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Abstract

Cloud datacenters provide a backbone to our digital society. Crucial to meeting increasing demand while
maintaining efficient operation is the activity of capacity planning. Inaccurate capacity planning for cloud
datacenters can lead to significant performance degradation, denser targets for failure, and unsustainable
energy consumption. Although this activity is core to improving cloud infrastructure, relatively few compre-
hensive approaches and support tools exist, leaving many planners with merely rule-of-thumb judgement.

We propose Capelin, a data-driven, scenario-based capacity planning system for cloud datacenters. We
design Capelin to address requirements we have derived from a unique survey of experts in charge of diverse
datacenters in several countries. Capelin introduces the notion of portfolios of scenarios, which it leverages
in its probing for alternative capacity-plans. At the core of the system, a trace-based, discrete-event simulator
enables the exploration of different possible topologies, with support for scaling the volume, variety, and
velocity of resources, and for horizontal (scale-out) and vertical (scale-up) scaling. The approach centers
around a notion of portfolios of scenarios as a framework for probing alternative decisions and courses of
events. Capelin gives detailed quantitative operational information for each scenario, which could facilitate
human decisions in capacity planning.

We implement and open-source Capelin, and show through comprehensive trace-based experiments it
can aid practitioners. Although Capelin is designed to work across many kinds of datacenters, in this work
we focus on private-cloud, business-critical workloads, and on public-cloud operations. The results give ev-
idence that choices that seem reasonable and common in practice could be worse by a factor of 1.5-2.0 than
the best, in terms of performance degradation or energy consumption. We also show evidence of Capelin
identifying meaningful choices that are different from the baseline proposed by a team of professional data-
center engineers. We open-source Capelin and release data artifacts for public inspection and reuse.
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1
Introduction

Cloud datacenters are comprised of large numbers of powerful computers. They are part of the backbone
of today’s increasingly digital society [40, 42, 43], serving users across industry, government, and academia.
These users have come to expect high quality of service and in particular near-infinite scalability, but at a
low cost with near-zero unavailability. Similarly to other infrastructure that our society relies on, the cloud
datacenter infrastructure requires careful capacity planning, lest too little or too much of it exists. Planning
the capacity of the cloud infrastructure is a critical yet non-trivial optimization problem which could lead to
significant service improvements, cost savings, and environmental sustainability [11]. Although many ap-
proaches to the capacity-planning problem have been published [23, 114, 139], companies still rely on rule-
of-thumb reasoning for decisions, and possibly on in-house, closed-source tools. To minimize operational
risks, many industry approaches currently lead to significant overprovisioning [45], or miscalculate the bal-
ance between underprovisioning and overprovisioning [98]. Both underprovisioning and overprovisioning
are undesirable. In this work, we approach the problem of capacity planning for cloud datacenters with a
semi-automated, specialized, data-driven tool for decision making.

The practice of capacity planning is not unique to the digital infrastructure domain. It appears in areas
as diverse as planning the production capacity for a factory, the intervention capacity of a hospital or the
national healthcare system, the operational infrastructure for the national train network, etc. Production
and operations management research gives a theoretical foundation for the capacity planning processes in-
volved in such industrial settings [89]. In the theory of capacity planning developed already in these fields,
we observe that the solution is often a highly inter-disciplinary and multi-factor process for decision-making.
Although this broader capacity planning research has preceded the field of cloud (and other service-oriented)
computational infrastructure as a whole, in time, its awareness and findings do not seem to have permeated
yet to the computational capacity planning process.

The main responsibility of a cloud capacity planner is to ensure that adequate infrastructure is in place
for incoming workloads. These workloads consist of computational tasks submitted by users of the cloud,
such as a Virtual Machine (VM) or even a workflow of smaller tasks. The capacity planner needs to acquire
and install (provision) sufficient resources in advance, in order to be able to host all incoming workloads.
This requires accurately estimating the needed capacity for years in advance and shaping the infrastructure
topology to meet demand while keeping costs and environmental impact low.

The cloud offers many layers of services, from Infrastructure as a Service (IaaS) to Software as a Service
(SaaS) [90]. Although important, SaaS currently seems very fragmented and difficult to address systemati-
cally. Instead, this thesis focuses on capacity planning for mid-tier (small to medium-scale) cloud infrastruc-
ture providers operating at the low- to mid-level tiers of the service architecture. Very similar to industrial
capacity planning problems, these providers make decisions in highly multi-disciplinary and complex situ-
ations, as shown for example by our systematic survey of the state of the field (see Chapter 3) and our series
of community interviews (see Chapter 4). Beyond the computational needs which are traditionally derived
from high-level principles and workload-related considerations, the capacity of cloud infrastructure relates
to many different aspects, including heterogeneous hardware environments, non-functional constraints, and
contractual considerations. As our community interviews show, capacity planners find that existing tools do
not match the complexity of the infrastructure they manage and the questions they need to ask. This can lead
to a loss of service quality, or even to missed cost savings and environmentally unsustainable decisions.

1
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Figure 1.1: Capelin, a new, data-based capacity planning process for datacenters, compared against the current typical approach. Tech-
nical details in the practical example are introduced in §1.1 (general process) and §1.4 (our contribution), and detailed throughout the
thesis. Note the current typical approach lacks step 2 , which is a contribution in this thesis.

1.1. Primer on Capacity Planning for Cloud Infrastructure
The current capacity planning process in cloud infrastructures is typically conducted by a committee of stake-
holders and experts. Figure 1.1 depicts this current practice alongside the approach proposed in this work.
The process is conducted periodically and/or at certain events, such as pre-defined intervals in the lifecycle
of resources (e.g., expected lifespan) or project milestones (e.g., the start and the middle review).

The capacity planning activity starts with modeling the current state of the infrastructure, typically using
inputs such as workloads, current infrastructure topology, and large volumes of monitoring data (step 1 in
the figure). The workload consists of computational tasks submitted by users. The infrastructure topology is
composed of one or more datacenters, each consisting of multiple clusters of machines provided by different
hardware vendors. This topology is continuously monitored by hardware and software sensors, producing
large volumes of monitoring data on the current status, utilization, and health of topology and workloads.

Then, a committee of various stakeholders (the capacity planning committee) extracts meaning from all
the input data (step 3 , noting step 2 only appears in our approach and not in typical capacity planning
processes). It typically consists of executive level representatives, technology experts, and depending on the
nature of the meeting other domain experts and department representatives. In a series of meetings, this
committee gathers requirements, reflects on past decisions, and forecasts future needs. Needs for Quality of
Service (QoS) can at this point be expressed more concretely and with sufficient detail, as technical contracts
specified as Service Level Agreements (SLAs) and Service Level Objectives (SLOs).

After a series of meetings, this leads to a decision about the infrastructure being managed (step 4 ). The
stakeholders agree on how many new resources to provision, of which kind, and from which types of sources.
For each machine, the decision could be to include a single but powerful CPU, and a single or multiple GPUs.
These decisions are costly, because each CPU or GPU can cost upwards of hundreds of Euros [126]. While
topology changes are at the core of this infrastructure decision, they can be augmented by operational deci-
sions, such as strategies for how to respond to resource failures.

As depicted on the left-hand side of Figure 1.1, capacity planners are faced with large volumes of data and
tasked with making complex, consequential decisions, often without dedicated tooling. As a result, topol-
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ogy decisions are frequently coarse-grained and result in homogeneous clusters consisting of many identical
machines. This can result in overprovisioning capacity and a waste of resources. A tool assisting capacity
planners in formalizing and investigating the many possible decisions could help make more fine-grained,
heterogeneous capacity decisions, custom-sizing clusters to fit the workload more closely. The right-hand
side of Figure 1.1 presents such a tool-based approach, forming the core contribution of this thesis.

1.2. Problem Statement
We identify four key problems that emerge when capacity planning for cloud infrastructure providers operat-
ing at the low- to mid-level tiers of the service architecture, ranging from IaaS to Platform as a Service (PaaS)
service tiers.

First, we observe a lack of published knowledge about the current theory and practice of cloud capacity
planning. For a problem of such importance and long-lasting effects, it is surprising that no systematic lit-
erature survey of capacity planning approaches for cloud infrastructure exists. A systematic literature survey
of the field could reveal the current state of the field and trends in its research directions. Equally surprising
is that real-world practice is rarely surveyed. The only studies of how practitioners make and take capacity
planning decisions are either over three decades old [79] or focus on non-experts deciding how to externally
provision capacity for IT services [14]. A community survey of expert capacity planners could reveal new
insights and current requirements for capacity-planning tools and techniques.

Second, we observe the need for a flexible instrument for capacity planning, one that can address various
operational scenarios. State-of-the-art tools [52, 57, 132] and techniques [23, 44, 123] for capacity-planning
operate on abstractions that match only one vendor or focus on simplistic problems. Although single-vendor
tools, such as VMware’s Capacity Planner [132] and IBM’s Z Performance and Capacity Analytics tool [57], can
provide good advice for the cloud datacenters equipped by that vendor, they do not support real-world cloud
datacenters that are heterogeneous in both software [7][11, §2.4.1] and hardware [19, 37][11, §3]. Yet, to avoid
vendor lock-in and licensing costs, cloud datacenters acquire heterogeneous hardware and software from
multiple sources and could, for example, combine VMware’s, Microsoft’s, and open-source OpenStack+KVM
virtualization management technology, and complement it with container technologies. Although linear pro-
gramming [137], game theory [123], stochastic search [44], and other optimization techniques work well on
simplistic capacity-planning problems, they do not address the many disciplines and dimensions that this
problem consists of. Without adequate capacity planning tools and techniques, practitioners need to rely on
rules-of-thumb calibrated with casual visual interpretation of the complex data provided datacenter mon-
itoring. This state-of-practice likely results in overprovisioning of cloud datacenters, to avoid operational
risks [45, 48]. Even then, evolving customers and workloads could make the planned capacity insufficient,
leading to risks of not meeting SLAs [4, 16], inability to absorb catastrophic failures [11, p.37], and even un-
willingness to accept new users.

Third, we identify the need for comprehensive evaluations of capacity planning approaches, based on real-
world data and scenarios. The existing capacity planning tools and techniques have rarely been tested with
real-world scenarios, and even more rarely with real-world operational traces that capture the detailed ar-
rival and execution of user requests. Furthermore, for the few thus tested, the results are only rarely peer-
reviewed [4, 114]. We advocate comprehensive experiments with real-world operational traces and diverse
scaling scenarios to test capacity planning approaches. This allows us to recreate the real-world circum-
stances faced by capacity planners and put the strategies we propose to the test.

Fourth and last, we observe the need for publicly available, comprehensive tools for capacity planning. Ac-
cess to decision support tools is critical for practitioners. However, few such tools are publicly available, and
even fewer are open-source. From the available tools, none can model all the aspects needed to analyze cloud
datacenters we present in Section 2.1. A tool can help practitioners match and test their intuitions with data-
based insights. Especially in the face of large volumes of data, having a tool structure this data and simulate
possible future scenarios can help capacity planners make better informed decisions with confidence.

1.3. Research Questions
The main objective of this thesis is to create a proof-of-concept capacity planning system for cloud infras-
tructure. Such a system would address the problem sketched in Section 1.2, and thus support practitioners in
making decisions on the sizing and structure of their infrastructure. The problem of forecasting and decision
support in this field is a non-trivial challenge. To address this challenge and achieve the main objective, we
pose the following research questions in this thesis:
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(RQ1) State-of-the-art: How to capture and assess the current state-of-the-art of capacity planning for cloud
infrastructure?

(RQ1.1) How to systematically survey literature in the field of capacity planning?

(RQ1.2) How to design, conduct, and analyze community interviews on capacity planning with real-
world practitioners?

(RQ2) Design of a system: How to design a capacity planning system for cloud infrastructure that responds
to key issues faced in the community?

(RQ2.1) How to specify capacity planning problems and the known state of cloud infrastructure?

(RQ2.2) How to design a system that manipulates capacity planning problem specifications?

(RQ3) Evaluation of a system: How to evaluate a capacity planning system for cloud infrastructure?

(RQ3.1) How to design and implement a prototype meeting key aspects of the designed capacity plan-
ning system?

(RQ3.2) How to design, conduct, and analyze trace-based simulation experiments modeling cloud in-
frastructure?

1.4. Approach
Towards answering RQ1, we combine a literature-based theoretical analysis with a study of real-world ex-
periences we collect from international experts. First, we conduct a systematic survey of capacity planning
literature and present a taxonomy of the design space (RQ1.1). In the design of this survey, we need to choose
a method of publication discovery. We see two main options: an exploratory, free traversal of literature and a
systematic, structured search of public literature repositories. We choose the latter approach to ensure high
recall of relevant results, and augment it with manual entry of items gathered through other means.

Second, we conduct interviews with several capacity planning practitioners from different backgrounds
(RQ1.2). This brings a human-centered perspective to the discussion, by identifying the challenges and lessons
learned of the practitioners who could be helped by a decision support system. This focus on the human
practitioner is crucial, since any tool will not operate autonomously and will be used by a human operator.
The choice of interview method in this interview study needs to take into account the trade-off between sys-
tematic exploration and flexibility. On the one end of the spectrum is a text survey, which is highly suited for
a systematic study, but generally does not facilitate low-barrier individual follow-up questions. On the other
end is an in-person interview without pre-defined questions that allows for full flexibility, but can result in
incomplete results. We choose here a general interview guide approach [125], an approach in the middle of
the spectrum, with interviews guided by a script.

Addressing RQ2, we propose a simulation-based capacity planning system that meets the requirements
we gather from the interviews we conduct in RQ1.2: Capelin. First, answering RQ2.1, we design a conceptual
framework for planners to specify their capacity planning problems: a portfolio of “what-if” scenarios. This
represents the many possible future scenarios a capacity planner needs to take into account. Second, we
design a decision support system that allows for exploration and manipulation of such scenarios, addressing
RQ2.2. We depict this system (Capelin) in its context in Figure 1.1 (see step 2 ). The designed system builds
upon the OpenDC platform for datacenter simulation [59], extending it with functionality tailored towards
capacity planning practitioners. By extending OpenDC instead of building a stand-alone tool, we ensure that
existing users of Capelin can benefit from future improvements to the core simulator without needing addi-
tional integration. Our design approach is guided by the AtLarge design process [61], with special emphasis
on linking the requirements to concrete findings gathered in the series of community interviews, and on co-
evolving the solution and the problem (i.e., by adding requirements as we understand the problem better,
and iterating on the solution to include these new requirements).

To address RQ3, we evaluate Capelin by implementing a working prototype and conducting experiments
with it. First, we implement the design system as an extension to OpenDC (RQ3.1), extending the simulator
with many functionalities that benefit both the prototype and the broader user base of the simulation plat-
form. Second, we consider a selection of common capacity planning questions and answer them with the
designed tool. We conduct trace-based experiments, considering different topology dimensions, a range of
workloads, and complex operational phenomena.
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1.5. Development and Dissemination
This thesis has resulted in the following disseminated materials and developed software:

1. Articles under submission

(a) Article on Capelin to be submitted to a tier-1 journal in the field, as first author: G. Andreadis, F.
Mastenbroek, V. van Beek, and A. Iosup, Capelin: Data-Driven Capacity Procurement for Cloud
Datacenters using Portfolios of Scenarios, TPDS, to be submitted end-of-August, 2020.

(b) Survey on Capacity Planning to be submitted to a leading peer-reviewed journal, as first author:
A Systematic Literature Survey of Capacity Planning Approaches for Cloud Infrastructure, ACM
CSUR, to be submitted in September, 2020.

2. Published open science artifacts

(a) Publicly disseminated artifacts, following the FAIR principles for scientific data (Findable, Acces-
sible, Interoperable, and Reusable) [135], published on the Zenodo Open Science platform [8].

(b) Free and Open Source Software (FOSS) software artifacts published on GitHub, for inspection and
reuse: https://github.com/atlarge-research/opendc

3. Coordination of the development of a FOSS datacenter simulation platform (OpenDC1), leading a team
of 15+ members. This has resulted in a tested, trusted, and flexible simulator for the datacenter com-
munity. Some of the features used in this thesis include automated and repeatable execution of mul-
tiple instances for results with high statistical confidence, broad workload trace reading and modeling
support, and high-performance simulation. Beyond, some of the OpenDC features being developed
at the moment that complement Capelin well, are prefabricated components, realistic energy models,
and simulation of serverless cloud systems.

1.6. Guidelines for Reading
The remainder of this thesis is structured as depicted in Figure 1.2. In Chapter 2, we lay out the current
state-of-the-art of capacity planning theory. In Chapters 3 and 4, we systematically survey the current state of
literature on the subject and the current state of practice as experienced by experts, respectively. We present
the design of Capelin in Chapter 5 and evaluate the prototype of this system in Chapter 6. Finally, in Chapter 7
we summarize the contributions of this thesis and envision future work stemming from this project.

1https://opendc.org

https://github.com/atlarge-research/opendc
https://opendc.org
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Figure 2.1: Overview of the structure of this chapter, presenting the state-of-the-art in capacity planning for cloud infrastructure. Key-
words on the right-hand side represent important notions introduced in each section.

2
State-of-the-Art

In this chapter, we discuss the state-of-the-art in capacity planning theory for cloud infrastructure. This forms
the foundation for an understanding of current literature in the field, answering the theoretical side of RQ1.1.

As Figure 2.1 depicts, we begin in Section 2.1, with a top-down perspective of datacenter operations, plac-
ing capacity planning in its context. Then, in Section 2.2, we discuss capacity planning as it is practiced across
domains. In Section 2.3, we summarize the current theory of capacity planning for computer systems. Finally,
we cover existing efforts to understand and standardize the state-of-the-art of capacity planning practice in
Section 2.4.

2.1. System Model for Datacenter Operations
How does a datacenter work? There are many different types of datacenters, each with different operational
models. To understand the work of a capacity planner, we first need to understand the context and capacity
that the capacity planner works in and should manage. This context is encapsulated in a model of datacenter
structure and operation. Such a model needs to cover many aspects, such as the workload, the infrastructure,

7
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Figure 2.2: Generic model for datacenter operation. In this work, we focus on the capacity planning process.

and the live resource management. In this section, we provide such a model as context of our contributions.
We are not the first to provide such a system model. In other lines of research, system models have been

proposed describing the context of their contributions, such as in the area of resource scheduling research in
clouds [9, 130]. Each of these models portrays the parts of the environment that are relevant to that work and
at a suitable level of abstraction. We are the first to provide such a system model for the capacity planning
practice in datacenters. Below, we summarize the current state-of-the-art existing across these aspects and
present our model for datacenter operations, depicted in Figure 2.2.

2.1.1. Workload
The workload consists of applications executing in VMs and containers. The emphasis of this study is on
business-critical workloads, which are long-running, typically user-facing, and back-end enterprise services
at the core of an enterprise’s business [120, 121]. Their downtime, or even just low QoS, can incur significant
and long-lasting damage to the business. We also consider virtual public cloud workloads in this model,
submitted by a wider user base with typically shorter duration.

The business-critical workloads we consider also include virtualized High Performance Computing (HPC)
parts. These parts are primarily comprised of conveniently (embarrassingly) parallel tasks, e.g., Monte Carlo
simulations, forming batch bags-of-tasks. Large HPC workloads, such as scientific workloads from the health-
care sciences, also fit in our model. Our system model also considers app managers, such as the big data
frameworks Spark and Apache Flink, and the machine learning framework TensorFlow, all of which orches-
trate virtualized workflows and dataflows for their users.

2.1.2. Infrastructure
The workloads described earlier run on physical datacenter infrastructure. Our model views datacenter in-
frastructure as a set of physical clusters of possibly heterogeneous hosts (machines), each host being a node
in a datacenter rack. A host can execute multiple VM or container workloads, managed by a hypervisor. The
hypervisor allocates computational time on the CPU between the workloads that request it, through time-
sharing (if on the same cores) or space-sharing (if on different cores).

We model the CPU usage of applications per discretized time slices. At each time slice, all workloads
report requested CPU time to the hypervisor and receive the granted CPU time that the resources allow. We
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assume a generic memory model, with memory allocation constant over the runtime of a VM. As is common
in industry, we allow overcommission of CPU resources [12], but not of memory resources [120].

We also consider in this work operational phenomena, emerging in the complex hardware and software
ecosystems at play. We focus on two well-known phenomena: performance variability caused by perfor-
mance interference between collocated VMs [74, 78, 127] and correlated cluster failures [17, 38, 41].

