be due to the convolution
process applied in the second method.

Due to the advantages of Fast Fourier procedures in the computer handling
of the data, the Fourier coefficient method will be applied for the calculation
of the energy density spectra from the observed wave records.

Usefulness of Autocovariance Function and Spectrum

Although the autocovariance function and the corresponding spectrum
are formally equivalent as to the amount of information they contain, use
of the spectral format is usually preferred for the presentation of this
infármation.

Battjes (1977) lists the fol10wing advantages for the use of the spectrum
(apart from computationa1 efficiency):

11 the spectrum 10calizes the contributions to the variance of the
process in terms of frequency and wave number, and it thereby
gives more insight into the underlying structure of the process
than is possible through the autocovariance function;
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as a corollary, the structure of a given process, as revealed in
its spectrum, usually can be more simply explained in terms of
causative factors than in the case of the autocovariance function;

_ the calculation of the effects of linear operators on the process
is far simpler in the spectral domain (algebraic multiplication)
than through the use of covariances (convolutions);

_ the statistical theory of the sampling distribution of estimates
from a finite sample, and the results obtained, are less compli­
cated for spectra than they are for covariances.1I

The above advantages are particularly true for waves in deep water,
where a linear spectral representation usually gives a true representation
of wave characteristics, except in cases of very large or breaking waves.

In water of shallow depth, the advantages become less obvious. When
dealing with nonlinear waves, the uncertainties about the physical meaning
of the energy peaks in the higher frequency range, as discussed elsewhere
in this chapter, take away some of the effectiveness of the energy spectrum
as a description of the true nature of the wave characteristics. .

Under these conditions, the presentation of the autocovariance function
may supply additional information that may be helpful to characterize the
wave motion.

Figure 7.4 shows the autocovariance function for one of the data sets
of station #7 on Ala Moana reef, the spectrum of which is shown in Figure
7.3. The swell type nature of the waves becomes evident from the strongly
oscillating characteristics of the autocovariance function.

ZERO-UPCROSSING SPECTRUM

Definition of Zero-Upcrossing Spectrum

The description of wave behavior by means of the energy density spectrum
is most adequate 'when the wave motion can realistically be described by the
superposition of linear waves with different frequencies. Under those
conditions, the dispersion relationship w = f(k) defines the dispersive
nature of the waves, whereby various components have different phase speeds.

For the conditions described above, the energy density values in the
high frequency parts of the wave spectrum are physically existent,short
waves having propagation characteristics conforming to their wave length or
period. Figure 7.5 shows typical spectra for Ala Moana reef on August 25,1976.

When waves in deep water become high and steep and nonsinusoidal, the
underlying assumptions of the energy density spectrum are no longer fulfilled
and deviations from the ideal situation are to be expected.
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Waves traveling into very shallow water becomes strongly nonlinear and
approacl'ithe cnoidel or solitary wave form.

An energy density spectrum of such wave conditions will show peaks in
the higher harmonie components that arise from the higher harmonies in shallow
water as shown in Figure 7.5. The difference with the spectrum for linear
waves is tha.t these harmonies are coupled to the phase speed c of the cnoidal
or solitary wave and do not constitute tree wáves with their own propágation
characteristics.

After waves break on a shallow reef, higher harmonies are usually formed
originating from the breaking wave front. Such waves are not coupled but behave
as free waves; however, the water depth in which these waves are generated is
larger than the mean depth because they ride on the crest of the waves.

In an energy density spectrum for shallow water waves, one is not able to
distinguish between coupled and free harmonie components. In using the spectrum
as basis for the computation of the energy f1ux,additional information on the
wave behavior must be known.
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This problem is partly solved by calculating the zero-upcrossing spectrum.

In the latter, the energy of all consecutive waves, the height of which is
measured with the zero-upcrossing method, is computed. For each wave, the mean
energy divided by pg is computed from

_ 1 1 2
E. - ~ -8 H.1 u. 1

1
(7.21)

whereby the index i denotes the sequence number of the individual waves in the
wave record. The factor t is introduced to account for the nonlinearity of the
individual wave form.

To calculate the physical energy of the wave, multiplication with pg is
required.

The energies of all waves for the period interval Tj, Tj+l and for the
frequency interval Tl. '----Tlare summed and divided by the frequency interval

J j+ 1

1 1
flf = ij -Tj+1

to give

mv 1 1 H 2
• L1 8."""8 if
1= 1

= --;-N'-:-fl-f-;:;---S{f) (7.22)

where N is the tota1 number of waves in the record and m is the total number of
waves in the frequency interval flf.

In order to simplify matters, the correction factor i is taken constant
for all waves; its value can be determined by comparing the total mean energy
of the zero-upcrossings spectrum with the area under the curve of the energy
density spectrum as defined in the previous paragraphs.

Advantages and Disadvantages of the Zero-Uptrossing Spectrum

The most important advantage is that the waves for which the spectrum is
calculated do not need to have linear characteristics. Each individual zero­
upcrossing wave is defined by itself and requires no knowledge of the rest of
the time series.

Furthermore, it may be expected that a spectrum defined in this manner
will be relatable to zero-upcrossing statistics. The zero-upcrossing spectrum
will contain an inherent relationship of height to frequency of the wave record.

A major disadvantage of the method is similar to the disadvantage of the
zero-upcrossing method in general: it e1iminates higher frequency components
from the record that do not have a zero-upcrossing characteristic. Consequently,
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a great deal of higher frequency components will not be accounted for and
will not show up in the spectrum.

Another serious difficulty occurs when a long period wave of appreciable
amplitude is present in the record. This wave will elevate the time series
above or below the mean water level for prolonged periods of time so that
many zero-upcrossings are not counted. The low frequency wave will not
show up in the spectrum if the high frequency components dominate.

A final disadvantage is associated with the accuracy of the spectral
data points.

In the previous two methods of spectral analysis, higher accuracy of
the spectral estimate is obtained by taking the mean of a number of spectral
estimates at consecutive frequencies or by using a convolution process.

In the zero-upcrossing procedure, the number of data points is consider­
ably less (e.g. 15 times less) than the number of data points used for a
Fourier spectrum.

Although the accuracy of the zero-upcrossing method can be improved by
increasing the frequency bandwidth for which spectral estimates are determined,
one cannot go too far in this direction because of its associated effect of
losing resolution.

The spectral estimates of the zero-upcrossing spectrum therefore show
more irregularity then those of the smoothed Fourier spectrum.

Comparison of the Zero-Upcrossing Spectrum with the Fourier Spectrum

In this study, the usefulness of the zero-upcrossing spectrum has been
explored for the Ala Moana reef data. The following results have been
obtained.

Both the Fourier spectrum and the zero-upcrossing spectrum have been
calculated for the wave records at Ala Moana reef. Results for probe 4 are
presented in Figure 7.6 as an example.

Both spectra contain equal energy and are therefore directly comparable.

Generally, the Fourier spectrum has more energy in the high and low
frequency ranges, as may be expected. It is found that in most cases, both
spectra have their peak density at the same frequency.

The greater inaccuracy of the spectral estimates for the zero-upcrossing
spectrum is also visible in this figure. There is a reasonable agreement
between the two types of spectra for the medium frequencies. The deviations
between the two are highest for the high frequency ranges.
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WAVE HEIGHT VARIABILITY

Distribution of Water Level

The characteristics of a Gaussian random sea conform to a Gaussian
probability distribution for the discrete time series ~(t):

_(h_]..!)2

202f(h) = -- e (7.23)

The function has two independent parameters: the mean value ~ of the time
series.and the standard deviation o.

This distribution was used to test the probability distribution of the
water elevations for station #7 of the Ala Moana reef observations .. Figure
7.7 gives examples of this analysis. It was found that based on the appli-
cation of the X2 goodness of fit test the hypothesis of a Gaussian distribution
for water levels appeared to be valid in a number of days of observatioris, but
had to be rejected for other days.

(0) FIRST RUN ( b) SECOND RUN
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Figure 7.7 Digitized water level observations
compared with Gaussian distribution.
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Regarding the distribution of water level for the stations in shallower
depth, it was found that the latter deviates considerably from the Gaussian
distribution. Reference is made to Figure 7.8 where the observed water level
distribution for probe 4 is compared with the Gaussiàn distribution.
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Figure 7.8 Probability density of sea level elevation, September 7,
Probe 4 with Gaussian dist~ibution, Ala Moana, 1976.

Distribution of Wave Height

For the distribution of wave height, a distinction is usually made between
short-term and long-term phenomena. In this study, only the short-term aspects
of the sea state are considered.
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For the measurement and counting of wave height and period, the zero­
upcrossing method has been shöwn to give a statistically acceptable method
which is also satisfactory from an engineering point of view.

The definition sketch for zero-upcrossing height and period is shown in
Figure 7.9. A wave height H is defined as the total range of h(t) in a time
interval between two consecutive zero-upcrossings of ~(t) (Battjes, 1977 ).

LEGEND:
o ZERO - UPCROSSING

CREST•
D TROUGH

Figure 7.9 Definition sketch for zero-upcrossing
height and period.
(from Battjes, 1977)

The underlining of the variables h(t) and H signifies that the variables
are of random nature. --

It has been shown (Cartwright and Longuet-Higgins, 1956 ) that for a narrow
band spectrum, the probability density function for the wave height conforms
to a Rayleigh distribution.

The Rayleigh probability density function is a one-parameter distribution;
it attains various forms depending on the parameter used for defining the
distribution, the latter can be the mean wave height, root mean square wave
height, significant wave height, or mean energy.

In terms of the root mean square wave height (H ), the function is givenrms
by

f(H)
(7.24-a)

In terms of the relative wave height n = _H_ the function is:
Hrms

f(n) = Zn e-n2 . (7.24-b)
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In terms of the mean energy mo of the time series, the equation reads:

_ H2
H Smo

=-e4mof(H) (7.24-c)

The applicability of the Rayleigh distribution to the distribution of wave
. height is limited to a narrow band function.

The bandwidth of a wave spectrum may be described by its spectral width
parameter defined by

E=~
S mom4

(7.25)

whereby mo' m2 and m4 are respectively the zero, second and fourth moment of
the spectral density function.

The spectral moments are defined by

m = [fNfn G(f)df . (7.26)
n 0

A narrow band spectrum corresponds to ES = 0, whereas a wide band spectrum

relates to ES = 1.

It can be shown, that depending on the va1ue of the spectra1 width
parameter, the probabil ity dens ity functi on of the peaks may vary from
Ra1eighian (for E = 0) to Gaussian (for E = 1).

Reference is made to Figure 7.10 (Price and Bishop, 1974 ), where x
denotes peak e1evation above the mean.

A narrow band spectrum has another important characteristic. It can be
shown that for a Rayleigh probabi1ity density function, the significant wave
height is directly re1ated to the mean energy of the time series:

H = 4 0 tr:s • ymo (7.27)

The significant wave height is then defined in the usua1 way as the mean
va1ue of the one-third highest waves of the record. If the zero-upcrossing
method is used, it is identified by Hz,1/3' In order to test the app1icabi1ity
of equation 7.27, the significant wave height Hz,1/3' and the standard deviation
of the time series (cr2 = mo) have been computed. The re1ationship between the
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significant wave height and the standard deviation is shown in Figure 7.11.
The best fit of the equation for all data (wave height in meters) is

Hz,1/3 = 3.5740 + 0.031 (7.28)

H
Va1ues of z,1/3 for deep and sha110w water are presented in Tab1e 7.1

o
in which a1so standard deviations are listed. In addition, computed va1ues of
H H
z,1/3 and z,max are presented, where Hz is the mean zero-upcrossing wave height
Hz Hz,1/3

and H the maximum zero-upcrossing wave height in the wave record.z,max

The theoretica1 va1ue of 4.0 for the coefficient in equation 7.27 has to
be replaced by 3.57 but overall the 1inear re1ationship between Hz,1/3 and

o is observed.

The fact that the Ray1eigh probability density function is based on one
single parameter makes it 1ess useful if conditions in the field do not com­
p1ete1y satisfy the under1ying assumptions of this distribution.

A usefu1 probability distribution of wide app1ication is the Weibull
distribution (Weibull , 1951 ):

-axBF{x) = 1 - e (7.29)
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TABLE 7.1

H H H
VALUES OF~, z,1/3, AND z,max

- Ha Hz z,1/3

FOR DEEP AND SHALLOW WATER AT AlA MOANA REEF

Ratio of significant height to standard deviation
of the time series (Hz,1/3/a)

PROBE 07-30-76 08-04-76 08-25-76 09-07-76 09-14-76 09-16-76 09-23-76

1 3.48 4.94 3.35 4.56

2 3.37 3.36 3.93 3.35 3.25 3.89

3 3.83 3.26 4.70 3.73 3.63 4.25

4 3.13 3.73 4.67 4.58 3.58 4.37 3.78

5 3.63 3.86 3.90 3.69 3.70 4.00 4.85

6 3.25 3.25 3.85 3.40 3.12

7 3.56 3.77 3.46 3.47 3.53

Shallow water mean:
Intermediate water mean (probe 6):
Deep water mean (probe 9):

3.88. s = 0.52
3.37, s = 0.28
3 •56, s = O.13

Ratio of significantoheight to mean height (Hz.l/3iHz)

PROBE 07-30-76 08-04-76 08-25-76 09-07-76 09-14-76 09-16-76 09-23-76

1 1.75 1.82 1.62 1.84

2 1.61 1.63 1.85 1.55 1.50 1.82

3 1.62 1.70 1.58 1.82 1.67 1.70 1.92

4 1.58 1.65 1.56 1.73 1.67 1.69 1.71

5 1.42 1.66 1.79 1.66 1.64 1.76 2.01

6 1.96 1.69 1.72 1.72 1.73

7 1.60 1.87 1.65 1.67 1.79

Shallow water mean:
Intermediate water mean (probe 6):
Deep water mean (probe 9):

1.70, s = 0.13
1.76, s = 0.11
1.72. s = 0.11

Ratio of thè height of the 1argest wave in the record
to the significant height (Hz,max/Hz.1/3)

PROBE 07-30-76 08-04-76 08-25-76 09-07-76 09-14-76 09-16-76 09-23-76

1 2.70 2.01 2.34 2.08

2 2.41 2.36 1.89 2.70 2.46 2.37

3 1.75 2.00 1.76 1.71 1.53 1.54

4 1.63 1.54 1.51 1.48 1.66 1.71 1.77

5 1.44 1.49 1.98 1.84 1.65 1.71 1.48

6 2.15 3.32 2.42 1.96 2.14

7 1.69 1.65 1.94 1.80 1.91

Sha110w water mean:
Intermediate water mean (probe 6):
Deep water mean (probe 9):

1.88, s = 0.38
2.40. s = 0.54
1.80, s = 0.13
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and the corresponding probability density function is

8 1 _"'x8f(x) = 0.8 x - e u . (7.30)

It may be observed that for a = 1 and 8 = 2 the function becomes equal to the
Rayleigh distribution, so that the latter represents a special case of the
Weibull distribution.

Comparison Between Theoretical and Observed Values

.Observed wave height distributions from the wave records at Ala Moana reef
are compared with theoretical values. In the fol10wing, some results of this
analyses are summarized.

Figure 7.12-a and 7.12-b show observed wave height distributions for two
days of wave observation in station #7 of the Ala Moana traverse, together with
the computed Rayleigh distributions for this data. The parameter used for the
theoretical curves is the root mean square wave height.

( a) FIRST RUN ( b) SECOND RUN
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Figure 7.12-a Observed wave height distribution
compared with Rayleigh distribution.
(Station 7)
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Figure 7.12-b Observed Wave height distribution
compared with Rayleigh distribution.
(Station 7)

Figure 7.12-a shows a good agreement between predicted and observed values.

An application of the x2 - goodness of fit test to the data indicates that at
the 95% significanee level the hypothesis of a Rayleigh distribution is not
rejected.

Figure 7.12-b shows the same type of comparison on a different day.
On the same basis, the hypothesis has to be rejected for that day.

The results are likely to show larger differences between observed and
predicted values when considering wave records in shallower water. Particularly
after breaking when higher harmonies are being generated, the usefulness of the
Rayleigh distribution as a description of the wave height distribution is
likely to fa:il.

A testing of the jieibull distribution as probability density function
(with its two independent parameters instead of one) has indicated that this
distribution is able to adequately describe the actual distribution of wave
heights in the various stations.

However, ·for this it is necessary to fit the value of the two parameters
of the theoretical function to the observed distributions.
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WAVE PERIOO VARIABILITY

Oistribution of Wave Periods

Bretschneider (1959) found that the square of the period follows a
Rayleigh distribution. The results of analysis for the Ala Moana wave data
indicate that the first power of the periods more closely fits the Rayleigh
distribution. Reference is made to Figure 7.13 where histograms of wave
periods are presented for two days of observation.

20.00 (a) AUGUST 25, 1976

DISTANCE FROM DATUM IN m

Figure 7.13-a Distribution of wave perióds against distance from a
datum, Ala Moana, August 25, 1976.
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An even better description of the wave period distribution is obtained
if a Weibull probabi1ity density function simi1ar to equation 7.30 is used:

whereby the periods are fitted by 1inear regression to obtain the appropriate
va1ues of a and S. (Lee and B1ack, 1978). In this way, the 1inear correla­
tion coefficient between observed and predicted data, exceeds 0.98 for most
cases.

However, va1ues of B vary considerably on a day to day basis; its mean
va1ue is

S = 1.665 + 0.219 .

Re1ationships Between Period and Spectra1 Characteristics

Fo110wing Battjes' (1977) description, the time interval between consec­
utive zero-upcrossings, often called the "zero-upcrossing wave period" is a
random variab1e, written as T. lts expected va1ue, the mean zero-upcrossing
period is called Tz·

Ana1ysis by Rice (1944) has shown that the value of Tz may be expressed
in terms of the zero and second moment of the energy density spectrum:

m 1/2
T = E(_T) = (_Q_)z m2

(7.31)

The shape of the probabi1ity distribution of T is rather sensitive to variations
in the shape of the spectrum.

Consider furthermore the maxima of h (t). The ratio between the average
time interval between consecutive maxima~ T , and the mean zero-upcrossingm
wave period Tz'

(O.s_ r.s_ 1) (7.32)

is a parameter which describes to a certain degree the irregu1arity of the
process .b_ (t).

For a narrow band spectrum, r = 1.

Broad banded spectra show a much greater irregu1arity whereby the value
of r can approach zero.

Another way to look at the wave motion as a random process is by considering
the corre1ation between the function h (t) and its second derivative. (Battjes,
1977 ). -
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The coefficient of linear correlation (p) between these two can be expressed in
terms of the moments of the energy density spectrum:

m2
p=-----

(mom4)1/2 (7.33)

A narrow spectrum corresponds to a slowly modulated sine curve as process
realization, whereby h (t) and its second derivative are strongly negatively
correlated, whereby p-~ -1. With increasing spectral widths, the value of

m2
1/2 becomes smaller and p approaches zero.

(mom4)

It can be shown that for Gaussian processes

m 1/2
T = (..1.)m m4 (7.34)

in which case the value of r may be determined by

Tm _
r = --Tz = -p •

ImOm4
(7.35)

For Gaussian processes, this provides a link between the two approaches.

The bandwidth E has earl ier been defined by

(7.36)

which for the conditions specified is identical to

T 2
= 1 - (-.!!!)Tz (7.37)

If the process is not completely Gaussian it may be expected that ES;' Er

For the Ala Moana reef data, it is generally found (Black, 1978a) that

shallow water

offshore probe
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Comparison Between Theoretica1 and Observed Va1ues

From the wave records at A1a Moana reef the va1ues of Tand T have beenm z
computed and compared with corresponding va1ues obtained from the spectrum.

In addition, va1ues of the significant wave period have been computed in
two different ways: the va1ue TH as the mean period of the one-third

z,1/3
highest of waves from the wave record, and the va1ue Tz,1/3 as the average va1ue

of the one-third highest periods of the wave record.

The computed va1ues of Tand T as obtained from the wave records deviatez m
considerab1y from the theoretica1 re1ationship, presented in equations 7.31 and
7.34. Marking the observed va1ues with the index (0), the fo11owing re1ation-
ships have been obtained:

m 1/2

Tz(o) = 1.14 (_Q_) for deep water
m2

m 1/2

Tz(o) = 1.64 (_Q.) for reef aream2

and

m 1/2

T = 1.40 (_I) for deep water
m(o) m4

m 1/2

Tm(o) = 1.33 (_I) for reef area .
m4

I (7.38)

I (7.39)

The observed ratios between Tz and Tm as obtained from the wave records for deep

and sha110w water are:

T
m(o) =

Tz(o)

Tm(o) =
Tz(o)

0.361 for deep water

0.353 for reef area

(7 .40)

ES for the A1a Moana data varied between 0.83 and 0.97 whereas

ET was found to vary between 0.88 and 0.96.
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TH
The mean va1ues of the ratio z,1/3 obtained from the data at A1a MoanaTz

reef are

TH 11.30 ± 0.13 sha110w water
z,1/3 _
Tz - 1.56 ± 0.12 offshore •

This compares with 1.14 ± 0.11 obtained by Goda (1974).

(7.41)

Tz 1/3
For the ratio T' , the fo11owing va1ues were obtained:

Hz,1/3

Tz,1/3 _11.35 ± 0.14 shallow water
T -
Hz,1/3 1.11 ± 0.04 offshore .

(7.42)

MEAN WAVE ENERGY AND ENERGY FLUX AS RELATED TO WAVE SPECTRUM

Considerations About Mean Energy in Linear and Non1inear Waves

The energy density spectrum describes the distribution of mean energy per
unit of frequency over the various band widths present in the spectrums. The
mean energy present between the frequencies f1 and f2 (Figure 7.14), is given by

(7.43)

a quantity represented by the area under the curve between the ordinates f1

and f2.

The tota1 mean energy of the time series is then represented by the tota1
area under the curve from f = 0 to f = fN:

J
fN

G(f)df = m
o 0

(7.44)

The above description of energy refers to the characteristics of the time
series defined by
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(0) LlNEAR WAVES

G( f )

E / P9 = a2

a2 lfN= mo = o G(f)df

F1 = lfN G ( f) c (f) dfo or

f

a) Energy Density Spectrum For Linear Waves

«b') NON LlNEAR WAVES

E / pg 2'" aG ( f )

f

b) Energy Density Spectrum For Non1inear Haves

Figure 7.14 Energy Density Spectrum For Linear (a)
And Non1inear Waves (b).
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T
2 1 J 2Mean energy = h (tl = T oh (t)dt (7.45)

in which T is the length of the record.

To relate this value to the mean energy present in linear waves, linear
wave theory gives for the mean total energy present in a wave train with
amplitude a:

_ 1 2
E - "2 pga (7.46)

For a sinusoidal signal energy computed according to equation 7.45 gives:

(7.47)

which becomes identica1 with equation 7.46 except for the factor pg which is
required to obtain the dimension of physica1 energy.

For 1inear waves, the area under the curve of the energy density spectrum
is therefore a measure of the total energy contained in the waves.

Physica11y, this mean tota1 energy is composed of potentia1 and kinetic
energy, which for linear waves are equa1 in magnitude.

Expression 7.45 then corresponds to two times of the potentia1 energyof
1inear waves, which then presents the total mean energy of such waves.

In non1inear waves, the above procedure presents difficu1ties.

The energy computed from the wave record by applying equation 7.44 is
actua 11y twice the potenti al energy of the wave motion, and isnot necessari ly
equa1 to the mean total energy (potential + kinetic) of the waves, because
potential and kinetic energy are not even1y distributed.

Longuet-Higgins (1974b)has computed that for solitary waves and large
~ ratios the potentia1 energy is about 45% of the tota1 energy of the wave.

If a signa1 wou1d consist of a sequence of solitary waves and the wave
spectrum wou1d be computed, the total area under the curve wou1d on1y represent
90% of the tota1 wave energy. For shallow water waves, where the wave shape
is close to a solitary form, a correction factor of 0~9 - 1.11 then has to be
app1ied to determine the mean energy from the area under the curve.

Energy Flux as Re1ated to the Er'lergyDensity Speètrum

For a tr-a in of 1inear waves, the transport of energy in the direction of
wave motion per unit of width F is re1ated to the mean energy E and the group
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velocity by

F = E cgr . (7.48)

If the wave train is composed of waves with different amplitude and period
and energy is distributed over the frequencies according to Figure 7.l4-a the
portion of the ,energy flux which is related to the frequency band df is given
by ,

dF' = G(f)df (cgr}f

where (cgr}f denotes the group,velocity that corresponds to the frequency f.

The total energy flux can then be computed from

F' = JfNG(f) (c ) df .
gr f

o
(7.49)

The basis for the above calculations is that all harmonic components,
including those with higher frequencies, behave as independent free waves
each having its own group velocity.

For linear waves, the mean group speed cgr to be used for the calculation

of the energy flux is obtained from the equations

or

J
fNG(fl (c r' df

9 f
-c - = _0=----,::- _

gr JfN
o G(f) df

(7.50)

For waves in intermediate depths and nonlinear characteristics, the above
approach poses a problem. As discussed earl ier, the energy contained in the
higher frequency ranges may come from higher frequency components which are
coupled to the primary waves of lower frequency, and therefore have the same
phase speed as the major waves. Calculation of the energy flux based on the
previously described method then is not completely correct (see Figure 7.14-b).
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In very shallow water, the problem mentioned becomes less significant
because waves lose their disperse nature and propagate all with the same
phase speed, which is equal to the group velocity.

In computing the energy flux from the wave spectrum, the nonlinearity
of the waves may introduce errors, in the mean total energy E of the waves
as well as in the eva)uation of the group speed.

I

In experimental 'procèdures, those effects have to be taken into con­
sideration.
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CHAPTER 8: FIELD EXPERIMENTS AND ANALYSIS

The previous chapters have been concerned with the description of the
problem and with its theoretica1 background.

Where appropriate, work of other investigators that was relevant to this
study was reviewed and compared with the theoretical developments carried out
for this study.

Results of the experimental part of this study have been used incidentally
in chapters 4, 5 and 7 to verify or i11ustrate theoretical concepts.

This chapter wil1 give a discussion of the experimental set-up in the
field and wi11 further analyze results that have been obtained.

EXPERIMENTAL SET-UP

The field experiments were conducted across the offshore shallow coral
reef at Ala Moana Beach Park in Hono1ulu. The site is situated west of Waikiki
Beach and southeast of the entrance to the smal1 craft harbor IIKewaloBasin,1I
situated on the south shore of the Island of Oahu (Figure 8.1).

Site conditions and bathymetry were shown in Figures 1.1,1.2 and 1.3.
An aerial photograph of the site, showing wave conditions as they prevail on
the reef, is presented in Figure 8.2.

KAHUKU P?'~.: ~::r~.~~~~:.
... MOLOKAI

j 7'f):"'. .
: KAHOOLAWE

o 10 "lil

MAKAPUU
POINT ---21°17'N

ALA MOANA BEACH
I

1!l7°!l2'W

Figure 8.1 Study Site on Island of Oahu
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Figure 8.2 Aerial Photograph~ Ala Moana Reef
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Waves were measured in seven stations placed in depths ranging from about
0.6m to 11.0m situated in a traverse perpendicu1ar to the depth contours.

In Stations #1 through #~ situated on the reef and in Station #7 situated
offshore, the waves were measured with capacitance wave recorders. In Station
#6 which was situated in the first breaker zone, waves were measured by filming
the motion of a floating buoy from a high point on shore, west of the harbor
entrance.

A concrete bench mark was established on the sha110w reef as a reference
point for station identification.

Reef bathymetry was determined by leveling with reference to a bench mark
on shore during low tide conditions.

The offshore bathymetry was taken from a current hydrographic chart; the
offshore profile in the traverse was measured from a vessel, using an echo
depth recorder. At the site the offshore bottom consists of a stable coral
reef.

Most data were collected in the summer and fall of 1976, during the period
July 30 to September 23, 1976. A total of 10 experimental runs were made, of
which 3 runs were rejected because of some likely error.
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During this first series of measurements, the mean water level at the
various stations was measured indirectly by determining the mean of the time
series of the wave records.

A second series of measurements was carried out in the fall of 1978. The
main purpose of this effort was to verify data on wave set-up, obtained during
the first series. During this measurement program, waves were measured in the
offshore station similar to the measurements in 1976. At the five reef stations,
however, the mean water level was measured in a different manner by means of
a damped manometer, carefully leveled and secured on the reef, but no wave
gages were employed at these stations. See Figures 8.3, 8.4 and 8.5. During
that same period, one tide gage was established at Station #1 and one inside
Kewalo Basin, from which level differences between the two gages could be
obtained. Reference is made to Figures 8.6 and 8.7.

During the experiments winds were usually from the northeast, with an
average speed of 7 - 8 m sec-l.

Waves had a dominant period between 12 and 18 seconds with significant
heights up to 1 m. Their direction was usually at a small angle with the
coastline. On certain days wave energy from adjacent reef areas entered the
measurement traverse, and affected the results of the two-dimensional analysis.

All instruments and recording equipment for the reef stations were
transported and deployed from a small mobile platform equipped with four jack­
up legs, the "reef buggy." During transport the four legs were raised to a
high position (Figure 8.8). At the project site, the legs were lowered on the
reef and the platform was raised above the water level out of the reach of the
waves.



m
3.1

2.7

STATION I

3.3

3.1

SCALE

2.2 m WATERLEVEL

MARKER

0.4 2.4

Figure 8.3 Manometer For Wave Set-Up Measurement
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Figure 8.4-a Reading of Manometer for Wave Set-Up

Figure 8.4-b Manometer Fixed to Staff-Gage in Kewa10 Basin
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Figure 8.5 Socket for Manometer Fixed to Reef

The platform consisted of a 3x2 m2 life raft sandwiched between two
rectangular frames of angle iron. On top of this a bolted wooden platform
served as deck. On each corner aseven foot tall metal pipe was attached
to the frame with a hand operated winch and pulley. The winches allowed
the legs to be raised or lowered. Figure 8.9 shows the reef buggy in position
over the reef.

For the reef stations the capacitance wave gages were mounted on tripods
(Figure 8.10). The wave information was cabled to the reef buggy and recorded
on a Sangamo Model 3400, 16 channel portable tape recorder. A portable
generator was used as a power source.

The offshore capacitance wave gage was mounted on a vertical pile in llm
of water. The pole was hinged to a heavy concrete anchor block on the bottom
and wired to stabilize its vertical position (Figure 8.11).

After use the pole could be lowered and secured on the sea bottom to
avoid damage from ships and floating objects.

Wave information from the offshore probe was transmitted by cable to a
Sanborn strip chart recorder on board of a craft (See Figure 8.12).

Breaking wave conditions in Station #6 with depth of about 2.0m made it
impossible to use capacitancegages as employed on the reef. For this reason
the motion of a floating buoy tethered to a coral head, was filmed from a loca­
tion on shore. Data were recorded on magnetic tape, strip chart, and film.
All of these had to be calibrated and prepared for computer analysis.
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Figure 8.6 Float-type Tide Recorder at Kewalo Basin

Figure 8.7 Bubble-type Tide Recorder for Tide on Reef
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Figure 8.8 Reef Buggy Under Way to Measurement Site

The strip chart data from the offshore probe was digitized at 2.605
points per second.

During the second series of measurements in 1978, emphasis was on
determining the wave set-up over the reef; waves were on1y measured in the
offshore station in the same way as during the first series of measurements
in 1976.

At the reef stations, on1y visual estimates of the wave height were
made in addition to the water level observations. Current velocities on
the reef were measured using a submerged bottle as a float attached to a
string with distances marked on it. .

Detai1ed information on data ca1ibration and data hand1ing is presented
in B1ack (1978a) and Wentland (1978).
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Figure 8.9 Reef Buggy in Position Over Ala Moana Reef
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Figure 8.10 Capacitance Wave Staff on Reef

Figure 8.11 Offshore Capacitance Gage
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Figure 8.12 Recording Equipment Aboard Research Vessel

METHOOS OF ANALYSIS

The analysis is based on the calibrated time series of water elevation
for the various stations. Waves were usually recorded continuously during
approximately one hour of measurement. The data were digitized for computer
handling at 2.5 points per second.

The digitized tapes were converted into files of 8096 data points: in
the ana1ysis 4096 points (corresponding with ~ 27.3 minutes of record), were
used for the computation of the wave spectrum.

A1though wave conditions during the one hour of measurement will vary
slightly, partly because of the changes in tide, for the analysis the time
series is considered as part of a stationary process.

During the 1976 series, the tide elevation was assumed to correspond with
predictions from the tide tab1e for Hono1ulu. During the 1978 experiments, in
order to improve accuracy, two tide recorders were emp10yed on the site and
water levels on the reef were measured with the visua1ly read manometers.

The time series of water elevation were analyzed in two different ways:

a. by calculating the statistical distributions of water level,wave
height, and wave period,

b. by computing the wave spectra to provide information on the
distribution of energy over various frequency components.
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To obtain wave elevation data the mean was subtracted from the data
points to obtain the deviations from the mean water level.

To obtain wave heights and wave periods a zero-upcrossing method was
used. The wave height estimated by the zero-upcrossing procedure is de­
pendent on the digitizing interval. To reduce the error a parabolic inter­
polation was applied which fitted a parabola to three data points (Black,1978a)

Because the data is in digital form, it is also necessary to interpolate
for the time at which the record crosses the mean.

For the computation of the wave spectra a F.F.T. procedure was used.

A small change in tide level during a series of measurements produces
a trend in the data. To remove this trend the time series was fitted to a
straight line by linear regression, which was then subtracted from the
record before data reduction.

Wave heights in Station #6 were obtained by filming the motion of a
tethered bouy (Brower, 1977). The filmed record was obtained with an 800 mm
lens on a spring wound Bolex 16 mm motion picture carera at 8 frames per
second.

The film was projected against a grid and the motion of the bouy was
obtained from a frame by frame analysis. The scale was obtained from the
known diameter of the bouy. The digital information was punched into
computer data cards in blocks of 256 data points. The digitizing interval
was 4 points per second.

~~ATER LEVEL, WAVE HEIGHT AND ~~AVE PERIOD VARIABILITY

For seven days of observation in 1976 parts of the calibrated time series
are shown in Figures 8.13-to 8.19. The fol1owing general characteristics may
be observed.

The waves in the offshore Station #7 usually show a group behavior with
groups of low and high waves following each other.

Such group behavior induces a modulating effect in the mass transport
associated with the breaking waves on the reef. This in turn induces a long
period oscillation on the reef, as visible in the records of probe 5 on July
30, 1976 and to alesser degree in probe 3 on August 4, 1976. The period of
these oscillations is of the order of a few minutes. Waves at Station #5
can be higher or lower than waves at Station #7, depending on shoaling and
dissipation characteristics of the incident waves.

Due to the energy dissipation, waves reduce in height from Station #5
to Station #1.

The time series of Stations #5 through #3 usual1y show steep, almost
vertical upcrossing characteristics, which are indicative of wave breaking.
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Figure 8.13 Wave Records, A1a Moana, Ju1y 30, 1976
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Figure 8.14 Wave Records, A1a Maana, August 4, 1976
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Figure 8.19 Wave Records, Ala Moana, September 23, 1976

Most breaking waves are characterized by a set of high frequency osci1-
lations fo11owing the crest. Despite the presence of these high frequency
osci11ations, the characteristics of the primary wave system is retained in
the records of the sha1low water probes on the reef.

Water Level Distribution

If f(h) signifies the probabi1ity density function for the discrete time
series ~(t), this function is defined by the probability statement
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Pr {h < ~2 h + dh} = f(h) dh (8.1)

lt can be reasoned that the water level fluctuations in ocean waves are
likely to be described by a stochastic Gaussian process. If the mean value
is reduced to zero the probability density function then conforms to the
Gaussian distribution

_h2
_ 1 2(/---e
l2TI cr

f(h) (8.2)

The probability density function is characterized by its moments, the
n_th moment being defined by

(8.3)

The first moment signifies the mean, the second moment the standard deviation.
The third moment gives the skewness, which describes the asymmetry of the
distribution and is defined by

M
S = 3;2 (8.4)

o

The fourth moment defines the kurtosis. The latter measures the peakedness of
the distribution:

M4
K = 4

o
For a Gaussian distribution S = 0 and K = 3.0.

(8.5)

A positive skewness value indicates that the function is skewed toward
the left, and a negative value means that it is skewed toward the right.

Examples of probability density functions for the Ala Moana reef data
have been presented in Chapter 7. For the offshore probe, the distribution
is not strictly Gaussian but deviations are relatively small. For the reef
stations, however, considerable deviation from the theoretical Gaussian
distribution was observed. Compare Figure 7.8. A positive skewness coef­
ficient may be noted in this figure.

Considering all records of 1976,the skewness coefficient ranged from
-0.25to +3.29.

lts variation along the traverse is shown in Figure 8.20.

The skewness is the greatest at probe 1 under onshore wind conditions.
The kurtosis coefficient is nearly 3.0 offshore (varying between 2.93and 3.69)

233



4.0 LEGEND:
x JUL 30.--. AUG 4

D----'l AUG 25--- SEP 7
0--0 SEP 14
•••••• SEP 16
0····0 SEP 23

3.0
a...

Cl) 2.0
Cl)
wz
3:w
~ 1.0

••·0........ ...

0.0

.....
.1••••. ._~,._---:-- ./

/'. . ,/
__ -O.........._ ,,/ ••• :.,,""

---:-<._ 0"
,/,/ --y". ,/

------.-
o 61 122 OFFSHORE- 1.0

-61 -30 30 92 152

DISTANCE FROM DATUM IN m

Figure 8.20 Sea level elevation skewness against position on the
reef, Ala Moana, 1976.

conform to a nearly Gaussian distribution and increases with decreasing depth
with its maximum value in Station #1, varying between 6.04 and 9.77 (Black,1978a)

As a result of the analysis, it is concluded that the Gaussian distribution
is not valid for very shallow water. For the deep water probe (Station #7), the
distribution may be considered nearly Gaussian.

Wave Height O;stribut;on

Using zero-upcrossing analysis, the distribution of wave heights have
been examined for var;ous records. Some results have already been presented
in Chapter 7 for discussion purposes.

Wave height distributions have been compared with the Rayleigh distri­
bution, the truncated Rayleigh distribution and the Weibull distribution. A
method to arrive at a wave height distribution using the energy dissipation
model, described in Chapters 4 and 5, is also discussed.

A detailed analysis of the Ala Moana data with respect to the first three
distributions is presented in Black (1978a).

Rayleigh Distribution

Wave heights for all Ala Moana stations were compared with the Rayleigh
distribution. The heights were broken up into 20 bins of width
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l1H= Hz,max
20 (8.6)

and the number in each bin was counëed.

For the gcodness of fit test, a x2 criterion was used, where

2 m 2
y 1 = L (E. - 0.) IE."m- . 1 1 1 1

1=
(8.7)

and m is the number of bins

E. is the theoretically expected number of waves in the bins, and1

ai is the observed number.

2The number of degrees of freedom for the X distribution is m - 1.

For the offshore station two out of five wave records did not exhibit a
Rayleigh distribution using the above given criterion. Since the Rayleigh
distribution is based on the assumption of a narrow band spectrum, a filtering
procedure was applied by removing all waves with period less than 2 seconds
from the record. The height of a wave with period less than 2 seconds was
compared with the height of the wave immediately following and the larger of
the two was retained. The goodness of fit appeared to be considerably improved
if the short period waves are eliminated. For the offshore probe all records
exhibited Rayleigh characteristics when this procedure was followed.

For the reef stations correspondence with a Rayleigh distribution is less
satisfactory. Of the total of 31 wave records in shallow water, nine exhibited
Rayleigh characteristics. Filtering did not improve the correspondence; on the
contrary, it reduced the number of fitting distributions from 9 to 6.

The Truncated Rayleigh Distpibution

In the truncated Rayleigh distribution, it is assumed that the initial
distribution in deep water is Rayleighian and that in shallow water the height
of the waves are limited by depth. Such distributions have been proposed by
Kuo and Kuo, (1974) and by Battjes (1972b)and Battjes and Jansen (1978).

The form of the truncated Rayleigh distribution proposed by Kuo and Kuo
(1975) is:

= 2x exp(-x2)
21 - exp(-xb)

f(x) = 0

f(x)

(8.8)
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where

x =

are dimension1ess wave heights.

For the determination of Hb a breaking criterion must be selected. Kuo

and Kuo (1975) proposed:

(8.9)

For the A1a Moana Reef it was found that

(8.10)

if Hb represents the mean of the minimum and maximum breaker height, averaged
for Stations 4 and 5. This is in close agreement with equation 8.9.

In app1ying the distribution given by equation 8.8 to probe 4 of the A1a
Moana data, it was found that just inside the first breaking region the truncated
distribution gave a good description of the actua1 distribution.

The Weibull Distribution

Since the Weibull distribution has two parameters (a ,8), its abi1ity to
describe observed distributions is greater than of the Rayleigh distribution.

By curve fitting, values of a and 8 can be determined so that well fitting
distributions can be obtained for the description of the wave height distribu­
tion.

In Lee and Black (1978) the characteristics of the Weibull distribution
are discussed and the usefulness of this distribution for wave heights is
demonstrated.

The variability of the coefficients a and 8 and the lack of theoretica1
foundation for the Weibull distribution reduce the value of this distribution
for prediction purposes.

The distribution a1so appears usefu1 to describe the variabi1ity of wave
period and to identify the shape of the wave spectrum.

Table 8.1 summarizes the results of the curve fitting of the Ala Moana
wave height data to the Weibull distribution. In all cases the 1inear cor­
re1ation coefficient p is nearly 1.0 so that given the proper va1ues of a
and 8, the Weibull distribution is applicable for all stations.

Beta is usually smaller than 2.0 which indicates that the distribution
is somewhat flatter than the Ray1eigh distribution.
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TABlE 8.1

RESUlTS OF CURVE-FITTING OF THE AlA MOANA
WAVE HEIGHT DATA TO THE WEIBUll DISTRIBUTION

JUlY 30 AUG 4 AUG 25 SEPT 7 SEPT 14 SEPT 16 SEPT 23
PROBE
NO.

a ~ P12 a s P12 a e P12 a s P12 a s P12 a ~ P12 a s P12

1 8.591 1.656 .983 2.594 1.439 .996 3.623 1.875 .992 2.131 1.597 .991

2 2.446 1.848 .991 5.497 1.786 .996 3.540 1.340 .999 3.130 2.054 .976 2.479 2.043 .982 2.071 1.509 .995

3 1.088 1.645 .998 4.616 2.183 .985 1.238 1.611 .992 1.432 1.985 .994 .957 1.877 .997 1.074 1.403 .991

4 1.34 2.12 .997 .739 1.988 .997 1.303 1.879 .989 .998 1.769 .990 2.141 2.037 .995 1.134 1.891 .995 1.349 1.708 .999

5 .382 2.18 .978 .345 2.082 .993 1.183 1.561 .994 .973 1.780 .998 .656 1.891 .999 .695 1.776 .992 .959 1.136 .989

7 .412 2.01 .998 1.171 1.283 .995 .405 1.786 .995 .726 1.628 .997 1.038 1.581 .995
----- ----



The mean va1ues of S are

1.770 ± 0.262 all stations

1.534 ± 0.195 all stations, onshore winds

1.983 ± 0.101 for breaker zone.

As a matter of comparison, S = 2 for the Ray1eigh distribution.

Va1ues of a can be determined if the va1ues of S and of the mean wave
height are known.

Another usefu1 equation for the re1ation between a and S, given by
B1ack (1978a), is

a = S x S
8-T p

(8.11)

where xp is the peak of the distribution of x .

As to the overall usefu1ness of the Weibull distribution to describe wave
height variabi1ity, it may be conc1uded that the distribution is very adequate
to descri be observed data. However, because of the variabil ity of the coef­
ficients a and S and the 1ack of theoretica1 foundation for this distribution,
it is of lesser significance for prediction purposes.

Wave Height Distribution in ShaZZ~ Water CaZauZated from Distribution
in Deep Water

The concepts of energy dissipation, deve10ped in Chapters 3 and 4, a1so
provide a basis for the derivation of a wave height distribution for waves in
sha110w water, whereby conditions in deep water provide the input for the
ca1cu1ations. The latter can be in the form of a joint probabi1ity density
distribution for wave height and wave periode

For each combination of Hand T, the joint probabi1ity

f(H,T) dH dT

determines the re1ative frequency that such combination exists.

Using the energy dissipation model, a wave with characteristics H, T
may be carried into sha110w water and its attenuation of wave height can be
assessed.

This model requires a breaking criterion as we11 as a criterion that
defines the end of breaking for a given wave.

The approach discussed above is on1y strict1y va1id if no energy transfer
takes p1ace from the frequency band considered to higher frequencies. In
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rea1ity such transfer of energy does occur, however, and corrections have
to be app1ied to account for this. The latter makes this procedure 1ess
usefu1 for engineering purposes.

Wave Period Distribution

The wave period distributions were compared with the fo11owing theore­
tica1 distributions:

• the Ray1eigh distribution,

a symmetrica1 probabi1ity density function proposed by Longuet­
Higgins (1975),

• a Weibull distribution.

Due to the formation of secondary waves when waves move into sha110w
water and break, there is a non1inear change in period behavior during this
process, which affects the period distributions.

RayZeigh Distribution

A1though Bretschneider (1959) found that the wave length or period
squared fo110ws a Rayleigh dist~ibution, ana1ysis of the A1a.Moana wave data
suggests that the period to the first power offers a better approximation,
although there is a considerab1e variation in the peakedness of the distribu­
tion with the position on the reef (B1ack, 1978a).

Longuet-Higgins Distribution

The observed period distributions have a positive skewness (with tai1 to
the right) and therefore do not fit Longuet-Higgins (1975) theoretica1
distribution (B1ack, 1978a).

WeibulZ Distribution

Similarly to the procedures fol10wed for wave height, the Weibull distri­
bution with its 2 parameters offers an attractive model to describe the period
distribution. Again, the 1ack of a theoretica1 foundation makes this model
1ess va1uable for prediction purposes (B1ack, 1978b, and Lee and B1ack, 1978).

Variation of Significant Wave Height and Wave Period Along the
Measurement Traverse

For each station and for each day of measurement the significant wave
height was computed.

Figure 8.21 shows the ratio between the significant wave height at the
various reef stations and at Station #7 in deep water.
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This ratio usually has its maximum value at Station #6 and rapidly decreases
in shoreward direction. The increase in wave height is primarily due to
shoaling, whereas the reduction in wave height is dominated by turbulent
dissipation.

Although ~ll days of measurement demonstrate the same overall trend,
there are also same discrepancies. On September 14, 16 and 23, 1976, an
increase in wave height may be observed from Station #4 to #3, which can
only be partly explained from shoaling. Visual observations of the wave
directions on the reef suggest that at times wave energy from the adjacent
reef section between the traverse and the harbar entrance affects the
measurements along the traverse due to wave refraction.

The variation in significant wave period along the traverse is shown in
Figure 8.22. The significant period is again normalized by dividing it by
the deep water value. There are significant differences of period behavior
for the various days of observation. Input of wave energy from adjacent
areas mayalso play a role in the observed period behavior.
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Figure 8.22 Significant period normalized by the deep water value,
against distance from the datum, Ala Moana, 1976.

THE WAVE SPECTRA

The wave spectrum is a powerful tool in wave analysis. In Chapter 7 the
theoretical background of the spectrum and the various methads of calculation
were discussed. In the following section the results of some calculations
will be presented.
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Since the characteristics of the discrete time series (length and sampling
interval) are related to the required charattertistics of the spectrum, the
following aspects are considered for the determination of the required record
length and sample distance.

1. Because of computer efficiency, a Fast Fourier Transform technique
is used.

2. The resolving power of the spectrum should be such that in the low
frequency range a distinction can be made between the lowest swell
frequency to be expected (f ~ 0.05 Hz) and the lower frequency
components such as surf beat (f < 0.03 Hz). A minimum of four
independent spectral density estimates between zero frequency and
f = 0.05 Hz is considered desirable. This criterion implies that
the width of the spectral filter should not exceed 0.0125 Hz.

3. In order to improve the accuracy of the spectral estimates, two
possible methods may be employed for the Fourier spectrum:

(i) Averaging over the ensemble, whereby the time series is cut
into a number of shorter series of equal length and an
average value is computed for all spectral estimates for
the same frequency;

(ii) The time series is viewed as one realization of the sto­
chastic process and the averaging takes place over a number
of adjoining elementary frequency bands.

In this study the second method is followed. Assuming a x2 dis­
tribution of the spectral estimates, the number of degrees of
freedom should be sufficiently high to obtain results of adequate
accuracy.

The number of degrees of freedom was chosen to be 40, which cor­
responds to averaging over 20 adjoining elementary frequency bands

of width i, T being the length of the time series.

In view of requirement (2), this leads to an elementary band width
of

~f' ~ 0'~625 = 0.00625 Hz

The corresponding length of the time series is then

T = ~~I ~ 1600 seconds

4. The sampling interval ~t to be selected should be small enough so
that water level and wave height statistics based on the record do
not contain serious errors. The time step is furthermore related to
the Nyquist frequency by
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fN = _1_
2llt (8.12)

The choice of 6t and the corresponding value of fN would require that
the amount of energy to be cut off beyond the Nyquist frequency should
be negligible.

Since part of the data is collected in analogue form, from which
digitizing has to be done, the value of the time step should not
be smaller than necessary.

In view of the above considerations, a time step of 0.4 seconds was
selected for the reef stations, corresponding to a sampling rate of
2.5 per second. For the offshore station the digitizing was done
with 2.605 points per second, which requirement was associated with
the digitizing procedures for the offshore record.

A time step 6t = 0.4 seconds corresponds to a Nyquist frequency

fN = 1.25 Hz

5. The above criteria lead to a number of data points for each record
1600of ""0:"4 'V 4000.

In view of the fact that F.F.T. procedures are particularly effective
if the number of data points is an integer power of 2, this gives

N = 4096

and

T = 1638.4 sec

The corresponding number of data points on the wave spectrum is then

N/2 = 2048

The elernentary frequency based width is then

1 .
llfl = 1638.4 = 0.00610 Hz

and the wid~h of the fil1er band

6f = 20 x llfl = 0.0122 Hz'

The latter value is well in agreement with the requirement listed under
(2).
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6. The total length of the time series to be used for analysis is
limited by the requirement that the assumption of stationarity is not
violated .. The selected duration of 1638 seconds is not considered
too long for this criterion.

Although during the execution of the experiment time series of about
one hour were measured, only a part of this series was actually used
for the analysis. This also provided a means to remove bad data
from the record and so obtain uniformity for all record lengths.

Spectra from Field Measurements

The computed spectra for the Ala Moana data are shown in Figures 8.23
through 8.29. In each figure the energy density spectra for Stations #1 -
#5 on the reef and Station #7 in deep water are summarized.

The results of the computations for Station #6 are not always included
in the analysis because of uncertainties regarding the accuracy of certain
floating bouy measurements. Although the spectra for Station #6 often fitted
well with the other measurements, some probable errors occured which are
attributed to the inertia of the bouy in breaking waves.

The offshore station usually has a relatively narrow band around the
peak frequency with low energy densities for the lower and higher frequencies.

Going shoreward from the offshore station, energy densities tend to
increase due to shoaling and to decrease due to energy losses (bottom friction
and breaking losses).

The total area under the curve equals the total mean energy of the wave

record(l), divided by pg:

h ~ t) = [G (f) df = i

which is equal to the variance of the time series. The maximum of 02 usually
occurs at Station #6.

Inland of Station #6 energy dissipation usually exceeds the effect of
shoaling. Consequently, the total mean energy decreases over the reef.

In Stations #1 and #2 the spectrum is usually very flat but the energy
density is still somewhat higher near the peak frequency of the offshore probe.

The energy density in the low frequency bands for the stations on the reef
is in most cases higher than the energy density for the offshore station. For
the very low frequencies energy losses are small and shoaling effects are
considerable. In ad~ition, some wave reflection from shore may occur.

(1) For high nonlinear waves in shallow water (solitary waves) this is not
completely correct. See Chapter 7.

244



10

u•...
N
E

0.1c

>­
t-
Cl)
Z
Wo
....J

""et:t­
U
W
Q.
Cl)

0.01

0.001

0.0001
o

Figure 8.23

LEGEND:
PROBE

4
• 5

I95% CONFIDENCEI INTERVAL

0.10 0.20 0.30 0.40 0.50 0.60
FREQUENCY in Hz

Fourier spectrum for time series of 4096 data points
digitised at 2.5 points per second. Each spectra1
estimate has 40 degrees of freedom, A1a Moana,
Ju1y 30, 1976.

245



la LEGEND:
PROBE

0 2
• 3
a 4
• 5
x 7

t 95% CONFIDENCE
INTERVAL

ucu
."

N
E

0.1
c:

>-
I-
Cl)
Z
UJ
0

...J
<l 0.01a::
I-
u
UJe,
Cl)

0.001

0.0001
o 0.10 0.20 0.30 0.40 0.50

FREQUENCY in Hz

Figure 8.24 Fourier spectrum for time series of 4096 data points
digitised at 2.5 points per second. Each spectral
estimate has 40 degrees of freedan, A1a Moana,
August 4, 1976.

246



0.001

0.000 I

Figure 8.25

o 0.10 0.20 0.30 0.40 0.50 0.60
FREQUENCY in Hz

Fourier spectrum for time series of 4096 data points
digitised at 2.5 points per second. Each spectra1
estimate has 40 degrees of freedom, A1a Moana,
August 25, 1976.

247



0.001

0.0001
o 0.10 0.20 0.30 0.40 0.50 0.60

FREQUENCY in Hz
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In the verY'low frequency range « 0.02 Hz), energy· in,the speçtrum may
be associated with a "beat" effect: the generation of a long period oscil­
lation on the reef due to group behavior of the incoming waves.

In order to increase the plotting accuracy for the lowet·energy densities
in the high frequency range, the field spectra were plotted on a simi10garithmic
scale. In the figures the confidence limit for a 95% probability is also shown.
The latter is based on a x2 distribution with 40 degrees of freedom (see also
Chapter 7).
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Figures 8.30 through 8.36 show cumu1ative energy contours. The cumu1ative
energy is given by

J:G(f) df = cum energy (8.13)

whereby the upper boundary f is let to vary.
Seven·frequencies between f = 0 and f = fN were se1ected in such a way that
the energy amp1ification or attenuation could be examined in greater detail.

The figures show the contours· of cumu1ative energy versus position on
the reef. The uppermost curve is for f = 1.25 Hz (Nyquist frequency) and
thus gives the tota1 mean energy in the spectrum.

The cumu1ative energy contours in Figures 8.30 through 8.36 are obtained
from the spectrum. For Stations #1 - #5, interpolation is done by straight
lines, which is not expected to give erroneous resu1ts

Because of the uncertainties invo1ved in the accuracy of the spectrum
for Station #6, on1y the tota1 mean energy is shown for that station (in
order to indicate the considerab1e effect of shoa1ing) and connecting
1ines \'Iere drawn between Stations #5 and #7 for values of f < fN"

The various days of measurement appear to have simi1arities but also
show distinct differences. Most energy appears in the frequencies below
0.4 Hz, and very little energy is present above 0.8 Hz.

In the fo1lowing sections further consideration will be given to the
changes in the energy spectrum on the reef, due to energy dissipation.

The Shape of the Spectrum

Lee and B1ack (1978) have shown that the shape of the spectra for the
various stations on the reef may we11 be described by the Weibull distribution
curve, if the coefficient B is allowed to vary.

Figure 8.37 shows the theoretica1 spectra based on the Weibull distribu­
tion curve for varying va1ues of 6, and for unit variance.

A comparison with the observed spectra shows that this model is suitable
for a description of the calculated spectra.

By means of curve fitting, the values of a and S were computed for the
various days of measurement. The results are summarized in Tab1e 8.2.

It is seen that Saverages 1.79 ± 0.22 on the reef as against an expected
va1ue of S = 4 for deep water waves in a generating area (Bretschneider, 1959).

The form of the wave spectrum may be described by

(8.14)

252



0.03 LEGEND:
N 0--0 f = 0.05E .--. 0.10z

0.15o---c
>- --- 0.21Co!) 0.020:: o•••• 0 0.40w
z •....• 0.81w
w 0.···0 1.25
>
~ 0.01
...J
::>
:::E
::>
u

0
-50 0

Figure 8.30

0.04

N
E 0.03

0.02

0.01

o
-50

Figure 8.31

..~....
...... 0.. ... ... ... ... ... ... .c >.. ... ... ... ... ........--.:-... ",-... .,;~~..,,///

o· ",."
.,;

0---------0

50 100 150
DISTANCE FROM DATUM IN m

Contours of cumulative energy from frequency 0.0 to F, where
F is given on the symbol table, against position on the reef,
Ala Moana, July 30, 1976.

LEGEND:
0--0 f = 0.05 .~.~~~~~~~~~~~~..: ...

•:- 0- ••••••••••••••••••••••••••••.. ... ... ... ... .
.:t : -.. ... ... ... ... ... ... ... ... ... ... .

."iÏ ... _
.:. . ---.. . _--

.::.. Ó .-
1":- ••••• //

.11'•• •••• //",:.p. ,/_. /.::.. ,/e ~-----."
~ /
1)"// ,,0-

// --- ----~-----------er" --0-

0.10--.
o----a-- 0.15

0.21
0.400•••• 0•....• 0.81

0•• •·0 1.25 _.

o 50 100 150

DISTANCE FROM DATUM IN m

Contours of cumulative energy from frequency 0.0 to F, where
F is given on the symbol table, against position on the reef,
Ala Moana, August 4, 1976.

253



2.0

N
E
z
N,
o

1.5

x
>­~a::
LtJ
Z
LtJ

LtJ
>
I-ex
..J 0.5
:::::>
:E
:::::>
u

1.0

Figure 8.32

2.0

N
E
z
N,
o

1.5

x
>­~a::
LtJ 1.0
z
LtJ

LtJ
>
~:3 0.5
:E
:::::>
u

Figure 8.33

LEGEND: 0.0329 m2 .P ••••---:"i~'.!..'-0--0 f = 0.05.--. 0.10
o---c 0.15-- 0.21
0····0 0.40•..... 0.81

...
..

e•••·e I.25

_____.o- _
o ~ ..J_ ..J_ ..J_ -L ~ __~

-50 o 50 100 150

DISTANCE FROM DATUM IN m

I •• '.'.

Contours of cumu1ative energy from frequency 0.0 to F, where F
is given on the symbo1 tab1e, against position on the reef,
A1a Moana, August 25, 1976.

0.0339 m2 •• .Il..'~~t:....
.....

.~..,
.::. p'. .'. ..-. ..:: .

...··r .­.....:....... .......... .s=:": .-
•
•:_ •••• J:)•••..•....:.. " .'. ..,'. .'. .... .-.' .... .... ... ... .- ........ .~~..

LEGEND:
f = 0.050--0--. 0.10

0.15
0.21
0.40...... 0.81

c... -0 1.25

150

__ 0-o
-50 o 50 100

DISTANCE FROM DATUM IN m

Contours of cumulative energy from frequency 0.0 to F, where F
is given on the symbol table, against position on the reef,
Ala Moana, September 7, 1976.