2.1.3. Live Platform Management (RM&S)
We model a workload and resource manager that performs management and control of all clusters and
hosts, and is responsible for the lifecycle of submitted VMs, including their placement onto the available
resources [9]. The resource manager is configurable and supports various allocation policies, defining the
distribution of workloads over resources. The devops team monitors the system and responds to incidents
that the resource management system cannot self-manage [16].

2.1.4. Capacity Planning
Closely related with infrastructure and live platform management is the activity of capacity planning. This
activity is conducted periodically and/or at certain events by a capacity planner (or committee). The ac-
tivity typically consists of first modeling the current state of the system (including its workload and infras-
tructure) [91], forecasting future demand [27], deriving a capacity decision [138], and finally calibrating and
validating the decision [72]. The latter is done for QoS, possibly expressed as detailed SLAs and SLOs. In
Chapter 3 we discuss existing approaches in literature and in Chapter 4 we analyze the current state of real-
world practice. We are not aware of analytical tools that can cope with such complexity. Although tools for
VM simulation exist [21, 53, 100], few support CPU overcommissioning and none outputs detailed VM-level
metrics; the same happens for infrastructure phenomena.

2.2. Capacity Planning Across Domains
We now focus on the activity of capacity planning. This activity is far from unique to the cloud domain: capac-
ity planning is a key component of operations in many different domains, from production industries [56] to
transport logistics [81]. In this section, we give an overview of the theories presented in literature and attempt
to identify where they converge and where they diverge.

2.2.1. Modeling Capacity
We begin with a production and operations management perspective. Martinich gives a theoretical founda-
tion for the operational processes at play in industrial settings, ranging from hospital sites to factories, with
elaborate treatment of the capacity planning cycle [89]. The entity being planned, capacity, can be defined
as “the rate at which output can be produced by an operating unit” [89, p. 252]. This notion can be divided
into design capacity, the capacity of a unit under ideal conditions, and effective capacity, the capacity of a
unit under normal conditions [89, p. 252]. Two key metrics can be derived from these quantities: capacity
utilization, the ratio between actual output and design capacity, and capacity efficiency, the ratio between
actual output and effective capacity [89, p. 253]. Both metrics can separately indicate the quality of a capacity
planning process, although the combination can also be insightful: a system with high capacity efficiency but
low capacity utilization indicates a large discrepancy between the ideal case and the normal case.

2.2.2. Capacity Planning: A Multi-Factor, Multi-Disciplinary Problem
With these definitions in mind, we move to the process of capacity planning itself. Martinich lists the fol-
lowing factors to be relevant in determining capacity: process design, product design, product variety, prod-
uct quality, production scheduling, materials management, maintenance, and personnel management [89,
pp. 253–255]. The high diversity of factors in this enumeration shows the highly interdisciplinary nature of the
capacity planning process. The author also discusses the problem of (geographical) facility locality in relation
to capacity planning [89, p. 266]. While we consider the topic of facility placement to be out of scope for this
discussion, an interesting overlap between that topic and the field of capacity planning is formed by the chal-
lenge of how and whether to specialize these facility locations. For this purpose, Martinich identifies three
dimensions on which the facilities can be specialized: according to products, processes, and/or markets [89,
pp. 255–256]. This is closely related to the quantity and type of capacity planned at each facility.
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2.2.3. Forecasting Future Demand
Concerning capacity planning itself, a key sub-process is “the art and science” of forecasting future demand [89,
p. 102]. Martinich differentiates between qualitative and quantitative forecasting approaches [89, p. 106].
Qualitative approaches are subjective, generally based on expert knowledge and tacit rules-of-thumb, while
quantitative approaches are data-based and more objective, generally based on the analysis of historical mea-
surements. Although it may seem counter-intuitive to resort to qualitative approaches if quantitative histori-
cal data is available, there are cases when a qualitative forecast might be preferable, according to Martinich. If
the environment is likely to be unstable, or the forecast has a time horizon longer than 3 to 5 years, qualitative
forecasting may need to be considered [89, p. 107].

2.2.4. Capacity Expansion Strategies
Once a forecast has been constructed, planners can choose from a variety of capacity expansion heuristics:
demand leading (over-provision ahead of demand), demand trailing (capacity lacks behind demand), de-
mand matching (capacity matches demand as closely as possible), and steady expansion (expanding at regu-
lar time intervals) [89, pp. 257–260]. These expansion strategies can be applied in both qualitative and quan-
titative approaches, although the achieved precision of provisioning will most likely differ. If capacity plans
are based on quantitative approaches, these policies can also be supported by more rigorous mathematical
optimization models, such as (non-)linear programs. These can also enable automated “what if” analysis for
decision support [89, p. 198].

Towards more complex, multi-facility expansion problems, Dynamic Programming has been used to
minimize capacity costs of different public network, water resource, and process industry facilities [88]. This
approach can be combined with a network flow model, exploiting extreme point solutions in the flow [82].
For a more complete overview of expansion modeling strategies, we refer to Lumbreras and Ramos [87]. The
scope of either of these expansion models can be restricted to an finite planning horizon or extend to infi-
nite planning horizons, depending on the longevity of the desired plans. In finite horizon planning, rolling
schedules of fixed horizon lengths are one form of ensuring continuity between subsequent iterations [73].
This overlap between capacity decision time spans can also lead to instability, however, i.e. future decisions
of capacity at a given time being reversed or amended in overlapping future schedules [73].

2.3. Capacity Planning for Computer Systems
We now explore the theories of capacity planning for computer systems. Although the computer as a capacity
to be managed has a shorter history than many of the industrial capacities discussed previously, already a
variety of approaches exist towards capacity planning for computer systems. In this section, we explore the
sub-processes that are a part of the capacity planning process. We then discuss what sets capacity planning
for computer systems apart from traditional capacity planning. Finally, we cover standardization efforts for
capacity planning processes in this domain.

2.3.1. A Schematic Overview
To introduce the theory, we present the process models that we have found in the established literature.
We summarize these models through a schematic overview, which we depict in Figure 2.3. Each author is
represented by a column and each possible step in the process of capacity planning. Similarity between the
models proposed by each author is indicated by rows where many cells are filled. This figure represents a
synthesis of the field not available elsewhere, a synthesis of these process models made by the author of this
thesis.

We find processes in cloud capacity planning to belong in four fundamental stages: modeling, forecasting,
decision support, and calibration and validation. These are high abstractions, but serve a common denom-
inator for each of the processes from literature, as seen in Figure 2.3. Although the order in which they are
listed here is not arbitrary, the stages can be found interleaved in other capacity planning processes. In the
following, we explore each of these stages.

Modeling
The start of the capacity planning process is one of the few aspects that most theories agree on. A capacity
planner begins by understanding the environment and assessing current capacity [79, p. 6]. A measurement
base is often built, with information on current system configurations and resource usage [20, p. 5]. This prior
understanding of the managed system is augmented with more dynamic information: the workload and the
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system’s performance when faced with it.1 A workload model describes the behavior of user applications
in the system, or what the system will run, whereas a performance model takes the workload as input and
combines it with knowledge from the environment to characterize the behavior of the system as a whole, or
how the system will run the workload. Common dimensions in performance modeling can be divided into
system, resource, and workload parameters [91, pp. 193] (the latter being taken from the workload model).

A modeling dimension that is often left out is the human cost involved in implementing and maintaining
a capacity decision. In fact, new capacity plans can have significant people costs [20, p. 59]. These range from
the effort needed to implement new configurations to getting a team trained for new capacity. Models for this
dimension are not currently available, making it difficult to quantify and address its challenges.

Forecasting
“Planning without forecasting is futile” [20, p. 66]. There are two main classes of models for forecasting: time-
series models, where measurements are related to points in time, and causal models, where measurements are
related to other measurements or specifications [20, p. 79]. Forecasting can be performed both on workload
and performance models, depending on the insights sought. What the modeled units may be, the relations
are often not linear, but have trends and cycles on different timescales [20, p. 75]. Workload time series may
even exhibit self-similarity, repeating itself across different scales [91, p. 252].

Forecasting is challenging: Lam and Chan call it the “weakest element in the computer capacity planning
process” [79, p. 34]. One difficulty stems from the notion of latent workload, i.e., workload that is being held
back due to lack of capacity and that might be added when capacity changes [79, p. 35]. There is a parallel to
this from the history of economics: the Jevons’ paradox of solving the capacity needs for coal at the start of
Industrial Revolution in Victorian England, only to realize this triggered an Age of Steam where many “latent”
needs for coal emerged. Both in this historical context and in the case of latent workload, the latency cannot
be easily measured or predicted, adding another layer of unpredictability to plans.

For many capacity planners, forecasting requires access to existing workloads. For the workloads cur-
rently being run, this is straight-forward: they can simply check the dashboards also used by the datacenter’s
administrators. However, historical knowledge and understanding of emerging workloads raise the difficult
challenge of access to relevant data. Such information, contained in an operational or workload trace, is rarely
available, or difficult to parse due to size, etc. State-of-the-art data archives include the Parallel Workloads
Archive2, the Grid Workloads Archive [58], the Workflows Trace Archive [131], and the single-operator traces
shared generously in the past years by organizations such as Google [111], Microsoft [33], and SURFsara [126].

Decision Support
Once a workload forecast has been made, the forecast needs to be transformed into actual capacity planning
decisions. This is not as straight-forward as it may seem: trade-offs between horizontal and vertical scaling,
heterogeneous environments, and many other domain-specific aspects make this a complex problem. This
remains a subjective task where humans often still play the main role.

A capacity planning system can help with making decisions by providing suggestions and evaluating al-
ternative decisions. Unfortunately, theories on how this should be done are difficult to find and only provide
rough guidance. Lam and Chan give the most extensive explanation in this regard [79, p. 108]. They see the
role of a capacity planning system and its performance model to serve the capacity planner in answering
what-if questions (“examining alternatives”). The capacity planning system is given little autonomy in this,
but this may be explained by the early date of publication of this publication (1987). The limited computa-
tional capabilities at the time prohibited more complex (e.g., machine learning) models.

Browning, Gunther, and Kejariwal and Allspaw all mention procurement (sometimes referred to as de-
ployment) steps in their theory of capacity planning, but give little to no detail on how to decide on the actual
capacity to be acquired in this step [20, 49, 72]. A relevant rule of thumb is provided by Kejariwal and Allspaw,
however: generally, it seems to be more advantageous to acquire hardware later than sooner, because the
cost of a certain quality of hardware tend to decrease over time [72, pp.104–105].

Another important notion is the factor of safety that many planners explicitly or implicitly employ [72,
p. 121]. This is a theoretical margin of a resource’s capacity allocated as a safety buffer, to ensure overflow
capacity in case of workload spikes or larger failures. Although an important theoretical concept, its link to
SLAs and SLOs is not addressed systematically in the theoretical literature.

1This separation between workload and performance is not universal to all theories: only Menascé and Almeida, and Lam and Chan,
specify that these concepts should be treated separately.

2https://www.cs.huji.ac.il/labs/parallel/workload/

https://www.cs.huji.ac.il/labs/parallel/workload/
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Calibration and Validation
An important step in any process involving modeling or decision making is the retrospective view: a critical
look at the validity and optimality of the findings and decisions made by the capacity planner. More im-
portantly perhaps, there is potential for non-trivial feedback loops to emerge that might not be identified
without a critical post-decision analysis: increased capacity can change user behaviors, changing the picture
for future capacity plans [72, pp. 126–127].

Overall, the subject of calibration and validation is only briefly discussed in literature. Menascé and
Almeida incorporate it in the validation of their models workload and performance models. Their valida-
tion approach is to run a “synthetic workload” produced by the model and compare its performance with
those from the actual workload [91, pp. 190–191]. Lam and Chan advocate a similar approach [79, p. 108].
For both works, the actual mechanisms and metrics used to execute this comparison are left unspecified.
In practice, acquisition processes that include public procurement (such as those conducted by public sci-
entific infrastructure) require applicants to provide benchmarking data and thus meticulously specify these
mechanisms and metrics. We see that theoretical basis for these very common processes is lacking. Kejariwal
and Allspaw add a step for iteration and calibration to their model [72, p. 4], but do not elaborate on how
to execute this step. However, the recognition that calibration based on earlier decisions before making new
decisions should occur still sets this work by Kejariwal and Allspaw apart.

2.3.2. Parallels with Industrial Capacity Planning
We have previously made explicit discussions on “traditional” industrial capacity planning and the more re-
cent capacity planning for cloud infrastructure, but there have been implicit comparisons made on what the
two share and what sets them apart. It is worth exploring this explicitly, to see where inspiration can be gained
for either of the two fields and to explore whether there are fundamental differences between the two.

The strong focus on forecasting workload (or demand) is shared by both fields. Without it, the capacity
cannot be accurately predicted. A more subtle common aspect is the trade-off between economies of scale
and locality factors. In industrial settings, it is often more profitable from an operational point of view to
concentrate production in one large facility [89, p. 50]. However, the distribution costs that arise from cen-
tralizing all supply prohibits this. Similarly, datacenters and cloud platforms often need to be distributed, to
minimize latency of service for customers and, more recently, to adhere to emerging privacy regulations (e.g.,
General Data Protection Regulation (GDPR)).

We can contrast the two fields in the granularity of decisions. In one sense, the decisions for industrial
settings seem to be of a larger kind: Martinich refers to a “Lumpiness of Capacity” that makes it relatively
unprofitable to add capacity in small increments [89, pp. 50–51]. This is generally not shared by cloud in-
frastructure planning, which seems to operate on per-rack changes without prohibitive cost. This is further
true when considering that virtual infrastructure can also be added on-demand, e.g., a cloud operator may
“spill over” (migrate) workload to another rack temporarily, when its demand increases beyond capacity and
threatens the SLA. In another sense, the industrial settings seem to have a longer time scale for decision mak-
ing and planning in advance, sometimes of decades. This is related to the earlier point about the magnitude
of decisions, but should be mentioned on its own, since it affects the precision needed for a forecast and
therefore the margin for error.

2.3.3. Trends in Computer Capacity Planning
When we compare cloud capacity planning in the 1980s with the capacity planning of today, the field seems
to still have the same theoretical foundations. The structure of the processes we see today closely resembles
those of the past, even though platform specific aspects have changed, along with the pace and costs of
procurement. Gunther even finds capacity planning to be less widely accepted today than in the past [49,
p. 2], conjecturing that a drop in hardware price has led to a reduced sense of urgency to make precise capacity
plans. Another profound change over time is the increase in managed complexity. Although this is hard to
objectively measure, the quantity, heterogeneity, and expectations of the managed infrastructure seem to all
have increased compared to earlier computer capacity planning approaches.

The lack of published research on more sophisticated methods such as simulation-based scenario explo-
ration is cause for concern. Conventional methods may still apply in simple, restricted scenarios, but not in
the comprehensive, multi-disciplinary capacity planning we frequently see in practice (see also Chapter 4 for
our study of real world experiences on capacity planning, or the scenarios we exemplify through experiments
in Chapter 6). Van Hoorn also argues for the integration of simulators in standard practice of offline capacity
planning, and even proposes a simulation-based online capacity planning approach [128, p. 79].
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The technology itself is also of concern: as technology moves forward, the nature of capacity planning
might need to adapt, as it has done from mainframes to grid servers to early web platforms. Kejariwal and
Allspaw points out that microservices and serverless services have “a direct impact on the capacity planning
process” [72, p. x].

2.4. Capturing Capacity Planning Practice
Real-world practice can diverge from published theory. In this section, we discuss past efforts to understand
the practice of capacity planning, both as published in literature and as experienced by practitioners. We also
summarize key standards that have been established to describe and systematize this practice.

2.4.1. Surveys of Published Approaches
There are only a few meta-studies reviewing the approaches that have been published in this field. Unlike
the work summarized in Section 2.3, none of them are both comprehensive and systematic in their mapping
of publications to a designed model of the field. In the following, we discuss meta-studies adjacent to this
survey, both independently published and within academic reports.

The thesis of Bauer gives an extensive summary of capacity planning processes in other fields, such as
manufacturing, transport, and health care [15, pp. 13–18]. Information Technology (IT) capacity planning is
treated in more depth: the author discusses standardized frameworks on the topic and a selection of scientific
approaches [15, pp. 19–25]. A key insight given here is that the existing research “lack[s] insight into how
organizations are performing the proposed frameworks, best practices, or recommendations” [15, p. 24]. This
implies a potential gap between what research advises and what organizes do, in practice. We will act on this
gap with a novel survey of real-world experts, in Chapter 4.

Prabath outlines main ingredients and metrics that are considered in the IT capacity planning process [107].
In their thesis, they divide the capacity planning field into two groups: rule-based capacity planning, often
assisted by Machine Learning models or fuzzy logic models, and model-based capacity planning, often as-
sisted by queuing theoretical models. They do not, however, support or validate the designed taxonomy with
examples from academic publications.

In a study centered around cloud networking capacity management, Jiang and Sun explore the benefits
and challenges of a comprehensive network capacity planning process [69]. The authors discuss both tech-
nical factors, such as the potential cost savings and operational risk management, and human factors, such
as the better understanding and service of customer demands that a frequent and thorough capacity plan-
ning process can facilitate. Among the main challenges for capacity management for networks in particular,
they list bottleneck analysis and the estimation of the network’s state at a point in time. The model given as
solution framework, however, remains on a high level of abstraction and does not aim to accurately model a
capacity planning.

Odun-Ayo et al. perform a systematic mapping study of cloud management in a broad sense, with capac-
ity planning being one of the subjects analyzed [101]. They classify the surveyed works into types of research
contributions, which for capacity planning reportedly fall mainly into models and processes. They find only
few publications discussing metrics or proposing tools for capacity planning.

The work of Loboz is an exception to this list, in that their study does not attempt to comprehensively
survey the field [84]. Rather, it gives a more critical perspective on the conventional approach to modeling
and forecasting resource usage. In a meta-study, Loboz challenges the common assumption that resource
utilization distributions are normally or exponentially distributed. The author observes that the distributions
are in fact often heavy-tailed and rather follow power-law distributions. The high volatility common in traces
of resource usages would therefore lead to erroneously predicted capacity buffer sizes, leading to a waste
of resources and/or unexpectedly long queuing delays and other SLA violations. Loboz draws a parallel to
stock market indices, which are reportedly several times less volatile then the distributions characterizing
this domain [84]. In stock markets, the simple tooling claimed to be prevalent in resource usage modeling
literature is not considered acceptable for the challenge. The work done by Loboz emphasizes the critical
attitude that is needed towards commonly held beliefs around capacity planning.

Overall, we see the lack of a systematic overview of the published approaches surrounding capacity plan-
ning. Such an overview is crucial to understanding the state of the field and community, to ensure widespread
knowledge of existing findings and learned lessons, especially for researchers aiming to advance the state of
the art. We address this shortcoming in Chapter 3, where we present a systematic survey of the field.
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2.4.2. Practitioner Studies
To our knowledge, only two works have surveyed the real-world practice of capacity planning in IT infras-
tructures. In the late-1980s, Lam and Chan conducted a written questionnaire survey [79] and, mid-2010s,
Bauer and Bellamy conducted semi-structured interviews [14]. The target group of these studies differs from
the practitioners, however, since both focus on practitioners from different industries planning the resources
used by their IT department. We summarize both related works below.

Lam and Chan (1987) conduct a written survey with 388 participants [79, p. 142]. The survey consists of
scaled questions where practitioners indicate how frequently they use certain strategies in different stages of
the capacity planning process [79, p. 143]. Their results indicate that very few respondents believe that they
use “sophisticated” forecasting techniques for their capacity planning activities, with visual trending being
the most popular strategy at that time. They find that “many companies still rely on the simplistic, rules-of-
thumb, or judgmental approach” to capacity planning [79, p. 8]. More importantly even, the authors believe
that there is a “significant gap between theory and practice as to the usability of the scientific and the more
sophisticated techniques”. These findings stress the need for a usable and comprehensive capacity planning
system for today’s computer systems.

Bauer and Bellamy (2017) conduct 12 in-person interviews with “IT capacity-management practition-
ers” [14] in six different industries. Similar to our interviewing style, the interviews were “semi-structured”,
guided by questions prepared in advance. The questions range from capacity planning process questions
to more managerial questions around organizational structure. After manual evaluation of the interview
transcripts, the authors find that practitioners often state that the number of capacity planning roles in or-
ganizations is decreasing, while the discipline is still very much relevant. The practitioners also find that
“vendor-relationship management and contract management” are playing an increasing role in the capacity
planning process, as well as redundancy and multi-cloud considerations. These results, even if for a different
target group, underline our call for the need to focus on the capacity planning process as an essential part of
resource management, and emphasize the multi-disciplinary, complex nature of the decisions needing to be
taken.