254



0.05 LEGEND:
0--0 f = 0.05

--.N 0.04E 0··.·0
z ......
N D··· -0,
0

x 0.03
>-
Cla::
LUz
LU

LU 0.02
>
~
...J
::l
:E
::l
o 0.0 I

'.O.IJ
0.15
0.21
0.40
0.81
1.25

_0

o L---------~--~ L_ __ -------L-- ~ __L_ _L__ ~

-50 o 50 100 150
DISTANCE FROM DATUM IN m

Figure 8.34. -Contours of cumu1.ative energy from frequency O~O to F,
where F is given on the symbo1 tab1e, against position
on the reef, A1a Moana, September 14, 1976

255



2.5

N
E
z

2.0
N.
Q
x
>-
(!)
a:: 1.5UJz
UJ

UJ
>
i=ex 1.0..J
;:)
~
;:)
u

0.5

3.0 LEGEND:
0--0 f = 0.05
• --. 0.10

0.0425 m 2_.a;.D;"j·fF-o'__--
••••i 0 ••••..........

c--D 0.15- 0.21
0 ••• -0 0.40

•••••• 0.81
D····c 1.25

......- .... ...-.-.. .-
/ . ' .: .. ... .-. ...-...tf ••••_. ,

:.. .:...-
'..
" .
:: 0·-
" ... .'..

•A. :: :.~... ~.::: -, z- ~::: .::. ~:.... ,.
:: Ot-. .::. ~:

::::. .:::":. ~.:.. " ... . . ,... . .. .:. ,,':•• • •• .ad •::: ... ..._.-::.. -.. :
:~ ·0..,..,..,-.-...~.

......0•.....
0"

o
-50 o 50 100 150

DISTANCE FROM DATUM IN m

Figure 8.35 Contours of cumu1ative energy from frequency 0.0 to F,
where F is given on the symbo1 tab1e, against position
on the reef, A1a Moana, September 16, 1976

256



2.0

N
E
z

N.o 1.5

x
>­
(.!)

ffi I.0
Z
LIJ

o
-50

"

LEGEND:
0--0 f = 0.05.--. 0.10
o---a 0.15- 0.21
0····0 0.40...... 0.81
c····a ·1.25 ......

0.0397 .w...2........,t--._A_•.,:.• ....__............. . .
i·· . ._- .. . .

.. 1;•••••- ....: 1".. of".. ... .- .- .

o 50 100 150
DISTANCE FROM DATUM IN m

Confours of'cumulative erJergy from frequency 0.0 to F,
where F is given on the symbol table, against position
on the reef, Ala Moana, September 23, 1976

. '...i' t

Figure 8.36

257



2.0

{3 = 5

u 1.5
41•

Cl!
E
z
)0-
t-
en 1.0
z
""0
...J«a:
t-
(.)

"" 0.5Iloen

o
0.00 0.10 0.20 0.30 0.40 0.50

FREQUENCY IN Hz

Figure 8.37 Theoretical spectra with the shape of
Weibull distribution with unit var;ance,
peak frequency fp = 0.1 Hz for B = 1.5.

(from Black, 1978a)

258

0.60



TABLE 8.2

RESULTS OF CURVE-FITIING OF OBSERVED
WAVE SPECTRA TO AWEIBULL DISTRIBUTION

'"lT1\0

30 JULY 1976 4 AUG 1976 25 AUG 1976 7 SEPT 1976 14 SEPT 1976 16 SEPT 1976 23 SEPT 1976
PROBE
NO. a P12 a a a a a aa a P12 a P12 a P12 a P12 a P12 a P12

1 45.36 1.380 .92 17.29 1.886 .90 20.75 1.700 .92 11.23 2.049 .91

2 10.96 1.778 .91 25.09 1.362 .89 16.44 1.704 .91 25.67 1.647 .90 36.18 1.368 .90 13.15 1.837 .91

3 12.14 1.725 .89 36.05 1.443 .92 14.71 2.025 .91 20.20 1.746 .90 19.63 1.861 .91 31.63 1.727 .87

4 9.805 1.803 .87 12.38 1.966 .90 25.08 1.697 .91 18.24 1.892 .91 18.93 1.578 .90 16.41 1.810 .91 25.70 1.545 .91

5 6.826 2.028 .91 5.950 2.185 .91 11.34 1.915 .93 7.263 2.065 .93 7.636 2.120 .93 12.95 1.909 .91 12.42 1.916 .91

7 3.789 2.252 .96 5.485 2.062 .95 2.692 2.251 .97 . 3.519 2.059 .97 4.178 2.162 .94

(Entire spectrum. fN = 1.25 Hz • a = a' 10-3)



where E is the total energy of the spectrum (with dimension [~2]), f the
frequency and G(f) the spectral density; a and S determine the shape of the
spectrum and have been determined by curve fitting.

The procedures on energy dissipation will provide values of E across the
reef.

It can be shown that the coefficient a is related to the coefficient S
and to the peak frequency fp.

Based on the observations and curve fitting of S the best estimates for
the shape of the spectrum are the following:

(1) Swell spectrum (12 m depth)

G(f) = 4 El fp' (f/fpf4 exp[-j (f/fp)-3] (8.15)

(2) Shallow water, offshore edge of reef (1.5 m depth)

(8.16)

(3) Shallow water, near shore side of reef (0.75 m depth)

(8.17)

For a more detailed analysis of curve fitting procedures and the general
characteristics of the Weibull spectrum, reference is made to Black (1978a, b) and
Lee and Black (1978).

ENERGY DISSIPATION COEFFICIENTS

The main forms of energy dissipation for waves approaching a shallow reef
are bottom friction and turbulent dissipation.. The theoretical back­
ground of these phenomena was discussed in Chapters 3 and 4 ..

In the offshore section, between Station #7 and the breaking point,
the energy dissipation is governed by the bottom friction. Inshore of the
breaking point the energy losses due to turbulence dominate.

Dissipation of energy may be expressed by the relation (see Chapter 4):

dF- = -(E + E )dx f b

whereby ~~ is the gradient in the energy flux,

and Ef and Eb denote respectively the mean rate of energy dissipation per

unit of area due to friction and turbulence.
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One of the major objectives of this study is to quantify the respective
loss coefficients from experiments. The values of Ef and Eb may be evaluated
from both field and model data. In the following, the analysis of the field'
data will be discussed~

The values of Eb and Ef were defined by

and

where

Ef + Eb = Et {total dissipation).

The expression for Ef is based on a linear wave model and on the assumption
that the bottom shear stress is proportional to the square of the orbital
velocity near the bottom.

If the waves are nonlinear a certain deviation from the linear friction
coefficient may be expected. Similarly, dèviations may be pössible if waves
are breaking (Chapter 3).

From the results of the experiments and from a comparison with results
obtained by other authors, it will be established if nonlinearity and breaking
will have significant effects on the friction coefficient.

Analysis of Field Data for the Determination of Energy Loss Parameters

Regarding the procedures to determine fw from the field experiments, the
following considerations are of importance.

The computations may be carried out by using the normalized zero-upcrossing
spectrum, which is known from observations and by considering the energy
losses to which the waves within a f'requency bandwidth ~f are subjected.

The normalized zero-upcrossing spectrum'was defined by

mL 1H 2
1 1=1 8 if

S(f} = '6 I1fN

where m represents the number of waves in the bandwidth I1fand N the total
number of waves in the record. (See Chapter 7).
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The norma1ization parameter 6 is re1ated to two characteristic aspects
of the waves viz. the non1inearity of the waves and the zero-upcrossing
procedure, by which energy in high frequency components (which do not have
a zero-upcrossing) is e1iminated. (1) The first effect tends to make 6 > 1,
whereas the second effect tends to make 6 < 1.

The resu1tant effect may make 0 either smaller or larger than 1. Results
of calculations of 0 are 1isted in Table 8.3.

The change in the energy S(f) 6f over a section 6X is not only caused by
energy losses due to friction and breaking, but also to a shift of energy
toward other frequencies.

If for each frequency band 6f, both the numerical value of 0 and the
amount of energy shift would be known or could be calculated independent1y,
the sum of the friction losses and breaking losses could be calculated for
this frequency band.

Here a simp1ified method of calculating friction and breaking losses
wi1l be utilized, whereby this effect of interfrequency energy exchange is
neglected.

The first assumption is that for a given section the friction coefficient
for all waves has the same value, representing an average value.

Although for steady wave motion the friction coefficient is frequency­
a6

dependent, and fw is related to r- for turbulent-rough boundaries, in a random
s

succession of waves of varying period the boundary resistance is likely not to
respond to individual waves but rather to the spectrum as a whole. Therefore,
the assumption of a mean value of the friction coefficient for all waves of the
spectrum seems not too objectionable.

The second assumption re1ates the normalization factor 0 to the who1e
spectrum by taking:

11Ï1H.2 = variance = 02o N 1 8 1

The third assumption is that the energy flux associated with an individual
wave Hi is reduced by friction and by breaking, if it occurs.

By introducing the known calculated values of 0 at the beginning and at
the end of a section, an energy balance equation may be obtained.

The resu1t is one equation with one unknown if only bottom friction is
considered, or with two unknowns if both friction and breaking are invo1ved.

(1) A possib1e third aspect is related to the period distribution of the
zero-upcrossing waves.
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TABLE 8.3

VALUES OF NORMALIZATION COEFFICIENT 0 FROM MEASUREMENTS

Date Probe lr 1 H2 Var;anceN 8 0
(m2) (m2)

7-30-76 5 .0283 .0296 .9561
4 .0083 .0134 .6.181

8-4-76 7 .0281 .0356 .7909
5 .0324 .0370 .8754
4 .0164 .0198 .8300
3 .0121 .0139 .8653
2 .0040 .0055 .7220

8-25-76 7 .0123 .0156 .7863
6 .0195 .0329 .5936
5 .0103 .0117 .8762
4 .0096 .0068 1.4110
3 .0025 .0036 .6795
2 .0017 .0024 .7000
1 .0008 .0011 .7250

9-7-76 6 .0220 .0339 .6488
5 .0123 .0150 .8242
4 .0129 .0107 1.2070
3 .0109 .0091 1.2000
2 .0023 .0026 .8786
1 .0038 .0027 1.4034

9-14-76 7 .0332 .0451 .7364
6 .0695 .0790 .8805
5 .0189 .0228 .8322
4 .0056 .OÓ73 .7570
3 .0079 .0095 .8304
2 .0029 .0040 .7349

9-16-76 7 .0194 .0265 .7309
6 .0291 .0424 .6859
5 .0186 .0204 .9109
4 .0105 .0094 1.1149
3 .0124 .0163 .7657
2 .0026 .0053 .7263
1 .0037 .7100

9-23-76 7 .0128 .0179 .7124
6 .0227 .0396 .5725
5 .0186 .0155 1.2012
4 .0090 .0108 .8353
3 .0136 .0144 .9426
2 .0049 .0058 .8581
1 .0049 .0043 1.1522
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The above procedure partly accounts for the generation of higher harmonies
due to the introduction of the values of ê. It does not account, however, for
the energy losses of these higher harmonies over the section considered.

It is felt that the above simplifications are justified in the light of
other unknowns and uncertainties.

If only friction is involved, which is predominently the case for the
Section 7 - 6 of the measurement traverse, the value of the friction coef­
ficient fw can be determined from the above precedures.

If both friction and breaking occur, it leads to an equation of the type:

(8.18)

whereby pand q are numeri cal values obtained from the analysis.

Relationship 8.18 is established by assuming a value of one of the two
parameters; eg. ç and determining the other (fw) by matching the computed and
measured energy value for the station at the end of the section considered.

Graphical representations of the relationship 8.18 are given in Figure
8.38. It should be noted that the relationship fw - ç is not a relationship
between the actual values of these parameters, but rather it indicates the
various combinations of the two parameters that produce the same loss of
energy.

In the procedure for selecting the most likely value of ç, use
is made of Figure 4.24 where the parameter ç Fr is plotted against the breaking

H a

height index Yb = hb .
~

By evaluating Yb and making assumptions for Fr and a (see Chapter 4),

the value of ç may be determined.

For example, Yb = 0.65, gives ç :r = 0.8. Assuming a = 0.75 and Fr = 1.2
one finds ç = .5 which appears to be a fair value for the waves breaking on the
reef slope (Section 6 - 5 of traverse). For the inner reef sections with smaller
depths, lower values of ç may be expected. Although both Fr and a decrease in shore­
ward direction actoss the reef, a is expected to decrease more rapidly than Fr.

In the calculation of the energy flux the effect of nonlinearity of
the waves is to be evaluated, both with respect to the calculation of the
mean energy and of the group speed.

A further discussion on the computational procedures used for this analysis
is presented in Chapter 10.
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EXPERIMENTAL VALUES OF FRICTION AND BREAKING COEFFICIENT

Based on the above described procedures values for the friction coefficient
and breaking coefficient were computed for the various sections of the traverse.

Therelationships between fw and ç as represented in Figure 8.38 give rise
to the following discussion.

It is to be noted that a diagram of this type only exists if both friction
and breaking losses occur in the section considered.

Data from various sections often show considerable variation for the various
days of observation.

The steepness of the curve, representing the relationship between fw and ç

is a measure of the relative importance of breaking in the energy loss equation:
a close to vertical line in these diagrams corresponds to a relatively small
amount of energy loss due to breaking compared to friction. In random waves
this usually means that the number of breaking waves is only a small percentage
of the total number of waves in the record, so that the value of fw is only to
a very minor degree affected by the selected value of ç.

From this observation, breaking would be most prominent in Section 5 - 4
which is the section near the edge of the reef. Based on the theoretical curve
of Figure 4.24 it is assumed that ç = 1 is a practical upper limit for this
parameter. The low values of both fw and ç for 9-7-76 and 8-25-76 are hard to
explain except by experimental errors due to deviations from the assumed two­
dimensional conditions.

Based on the graphs of Figure 8.38 and the selection of a proper value of
ç, values of fw can be determined. For most of the data a value of ç = 0.5 will
produce reasonable values for the friction coefficient. The results of this
analysis are listed in Table 8.4.

It is of interest to compare these results with values found in the
literature. For this the experimental and analytical work of Jonsson (1966),
Riedel, et al. (1972) and Kajiura (1968) is of interest (See Chapter 3).

These authors found that for the turbulent-rough regime the friction
ao

coefficient may be expressed as a function of the parameter r- ' where ao is
s

the maximum horizontal excursion of a water particle near the bottom from the
mean position and ks is the bottom roughness.

Their results are based on linear wave motion and steady conditions.

In order to use the same type of relationship for a random wave motion, as
experienced in the field, a representative wave has to be selected, the
parameters of which are used to compute the (linear) bottom velocity Umax and
the corresponding value of ao·
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TABLE 8.4

RESULTS FROM FIELD EXPERIHENTS REGARDING fw AND ç

SECTION DATE fw ç*
UMAX aö

RE
(m sec-1) ç

7-6 8-4-76 .42 2.15 5- - 2.30 x 104
8-25-76 - - .27 1.39 9.49 x 105
9-14-76 - - .46 2.43 2.88 x 105
9-16-76 .115 .50 .38 2.12 2.07 x 105
9-23-76 - - .31 1.95 1.57 x 10

7-5 8-4-76 .09 .50 .42 2.15 52.30 x 104
8-25-76 .11 0 .27 1.39 9.49 x 105
9-14-76 .41 .50 .46 2.43 2.88 x 10
9-16-76 - - .38 -

1.57 ; 1059-23-76 .09 .50 .31 1.95

6-5 8-25-76 .81 .50 .82 3.95 58.33 x 105
9-7-76 .48 .50 .61 2.66 4.15xl06

9-14-76 .63 .50 1.50 6.06 2.33 x 106
9-16-76 .33 .50 1.17 5.46 1.63 x 106
9-23-76 .16 .50 .95 4.77 1.17 x 10

5-4 7-30-76 .09 .4 1.16 7.34 62.18 x 106
8-4-76 .05 .4 1.89 8.70 4.20 x 105

8-25-76 .03 .06 .83 4.28 7.03 x 106
9-7-76 .08 .12 .90 4.33 1.49 x 106

9-14-76 .19 .4 .80 3.43 1.55 x 106
9-16-76 .09 .4 1.07 5.41 1.00 x 105
9-23-76 .16 .4 1.10 5.51 9.13 x 10

4-3 8-4-76 .14 .3 .92 4.80 61.13 x 105
8-25-76 .18 .3 .65 2.80 4.65 x 105
9-7-76 .015 .04 .97 4.20 4.73 x 105

9-14-76 - - .66 2.79 4.73 x 105
9-16-76 - - .90 3.66 8.46 x 105
9-23-76 - - .85 2.86 6.24 x 10

4-2 8-4-76 .73 3.27 1 5- - 6.07 x 05
8-25-76 - - .60 3.20 4.94 x 105
9-7-76 - - .72 3.51 6.45 x 105

9-14-76 .18 .3 •51 2.02 . 2.62 x 105
9-16-76 .21 .3 .66 3.18 5.42 x 105
9-23-76 .11 .3 .69 2.66 4.69 x 10

3-2 8-4-76 .63 .3 .61 3.10 54.98 x 105
8-25-76 .13 .3 .35 1.41 1.28 x 105
9-7-76 .43 .3 .62 2.83 4.51 x 105

9-14-76 .61 .3 .53 1.73 2.35 x 105
9-16-76 .59 .3 .66 2.10 3.54 x 105
9-23-76 .15 .3 .69 2.17 3.81 x 10

8-25-76 1.0 .3 .25 .99 4
2-1 6.32 x 105

9-7-76 - - .39 2.02 2.02 x 105
9-16-76 .45 .3 .38 1.38 1.36 x 105
9-23-76 - - .50 2.05 2.64 x 10

* Assumed va1ues of ç
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For this, rather subjective1y, the significant wave height and wave period
have been selected.

Since the bottom of the traverse is sloping, the representative depth and
wave height are selected in the midd1e of the section.

Eva1uation of the wave Reyno1ds numbers indicate that for all field data,
the wave Reyno1ds number, based on the previously defined criteria, is above 104,
so that a turbu1ent-rough regime may be expected.

'a
Figure 8.39 shows the re1ationship between f and kO , for an assumed

w s
value of ks of 0.t5 m. The latter value was estimated based on the relatively
rough bottom conditions. Reference is made to Figure 8.40 showing underwater­
photographs of the reef bottom taken by Dave Wentland in the summer of 1978.

Figure 8.39 shows the curves proposed by the three authors mentioned. A large
number of data points fall within or near the curves by these authors, but
there are also some significant deviations for which there may be acceptable
explanations.

The two points with extreme1y 10w friction coefficients cou1d have been
p1agued by experimenta1 errors, as discussed before (including three-dimensiona1
effects). These points refer to Sections 5 - 4 and 4 - 3, respectively.

The high va1ues for Section 6 - 5 may be explained by the fact that this
section is characterized by p1unging breakers. According to discussions in
Chapter 3 regarding the effect of breaking on the value of the friction
coefficient, higher va1ues than app1icable to regu1ar waves of low amplitude
may be expected in a breaking wave regime.

Overall the agreement seems to be closest to the curves proposed by Jonsson
(1966), but a change in the estimated value of ks may affect this.

The high va1ues of fw found for the nearshore reef section (1 - 2) are
ao

in agreement with the increase in f for lower r- va1ues. However, they are
s

considerably higher than Jonssonls proposed maximum value of 0.3 for 10w
aor- values (Jonsson,1978a). The turbulence induced by breaking on the reef may
s

be responsib1e for this.

It is of interest to note that the computed values of the friction
coefficients for the shal10w reef may include significant errors for the
following reasons:

Wave energy values are smal1 and are affected by input from offshore
winds.

The problem is not completely two-dimensional; observations on
September 14, 16 and 23, 1976, show an energy level at Station 3
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1.0 LEGEND:.6 DATE ~ECTIQN
• JUL 30, 1976 7 7-6.6 0 AUG 4,1976 7-5
• AUG25, 1976 6 6-5
0 SEP 7, 1976 5 5-4

06 • SEP 14, 1976 4 4 - 3/2
0 SEP 16, 1976 3 3 - 2
x SEP 23, 1976 2 2 - I

Figure 8.39 Wave Bottom Friction Coefficient From Field Experiments

which is higher than at Station 4. This cannot be explained from
shoaling and suggests energy input from adjacent reef areas.

The highly irregular reef surface makes it difficult to properly
estimate kso

In the calculation of the energy dissipation coefficients from the field
data, a difficulty arose as to the determination of the number of waves that
were subject to breaking and consequently had breaking losses.

Use of the theoretical and empirical criteria to determine if a wave breaks
and where, provided an insufficient number of breaking waves in the record, and
would lead to erroneous results.

Another way to evaluate the number of breakers in a record is by means of
a visual analysis of the wave record. Particularly in Stations 4 and 3 the
breaking waves in the record were clearly identifiable by their steep rising
fronts.

Using this number of breaking waves in relation to the observed probability
density function of wave heights for the station considered, a value for the

H
ratio yl = ~ could be established, Hb being the lowest wave height that would
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break at that station.
_ Hm

The value y - 11 ' Hm being the maximum wave height

in the record, was also determined.

Values of Yl' and Y2 established in the above described manners are listed
in Table 8.5

The values of Y2 are usually lower than expected based on existing theories
such as discussed in Chapter 4. The use of the actual time series has shown to
be informative as to the nature of the waves in a specific station.

Additional research into the nature of turbulence in a wave breaking
regime is required to further explore the effect of turbulence on the bottom
shear stress.

As expected the effect of the wave Reynolds number does not have a
significant influence on the friction coefficients for the field. Referènce is
made to Figure 8.41 where the horizontal coordinate is the wave Reynolds
number RE.

a
The calculated values of ka are listed with each of the data points.

s
Trends are as shown in Figure 8.39.

U T U
For the computation of the value a6 = ~7T = : linear wave theory

is used, whereby the values of the significant wave height and the significant
wave period are used as basis for the computation.

In summary, it may be concluded that the linear friction coefficient fw
is considered a useful parameter for the estimation of friction losses in
shoaling and breaking waves, that the order of magnitude of it corresponds
well with the results of other investigators, except in the area of plunging
breakers, when a higher value of the friction coefficient must be expected.

For practical purposes, the mean friction coefficients for the various
sections of Ala Moana Reef are listed in Table 8.6 below, in which corresponding
values of ç are also given.

CALCULATION OF THE WAVE SPECTRUM IN SHALLOW WATER FROM THE SPECTRUM IN DEEP WATER

In this section, a method will be suggested to calculate the wave spectrum
in shallow water if the wave spectrum in deep water is known. When waves travel
into shallow water they are subject to shoaling, friction and breaking. Because
the process of wave breaking is highly nonlinear there is a need to use actual
wave heights rather than spectral components for the calculation of the energy
losses.

The analysis of the field data has provided insight into the dissipation
mechanics (friction and breaking) and has resulted in providing numerical values
for the friction and breaking coefficients, wnich may be used in the calculations.
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Figure 8.40 Underwater Photographs of Reef Bottom
at Measurement Site
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(VISUAL INSPECTION) (COMPUTER RESULTS) (FROM Z.U.C. ANALYSIS)

DATE PROBE OBSERVED NO. OF NO. OF H1e Hmean Hl~10
y' NO. OF BREAKERS Y'2 BREAKERS

1 BREAKERS FOR Y'l FOR Y'2 Il

7-30-76 5 .30 27 140 .56 26 .56 .40 .63

4 .34 19 158 .60 20 .52 .33 .66

8-4-76 5 .35 52 108 .50 56 .56 .34 .69

4 .35 62 106 .46 67 .52 .31 .62

3 .32 50 102 .40 55 .47 .28 .59

2 .30 43 22 .25 41 .25 .16 .35

8-25-76 5 .21 65 119 .26 70 .33 .19 .48

4 .28 80 145 .43 84 .57 .37 .66

3 .23 49 98 .29 48 .26 .17 .36

2 .24 30 44 .225 30 .21 .13 .27

1 .25 27 13 .235 28 .15 .10 .26

9-7-76 5 .31 33 29 .31 33 .32 .19 .42

4 .24 77 150 .45 78 .60 .35 .72

3 .27 58 139 .49 61 .54 .30 .68

2 .20 39 68 .24 39 .25 .14 .34

1 .15 61 47 .21 63 .28 .16 .39

9-14-76 5 .31 51 68 .35 56 .38 .24 .47

4 .20 62 121 .28 67 .33 .19 .40

3 .36 43 156 .44 46 .43 .26 .57

2 .22 19 19 .32 18 .24 .16 .32

9-16-76 5 .47 38 74 .70 41 .65 .37 .87

4 .41 53 65 .42 55 .47 .28 .58

3 .56 45 111 .60 49 .57 .33 .72

2 .50 14 3 .36 14 .28 .18 .36

1 .40 22 3 .36 20 .26 .16 .36

9-23-76 5 .32 60 94 .50 64 .69 .34 .88

4 .33 61 105 .41 65 .46 .26 .59

3 .25 68 148 .45 74 .45 .23 .57

2 .16 57 130 .28 58 .33 .18 .46

1 .17 59 122 .31 56 .36 .20 .49

TABLE 8.5(1)

BREAKING HEIGHT INDEX y', FROM OBSERVATIONS

(1) See also Table 10-1



lil-
0.01

0.001
104

0.1

2 10.99) • 6U.tll)
•312.10)

311.73). e 0313.10) • 6 (6.0.)

IJ 6 (2.U)
IJ
3 (2.13).

2(1.31) <> •
712.43) 6 (6.411)

e
4 (3.18)

412.80) o
412.02)· • II(II.II~

3 (1.41) <>3(2.17)
• <>7(2.12) <>

4 (2.•6)

1113.43)•o 6 14.77)o
4 (4.80)

7 (1.39) •
x

7(1.911)
o
7 (2.111)

<>11(11.41).11 (7.34)
IJ
11(4.33)",

" ", ,
" " ,

"
'............ 4 (4.20)

-_ . IJ-------------.---------

o
11(1.70)

• 11(4.28)

TRANSITIONZONE

LEGEND:
DATE SECTION

7 7 - 6
7 - 5

6 6-5
11 5-4
4 4-3
3 3-2
2 2 - I

• JUL 30, 1976
o AUG 4, 1976
• AUG25, 1976
IJ SEP 7, 1976
• SEP 14, 1976
o SEP 16, 1976
x SEP 23, 1976

/972)

RE

Figure 8.41 fw as a Function of Wave Reynolds Number
(field conditions)

273

I)
N.....
Ol

2 )
Jex
I-
ILI

5 ) ..J
ILI
0
ILI

( 6) ii:
...

~
( 20) rj'-O



TABLE 8.6

MEAN VALUES OF FRICTION AND BREAKING COEFFICIENTS
FOR ALA MOANA REEF TRAVERSE, IN ROUND FIGURES

Section fw ç

7 - 6 O. 1 0.5

6 - 5 0~5 0.5

5 - 4 0.1 0.4

4 - 3 0.1 0.3

3 - 2 0.4 0.3

2 - 1 0.7 0.3

The spectrum at the deep water Station 7 will be used as input fram which
spectra for the inshore stations will be calculated. A comparison can then be
made between the spectra obtained from field measurements and the ones obtained
from the dissipation model. A satisfactory agreement would indicate that the
coefficients used give an adequate description of the dissipation.

In the method followed the assumption is made that the energy G(f)·~f
contained in a frequency band ~f, may be considered to represent the energy
of a single wave with the appropriate amount of mean energy. It is further­
more assumed that the transfer of energy from one frequency band to higher
and lower frequency bands is negligible compared to the combined effect of

shoaling and dissipation. (1)

For the input spectrum, either the Fourier spectrum or the zero-upcrossing
spectrum may be considered. The latter has certain advantages, because it deals
with real waves and not with spectral components.

If S(f) represents the zero-upcrossing spectrum, its value is obtained
from

(8.19)S(f)

(1) In Chapter 10, aspects of interfrequency exchange of energy are discussed.
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where m is the number of waves in the frequency band b,f, N the totaT nümber of
waves in the record and Ö a normalization coefficient, which makes the total
mean energy equal to the variance.

This may be written

$( f) Af = ~. k N H7 (8.20)

where Hi2 is the mean of the squares of all wave heights in the frequency
band b,f.

This provides the representative value of Hi that is useful for the
calculations:

H.2 = 8 Ö S(f} Af !i
1 m (8.2l)

The use of the zero-upcrossing spectrum has two major disadvantages,
however. High frequency components that do not have a zero-upcrossing, are not
counted; furthermore, the accuracy of the zero-upcrossing spectrum is considerably
less than that of the Fourier spectrum.

The zero-upcrossing spectrum therefore shows more erratic features than
the Fourier spectrum. It may be advantageous to combine the zero-upcrossing
concept with the Fourier spectrum by taking the area between two frequencies
from the Fourier spectrum. If the Fourier spectrum is identified by G(f},
then a spectral-ratio coefficient öf may be defined by

r = G~f~uf $ f '

where öf > 1 for higher frequencies and öf < 1 for medium and lower frequencies,
so that

G(f) = öf S(f)

and equation 8.21 is modified to

2 H.2 8_2_ G(f} Af !iHrms = =1 Öf m

or

2 8 Ö G( f} Af
Hrms = Öf m

N

where Hrms refers to the frequency band Af selected.

(8.22)

(8.23)
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The ratio W may be determined from the probability density function of
the wave period f(T). For the period interval ~T or the corresponding
frequency interval ~f .

m = f(T) ~TN (8.24)

The latter is related to the probability density function of the wave frequency,
f(f) by

f(T) dT = f(f) df

so that

m = f(f) ~f (8.25)N

2 8...2...mHtHrms =
of f

H2 = 8...2...mt . (8.26)rms of f

Consequently

H2
s

G(f) = (~t f(f» (8.27)rms

The values of of' ° and f(f) for Station 7 (the input - station) may be

obtained from the measurements at Station 7.

If the factor between parenthesis is a constant from Station 7 on shore­
ward, the change in spectral density may be obtained from

H2rms6

H2rms7

This ratio can be calculated by computing the change in H;ms for the band
~f considered, as the waves travel into shallow water. (1)

(8.28)

Experiments show that the coeffficient ö is not the same for all stations.
Similarly of and f(f) also show some differences. Therefore, equation 8.28 is

an approximation.

If one would refrain from the requirement that the zero-upcrossing
spectrum would have equal energy compared to the Fourier spectrum the results
would be as follows.