For a problem of such importance, it is surprising that no up-to-date, expert-oriented community inter-
view study exists on the field of cloud capacity planning. Understanding the real-world practice could help
map the experiences of practitioners and guide the design of tools to assist them in their activity. We address
the lack of such a study in Chapter 4, where we interview capacity planning experts from different cloud
infrastructures.

2.4.3. Standardization Efforts
As is the case in most mature fields, standards have been composed for the capacity planning process in cloud
infrastructure. International standards typically address the broader issue of IT service management, but
often also include formalisms of processes for capacity planning. While often refraining from giving concrete
advice, these can indicate what activities practitioners in industry consider and what terminology is used.
Below, we list the major standards which specify capacity planning activities to some extent.

Capability Maturity Model Integration (CMMI) This framework features the most elaborate description of
capacity planning processes [1]. Sub-activities of this framework include: (1) documentation of the
current state, (2) forecasting of future needs, (3) development of a “strategy” for capacity, (4) docu-
mentation of involved costs, and (5) periodic or event-driven revisions. Notable is the emphasis on
underutilization as one of the key indicators for the quality of a capacity strategy, and the integration of
revision and reflection as a key component of the process.

Information Technology Infrastructure Library (ITIL) This framework divides capacity planning into four
sub-processes: business capacity management, service capacity management, component capacity
management, and capacity management reporting [64]. The differentiation between these activities
mirrors the stack of abstractions that systems operate in. The framework also defines a distinction
between a capacity plan and a capacity report, the former being forward-looking and the latter being
an assessment of the current situation.

ISO 20000 The ISO standard on IT service management includes a section on capacity planning within the
“service delivery process” [63]. It only sets requirements for the process, specifying that practitioners
should use capacity monitoring strategies and should analyze the monitoring data with respect to hu-
man, technical, and financial aspects for potential improvements.
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Microsoft Operations Framework (MOF) This framework places the capacity planning process in an “opti-
mizing quadrant”, a circular combination of processes aiming to improve quality of service while re-
ducing costs [93]. The documentation of this framework mentions many sub-activities within capacity
planning, from sizing service capacity to setting SLA-compliant performance level targets. The process
mentions the definition of “usage scenarios” as well as the consideration of “peak load characteristics”
as key activities to meet these targets.

Control Objectives for Information and Related Technologies (COBIT) This framework identifies five key
practices [62]. Most notable is its recommendation to define a “baseline” capacity. It also mentions
monitoring and planning activities, focusing on deviations from the defined baseline.

The Open Group Architecture Framework (TOGAF) This framework gives a more managerial, high-level view
on the topic [2]. It breaks the process into a definition of current capabilities, a design of “capability in-
crements”, and resulting “building blocks”. Capability increments are defined on different dimensions,
with each increment ideally contributing to improvements on each dimension.

We also observe large companies taking steps to standardize and document their own processes. Mi-
crosoft’s MOF (described above) is one example of this. Publication of the details of actually used processes is
limited however. Published work by Google on their network capacity planning processes forms an exception
to this [4, 95]. In these publications, they only focus on a subset of the problem and propose specific strate-
gies for that subset, yet are also more concrete in the description of their approach than the standards listed
above.



3
Systematic Literature Survey of Capacity

Planning

This section presents a systematic survey of the cloud infrastructure capacity planning field. The methods
and results presented in this section address research question RQ1.1.

3.1. Overview
The state-of-the-art in published approaches within a certain field typically spans over many tens (if not hun-
dreds) of publications. Without an overview of these publications, gathered knowledge and learned lessons
are not available to researchers new to the field without labor-intensive search and conceptualization. A
systematic survey can make this tacit knowledge in the field explicit and serve as a map of the community
to researchers and practitioners. In Section 2.4.1, we establish that the field of capacity planning for cloud
infrastructure in particular is still in need of such a systematic overview.

The aim of this survey is to understand the current state-of-the-art of capacity planning literature for
cloud infrastructure. We describe our method for constructing this survey and analyzing the results in Sec-
tion 3.2. In Section 3.3, we present a taxonomy for the field. We map a diverse set of publications in the field
to this taxonomy in Section 3.4. Using this set of mappings, we conduct a meta-analysis of the field and com-
munity in Section 3.5. In Section 3.6, we then compare our findings to the theory that we have presented in
Chapter 2. Finally, we discuss our findings and their validity in Section 3.7.

We FAIRly disseminate the data artifacts [135] of this survey as well as the software artifacts used to analyze
them, on the Zenodo Open Science platform [8]. These are publicly accessible and can serve as basis for
external analysis.

3.2. Method
We begin by setting the precise scope for this survey in Section 3.2.1. We then describe our methods for
collecting relevant publications in Section 3.2.2. We lay out our design process for a taxonomy of the field in
Section 3.2.3. In Section 3.2.4, we discuss how to map collected publications to a designed taxonomy. Finally,
in Section 3.5 we describe our meta-analysis to gather useful insights from the publications mapped to the
taxonomy space.

3.2.1. Definition of a Scope
Before understanding and mapping the design space for capacity planning systems and approaches for cloud
infrastructure, we first need to define what we consider as part of this process and what we exclude from it. In
this work, we focus on static capacity planning, the process of making mid- to long-term decisions about the
structure and scale of infrastructure in clouds. We do not limit the kind of decisions to the physical level, low
in the hierarchy of abstractions in cloud infrastructure–we also address capacity planning at the higher levels,
including at IaaS and PaaS levels. Deciding how many VMs to provision requires similar thought and analysis
processes as deciding how many physical server units are needed. We exclude capacity planning processes
that rely solely on dynamic, short-term decision-making (e.g., temporarily switching off unused machines),
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such Google’s Auxon system [16, §18]. While such dynamic processes need to be taken into account in con-
ventional capacity planning activities, they are not the focus of this study, since the static decisions are still
most likely to have the most significant environment and financial impact. They set the boundaries for dy-
namic strategies to operate in.

3.2.2. Acquisition and Selection of Publications
The survey process begins with an acquisition of relevant publications. We query three of the most popular
and extensive online repositories for scientific work, with a search query composed according to the query
language of each repository. The repositories are: Google Scholar, DBLP, and Scopus. After querying each
repository, we collect the results in order of appearance, up to a per-repository threshold of 200 items. We set
this limit of 200 following empirical evidence that the precision of results decreases significantly in listings
after that order of item counts. Next to our searches in the mentioned repositories, we also include a small
set of publications obtained otherwise, such as during exploratory searches or on external recommendation.

We now conduct a preliminary filter that excludes duplicate results, such as work published in multiple
venues, and results that are not accessible to the authors, even with academic access programmes. After this
preliminary filter, we analyze title and abstract of each result and determine whether it is fits our definition.
We do not accept theoretical books and surveys, since they typically do not propose a single approach to
capacity planning and therefore are not fairly comparable to the other works. They are, however, taken into
consideration in the broader study of related work to this thesis (see Chapter 2).

Google Scholar
The search query for this repository is:
capacity planning|management cloud|datacenter|"data center"|cluster
We exclude patents from the results. The date of access for this repository was November 21, 2019.

DBLP
The search query for this repository is:
capacity planning|management cloud|datacenter|cluster.
We use the Dagstuhl mirror. The date of access for this repository was November 22, 2019.

Scopus
The search query for this repository is:
capacity AND planning OR management AND cloud OR datacenter OR data center OR cluster.
We search only in title, to preserve relevance of results. We sort the results by relevance, as defined by the
repository. The date of access for this repository was November 22, 2019.

3.2.3. Design of a Taxonomy
We now describe our process of creating a conceptual model for this field. We choose for a taxonomy as the
model type, since the many sub-activities within capacity planning lend themselves well to a hierarchical
overview. Our design follows an iterative process that is closely related to the mapping process described
in Section 3.2.4. First, we gather potential dimensions of interest from the selected publications, theoretical
works, and interviews conducted in the scope of this thesis. We then evaluate each potential dimension on
its relevance towards characterizing capacity planning systems as described in literature. The selection that
emerges from this process is a hierarchical tree of categories, with height 2. For each of the “leaf” categories
(at the bottom of the tree), we collect the different instantiations (classes) that capacity planning systems can
take for those specific categories. In each category, systems can belong to none, one, or multiple classes.
When we find a previously unconsidered class in deeper analysis of one of the papers, we extend the corre-
sponding category in the taxonomy with this class.

3.2.4. Mapping Publications to the Taxonomy
Given our selection of publications and our designed taxonomy, we now classify each publication along each
category to provide a systematic overview of the field. For each publication, we begin by reading abstract and
introduction to understand the context of that work and its main contribution(s). We then traverse the rest of
the publication with the taxonomy in mind.
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We use a text-based approach (using the YAML serialization format1) to serialize the classification de-
cisions for each category and each class. For each publication-class membership, we either assert or reject
the membership based on what information we find in the publication, for each of the classes in the taxon-
omy. We only assert membership if the publication mentions that class clearly. The exact implementation
or strategy possibly associated with that class does not have to be explained, but the class (or an equivalent
formulation) has to be given. An absence of a class in the mapping does not mean that the work that was
published does not belong in this class, but only that there is insufficient evidence to make that particular
positive classification. When a publication presents a new, unforeseen class which the taxonomy does not
already cover, we re-traverse the entire set of already mapped publications and investigate their class mem-
berships in that particular category, anew.

It can occur that, during this mapping phase, we conclude that a paper should not be included in the
selection of mapped systems. In that case, we note the rationale behind this decision and exclude the paper
from the list of publications. A key criterion here is that a publication describes a system that fits the no-
tion of capacity planning as we define it (see Section 3.2.1). Another criterion is that a publication needs to
present a model or systematic process for capacity planning. Incidental experiments with informal analysis
do not suffice, since their findings or processes cannot easily be extrapolated to other scenarios. Finally, we
do not admit duplicates in the list of works. Even if published in different venues and with slightly different
presentation, we exclude similar contributions and include only the most elaborate publication out of a set
of duplicate publications.

3.2.5. Meta-Analysis of Mapped Publications
We conduct a series of meta-analyses on the set of selected publications and their mappings to the taxonomy
space. Below, we present our methods for these analyses.

Year of Publication
We begin with an analysis of the distribution of publications over their year of publication. For this purpose,
we analyze a histogram of the year of publications of all selected publications and investigate trends over
time.

Inter-Class Correlations
We now investigate relations between different classes to see which classes co-occur often or, in the opposite
case, mutually exclude each other. To numerically evaluate this, we can view the taxonomy as spanning a
multi-dimensional, one-hot encoded design space, with each class being represented by a dimension. We
then visualize these relations as correlation matrix of each class with each other class.

Clustering Analysis
Looking at the publication set from a landscape perspective, we want to explore communities of publications
in an automated, systematic way. The dimensional space spanned by the taxonomy enables us to do so,
through analysis of clusters in the space. By finding clusters of publications, we hope to uncover groups that
are closely related in some aspect that may not be directly obvious. Using the scikit-learn package [106],
we apply two different clustering methods on a dimensionality-reduced version of the data, using Principal
Component Analysis (PCA). We reduce the full space to two dimensions, to facilitate visual inspection. For
clustering, we use the K-means clustering method with 4 clusters and the DBSCAN algorithm [39] with ε= 0.4.
We exclude the year of publication and other metadata from the clustering input to ensure that the clustering
is only sourced from the dimensions of the taxonomy.

Analysis Per Category
We also conduct more fine-grained analysis per category. We distinguish between two types of analysis: Class
counts and class trends. Class counts indicate the “popularity” (frequency of a positive match) for each class,
over the entire surveyed set. Class trends indicate these counts over time, aggregating them per year and thus
giving an overview of their progression.

Trending Keyword Analysis
We also investigate the keywords present in abstracts of relevant publications, to see if the trends found there
can be corroborated or contrasted against our findings in the systematic meta-analysis. For this purpose, we

1https://yaml.org/

https://yaml.org/
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Capacity Planning Systems

System Model Forecast Model Decision Support

Workload Resources Model Inputs Modeling
Strategy Role Type of

Advice
Advice
Method

Model
Structure

Figure 3.1: Taxonomy of capacity planning systems for cloud infrastructure.

turn to tooling developed by Versluis et al. [131] and perform global trending analysis on the keywords of our
survey. We query a database of all literature from DBLP and Semantic Scholar between 2015 and 2019 (both
inclusive) on abstract and title with the same query as the literature survey. We consider the 100 highest-
ranking keywords by frequency of occurrence in these 5 years, in alphabetical order. These can be seen as
trending keywords, due to their persistence in the high ranks in the popularity index. Stop-words are auto-
matically filtered from the list.

3.3. Taxonomy of Capacity Planning Approaches
Following the process described in Section 3.2.3, we design a taxonomy for the field. The result can be seen
in Figure 3.1, visualizing this hierarchical decomposition, and in Table 3.1, serving as a legend of classes for
each of the categories of the taxonomy.

Our taxonomy divides capacity planning systems into three key components: (1) the system model, (2) the
forecast model, and (3) the decision model they provide. Each of these is divided further into multiple cate-
gories. We now treat each of the categories of the taxonomy in the following subsections.

3.3.1. System Model
A crucial prerequisite to any capacity plan is an understanding of the context it should manage. This mainly
consists of the workloads being served and the resources on which these workloads are served. Along with
these two characterizations, it is important to identify what parts of the context are actually considered in
the capacity planning process in literature, also described as the inputs of assumed capacity planning system
model.

Workloads
This category concerns itself with the types of workloads that a capacity planning system takes into consider-
ation. There is a close relationship between these workloads and the services that are provided by the system
to be planned. Because of the layer-agnostic approach of this taxonomy, these workloads can themselves also
serve as resources to other workloads or be directly served to end-users.

Resources
The resources offered to stakeholders and considered in capacity planning are covered by this category. We
only include resources that are part of the capacity plan’s decision in the mappings for this category. To
illustrate: If a capacity planning system for VMs is deciding whether to add compute nodes to its cluster,
but it also monitors their storage use without advising changes in that dimension, it is classified in the C
(compute) class, not in the S (storage) class. Similarly, the classes E and H are reserved for systems making
decisions about energy- and heat-control-related hardware, as differentiated from capacity planning systems
that only regard power consumption or heat dissipation as a factor in their decision-making.

Model Inputs
A core part of any capacity planning is the abstractions it operates on. We consider the combinations of these
abstractions the system model of the capacity planning system. This category represents the inputs that this
model considers, such as historical data, human personnel costs, or SLAs. Resource lease contracts can also
be considered inputs, although we limit ourselves to long-term lease contracts (on the order of months),
excluding dynamic second/minute/hour-based leases of virtual resources.
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3.3.2. Forecast Model
Once an understanding of the system under planning has been established, practitioners need a forecast for
future demands to be able to form decisions. This forecast is of course optional, in theory, but in practice
we see every publication listing a kind of forecast model, some more complex than others. Forecasts across
capacity planning systems operate on different levels, with some directly predicting resource demand and
others only predicting the workload’s evolution over time, with other models in the system translating this to
resource demand.

Modeling Strategy
This category characterizes the type of model used for forecasting demand. The main contenders here are an-
alytical models (frequently based on concepts from Queuing Theory and Queuing Networks) and simulation
models. Some publications executes experimental tests with real-world resources, as well.

A clarification at this point is needed on what simulation and experiments are considered part of the ca-
pacity planning system. Publications frequently execute experiments (in simulation or in the real-world) to
validate their model. However, since this data is not available at the time of training the model, we do not
consider it part of the capacity planning system. Experiments and simulations thus need to be explicitly
informed by the capacity planning process and not (only) serve to evaluate it, afterwards, for them to be con-
sidered part of the modeling strategy. An interesting opportunity for further research would be to investigate
the various strategies used for self-evaluation of capacity planning system, both with and without humans in
the loop.

Model Structure
The uncertainty of future events means that accurate forecasts are inherently difficult to make. It is therefore
often useful to design different scenarios that might unfold (in the form of “what-if” questions). This category
differentiates between systems that only offer one forecast and systems that are build to support different
scenarios and to predict future demand for each scenario.

3.3.3. Decision Support
Once the current system under planning has been understood and a forecast has been made for the future
of this system, a capacity planning system can also aid practitioners in their decision making, e.g. through
model-based optimization. The categories of this section concern these decision support mechanisms.

Role
In practice, not all capacity planning systems offer this last step of support. This category characterizes this by
splitting the field into purely forecasting systems and systems which provide active decision support through
actionable advice.

Type of Advice
If a system belongs to the latter category of the previous category, there are different kinds of advice it can
give to practitioners. These include the number of resources to provision (often described with horizontal
scaling), the type of resources needed (often described as vertical scaling), and the locality of these resources.
The number of resources can be on the level of cores, machines, VMs, or even cooling units. Examples for
the type of resource are the specifications of a machine or the provisioning-type of a VM (e.g. on a long-term
vs. short-term lease). The locality of a resource concerns its placement in the considered infrastructure, such
as the placement in one of the datacenter sites of a single operator or the placement in a hybrid cloud (the
decision being between a public and private cloud offering).

Advice Method
Finally, the method of deriving this advice is treated in this category. The capacity planning problem is then
typically formulated as an optimization problem with (multiple) fitness metric(s). A wide range of optimiza-
tion algorithms can be chosen for this purpose, sometimes even in combination.

3.4. Systematic Map of the Capacity Planning Literature
Following the process outlined in the previous section, we select and map a set of publications on the topic
to the taxonomy. The quantitative results of the selection process can be seen in Table 3.3. The 86 resulting
publications are further filtered during the mapping process, resulting in 57 mapped publications, listed in
Table 3.4.
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Table 3.1: Overview of classes belonging to each category of the taxonomy.

Concern Category Abbreviation Class

System
Model

Workloads

VM Virtual Machines
DB Databases
S Streaming Workloads

BD Big Data Frameworks
WS Web Service
B Batch Jobs

Resources

C Compute Hardware
S Storage Hardware
N Network Hardware
E Energy Hardware (Storage and Supply)
H Heat Control Hardware
V Virtualized Resources (VMs, containers, etc.)

Model Inputs

H Historical Data
RS Resource Specifications
B (Micro)Benchmarks or Systematic Performance Tests
S SLAs
P Pricing Data

LC Lease Contracts
HP Human Personnel-related Factors

Forecast
Model

Modeling Strategy
A Analytical
S Simulation
E Real-world Experimentation

Model Structure
U Unconditional Extrapolation
W What-if Scenarios

Decision
Support

Role
F Forecast
A Adaptation Advice

Type of Advice
N Number of Resources
T Type of Resources
L Locality of Resources

Advice Method

H Heuristic
R Regression
L Local Search

SS Stochastic Search
SP Stochastic Programming
NN Neural Network
GT Game Theory
GA Genetic Algorithm

NLP (Non)Linear Programming

Table 3.3: Intermediate selection results per consulted source of publications. Counts of publications can overlap between sources.

Source Initial results After preliminary filter After high-level content filter

Google Scholar 200 182 69
DBLP 55 46 33
Scopus 82 42 23
Unstructured Search 5 5 5
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Figure 3.2: Histogram of the number of publications plotted against the year of publication.

3.5. Meta-Analysis of the Field
In this section, we present the results of our meta-analysis, following the method described in Section 3.2.5.

3.5.1. Year of Publication
We begin with a perspective on the distribution of years of publication. Figure 3.2 visualizes this perspective
in the form of a histogram. Our main findings are:

SF1: The field of study has seen significant increase in interest in the last decade.

SF2: We also see a sharp decline in the number of publications recently published.

We observe that this field of study has been pursued since (at least) 1999 and has seen a significant in-
crease in interest around 2007. Compared to the broader capacity planning practice across industries, re-
search activities in this field begin decades later, but this can be attributed to the upcoming nature of com-
puter systems, in general. We see the majority of work being published between 2012 and 2017. Only two
publications have followed since that period, forming a sharp decline in publications in very recent years.
This decrease can only partially be explained with publication and indexing delays: At the time of writing this
chapter, 2 years have passed since the end of 2017, with no publication appearing in 2018.

3.5.2. Inter-Class Correlations
We now analyze correlations between classes. Figure 3.3 visualizes such a correlation matrix. Our main find-
ings are:

SF3: We find that if systems consider compute, storage, or network resources, they are more likely to consider
another resource type from this set, as well.

SF4: We observe a strong separation between approaches using analytical modeling and those using simu-
lation modeling–the combination of both is rare.

Upfront, we observe two perpendicular line of non-correlation on the dimension of class F (forecasting)
in the role category. This is mandated by the design of this survey: Our scope is limited to systems that do
some flavor of forecasting (or modeling usable for forecasting).

We observe a number of positive correlations that stand out in magnitude. Classes C (compute), S (stor-
age), and N (network) in the resources category appear positively correlated, indicating that when capacity
planning works address one, they tend to address one or more others, as well. This is evidence for a per-
ceived bisection of the field between compute-centered efforts and non-compute capacity planning. Classes
E (energy) and H (heat control) also appear positively correlated. We see this stemming from the strong re-
lationship the management of both resources has, with heat control being a major consumer of energy. In
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Figure 3.3: Pairwise correlation heatmap of all classes of the taxonomy.

the decision support phase, class A (advice) of the decision support role category and class N (number of
resources) in the type of advice category appear strongly correlated. This indicates that advisory capacity
planning systems tend to advise from a quantitative angle rather than a qualitative or locality angle, both of
which are far less correlated with class A.

Significant negative correlations can be found between class V (virtual) and class C (compute) of the re-
sources category. This result meets expectations, since a capacity planning approach tends to focus on either
virtual or physical resources, not both. In modeling, the strategy also shows a partial mutual exclusion be-
tween analytical and simulation-based modeling strategies. The strong division observed here indicates that
little work has gone into investigating cross-overs and hybrid strategies employing both. The model structure
category is completely mutually exclusive, due to the definition of the two classes: U (unconditional) and W
(what-if based) have no overlap in the definition of this taxonomy.

Except for these smaller clusters of activity, the design space appears rather weakly correlated. There are,
however, fields of weak consistently positive/negative correlations in the advice method. It seems that most
advice methods are negatively correlated with each other, which indicates that most system rely on only one
method to optimize the proposed decision for the capacity planner.
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Figure 3.4: Visualization of clusters found with different clustering methods, in dimensionality-reduced space.

3.5.3. Clustering Analysis
We now proceed to a clustering analysis of the mapped publications. The clustering results of all algorithms
are visualized in Figure 3.4. Our main findings are:

SF5: We find that clustering analysis of the taxonomy space can provide insightful, unique perspectives on
the capacity planning community.

SF6: We provide evidence that approaches common in the community differ significantly over time.

We now discuss each of the clustering methods and their results. First, we apply K-means clustering. The
clusters are listed in Table 3.5. For each category, we filter and sort the used classes by their frequency and
then extract the two highest-scoring, meeting a lower threshold of 0.25. Looking at the aggregate meta-data
of both clusters, the mean publication years differ, with cluster 2 being the oldest and cluster 3 the newest. We
now discuss the clusters in chronological order. The environments in cluster 2 (2005) can be characterized
as web services on conventional physical infrastructure. The capacity planning approaches in this cluster
are primarily specification- and benchmark-based, with regression as advice method. The environments
in cluster 1 (2012) can be seen as the evolution of the previous cluster: web services (and modern virtual
services) running on virtual resources. We see that the advice is predominantly quantitative in this cluster,
much more so than in the previous cluster. We conjecture that this is due to virtual resources coming in
more easily quantifiable standardized units (less so than leased hardware). In cluster 0 (2012), we see a body
of work focusing on compute services and primarily using historical data as inputs (next to specifications).
This is also the only cluster with a sizable portion of publications reporting simulation efforts next to the
dominating analytical approach. Quantitative advice is the main support angle here, with no others meeting
the threshold. The last cluster (number 3, year 2014) is the most modern, featuring virtual workloads on
compute resources. Again there is a strong focus on historical data, but notably this cluster consists of only
advising approaches (none purely forecast). The most popular advice optimization method is Local Search,
although the field is fragmented in this category (seen by the low value of L and the fact that it is the only one
to meet the threshold).

We now apply the DBSCAN algorithm [39] to the dimensionality-reduced dataset. As can be seen in Ta-
ble 3.6, this gives a significantly different clustering. A formal difference is the differentiation between labeled
and unlabeled data, unlabeled data being publications that the clustering algorithm could not confidently as-
sign to a cluster. All labeled data has the same publication year: 2012. This data is divided into two clusters,
both with mainly virtual workloads. The difference between the two is that the one uses physical and the
other uses virtual resources as levels of abstraction. Cluster 0 (physical) also shows more historical data being
used, while cluster 1 (virtual) has more focus on pricing and SLAs. It is interesting to see that the choice of
resource abstraction also reflects in the choice of model inputs used for capacity planning. Unlabeled data
consists mainly of web service capacity planning efforts, which the clustering algorithm separates from the
main two clusters. We see this as a greater trend in the field: Older publications tend to focus on web services
on physical resources, while more recent publications become more virtualized.
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Table 3.5: Top two most frequent classes per category for each cluster of the K-Means clustering method, above a threshold of 0.25. The
relative frequency is listed in parentheses.

Category Cluster 0 Cluster 1 Cluster 2 Cluster 3

Pub. Year: Mean 2012 2012 2005 2014
Pub. Year: Std. 4.39 3.14 5.61 3.54
Num. Publications 14 16 9 18

Workloads – WS (0.50), VM (0.31) WS (0.78) VM (0.67)
Resources C (0.93), S (0.36) V (0.69) S (0.89), C (0.89) C (1.00)
Model Inputs RS (0.93), H (0.93) P (0.88), S (0.81) RS (0.89), B (0.67) H (0.94), RS (0.89)
Modeling Strategy A (0.79), S (0.29) A (0.81) A (0.78) A (0.94)
Model Structure W (0.93) W (0.75), U (0.25) W (0.89) W (0.94)
Role F (1.00), A (0.71) F (1.00), A (1.00) F (1.00), A (0.44) F (1.00), A (1.00)
Advice Type N (0.71) N (1.00), T (0.62) T (0.56), N (0.56) N (1.00), T (0.28)
Advice Method – NLP (0.25), H (0.25) R (0.44) L (0.28)

Table 3.6: Top two most frequent classes per category for each cluster of the DBSCAN clustering method [39], above a threshold of 0.25.
The relative frequency is listed in parentheses.

Category Cluster 0 Cluster 1 Unlabeled

Pub. Year: Mean 2013 2012 2007
Pub. Year: Std. 4.15 2.29 6.05
Num. Publications 35 9 13

Workloads VM (0.37) VM (0.44) WS (0.77)
Resources C (0.94) V (0.78) S (0.62), C (0.62)
Model Inputs RS (0.91), H (0.91) P (0.89), S (0.78) RS (0.85), P (0.54)
Modeling Strategy A (0.86), S (0.26) A (1.00) A (0.69)
Model Structure W (0.91) W (0.78) W (0.85)
Role F (1.00), A (0.89) F (1.00), A (1.00) F (1.00), A (0.62)
Advice Type N (0.89) N (1.00), T (0.56) N (0.69), T (0.62)
Advice Method L (0.26) – R (0.38)
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3.5.4. Analysis Per Category
We now analyze the state and trends of each category, in turn. Our main findings here are:

SF7: A large majority of publications (82%) consider only one workload type in their approach.

SF8: Similarly, a majority of all publications (63%) consider only one resource type.

SF9: We find that the analytical modeling approach is currently dominant in the field.

SF10: The type of advice that published capacity planning systems provide is predominantly quantitative.
Other types of advice, such as locality and qualitative concerns, are less popular.

System Model: Workloads
In the workload category, most studies (82%) only consider one workload type. Only two publications con-
siders multiple, which is remarkable considering the heterogeneous deployments prevalent today. As can be
seen in Figure 3.5a, virtual and web workloads dominate the total class counts. In Figure 3.5b, we observe
an increasing trend in VM considerations in the past decade, while web services have a longer, more stable
history.

System Model: Resources
63% of all studies consider only one resource type, while 18% and 16% consider 2 and 3 types of resources,
respectively. While still predominantly single-dimension, it seems that more publications look into com-
binations of multiple resource types than multiple workload types. We conjecture that this is evidence for
capacity planing being done on a per-workload basis. The compute resource class dominates the field, as
shown in Figure 3.5c. In Figure 3.5d, we observe that this type of resource sees increased interest over time,
having a large share especially recent years. Virtual resources started gaining traction in the field of capacity
planning around 2010, which is also when we see it gaining momentum as a standard mode of deployment
in clouds. Among the other classes, storage remains relatively constant in its interest over time. This seems
to be a resource of interest for a long time, in this field.

System Model: Model Inputs
We find that most models use 3 inputs (at 40%), followed by 4 inputs (30%) and 2 inputs (19%). As seen in
Figure 3.5f, there are four types of inputs leading the publication counts over time: resource specifications,
pricing, SLAs, and historical information. This is a combination of both purely technical (specifications and
historical information) and more service-centered factors (pricing and SLAs), further emphasizing the multi-
disciplinary nature of the capacity planning activity. These findings are confirmed by the total class counts in
Figure 3.5e. There seems to be little work focusing on the human personnel factors involved in the process.

Forecast Model: Modeling Strategy
In the strategy used for creating a forecast, we observe in Figure 3.6a that the analytical approach seems to
be the standard in the field. If we look back to the development of this over time (see Figure 3.6b), this pre-
dominance seems to have been less clear in the beginning, but becomes more firmly established in the past
decades. Simulation sees a slight increase in popularity in the past years, possibly related to the increasing
complexity of modeled systems. The entry of experiment-based approaches from 2013 on could support this
conjecture, since experiments are another way around the complexity limitations of analytical experiments.

Forecast Model: Model Structure
In terms of the structure of models, we see only very few models being unconditional in Figure 3.6c. This
indicates a broad understanding that capacity planning models need to be conditional and open-ended in
their construction to allow for different plausible future consequences.

Decision Support: Role
In terms of the role that capacity planning approaches take, most (84%) seem to not only be forecasting but
also advisory (see Figure 3.7a). This indicates that most researched systems provide a suggested capacity
decision to the practitioner.
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Decision Support: Type of Advice
The type of advice that published capacity planning systems provide is predominantly on the quantity di-
mension. Qualitative and locality aspects are far less frequent. This can be seen in Figure 3.7c. We observe
that a significant portion of systems give two types of advice (44%) while most others give only one type of
advice (40%). This indicates that many published approaches actually provide two-dimensional decision
support. When looking at the trends over time (see Figure 3.7d), we observe that locality has become a topic
of interest only in the last decade. This could be related to the growing popularity of multi-site datacenter
operations.

Decision Support: Advice Method
The field of methods used to deduce advice to the practitioner seems more diverse. Most use only one ad-
vice method (72%), with only very few using more than one. As can be seen in Figure 3.7e, the spread of
method usages is quite high. Still, regression, Non-Linear Programming and heuristic-based approaches
dominate total counts. In Figure 3.7f, we can observe little clear trends over time. We see neural-network-
based approaches emerging around 2012, which can be related to the increasing popularity this method has
experienced in other fields.

Overall, the field of capacity planning still seems to mainly rely on simple, heuristics-based approaches.
This can either indicate that the field is not complex enough to warrant more complex analysis, or that more
complex analysis is simply not tractable for the scale at which this is needed. Although hard proof for this is
not easily obtainable, we conjecture that the latter is the case.

3.5.5. Trending Keyword Analysis
We close off with an analysis of keyword trends over time. We list the results of this search below (emphasis is
ours). Our main finding:

SF11: We find that trending keywords such as penalties, underutilization, and multilevel can indicate up-
coming trends in the capacity planning community.

benefit, better, block, building, collected, derived, economy, edge, fog, google, highlevel, ie, implemented,
internet, iot, limit, maximize, monitoring, multilevel, penalty, prevalent, price, publicly, reclaimed, region,
revenue, rigorous, sell, short, size, slas, stochastic, studied, theoretical, underutilization, unused, variation,
wireless, would

We find a number of keywords corresponding with interesting trends in the field, both inside and out-
side of capacity planning. There seems to be increasing focus on penalties and SLAs, as cloud infrastructure
pricing models become more established and capacity planners likely become more aware of their influence
on capacity plans. We also observe that underutilization (and synonym unused) is a trending keyword. This
could be explained by a growing need for more accurate capacity plans. We also see multi-facility capacity
problems gaining traction (multilevel and region). This could be linked with the increasingly distributed and
globalized nature of cloud operations, leading capacity planners to increase the scope of capacity.

3.6. Comparison to Theory
We now compare the theory presented in Section 2 to the findings of this survey. Overall, the workflow that
theories adhere to (model–predict–decide) is roughly followed by the majority of the publications. In terms
of modeling strategy, the predominance of analytical models in theoretical literature is reflected in the more
practical published literature on capacity planning approaches. The substantial portion of web service work-
loads in surveyed publications also can be correlated with the attention these workloads receive in analyzed
books.

We also observe significant discrepancies. First, we see that far from all capacity planning approaches
use historical measurements, while literature indicates that this is an integral part of the process. A plausible
explanation for this could be that these are not always readily available in real-world environments, or that
their size is too large to allow for quick analysis. Second, the times of publication also differ between theory
and practice, although perhaps understandably so: While the majority of relevant capacity planning books
was published before 2010, the majority of relevant capacity planning approaches were published after 2010.
It is not uncommon for practice to follow theory in this fashion, but the absence of a standard theory for
cloud capacity planning is noticeable. Finally, we do not include a category for calibration or validation in
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this taxonomy. Even though it is a crucial step in our view, it simply has not been integrated as a major stage
in the publications we find. We estimate that there still is much to be gained from a thorough investigation of
long-term calibration/validation efforts in capacity planning.

3.7. Discussion
We now summarize the contributions of this chapter and discuss possible threats to their validity.

3.7.1. Summary
The state-of-the–art of literature in a field can be difficult to grasp without an overview. We provide such
an overview in the form of a systematic literature survey for capacity planning in cloud infrastructures. We
collect and filter a large number of publications and design a taxonomy to provide a structured view of pub-
lished approaches. We also demonstrate novel meta-analysis methods to uncover trends and groupings in
the research community and their approaches.

3.7.2. Threats to Validity
We discuss potential threats to internal validity, construct validity, and external validity.

Internal Validity
While we present many correlations in this study, we take care to mark suspected causal claims as such. By
limiting the causal claims made and maintaining an observational role, we ensure the internal validity of our
study.

Construct Validity
The inherently ambiguous nature of the mapping process is a threat to the construct validity. Even though
the author took great care to classify the works as objectively as possible, the classifications are inherently
subjective as they rely on interpretation of (frequently ambiguous) free-form text. Misinterpretations can
therefore stem from the author of this thesis misreading passages of the text. Another source of ambiguity
can be an incomplete portrayal by the author of the work published in the publication, be it due to omissions
of sensitive details or a selective perspective to focus the reader’s attention. These inherent ambiguities could
be reduced through interviews with the authors, although these interviews would also introduce their own
bias. A different approach would be to duplicate mapping efforts across a panel of experts and compare their
results, although this can only partly address the issue.

External Validity
The results of this survey are likely skewed in favor of approaches that are more easily published about than
actually put to practice. This threat to external validity is inherent to a survey that only regards published
work. The interviews conducted in Chapter 4 of this thesis complement this literature-based approach with
a practice-driven one to assess the current real-world practice in capacity planning and uncover possible
discrepancies between both.
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Figure 3.5: Class counts and trends for the System Model section per category. An additional class type (no-class) is introduced to
indicate the number of publications without any class, when such publications exist in that category.
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(d) Model Structure

Figure 3.6: Class counts and trends for the Forecast Model section per category. An additional class type (no-class) is introduced to
indicate the number of publications without any class, when such publications exist in that category.
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Figure 3.7: Class counts and trends for the Decision Support section per category. An additional class type (no-class) is introduced to
indicate the number of publications without any class, when such publications exist in that category.
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Figure 4.1: Our process for conducting and analyzing interviews with capacity planners.

4
Real-World Survey of Capacity Planning

Real-world practice can deviate significantly from published theories and strategies. In this chapter, we con-
duct and analyze interviews with 8 practitioners from a wide range of backgrounds and multiple countries,
to assess whether this is the case in the field of capacity planning. Our method and results address research
question RQ1.2.

4.1. Overview
As detailed in Section 2.4.2, we observe a severe lack of published knowledge on the actual real-world practice
of capacity planning in datacenters. The two works that can be related to this are either decades old or focus
on a management perspective. This is surprising for a problem of this importance, because any research
attempting to improve the state-of-the-art in this field needs to be aware of existing challenges and any tacit
knowledge.

In this chapter, we address this lack of knowledge by conducting and analyzing interviews with practition-
ers in the field, using a technique that is infrequently applied in computer systems research. The remainder of
this chapter is structured as follows. We present the interview and analysis method in Section 4.2. Section 4.3
lists a selection of our main observations made in analyzing the interviews. In Section 4.4, we provide the full
set of observations. Finally, we summarize our contributions and discuss threats to validity in Section 4.5.

35
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4.2. Method
Our goal is to collect real-world experiences from practitioners systematically and without bias, yet also leave
room for flexible, personalized lines of investigation. To this end, we adapt a classic method to our specific
goals. Figure 4.1 depicts the data collection process. The remainder of this section details it.

4.2.1. Interview Type

The choice of interview type is guided by the trade-off between the systematic and flexible requirements. A
text survey, for example, is highly suited for a systematic study, but generally does not allow for low-barrier
individual follow-up questions or even conversations. An in-person interview without pre-defined questions
allows full flexibility, but can result in unsystematic results.

We use the general interview guide approach [125], a semi-structured type of interview that ensures cer-
tain key topics are covered but permits deviations from the script. We conduct in-person interviews with a
prepared script of ranked questions, and allow the interviewer the choice of which scripted questions to use
and when to ask additional questions. Such additional questions can follow up on unanticipated statements
made by interlocutors or focus on aspects specific to the interlocutor’s situation (e.g., specific mentioned
processes or experiences).

4.2.2. Data Collection

Our data collection process involves three steps. Firstly, we selected and contacted a broad set of prospective
interviewees representing various kinds of datacenters, with diverse roles in the process of capacity planning,
and with diverse responsibilities in the decisions.

Secondly, we conducted and recorded interviews. Each interview is conducted in person or via video call
connection by the author of this thesis and digitally recorded with the consent of the interlocutor. For each
interview, the language that is most comfortable for both participants is chosen, resulting in 3 different lan-
guages in the different conducted conversations. Interviews last between 30 and 60 minutes, depending on
availability of the interlocutors and complexity of the discussion. To help the interviewer select questions
and fit in the time-limits imposed by each interviewee, we rank questions by their importance and group
questions broadly into 5 categories: (1) introduction, (2) process, (3) inside factors, (4) outside factors, and
(5) summary and followup. The choice between questions is then dynamically adjusted to give precedence
to higher-priority questions and to ensure each category is covered at least briefly. The script itself is listed in
Appendix A.

Thirdly, the recordings are manually transcribed into a full transcript to facilitate easy analysis. Because
matters discussed in these interviews may reveal sensitive operational details about the organisations of our
interviewees, all interview materials are handled confidentially. No information that could reveal the identity
of the interlocutor or that could be confidential to an organization’s operations is shared without the explicit
consent of the interlocutor. In addition, all raw records (recordings, transcripts, and any analysis material
derived from the transcripts bearing confidential material) will be destroyed directly after this study.

4.2.3. Analysis of Interviews

Due to the unstructured nature of the chosen interview approach, we combine a question-based aggregated
analysis with incidental findings. Our approach is inspired by the Grounded Theory strategy set forth by
Coleman and O’Connor [32], and has two steps. First, for each transcript, we annotate each statement made
based on which questions it is relevant to. This may be a sub-sentence remark or an entire paragraph of text,
frequently overlapping between different questions. We augment this systematic analysis with more general
findings, including comments on topics unanticipated by our script or specific to the domain of expertise of
the interlocutor. Secondly, we traverse all transcripts for each question and form aggregate observations for
each question in the transcript. From these, we synthesize Capelin requirements (see Section 5.2).

In total, we transcribed over 35,000 words in 3 languages, which is a very large amount of raw interview
data. We conducted interviews with 8 practitioners from commercial and academic datacenters, with roles
ranging from capacity planners, to datacenter engineers, to managers. One of the interviews was conducted
with 2 practitioners in parallel, leading to a total of 7 interviews.



4.3. Main Observations from the Interviews 37

Table 4.1: Summary of interviews. (Notation: TTD = Time to Deploy, CP = Cloud Provider, MDC = Multi-Datacenter, SDC = Single-
Datacenter, M = Monitoring, m/y = month/year, NIT = National IT Infrastructure Provider, SA = Spreadsheet Analysis.)