(1) A method for this calculation is developed in Chapter 10.
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Define

•
S (f)

m
L 1H.2
181= N l:if (8.29)

Equation 8.21 is then reduced to

H.2 =
1 8 S' (f) tlf!im (8.30)

~8 ----rnT (8.31)

and

S' (f) = H2 f(f).·
rms -S' (8.32)

which equation is va1id for the fréque.ncy band l:ifat the frequency f.
e,

Simi1ar1y te ,~quation 8.28 one obtains for the interval l:if:

2' "

S (f)6 Hrms
= 6

(8.33 )
H2S (f)7 rms7

In order for equation 8.33 to be va1id, on1y f(f) must be constant when the
waves move into shallow water. This is a reasonab1e assumption on1y if the
generation of higher frequency components in.the breaking process may be neg1ected.
This corresponds with the assumption made earl ier that interfrequency energy
exchange is neg1ected in this procedure. ,. .,.

Resu1ts of some ca1cu1ations are shown in Figures 8.42 and 8.43.

A1though results are generally agreeab1e,. the model appears to have
shortcOO1ings because the interfrequency eQergy transfer is neg1ected.

The fo11owing aspects a~e of interest.

Energy in the veryIow f'requency-bands (f < 0.0375) .ts associated
.wit~,the long -period oscillations on the reef, induced by the
variab1e mass transport induced by the breaking waves. This energy
is part of the energy transfer process and comes main1y from the
energy densities around the peak frequency. The amount of energy
contained in these very low frequencies is relative1y low and
neg1ecting this energy shift does not give rise to serious errors.

Good agreement can be obtained for the frequency bands with high
energy density if proper dissipation coefficients are selected.
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However, the value of these coefficients will actually be too high .
if the energy shift to higher and lower frequencies is not taken ;nto
account. If correct values would have been used, the results of the
computed spectrum would be higher than the values actually present
in the spectrum.
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Figure 8.42 Observed and Calculated Spectra for Various
Probes on Ala Moana Reef, August 25, 1976
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If interfrequency exchange of energy is neglected, significant
deviations may be expected in the high frequency bands. In order
to correctly evaluate the differences obtained, it is necessary
to take into account that certain peaks of the Fourier spectrum
in the high frequency domain are induced by nonlinearities in the
wave form and are not related to high frequency oscillations
induced by the breaking process. Use of the zero-upcrossing
spectrum does not completely solve this problem because in this
spectrum the energy density for higher frequencies is underestimated.

WAVE SET-UP

Wave set-up on the reef was measured during two efforts

(a) In the summer of 1976 from the measurement of water surface eleva­
tions (as described in the previous sections) wave set-up was
measured indirectly by determining the mean value of various time
series; leveling of the wave gages was done from the reef buggy.

(b) In the summer of 1978 the mean water level in a series of reef
stations was measured directly by determining the mean value of
a series of manometer readings (Wentland,1978). The manometer
stations were established ln fixed positions (lA - 5A) on the reef
(see Figure 8.44) by providing them with a concrete footing with a
short piece of galvanized steel pipe, in which the manometer could
be mounted during the experimental runs (Figure 8.3). Leveling of
manometer levels was done along the reef during low tide from a
fixed benchmark on shore.

To dampen the wave-induced oscillations of the waterlevel inside
the manometer tube, the valve at the foot of the manometer was
partly closed.

A tripod mounted capacitance wave gage was used to calibrate the
manometer readings.

The wave set-up measurements in Station lA were correlated with the
observations of the tide level in this location by means of a
nitrogen bubbles tide level recorder. The recording instrument was
established on shore and was connected with Station lA with a hollow
plastic tube, ~ = 19 mm, laid on the reef bottom.

The accuracy of the obtained data relies heavily on the accuracy of the
leveling procedure. During the 1976 measurements when the leveling instrument
was installed on the reef buggy, the elevations could not be established with
great accuracy due to the lack of stiffness of this platform raised above the
water.

The leveling in 1978 was done with extreme care. Because the bases of
the stations were fixed to the reef, the surveys could be repeated a few times
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to obtain greater accuracy. It was therefore expected that the va1ues on
wave set-up obtained in 1978 have much greater accuracy than those obtained
in 1976.

It was verified by ca1cu1ations that the difference between the mean
waterlevel inside the harbar and in the open ocean is at all times very small,
sa that the farmer cau1d be used as a reference level for the open ocean.*

Verification of the wave set-up measurements by means of ca1cu1ations
confirmed that the measurements of 1978 were trustworthy but that the 1976
wave set-up data contained obvious and unexp1ainab1e errors. Therefore, the
1976 wave set-up data were not used for ana1ysis and have been omitted from
this paper.

The resu1ts of the 1978 measurements on wave set-up are shown in Figure
8.45. Visua1 manometer readings were taken simu1taneous1y at all reef stations
during a 15 minutes period. The readings were taken at 15 second intervals and
a mean va1ue was determined from the 60 observations for each station. On
three of the four days, the measurements were repeated short1y after the first
run. The differences between the mean va1ues during the first and second run
were sma11 and can be accounted for by the difference in mean tide level during
the two runs. On September 16 and 30, 1978, waves were measured at the offshore
probe as during the 1976 measurements. Wave spectra were computed from the
four time series. The resu1ts are presented in Figures 8.46-a and b .

The wave characteristics on the two days of observation show some
interesting differences. The spectra on September 16, 1978 are re1ative1y wide­
banded. There are no significant differences between the two runs (Figure 8.46-a).

On September 30, 1978 the spectra had typica1 narrow band characteristics,
whereby the considerab1e increase in mean energy between the two successive
runs is to be noted.

Same insight into the nature of the waves is provided by the autocovariance
functi ons (see Figure 8.47-a and b).

The one for September 16 revea1s irregu1ar wave characteristics, because
the function c (L) decreases re1ative1y fast. (Figure 8.47-a)xx

On September 30, 1978, Figure 8.47-b shows a dominating swe11 pattern that
corresponds with the narrow band spectrum.

* This is on1y true if na wave breaking occurs in the harbar entrance.
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Verification of Observed 1978 Wave Set-Up Data on Reef with Calculated
Va1ues

Regrettably during the 1978 wave set-up measurements, no detai1ed wave
measurements were made on the shallow reef, which could serve as input data
for the calculation of mean water level variations across the reef and then
could serve as verification of the observed water levelsas compared to
calculated values.

During two specific days, respectively, September 16, 1978 (first run)
and September 14, 1976 the water level variances at the deep water probe
(Station 7) had approximately the same value (respectively 0.0447 and

2
0.0451 m). (Reference is made to Table 8.7) Tide conditions were also equal.

By assuming that the process of wave attenuation across the reef would
also be similar on those two days, the wave data of 1976 could be used to
verify the wave set-up data measured in 1978.

Admittedly there is no proof that such similarity indeed existed and
a strict agreement should therefore not be expected. Nevertheless the above .
process is likely to indicate whether or not serious errors may' have occurred
during the 1978 ~easurements.

The comparison between the measured values of the wave set-up on
September 16, 1978 and the ca1culated values based on wave data from'
September 14, 1976,as described above, is shown in Figure 8.48. To make the
two graphs comparab le , the measured wa've set-up fn Station 5 was used as a
level of reference for both graphs.

The basis of the differences in mean water level over the reef was the
simplified wave set-up equation:

~~ + pgh ~~ = 0 (8.34)

whereby the linear relationship

S = 3/2 E

was used for the calculation of the radiation stress on the reef. Figure 8.48
shows that there is no large differences between observed and 'calculated
values, so that the 1978 wave set-up data are likely to represent realistic
values.

Unfortunately the measured data are few and dó not cOver a wide range of
conditions. Besides they were taken during conditions of relatively low wave
energy. Therefore, they are not suitable to test a variety of computational
models for the calculation Of wave set-up. To do this, one has to revert to
the results of the hydraulic model experiments, whereby one can verify whether
or not the field data points fit the genera i trends.

In the above comparison, the wave ~et-up at the reef edge (Station 5) was used
as a basis of comparison. In order to see whether or not the measured data fit
the calculated values of the total amount of wave set-up, using the deep wate·r
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TABLE 8.7

VARIANCE, WAVE HEIGHT AND WAVE SET-UP CHARACTERISTICS FOR 1976 AND 1978

N
CP
CP

Variance of Significant Significant
Wave Set-Up at

Date Time Series Wave Height at Wave Period at
Station 5 (cm)

at Probe 7 Probe 7 Probe 7 Measured Ca1cu1ated

(m2) (m) (sec)

Aug. 4, 1976 0.0353 0.67 8.95 not measured not ca1cu1ated

Aug. 25, 1976 0.0166 0.47 9.05 not measured not ca1cu1ated

Sept. 14, 1976 0.0451 0.73 10.65 not measured not ca1cu1ated

Sept. 16, 1976 0.0268 0.56 9.76 not measured not calculated

Sept. 23, 1976 0.0779 0.47 10.13 not measured not ca1cu1ated

Sept. 16, 1978 0.04471 0.83 6.48 0.61 0.55

0.04322 1.07 7.31 1.82 0.88

Sept. 30, 1978 0.06581 1.32 11.56 1.22 1.82

0.08602 1.28 11.81 1.82 2.68

1 First Run'

2 Second Run
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mean sea level as a reference level, calculations of the total amount of wave
set-up have been made using a simplified model.

Wave Set-Up at Edge of Reef (Station 5)

In order to evaluate the measured set-up in Station 5 for the 1978
measurements, wave set-up in Station 5 was calculated using the following
criteria.

(1) Calculations were carried out for a representative wave height,
having the same mean energy as contained in the wave spectrum for
the offshore probe;

(2) Energy losses were included in the calculations using the dissipation
model developed in this study;

(3) Radiation stress was calculated from linear wave theory ;

(4) Wave set-up was calculated based on the simplified model given in
the previ ous section ;

(5) The location of the breaking point was assumed to 'coincide with that
of the significant wave height (rathér than that of root mean square

Hb
wave height). The value of y' = 11 was determined from Battjes (1974),
(Figure 4.2 ).
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The results of the calculations are presented in Table 8.7 (for the 1978
measurements) and in Figure 8.49 and show a reasonable agreement between observed
and calculated va~ues (considering the use of the simplified model). (1)

Wave Set-Up on Reef

A simplified expression for the wave set-up on the reef itself may be
obtained by assuming the depth over the reef· constant. This is not completely
correct, but the slope of the reef bottom is very small and depth differences
are of minor importance. It is furthermore assumed that the values of the
wave set-up are small compared to depth for all locations on the reef.

The differential equation 8.34 can then be directly integrated between
the edge of the reef (Station S) and the shoreline

= 0 (8.3S)

whereby the index 1 indicates a station nearsnore and the index S refers to
Station S at the edge of the reef.

At location 1 close to shore, the mean wave energy is very small because
most energy is dissipated by friction and breaking.

Therefore, assume

Sl :::0

so that

~n - - 1= nl - nS = pgh Ss

Furthermore

S lE 3 (var)= = "2" pg2

(8.36)

which gives

~n =
3'2 (var)s

h
(8.37)

as a reasonable approximation for the wave set-up over the reef.

At the offshore station, the mean wave energies on September 14, 1976
and September 16,1978 were almost identical.

Assuming full similarity for wave attenuation on these two days of
observation, ~ncan be calculated.

On September 14, 1976 the mean energy (variance) measured at Station S was:

(var)S = 0.0223 m2

(1) An improved model is discussed in Chapter la.
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Estimating an average depth of 0.9 m,

3
~n = 20.0223 m = 0.037 m = 3.7 cm

0.9

On September 16, 1978 the observed difference in mean sea level between
Stations 5 and lA was 0.10 ft = 3.0 cm; this may be considered a reasonab1e
agreement.

In the previous paragraph, the wave set-up between deep water and the
reef edge was ca1cu1ated. For September 16, 1978 its va1ue was 0.6 cm.

The tota1 ca1cu1ated set-up wou1d then be 0.6 cm + 3.7 cm = 4.3 cm which
compares reasonab1y we11 with the tota1 observed va1ue of 3.6 cm.

The simp1ified model of wave set-up seems to provide adequate results.

It wi11 be of interest to determine what the order of magnitude of the
possib1e maximum wave set-up over the reef section could be for the same tide
conditions, using the previous approach. For this the maximum mean energy
in Station 5 is computed from the maximum wave height.

In view of the resu1ts of the field experiments, the assumption is made
that the maximum breaking wave height in Station 5 is re1ated to the loca1
depth by

With hb = 1.22m this gives Hm = 0.98 m. In order to compute the
mean energy, it is furthermore assumed that this value is close to the
significant height and that the H va1ue may be computed fromrms

Hm
H = =nns

0.98

I'l
= 0.69 m

The varianee at Station 5 is then

122(var)5 = 8 (0.69) = 0.0595 m

and the maximum wave set-up over the shal10w reef

~n = 1.5 . 0.0595
0.9 = 0.099 m ~ 10 cm.

This represents a mean value of the set-up, to wnich.á. dynamic component
of the wave set-up must be added. It is to be noted that the computations are
based on a two-dimensiona1 model. This assumption is not completely justified;
the effects of refraction and loca1 circulation may have some influence on the
prevailing conditions.
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A more precise calculation of the wave set-up on the reef may include
a nonlinear radiation stress, Snt' and a mean shear stress, T, in the
momentum equation

(8.38)

where T is the mean shear force exerted by the fluid on the bottom, being
positive in the direction of wave propagation.

This gives

an = 1 aSnt T
dX - pgh ax - pgh

Since ~~ is negative, the first term of the right hand side of the equation
is positive and its value is decreased by a positive value of T.

The nonlinear radiation stress usually being larger than the linear one,
the introduction of Snt instead of St and the inclusion of a positive shear
stress partly compensate one another.(l)

Total Wave Set-Up on Ala Moana Reef from·Tide Gages

During the 1978 experim~nts, a tide station was functioning in Kewalo Basin
and another was established at Station lA on the reef. The two recorders
were in operation for almost two months but were not always providing reliable
data; about two weeks of observ~tions proved to be useful for set-up calcula-
tions. .

Figure 8.50 shows the waterlevel inside the harbor and out on the reef
on August 16 - 17, 1978. The difference between the two is assumed to be
close to the actual wave set-up~ whfch showed only small variations over a full
tida1 cycle (Wentland, 1978).

For all days with useable tide records, set-up values were determined at
0:00, 6:00, 12:00 ~nd 18:00 hrs. The maximum value of the wave set-up
established in this manner was 10.7 cm, which compares we11 with the previously
calculated values.

There is no sufficient field data avai1ab1e to evaluate the magnitude of
three-dimensiona1 effects on wave set-up.

MODULATING PART OF WAVE SET-UP

The results of.the field measurements indicate that oscillations of the
wave set-up around a mean value occur. This modulating part of the wave set-up
was found to have the same order of magnitude as its mean value.

(1) The effect of the resultant shear stress is discussed in greater detail in
Chapter 9.
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Figure 8.51 shows a portion of water level records on August 25, 1976.
The long period oscillations are indicated by dotted lines; in all stations
the mean water level shows a modulating behavior with a period of oscillation
of about one minute. On another day of record, August 4, 1976, a longer
period of about 2 minutes was observed. Figure 8.52 shows another examp1e
taken from manometer readings at 5 second intervals by Dave Wentland in
Station lA. This figure shows a dominant period of oscillation of about 1
minute, but a much longer period of oscillation can also be detected.

Figure 8.51 shows a progressive wave behavior with shoreward propagation
for the long period oscillations. The lines connnecting wave crests and wave
troughs may be considered characteristics for which ~~ = c, the speed of long
wave propagation in shallow water c = 19h .

The observation of progressive wave behavior is not comp1etely expected.
In a strict1y two-dimensional situation, ref1ection of the low amplitude, long
period osci1lations could generate a standing wave pattern whereby the
vertical oscil1ations would show the same phase for all stations.

Progressive wave characteristics may be dominant because of two different
reasons: energy losses due to friction and flow toward adjacent reef areas.
Ca1cu1ations indicate that the reduction in amplitude due to friction for
waves traveling across the reef is of the order of 20%. The energy 10sses
due to friction therefore only partly account for the observed wave behavior.
The second possibi1ity is like]y to also p1ay a role in the long wave behavior
in the study area. It was observed that water flows from the reef into the
entrance channe1 to Kewalo Basin (see for location Figure 1.1 ); furthermore,
some flow mayalso be diverted eastward into the deep channe1 between the
shallow reef and the coastline.

During the 1976 measurements, the amplitude of the osci11ations in the
Stations 5 to 3 was of the order of 6 to 9 cm, with decreasing amplitude
towards the coast.

On October 13, 1978 Station lA exhibited an osci11ation of approximately
7.5 cm amplitude.

Physical Background of Modulations

It has previously been suggested that the modulating part of the wave
set-up is associated with varying mass transport in breaking waves.

Incident waves often show groups of high and low waves fo11owing each
other, the variation in mean energy inducing a variable mass transport
shoreward. The oscillatory nature of the wave induced flow induces a vertical
displacement of the water surface in the form of a long periodic wave. The
period of this wave is re1ated to the period of the pu1sating flow.

The characteristics of the long progressive wave may be deducted from the
characteristics of the induced current.
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by
Whitham (1974) defined the mass transport velocity in nonlinear waves

u = B + _E_
pch (8.39)

whereby waves add a net contribution I to the mass flow. For waves ofc
constant height traveling towards a beach, the mean mass transport velocity
over one or more wave periods equals zero:

TI" = 0

because of mass conservation, so that

B = E
- pch

If the waves approaching the beach form a modulating wave train, the
mean value of U over long periods of time is still zero, but there is now a
mass transport variation due to the variation of wave energy with time.

In a strictly two-dimensional situation

U =
E - Emax min

2pch
= Ihl

pch (8.40)

where E(a) represents the amplitude of the energy variation.
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The above formulas are for nonlinear waves and may be assumed to be valid
up to the point of breaking.

If water may be discharged through adjacent reef areas (such as is likely
to occur in the study area), the mean value of the mass transport current will
be different from zero ~nd may be expressed by the relation

u = Si + It!Lpch

whereby the value Si is related to the resultant landward flow discharging
to adjacent reef areas.

(8.41 )

Resonance

In a strictly two-dimensional situation and a relatively narrow coastal
reef (friction neglected) reflection of the long period oscillation against
the coastline causes the generation of a standing wave from the superposition
of the incoming and reflected wave. In various stations on the reef, the
water level fluctuations will then have the same phase, but a different
amplitude depending on the distance from the coastline.

Resonance occurs if

T = 4R. =
c (8.42)

where T is the natural period and R.is the distance between the reef edge and
the coastline; c is the velocity of propagation for linear shallow water waves.

The more general formulation for the natura1 period of a shallow reef in
a two-dimensional situation is

T = (8.43)
(2n + 1) ;gn

where n is the number of nodal points inside the reef.

Astrong increase in amplitude of the long wave may be expected when the
exciting fluctuating current has the same period as the resonant period.

In the current study,

R. '" 400 m

h '" 0.8 m.

For the first mode of oscillation, n = 0 and T = 572 sec = 9.5 minutes.

For the second mode (n = 1), T = 3.2 minutes.

Higher harmonics (n ~ 2) are usually not able to generate significant
amplifications.
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If wave groups arrive in accordance with the above calculated periods,
amplification of the long period oscillation may be expected.

The natural period is dependent on depth and therefore on the tide. In
Hawaii, tidal variations are small and the effect is insignificant.

In case resonance occurs and wave amplitudes build up, velocities become
larger and friction losses become significant.

Approximative Calculation of Shelf Oscillations

In the following, an approximate calculation is carried out to determine
the amplitude of the long period oscillation.

For this, equation 8.40 is assumed to be valid.

For a progressive long wave horizontal particle velocities are in phase
with the vertical displacement. For small amplitude waves (n«h)

u = IJ. ch (8.44)

where U is the mean horizontal velocity over depth.

The amplitude of the shelf oscillations in that case can be directly
calculated from the energy oscillations by equating equations 8.40 and 8.44: .

E'a' _ a
= ~ - hC (8.45)

from which

Ihl
pc2

E(a) is the amplitude of the wave energy oscillation.

a = (8.46)

In terms of the variance

E(a) = pg V (a) (8.47)

and

a = .Y_@l
h (8.48)

where V{a) is the amplitude of the variance.

A study of several wave records reveals that the amplitude of the variance
is of the same order of magnitude as its mean value.
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Examining the wave record of August 4, 1976, the variance at Station 5
2was 0.0337 m , whereas the depth at that station was 1.32 mand applying

equation 8.48 gives

a ~ 0.0337 = 0.025 m = 2.5 cm
1.32

where a is the amplitude of the long wave oscillation.

This is a mean value for the whole record. During parts of the time
series, the value of a may be considerably higher; during other parts it may
be lower.

It is estimated that a ~ 0.05 m.max

For Station 4 similar calculations give

0.020
a = 1.05 ~ 0.02 m

with a possible maximum value amax = 0.04 m.

Visua1 analysis of the corresponding 1976 wave records give estimated
values for the long wave amplitude between 0.06 mand 0.09 m. This is consid­
erably higher than the values found above.

Possible explanations for the differences are:

a resultant shoreward flow diverted to adjacent reef areas,

the influx of wave energy (and flow) from adjacent areas,

equation 8.40 giving too low values for the mass transport
velocity in the breaking zone.

For August 25, 1976 the calculations gave the fol1owing results:

Station 5:

a = 0.0122 =1.26 0.01 m

amax = 0.02 m (estimated)

Station 4:

amax = 0.03 m (estimated) .
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In the Fourier ana1ysis, the va1ue of energy of all components up to 0.007 Hz
was determined:

Sta 5: ÄV = 0.00054 m2

ÄV = 0.0028 m2Sta 4:

Summarizing all energies in the low frequency ranges to represent one wave
with amplitude ae gives for the va1ue of ae respective1y

Sta 5: ae = 0.033 m

Sta 4: ae = 0.075 m

The latter va1ues can be considered to represent measured va1ues for
"a" for the stations. These values correspond well with the va1ues found
visua11y, but are considerab1y higher than the ones ca1cu1ated above.

The reasons 1isted above may be cited as possib1e causes for the
deviations.
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CHAPTER 9: HYDRAULIC MODEL EXPERIMENTS

INTRODUCTI ON

In addition to the field experiments on Ala Moana Reef, the results of
which have been described in the previous chapter, hydraulic model experiments
have been carried out in the wave flume of the J.K.K. Look Laboratory of the
Department of Ocean Engineering. The main objective of this additional part
of the study was to determine if model testing of wave attenuation and wave
set-up on a shallow coastal reef would provide reliable results. If that
would be the case, the range of test conditions can be significantly ex­
panded beyond those experienced in the field so that wave attenuation and
wave set-up values may be determined over a larger range of conditions.

Unfortunately, in the available wave flume only monochromatic waves
can be generated so that tests with random waves could not be condwcted.

Because of this limitation the comparison between field and model data
needs to be considered with caution. During the course of the study it was
confirmed that the various wave components of the spectrum show a different
attenuation behavior and that representation of the wave spectrum in the model
by one monochromatic wave does not necessarily lead to the same result.

For the calculation of wave attenuation and set-up in engineering design
it is of practical interest to determine if a wave spectrum can be replaced
by one characteristic monochromatic wave.

Because of the absence of a random wave ~enerator in the laboratory,
the model experiments by themselves were not able to answer this question.
However, the combination of model studies, field studies and theoretical
analysis provided a framework for evaluation of this question.

The hydraulic model experiments can be divided into three groups:

a. bottom friction and breaking 10s5 experiments;

b. wave set-up experiments;

c. simulation experiments.

The first group of experiments was conducted to obtain bottom-friction
coefficients and energy dissipation coefficients from wave breaking. The
analytical models developed in Chapters 3 and 4 served as basis for the
analysis. The values of these coefficients, obtained in the laboratory set­
ting were compared with those in the field to obtain insight in possible
scale effects.

The second group of experiments was aimed at providing data on wave
set-up. It appeared that manometers with small diameter plastic tubing
were useful for obtaining adequate data on wave set-up.
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The third group of experiments, the simu1ation experiments, were carried
out as an attempt to compose a wave spectrum from a series of tests with
monochromatic waves. Because the prob1ems of shoa1ing and breaking are
high1y non1inear, it was not comp1ete1y obvious if such procedure was justi­
fied in this case. It was indeed found that for the stations on the sha110w
reef such composition procedure did not provide re lieb le results.

Results of the simulation tests are discussed in a separate paper by
Lee and B1ack (1978).

EXPERIMENTAL SET-UP AND DATA ANALYSIS

The wave f1ume, in which the experiments were conducted, is 54 m long,
1.22 m wide and allows a maximum water depth of about 1 m.

The monochromatic waves are generated with a parabolicly shaped plunger
type wave generator, moving in a vertical direction.

The maximum wave height in the model is about 0.3 m, whereas the period
ranges from 0.5 seconds to over 4 seconds.

The vertical side walls of the flume consist partly of glass panels and
partly of rubber cloth. The panels are supported by frames at distances of
1.22 m. Reference is made to Figure 9.1.

~--------------------------~4m
III tk!1

PLUNGER-TYPE WAVE GENERATOR=>"
~ H '-22 m

'-22 mIl I I I I I I I I I I I I I I I I I I

Figure 9.1 Wave Flume J.K.K Look Laboratory (schematic).

Waves generated in the tank being monochrqmatic and cylindrical,
represent a two-dimensional wave approach.

The size of the tank allowed the construction of a 1:12 scale model of
the reef traverse in the tank. The section of the reef traverse to be re­
presented in the model would include the offshore station (probe 7) at a
prototype water depth of 10.5 m below M.L.L.W.

A high tide level of 0.75 m above M.L.L.W. makes the prototype depth
at the offshore probe 11.25 m, corresponding to 0.94 m in the model.

303



The se1ected sca1e allows to bui1d about 130 m of reef area (of a tota1
of about 380 m) into the model; in this section most energy dissipation takes
p1ace, so that this situation is expected to represent an acceptab1e limitation.

For the sca1e selected, depths in the model in the offshore areas are adequate
for experimentat~on, but such is not comp1ete1y the case for the shal10w reef
areas. In the pr-oto type , the shallowest protion of the simu1ated reef section
has a depth of 0.35 m be10w M.L.L.W., which at a scale of 1:12 corresponds to
a depth of on1y 2.9 cm in the model. This depth is too sma11 for the correct
simu1ation of wave attenuation and wave set-up at tide conditions corresponding
to M.L.L.W.

To reduce the sca1e effects, most experiments were run with prototype
tide levels of 0.75 m to 0.88 m above M.L.L.W., which increases the minimum
depth in the field to at least 1.10 mand the corresponding model depth to
at least 9.2 cm. This was considered an acceptab1e model test condition.

The reef body in the model was built of coarse sand, covered with a
5 cm 1ayer of 1-3 cm crushed rock. During test runs to verify the experi­
mental set-up, it was found that under conditions that simu1ated the actua1
tide levels and wave conditions on the days of field measurements, wave
dissipation on the shal10w reef was in excess of~the corresponding dissi­
pation in the field. In order to overcome these discrepancies, the sha1low
reef sections were covered with thin metal sheets. This reduced the bottom
roughness in the model and reduced percu1ation lo~ses from the permeable rock
structure, which reduced the discrepancies between field and model phenomena.

In the model waves were measured with capacitance wave recorders, fixed
in positions that correspond with the locations of the field stations.

Two types of cy1indrica1 capacitance staffs were used: one with a
diameter of 1.25 cm and another with a diameter of 0.25 cm.

Both gages provided accurate readings for wave periods 1arger than about
0.6 seconds (model periods). For shorter periods the readings became un­
re1iab1e. The waves were recorded on two-channe1 recorders.

The shoreward end of the tank was provided with an effective wave
absorber, consisting of PVC shavings with a wire mesh cover.

For the first series of tests, wave data from the model were obtained
by reading the wave heights from the charts. It was found, however, that this
method was not sufficient1y accurate to provide reliable input data suitable
for the determination of friction'coefficients.

During the main series of the experimental program the water level varia­
tions were therefore electronica11y recorded on a tape whereby a record of
12 minutes duration was used for the determination of the mean energy (vari~
ance),mean wave heights, significant wave height, etc. Even though the waves
were generated as monochromatic waves, slight variations in wave height over
a period of severa1 minutes appeared sufficiently important to justify the
use of these mean values over longer periods.
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For the measurement of the wave set-up two different methods were employed.
The first method used the mean water level obtained from the 12 minute wave
record as basis for analysis. It was found that this method was inaccurate,
due to run-up and depression around the probes.

To obtain more accruate wave set-up data, manometers were attached to the
outside of the tank which were connected with ~ = 3 mm plastic tubes mounted
against the inside of the tank with their opening close to the bottom. The
manometers were read visually a number of times and a mean value was determined
from those readings. This method proved to give adequate data. All set-up
data reported in this chapter were measured in this way.

For the determination of the Wave Reynolds Number the water temperature
was measured with each experiment. The temperature of the air also was
recorded.

Wave Reflection and Second Harmonic Free Wave in Model

Waves generated in the model usually generate a slight long period
oscillation in the flume which requires the use of a wave record of long
(12 minutes) duration. This modulation is reinforeed by reflection from the
landward end of the tank and from the reef slope. In addition, the generation
of a free second harmonic by the wave generator has an effect on the wave
height measurements.

By improvements of the wave absorber, the v/ave reflection may be re­
duced as much as possible.

A sample of wave records of the tank experiments is shown in Figure 9.2,
in which a second harmonic may be observed. At different stations a second
harmonic free wave will have a different phase relationship with reference to
the primary wave system.

The generation of a second harmonic free wave in a model setting was
discussed by Hulsbergen (1974), who gave suggestions to cope with it. No
attempt has been made, however, to arrange for corrective measures in this
study.

TRANSFER OF ENERGY TO HIGHER HARMONIeS DUE TO SHOALING AND BREAKING

The method of wave analysis applied made it possible to compute wave
spectra from the model wave record. This provided insight fnto the generation
of higher harmonics in the shoaling and breaking process. Second and higher
harmonics are of two different types:

(1) from the nonlinear wave form,

(2) from free higher harmonics generated by the breaking process.