Int. Role(s) Backgr. Scale Scope Tooling Workload Frequency TTD

1 Researcher CP rack MDC M combined 3m, ad-hoc ?
2 Board Member NIT iteration MDC – combined 4–5y 12–18m
3 Manager, Eng. CP rack MDC M combined ad-hoc 4–5m
4 Manager NIT iteration SDC M benchmark 6–7y 18m
5 Hardware Eng. NIT iteration SDC M benchmark 6y 18m
6 Researcher NIT rack MDC M separate 6m 12m
7 Manager NIT iteration MDC M, SA combined 5y 3.5-4y

4.3. Main Observations from the Interviews
Table 4.1 summarizes the results of the interviews. We summarize here our main observations, forward refer-
encing the detailed findings we provide in Section 4.4. Each observation is detailed here and indexed as Ox,
e.g., O1. Observations are based on individual findings, which can be seen as smaller observations. Individual
findings are further detailed in Section 4.4 and indexed as IFx, e.g., IF16 related to O1.

O1: A majority of practitioners find that the process involves a significant amount of guesswork and human
interpretation (see detailed finding IF16 in §4.4). Interlocutors managing commercial infrastructures empha-
size multi-disciplinary challenges such as lease and support contracts, and personnel considerations (IF19,
IF18).

O2: In all interviews, we notice the absence of any dedicated tooling for the capacity planning process (IF44).
Instead, the surveyed practitioners rely on visual inspection of data, through monitoring dashboards (IF45).
We observe two main reasons for not using dedicated tooling: (1) tools tend to under-represent the complex-
ity of the real situation, and (2) have high costs with many additional, unwanted features (IF47).

O3: The organizations using these capacity planning approaches provide a range of digital services, ranging
from general IT services to specialist hardware hosting (IF2). They run VM workloads, in both commercial
and scientific settings, and batch and HPC workloads, mainly in scientific settings (IF3).

O4: A large variety of factors are taken into account when planning capacity (IF34). The three named in a
majority of interviews are (1) the use of historical monitoring data, (2) financial concerns, and (3) the lifetime
and aging of hardware (IF35).

O5: Success and failure in capacity planning are underspecified. Definitions of success differ: two intervie-
wees see the use of new technologies as a success (IF6), and one interprets the absence of total failure events
as a success (IF5). Challenges include chronic underutilization (IF8), increasing complexity (IF9), and small
workloads (IF10). Failures include decisions taking long (IF12), misprediction (IF13), and new technology
having unforeseen consequences (IF11).

O6: The frequency of capacity planning processes seems correlated with the duration of core activities using it:
commercial clouds deploy within 4-5 months from the start of capacity planning, whereas scientific clouds
take 1–1.5 years (IF39, IF40).

O7: We found three financial and technical factors that play a role in capacity planning: (1) funding con-
cerns, (2) special hardware requests, and (3) the cost of new hardware (IF74). In two interviews, interlocutors
state that financial considerations prime over the choice of technology, such as the vendor and model (IF78).

O8: The human aspect of datacenter operations is emphasized in 5 of the 7 interviews (IF85). The data-
center administrators need training (IF81), and wrong decisions in capacity planning lead to stress within the
operational teams (IF83). Users also need training, to leverage heterogeneous or new resources (IF81).
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O9: We observe a wide range of requirements and wishes expressed by interlocutors about custom tools for
the process. Fundamentally, the tool should help manage the increasing complexity faced by capacity plan-
ners (IF97). A key requirement for any tool is interactivity: practitioners want to be able to interact with the
metrics they see and ask questions from the tool during capacity planning meetings (IF95). The tool should
be affordable and usable without needing the entire toolset of the vendor (IF96). One interviewee asks for
support for infrastructure heterogeneity, to support scientific computing (IF98).

O10: Two interviewees detail “what-if” scenarios they would like to explore with a tool, using several di-
mensions (IF101): (1) the topology, in the form of the computational and memory capacity needed, or new
hardware arriving; (2) the workload, and especially emerging kinds; and (3) the operational phenomena, such
as failures and the live management of the platform (e.g., scheduling and fail-over scenarios).

Table 4.3: An index of the detailed interview findings listed in Section 4.4. (Notation: CP = Capacity Planning, WL = Workload.)

ID Description ID Description ID Description

IF1 importance of availability IF37 commercial factors IF73 special regulations
IF2 wide range of services IF38 margin for error IF74 main fin. and tech. factors
IF3 services per domain IF39 frequency of plans IF75 fin. factors in comm. settings
IF4 scope of success IF40 time to deployment IF76 fin. factors in scientific settings
IF5 absence of failures as success IF41 frequency in special cases IF77 relevance of factors in finances
IF6 benefits of new technology IF42 historic data sources IF78 role of finances in tech. choice
IF7 abundance of failure stories IF43 other data sources IF79 investment and energy
IF8 underutilization IF44 absence of tooling IF80 main human factors
IF9 complexity IF45 prevalence of visual formats IF81 need for training

IF10 role of small deployments IF46 monitoring products IF82 listening to users
IF11 failures of new technology IF47 tool issues IF83 role of CP in team stress
IF12 long decision processes IF48 frequency of errors IF84 proportionality of personnel size
IF13 misprediction of resource ratios IF49 severity of errors IF85 importance of the human factor
IF14 CP as afterthought IF50 error reporting IF86 scope of CP
IF15 periodicity of CP IF51 timing of incident recollections IF87 more fine-grained decisions
IF16 guesswork and interpretation IF52 number of service types IF88 separating prod. and dev.
IF17 non-computational factors IF53 commercial services considered IF89 treating everything as prod.
IF18 financial vs. human factors IF54 scientific services considered IF90 what-if scenarios with factors
IF19 lease and support contracts IF55 CP for business critical WLs IF91 ideal process: flexibility
IF20 use of benchmarks IF56 CP for big data WLs IF92 ideal process: speed
IF21 role of big users IF57 CP for serverless WLs IF93 ideal process: attention to detail
IF22 scientific infra. perceptions IF58 CP for HPC WLs IF94 ideal process: training
IF23 yes/no: what-if IF59 seeing WLs as one IF95 ideal tool: interactivity
IF24 yes/no: hybrid clouds IF60 combining WLs in benchmarks IF96 ideal tool: availability
IF25 yes/no: share data IF61 risk of combining WLs IF97 ideal tool: complexity
IF26 yes/no: human factors IF62 popularity of serverless IF98 ideal tool: heterogeneity
IF27 common stakeholders IF63 characteristics of serverless IF99 ideal tool: multi-disciplinarity
IF28 level of the final decision IF64 CP for serverless: expectations IF100 ideal tool: trend analysis
IF29 commercial stakeholders IF65 CP for serverless: current state IF101 ideal tool: what-if scenarios
IF30 scientific stakeholders IF66 lack of data on serverless IF102 absence of direct links
IF31 time scale in general IF67 what-if scenarios in the process IF103 links to scheduling
IF32 time scale in commercial settings IF68 role of regulatory constraints IF104 inherent uncertainty
IF33 time scale in scientific settings IF69 constraints in banking IF105 regional differences
IF34 plurality of factors IF70 constraints due to GDPR IF106 coherence of capacity plans
IF35 main factors IF71 competitive dialogue procedure
IF36 scientific factors IF72 role of security in regulation
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4.4. Full Observations from the Interviews
We now list the full set of interview findings from which the main set of observations discussed in the previous
section were derived. We aggregate these findings per question in the interview script (see Appendix A).
Table 4.3 serves as a tabular index for all findings, to ease navigation.

Category 1 - Q1: Importance of Availability
IF1: We observe that availability appears to be critical in commercial cloud environments. In scientific cloud
infrastructure, availability generally appears to be perceived as less important than in commercial cloud en-
vironments.

Category 1 - Q2: Services
IF2: The organizations for which the interlocutors work provide a wide range of services, from general IT
services to specialist hardware hosting. The interlocutors themselves are mainly concerned with compute
cloud services. These can be divided into virtualized offerings (VM hosting), batch workload services, and
specialized HPC hosting.

IF3: Batch workloads and HPC hosting are only seen in the scientific infrastructure surveyed. VM hosting
is dominant in the commercial infrastructure space and can only be found in half of the surveyed scientific
infrastructures.

Category 1 - Q3: Success in Capacity Planning
IF4: The success stories being told vary from large installations with significant upfront effort to more flex-
ible, iterative installations. Flexibility is still often valued even in large scale designs, in the form of strategies
leaving room for adaptations later-on.

IF5: One interview characterizes the absence of total-failure scenarios in the past as a success story for the
capacity planning team.

IF6: The utilization of new hardware with beneficial features, such as competitive pricing or an increase in
parallelism, is a success story recounted in two of the interviews.

Category 1 - Q4: Insuccess in Capacity Planning
IF7: A first observation is the abundance of failure stories, especially compared to the number of success
stories. A possible explanation is that the process could be largely taken for granted. The practices is mainly
revisited when suboptimal situations arise.

Challenges Capacity Planners Face
We find that capacity planning practitioners face many challenges in the process.
IF8: Most interlocutors see and are discontent with a pervasive under-utilization of their system. This
under-utilization can be caused by operational risk minimization taking precedence, newly installed re-
sources not being directly used, and delays in the process.

IF9: We observe the challenge of increasing complexity, both in the managed resources and the tooling
needed to correctly monitor them. The heterogeneity of hardware, especially in HPC domains, is also men-
tioned in accounts of this.

IF10: Some remark that supporting the small to medium workload deployments is much more difficult
than planning for the larger deployments. While the larger units each have a larger financial impact, the
small units tend to be neglected and found in need of sufficient leftover capacity.
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Failure Stories
We summarize the most common failure types below.

IF11: In some cases, the adoption of new technologies can have unforeseen negative consequences. A
failure story of the adoption of an (unnamed) new processor architecture ends in an entire rollback of the
installation, due to users having difficulties properly utilizing the new hardware, and due to high power con-
sumption.

IF12: Some capacity planning decisions take so long that technological perceptions have changed due to
the rapidly changing nature of the field. This leads to hardware choices needing to be implemented that, at
the time of actual installation, are considered suboptimal.

IF13: A notorious challenge seems to be the prediction of future ratios between different resource types
(mainly number of cores, memory units, storage capacity). We observe a number of failure stories surround-
ing the misprediction of how different resource type might relate in the future, resulting in significant parts
being underutilized or certain capacity dimensions running out of capacity far faster than others. This last
consequence can lead to reduced QoS.

IF14: We observe cases where capacity planning is only seen as an afterthought. A representative example
is the fast onboarding of a new client where available capacity or time to acquire new capacity is judged too
optimistically.

Category 1 - Q5: Typical Process
IF15: The typical processes we see have two shapes: a periodic process, typically centered around the lifecy-
cle of topology resources, and a more ad-hoc process, triggered by less predictable events such as the arrival
of new users. The former is dominant in most surveyed scientific clouds, while the latter is more common in
commercial clouds. One scientific cloud in the set has a combination of both.

IF16: A sentiment expressed in the majority of interviews is that guessing and human interpretation of
monitoring data are a big part of the process. The tooling in the area seems underutilized, further discussed
in Q13.

IF17: Next to computational performance of resources, electricity and cooling also play a significant role in
the equation. This both impacts and is impacted by the choice of hardware.

Commercial Infrastructures
We observe a difference in the typical process and challenges involved in this process between commercial
and scientific infrastructures. Below, we outline the findings for commercial infrastructures.

IF18: We see all interlocutors from commercial backgrounds facing a dilemma between combining pur-
chases and spreading them. The former can lead to significant cost savings but periods of more intense effort
for employees, while the latter has the opposite advantages and drawbacks. A possible generalization of this
is the competition and interplay between financial and human factors, both impacting the capacity planning
process in different ways.

IF19: We also see some interlocutors with commercial cloud backgrounds describing lease and support
contracts as being especially important in the set of factors taken into account in a typical capacity planning
process. The timing and duration of these conditions can have significant impact on the decision taken.

Scientific Infrastructures
We now summarize the main findings for the typical process scientific infrastructures.

IF20: Most scientific clouds seem to follow a typical public competitive dialogue process for their resource
selection. In at least half of the surveyed scientific infrastructures, this includes a benchmark-driven process.
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This entails providing hardware contractors with a set of benchmark applications that need to be optimized
by the contractor. Results for applications in this benchmark are often weighted by importance or frequency
of deployment.

IF21: We observe that most scientific clouds take their biggest users as the main indicator of the needs of
a platform. Half of scientific clouds also take into account a broader user feedback survey, reaching users
regardless of size or importance.

IF22: Almost all scientific cloud interlocutors perceive their process as fundamentally different from the
commercial capacity planning process. The main perceived difference is the mode of operation, which they
believe to be budget-centered rather than demand-centered. These interlocutors also consider their budget-
centered to have less capacity planning efforts than commercial efforts. Whether this assessment is accurate
is difficult to objectively judge, although analysis from other questions seems to indicate that there are more
aspects of “traditional” capacity planning in their process than commonly perceived.

Category 1 - Q6: Yes/No Questions
IF23: What-if scenarios do not seem to be established practice currently. Some unstructured examples
fitting the format (e.g. fail-over scenarios, clients arriving) are mentioned informally, but not in a structured
form.

IF24: Most of the scientific clouds have exploratory projects running where they investigate the possibility
of offloading demands to a public cloud. This indicates increased interest in hybrid infrastructure offerings.

IF25: A significant portion of interlocutors is willing to share historical data with the interviewer. This could
signal interest in academia and industry for more research being conducted in topics surrounding their ca-
pacity planning decision making.

IF26: The majority of interlocutors considers human personnel in some form in the capacity planning pro-
cess. We further analyze this topic in Q22.

Category 2 - Q7: Stakeholders
IF27: All processes surveyed seem to have an executive board at the head of the process. This board seek
out advice from experts in the domains relevant to their decision. These can include technical advisors or
scientific experts.

IF28: For all surveyed instances, the final decision seems to be at board level. While the input of domain
experts is sought out, the final decision is made by the management.

IF29: The interlocutors with commercial background also have an engineer in charge of the capacity plan-
ning process, monitoring the current situation and coordinating the lifecycle-based planning process. The
process in this case also includes input from the hardware contract administration for contracts. Occasion-
ally, the sales department is involved, if the decision affects the shaping or pricing of services provided to
customers.

IF30: In scientific environments, an important part of the set of stakeholders tend to be scientific partners
and (governmental) funding agencies. Half of the surveyed processes here also take into account user input
through a user questionnaire.

Category 2 - Q8: Time and Infrastructure Scale
IF31: Unlike the frequency or trigger of capacity planning processes, the time scale of the decisions made
seem to be roughly uniform across interlocutors. We observe that the aging and thus deterioration of hard-
ware is seen as the most important factor here, with a mean of 5 years until the next decision for a specific
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machine/rack. Commercial environments seem to tend towards faster replacement (3-5 years), while scien-
tific environments seem to replace less quickly (4-7 years).

IF32: The infrastructure scale of decisions for commercial environments tends to be a single rack. Making
multi-rack decisions is desired, due to potential cost savings, but not always possible.

IF33: In scientific environments, the infrastructure scale of decisions seems to be larger, with most surveyed
infrastructures working on scales of entire cluster/site iterations. One infrastructure works on a smaller scale,
making single-machine or single-rack decisions.

Category 2 - Q9: Factors
IF34: The number of factors is remarkable, with more than 25 distinct factors being named in the full set of
interviews.

IF35: Nevertheless, the factors that span across a majority of interviews are few. Only three factors are
named in more than half of the interviews: the use of historical monitoring data, financial concerns (such as
budget size), and the lifetime of hardware. These are followed up by a set of four factors mentioned in slightly
less than half of the interviews: user demand, new technologies, incoming projects, and the benchmark per-
formance of different solutions.

IF36: We observe a number of factors particular to scientific infrastructures but not being mentioned in
the commercial set. The most important here are the benchmark performance of solutions (which is often
required by public competitive acquisition processes) and user demands. One surveyed infrastructure opti-
mizes for throughput here, meaning the number of times the benchmark can be run in a certain time frame.

IF37: Similarly, we observe a number of factors unique to commercial infrastructures. The most prominent
are lease contracts, current offerings that the provider has, and personnel capacities.

Category 2 - Q10: Margin for Error
IF38: The margin for error is difficult to objectively measure, due to the multi-faceted nature of this pro-
cess. Two main consequences of errors are mentioned by interlocutors. First, financial losses can occur due
to overestimation of the demand of a certain resource, such as specific accelerators or storage capacity, or due
to underestimation, as can happen if the ratio of resource types is mispredicted. Second, personnel can come
under pressure, due to available capacity being smaller than expected, starting a search for spare capacity in
any of the managed clusters.

Category 2 - Q11: Frequency and Time to Deployment
IF39: While interlocutors from commercial backgrounds report a frequency of at least once per three
months (depending on an ad-hoc component), counterparts from scientific infrastructures generally report a
frequency upwards of four years. There is one notable exception to this rule, with one of the scientific clouds
which takes a decision twice a year. In general, we observe a separation between fast-paced commercial plan-
ning cycles and longer cycles in scientific clouds.

IF40: Similar to the frequency of planning events, the time from start of the event to deployment is deter-
mined largely by the background of the infrastructure. Commercial clouds tend to finish deployment within
4–5 months, while scientific clouds tend to take 1–1.5 years to deploy. We see a positive correlation with the
frequency of planning instances, meaning that a higher frequency trends to be paired with a shorter time to
deployment.

IF41: In some scientific clusters, we see a part of the topology containing specialized hardware, such as
accelerators, getting a special process with more rapid cycles than the rest of the architecture. This could be
due to the faster pace of evolution that these kinds of technologies experience.
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Category 2 - Q12: Data Sources
IF42: With the exception of one infrastructure, historic utilization data from monitoring agents is univer-
sally reported to be used in the process.

IF43: Next to historic utilization data, we see operational data such as lease contracts and maintenance
periods being involved in the process. We also observe some interlocutors explicitly mention taking global
market developments into account.

Category 2 - Q13: Tooling
IF44: The main observation here is that none of the surveyed infrastructures have dedicated tooling for the
capacity planning of their infrastructures. They use monitoring tools (with dashboards) and/or spreadsheets,
combined with human interpretation of the results. Decisions are, in one infrastructure, being preserved in
minutes and mails.

IF45: We observe that planners typically consume the data they receive from monitoring in visual formats,
in plots over time. Being able to visually investigate and interpret developments plays an important role here.

IF46: The most commonly used tool for monitoring seems to be Grafana, which allows teams to build
custom dashboards with the information they see as relevant. NetApp monitoring tools are mentioned as
being used by one commercial party. One scientific infrastructure reports basing their results on custom SQL
queries of monitoring data. Another scientific infrastructure uses spreadsheets as the primary medium for
analysis.

IF47: We identify two key issues being raised explaining the absence of dedicated tooling. First, tools tend to
be too platform specific or work only in one layer of the hierarchy and thus return misleading results. We see
the issue being the mismatch between the complexity of the reality on the ground and the complexity that
these tools assume of the topology. Second, tools tend to have high cost and carry a number of additional
features that planners reportedly do not find useful, meaning that the high price is not justified by the value
the planners receive out of these tools.

Category 2 - Q14: Errors
IF48: We observe several occurrences of failures being mentioned, although the perceived frequency varies.
One interlocutor believes that (slightly) erroneous plans are made constantly, since it is not possible to predict
accurately what will be needed in the future, while another interlocutor claims the errors made are not very
frequent. On average, the frequency is perceived as low, drawing contrast to the failures being mentioned in
the rest of the interview.

IF49: The severity of an error is hard to measure objectively if not actively monitored. The (subjective)
descriptions of how severe errors vary from losing potential income, to having underutilized hardware, to
hitting storage limits. This raises a different point, surrounding the definition of errors or failures in the field
of capacity planning. An underutilized new cluster may be seen as a minor error, since service is typically not
affected and the only cost seems to be additional power usage and environmental footprint.

IF50: We did not observe any structured approach to recording errors in the process. Whether they only re-
main tacit team knowledge or are still recorded somewhere is not clear, although our interpretation indicates
the former.

IF51: While most interlocutors seem to describe negative capacity planning incidents as being infrequent
and having low severity, the examples being given in response to other questions tend to be from the most
recent (if not one of the last) iterations. This is partly explainable with more recent memories being more
readily accessible, but also might indicate a more structural underappreciation of the possibility for failures
or suboptimal choices in the process.
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Category 3 - Q15: Services and Infrastructure Part of Process
IF52: We observe that the majority of interlocutors considers only one type of service as part of their capac-
ity planning process and a minority considers two or more.