Unfortunately, the Fourier analysis applied to the data does not provide
the means to distinguish between one wave form and the other. A visual
inspection of the wave record is requi red to determine which of the two types
is likely to be present in the speètrum.
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Figure 9.2 Sample of Flume Wave Record

Energy in the second and higher free harmonies will be derived from the
energy of the primary mode. The reduction of the energy contained in the first
mode (in ratio to the total mean energy of the waves) is therefore an indication
of the relative importance of the higher harmonies in the wave record.

Figure 9.3 gives an example of the reduction of energy in the primary
mode for Stations #6 and #5, as function of the initial wave steepness for two
different wave periods. The data are converted to prototype data.

The solid lines refer to Station #5 with a prototype depth of 1.6 m. The
ratio between the mean energy present in the first mode and the tota1 mean
energy in Station #5 reaches a minimum for a wave steepness between 2.0 and
2.5 x 10-2 for a period of 6.7 seconds. For a period of T = 10.0 seconds, the
fraction of energy in the primary mode in Station #5 is much lower.

Station #6, located further offshore at a depth of 6.5 m shows similar
features; the effect of wave period is significant.
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BOTTOM FRICTION COEFFICIENTS IN MODEL

Basis of Analysis

The mathematical model, used for the analysis of the friction coefficient
in the model is basically the same as the one used for the field data.

It is again assumed that energy losses are predominantly caused by
friction and breaking and that for gradually sloping or horizontal bottoms
the reduction in energy flux is given by

where the symbols used are the same as in Chapter 8.

The model used for the determination of the friction coefficient fw is
the one described in Chapter 3. It was assumed that in nonlinear and even
in breaking waves, the particle veloeities in the immediate vicinity of the
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bottom retain their harmonic characteristics, and that the linear wave model
may therefore be a useable tool for the calculation of orbital velocities near
the bottom and of the bottom friction losses.

In the case of plunging breakers, the bottom friction coefficient may
have a higher numerical value than in nonbreaking waves due to the effect
of turbulence extending into the bottom fluid 1ayer.

Losses induced by breaking waves may be ca1culated using the ana10gue
of the bore. For this a breaking 10ss coefficient s was introduced and
defined in Chapter 4.

Although the waves in the model are basica1ly monochromatic, due to
reflections and other possible flume-effects, variations in wave height over
time occur which are not insignificant. Therefore, a 12 minute time series
was recorded on tape and the characteristic wave parameters (mean wave height,
significant wave height, root mean square wave height) were determined from
this.

For linear and slightly nonlinear waves the mean energy of the waves
may be directly obtained from the record (variance).

For sölitary waves with high H/h ratios a correction factor is requi~ed
to obtain mean energy values from the variance. For those waves the potentia1
and kinetic energy are no longer exactly equal to one another.

In the formulation for friction parameter, the wave amplitude or wave
height must be known. This value was obtained from the energy values by
taking

H = _f8Ëlpg (9.1)

where E is the mean wave energy per unit of surface area, obtained from the
time series.

The values of mean energy are also used for the calculation of the energy
flux. For this, the value of the group speed is required.

For deep water and intermediate depths a 1inear formulation for the group­
speed was used. For shallow water the relation

c = c = Fr 19hgr

was used with appropriate values of the Froude Number.

In one other aspect, model studies deviate from the field: cross sections
in the model are not only affected by bottom friction but also by sidewall
friction. For proper comparison, a correction for sidewall friction must be
applied.

(9.2)
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The exact evaluation of this effect may be possible by means of care­
fully executed experiments. Such exact approach has not been attempted here
in view of other uncertainties involved in the measurement procedures.

The side walls of the flume consist partly of glass panels.and partly
of rubber-lined panels. The latter may induce appreciable side wall friction.

Results of Experiments

The tests used for the determination of bottom friction coefficients
are listed in Tables 9.1 and 9.2. Similarly to the procedures developed in
Chapter 8, the reduction in energy flux gives rise to an expression of the
type

1 = p f + q ç
W (9.3)

where fw and I;; are the unknown parameters and pand q numerical values,
obtained from the tests. If no breaking is involved, equation 9.3 consti­
tutes one equation with one unknown (fw)' the value of which can then be
determined. In case both friction and breaking are to be considered the
expression gives rise to one equation with two unknowns.

A graphica1 representation of equation 9.3 is a fw - I;; re1ationship
for each test, such is shown in Figure 9.4-a, b, c, d. It is emphasized
again that this re1ationship between fw and I;; is not a re1ationship between
the physica1 quantities fw and I;; but rather a re1ationship between a certain
va1ue of f and a corresponding va1ue of I;; that produces the same 10ss inw
energy flux.

Since va1ues of fw and I;; wi11 generally differ for different wave con­
ditions, resu1ts of additiona1 tests with different wave heights and periods
do not in general provide additiona1 equations from which the va1ues of fw
and I;; can be solved.

From the graphs of Figure 9.4, va1ues of the friction coefficients
can be obtained if the va1ues of I;; are known. Based on the considerations
of Chapter 4 and the analysis developed in Chapter 8, a va1ue I;; = 0.5 wou1d
be an appropriate mean value for thé model assuming that hydrodynamical
similarity between model and prototype exists.

Friction coefficients f have been ca1cu1ated from the model experimentsw
on that basis, the resu1ts of which are listed in Tables 9.1 and 9.2.

In a number of tests, marked1y those for section 6-5, Figure 9.4,
maxUmum valües of I;; (for fw = 0) are be10w 0.5. For those tests a va1ue of I;;

equal to I;; ~ax was used for the ca1culation of the corresponding value of fw .
This is admittedly a rather arbitrary procedure; it was used because a better
alternative was 1acking.
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TABlE 9.1

LABORATORY RESUlTS, TEST 1,
REPRODUCED TO PROTOTYPE CONDITIONS
(Uncorrected for Sidewal1 Effects)

Tide ,.+ .46 m (MllW)

RUN 11 MEAN as fwH (m) SECTION DEPTH "Ç RE ~*
T (sec) Cm)

1 7-6 6.58 2.30 3 .116 04.21 x 104
H7 ,. .36 6-5 1.47 32.10 2.74 x 104 .121 0
T" 17.5 5-4 .92 29.20 2.27 x 103 .625 .5

4-3 .88 16.30 7.09 x 10 .124 0

2 7-6 6.58 2.85 3 .219 07.30 x 104
H7 Ol .56 6-5 1.47 35.20 3.72 x 104 .080 .5
T = 15.5 5-4 .92 28.50 2.44 x 103 1.050 .5

4-3 .88 12.10 4.42 x 10 .285 0

3 7-6 6.58 3.20 3 .148 09.83 x 104
H7 = .66 6-5 1.47 38.10 4.67 x 104 .140 .5
T = 14.5 5-4 .92 29.10 2.73 x 103 1.020 .5

4-3 .88 13.10 5.49 x 10 .248 0

4 7-6 6.58 2.57 3 .0462 06.82 x 104
H7 = .52 6-5 1.47 34.90 4.21 x 104 .179 0
T = 13.5 5-4 .92 29.40 2.98 x 103 .750 .5

4-3 .88 13.90 6.66 x 10 .446 0

5 7-6 6.58 2.87 3 .125 09.18 x 104
H7 = .69 6-5 1.47 35.00 4.58 x 104 .176 0
T = 12.5 5-4 .92 29.80 3.31 x 104 .350 .5

4-3 .88 16.80 1.05 x 10 .203 0

6 7-6 6.58 2.21 3 .135 05.93 x 104
H7 = .58 6-5 1.47 25.70 2.68 x 104 .327 0
T = 11.5 5-4 .92 23.90 2.32 x 104 .145 .5

4-3 .88 16.70 1.14 x 10 .326 0

7 7-6 6.58 1.79 3 .200 04.25 x 104
H7 = .54 6-5 1.47 20.90 1.95 x 104 .325 0
T = 10.5 5-4 .92 20.50 1.86 x 103 .125 .5

4-3 .88 13.30 7.86 x 10 .643 0

8 7-6 6.58 1.81 3 .230 04.82 x 104
H7 = .65 6-5 1.47 20.40 2.05 x 104 .301 0

5-4 .92 19.50 1.88 x 103 .165 .5T = 9.5 4-3 .88 12.10 7.18 x 10 .641 0

9 7-6 6.58 1.06 3 .373 01.86 x 103
H7 = .45 6-5 1.47 12.40 8.39 x 103 .382 0

5-4 .92 11.70 7.47 x 103 .534 0T = 8.5 4-3 .88 8.32 3.80 x 10 .155 0

10 7-6 6.58 .765 3 .514 01.09 x 103
H7 = .40 6-5 1.47 8.43 4.42 x 103 .555 0
T = 7.5 5-4 .92 7.84 3.82 x 103 .428 0

4-3 .88 6.05 2.28 x 10 .133 0

11 7-6 6.58 2 .609 0.60 7.73 x 103
H7 = .40 6-5 1.47 6.10 2.67 x 103 1.070 0
T = 6.5 5-4 .92 4.95 1.76 x 102 .694 0

4-3 .88 3.58 9.19 x 10 .379 0

12 7-6 6.58 .355 2 1.280 03.19 x 102
H7 = .35 6-5 1.47 2.99 7.60 x 102 2.990 0
T = 5.5 5-4 .92 2.14 3.87 x 102 .599 0

4-3 .88 1.32 1.48 x 10 5.020 0

* Assumed values of ç
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TABLE 9.2

LABORATORY RESULTS, TEST 2,
REPRODUCED TO PROTOTYPE CONDITIONS
(Uncorrected for Sidewal1 Effects)

Tfde ..+ .76 m (MLLW)

RUN # MEAN aö
fw I';H (m) SECTION DEPTH "Ç RE

T (sec) (m) , ,

1 7-6 6.63 4.24
' , 4

.175 .342.50 x 104
H7 • 1.85 6-5 1.83 32.00 4.77 x 104 .108 .15
T '"'10 5-4 1.30 25.80 3.10 x 103 .470 .50

, . ,4-3 1.22 14.30 9.57 x 10 ..._ ._5??" 0, ~ ..

2 7-6 6.63 3.56 4 .130 01.77 x 104
H7 .. 1.21 6-5 1.83 38.50 6.91 x 104 .127 ,0

'-T" 10 ' " 5-4, 1.30 31.90 4..74 x 1Q4 " ..,.346. _.50,,~
4-3. 1.22 16.30 1.23 x 10 .629 0

3A 7-6 6.63 1.66
' 3

.360 ' 03.86 x 104
H7 ," .54 6-5 1.83 18.10 '1.52x 104 .164 0
T ..10 5-4 1.30 19.80 1.82 x 104 .155 0

4-3 1.22 15.50 1.13 x 10 .482 0, , 3,
3B 7-6 " 6.63 2.64 9.69 x 104 .330 ' 0

Hf .. .92 6-5 1.83 27.70 3.57 x 104 .0359 0
T ..10 5-4 1.30 . 28.80 3.87 x 104 .249 0

"
4-3 1.22 16.60 1.29 x 10 1.150 0

4 7-6 6.63 4.61 4 .180 :52.12 x 104
H7 ....1.28 6-5 1.83 37.70 4.73 x 104 .148 .28
T " 14 5-4 1.30 29.70 2.94 x 103 .425 .5

4-3 1.22 15.00 8.41 x 10 1.190 0

5 7-6 6.63 4.15 ' 4 .126 . 01.71 x 104
H7 .. .92 6-5 1.83 42.50 6.02 x 104 .130 .5
T ..14 5-4 1.30 33.70 3.78 x 104 .290 .5

4-3 1.22 17.80 1.06 x 10 1.190 0
-, 6 7-6 6.63 5.69 4 .250 .51'3.22 x 104
H7 .. 1.86 6-5 1.83 37.00 4.55 x 104 .150 .26
T ..14 5-4 1.30 29.30 2.86 x 103 .435 .5

4-3 1.22 16.80 9.43 x 10 .841 0

7 7-6 6.63 2.73 4 .187 01.56 x 104
H7 .. 1.81 6-5 1.83 25.20 4.41 x 104 .120 .2
T .. 6.7 5-4 1.30 16.90 1.99 x 103 .590 .5

4-3 1.22 5.97 2.48 x 10 2.390 0

8 7-6 6.63 1.94 3 .235 07.86 x 104
H7 .. 1.26 6-5 1.83 20.40 2.90 x 104 .151 0
T .. 6.7 5-4 1.30 18.10 2.29 x 103 .230 .5

4-3 1.22 9.59 6.40 x 10 ..~.210 ' 0 ~.". ~

9 7-6 6.63 1.33 3 .379 03.73 x 104
H7 .. .87 6-5 1.83 12.70 1.14 x 104 .383 0
T .. 6.6 5-4 1.30 12.10 1.03 x 103 .166 0

4-3 1.22 8.06 4.59 x 10 1.330 0

10 7-6 6.63 1.43 3 .376 04.28 x 104
H7 .. .90 6-5 1.83 13.80 1.32 x 104 .322 0
T .. 6.7 5-4 1.30 14.50 1.46 x 103 .0197 0

4-3 1.22 11.60 9.30 x 10 .616 0
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TABLE 9.2 (CONTINUED)

LABORATORY RESULTS, TEST 2,
REPRODUCED TO PROTOTYPE CONDITIONS
(Uncorrected for Sidewa11 Effects)

T1de· + 1.07 m (MLLW)

RUN * MEAN aö
fw r;

H (m) SECTION
D~PTH ç RE

T (sec) m)

11 7-6 6.94 1.92 3 .230 07.64 x 104
H7 = 1.25 6-5 2.14 19.80 27.4 x 104' .080 .08
T .. 6.7 5-4 1.60 20.70 29.7 x 104 .060 .065

4-3 1.53 15.10 15.9 x 10 .610 .5

12 7-6 6.94 2.72 4 .131 01.54x104
H7 .. 1.75 6-5 2.14 28.50 5.66 x 104 .070 .18

T .. 6.7 5-4 1.60 23.60 3.89 x 104 .245 .395
4-3 1.53 12.30 1.05 x 10 1.070 0

13 7-6 6.94 4.22 4 .0511 02.48 x 105
H7 = 1.33 6-5 2.14 47.20 1.04 x 104 .0992 0

5-4 1.60 39.80 7.41 x 104 .345 .5
T Ol 10 4-3 1.53 21.20 2.09 x 10 .670 .5

14 7-6 6.94 2.61 3 .244 09.51 x 104
H7 = .88 6-5 2.14 27.30 3.48 x 104 .0957 0

T • 10
5-4 1.60 30.90 4.46 x 104 .240 .095
4-3 1.53 24.10 2.71 x 10 .465 .5

15 7-6 6.94 5.81 4 .240 .53.36 x 104
H7 = 1.87 6-5 2.14 40.60 5.34 x 104 .150 .235

5-4 1.60 32.90 3.61 x 104 .390 .5
T = 14 4-3 1.53 24.00 1.91 x 10 .199 0

16 7-6 6.94 4.61
4 .200 .52.12 x 104

H7 .. 1.27 6-5 2.14 38.80 5.00 x 104 .140 .21
5-4 1.60 30.90 3.17 x 103 .490 .5

T Ol 14 4-3 1.53 17.20 9.84 x 10 1.20 0

17 7-6 6.94 3.88 4 .136 01.50 x 104
H7 = .88 6-5 2.14 43.30 6.23 x 104 .040 .5

5-4 1.60 38.90 5.03 x 104 .370 .5
T ..14 4-3 1.53 25.20 2.11 x 10 .338 0-,
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experiments,
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the model frictionSimilar to the results of the field

coefficients were plotted as function of

Results are presented in Figures 9.5 to 9.9

The estimated ks - values are:

ks = 2.5 cm for Section 7-6 (roek)

0.45 cm for reef sections (plated).
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No efforts have been made to verify the estimated kg values experi­
mentally. If real values of ks differ from the estimated ones, this results
in a horizontal shift of the plottings in respective diagrams.

For the determination of the maximum bottom velocity and of the excursion
distance aó ' the mean value of the wave height over the length of the section
is used for the plotting of the data. As for period, the period of the primary
wave induced by the wave generator is used.

Each diagram also presents the relationships for linear waves proposed
respectively by Riedel, et al. (1972), Jonsson (1966) and Kajiura (1968) to
serve as comparison with the data obtained from the model study.

In Figure 9.5 friction coeffici~nts for the Section 7 - 6, uncorrected
for side wall effects, are presented.

The data referring to breaking waves"are marked with asolid symbo l.

The uncorrected data see~ to correspond reasonably we11 with Jonssonls (1966)
resu1ts. If a correction on side wa11 effect is app1ied, ·however, the agree­
ment with Jonsson (1966) is not so good.

For the side wall correction, a simplified formulation was used because
of lack of precise tnformat tone- z

= fw 1 + 2h
B

(9.4)

in which fw, represents the corrected value of the friction coefficient.
c

A correction in the abbve manner is most 1ike1y too strong and the actua1
va1ues may , theref'ore , be found between the uncorrected and corrected data.

Corrècted va1ues for Section 7-6 are 1isted in Tables 9.3 and 9.4, and
are shown in Figure 9.6.

The ;'corrected data fware cl osest to the curve proposed by R'iedel, et al
(1972). C'orrésponding1y, corrected friction coefficients for the Sections
6-5, 5-4 and 4-3 are shown in Figures 9.7 through 9.9. It may be seen that
for those sections the obtained values for fw are strongly different from the
results of Riedel, et al, Jonsson and Kajiura. Figures 9.7 through 9.9 a1so
do not show distinct differences between the data obtained for breaking and
nonbreaking waves.

A comparison between the mean va1ues of the friction coefficient for the
different sections for the·prototype and the model is shown in Figure 9.10.
Some of the differences between model and prototype may be caused by the some­
what higher water levels used in the model compared to the conditions in the
field.
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TABlE 9.3

LABORATORY MODEL RESUlTS WITH SIDEWAll CORRECTION. TEST 1

RUN # SECTION fw fw
ac5

.. ... e K:".., ,- ··.,.,5

1 7-6 .116 .061 - - -.~ ·~2·.a,.·~
6-5 .121 .101 32.1
5-4 .625 :556 29':2': .

"
4-3 .l?4 .111 1.6·L .,,'

2 7-6 .219 .115 2.8~
6-5 .08 .067 35.2
5-4 1.05 .933 28.5
4-3 .285 .254 12.1

'3 '7,,..,6 ".148 .078 3.2'
6-5 .14 .117 38.1
5-4 1.02 .907 29.1
4-3 .248 .221 13.1

4 7-6 .0462 .024 2.5r
6-5 ~179 •149 34.9 .

\-_ 5-4 :;75 .667 29.4
4-3 .446 .398 13.9

5 7-6, .125 .066 2.8~,
, .

6-5 .176 .147 35.0. ,

r 5-4 .35 .311 29.8
4-3 .203 .181 16.8

6 7-6 .135 .on 2.21,
6-5 .327 .272 25.7
5-4 .145 .129 23.9- 4-3 ' .326 .29,] 16.7

7 7-6 .200 .105 1.79,
6-5 .325 .271 20.9
5-4 .125 .111 20.5
4-3 .643 .574 13.3

8' 7-6 .230 .121 1.81
6-5 .301 .192 20.4
5-4 .165 .147 19.5
4-3 .641 .572 12.1

9 7-6 .373 .196 1.06,
6-5 .382 .318 12.4
5-4 .534 .4-75 11.7
4-3 .155 .138 8.32

10 7-6 .514 .271 .765
6-5 .555 .462 8.43
5-4 .428 .380 7.84
4-3 .133 .119 6.05

. 11" 7-'6 .609 .321 ;'60
6-5 1.070 .891 6.10
5-4 .694 .617 ' 4.95
4-3 .379 .338 3.58

12 7-6 1.280 .674 .355
6-5 2.990 2.490 2.99

I
5-4 .599 .532 2.14
4-3 5.020 4.480 1.32

1
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TABLE 9.4

LABORATORY MODEL RESULTS WITH SIDEWALL CORRECTION. TEST 2

RUN I SECTION fw f aö
Wc "Ç

1 7-6 .175 .092 4.24
6-5 .108 .086 32.00
5-4 .470 .399 25.80
4-3 .572 .490 14.30

2 7-6 .130 .068 3.56
6-5 .127 .102 38.50
5-4 .346 .294 31.90
4-3 .629 .539 16.30

JA 7-6 .360 .189 1.66
6-5 .164 .131 18.10
5-4 .155 .132 19.80
4-3 .482 .413 15.50

3B 7-6 .330 .173 2.64
6-5 .0359 .029 27.70
5-4 .249 .211 28.80
4-3 1.150 .986 16.60

4 7-6 .180 .094 4.61
6-5 .148 .118 37.70
5-4 .425 .361 29.70
4-3 1.190 1.020 15.90

5 7-6 .126 .066 4.15
6-5 .130 .104 42.50
5-4 .290 .246 33.70
4-3 1.190 1.020 17 .80

6 7-6 .250 .131 5.69
6-5 .150 .120 37.00
5-4 .435 .370 29.30
4-3 .841 .721 16.80

7 7-6 .187 .098 2.73
6-5 .120 .096 25.20
5-4 .590 .501 16.90
4-3 2.390 2.040 5.97

8 7-6 .235 .123 1.94
6-5 .151 .121 20.40
5-4 .230 .195 18.10
4-3 1.210 1.040 9.59
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.T~~,LE9.4 (CONTINUEO)

LABORATORY MODEL RESULTS WITH SIOEWALL CORRECTION. TEST 2

RiJN IJ ' fw
, f: aê

SECTION -wc "Ç

9 7-6 .379 .• 199 1.33
6-5 .383 .306 12.70
5-4 .166 .141 12.10
4-3 '1.330 1.140 8.06

10 7-6 .376. .197 1.43
6-5 .322 .257 13.80
5-4 .0197 .0167 14.50
4-3 .616 .528 11.60

11 7-6 .230 .•118 1.92
6-5 .080 .062 19.80
5-4 .060 .049 20.70
4-3 .610 .505. 15.10

12 7-6 .131'. .067 2.72
6-5 .070 .054 28.50
5-4 - .245 .201 23.60
4-3 1.070 .886 12.30-

13 7-6 .0511 .026 4'.22
6-5 .0992 .077 47.20
5-4 .345 .283 39.80
4-3 .670 .554 21.20

14 7-6 .244 .125 2.61
6-5 .0957 .074 27.30
5-4 .240 .197 30.90
4-3 .-465 .385 24.10

15 7-6 .240 .123 5.81
6-5 .150 .116 40.00
5-4 .390 .320 32.90
4-3 .199 .165 24.00

16 7-6 .200 .102 4.61
6-5 .140 .108 38.80
5-4 .490 .402 30.90
4-3 . 1.200 .993 17.20

17 7-6 .136 .0698 3.88
6-5 .040 .031 43.30
5-4 .370 .304 38.90
4.,3 .338 .280 25.20
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In order to eva1uate the effect of f1uid viscosity, the va1ues of the
coefficients were p10tted against the wave Reyno1ds Number (RE). Reference
is made to Figures 9.11 through 9.13. RE va1ues are 1isted in Tables 9.2
and 9.3.

Except for Section 7-6, most data points fa11 within the turbu1ent­
rough regime as defined by Jonsson (1966); most wave Reyno1ds Numbers are
higher than 104

It appears that viscosity does not account for the re1ative1y strong
differences between the calculated friction coefficients and the estab1ished

relationships between fw and ~ .

The apparent 1ack of agreement with respect to the re1ationship between
ao

fw and - for the model data suggests a considerable sca1e effect in the
ks

bottom friction coefficients. This was already expected because of the need
to provide the reef bottom in the model with a flat meta1 p1ate in order to
obtain realistic dissipation characteristics, as mentioned earlier.

Possible scale effects of the model inc1ude surface tension and viscous
damping. In addition, systematic errors in the measurements may p1ay a part.
For example, it has been estab1ished that for waves shorter than 0.6 - 0.7
seconds in the model, the capacitance wave gages were not very accurate. Sueh
waves contribute to the mean tota1 energy of the waves after breaking because
of the generation of higher harmonies.

The question of the most probab1e cause of the sca1e effect in the wave
attenuation over the reef has remained unreso1ved. No theoreticalor
experimental efforts have been made to clarify this further .

However, a comparison between the resu1ts of two field tests and one
model test with approximately equal wave energy in deep water is of interest
and is shown in Figure 9.14.

The water level in the model corresponded to a prototype va1ue of 0.75 m
(above M.L.L.W.), whereas in the field the tide was 0.45 m above M.L.L.W.

Both model and prototype show a sharp reduction in mean energy shoreward
of Station 5. In the field, breaking of waves occurred and such rapid decrease
in energy may be expected. In the model, however, no visua1 breaking was
observed and the rapid decrease in mean energy must have a different cause.

Further study is required to reso1ve this question of apparent sca1e
effect.

WAVE SET-UP IN MODEL

Of the two methods used to measure the mean water level (one using the
mean value of the time series for a given wave probe, and ahother using a
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laboratory manometer), on1y the resu1ts of the latter appeared consistent and
were"used as basis for ana1ysis. The test data are Jis.:t~d in lables 9.5 and9.6. ' , ,---,

A view of the experimenta1 data indicates that wave ,height, wave
period and water depth on the reef pl ay 'a' pa~f in <~~;j'e1feràtîr{g\~iave 'set-up. '

~:r:. ;.. ;,,-,•.~ z :> , . . .';'; " ~.' . ..t;;". ". , .-{ '," \ 1-, ,r: ..... ~.. .. ...
" Ana,lysls of thaexperfmentaf data fuethermore su,gge'sts'ttTcit a 'modified
Urse 11 parameter rriáy be a character isrtc "parameter' 'ag'ainst whi eh :wa've' set-up
data may be p1otted. ' , !',;; ~,

The Urse11 parameter is defined by

in which L is wave length, H is wave height and h is water depth.

For shallow water this parameter becomes '

. I"

.,' ,, '

~' ,r'

For the prob 1em of wave'"set-up i t j s expected thàt the-deep water wave
Ho

steepness parameter -2: andthe averaqe re1ative d~p~h_of water over the
h ' ' gT,

reef Hs p1ay dominant ro1es in the process under 'invesHgation.
o

[~ Consequent1y, a modified Urse11 parameter

Xl '= " ' 1," 2'

( :~2)(::)
may be of tnter-est for the plotting of the experimenta1 data in dimension1ess
farm, and a r~lationship of the-type

r .;
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nmax
= fct (Xl)-.ç- (9.5)

may be evaluated from experimental data.

For the actual plotting of the model data, it has some advantage to use
the incident wave height at probe 7, Hi' as a wave parameter rather than the

hypothetical wave of Ho'

Defining therefore

gT2H.,
X = h 2

s
= 1 (9.6)

it is of interest to explore if the function

n
max = fct (X)
Hi

(9.7)

usefu1 to organize the data.
2nmax gT H.

-H-i- is plotted against X = -h--:l'2-'
5

In Figure 9.15 the relative wave set-upwill be

for the model data of Test #2, runs 1 - 17.

The diagram shows considerab1e scatter, which may be partly from
experimental error, being largest in the zones of low wave set-up when
accurate measurements become difficu1t.

Assuming that the curve drawn in Figure 9.15 represents the average
conditions the above relationship, equation 9.7, implies that

Tlmax (Hi hs)-- = fct - -H. T2 ' H., g'

Equation 9.8 and Figure 9.15 may be used to
nmax Hi

re1ationship, e.g. between -H- and -2 '
i gT

(9.8)

present some other graphical
. hsus,ng H: as a characteristic,

parameter.

In Figure 9.16 such a
hs

for various va1ues of -­H.,
Stations 3 and 4 is used.

nmax H.
re1ationship between Hand _jL is p10tted. T2, 9

FOT the value of h the average of the depths ofs
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TABLE 9.5

LABORATORY-WAVE HEIGHT DATA
(Reproduced to Prototype Conditions)

Test 1

WAVE - WATER MEAN WAVE HEIGHT AT PROBE NUMBER
--RUN PERIOD LEVEL 7 6 5 4 3

(sec) (m) (m) (m) (m) (m) (m)

1 10 +0.76 1.85 1.30 0.79 0.49 0.25
2 -10 +0.76 1.21 1.63 ' '1.49 0.72 0.27
3A 10 +0.76 0.54 0.61 0.62 0.35 0.38
3B-" 10 +0.76 0.92 0.98 1.03 0.53 0.21

'-~. 4 14 +0;76 1.28 0.73 0.50 0.26 0~15
-5 14 +0.76 - 0.92 0.94 0.77 0.39 0.17

. 6 14 +0.76 1.86 1.24 0.68 -0.34 0.21
7 6.7 +0.76 1.81 1.49 1.16 0.30 0.10
8 6.7 +0.76 1.25 1.05 1.03 0.62 0.18
-9 6.6 +0.76 0.86 0.65 0.57 0.35 0.21
10 6.7 +1.07 0.90 0.67 0.57 0.66 0.35
11 6.7 +1.07 1.25 1.07 1.07 0.94 0.40
12 6.7 +1.07 1.75 1.68 1.54 0.87 0.38
13 10 +1.07 1.33 2.44 2.14 1.02 0.38
14 10 +1.07 0.89 1.07 1.07 0.71 0.40
15 14 +1.07 1.87 1.40 0.81 0.44 0.42
16 14 +1.07 1.26 0.97 0.65 0.72 0.18
17 14 +1.07 0.88 0.87 0.94 0.52 0.37
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TABLE 9.6

WAVE SET-UP FROM MODEL EXPERIMENTS
(Reproduced to Prototype Conditions)

Test 2

RUN WATER WAVE WAVE SET-UP (cm)LEVEL CHARACTERISTlCS

ABOVE H7mean - - -
T(sec) nmin n5 nmax

(MLLW) (m) (cm) (cm) (cm)

1 +0.76 10 1.85 -2.4 +11.4 +12.6

2 +0.76 10 1.21 -4.2 + 1.8 + 9.6

3A +0.76 10 0.54 -1.8 + 0.6 + 1.2

4 +0.76 14 1.28 -5.1 + 5.4 +11.6

5 +0.76 14 0.92 -4.2 + 0.6 .+ 5.4

6 +0.76 14 1.86 -8.4 +17.4 +19.2

7 +0.76 6.7 1.81 -8.4 + 9.0 +10.2

8 +0.76 6.7 1.25 -7.2 - 4.8 + 2.4

9 +0.76 6.6 0.86 -3.6* - 1.2 + 0.6

10 +1.07 6.7 0.90 -0.6 - 0.6 + 1.8

11 +1.07 6.7 1.25 -3.6 - 3.0 + 1.2

12 +1.07 6.7 1.75 -6.6 - 3.6 +10.8

13 +1.07 10 1.33 -7.8 - 7.8 + 7.8

14 +1.07 10 0.89 -5.4 - 4.8 + 1.2

15 +1.07 14 1.87 -3.6 +10.2 +15.0

16 +1.07 14 1.26 -8.6 + 0.36 + 8.2

17 +1.07 14 0.88 -6.6 - 4.2 + 2.4

* Fal1s inside Station 5
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Figure 9.15 Relative Wave ~et-UP (n~~x)Versus Modified Ursell

(
9T H.)

Parameter hs2' from Model Observations

Although there is considerable scatter, the overall results seem
promising. Considering Figure 9.15 for a given value of X' the relative

n
wave set-up ~~x is assumed to have one unique va1ue. This implies that

, - 2

for a given value of n~~x , the product Hi2 and (:~) is constant
, gT,

(equation 9.7). For the 1ines
H.,

having finite values, -:2 can only go to zero for large values of T.
gT

h
indicating H~ = constant and for hs and Hi both,
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From Model Observations

Beyond a certain period, say T = 30 sec for the corresponding prototype

conditions. the relation
llmax =-H-.-

1

f(X) is expected to lose its physical

meaning.

It mayalso be noted from equation 9.6 that X -+ 'V for o with

presumably a maximum assymptotic value of
llmax for-H-.-

1

-+ O.

334



hs
The physica1 significance of the 1imiting case --~ 0 may be considered asH.

1
representing a sloping beach without a sha110w reef. Such can be

n hs H.
demonstrated by p10tting ~~x versus ~ with ~ as parameter9 using

1 1 gT
Figure 9.15 as a given re1ationship. A graph of this type has been plotted
for corrected model data and is discussed in a following section.

The resu1ts of the model experiments confirm that the steepness of the
incident wave and the relative water depth on the reef are important para­
meters of the set-up prob1em whereby a re1ative1y lesser depth in the reef
leads to a relative1Yhigher wave set-up.

It wi11 be of interest to determine if the resu1ts of the model tests,
as discussed above9 may be converted to prototype conditions by using the
Froude model scale. In order to answer this question, an eva1uation of
possib1e sca1e effects fer wave set-up must be made.

Possib1e Sca1e Effects in the Wave Set-Up Measurements ,

The interpretation of wave set-up measurements in the model in terms of
prototype data may be affected by possible scale effects. In the conversion
of data, it is assumed that a hydrodynamic ,simi1arity exists based on Froude's
model 1aw.

A deviation from this assumed similarity may occur if forces or processes
a-represent for which the tr-ans lation of model to prototype data does not
conform to the Froude model law. Such forces or processes are surface tension,
viscous forces and internal energy dissipation. In the latter, viscous and
turbulent stresses may play a ro1e.

In a previous section, the like1y existence of a scale effect regarding
wave energy dissipation was suggested. The question may be raised as to what
influence such a scale effect will have on the interpretation of wave set-up
measured in the model. In order to evaluate this effect, the governing
differential equation is considered.

Neglecting resulting bottom shear stresses, this equation is written in
its most simple form

an + 1 ~ = 0
ax pgh ax

indicating that the gradient of the mean water level
1 as

- pgh ax .

(9.9)

on is balanced against
dX

Integration of this equation between Stations 5 and lover the reef gives

(9.10)
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Since for sha110w water the radiation stress S is proportiona1 to the mean
energy E, a sca1e effect in the gradient of E signifies a sca1e effect in the
variation of the wave set-up a10ng the reef. However, if all energy is
dissipated and Sl ~ 0, one has

(9.11)

and a sca1e effect in ~nl-5 is reduced to a scale effect in S5 (and therefore

in E5).

From the experimental resu1ts on the bottom friction coefficient it was
concluded that for the deep water Section 7-6 resu1ts from model and prototype
had significant similarity and showed no or very 1ittle sca1e effect.

If the assumption is justified that the mean energy in Station 5 also
has on1y negligible scale effect, the same conclusion holds for the maximum
wave set-up on the reef. Although there is no proof that this is truly the
case, further analysis will be made based on this assumption.

A problem encountered in the measurement of wave set-up in the model is
due to the confined body of water present in the flume. If wave set-up occurs
at one end of the flume, a set-down is experienced on the opposite end because
of the conservation of mass. Corrections must be made to account for this
effect.

Another possible source of scale effect on wave set-up may be related to
the effect of surface tension and the existence of a viscous shear force near
the surface of the water in the model. This may be particularly relevant if a
surface film is present at the surface (from oily substances or other contami­
nants) which enhances the damping of waves.

The damping of waves at sea with surface-active agents-~as been known
since antiquity (Davies and Vose, 1965). Aitken (1884) studied the subject
scientifically, showing that wave damping by a surface f.ilm..Jsass.ociated \'t_it_h
its resistance to compression.

Dorrestein (1951) extended Lambis treatment of insoluble films in capillary
waves and obtained an expression for the damping as a function of the surface
compression modules.

No effort has been made to quantify the magnitude of various types of
scale effects in the interpretation of the model data on wave set-up.

Effects of a Difference in Resultant Bottom Shear Stress on Wave Set-Up
in Model and Prototype

In addition to the consequences of previously described scale effects of
the hydraulic model which arise from the differences in hydrodynamic processes
in model and prototype, differences in measurements may resu1t when the boundary
conditions of the model do not complete1y conform to those of the prototype.
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Those deviations also may be considered a form of scale effect, better
cal led "model effect."

.In the prototype, conditions are fundamentally three-dimensional. Even
if the site has been selected so as to represent two-dimensional conditions
as closely as possible, small three-dimensional effects may still be present
in the prototype that are not simulated in the fundamentally two-dimensiona1
mode 1.

A IImodel effect" in resultant shear stress wi1l occur, if, for whatever
reason, the time histories of the bottom shear stress in model and prototype
are different. In the prototype a small landward mass transport may occur
that is diverted to adjacent reef areas by sma11 lonqshore currents. If that
wou1d be the case, the resultant bottom shear stress would be affected.

In the two-dimensional model, the landward mass transport induced by the
breaking waves wi1l be balanced by a seaward return flow. However, the
existence of slight permeability in the model reef (versus an assumed imper­
meabl e reef in the prototype) may affect the distribution of the return flow
in'the model, thereby constituting a possib1e "model effect. 11

Evaluation of the Effect of a Difference in Resulting Shear Stress on
Wave Set-Up Measurements

If the resu1tant bottom shear stress is inc1uded in the wave set-up
equation, one has

as + pgh an + T = 0ax ax (9.12)

assuming steady state conditions and neglecting the effect of a superimposed
flow.

The effect of T may be evaluated by making use of equation 9.11 and by
comparing computed and measured va1ues of ~nl-5

By assuming a linear re1ationship between the radiation stress and the
mean energy (variance) in sha110w water equation 9.11 may be written as
1

32" (var)5
~nl-5 = h (9.11-a)

as discussed earl ier, where (var)5 represents the variance of the time series
at Station 5.

Assuming that differences between the ca1cu1ated va1ues of ~n (based on
equation 9.1l-a) and the observed va1ues in the model are sole1y due to the
effect of the resultant shear stress T, a va1ue of T can be determined.

A po"ssib1e model for the va1ue of T that seems to give acceptab1e resu1ts
- asis the hypothesis that T is proportiona1 to - ax' For a sha110w reef this
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can be interpreted as a proportionality between Tand the rate of energy
dissipation.

Denoting the dimensionless proportionality constant for the model as Bm
one has

-
T = - Bm

as
ax (9.13)

Inserting this value of Tinto equation 9.12 gives

all + (1 - B ) ~ 0pgh ax =m ax

This modifies equation 9.11-a to

L1115_1 =
(l-Bm) ~ (var)5

h

(9.14)

(9.15)

Using this equation, the va1ue of Bm can be evaluated from the model results,

using the measured values of L1115_1' (var)5 and h.

In this evaluation, a correction for the effect of nonlinearity on
radiation stress is not applied in order to keep the model as simple as
possible.

The results of this analysis are shown in Figure 9.17, corresponding to
a value B = 0.36 and a resultant shear stressm

T = - 0.36 as
ax (9.16)

Calculation of the Coefficient B from the Prototype Measurements

In order to determine if allmodel effectll occurs and if differences in
resultant shear stress between model and prototype are present, a similar
approach must be followed for the field observations. Unfortunately, the
number of data points with simultaneous information on wave energy at Station 5
and wave set-up over the reef is limited to only one. It was obtained by
combining the field observations of September 14, 1976 with those of September
16, 1978 (first run) which observations showed equal wave energy for the offshore
station.

Since the values of wave energy ahd wave set-up do not come from simul­
taneous measurements, the accuracy of the information used is debatable.

Neverthe1ess, this information is used in this analysis to obtain a much
needed camparison. App1ying equation 9.15 to the field conditions gives
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(9.17)

where Bp is the coefficient of equation 9.13 applied to prototype measurements.

Using the above field data gives

0.0305 =
(1 - Bp) ~ (0.0223)

0.915

and

0.17

The value of Bp is approximately half that of Bm .

Based on the value of Bp , the resultant mean shear stress term in the
field experiments may be expressed by

(9.18)

A tentative conclusion based on only one data point is that the resu1tant
shear force pl~s a 1arger part in the hydrau1ic model than in the field for
reasons not well understood.

If these differences are classified as model effects, then model measure­
ments can be corrected for model effect by app1ying a correction factor

1 - 0.17 _ 0.83 _
1 - 0.36 - 0.64 - 1.3

to the portion of the wave set-up in the model that develops over the shal10w
reef.

It is hereby assumed that scale effects for the conditions a10ng the
offshore portion of the traverse are sma11 and may be neglected.

A verification of the correctness of this assumption is not possib1e at
this time.

Converting Model Data to Prototype Conditions

If the hydraulic model is considered a true simu1ation of the prototype
conditions at A1a Moana Reef so that it can be used for prediction purposes,
a correction must be applied to the model data as discussed above.

In the fo110wing, the wave set-up measurements in the model have been
corrected for "model effect" and the results are presented in dimensionless
form in Figures 9.18, 9.19 and 9.20.
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. Figures 9.18 and 9.19 correspond to the Figures 9.15 and 9.16 for the
uncórr-ectedmode l data. Although scatter of ca1cu1ated resu1ts in each of
these figures is significant, it is expected that experimenta1 and procedura1
errors are principa11y responsible for ~he deviations from the mean trend.

If it is assumed that the average 1ine through the data points in
Figure 9.18 represents true conditions, whereby

Tlmax
H.
1

=
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nmax H.
relationships between -- and -'

Hi gT2

h
may be drawn with H~ as parameter.,

They are shown in Figure 9.19. Because of the corrections, corresponding
n

values of max in Figure 9.19 are somewhat higher than the observed (uncor­H.,
rected) information of Figure 9.16.

Validity of Results

The results of Figures 9.16 and 9.19 apply to the conditions at Ala Moana
Reef with corresponding prototype tide levels of 0.76 mand 1.07 m above M.L.L.W.

For water levels considerably higher or lower than these, the wave set-up
may be somewhat different in terms of the dimensionless parameters used.

In the preceding section it was suggested that the difference in resultant
shear stress cou1d be the major reason for a model effect. Other possib1e
factors influencing the differences between the results of model tests and of
field experiments are:

a. the difference in water level, which in the model corresponded to
0.76 mand 1.07 m above M.L.L.W. and in the field ranged between
0.41 mand 0.57 m above M.L.L.W.

b. differences in bottom roughness and friction coefficient;

c. the difference between monochromatic waves in the model and random
waves in the field.

Comparison Between Model and Field Data

A comparison between results obtained from the model and from some field
observations is given in Figure 9.19. The average of four field observations
on September 16 and 30, 1978 (two runs on each day) is shown. Unfortunately,
these data were the only reliable information on wave set-up in the field for
which simultaneous measurements of wave elevations in the offshore station
were available. During those four observations, the relative wave set-up,
calculated by using the root mean square wave height, ranged from 0.063 to
0.074, with average value of 0.069.

The depth-wave height ratio
hs

varied from 1.35 to 1.89 (average 1.63)H-:-,
H.

whereas the deep water wave steepness parameter --'-- varied between 0.038 and
gT2

0.048, with mean va1ue 0.045.

To calculate the latter, the wave period corresponding to the peak frequency
of the wave spectrum was used.
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The data point obtained in

1.63 fal1s within the lines for

this manner with a depth-wave
h
s _ values of 1.5 and 2.0.H:-
1

height ratio

Consequently, the average field data point may be considered in agreement
with the results of the model tests as corrected for model effect.

A Different Way of Plotting the Results of the Model Experiments

The relationship represented by equation 9.8 makes it possibl~ to

the data also in a different form, viz as a relationship
H.

values of ~ as an independent parameter.
gT

nmax
between _­H·1

present
hs

and Ho ',
with the

Such relationships are shown in Figure 9.20. In this figure only the
functiona1 relationships derived from the average line in Figure 9.18 are
shown; the individuaT data points are omitted from this diagram.

Presenting the results as in Figure 9.18 allows the extrapolation of
hs

curves toward ~ O. All lines show a close to linear relationship forH.,
hs

low values of -- The extrapolated curves cross the vertical axis (whereH.,
·h
~ ~ 0) close together near the point, whereH.
1

Tlmax
~ is 0.162.,

Thisvalue may be considered to be an approximation for the maximum wave
set-up on a sloping beach, without reef. There is no guarantee, without
further detailed calculations, that such linear extrapolation is justified,
but this method provides at least a first order estimate for the wave set-up
on a sloping beach in comparison with the wave set-up on a reef.

In Figure 9.21 a comparison is made between results obtained in this
study and those obtained from an elaboration of results by other investigators.
The results of this comparison are plotted with reference to the deep water
wave height Ho. Results from Van Dorn (1976) and Battjes (1974a) were used

for this comparison.

In Van Dornis results, his_equation 5.110 of Chapter 5 was manipulated to
Tlmax Ho

obtain a relationship between -H--- and -:2. To be able to do this a slope
o gT

of 0.03 was assumed and results of the Shore Protection Manual 1973 (Figures
2-65 and 2-66) were used to convert Van Dornis results into the parameters of
Figure 9.21. The results of this conversion are shown by a dashed line,
indicating that the converted Van Dorn data fall somewhat below the extrapolated
reef data of the present study.
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To,_c.ompa,:,ew~th ~attj_~s' (19~4aJ r-esults, ~alcula~,e,d"maxim!Jmwave set-up
values.from hls"FJ,9U.re6.3 were used for compar-rson .. These results were
calc'ulated by Battjes for a narrow spectrum .with an approach .only of 15° and
y = 0.8, the root mean,square 'wave heig~t representing the deep water wave
height. Battjes' results are a~se shown in Figure 9.21. .'

In compar-tnq t.he results of Ba_ttjes.and of this study, it must be realized
that Battjes' calculations are for anarrowspectrum, whereàs this study relates
te regular waves in a flume.·· . -.

.Ihere is_, fu_r_thermere, a-,sl iqht effect of the angle of approach, but
Bat(jes' Flgure 6.1 shows that there is only a minimal difference between waves
normal te the beach and these approaching at an angle of 15° to the nermal.

Battjes' values for relative maximum wave set-up are somewhat higher than
the extrapolated values ebtained from the present study. This weuld be expected
since in Battjes' medel.the effect .of a resultant bottem shear stress has beennégleëted. . .' "', '.. ., '. ...,

Figure 9.21 shows that the extrepo lated reet'data from this study q+ves
values for the wave set-up which are in between the results obtained by Battjes
(1974a)and the manipulated data frem Van Dorn (1976). The'extrapelated re~ults
imply that there is enly a small dependency,ef maximum wave set-up on wave
steepness. Further study on w~ve. set-~~.on a sloping beach, both,in mo4el ~nd.
prototype, is required to arrive at f irmer cenclusions reqard+nq the velid'ity
of various models .. " -"".)....; ", -.' .... -

Magnitude and Directien of Resultant Shear Stress T
.Thè magnitude and direction of the resultant shear stress depends on the

characteristics of the near bottem velocities in ·the breaking wave regime.

The results of both field and model studies indicate that under the
conditions studied, a resultant positive shear stress (exerted by the fluid on
the bottom) is likely to develop. This result suggests a mass transport
velocity near the bottom in shoreward direction.

In the field~ this resultant current pattern may possibly be associated
with some resultant landward mass transport on the reef to be discharged side­
ways intp adjacent areas and through rip channe]s.

In the model, this explanation does not hold since the situation is
strictly two-dimensional; however, in the model it is not tnconce ivahle that , __
some landward mass transport over the reef could be associated with return
flow through the porous model reef structure, altheugh the latter was largely
covered by an impervious metal sheet. It is also conceivable that in the
model the return flow is concentrated in the middle portion of the depth.
Reference is made toBijker, et al. (1974).

A mean positive bottom shear stress has a reducing effect on the wave
set-up on the reef. In the study area under consideration, there is reason to
belf eve that this is the case.
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In order to convert the results of the model tests to prototype data for
design purposes, it is conceivable that such positive shear stress not a1ways
exists and that in a strict1y two-dimensiona1 situation, a zero or even
negative resu1ting shear stress may be possible. This will increase the amount
of wave set-up.

In developing prediction models for design purposes, it may be justified
that the resu1tant bottom shear stress be intróduced as a variable, the results
of the ca1cu1ations then varying accordingly.

In the previous paragraphs, it was indicated that experimental results
justified the relationship

- dS'T = -8-dx

where the values for 8 for the field and for the hydraulic model were different.

For the model the relationship

- dS
'T = - 0.36 dx

gave arealistic approximation of observed values.

In the fo1lowing, the value of the shear stress will be expressed in terms
of wave height and depth. As a first approximation, consider bottom friction
in the breaker zone to be absorbed in the va1ue of ç so that one may write:

dF - __ s_ 2
dx

::: -Eb - pg w H
8n .fl

For the sha1low reef zone

cgr = c and S = 1E2

so that

dF = c dE 2 dS
dx = c 3" dxdx

Equating 9.19 with 9.20 gives

(9.19)

(9.20)

~ C dS :::
3 dx

T being the wave period and

ddXS ::: _ ~ pg H28n cT
(9.21)
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With c = 19h this gives

dS _ __R_ H2
dx

z plg--
812" inT

(9.22)

The corresponding value for the shear stress in the model is:

.. o~l35Z; H2-
T z plg--

I'l IhT
,(9.23)

This equation can be used t~ calculate the wave set-up in th~ model.
_" ...

As an example, consider Run 7 of model test #2. Wave attenuation and -
wave set-up have been calculated for~this test run with and without a resultant
bottom shear stress. Refererice is made to Figures 9.22 and 9.23. For the
computation of wave attenuation, both wave bottom friction and energy
dissipation due to br~king were taken into account.

- ~

As may be expected, computed values of the wave height attenuation are
in general agreement with the observed values in the model. As to thewave
set~up Figure 9.22 presents the results of calculations based on the simplified
model, without resultant bottom shear stress.

There is-a considerable deviation between observed values and-ealculated
va1ues of wave set-up based on this model.

Agreement between calculated and observed values can be obtained if a
resultant shear stress T is included in the wave set-up equation. If for this
resultant shear stress the above derived equation 9.23 is used, agreement
between observed and calculated values is obtained for a välue t = 0.37. This
is close to the mean value of ç used for the calculation of the energy dissi­
pation; although since the bottom friction was abserbed in ç, a somewhat higher
value for ç had been expected ·to give adequate agreement between cal_culation
and measurement.

In order to obtain acceptable agreement between calculated and observed
values for the wave set-up over the reef, a resultant shear stress T was
required over a portion of the offshore slope as well as over the shallow por~
tion of the reef (see Figure 9.23) .

.,
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CHAPTER 10: COMPUTATIONAL ASPECTS OF WAVE ATTENUATION

INTRODUCTION

In the previous parts various aspects of wave attenuation and wave set-up
have been discussed, whereby attention was primari1y given to the concepts and
basic equations under1ying various computationa1 procedures; so far 1imited
space has been devoted to the computationa1 aspects of the prob1em.

In this chapter special consideration wi11 be given to the fo110wing
prob1em areas: .

Computation of friction and breaking 10ss coefficients from measure­
ments.

Computation of the change in wave height due to friction and wave
breaking.

• Energy 10sses due to breaking in random waves.

Interfrequency energy exchange in shoa1ing and breaking waves.

COMPUTATION OF FRICTION AND BREAKING LOSS COEFFICIENTS IN REGULAR WAVES

In this study considerab1e effort has been made to determine energy 10ss
coefficients from measurements. This section deals with ana1ysis of data from
the hydrau1ic model.

The wave flume of the JKK Look Laboratory, in which the hydraulic model
experiments were conducted, is provided with a monochromatic wave generator
and the ana1ysis was therefore based on regular (monochromatic) waves. However,
due to irregularities in the wave generating system inc1uding the generation
of long waves of 10w amplitude, waves in the f1ume were not as regular as
desired, so that 12 minutes records were used from which mean wave heights and
root mean square wave heights were determined.

Computation of Friction Losses

The differentia1 equation that governs the friction losses in two­
dimensional waves, without breaking, is

dF(x) = - Ef(X)
dx

(10.1)

The friction dissipation coefficient Ef was ca1cu1ated from 1inear wave

theory (Chapter 3). lts va1ue was

2 (iTH) 3
Ef = 3iT fw P T sinh k h

(10.2)

where fw = Cf = friction coefficient along bottom boundary.
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In the analysis of model data, it was first assumed that all friction was
concentrated along the bottom. Afterwards a correction to this friction
coefficient was applied to account for losses along the vertical walls of the
wave flume.

Using 1inear wave theory and assuming a horizontal bottom, it was found
that

1 =HW
1HTöT + sx (10.3)

in which

8 =
8·l fw

(10.4)
3 9 n c (T sinh kh)3

For a sloping bottom, the distance between two stations Xo and xn may
be divided into a number of steps with horizontal bottom, as shown in Figure
10.1-a. Equation 10.3 may then be applied along a horizontal step. However,
at the locations where a change in depth occurs, the wave height is subject
to the effect of shoaling. The wave height Hl is obtained from the value
Hlo by applying equation 10.3 over the sectiori 0-1 (See Figure 10.1-a):

1 1H = w- + 81 t:.x
1 0

(10.5)

The shoaling is considered to be concentrated in the steps; e.g. the
wave height Hl1 on the right hand side of step 1 is computed from the wave
height Hl left of the step by assuming that the energy flux is conserved.

This gives:

H 2 c = (H' 1)2 cgr21 gr1

1 =
_1 (Cgr2) 1/2

H' Hl cgr1
1

(10.6)

(10.7)

Inserting equation 10.5 into equation 10.7 gives:

ç 1/2

= (_1 + 8 t:.x)(~)
H' 1 cgr

o 1

1
(l0.8)

Hl
1
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In a similar way:

1 =H2
1 (10.9)

H' 1

(
c ) 1/2gr2

= cgr
1

(10.10)

and

1
c 1/2 [c 1/2

= (c;~:) (c:~~) c~0H'2

c 1/2

(
gr3) (1

= cgr ~
1 0

(10.11)
H'2

Fina11y one obtains:

c 1/21 (grn) (1
Hn = cgr ~

1 0

+ 61 ~x)

(
c ) 1/2 ( c ) 1/2grn grn
-c- 63 ~x+ -c-
gr3 gr4

If between the stations 0 and n the friction coefficient fw can be
considered to have constant va1ue, then for each of the sections the factor 6
can be expressed as:

(10.12)

6 = constant x fw .

Fol1owing this, the values of the wave heights Hl' H'1, H2' H'2, etc.

can be calculated by use of equations of the type 10.5.

The actual wave height (and energy) at the steps can be ca1culated by
taking the average value 1eft and right of the steps

+ H' 1
= 2 (10.13)
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H + Hl H + Hl
Consequent1y, one shou1d also take Ho = 0 2 0 and Hn = n 2 n

for the wave heights at the stations 0 and n; Hlo and Hn can be computed from
Ho and Hn:

Hl =o

[
1/2]

1 +(:::n )
o

(10.14)

and

+(CCgrn )1/2].
grn + 1

The above allows the calcu1ation of the friction coefficient fw from
the measurement of wave height at the stations 0 and n, Ho and Hn'

(10.15)

If wave variabi1ity in the model is significant, it may be desirab1e to
work with mean energy va1ues. An equivalent wave height may then be defined
by

H = (8E) 1/2
o pg (10.16)

from which other wave characteristics, such as orbita1 ve10cities may be
ca1cu1ated. If app1icab1e, a non1inearity coefficient 0 may be app1ied.

The necessity of ca1cu1ating HIO from Ho and of Hn from Hn can be
avoided by taking Ho in the midd1e of section 1 and Hn in the middle of
section n (see Figure 10.1-b).

Equation 10.5 then becomes:

(10.5-a)

whereas in equations 10.8 to 10.11, Hlo is rep1aced by Ho and 81 ~x by

8 ~x
1 2
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Equation 10.12 then c~anges into

1
Hn

= (:gr n) 1/2

gr1

+ (:gr n ) 1/2
gr2

(
:gr n) 1/2

gr3
64!::,.x+ ..... + Sn !::,.2x. (10.l2-a)

I Hl I
H3 Hl

Ho Ho Hl I H2 Hz 3

11
11

{31 {32
11

{3311
I

car I Car z

-- .. x

Figure 10.1-a Bottom Slope Schematized to Step Profile
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I 2 n
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Figure 10.1-b Alternate Bottom Slope Schematization
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Nonlinear Aspects

The above out1ined procedure works well if the wave height is smal1
compared to the depth so that the linear formu1ations of energy and group
speed are applicable. When due to shoaling waves exhibit strong nonlinear
characteristics, the use of the 1inear formulas give rise to appreciab1e
errors in the values obtained. In the breaker zone, the propagation velocity
and group speed may be formulated by the equation

c = cgr = Fr (10.17)

where the Froude number Fr may vary between 1.05 and 1.3.

The Froude numbers of the shallow water waves can be evaluated from
experimental data.

In the area before breaking waves mayalso exhibit strong nonlinear
characteristics so that an adjustment to the (linear) group speed may be
required.

In order to compute total mean energy from potential energy, a correc­
tion factor was applied if the wave demonstrated solitary wave characteristics
with * »0. In that case, the mean energy was obtained by considering the
fact that the potential energy of such wave is only 45% of the total energy.
(Longuet-Higgins,·1974). Acorrection coefficient of 19000= 1.1 was then
applied to the linear mean energy obtained from a wave record to account for
the nonlinearity.

In the process of shoaling and breaking on the reef, secondary waves are
generated, giving the waves in shallow water a distinct variability. For the
analysis it was therefore considered necessary to digitize the wave records
and to compute the wave spectra eventhough the primary waves were monochromatic.

Energy Losses Due to Bottom Friction and Breaking

If both bottom friction and breaking are important, the differential
equation for the loss in energy flux is

dF(x)
dx = (10.18)

After introducing the appropriate expressions for Ef and Eb ' equation
10.18 may be integrated for a horizontal bottom. The results of this calcula­
tion were presented in Chapter 4 (equation 4.109). A numerical procedure,
similar to the one described above, mayalso be applied.

It is of interest to compare the relative magnitude of friction and breaking
Eb

For this the ratio for shallow water may be determined.
Ef

in a breaking regime.
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The orbita1 velocity near the bottom in sha110w water is

(10.19)

which gives for the ratio between ~b and Ef

Eb = 3 z:; w h3/2
Ef 2/2 fw ;g H (10.20)

To obtain an order of magnitude for the quantities at A1a Moana Reef,
assume some realistic values for the various parameters of equation 10.20:

z:; = 0.5 w = 0.6

fw = 0.1 h = 1 m

H = 1 m

Eb
This gives ~ 1.

Ef

It appears that in regular waves breaking and friction have approximately
equal weight in the energy dissipation process in the surf zone, where wave
height and depth have equal order of magnitude.

FRICTION AND BREAKING LOSS COEFFICIENTS IN RANDOM WAVES FROM FIELD EXPERIMENTS

In the ana1ysis of field data, the randomness of the waves must be taken
into consideration.

For waves traveling perpendicular to the shore1ine (no refraction) with
energy flux per unit of width equa1 to F, equation 10.18 may be written in the
form. :

dF 2 (nfH) 3 z:; 2
dx = - 3n fw P sinh kh - 4/Z pg fH (10.21)

Integration over distance 6x for regu1ar waves gives

[
2 (nfH)3 z:; 2]6F = - 3n f p . 3 + - pg fH 6x

w slnh kh 4/Z
(10.22)

For the ana1ysis of random waves, two methods of approach may be
considered:

use of Fourier spectrum

use of zero-upcrossing spectrum
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In the latter, individual waves traveling through a section may be
considered, which is a definite advantage for the analysis. Also, the 10cation
where breaking starts can be determined for each individual wave and the sum of
the 10sses can be determined for all waves. In the following, the wave-by-wave
treatment wi11 be utilized.

Similar to the analysis in Chapters 7 and 8, the fol10wing definitions
are applied:

1 N 1 2
EH = -N L 0 pg Hl'

i=l 0
(10.23)

and

EV = pg. (variance). (10.24)

Set equation 10.23 equal to equation 10.24 by introducing a factor 0

EH = oEV (10.25)

so that

(10.26)

Values of 0 obtained from the measurements were listed in Table 8.3.

The mean value of 0 obtained for a series of waves is now assigned to
each individual wave. This is necessarily an approximation but no other means
of finding 0 is available.