IF53: In the commercial settings we survey, we see that VMs holding business-critical workloads are most
universally considered as part of the process. One interlocutor mentions a new container platform as also
being part of the process, although it is internally approximated as a VM while planning.

IF54: In the scientific settings we survey, we see that batch workloads, HPC workloads, VM workloads, and
baremetal hosting services are equally popular. One provider also mentions shared IT services (more general
IT functionality) as also being a part of the process.

Category 3 - Q16: Processes for Specific Workloads
IF55: The instances running business critical workloads report two special aspects that they consider for
these workloads: special redundancy requirements and live management concerns (primarily migration and
offloading).

IF56: We do not observe any special processes being mentioned for Big Data workloads.

IF57: The processes for serverless workloads are still very much in a stage of infancy, as most interlocutors
having container or Function as a Service (FaaS) solutions only host them as experimental pilot projects. In
terms of capacity planning, one interlocutor points out that for the container platform they currently build
they only approximate the containers with VMs in their reasoning. However, they acknowledge that the den-
sity and characteristics of this new workload might be very different and that they may need to have special
process for this in the future.

IF58: Two of the interlocutors reporting that HPC is a part of their process, state that capacity planning for
HPC workloads is even more challenging than for conventional workloads, due to the increased heterogene-
ity in the hardware platforms needed for this domain.

Category 3 - Q17: Combining Workloads
IF59: All interlocutors, with one exception, consider all workloads combined in one process. The interlocu-
tor forming the exception states that certain different workload types in their cloud are hosted on different
infrastructure and separated entirely, with no synchronization occurring between the different efforts.

IF60: A popular approach in scientific infrastructures seems to be to combine workloads through a weighted
benchmark suite. This scores topologies by running important representatives from each workload type and
combining the scores into a single score.

IF61: One interlocutor with commercial background points out that there is a trade-off between combining
processes, thus gaining efficiency but also increasing the risk of failure, and keeping processes separate, thus
loosing efficiency but also reducing the risk.

Category 3 - Q18: Serverless Workloads
IF62: We observe that, with one exception, all interviews describe introduction of (pilot) serverless pro-
grams in their services. One interlocutor sees serverless as a fast growing business, but another interlocutor
contrasts this with an observation that the demand for it is still limited.

IF63: Interlocutors see a number of differences with traditional workloads. They observe differing usage
patterns with finer granularity of execution units. This leads to higher fluctuation of the load and faster de-
ployment patterns.
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IF64: Three of the interviews detail expectations on how their capacity planning will change with serverless
workloads becoming more prevalent. They expect impacts on the resource needs, such as the CPU to mem-
ory ratio and the allowed overcommission ratio. One also states that guaranteeing workload isolation is likely
to become significantly more difficult.

IF65: Currently, none of the interlocutors state having a special subprocess for serverless in their capacity
planning approach. They agree, however, that this might need to change in the future, as serverless work-
loads increase in popularity.

IF66: We observe two key issues hindering the specialization of (parts of) the capacity planning process to-
wards new workloads such as serverless. First, not yet enough information is available on this new workload
type and its behavior. This makes reasoning about its capacity needs more difficult, at least with conventional
capacity planning methods. Second, interlocutors report a lack of personnel to dedicate to research into ef-
fective and efficient hosting of this new workload type.

Category 3 - Q19: What-If Scenarios
IF67: This question was asked infrequently due to time constraints. One interlocutor answered that scenar-
ios they look at indirectly are customer-based scenarios (if a certain customer needs to be hosted) and new
hardware releases and acquirements (with new specifications and properties). See also IF101 for requested
what-if scenarios in tooling.

Category 4 - Q20: Regulatory Constraints
IF68: We gather a number of laws and standards relevant to the capacity planning process. We conclude
that regulatory constraints can definitely play a role in capacity planning.

IF69: Financial institutions tend to have strict standards for the capacity they acquire, such as a guaranteed
amount of fail-over capacity. This requires a capacity planning process (and recorded trail of that process)
that meets these standards.

IF70: We observe that privacy regulations such as the GDPR are only of limited concern in the capacity
planning process. One interlocutor managing a scientific infrastructure states that GDPR only affects the
placement and planning of privacy-critical applications on their platform, in the form of preventing public
cloud offloads for these specific applications. Another interlocutor mentions the storage of logs could be af-
fected by GDPR, as its introduction leads to less log storage demands and thus less storage capacity being
needed for that purpose.

IF71: In scientific infrastructures, we observe the competitive dialogue procedure playing a big role in
shaping the process. Publicly funded institutions need to shape their acquirement processes around a public
tender with competitive dialogue, which limits how and which hardware components can be selected.

IF72: Security standards can also steer the choice of certain technologies in the capacity planning process.
We observe one case where reported exploits in a container platform limit a quick deployment of that tech-
nology.

IF73: Special regulations that hold in the country of origin of a certain hardware vendor can also play a role.
We hear one example of a supercomputer manufacturer prohibiting its hardware being used by personnel
and users having the nationality of a certain set of countries set by the government of the manufacturer.

Category 4 - Q21: Financial and Technical Aspects
IF74: Overall, there are three most frequently cited financial and technical aspects across interviews. The
first is funding concerns, looking at the source of funds for future expansions and maintenance. The second
consists of special hardware requests from users. The third is the cost of new hardware, in line with global
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cost developments on the market.

IF75: For commercial infrastructures, there are a wide range of similarly frequent financial and technical
factors that are taken into consideration. Noteworthy are the timing and costs of lease contracts, which re-
ceive special attention, and historical sale and usage models for existing services.

IF76: For scientific infrastructures, the size of publicly funded grants is a factor that was mentioned in all
interviews. Special hardware requests are the second most frequent factor here, followed up by the total cost
of ownership (including electricity and cooling costs) and new hardware developments.

IF77: One interlocutor with commercial background made an observation that we believe resonates with
statements by other interlocutors, as well: The variables in the equation that are most relevant are the factors
around the hardware, not the cost of the hardware itself. Support contracts, lease contracts, personnel cost –
all these factors play a significant role.

IF78: In two interviews, we observe the point being made that their choice of technology is inferior to the
financial considerations they make. This underlines the importance of financial aspects in the process.

IF79: One interview raises an interesting relation, between financial investment and the energy consumed
by resources that can be acquired with this investment. It observes a trend in which constant investment can
lead to increasing energy costs, due to the falling cost of computational resources when compared by energy
usage.

Category 4 - Q22: Human Factors
IF80: Overall, we observe two human factors being mentioned most frequently: the need to account for
personnel capacity and time to install and set up hardware and software, and the usage patterns that users
exhibit when using the infrastructures (each of these is mentioned in 3 interviews).

IF81: Strongly present in the commercial sphere is an awareness of the need for training personnel, espe-
cially when switching technologies. In scientific infrastructures, the focus seems to rest more on end-users.
Their usage demands and their abilities (and training) are most frequently raised as factors in this category.

IF82: Listening to users and their demands has its limits, however, as one interlocutor points out. They
state that if administrators ask users if they would like more computing power, the answer will likely often be
“yes”.

IF83: One interlocutor points out that improper capacity planning can lead to stress in the team, because
it can lead to short term remedial actions becoming necessary, such as gathering left-over capacity from the
entire resource pool.

IF84: One interlocutor observes that personnel does not grow proportionally to the size of the managed
resource pool, but that specialization and having specialized staff for certain technologies is the deciding fac-
tor. We see this sentiment being shared in many of the interviews.

IF85: We conclude that the human factor plays a significant role in the process, for most surveyed infras-
tructures. 5 out of the 7 interviews place special emphasis on this. Hiring costs and personnel hours can add
up especially, as one interlocutor points out.

Category 4 - Q23: Multi-Datacenter or Local Level
IF86: We observe that the majority of surveyed clouds takes decisions on a multi-datacenter level. The
interlocutors that report single-datacenter decision making cite differences in architecture and requirements
between different sites as the main cause.
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IF87: One interlocutor points out that while the scope of decision making is multi-datacenter, the scope of
single decisions still focuses on single racks.

Category 4 - Q24: Production vs. Development
IF88: 3 out of the 7 interviews mention capacity planning differently for development and testing resources
than for production resources. For one of these interlocutors, this involves setting aside a dedicated set of
testing nodes per cluster. For another, this means splitting workloads into different datacenters. For a third,
this involves having lower redundancy on certain development machines.

IF89: We see a set of 2 other interviews claiming that every resource in their topology is considered produc-
tion, even if it is in fact used as a development or testing machine.

Category 4 - Q25: What-If Scenarios
IF90: This question was asked infrequently due to time constraints. One interlocutor names scenarios
where costs are conditioned against certain amounts of cooling, with different cooling types. Another inter-
locutor points out that their process currently does not contain any what-if scenarios, but believes that they
should in the future. This would create a better understanding of possible future outcomes, using factors
such as the timing of deployments or new, unknown workload patterns.

Category 5 - Q26: Ideal Process
IF91: An aspect shared by 5 out of the 7 interviews is the call for a more flexible, fast-paced process. Plan-
ners across academia and industry believe the current process they follow is not always able to adequately
keep up with the latest hardware trends, with special mention of accelerators. Most of them also see another
issue arising from this: procured hardware is often idle for a (relatively long) time before it is utilized. An ideal
process would address these two issues by adding hardware more flexibly, i.e. in smaller batches. This is not
straightforward, due to the economies of scale that sometimes only come into effect at larger batch sizes.

IF92: One interlocutor mentions that their ideal process would also require less time than it currently does.
The years of analysis and discussions should be reduced to months.

IF93: We observe two interlocutors mentioning a preference for smaller-scale decision-making, with more
attention to detail. One interlocutor mentions this with respect to topologies, having per-rack decisions re-
place multi-datacenter decisions. Another interlocutor mentions this with respect to the application domain,
separating different domains into different sub-processes due to the difficulty of capacity planning large het-
erogeneous environment.

IF94: One interlocutor expresses the desire for an increased focus in the process on training of users in
order to exploit the full potential of new hardware once it arrives.

Tooling
Especially from interlocutors with commercial backgrounds, we hear a wide variety of requests for better
tooling for their activities. We list them below, grouped into categories.

IF95: In 3 of the 7 interviews, we observe a demand for capacity planning tools, helping the practition-
ers rely less on their intuition. A key request is interactivity, with answers wanted within a maximum of two
weeks. Getting immediate answers during a meeting would be even better. One interlocutor describes this
as an “interactive dashboard”. One interlocutor also states that having the tool answer questions at different
levels of accuracy (increasing over time) would also beneficial, to facilitate quick estimates upfront and more
detailed analysis over a longer period, e.g. between two meetings.

IF96: We observe the requirement that tools should be affordable. Interlocutors state that high prices of
an existing tooling platform that might help this activity are mainly due to the many other features in that
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platform being packaged along with the capacity planning functionality needed.

IF97: Interlocutors also express the need for tools that help in addressing complexities in the process. Being
able to track the details of current capacity and being able to predict needed capacity would be a first step in
this direction.

IF98: One interlocutor managing a scientific infrastructure points out that any tool should for this activity
should support making heterogeneous decisions, which are more difficult to make but are yet still necessary,
especially in the academic domain. The request for heterogeneous capabilities is repeated by interlocutors
from commercial backgrounds.

IF99: Interlocutors managing commercial infrastructure call for tools that are aware of multi-disciplinary
aspects in the process. This includes lifecycle processes (such as aging and maintenance) and lease contracts.

IF100: One interlocutor also expresses the wish for workload trend analysis capabilities in any tool for this
activity.

IF101: Two interlocutors list a number of what-if scenarios that they would like to explore with a capacity
planning tool. We list the questions underlying these scenarios here, in no particular order.

1. Deciding how much more capacity is needed after certain decisions are taken, given projected CPU
usage, memory commission, and overbooking ratios.

2. Seeing the impact different new kinds of workloads have before they become common.

3. Deciding when to buy new hardware.

4. Modeling fail-over scenarios.

5. Deciding whether special user requests can be granted before responding to users.

6. Choosing the best lease duration.

7. Deciding in which cluster to place new workloads.

8. Choosing the best overlap duration between acquiring new hardware and decommissioning old hard-
ware.

Category 5 - Q27: Other Processes Linked With Capacity Planning
IF102: One interlocutor sees no direct link between capacity planning and other processes, although an in-
direct link is present. Capacity planning, according to the interlocutor, tends to be on the end of the pipeline:
only after acquiring new projects is the challenge of finding capacity for these projects considered.

IF103: One interlocutor sees a close relationship between the process and resource management strategies
and research. The live management of the infrastructure can have significant impact on the needed capacity,
just as the capacity can have consequences for the management strategies that should be employed. Migra-
tion and consolidation approaches need special attention here.

Category 5 - Q28: Other Aspects Shared
IF104: One interlocutor states that, no matter what one plans, the future always looks (slightly) differently.
This does eliminate the need for planning, but underlines the need to be flexible and plan for unforeseen
changes down the road.

IF105: One interlocutor (from a scientific background) points out the difference of speed in capacity plan-
ning processes between Europe and the United States. They believe that infrastructures in the U.S. have a
faster pace of capacity planning than comparable infrastructures in Europe. They find this disadvantageous,
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due to new hardware improvements being slower to arrive.

IF106: Two interlocutors observe that it is easier to obtain grants for a proposal of an infrastructure address-
ing one coherent need or project. The surveyed scientific infrastructure tends to serve a far more heteroge-
neous set of use cases, which makes acquiring sufficient funds more difficult.

4.5. Discussion
We now summarize the contributions of this chapter and discuss possible threats to their validity.

4.5.1. Summary
In this chapter, we survey a set of experts with diverse background, using a flexible data collection method.
Our analysis of the large amount of raw interview transcript data yields novel results on the capacity planning
practice in cloud datacenters. We are the first to map the capacity planning practice in datacenters, as it
is experienced first-hand by practitioners. Among many other observations, we find there is a significant
amount of guesswork within the capacity planning process, and that a flexible, comprehensive, and realistic
tool is lacking.

4.5.2. Threats to Validity
We discuss potential threats to internal validity, construct validity, and external validity.

Internal Validity
A threat to internal validity we see is introduced by the ambiguity and subjectivity of interpretation of source
transcripts. Confidentiality limits us from sharing these source transcripts. The majority of statements made
are however of factual nature, with little room for interpretation. To minimize the possibility of the few, more
general statements being misaggregated, the process used is meticulously described and the full findings are
objectively presented. We take special care to objectively formulate these findings and refrain from adding
personal interpretations, unless specifically marked as such.

Construct Validity
An interview study such as ours might have different results than a study conducted while present at capacity
planning meetings, accompanying a capacity planner from start to finish. This is a potential threat to con-
struct validity, since what capacity planners state might be different from their actual practice. However, we
see several factors limiting this threat. First, we see that many of the observations we make are corroborated
by multiple accounts, from interlocutors who were not aware of the identities of the other interlocutors. This
reduces the risk of taking incorrect conclusions from the omissions of individual accounts. Second, our script
and follow-ups include several questions which approach different parts of the process from different angle,
increasing our coverage of the actual real-world practice.

External Validity
The limited sample size of our study presents a threat to the external validity of our interview findings (the
degree to which results hold outside of the study). In general, this threat is difficult to address, due to the
labor-intensive transcription and analysis conducted already in this study: For the existing sample set, we
have already spent many months and the data collected alone counts over 35,000 words in size. This massive
collection has no parallel in the community thus far. As Table 4.1 shows, our sample of interlocutors is also
highly diverse, including multiple countries, infrastructure backgrounds, and roles.

Furthermore, the process of open interviews simply has a different methodology [32] than the process
of regular, multiple-choice surveys. It is also the only good instrument to collect new requirements, which
are not all foreseen in advance. Follow-up studies could build on the results of our study by conducting a
textual survey with a wider user base, harnessing our exploratory results and requiring less time investment
per interlocutor.





5
Design of Capelin: A Capacity Planning

System for Cloud Infrastructure

In this chapter, we address the second research question (RQ2). We synthesize requirements for Capelin,
design an abstraction for practitioners to formulate capacity problems (addressing RQ2.1), and design a ca-
pacity planning approach for cloud infrastructure meeting the requirements (addressing RQ2.2).

5.1. Overview
The capacity planning practice lacks a flexible decision support tool that can reduce the complexity and vol-
ume of data coming into the decision process. We propose Capelin, a scenario-based capacity planning sys-
tem that helps practitioners understand the impact of alternatives. Underpinning this process, we propose
as core abstraction the portfolio of capacity planning scenarios.

The remainder of this chapter is structured as follows. We synthesize requirements for Capelin in Sec-
tion 5.2. We then propose a design for the Capelin architecture in Section 5.3. In Section 5.4 we discuss the
core abstraction forming the foundation for Capelin’s architecture. Finally, we summarize our contributions
of this chapter and discuss threats to validity in Section 5.5.

5.2. Requirements Analysis
In this section, from the findings of Chapter 4, we synthesize the core functional and non-functional require-
ments addressed by Capelin. This activity falls in stage (1) of the AtLarge design process [61]. Instead of aim-
ing for full automation–a future objective that is likely far off for the field of capacity planning–the emphasis
here is on human-in-the-loop decision support [60, P2].

5.2.1. Functional Requirements
(FR1) Model a cloud datacenter environment (see O2, O3, O7): The system should enable the user to model

the datacenter topology and virtualized workloads introduced in Section 2.1. Without FR1, Capelin
could not answer arbitrary what-if scenario queries (FR3).

(FR2) Enable expression of what-if scenarios (see O2, O10): The system should enable the user to express
what-if scenarios concerning workload, topology, and phenomena. For each of these three domains,
the system should provide the user with a range of parameters to express the hypothetical system state.
The system should then execute the specified what-if scenario(s) and produce and justify a set of user-
selected QoS metrics. Without FR2, Capelin could not provide insight into hypothetical future scenarios
that later might adversely impact the user’s services.

(FR3) Enable expression of QoS requirements (see O2, O5, O9): The system should enable the user to ex-
press QoS requirements, in the form of SLAs, consisting of several SLOs. These requirements are for-
mulated as thresholds or ranges of acceptable values for a set of metrics selected by the user from the
metrics offered by the system. Without FR3, Capelin could not differentiate between acceptable and
unacceptable scenario states and thus provide less useful suggestions (FR5).
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(FR4) Suggest a portfolio of what-if scenarios (see O2, O10): The system should suggest a portfolio of what-
if scenarios to the user based on the selected workloads, the given topology, and specified QoS require-
ments. This significantly reduces the user’s responsibility to identify the most applicable scenarios.
Without FR4, Capelin would rely on the user to be aware of the full capabilities of the scenario model-
ing capabilities of the tool and to identify the most important scenarios upfront.

(FR5) Provide and explain a capacity plan (see O2, O9): The system should provide a capacity plan sugges-
tion, optimizing for minimal capacity within acceptable QoS levels, as specified by FR3. The system
should provide a brief explanation and visualize data sources it used to derive the given suggestion.
Without FR5, Capelin would not be able to proactively advise the user. If the suggestions were to be
provided without explanation, the suggestions could be less likely to be implemented by practitioners.

(FR6) Model workload behavior (see O4, O9): The system should be able to model workload behavior, given
a limited training set of past behavior. It should recognize patterns and trends in this behavior at dif-
ferent timescales. As an outcome, Capelin should also support synthesizing derivative workloads and
forecast future workload behavior. Without FR6, the queries that users could submit to the system
would be limited to past, already recorded workloads, severely limiting the forward-looking activity of
capacity planning.

(FR7) Provide a library of reusable components (see O8, O9): The system should provide a prebuilt library
of cloud components, topologies, and cloud scenarios to the user. This enables users to quickly query
the system on demand, without having to spend large manual effort upfront. This library should consist
of commonly used items that can be configured to reasonable extend and be combined with each other
and manually added items. Without FR7, Capelin is less likely to be used frequently, since the barrier
to creating scenarios and getting capacity plan suggestions could otherwise be too high.

5.2.2. Non-Functional Requirements
(NFR1) Provide fast initial coarse estimate and precise same-day estimate (see O1): The system should gen-

erally be prompt in answering what-if queries (FR2) and providing capacity planning suggestions (FR6)
to the user. However, such speed of response would come at a cost of accuracy. Therefore, the system
should provide a initial coarse estimate within seconds to (at most) minutes, with a self-assessed de-
gree of confidence in this estimate. The system should then provide a same-day precise estimate with
increased degree of confidence. Without NFR1, Capelin could not easily be used in dynamic meeting-
room settings, where rapid results and interactivity are crucial aspects of a decision support system.