By again considering a step-profile and considering the group speed
constant over the distance 6x. of a section j-(j+l) with a schematization

J
according to Figure 5.10, one has

6F = (Ej+l Elj) cgr. (10.27)
J

which gives for any individual wave, i:

2
H j+1

::;:Hl.2 _ [16 0 fw ( TIfHIj )3 + 2ol; f HIJ'2 ]
J 3 TI9 sinh kjhj 12

*tsx ,__ J
cgr.

J
(10.28)

Hj+l may be computed from HIj if all other factors are known.

* Use of the difference equation 10.28 instead of the corresponding differential
equation is allowed only for smal1 values of 6x, e.g.

8/ fw Hlj 6x
« 1, for example < 0.01.
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Furthermore, at the transition j+1 conservation of energy flux requires:

2
H j+1 cgr.

J
= (H'. ) 2

J+1 cgr. 1J+

or

H' j+1 =
cgr.

J (10.29)c
grj+1

Cambination of equations 10.28 and 10.29 gives

c

- [16TI2 Ó f ( f H'. ) 3H,2 H'~
gr.

J
3g w sinh kj~j +

j+1 J c
grj+1

óçf H'} ]
f'...x·

12 J (10.30)
cgr. 1J+

For the depth h., the mean depth over the section j, j+1 is to be used.
J

If N waves pass the section j, j+1 of which Nb waves break, the resu1ting

equation for all waves is:

N
I

i=l
H,2
i ,j+1

cN gr ..I H'~ . lJ
i=l 1,J cgr .. 1

1,J+

N tsx ,
I -c---"J~

i=l gr. '+11 ,J

2161T 0 fw
3g

(
r . H'.. ) 3 Nb s«,
1 lJ _ I J

sinh k..h . '-1 c
lJ J 1- sr, '+11 ,J

/Z ç 0 f1· H' ~ .
1 ,J

(10.31)

The ca1culation is carried out for a number of steps f'....Xj.
Assuming that energy levels are known from measurements at the beginning

and end of a section, the above procedure allows the ca1culation of fw if the
va1ue of ç is known and vice versa.(l) For this procedure, it is assumed that
the friction coefficient fw has a constant value for the section considered.
The dependency of fw on frequency is thereby neg1ected. It is a1so assumed
that ç is constant in this equation.

Ca1cu1ations based on equations 10.29 and 10.30 have been carried out by
assuming va1ues for fw and determining the corresponding va1ues of ç by means
of a iterative procedure.

(1) For sma11 values of bx , the differences between Ho and H' 0 and between
Hn and H'n may be neg1ected.
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The result is an equation of the form

P f + q ~ = 1w

from which pairs of (fw' ~) values may be determined that give the same
energy 10ss. pand q are numerical constants determined from the analysis.

Reference is made to Chapter 8 for results of these computations.

Unfortunately, it is impossible to exactly determine the value of both
fw and ~ from this equation.

Where no breaking occurs, it is possible to determine fw because the
10sses due to breaking disappear and the analysis gives rise to one equation
with one unknown. When breaking occurs, the friction coefficient may be
affected by the breaking process so that a different value of fw may be found.

If the fw-~ curves are crossing the ~-axis, an upper limit for ~ is
found since the friction coefficient cannot be negative.

The order of magnitude of the ~-values may be obtained by applying
Figure 4.24. Based on assumed values of ~, values of fw may then be calculated.

The above procedure only partly accounts for interfrequency energy
exchange through the use of the experimental1y found values of o.

An important aspect of equation 10.31 is that the total number of waves (N)
and the number of breaking waves (Nb) appear in the equation, whereby Nb < N.

This is a significant characteristic of the analysis.

In designing a prediction model, whereby experimentally found values of
fw and ç are used as input, the fact that in irregular waves only a fraction
of the total number of waves breaking, has to be accounted for. The probability
density distribution of wave height at the various stations, therefore, plays
a part in this analysis. To determine the number of waves that break in a
subsection, the modified Miche-criterion as proposed by Battjes (1974a)was used:

Hb y' (27Th)T = 0.14 tanh 0.88 -c- (10.32)

H
where ~ is the maximum steepness that can be reached in nonbreaking waves.

For shallow water this reduces to

Hb
h = y' . (10.33)
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The coefficient y' may be associated with the lowest breaking wave height
in the record for a station. Values of y' obtained from the field experiments
are presented in Tables 8.5 and 10.T.

Finally, an acceptable formulation was required for the group speed.

At the point of breaking c ~ c andgr

c = Fr rgn .gr (10.34 )

At the breaking point cgr differs significantly from the linear
expression c = rgn so that realistic Froude numbers have to be taken into
account. The latter were found from the experiments.

Walker (1974a) found from his investigations in a hydrau1ic model:

c = c(a) (1 + 0.25 H)
h

(10.35 )

where c(a) denotes the celerity for linear waves.

For ~ = 1 this corresponds to a Froude nurriberof 1.25.

In order to have a gradual increase in group speed from re1atively deep
water (12 m) to the breaking point, it was similarly assumed that

c = c (a) (1 + 0.25 H)
gr gr h -(10.36)

There is no theoretical foundation for this expression, but introducing
it eliminates a sudden change in group speed from linear to nonlinear wave
characteristics at the breaking point.

It was found that the results of the calculations for the zone befere the
breaking zone were not very sensititve to the group speed relationship used.

PREDICTION OF ENERGY LOSSES FROM BREAKING IN RANDOM WAVES

General Considerations
-

For computatiónal procedures in random waves, it will be extremely useful
if an effective energy dissipation coefficient ç can be defined so that energy
loss calculations can be applied to a regular wave train representing the wave
spectrum.

A random wave field has waves of varying height and period. When such
waves approach a coastal reef over a sloping bottom, the larger waves of the
spectrum will break in deeper water than the smaller waves; after the breaking
the larger waves are subject to energy dissipation, whereas at the breaking
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points of the larger waves, the smaller waves continue unbroken, subject to
shoa1ing and friction unti1 they a1so break. This process is i11ustrated in
Figure 10.2

---.c
(S) (5)

BREAKING

•••••••••• HIGH WAVE

I
I I
I I
I I

: ••••• ~.... I LOW WAVE~ ~
;::::sa ~<:::;a :c

I I

Figure 10.2 Behavior of High and Low Wave Near Breaking

Supposing the largest waves start to break at a station, identified by
(6) in this figure and only a small fraction of the waves break at that
location, the amount of wave energy dissipated immediately shoreward of (6)
is also small. This fraction increases as the depth becomes shallower and
more and more waves start to break. This behavior is schematically shown in
Figure

(61

P FRACTION OF
BROKEN WAVES

(6) (5) (4) (3) (2)

Figure 10.3 Schematized Trend Regarding Fraction of Waves that are Broken
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The consequence of this is that the effect of breaking on en~rgy
dissipation is small at Station (6) and increases in sHoreward direction;
further shoreward on the reef, this effect decreases again.

For random waves an evaluation of this aspect must be made in a
quantitative manner in order to correctly assess the breaking losses in energy
dissipation.

Energy losses in breaking waves were defined by equation 10.18.

The rate of energy losses due to breaking per unit of area, Eb' was for
monochromatic waves defined by equation 4.62. For the numeri cal evaluation
of the randomness of waves in breaking, this equation must be evaluated for a
wave spectrum. In previous chapters the energy dens t ty spectrum of the waves
was defined in terms of the frequency f = + and equation 4.62 may therefore
also be written in the form

= _s_ pgf H2
4/Z

(10.37)

For the numerical evaluation of Eb in random waves, a probability density
distribution for wave height in breaking waves and a criterion for wave breaking
must be known.

Battjes and Jansen (1978), Model for Energy Oissipation

In a recent paper Battjes and Jansen (1978) developed a dissipation model for
random waves in the breaking zone. A short description of this model follows.

Wave Height Distribution

It is impossible for waves with heights considerably in excess of the
depth h to pass alocation with that depth. 'Waves which would otherwise do so
are reduced in height due to breaking, whereby the limited depth effectively
limits the larger wave heights in the distribution.

As a model for the wave height distribution, Battjes and Jansen used a
truncated distribution, whereby for each depth h a maximum possible wave
height, Hm' was defined by

(10.38)

It is assumed that the heights of all the waves which' are breaking or
broken at the point considered (and only these) are equal to Hm·

For the shape of the distribution of the non-broken waves, a Rayleigh-type
distribution was accepted.

The above assu~ption written in terms of the cumulative distribution
function F(H) leads to:
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= 1 for Hm ~ H
(10.39)

'"
in which H is the modal value and the underscore indicates a random variable.

'"
Hand Hm so that all the statistics of the wave heights can be expressed in

Equation 10.39 represents a probability distribution with two parameters

'"
terms of (H, Hm)· One of those is the root mean square wave height (Hrms)'
defined by

(10.40)

Another is the probability that at a given point a wave height is
associated with a breaking or broken wave. This probability is called Qb'

which on the assumption of a maximum wave height for a given depth equals

Q = Prt H = Hl.b - m I (10.41)

Substitution of equation 10.39 into equations 10.40 and 10.41 gives

H2 = 2 (1 - Q ) H2rms b (10.42)

and

1 2 "2
Qb = exp (- 2 Hm /H ) (10.43)

'"
Instead of (H, Hm) it is also possible to use (H , H ) as the two

rms m
governing parameters of the distribution. For the purpose of this study,
where energy dissipation is essential, the latter two parameters are preferred
having a clearer physical meaning. This leads to

\: ~: = _ ( H~s ) 2 (10.44)

H
from which Qb can be solved as a function of ~:s

A graphical representation of this equation is given in Figure 10.4 by
asolid line. In deep water where Hrms/Hm + 0 equation 10.44 gives
Qb + O. In shoaling water- the ration H /H tends to increase and the valuerms m .
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of Qb increases (see also Figure 10.3). In the limit Hrms/H -+ 1 and Qb -+ 1,'

which would imply that all waves are braken and equal to H .m

Criterion for Breaker Height

Battjes (1974a) applied Miches' criterion to the maximum,height of
periodic waves

Hm = 0.14 L tanh (2~h) = 0.88k-1 tanh kh (10.45)

and modified this to

Hm = 0.88k-1 tanh O~~~ (10.46)

In shallow water where tanh ~ -+ ykh this reduces to0.88 0.88

H = yhm
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where y is somewhat adjustable depending on wave steepness and beach slope.
(See also Chapter 4).

k = 2~ is the positive real root of the dispersion equation

(2nf)2 = gk tanh kh. (10.47)

In application to random waves, equation 10.46 is used with f in
equation 10.47 given as a single representative value, e.g., f, the mean
frequency of the spectrum defined by

fo'" f G(f) df
f =

fo '" G(f) df

(In principle it is also possible to use a distribution of f values leading
to a distribution of Hm values.)

Energy Dissipation in Broken Waves

Battjes and Jansen (1978) following Le Méhauté (1962) developed an energy
dissipation model, based on the similarity with the bore and one very similar
to the model developed in this study.

For the average power dissipated in the breaking process per unit of
area, they presented

(10.48)

Applying this to random waves, one is interested in the expected value
of the dissipated power per unit of area.

Applying equation 10.48 to broken waves, they obtained

E: =b
* (10.49-a)

with f being the mean frequency as defined earlier.

In terms of the dissipation coefficient l; developed in this study, this
is equivalènt to

(10.49-b)

* Here al is used instead of Battjesl a because of different meanings of a
already used in this study.
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For monochromatic waves with Qb = 1 and f = f, this gives

al 2
Eb = Lf f pg H

Apparently al is equivalent to ~,with ç defined as in Chapter 4.
v7

(10.50)

The combination of equation 10.49-a or band equation 10.44 determines
the power dissipated in the breaking process, Eb' as a function of the (unknown)
value of Hrms (or the local energy density Iv)' the known local depth and some
constants.

Battjes and Jansen compared the results of their theoretical model with
the results of hydraulic model experiments and found that the wave height
variation across the surf zone was predicted reasonably well. Reference is
made to Figure 10.5 which is taken from their study.

-20 0 20 40 60 80 100 120 140 160 180 -20 0 20 40 60 80 100 120 140 160
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EXPERIMENTAL

0.2

0.1
0.1

I~ I~
0 0
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x X

0.1
- 0.1

Figure 10.5 Experimental and Theoretical Values of Wave Attenuation
and Wave Set-Up. (from Battjes and Jansen, 1978).
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It is to be noted
are not accounted for.
values obtained for al
and in this study.

Use of the Weibull

that in Battjes and Jansen (1978) model friction losses
This in_part explains the difference in quantitative

and l; / IZ, respectively obtained by Battjes and Jansen

Distribution for the Calculation of Eb in a Random
Wave Field

The results of this study have shown (see Chapter 8 and Black (1978a)
that the Weibull distribution provides an adequate description of wave height
variability in shallow water waves, including the stations where waves are
broken.

The Weibull probability density distribution (Weibull, 1951) for wave
height is given by the general form:

(10.51)

and is defined by two parameters a and S.

An important difference with the truncated Rayleigh distribution is
that the probabi1ity function F(H) does not exhibit a discontinuity at H = Hm'
such as is the case in the truncated Rayleigh distribution.

A disadvantage of the Weibull distribution is that the parameter S must
be known from experiments.

For example, the coefficient S may be obtained from the relationship
between Hz,1/3/HZ (significant wave- height over mean wave height) as shown in

Figure 10.6. Furthermore, a can be determined if S and the mean wave height
are given (see Figure 10.7).

When using the Wei bull distribution, it is desirable to express the mean
energy dissipation rate (per unit of area) in terms of Hrms rather than in
terms of H , since there is no maximum wave height defined in this concept.m . .

Define a ratio factor Q for irregu1ar waves by

a41 f pg H2
rms (10.52-a)

or in terms of ç

ç - 2
E = Q - f pg H rms
b 412"

(10.52-b)

The fraction Q is then determined from

Q =
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or

Q =
I ~ H2 f(H) dH

H2rms
(10.53)

In order to solve equation 10.53, f(H), Hb, and Hrms must be known.

f(H) may be expressed in terms of Hrms and S (coefficient of the Weibull
distribution).

Hrms may be expressed in terms of the coefficients a and S of the Weibull
distribution:

Hrms = [r(l + ~)] 1/2 a-liS

Hrmsa1/S = [r(l + ~) ] 1/2

(10.54)

and

a = (10.55)

where r represents the gamma function (see B1ack,1978a).

1For S = 2, a = 2 which ho1ds for the Ray1eigh distribution.
H rms

The wave height Hb is defined as the lowest wave height that is broken;
its va1ue is to be determined from experiments. Waves with H < Hb are there­
fore all unbroken. The va1ue of Hb can be expressed in terms of water depth

(10.56)

where y' is to be distinguished from y, defined earl ier.

Modified Battjes and Jansen (1978) Model for Energy Dissipation,
Deve10ped from Ala Moana Reef Data

The field experiments conducted at A1a Moana Reef in 1976 provided informa­
tion on the various statistical parameters necessary to eva1uate the energy
losses due to breaking.

371



Reference is made to Table 10.1 which presents relevant data for Stations
5 through 1 on the reef for the days of measurement in 1976.

Listed in this table are depth at station, maximum wave height (measured),
root mean square wave height (computed) and some derived characteristics.

The data give rise to the following discussion.

Maximum Wave Height

'. Hm
From the measured values of the maximum wave height, values of y = 11

have been computed (Column 6).

The mean values for the Stations 5-1 are listed in Table 10.2.

Table 10.2 shows that the mean values of y range from 0.81 at the reef
edge (Station 5) to 0.60 at Stations 1 and 2. '

According to Table 10.1, the maximum value of y = 1.11 was computed for
Station 5 on September 16,1976, whereas the,minimum value of Y.= 0.46 was
found at Station 2 on September 7, 1976.

The mean value for all stations is y = 0.70.

Root Mean Square Wave Height

Values of the root mean square wave height were computed from

(10.57)

where N is the total number of waves in a record.

Computed values of Hrms are listed in Table 10.1, Column 7.
Hm

Minimum Breaker Height

From a visual inspection of the wave record, the number of broken waves
was determined. Breaking or broken waves in the record are characterîzed by a
very steep wave front. Although this pYlocedure is not 100% accurate, it is
believed that the method is,superior to using an empiricalor theoretical
relationship. Independent analysts also arrived at approximately the same
number.

From the number of broken waves and the computed wave height distribution
Hb

obtained from the measurements, the coefficient y. = 1\ can be determin~d
(Table 10.1, Column 8).
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TABLE 10.1

STATISTICAL PARAMETERS FOR BRaKEN WAVES

2 3 4 5 76 8 9 10 11 12 13 14 15~

Hm Hnns
H Hrms Hb H' Hnns IDate Probe Depth y = _1!1_ P Q Q' y" Q"h T y' "11 m -w;h(m) (m) (m) (m)

7-30-76 5 1.13 0.90 0.48 0.80 0.53 0.56 0.1209 0.2687 0.075 0.68 0.77 0.620 0.1032
4 0.70 0.59 0.26 0.85 0.43 0.60 0.0694 0.2659 0.049 0.73 0.51 0.505 0.0678

8-4-76 5 1.32 1.11 0.51 0.84 0.46 0.50 0.2129 0.5801 0.123 0.67 0.89 0.574 0.19114 1.02 0.81 0.36 0.79 0.45 0.46 0.2230 0.5698 0.115 0.63 0.64 0.566 0.18253 0.96 0.79 0.31 0.82 0.39 0.40 0.2402 0.6241 0.094 0.61 0.58 0.533 0.17732 0.99 0.60 0.18 0.61 0.29 0.25 0.1414 0.4883 0.041 0.43 0.44 0.404 0.0797

8-25-76 5 1.26 0.84 0.29 0.66' 0.34 0.26 0.2405 0.7153 0.083 0.46 .0.58 0.494 0.1754 0.67 0.58 0.28 0.86 0.48 0.43 0.3717 0.7072 0.162 0.65 0.44 0.6364 0.2863 0.74 0.39 0.14 0.53 0.36 0.29 0.0990 0.3676 0.048 0.41 0.30 0.454 0.0792 0.79 0.39 0.12 0.49 0.30 0.225 0.0963 0.3487 0.031 0.36 0.29 0.406 0.0571 0.65 0.31 0.08 0.48 0.25 0.235 0.0584 0.3361 0.021 0.36 0.23 0.337 0.038

9-7-76 5 1.40 0.83 0.31 0.59 0.38 0.31 0.1480 0.4787 0.•069 0.45 0.63 0.499 0.1194 0.79 0.70 0.32 0.89 0.46 0.45 0.3059 0.7168 0.152 0.67 0.53 0.605 0.2623 0.82 0.79 0.30 0.96 0.37 0.49 0.2096 0.6112 0.084 0.73 0.60 0.492 0.1482 0.81 0.38 0.13 0.46 0.35 à.24 0.1423 0.5497 0.067 0.35 0.29 0.471 0.1221 0.90 0.52 0.17 0.57 0.34 0.21 0.2845 0.7502 0.087 0.39 0.35 0.494 0.183

9-14-76 5 1.48 0.92 0.39 0.66 0.42 0.35 0.1892 0.5239 0.092 0.51 0.75 0.519 0.141
4 0.94 0.51 0.21 0.54 0.41 0.28 0.2326 0.5967 0.100 0.41 0.39 0.545 0.177
3 0.44
2 0.86 0.57 0.15 0.66 0.27 0.32 0.0411 0.2105 0.015 0.49 0.43 0.356 0.027

9-16-76 5 0.88 0.98 0.39 1.11 0.40 0.70 0.1399 0.5127 0.082 0.91 0.80 0.485 0.120
4 0.90 0.73 0.29 0.81 0.40 0.42 0.2183 0.5674 0.091 0.62 0.56 0.519 0.153
3 0.82 0.71 0.32 0.87 0.45 0.60 0.1140 0.3914 0.079 0.74 0.60 0.524 0.108
2 0.86 0.58 0.18 0.67 0.30 0.36 0.0369 0.2024 0.018 0.52 0.45 0.394 0.031
1 0.80 0.48 0.15 0.60 0.30 0.36 0.0414 0.2425 0.022 0.48 0.38 0.383 0.036

9-23-76 5 0.88 0.89 0.39 1.02 0.43 0.64 0.2723 0.7929 0.147 0.82 0.73 0.531 0.224
4 0.86 0.70 0.27 0.81 0.39 0.65 0.2019 0.5771 0.088 0.73 0.63 0.426 0.105
3 1.13 0.79 0.33 0.70 0.42 0.74 0.1727 0.5832 0.103 0.72 0.81 0.404 0.095
2 0.90 0.70 0.20 0.77 0.28 0.58 0.1914 0.6518 0.051 0.68 0.61 0.323 0.068
1 0.83 0.62 0.20 0.75 0.32 0.56 0.2066 0.6618 0.068 0.66 0.55 0.363 0.087



TABLE 10.2

H
MEAN VALUES OF y = ~h

STATION MEAN VALUE OF y

5 0.81
4 0.79
3 0.69
2 0.61
1 0.60

The trends in y' are similar to those of y; usually higher values occur
for Stations 5 and 4 and lower values at Stations 2 and 1.

Statistical Parameters P, Q and Q'

The statistical parameters p, Q and Q' listed in Table 10.1 wi11 be used
in a manner similar to Battjes and Jansen's (1978) model.

They are defined as follows:

The quantity P is the fraction of broken waves in a record

Nb
P = N

(10.58)

where Nb is the number of broken waves and N the total number of waves. It
may be compared with the parameter Qb defined by equation 10.44.

The quantity Q is defined by

Nb
2

L H br(i)
i=lQ = (10.59)
N
L H2.
i=1 1

which is the numerical form of equation 10.53 and where Hbr(i) represents

a broken wave in the record.

*The quantity Q' obtained from observations listed in Table 10.1 (Column 11)
has been derived from Q by equating

* Q' is used here rather than Qb to identify it as an experimentally detennined
value.
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Q .s, f 2
Eb = pg H rms

412"

and

Eb = QI .s, f pg H2m
412"

so that

Q H2 = QI H2rms m

and

H 2
QI = Q ( ~S)

(10.60)

(10.61)

To compute QI, the ratio Hrms is taken from observations (Table 10.1,
Hm

Column 7). The value of Hm needs further clarification.

Use of Observed Statistical Parameters with Battjes and Jansenls (1978)Model

Battjes and Jansenls (1978) model is based on the truncated Rayleigh
distribution with the assumption that no wave is higher than a value H , withm
the probability for H = Hm being equal to Qb'

In order to apply the concept of a truncated distribution to data obtained
from observations, a difficulty arises as tothe value of Hm at which the
distribution curve is truncated.

The observed maximum wave height of a wave record is likely to occur only
one time and is expected to be 1arger than the truncated maximum wave height.
In the observed record one may find a probability distribution of H around the
value Hm' instead of a number of equal values Hm as specified by the theoretical
truncated distribution. .

If the observed highest wave in the record is used for the calculation of
Qb from equation 10.44, a value of Qb considerably lower than the fraction of
actually broken waves P will be obtained, such as found in the following
examples.

Consider the conditions at Station 5 obtained from measurements on July 30,
1976 and September 23, 1976 and calculate the values of Qb based on the maximum

abserved wave height, Hm'
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July 30, 1976:
H

H = .476 mo,H = 0.900 m· rms = 0.53ms m ~ Hm

Sept. 23, 1976:

Ob = 0.032 (from equation 10.44)

P = 0.12 (from equation 10.58)

H
H = .387 mo H = 0.894 m; rHms= 0.43
rms ' m m

Ob < 0.01 (from equation 10.44)

P = 0.27 (from equation 10.58)

In bath cases Ob « P.

Similar resu1ts are obtained for other days of observation. Clearly the use of
the maximum observed wave height leads to values of Ob that are lower than

anticipated.

In order to resolve this problem, two approaches mqy be considered:

(1) Use the observed maximum wave height in the record to represent
Hm and make an empirical adjustment to equation 10.44.

(2) Use for H a value, which is less than the maximum observ~dm -
wave height and which is more like1y to correspond to the
maximum va1ue of the (theoretica1) truncated distribution.
This va1ue is identified by H'm·

Both approaches wi11 be discussed below.

Adjustment of Equation 10.44

If ° is ca1cu1ated from equation 10.59, using observationa1 data, and O'
from equation 10.61, using the observed maximum wave height for Hm' the data

points for O', imp1ying a rea1tionship

Q' = fct ( H~s )

can be p1otted. See Figure 10.8.

In the same figure, the va1ue of Ob is plotted as obtained from Battjes

and Jansen's (1978) model (equation 10.44).

In ca1cu1ating 0' and Ob the va1ues of Hm have c1ear1y different meanings

and, therefore, one should not expect agreement between 0' and Ob·
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A comparison between QI and Qb is, therefore, not to be considered as a
verification of Battjes and Jansenls model, in view of the difference in the
meaning of Hm'

In case Hm signifies the maximum expected wave height in a record, its
H

value is related to the parameter y = ~ Ca1culated mean values of y are

listed in Table 10.2;for the Stations 5 and 4, a mean value of 0.80 was obtained
from the observations.

Considering the considerab1e scatter of points in Figure 4.2 where Yb is
plotted against the similarity parameter ~o ' a value of y = 0.80 is not
unrealistic for low values of ~o ' such as prevai1ed during the experiments.

. ,
The maxim~~ ~ave height Hm' therefore~ h~s advantages for prediction purposes,

since it is related tO.a predictable value of y ..

A consequence of this is that equation 10.44 is no longer direct1y appli­
cable. In this equation Hm represents the truncated wave height and not the
maximum wave height· However, this equation càn be modified to express the

H
relationship between QI and ~ms, Hm being the expected highest wave in the

m
record. This modified equation as represented by the dashed line in Figure
10.4 and 10.8 has the form:

1 - Q I

2y zn QI

2

= -C~s)
(10.62)where

y = 0.71 (QI _1)2+ 1

This relationship is also plotted in Figure 10.4 covering the total range
of QI from 0 to 1.

In the above equation, y is a numerical parameter based on experimental
data. Consequently, equation 10.62 must be considered an empirica1 reM.tion­
ship having no strict theoretica1 foundation.

Va1ues of QI obtained from Figure 10.8 or from equation 10.62 when combined
with the experimenta11y evaluated parameters y and ç wi1l give the correct
amount of energy dissipation.
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AdJustment of Maximum Wave Height

In this approach it is realized that the characteristic parameter of the
truncated distribution here identified by H~ represents a wave height smaller
than the maximum observed wave height Hm'

In order to obtain a reasonable estimate for H'm' it is
the mean of the two values: Hm' the maximum wave height and
breaking wave in the record, could be a good approximation.

now assumed that
Hb, the lowest
Therefore,

H'm

If similar to earl ier procedures, a ratio Q". is calculated from
2

Q" = Q (:~s)
where Q, Hrms and H'm are obtained from observational data, the relationship

Q" = fct (:~s) (10.63)

may be established. A plotting of this relationship is presented in Figure
10.8, averaged by a dotted line.

It may be noted that the curve for QII is in between the curves for Qb and
QI; there is still an appreciab1e difference between Qb and QII.

In order to be able to use equation 10.63 for prediction purposes, the
value of H'm has to be estimated. Defining

gives

+ Ir" = Y 2 Y

The va1ues for y , yl and yll are 1isted in Tab1e 10.1. Values of yll are
consequent1y lower than those of y, the mean va1ue of yll from the observations
for Stations 5 and 4 being 0.64.

This is on the 10w side as compared with the va1ues of Yb in Figure 4.2
for low va1ues of the simi1arity parameter ~ , although the scatter of the
data points in Figure 4.2 prevents drawing a definite conclusion.
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This method is conceptually better than the first one in view of the
more realistic concept of Hand an empirical formulation for Q": could bem . ' -
developed from the data points, assumtnq the value of y" coul d be predictecl.

At present it is felt that values 'of y" are too low and that the
parmaeter y, discussed in the previous section is a better prediction tool
because of closer correspondence to the values of Yb of Figure 4.2.

Comparing the two approaches, preference must therefore be given to the
first approach, using y and the empirical relationship 10.62. '

Procedures

The procedures suggested are now the same as suggested by Battjes and
Jansen (1978) as modified and described above.

Use of the maximum wave height Hm' (equation 10.60) instead of the root
mean square wave height for broken waves (equation 10.52-b),offers a signifi­
cant simplification and is therefore to be preferred above the use of the
Weibull distribution.

The above described method provides the tools for the calculation of
wave attentuation and wave set-up for random waves.

In the calculations, both energy losses due to breaking and bottom fric­
tion must be taken into account. The wave set-up calculations are based on
the procedures developed in Chapter 5.

As an example of calculations, consider observed and calculated values
of wave height for the conditions on August 25, 1976 and September 14, 1976
as shown in Figure 10.9.

Values of fw' ç and y introduced into the calculations are in agreement
with those found from the analysis so that it is not surprising that a
reasonable agreement is obtained. However, in the analysis a wave by wave'
calculation is utilizedwhereby an estimate for the number of broken waves is
obtained from the record and from its probability density distribution of
wave heights, such as discussed before.

For the prediction model the procedures described in the previous section
have been utilized, whereby the root mean square wave height at Station 7 is
used as a deep water boundary condition.

Values of f and ç used in the calculations are listed in the figures.w

Observed wave heights in Stations 3 and 4 on September 14 show a discre­
pancy with calculated values. In the field, energy entering the measurement
traverse from adjacent reef areas may have contributed to the higher waves in
Station 3.
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-2.0

Figure 10.9 Wave Height Attenuation (Observed and Ca1culated)
and Wave Set-Up (Ca1cu1ated) on A1a Moina Reef for
(a) August 25, 1976 and (b) September 14, 1976,
Using Root Mean Square Wave Height Method.
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The differences do not identify a shortcoming of the model but rather
indicate that in the field wave conditions did not completely conform to a
two-dimensiona1 situation.

The location where wave breaking stops and waves regain their oscillatory
characteristics is ill defined.

Favre'g results (see Chapter 2) indicating that regeneration starts at
a maximum wave height-depth ratio of about 0.25 seems to give a useful
criterion.

Wave Attenuation Calculated by Utilizing the Complete Energy Spectrum,
Neglecting Interfreguency Energy Exchange

In this approach the starting point is the wave spectrum in the offshore
.station for which the zero-upcrossing spectrum is utilized. Using this
spectrum as input for the ca1culations, wave spectra for the shallow water
stations may be calculated as described in Section 8.

With reference to Figure 10.10, a frequency band ~f contains an average
amount ·of energy S(f) ~f; this energy may be represented by a sjngle wave,
which is the root mean square of all wave heights in the energy band 6f.

It was found (equation.8.2l) that for a frequency band 6f:

H:2 = H2 = 8 0 S(f) 6f ~, rms m

if S(f) represents the normalized zero-upcrossing spectrum.

The energy in the selected frequency band 6f is carried shoreward
similarly to the procedures applicable to a single wave.

If in the energy package 5(f) 6f wave breaking develops, problems
similar to the ones described in the previous section arise.

All waves with frequency between fl and f2 or with period between

__1 and --fl have a wave height probability density distribution of their own.
fl 2

The largest waves of this package break first, the waves with medium
height follow and finally the smallest waves break.

In order to evaluate the procedures to be fol10wed, the bivariate
probabi1ity density distributions for a number of wave spectra are of interest.

The distributions are shown in the form of frequency diagrams (Figure
10.11) for the normalized wave height and wave period obtained from the zero-
upcrossing procedure for various stations, (Black, 1978a).

Although a certain correlation between the wave height and period para­
~Tz

meter is unquestionable, for each period interval the wave height
Tz
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Hz
parameter -- shows a probability distributions the shape of which varies

Hz
with the va1ue of Tz •

It may be reasonab1e to assume that these marginal distributions behave
similarly as the wave distribution for all the waves so that the procedures
described before may be followed.

Using the modified truncated Ray1eigh distribution ana10gue, the maximum
wave height may be obtained from

H = yhm

whereas the value of the Hrms is calcu1ated from energy dissipation.

The combination (Hms Hrms) provides the required va1ue for QI (equation
10.62)s from which the corresponding value of Eb may be ca1culated using

E - QIb -

where f is now the frequency in the middle of the frequency band ~f considered.

If appropriate wave attenuation coefficients are used for friction and
wave breaking, the results of the above described calcu1ations wil1 be simi1ar
to the one schematica11y indicated in Figure 10.10. Near the peak of the
spectrum the computed spectrum is like1y to be too high, whereas for the high
and 10w frequency components the opposite may be the case.

The reason for the apparent discrepancies that wil1 be found is the
interfrequency exchange of wave energy where energy in the area of the peak
of the spectrum is transmitted to lower and higher frequency components.

INTERFREQUENCY ENERGY EXCHANGE IN SHOALING AND BREAKING WAVES

In previous chapters (4, 7, 8), it has been observed that in the process
of shoa1ing and breaking, wave energy is transferred from medium frequencies
to 10wer and higher frequency components. In the calculations carried out for
the determination of energy 10ss coefficients, this aspect of the phenomenon
has been large1y neg1ected in order to facilitate the analysis.

A possible way to describe this phenomenon is based on the concept of
source function. Other possib1e approaches for describing the interfrequency
energy exchange mechanism were suggested in Chapter 4 and are based on the bore
characteristics and on the Airy function.
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Utilization of Source Function

In studying the growth and decay of wind generated waves, Hasselman,
et a1.(1973) have defined the source function S from the 1aw of energy
conservation of an energy package G(f) df of a wave spectrum (Fourier
spectrum) :

d {GH) df} + ddX t (G(f) df) Cg r (f) l = S df (10.64 )

or

as + a ( )ar ax G cgr = S (10.65 )

In general, the source function S .consists of three components: .

an energy input component (Sin)

a non1inear interaction component (Snt)
.' . I •

an energy dissipation component (Sd) .

sa that

S = S. + S ~ + Sd1n nN (10.66 ).

If steady state conditions are assumed and the energy input from the
wind is neglected, equations 10.65 and 10,66 are reduced to:

(10..67)

where Sd has a negative va1ue.

Since d~ (G cgr) is a measure of the gradient of the energy flux per
unit of frequency, the dissipation part of the source function may be expressed
in terms of Ef and Eb'

For a finite frequency band ~f:

Snt ~f
d

- Sd ~f= dx (G cgr ~f)

Snt ~f = d~ (G cgr ~f) + _l_ (8 + Eb) (lO~68)
pg f
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Integration of equation 10.68 over a distance ~x and dividing by ~x
gives:

and

pg (10.69)

from which Sn~ can be computed for the section ~x.

3 2 2In the breaking zone Ef :: Hand Eb :: H ; however, only a small

error is introduced if it is assumed that both Ef and Eb are proportional to

H2 •rms

Since H2rms is proportional to G(f) ~f (see Chapter 8) define

E =t Ef + Eb = pg EI G(f) ~f (10.70)

so that equation 10.69 is modified to

n(G c r)
S = 9 + EI Gn~ I1x

(10.71)

If no energy 10sses wou1d occur, then

would give a first order estimate for S n. If, however, no energy exchange, nN
d(G cgr)

between frequency~bands takes place Snt ~ 0 and dx ~ 0 as would be

expected.

For shoa1ing and breaking waves, Figures 10-12 a, band c demonstrate
the meaning of the terms of equation 10.69.

In this figure the nonlinear energy transfer for the section between
the two stations A and B is schematically shown.

The above procedure allows to compute the nonlinear energy transfer
from the measured spectra in A and B if the dissipation rates Ef and Eb are
known. If no breaking occurs, then Ef ;s on1y of interest.
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Although the above desired relationships provide some insight into the
phenomenon, it does not provide the too1s for ca1cu1ation of spectra for
prediction purposes when measurements are not availab1e.

For this, one has to revert to other methods, such as to SchHnfeld's
bore model, discussed in Chapter 4.

c--- (a)
B A

SPECTRUM IN A ( b )

c:
IJ)

( c )

+ ,

f

Figure 10.12 Nonlinear Energy Transfer.
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CHAPTER 11: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

INTRODUCTION

General Background and Description of Project

In Hawaii many coastal areas have a relatively low elevation and require
protection against wave attack by storm waves. In same of these areas a
shallow coral reef extends between the shoreline and the deeper water. The
reef may be biologically alive or dead. Such coastal reef offers significant
protection to the coast; the large ocean waves break on -the edge of the reef and
the wave that reaches the coastline is of reduced magnitude. Not only is wave
energy lost in the breaking process but attenuation of wave height also takes
place due to friction along the bottem.

After the breaking of waves on the reefis seaward edge, regeneration of
waves may occur over the reef, creating waves of lower height and shorter
periad. If wind blows over the reef in shoreward direction, wind energy is
transferred into wave energy but the growth of wind generated waves over the
shallow reef is limited by the depth of the water.

The effect of wave breaking and wave attenuation on a shallow reef,
however, also has another aspect: it generates a set-up of the mean water
level over the reef and near the coastline. The increased water depth in
turn may result in greater wave heights near the shoreline. Onshare winds may
further increase the depth of water near the shoreline and in this wayalso
contribute to a potentially greater wave height.

The depth over a reef usually varies in the direction parallel to the
shoreline, giving rise to differences in set-up along the c~st. The resulting
gradients of the mean water level drive a mean current system. Such currents
are of importance with regard to the transportation of coastal sediments and
also for the onshore-offshore mixing of the water leeward of the reef and the
ocean waters. Quantitative knowledge of the set-up is required for a quantita­
tive prediction of these currents and their effects.

Much study has been done on the nature and magnitude of wind set-up; design
parameters are well defined and they give reliable insight into water level
behavior under the action of wind. On the other hand, although the theory of
wave set-up is well developed, field data were lacking, and the value of
empirical coefficients were ill-defined.

Knowledge of the set-up and the wave characteristics leeward of a reef is
necessary in numerous engineering endeavors, such as the assessment of beach
stability or the design of coastal structure as well as the prediction of the
dynamic response of ships or the design of marine terminals in waters partly
protected by a reef. The existing grave uncertainties with regard to the design
parameters mentioned above have lead to a widespread practice of using conserva­
tive results, which needless to say, results in unnecessarily high cast.

In view of the preceding arguments, the present study was undertaken.
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The study consisted of the following parts:

• a literature survey;

a theoretical study;

field experiments;

hydraulic model investigations.

It entailed a thorough review of literature relevant to the study. The
theories on radiation stress, wave energy dissipation, and wave set-up were
further advanced in order to provide the required framework for the measure­
ments.

The field measurements were conducted in a traverse across a coral reef
at Ala Moana Park, Honolulu. The majority of the measurements were taken in
the summer of 1976. In 1978, additional measurements were taken to clarify
uncertainties of the 1976 program.

The study aimed at obtaining improved design criteria in regard to the
construction of breakwaters, revetments and coastal protection works on
shallow reefs, which in turn would lead to cast savings for these structures.

Methods Used For Study

In view of the project's goals(l), great emphasis was placed on the field
measurements in_this study. The primary parameters measured were the bathy­
metry, the mean water level, and the wave characteristics, in a range line
extending from a point seaward of the reef to the coast. An array of water
level recording stations has been used for this purpose. The arrangement had
to be mobile in view of the intensive use of the sites for recreational purposes
and because of the desirability of making measurements at more than one site.

Although the field measurements provided the primary source of data, a
limited number of laboratory experiments was included in this study. This
had the dual purpose of experimenting under more controlled and under a greater
variety of conditions than would be possible in the field, and of investigating
scale effects by comparing the laboratory results with those from the field.

The analysis of the data on wave set-up is based on the theory of the
radiation stresses in water waves; it has been aimed at checking the applica­
bility of existing models and at obtaining empirica1 coefficients.

RESULTS OF INVESTIGATIONS

Theoretica1 Studies

The study has contributed to a better understanding of the physical
processes regarding the breaking of waves on a sha1low coasta1 reef.

(1) See Chapter 1.
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It has led to the formu1ation of a mathematica1 model that gives an
adequate description of this process and that provides the too1s for predic­
tive ana1ysis.

The theoretica1 model encompasses the fo11owing aspects:

(1) energy dissipation

(2) energy distribution

(3) wave set-up.

Energy Dissipation

Energy dissipation in waves approaching and propagating over a sha110w
reef ;s governed by two principa1 processes: bottom friction and energy 10sses
due to breaking (turbu1ence).

The equation that describes the energy 10sses due to these two phenomena
for waves that approach the shore1ine at right ang1es has the form:

dF + + = 0dx sf Eb (11.1)

where ~ is the gradient of the energy flux (per unit of width) in the direc­
tion of wave propagation and Ef and Eb are the mean rates of energy dissipation
per unit of area due to friction and breaking, respective1y.

In the quantity sf the bottom friction coefficient (fw) p1ays a determining
ro1e. In order to re1ative fw to the orbita1 veloeities of the waves near the
bottom, a linear wave model was app1ied. In strong1y non1inear waves and in
breaking waves, this introduces some errors in experimenta11y determined va1ues
of fw from field and model data. However, usefu1 resu1ts have been obtained
from this procedure. One of the reasons for this is that in non1inear and even
in breaking waves the orbita1 motion a10ng the bottom characteristica11y retains
its harmonie nature. One exception possib1y is associated with a p1unging
breaker when the jet of the p1unging breaker penetrates the near bottom fluid
1ayers. Then values for the bottom friction coefficient may be considerab1y
higher than those obtained for regu1ar wave conditions.

To determine the quantity sb' the simi1arity between breaking wave and the
phenomenon of a bore was uti1ized as a basis for the ana1ysis. This idea has
earlier been deve10ped by Le Méhauté (1962) and was a1so used by Battjes and
Jansen (1978). The bore model proved to be very usefu1.

In agreement with the assumptions described above, va1ues of Ef and sb are
given by
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(11.2)

(11.3)

where:

fw = dimension1ess wave bottom friction coefficient

ç = dimension1ess wave breaking 10ss coefficient

H = wave height

T = wave period

h = depth

w = angu1ar frequency

k = wave number.

In the laboratory investigations of this study, monochromatic waves were
exclusive1y used. The above equations are direct1y app1icable to monochromatic
waves since the wave height Hand the period T of the incoming wave are we11
defined.

In the case of random waves, such as occurs in the field, an ana1ysis is
required to account for the number of breaking waves in a record in addition
to criteria for energy dissipation and the beginning of breaking.

In the analysis of observational field data, the actual number of broken
waves was estimated from an inspection of the wave record; for prediction
purposes, however, a model for the fraction of broken waves or for the frac­
tion of the energy that is contained in broken waves is required.

Field and model experiments have been used to determine the numerical values
of fw and ç required to predict energy dissipation.

In the hydrau1ic model experiments, attention had to be given to possible
sca1e effects such as induced by surface tension and internal friction particu-
lar1y for the sha110w reef section.

Energy Distribution

The energy density spectrum describes the distribution of the mean wave
energy over the various spectra1 components present in the wave record. It
appears that due to shoa1ing and breaking on the reef a redistribution of
energy takes place, whereby energy of medium frequencies shifts to lower and
higher frequencies.

This aspect has been analyzed in this study. It appears that the Source
Function is a usefu1 too1 for the description of this phenomenon.
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Wave Set-Up

The ca1cu1ation of wave set-up is based on:

(1) energy dissipation (discussed above)

(2) conservation of horizontal momentum.

In the analysis, use has been made of the concept of radiation stress.

Although in the course of this study the effect of wave nonlinearity on the
radiation stress has been considered, actual calculations have been made based
on the formulation of this stress for linear waves, in view of other uncertain­
ties involved in the various aspects of the calculations.

Field Measurements

The field measurements were carried out in a tráverse at the Ala Moana Reef,
where five wave gages were establish~d over the shallow reef at intervals of 30
to 60 mand one gage installed in relatively deep water.

Waves were measured with capacitance wave staffs. Because of the difficulty
of placing instruments at he outer breaker point, wave heights were remotely
measured there with a telephoto movie camera installed on shore, where the
vertical motion of a floating buoy was observed as a measure of wave height.

Instruments and recording equipment were transported and deployed from a
small mobile platfornl equipped with four jack-up legs. The instruments were
operated with power supplied from a portable alternator installed on the plat­
form.

Field experiments were conducted during two periods: the summers of 1976
and 1978. Information on wave set-up during the 1976 experiments was not
considered sufficiently reliable so that additional experiments were carried
out in 1978 to broaden the data base.

Wave spectra were computed from the time series using a Fast Fourier
Transform technique. In addition, zero-upcrossing spectra were calculated.

Characteristics of Waves Breaking on Reef

The following general features of waves approaching the coast over a
sloping bottom and a shallow reef have been observed. The incident wave was
usually a narrow-band swell often demonstrating distinct wave group behavior.
As the waves shoal and break, secondary waves are typically formed and are
indicative of a nonlinear wave process.

The process of energy dissipation due to bottom fricton and breaking leads
to reduction in wave height. The wave attenuation is primarily at the expense
of the energy at the peak frequency. In this process, nonlinear transfer of
energy takes place to higher and lower frequencies.
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The lower frequencies demonstrate themse1ves in the surf beat induced
by the height modu1ation of the breaking waves. The higher frequencies are
generated in the breaking process in the form of secondary waves fo110wing
the crests of the primary waves. The process of interfrequency energy
exchange can be described by the Source Function. Possib1e mode1s for the
quantitative eva1uation of this process are discussed in this study.

The surf beat phenomena may be seen as a modu1ating, time dependent
portion of the wave set-up.

As a resu1t of the transformations, the mean period of the waves inside
the reef is considerab1y smaller than the mean period of the incident waves
outside of the reef area. A typica1 set of wave spectra for August 25, 1976
is shown in Figure 7.5 whereas Figure 8.32 shows the mean energy in various
stations on that day when waves approach the coast1ine.

Wave Friction Coefficients and Breaking Loss Coefficients

The ca1cu1ated gradients in the energy flux a110w the ca1cu1ation of the
bottom friction coefficients. For this a number of assumptions had to be made,
which are described in the report.

The wave friction coefficient is defined by the equation

(11.4)

in which T is the bottom shear stress, fw the wave bottom friction coefficient~
p the f1uid density, and Ub the near bottom orbita1 velocity.

Dimensiona1 ana1ysis indicates that for rough-turbu1ent boundary conditions
aê

the wave bottom friction coefficient is a function of the parameter ~, where
s

aê is the maximum excursion of a water partic1e near the bottom from its mean

position and ks is the Nikuradse sand roughness.

The resu1ts obtained are shown in Figure 8.39. For the ca1cu1ation of the
va1ue of aê for the wave spectrum, the significant wave height and wave period
have been used. If the root mean square va1ues of wave height and period wou1d
have been se1ected, somewhat different va1ues wou1d have been found. Re1ation­
ships found by other investigators are a1so shown. There seems to be a reason­
ab1e agreement between the resu1ts of this study and the general trends present
in other studies.

In a number of instances, wave friction coefficients were considerab1y
higher in the breaking zone.

To compute friction coefficients for breaking waves, va1ues for the break­
ing 10ss coefficients ç must be known. From theoretica1 considerations, the
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most likely value of ç were determined. Mean va1uesfor friction and breaking
coefficients for Ala Moana Reef are listed in Table 8.6.

Wave Set-Up

Va1ues on wave set-up from the 1978 measurements are shown in Figure
8.45. The maximum observed value of wave set-up on the reef was 10.7 cm, which
was obtained from two tide gages, which measured the water level respectively
in Kewalo Basin and on the reef. There were about 14 days of reliable tide
gage measurements with 4 observations each day.

Wave Conditions on Reef

The change in wave height for waves approaching the reef may be calculated
taking both shoaling and energy dissipation into account.

Outside of the breaking zone only bottom friction must be taken into
consideration as a dissipating mechanism, whereas inside the breaking zo~e both
breaking and bottom friction losses must be considered.

The determination of the extent of the breaker zone meets with difficulties
in a random wave field; both the location where breaking starts and where it
ends varies for the different waves of the spectrum. A method to account for
this is related to the probability distribution of broken waves.

With respect to the location on the reef where breaking stops, it was
found that usually breaking does not continue beyond a maximum wave height­
depth ratio of about 0.25.

Observations have shown that the significant wave period at the leeward
side of the reef often is only about one-half of the value of the period of the
incident wave; this phenomenon is due to the generation of secondary waves in
the shoaling and breaking process.

The form of the wave spectrum may be conveniently described by the
Weibull distribution:

G(f) = Ea Sf-B-l exp(-af-S) (11.5)

where E is the total energy of the spectrum (with dimension [t2]), f the
frequency and G(f) the spectral density; a and S determine the shape of the
spectrum and have been determined by curve fitting. The procedures on energy
dissipation will provide values of E across the reef. It can be shown that
the coefficient a is related to the coefficient S and to the peak frequency fp.

Based on the observations and curve fitting of S, the best estimates for
the shape of the spectrum are the following:

(1) Swell spectrum (12 m depth)

G(f) = 4 El fp (f/fp)-4 exp[- 4 (f/fp)-3] (11.6)
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(2) Shallow water, offshore edge of reef (1.5 m depth)

G(f) = 3 E2 fp (f/fp)-3 exp[- t (f/fp)-2]

(3) Shallow water, near shore side of reef (0.75 m depth)

(11.7)

(11.8)

Use of Experimental Results for Prediction Purposes

For practical calculations in design procedures, two approaches may be
followed for the calculation of wave attentuation and wave set-up.

One approach uses the input wave spectrum, calculating energy losses and
wave set-up contributions for the various wave components of the spectrum.
This is a rather laborious procedure.

In another approach the wave spectrum is replaced by one characteristic
wave. Calculations carried out in this study and comparison of calculated
and measured data indicate that sufficient accuracy may be obtained in this
manner.

For the characeristic wave height, the root mean square wave height is
used to calculate wave qttenuation and wave· set-up because the energy contained
in the root mean square wave height is a direct measure of the mean energy of
the spectrum.

The utilization of this procedure requires a model for the calculation of
energy dissipation in random waves. Analogous to a procedure developed by
Battjes and Jansen (1978), the energy dissipation due to breaking by random
waves may be obtained from

r - 2
E: = Q _':>_ pg f H
b 4n rms

(11.9)

where Q is the fraction of the energy that is contained in broken waves, f
the mean frequency and H the root mean square wave height.rms

For the computational procedure it is advantageous to express the energy
dissipated in breaking in terms of the maximum wave height, defined by

Hm = ü.88k-l tanh(y k h/0.88) . (11.10)

This gives
- 2

_I;;_ pg f H m
412"

(11.11)
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Mean values of y obtained from the observations are 1isted in Tab1e 10.2,
whereas experimenta1 data indicate that Q' may be computed from

_~::5)2• y = O. 71 (1 _ Q') 2 + 1. • . •= (11.12)

Model Experiments

Model experiments were conducted in the wave f1ume of the JKK Look
Laboratory. The f1ume is 54 m feet long and 1.22 m wide with a maximum water
depth of approximate1y 1.0 m.

A 1:12 sca1e model of the reef at Ala Moana Park was investigated using
regular (monochromatic waves). From the experiments, friction coefficients and
breaking loss coefficients were determined, and wave set-up values were
evaluated. A comparison between field and model data indicated that in the
shallow section of the model, scale effects and model effects inf1uence the
resu1ts of the wave attenuation and wave set-up.

For the maximum wave set-up, the approximate scale and model effect was
evaluated using a comparison between model and prototype, so that the laborat0ry
data could be used for prediction purposes of the corresponding prototype.

It appeared that the relative maximum wave set-up (with deep water wave
height as a reference height) cou1d be plotted as a function of the deep water
wave steepness parameter and the relative depth of water on the reef. A greater
water depth is thereby associated with a1esser va1ue of the maximum wave
set-up.

The results of the laboratory data on maximum wave set-up, corrected for
scale and model effect, are shown in Figure 9.19.

The wave set-up values only inc1ude the mean value of the wave set-up and
do not include the time dependant part induced by surf beat. The latter depends
on wave group behavior of the incident waves and on the dynamic response charac­
teristics of the shallow reef. The measurements revealed that the surf beat
had a period of 1-3 minutes, whereas the amplitude of the osci11ations had the
same order of magnitude as the mean values ~f the wave set-up.

Even though waves in the model were generated monochromatica1ly, reflections,
h.Iqher harmonics and tank osciLlations caused a measurable variation in wave
height. Therefore, for the plotting of Figures 9.16 and 9.19 root mean square
wave heights were selected to characterize wave height, rather than mean wave
heights.

Calcu1ations on wave set-up based on root mean square wave height values
from a few field measurements provided reasonab1e agreement between observed
and computed data. On that basis for design purposes, Figure 9.19 may be
applicable to random waves with narrow band spectrum a1though the results must
be considered preliminary.
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DISCUSSION

Discussion of Data Obtained

In the field experiments, information obtained from the wave staffs was
generally re1iab1e. A1though certain measurements had to be discarded
because of errors or fai1ure of unknown cause, the time series used for the
ana1ysis obtained from the capacitance wave recorders appeared to be suffi­
cient1y accurate as a basis for ana1ysis.

Ca1cu1ation of wave spectra from these observations did not introduce any
serious prob1ems.

The measurements of wave height by the use of a f10ating buoy provided
data that often fitted we11 with the other information. However, at times
the buoy observ.ations contained apparent errors probab1y caused by inertia
effects of the buoy in the breaking wave regime.

To acquire accurate data on wave set-up in the field required a great
deal of effort and accuracy. The wave set-up data obtained from the 1976
measurements contained obvious errors. Additiona1 wave set-up measurements
in 1978 were conducted with greater care and provided a better set of data.
Unfortunate1y, during the latter experiments wave characteristics cou1d on1y
be measured in the offshore station so that the information of the two data
sets had to be combined to provide information necessary for the ana1ysis.

Accomp1ishments

The resu1ts of the ana1ytica1 work of the field experiments and of the
model study allowed to deve10p a mathematica1 model on wave attenuation and
wave set-up and to make recommendations on the bottom friction coefficient and
breaking 10ss coefficients in shoa1ing and breaking waves.

Prob1ems Encountered

The most serious 1imitation regarding the resu1ts of the study was the
1ack of a random wave generator in the hydrau1ic model study; the p1unger-type
wave generator was on1y capab1e of generating monochromatic waves. Attempts
to compose a wave spectrum from the superposition of a number of 1inear wave
components was on1y successfu1 for the deeper part of the profile, but fai1ed
for the sha110w section because of strong non1inear characteristics of the
waves breaking on the reef.

A prob1em encountered in the hydrau1ic model was the 10w accuracy of the
capacitance wave staffs used in the experiments for wave periods less than say
0.7 sec.; resu1ts became unre1iab1e because of f1uid-wave staff surface inter­
action. The purchase of a comp1ete1y new set of capacitance wave staffs did
not a11eviate this prob1em.

In the hydrau1ic model study, scale effects were experienced in energy
dissipation over the sha110w reef. In order to partly compensate for this the
reef bottom in the model was covered with a relative1y smooth meta1 sheet in
order to reduce bottom roughness.
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Another prob1em encountered in the measurement of wave set-up in the model
was the confined volume of water present in the f1ume. If wave set-up occurs
in one side of the f1ume, a set-down necessarily occurs on the other end of the
f1ume for reasons of continuity. Corrections to the wave set-up measurements
in the model are requi-red to compensate for this effect.

CONCLUSIONS AND RECOMMENDATIONS

Conc1usions

1. Wave attenuation in sha110w water may be adequately described by a
model in which energy dissipation is governed by bottom friction and
wave breaking.

2. Bottom friction coefficients in non1inear and breaking waves,
determined from experiments in which linear wave theory is used as a
basis of ana1ysis, have va1ue~ close to those predicted for linear
waves, except for plunging breakers where the turbu1ence induced by
breaking extends into the turbulent boundary 1ayer near the bottom
so that the osci11atory nature of the flow near the bottom is
significant1y disturbed.

3. Determination of bottom friction coefficients from a 1:12 scale model
is unre1iable for the sha110w reef zone because of sca1e effects.

4. A breaking 10ss coefficient ç for breakin~ waves may be derived from
the simi1arity with the bore.

5. In random waves the fraction of waves that break or the fraction of
the total mean energy contained in the broken waves must be known if
a single wave predictive model is utilized. A model for this is
suggested in the report.

6. For shoaling and breaking waves, interfrequency energy exchange takes
p1ace, where energies contained in the medium frequencies transferred
to lower and higher frequencies.

7. At the offshore station observed water levels usua11y exhibit a Gaussian
distribution. In sha110w water the distribution is non-Gaussian.

8. At all stations, inc1uding the sha110w water ones, the wave height
variabi1ity may be described by a Weibull distribution provided the
parameter S of this distribution is adjusted from experimenta1 data.
At the offshore station, zero-upcrossing wave heights usually exhibit
a Rayleigh distribution.

9. The Fourier spectrum is a va1uable too1 for shallow water wave ana1ysis,
provided peculiarities of the spectrum which are related to the non­
linearity of waves are interpreted in the correct manner.
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10. The zero-upcrossing spectrum is an acceptable tool to analyze
shallow water waves, particularly if a wave-by-wave analysis is
called for. The probable error in spectral estimate is higher
than in a Fourier spectrum because of a smaller data base.

11. Radiationstress in shallow water waves is increased by nonlinearity
of the waves.

12. The resultant bottom shear stress in the momentum equation seems
to play a role in the calculation of the wave set-up on a shallow
coastal reef.

13. The maximum wave set-up on a coastal reef depends on the wave
H.2

steepness parameter ~ and on the relative water depth on the
gT

reef H~ , Hi being the incident wave at the offshore probe.
1

14. The dynamic part of wave set-up on a coastal reef, arising from the
group behavior of the indicent waves, is significant and may be of
the same order of magnitude as the steady part of the wave set-up.

Recommendations

1. The recommendations that follow have reference to additional studies
that will assist in confirming theoretical and experimental data of
the present set-up and expand -the applicability of the results to
other conditions.

A part of the recommendations sterns from inadequacies experienced
during the present study, whereas another part is concerned with
further advancement of the theories in view of needs emerged during
the present investigations.

2. During the 1976 investigations, measurements of the mean water level
in the stations on the reef demonstrated intolerable inaccuracies due
to a lack of a well established reference datums.

This deficiency was partly compensated for by the measurements of
1978 when fixed stations were established and visual manometer readings
were made at short time intervals. Unfortunately, the scope of these
investigations had to be limited so that only in the offshore station
adequate accompanying wave measurements could be taken.

It is recommended that another series of measurement be carried out
over the reef, whereby wave heights and mean water level be measured
simultaneously in all stations. Such an approach actually would.
represent a combination of the 1976 and 1978 measurements, but wlth
an extended program of observations.
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3. In addition to the customary measurements of wave height and mean
water level, the extended program would include: .

measurement of wave induced currents in 3·stations on the
reef;

simultaneous aerial photographs to evaluate refraction of
waves;

array of wave probes on reef to measure wave direction.

4. A repeat of a similar scheme of observations for a different reef
with a different characteristic depth.

5. A repeat of a similar scheme for a straight beach without reef.
The results of this study would provide the limiting case for the
reef study and would serve to evaluate the validity of the limiting
case which in the present study was based on Battjes' (1974~)
calculations and Van Dornis (1976) elaborated laboratory data.

6. The limitations of the present hydraulic model study were due to the
following conditions:

scale effects in the shallow water zone;

generation of monochromatic waves only;

inaccurate wave sensors for low wave periods;

no information on wave induced velocities;

no information on wave induced shear stress;

fixed slope and bed roughness.

Future model studies require improvements in the above mentioned areas,
such as:

a depth of at least 10 cm in the shallow reef zone,

utilization of an irregular wave generator,

use of improved wave sensors,

measurement of wave induced velocities,

measurement of wave induced snearstress by flush mounted
sensors,

7.

tests under a variety of slope and reef conditions.

For design purposes the calculation methods on wave attenuati~n and
wave set-up deve10ped in this study can be used. Values obtalned for
the numerical coefficients of bottom friction and energy 10ss due to
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wave breaking may be used in conditions similar to those at
Ala Moana Reef. If field conditions deviate considerably from
the test conditions, adjustments should be made in the values of
the bottom friction coefficient and of the breaking loss coeffi­
cient.
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