(NFR2) Intuitive what-if portfolio design and analysis inspection (see O8, O9, O10): The interface should be
designed in a way that facilitates intuitive design of scenario portfolios and scenario analysis. As a
decision support system, this layer of human-computer interaction is important to optimize. With-
out NFR2, Capelin is less likely to be used by practitioners, limiting its impact in capacity planning
decision processes.

5.2.3. Evolution of Requirements
The requirement analysis process we follow is iterative [61], meaning that our requirements have evolved with
our understanding of the problem. We illustrate this here by giving examples of how and why we adapted key
requirements over time.

For requirement FR2 (expression of what-if scenarios), we first only considered workload and topology
as the ingredients of a what-if scenario. While these are crucial ingredients, interviews (see O4 in §4.3) and
internal discussions show that the capacity planning problem is intricately linked with far more aspects of a
datacenter, most importantly its dynamic operation. To capture this dynamic component and the phenom-
ena that arise here, we add the notion of phenomena to each what-if scenario. This allows us to model the
current situation and candidate scenarios with increased realism.

Requirement FR6 (modeling workload behavior) first exclusively addressed the forecasting of future work-
load behavior based on detected historical patterns. We realized that workload behavior can be modeled and
synthesized in more ways, such as synthesis of different workloads or manual specification of load levels. Re-
stricting the scope to forecasting also requires a firm foundation of historical data. Such data is not always
readily available, especially for emerging workload types and changing business requirements. These consid-
erations led us to broaden the scope of this functional requirement to these other mechanisms for workload
modeling and synthesis.
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Figure 5.1: An overview of the architecture of Capelin. Capelin is provided information on the current state of the infrastructure and
assists the capacity planner in making capacity planning decisions. Labels indicate the order of traversal by the capacity planner (e.g.,

the first step is to use component A , the scenario portfolio builder).

Non-functional requirement NFR1 (fast initial coarse estimate response) first only specified response time
for FR6 (capacity plan suggestion). Automatic capacity plan suggestion is indeed a time-intensive operation
and merits this constraint. However, while reflecting the significant efforts undertaken in Chapter 6 to reduce
the runtime of the simulator, we realize that FR2 (answering what-if queries) also requires a prompt (if less
accurate) response. If Capelin is to be used in meetings as an interactive question-answering tool, it needs to
be quick in responding, even if its outputs may not yet be completely final. For this reason, we add FR2 to the
list of functionality that needs a fast initial response.

5.3. Overview of the Capelin Architecture
Figure 5.1 depicts an overview of the Capelin architecture. Capelin extends OpenDC, an open-source, discrete
event simulator with multiple years of development and operation [59]. This architecture is designed itera-
tively, following the AtLarge design process [61]. Stages (3) (bootstrapping the creative process) and (4) (high-
level and low-level design) of that process are particularly applicable, but (2) (understanding alternatives) is
also involved in the deliberations made.

We now discuss each main component of the Capelin architecture, taking the perspective of a capacity
planner. We outline the abstraction underpinning this architecture, the capacity planning portfolios, in Sec-
tion 5.4.

5.3.1. The Capelin Process
The frontend and backend of Capelin are embedded in OpenDC. This enables Capelin to leverage the sim-
ulator’s existing platform for datacenter modeling and allows for inter-operability with other tools as they
become part of the simulator’s ecosystem. Making Capelin a standalone tool may give greater independence
of design and evolution, unconstrained by the parent platform, but would require greater effort to continue
evolving with the state-of-the-art in datacenter modeling.

The capacity planning practitioner interacts with the frontend of Capelin, starting with the Scenario Port-
folio Builder (component A in Figure 5.1), addressing FR2 and FR3. This component allows the user to visu-
ally specify portfolios of scenarios, setting workload, topology, and phenomena for each scenario. The first
scenario specified in each portfolio is considered to be the base scenario, forming the baseline for all other
scenarios. The builder also makes the construction of SLO constraints on a portfolio-level possible (FR3), en-
abling users to compare scenarios on real-world terms fitting the targets existing within their infrastructure.

The aforementioned scenarios can be composed using pre-built components from the Library of Com-
ponents ( B ), addressing FR7. This library contains workload, topology, and operational building blocks, fa-
cilitating fast and intuitive composition of scenarios. Such a library is pre-populated by the system with a
set of industry-standard components (using for example the Open Compute Project1 as starting point), but
can be augmented by the user with platform-specific components. The choice to also allow user-populated

1https://www.opencompute.org/

https://www.opencompute.org/
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components benefits ease-of-use: If practitioners are to include this in their frequent practice, any obstacles
to quick interactive querying should be minimized.

If the (human) planner wants to modify historical workload behavior or anticipate future trends, the
Workload Modeler ( C ) can model workload traces and can synthesize custom loads (FR6). This compo-
nent provides a set of pre-defined operations on existing workloads that allow for straight-forward workload
modeling with little knowledge needed about the underlying mechanisms.

The planner might also not always be aware of the full range of possible scenarios during the planning
phase. The Scenario Portfolio Generator ( D ) addresses this by suggesting customized scenarios extending
the given base-scenario (FR4, NFR2). It augments the builder with suggested, common scenarios relevant
to that situation. The generation and selection of scenarios in this component can be informed by the base
scenario exclusively, or even the entire set of existing scenarios in the portfolio. A set of fixed suggestions
(e.g., large-scale failures, workload stress tests) combined with custom, tailored suggestions (e.g., topology
expansions, workload fluctuations) can provide a solid base of reliable but also relevant suggestions.

The portfolios built in the builder can be explored and evaluated in the Scenario Portfolio Evaluator ( E ).
Graphical overviews of key selected metrics across scenarios, augmented with SLOs markers, give users quick
access to the outcomes of the simulation of built scenarios. Possible automated curation of the full results,
showing the most relevant or interesting results first, could further reduce the time needed for practitioners
to gather the desired insights from their overview. A key focus here is to refrain from overwhelming the user
with the deluge of data that capacity planners already face in the conventional capacity planning process,
but to visualize and curate a custom overview that reduces the presented information to crucial insights. Not
properly ensuring this can actually lead to an increase in information the capacity planner has to deal with,
possibly with adverse impact.

Finally, based on the results from this evaluation, the Capacity Plan Generator ( F ) suggests plans to the
planner (FR5). Such suggested plans primarily consist of a topology meeting SLOs and not dominated by
other topologies on the spectrum of performance vs. cost-of-ownership. To constrain the domain that a
design space search approach would need to explore here, the scenarios in the selected portfolio could be
taken as boundary points in terms of the allowed cost. Between these boundaries, the capacity plan generator
could search for solutions meeting requirements while minimizing cost (both upfront and in operation).

In earlier designs, this last component was combined with the scenario portfolio generator, since at first
glance, both provide similar functionality (generation of capacity plans). One might even consider the capac-
ity plan generator to address a subset of the functionality of the scenario portfolio generator, since it “only”
generates candidate topologies. However, there are notable differences that motivated splitting the com-
ponents into two. First, the aims differ: the scenario portfolio generator aims to provide large coverage of
scenarios, while the capacity plan generator aims to find the best scenario(s) in the design space. Second,
the input data differs: The scenario portfolio generator takes in only the existing portfolio definition, while
the capacity plan generator also considers the performance that different scenarios have exhibited in simula-
tion. Given these two considerations, the subset relation is no longer satisfied and their responsibilities differ,
leading to the decision to split the two into their own components.

5.3.2. The OpenDC Simulator
OpenDC is the simulation platform backing Capelin, enabling the capacity planner to model (FR1) and ex-
periment (FR2) with the cloud infrastructure, interactively. The software stack of this platform is composed
of a web app frontend, a web server backend, a database, and a discrete-event simulator. This kind of sim-
ulator offers a good trade-off between accuracy and performance, especially at the scale of datacenters and
long-term workloads. In contrast, cycle-accurate emulation or real-time simulators would be too slow.

The Frontend ( G ) serves as the user portal through which stakeholders of an infrastructure can interact
with its models and experiments. The Backend ( H ) responds to frontend requests, acting as intermediary
and business-logic between frontend, and database and simulator. The Database ( I ) manages the state,
including topology models, historical data, simulation configurations, and simulation results. It receives in-
puts from the real-world topology and monitoring service, in the form of workload traces. The Simulator ( J )
evaluates the configurations stored in the database and reports the simulation results back to the database.

5.3.3. Infrastructure
The cloud infrastructure is at the foundation of this architecture, forming the system to be managed and
planned. We consider three components within this infrastructure: The workload ( K ) submitted by users
(e.g., VMs), the (logical or physical) resource topology ( L ), and a monitoring service ( M ). The infrastructure
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Figure 5.2: Abstraction of a capacity planning portfolio, consisting of a base scenario, a number of candidate scenarios, and comparison
targets.

as a whole follows the industry-standard system model described in Section 2.1.
Monitoring services in particular can be provided by a wide range of existing vendor products. VMware’s

vSphere tool can provide monitoring insights for the logical and physical layers of the topology2. While this
is a tool operating both on physical and logical layers, some tools also focus only on one: IBM’s cloud infras-
tructure monitoring and reporting tool3 reports on the physical health of monitored machines. Our system
can be fed many of the output metrics of these different tools, as demonstrated in Chapter 6.

5.4. Portfolio Abstraction for Capacity Planning
In this section, we propose a new abstraction, which organizes multiple scenarios into a portfolio (see Fig-
ure 5.2). Each portfolio includes a base scenario, a set of candidate scenarios given by the user and/or sug-
gested by Capelin, and a set of targets to compare scenarios. In contrast, most capacity planning approaches
in published literature are tailored towards a single scenario—a single potential hardware expansion, a single
workload type, one type of service quality metrics. We believe that this approach does not adequately cover
the complexities that capacity planners currently face. The multi-disciplinary and multi-dimensional nature
of capacity planning call for a novel approach, based on multiple scenarios.

5.4.1. Scenarios
A scenario represents a point in the capacity planning (datacenter design) space to explore. It consists of a
combination of workload, topology, and a set of operational phenomena. Phenomena can include correlated
failures [41], performance variability [74, 127], security breaches [29], etc. Considering such phenomena
allows scenarios to more accurately capture the real-world operations and hardships related to them. Such
phenomena are often hard to predict intuitively during capacity planning, due to emergent behavior that can
arise at scale.

The baseline for comparison in a portfolio is the base scenario. It represents the status quo of the in-
frastructure or, when planning infrastructure from scratch, it consists of very simple base workloads and
topologies. The other scenarios in a portfolio, called candidate scenarios, represent changes to the configu-
ration that the capacity planner could be interested in. Dividing scenarios into these two categories ensures
that any comparative insights that the tool provides are meaningful within the context of the current archi-
tecture. It does, however, also require the capacity planner to always specify such a base scenario, even in
the case of an infrastructure project starting from scratch. Nevertheless, even a simple baseline can serve as
a good comparative baseline for other scenarios, and the benefits of assuming such a baseline outweigh the
potential drawbacks of always needing to specify a certain base case.

We define changes to configurations to be effected in one of the following four dimensions:

2https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.monitoring.doc/GUID-A8B06BE0-E5FC-435C
-B12F-A31618B21E2C.html

3https://www.ibm.com/nl-en/cloud/infrastructure/monitoring

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.monitoring.doc/GUID-A8B06BE0-E5FC-435C-B12F-A31618B21E2C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.monitoring.doc/GUID-A8B06BE0-E5FC-435C-B12F-A31618B21E2C.html
https://www.ibm.com/nl-en/cloud/infrastructure/monitoring
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(1) Variety: qualitative changes to the workload or topology (e.g., different arrival patterns, or resources
with more capacity)

(2) Volume: quantitative changes to the workload or topology (e.g., more workloads or more resources)

(3) Velocity: speed-related changes to workload or topology (e.g., faster resources)

(4) Vicissitude: combining (1)–(3) over time

This approach to derive candidate scenarios is systematic and addresses the core need of FR2: a structured
way of specifying what-if scenarios. Although abstract, it allows approaching many of the practical problems
discussed by capacity planners. For example, an ongoing discussion is horizontal scaling (scale-out) vs. verti-
cal (scale-up) [117]. Horizontal scaling, which is done by adding clusters and commodity machines, contrasts
to vertical scaling, which is done by acquiring more expensive, “beefy” machines. Horizontal scaling is typi-
cally cheaper for the same performance, and offers a broader failure-target (except for cluster-level failures).
Yet, vertical scaling could lower operational costs, due to fewer per-machine licenses, fewer switch-ports for
networking, and smaller floor-space due to fewer racks. Experiment 6.3.5 explores this dichotomy.

One particular form of candidate scenario that Capelin could generate and thus help practitioners ex-
plore and understand is an adversarial scenario. Adversarial incidents such as sudden significant spikes in
resource demand, catastrophic cascading failures, and purposefully orchestrated usage patterns to fool auto-
mated anomaly detection mechanisms [34] can severely impact datacenter operations. Adding automatically
generated adversarial scenarios to Capelin’s Scenario Portfolio Generator could help practitioners prepare for
these cases, which do happen in practice [136].

5.4.2. Targets
A portfolio also has a set of targets that prescribe on what grounds the different scenarios should be com-
pared. Targets include the metrics that the practitioner is interested in and their desired granularity, along
with relevant SLOs [94]. Following the taxonomy defined by the performance organization SPEC [51], we sup-
port both system-provider metrics (such as operational risk and resource utilization) and organization metrics
(such as SLO violation rates and performance variability). This addresses requirement FR3 by enabling the
user express QoS targets and ultimately helps in addressing FR5 (providing a meaningful capacity plan).

The targets also include a time range over which these metrics should be recorded and compared. This
time range is at least as long as the base workload trace requires and can extend beyond it to include future
workload behaviour predictions.

To address NFR1, the granularity of targeted metrics should also allow for a fast initial coarse estimate and
a more precise later estimate. This could be offered through of a series of runs, each increasing the accuracy
of and confidence in the results.

5.5. Discussion
We now summarize the contributions of this chapter and discuss possible threats to their validity.

5.5.1. Summary
We propose a novel capacity planning decision support system that answers RQ2 by addressing key findings
from our community interview study. Capelin is embedded in the OpenDC platform, leveraging its existing
feature set and extending it in key areas. Our tool is based on a new abstraction for capacity planning: port-
folios of scenarios. Combined with the auto-generating capabilities of Capelin, this abstraction allows for
structured discourse and evaluation of capacity decisions.

5.5.2. Threats to Validity
We discuss potential threats to internal validity, construct validity, and external validity.
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Internal Validity
A key decision early in the design process is to focus on what-if scenarios as the main abstraction for this
process. While this claim is supported by evidence gathered from several interviews (discussed in Section 4.3,
O10), this choice is still a potential threat to internal validity. We claim that a what-if scenario structure can
help practitioners, but this claim needs to be verified in Chapter 6, in discussion with stakeholders.

Construct Validity
A potential threat to construct validity is whether the designed tool addresses the requirements. To minimize
this threat, we link back from each feature to the requirement that inspired it and explain how the feature or
component addresses that requirement. Nevertheless, full validation of a design with respect to its require-
ments is difficult without an implementation, which will be discussed in Chapter 6.

External Validity
The main threat to the external validity of this system design is whether an implementation of it can success-
fully be applied in context. We demonstrate an implementation in Chapter 6 and gather initial feedback from
key stakeholders. This provides evidence towards a broader, external applicability of the design.





6
Evaluation of Capelin, through

Experiments with a Real-World Prototype

In this chapter, we evaluate Capelin in real-world scenarios, addressing research question RQ3. We present
our prototype implementation of Capelin (RQ3.1) and evaluate it with a set of trace-based experiments (RQ3.2).

6.1. Overview
We implement a working prototype of Capelin, realising key features of the design. This process begins with
extending OpenDC’s modeling capabilities to cover infrastructures and workloads common in the state-of-
the-art. We then discuss the implementation of dedicated capacity planning functionality, presenting de-
signed algorithms and policies as well as interaction models. We describe the details of our prototype in
Section 6.2. Given the implemented prototype, we explore how Capelin can be used to answer capacity plan-
ning questions. We conduct extensive experiments using Capelin and data derived from operational traces
collected long-term from private and public cloud datacenters. Our experiments explore key trade-off port-
folios common to the capacity planning domain, exploring alternative topologies, diverse workloads, and
emerging operational phenomena. We present our experimental design and results in Section 6.3. Finally, we
summarize our contributions and discuss their validity in Section 6.4.

Our implementation has resulted in a working prototype, tested with real-world scenarios and workloads.
It features a low-barrier user interface and provides reproducible results. The tool can also be used in live
meetings, due to its high performance simulation capabilities providing answers to practitioners in minutes
even in realistic, complex situations. We publish Capelin as FOSS, for the community to use. Discussions
with partners in academia and industry are promising.

Our experiments show interesting findings, supporting our claim for a need for data-based capacity plan-
ning and the validity of our design. The results of our experiments are externally validated. From the com-
putational power demands and time requirements needed to run our experiments, we conclude that these
simulation-based experiments are much more environment-friendly than real-world experiments, differing
by several orders of magnitude in time and resource cost.

6.2. Implementation of a Software Prototype
In this section, we describe our implementation of a working prototype for Capelin. We begin with presenting
an overview of extensions made to the existing simulation model of OpenDC (§6.2.1). We address different
aspects of this model in subsequent sections, discussing workload (§6.2.2), topology (§6.2.3), allocation poli-
cies (§6.2.4), operational phenomena (§6.2.5), and metrics (§6.2.6). We then discuss the implementation of
Capelin’s capacity planning functionality (§6.2.7). Finally, we describe the public release of our software arti-
facts for Capelin and refer to efforts designed and used to test their validity.

6.2.1. Extensions to the OpenDC Model
We extend the open-source OpenDC simulation platform [59] with capabilities for modeling and simulating
the virtualized workloads prevalent in modern clouds. We model the CPU and memory usage of each VM

59
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Algorithm 1 Sampling procedure for selecting VMs in a trace based on a desired total load fraction.

1: procedure SAMPLETRACE(vms, fraction, totalLoad)
2: selected ←; . The set of selected VMs
3: load ← 0 . Current total load (FLOP)
4: while |vms| > 0 do
5: vm ← Randomly removed element from vms
6: vmLoad ← Total load of vm
7: if load+vmLoad

totalLoad > fraction then
8: return selected
9: end if

10: load ← load+vmLoad
11: selected ← selected∪ {vm}
12: end while
13: return selected
14: end procedure

Algorithm 2 Sampling procedure for combining different traces A and B , at the total load of A.

1: procedure SAMPLEMULTIPLETRACES(vmsA, fractionA, vmsB, fractionB)
2: Ensure the traces of vmsA and vmsA have the same duration
3: totalLoad ← Total CPU load of the trace A
4: vmsASelected ← SAMPLETRACE(vms A, f r act i on A, tot alLoad)
5: vmsBSelected ← SAMPLETRACE(vmsB , f r act i onB , tot alLoad)
6: return vmsASelected∪vmsBSelected
7: end procedure

along with hypervisors deployed on each managed node. Each hypervisor implements a fair-share schedul-
ing model for VMs, granting each VM at least a fair share of the available CPU capacity, but also allowing
them to claim idle capacity of other VMs. The scheduler permits overprovisioning of CPU resources, but not of
memory resources, as is common in industry practice. We also model a workload and resource manager that
controls the deployed hypervisors and decides based on configurable allocation policies to which hypervisor
to allocate a submitted VM.

6.2.2. Workload Modeling
The number of virtual workload traces that are available to the general public are limited. Modeling available
workloads allows us to synthesize different workloads and greatly increase the set of workloads available to
experimentation. It can even allow practitioners to create workloads from existing data that may resemble
future workloads of a cloud, to investigate possible future scenarios.

Modeling and synthesizing such workloads is typically a task reserved for experts, involving manual ef-
fort and domain knowledge. Capelin features functionality for practitioners and novices alike to take existing
traces and synthesize new traces from them with minimal effort. By pre-defining a set of strategies for work-
load modeling that can be generally applied, Capelin makes the process simpler and much more accessible.

One such strategy that we support is to sample VMs from existing traces at different target loads, resulting
in workloads with a fraction of the original load. To sample, Capelin randomly takes VMs from the full trace
and adds their entire load, until the resulting workload has enough load. We illustrate this in pseudocode, in
Algorithm 1.

We also implement a strategy for two traces to be combined. This allows practitioners to examine how
different workloads would interact when executed by the same datacenter. Two traces with equal duration,
denoted A and B here, are combined by sampling each set of VMs at given fractions of their load, using the
previously described sampling procedure. The total load of the trace A is used as the total load to which the
two fractions are applied. The full procedure is listed in Algorithm 2.

Finally, we allow practitioners to manipulate the composition of a workload consisting of multiple dif-
ferent workload types. Since workload traces are scarce, up- or down-sampling certain VM types in a trace
can help investigate what the impact of more or less VMs of a certain type would be on certain metrics. We
implement this for VM traces containing a certain set of VMs hosting HPC workloads. We facilitate two forms
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Algorithm 3 Sampling procedure for increasing or reducing the fraction of HPC VMs in a trace consisting of
both HPC and non-HPC VMs.

1: procedure SAMPLEHPCINTRACE(vmsHPC, vmsNonHPC, hpcFraction, sampleOnLoad)
2: totalLoad ← total original load of entire trace
3: if sampleOnLoad then . Sample on load
4: load ← 0 . Current total load (FLOP)
5: selected ←; . The set of selected VMs
6: while load < totalLoad∗hpcFraction do
7: vm ← Randomly drawn from vmsHPC .Without rep., until all drawn, then with rep.
8: vmLoad ← Total load of vm
9: if load+vmLoad

totalLoad∗hpcFraction > 1 then
10: break
11: end if
12: load ← load+vmLoad
13: selected ← selected∪ {vm}
14: end while
15: while load < 1 do
16: vm ← Randomly drawn from vmsNonHPC .Without rep., until all drawn, then with rep.
17: vmLoad ← Total load of vm
18: if load+vmLoad

totalLoad > 1 then
19: return selected
20: end if
21: load ← load+vmLoad
22: selected ← selected∪ {vm}
23: end while
24: return selected
25: else . Sample on VM count
26: totalNumVMs ←|vmsHPC|+ |vmsNonHPC|
27: vmsHPCSampled ← (hpcFraction∗ totalNumVMs) of elements taken from vmsHPC
28: vmsNonHPCSampled ← ((1−hpcFraction)∗ totalNumVMs) of elements taken from vmsNonHPC
29: return vmsHPCSampled∪vmsNonHPCSampled
30: end if
31: end procedure

of sampling: by load and by count. To sample by load means to sample for a certain total load, regardless of
the number of VMs (as is done in the previous sampling methods). To sample by count means to sample for
a certain VM count, regardless of the total load this carries with it. We illustrate this process in pseudocode,
in Algorithm 3.

6.2.3. Topology Definition
OpenDC enables practitioners to define a datacenter topology in an interactive, visual way. Such a topology
consists of clusters, each consisting of multiple racks, which in turn consist of a number of machines. Each
machine has a set of computational units (CPUs and GPUs) as well as memory and storage units. For each of
these units, detailed specifications are provided. The user interface makes the definition of such topologies
accessible to users of many different skill levels, from the enthusiast to the skilled datacenter engineer.

Before Capelin’s extensions, the simulator only allowed for one topology to be defined per project. Topolo-
gies also could also only be defined through user interface interactions. With Capelin, we extend OpenDC
with the capability to define multiple different topologies within the same project. This allows for com-
parative studies with multiple topologies. Figure 6.1 features the visual definition of multiple topologies,
in OpenDC with Capelin’s extensions.

We also enable the textual definition of topologies. To streamline the definition of topologies, we redefine
the way topologies are specified and stored in the platform. We denormalize topology structures towards
single-object topologies in v2.x, meaning that one topology is now represented as one object in the database,
as opposed to a linked tree of many smaller objects spread across tables. The base format we use here is
JSON, an industry-standard for text encoding of objects. This choice of format allows for textual definition
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Figure 6.1: Definition of multiple topologies in the OpenDC interface, as extended by Capelin.

of topologies and straightforward duplication of already existing topologies (such as “export to clipboard”
functionality), reducing the barrier to sharing and adapting topologies. This leads to significant gains in
portability and flexibility, both for Capelin and the simulator platform as a whole.

6.2.4. Allocation Policies
The allocation policy is a key component of live infrastructure management. When a new VM is submitted, a
machine needs to be selected to allocate this VM to. Capelin supports several policies that describe how they
should be placed:

(1) The mem policy: prioritizing by available memory, meaning that the resource with most available mem-
ory is chosen.

(2) The core-mem policy: prioritizing by available memory per CPU core, ranking all resources by this ratio.

(3) The active-servers policy: prioritizing by number of active VMs already on this machine.

(4) The replay policy: prioritizing by mimicking the original placement strategy of a trace, if this place-
ment data is available.

(5) The random policy: randomly placing VMs on hosts (with the randomness seeded for reproducibility).

For each of the comparative policies (mem, core-mem, and active-servers) we use two variants. The
Worst-Fit variant selects the resource with the most available resource of that policy. The Best-Fit varient is
the inverse of this previous variant, thus selecting the least available resource, labeled as -inv.

6.2.5. Operational Phenomena
Each capacity planning scenario can include operational phenomena. In these experiments, we consider two
such phenomena, (1) performance variability caused by performance interference between collocated VMs,
and (2) correlated cluster failures. Both are enabled, unless otherwise mentioned.



6.2. Implementation of a Software Prototype 63

Table 6.1: Parameters for the lognormal failure model we use in experiments. We use the normal logarithm of each value.

Parameter [Unit] Scale Shape

Inter-arrival time [hour] 24×7 2.801
Duration [minute] 60 60×8
Group size [machine-count] 2 1

We assume a common model [74, 127] of performance interference, with a score from 0 to 1 for a given
set of collocated workloads, with 0 indicating full interference between VMs contending for the same CPU,
and 1 indicating non-interfering VMs. We derive the value from the CPU Ready fraction of a VM time-slice:
the fraction of time a VM is ready to use the CPU but is not able to, due to other VMs occupying it. We mine
the placement data of all VMs running on the base topology and collect the set of collocated workloads along
with their mean score, defined as the mean CPU ready time fraction subtracted from 1, conditioned by the
total host CPU load at that time, rounded to one decimal. At simulation time, this score is then activated if a
VMs is collocated with at least one of the others in the recorded set and the total load level on the system is
at least the recorded load. The score is then applied to each collocated VMs with probability 1/N , where N
is the number of collocated VMs, by multiplying its requested CPU cycles with the score and granting it this
(potentially lower) amount of CPU time.

The second phenomenon we model are cluster failures, which are based on a common model for space-
correlated failures [41] where a failure may trigger more failures within a short time span; these failures form
a group. We consider in this work only hardware failures that crash machines (full-stop failures), with subse-
quent recovery after some duration. We use a lognormal model with parameters for failure inter-arrival time,
group size, and duration, as listed in Table 6.1. The failure duration is further restricted by a minimum of 15
minutes, since faster recoveries and reboots at the physical level are rare. The choice of parameter values is
inspired by GRID’5000 [41] (public trace also available [66]) and Microsoft Philly [67], scaled to a commercial
mid-tier cloud’s topology, in discussion with experts.

6.2.6. Metrics
We would like to ensure that practitioners get a complete picture of the datacenter. This means having many,
diverse perspectives and views on the same issue. Doing so allows practitioners to inspect involved trade-offs
and phenomena, which are often multi-metric and require context provided by many different metrics to be
visible [54]. To address this, Capelin supports a wide array of metrics, listed below.

(1) The total requested CPU cycles (in MFLOPs) of all VMs. A VM requests a certain amount of cycles during
each time slice. This metric is the summation of all of these requests over all slices, for all VMs.

(2) The total granted CPU cycles (in MFLOPs) of all VMs. Sometimes, when requested computational ca-
pacity exceeds existing capacity, not all requested cycles can be granted. This metric is the summation
of all actually granted cycles over all slices, for all VMs.

(3) The total overcommitted CPU cycles (in MFLOPs) of all VMs, defined as the sum of CPU cycles that were
requested but not granted. This difference is summed over all slices of all VMs. This metric serves as
an indicator of the CPU wait time a VM would experience when run in a real-world setting: higher
overcommission means that VMs have to wait longer to be serviced on the CPU.

(4) The total interfered CPU cycles (in MFLOPs) of all VMs, defined as the sum of CPU cycles that were re-
quested but could not be granted due to performance interference. This metric will always be lower or
equal than the overcommitted cycles, since interference is one of the factors contributing to overcom-
mitted cycles.

(5) The total power consumption (in Wh) of all machines. We use a linear model based on machine load [18],
with an idle baseline of 200 W and a maximum power draw of 350 W. This metric represents the sum of
recorded power consumption per cycle, multiplied by the time over which it is summed, summed over
all machines.
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Portfolio:
type: object
properties:

_id:
type: string

projectId:
type: string

name:
type: string

scenarioIds:
type: array
items:

type: string
targets:

type: object
properties:

enabledMetrics:
type: array
items:

type: string
repeatsPerScenario:

type: integer

Scenario:
type: object
properties:

_id:
type: string

portfolioId:
type: string

name:
type: string

simulation:
type: object
properties:

state:
type: string

results:
type: object

trace:
type: object
properties:

traceId:
type: string

loadSamplingFraction:
type: number

topology:
type: object
properties:

topologyId:
type: string

operational:
type: object
properties:

failuresEnabled:
type: boolean

performanceInterferenceEnabled:
type: boolean

schedulerName:
type: string

Figure 6.2: JSON schema of the portfolio and scenario data types, listed in the YAML format for legibility.

(6) The number of time slices a VM is in a failed state, summed across all VMs. When a host fails, we count
the number of slices it fails and multiply this by the VM count on that host, at that time. This metric is
the sum of of these counts over all hosts.

(7) The mean CPU usage (in MHz), defined as the mean number of granted cycles per second per machine,
averaged across machines. This represents the mean utilization per machine, over time.

(8) The mean CPU demand (in MHz), defined as the mean number of requested cycles per second per
machine, averaged across machines. Compared to mean CPU usage, this metric represents requested
load, not granted load.

(9) The mean number of deployed VM images per host. At each slice, we report the number of VMs on each
host. This metric is the mean of these reported counts.

(10) The maximum number of deployed VM images per host. We compute the maximum VM count per host,
and take the overall maximum over all machines, over all slices.

(11) The total number of submitted VMs. This is the number of incoming VMs from the trace entering the
system. It serves as a validation check, ensuring all VMs are deployed.

(12) The maximum number of queued VMs in the system at any point in time. Before a VM can be deployed,
it briefly is placed in a queue. This metric reports the maximum length of this queue over the entire
duration of the simulation.

(13) The total number of finished VMs. This metric serves as a validation check and should match the sub-
mitted VMs metric, since all deployed VMs from the trace should also finish.
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(14) The total number of failed VMs. This is the number of VMs that did not manage to finish. This metric
serves as a validation check and should not exceed 0.

While no explicit SLO metrics are present in this list, we have two proxies (both Service Level Indicators
(SLIs)) from which we can infer violations of such higher-level metrics. Incidents such as overcommitted CPU
cycles and failed VM slices directly affect the availability of the service. High prevalence of these incidents in
a short time-span even cause unavailability of services, violating SLOs and thus propagating into SLO metric
that could be formulated here.

6.2.7. Capelin Functionality
The models we describe in preceding sections benefit this study, but also the broader OpenDC community.
We now focus on extensions made specifically for Capelin capacity planning functionality. At this prototype
stage, we focus on components A (Scenario Portfolio Builder), C (Workload Modeler), and E (Scenario
Portfolio Evaluator). We see these components as the most crucial to form a minimum viable product that
has added value as support system to a capacity planner.

Extending the Backend
We extend the OpenDC database model and web server API specification with a notion of portfolios and
scenarios. We list the data type schemas of these concepts in Figure 6.2. Our API extensions cover all CRUD
(Create, Read, Update, and Destroy) operations of these options and are documented in the updated API
specification document. We extend the Python web server according to the new API specification. Finally,
we connect the updated simulator (as described in previous sections) with this new backend. An external
watcher periodically polls the database for new scenarios and launches simulations on them as they come in.

The simulator outputs its periodic measurements to Parquet files. The choice of this file format is pre-
ceded by experiments with text-based and database-contained formats. We found each of the latter to fail
more rigorous performance tests, simply unable to facilitate the dataset sizes we are working with (in the
hundreds of GBs) within reasonable time. Even with a heavily compressed format such as Parquet, our sim-
ulations result in the very large file sizes. We have experimented with different ways of handling this, from
external orchestration with Python to internal orchestration with Kotlin code. Our final solution involves the
setup of a Spark big data pipeline to automatically aggregate the results from Parquet files into a per-repeat
overview. Overall, these optimisations have allowed us to run thousands of repeats of complex 1-month
traces in at most hours, while previous approaches would require months or even years to run, as well as
special hardware.

Extending the Frontend
The frontend of OpenDC v1.x was focused on a live replay of simulated loads. This simulation mode is, while
illustrative for demonstrations, less valuable for practitioners needing to extract meaningful, aggregate infor-
mation from the simulation. In our extensions and work towards v2.x, we rebuild this interface to focus on
meaningful simulation insights. We make portfolios of scenarios a core notion of the OpenDC simulation no-
tion, enabling users to experiment with datacenters in a structured, iterative way. We unify the construction
and simulation interfaces into one page, navigable through a context-sensitive sidebar.

For portfolios and scenarios, specifically, we facilitate easy creation through pop-over dialogues and set-
ting of common default values. We replace the previous simulation replay mode with a graph overview of
aggregate plots, on portfolio and scenario level. This facilitates direct comparison between different results,
across different metrics.

Adding a Library of Components
In parallel to these implementation efforts, the author of this thesis is supervising an external project to design
and implement a library of components in Capelin (conforming to component B in the design). This project
will add functionality to save and reuse common topology components in OpenDC. It will also pre-populate
this library of components with a set of industry-standard components from different domains.

6.2.8. Release and Validation of Artifacts
We release our extensions of the open-source OpenDC codebase and the analysis software artifacts on GitHub1.
The process our artifacts go through before they can be published to this repository consists of a number of

1https://github.com/atlarge-research/opendc

https://github.com/atlarge-research/opendc
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Table 6.3: Experiment configurations. A legend of topology dimensions is provided below. (Notation: PI = Performance Interference,
pub = public cloud trace, pri = private cloud trace, AP = Allocation Policy, AS = active-servers.)

Candidate Topologies Workloads Op. Phen.

Experiment Mode Quality Direction Variance Trace Loads Failures PI AP

§6.3.5 Hor. / Ver. pri sample 3 3 AS

§6.3.6 Velocity pri sample 3 3 AS

§6.3.7 Op. Phen. – – – – pri original 7/3 7/3 all

§6.3.8 Pub. / Pri. pri/pub sample 3 7 AS

§6.3.9 HPC pri/hpc sample 3 3 AS

replace

Mode QualityDirection Variance

volumehorizontalexpand velocityvertical heterogeneoushomogeneous

steps. All code artifacts need to be properly documented and readable. This includes both comments in-
side the code base and in central places such as the README document and other documentation files. In
addition, we formally specify key communication protocols using open standards, such as the OpenAPI2

specification of our API.
We adhere to a set of modern coding standards and enforce this adherence through the use of automated

checks. We also check for common mistakes with the help of linting tools. All checks and all written test suites
need to pass at any point of publication, as enforced by our continuous integration setups. Next to automated
checks, we have a manual review policy in place in our version control system. This review policy requires at
least one peer to review submitted code changes before they can be integrated into the main codebase.

We conduct thorough validation and tests of both the core OpenDC and our additions. For external valid-
ity, we commission a third party validation, detailed in Appendix B, and use its results.

6.3. Experiments with Capelin
We use our prototype of Capelin to construct an experiment pipeline and verify the reproducibility of its
results and that it can be run within the expected duration of a capacity planning session (§6.3.1). All experi-
ments use long-term, real-world traces as input.

Our experiment design, which Table 6.3 summarizes, is comprehensive and addresses key questions such
as: Which input workload (§6.3.2)? Which datacenter topologies to consider (§6.3.3)? Which operational
phenomena (§6.2.5)? Which allocation policy (§6.2.4)? Which user- and operator-level performance metrics
to use, to compare the scenarios proposed by the capacity planner (§6.2.6)?

The most important decision for our experiments is which scenarios to explore. Each experiment takes in
a capacity planning portfolio (see Section 5.4), starts from a base scenario, and aims to extend the portfolio
with new candidate scenarios and its results. The baseline is given by expert datacenter engineers, and has
been validated with hardware vendor teams. Capelin creates new candidates by modifying the base scenario
along dimensions such as variety, volume, and velocity of any of the scenario-components. In the following,
we experiment systematically with each of these.

6.3.1. Execution and Evaluation
The reproducibility of a study is a crucial component of its internal and external validity. A study is repro-
ducible if its methods are described in such manner that externals can reproduce its results, ideally with
exactly the same outcomes. Our results are fully reproducible, regardless of the physical host running them.
Each source of non-determinism is seeded by the current repetition, ensuring reproducibility of our mea-
surements.

All setups are repeated 32 times. The results, in files amounting to hundreds of GB in size due to the
large workload traces involved, are evaluated statistically and verified independently. Factors of randomness

2https://swagger.io/specification/

https://swagger.io/specification/
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(e.g., random sampling, policy decision making if applicable, and performance interference modeling) are
seeded with the current repetition to ensure deterministic outcomes, and for fairness are kept consistent
across scenarios.

Capelin could be used during capacity planning meetings. A single evaluation takes 1–2 minutes to com-
plete, enabled by many technical optimizations we added to the simulator. The full set of experiments is
conveniently parallel and takes around 1 hour and 45 minutes to complete, on a “beefy” but standard ma-
chine with 64 cores and 128GB RAM; parallelization across multiple machines would reduce this to minutes.
Queries within meetings, requiring less scenarios and repeats than our experiments, could quickly be an-
swered by Capelin, at an increasing degree of accuracy, depending on the available time. Increasing the
number of repeats in this way allows the implementation to partly meet NFR1: A lower number of repeats al-
lows for a short response time but lower accuracy, while a higher number of repeats increases response time
but also increases accuracy.

6.3.2. Workload
We experiment with a business-critical workload trace from Solvinity, a Dutch private cloud provider [120].
The anonymized version of this trace has been published in a public trace archive [58]. We were provided
with the full, deanonymized data artifacts of this trace, which consists of more than 1,500 VMs along with
information on which physical resources where used to run the trace and which VMs were allocated to which
resources. We cannot release these full traces due to confidentiality, but release the summarized results.

The full trace includes a range of VM resource-usage measurements, aggregated over 5-minute-intervals
over three months. It consumes 3,063 PFLOPs (exascale), with the mean CPU utilization on this topology of
5.6%. This low utilization is in line with industry, where utilization levels below 15% are common [129], and
reduce the risk of not meeting SLAs.

For all experiments, we consider the full trace, and further generate three other kinds of workloads as
samples (fractions) of the original workload, as described in Section 6.2.2. These workloads are sampled from
the full trace, resulting, in turn, to 306 PFLOPs (0.1 of the full trace), 766 (0.25), and 1,532 (0.5).

For the §6.3.8 experiment, we further experiment with a public cloud trace from Azure [33]. We use the
most recent release of the trace. The formats of the Azure and the Solvinity traces are very similar, indicating
a de facto standard has emerged across the private and public cloud communities. One difference in the
level of anonymity of the trace requires an additional assumption. Whereas the Solvinity trace expresses CPU
load as a frequency (MHz), the Azure trace expresses it as a utilization metric ranging from 0 to the number
of cores of that VM. Thus, for the Azure trace, in line with Azure VM types on offer we assume a maximum
frequency of 3 GHz and scale each utilization measurement by this value. The Azure trace is also shorter than
Solvinity’s full trace, so we shorten the latter to Azure’s length of 1 month. We present aggregate metrics of
both the Azure and the Solvinity trace, in Table 6.5.

We combine for the §6.3.8 experiment the two traces and investigate possible phenomena arising from
their interaction. We disable here performance interference, because we can only derive it for the Solvinity
trace (see §6.2.5). To combine the two traces, we first take a random sample of 1% from the (very large) Azure
trace, which results in 26,901 VMs running for one month. We then further sample this 1%-sample, using the
same method as for Solvinity’s full trace. The full procedure is described in Section 6.2.2.

For the §6.3.9 experiment, we manipulate the composition of the trace. The cloud provider (Solvinity)
has supplied us with a (confidential) list of names of VMs from the original trace which host HPC workloads.
Given this subset, we can now up- or down-sample the number of HPC experiments in the trace, using the
method described in Section 6.2.2. We cannot provide the classifications of VMs or the fraction of the work-
load that they represent, but we can say that they represent a significant portion of the trace.

6.3.3. Datacenter topology
For all experiments we set the topology that ran Solvinity’s original workload (the full trace in §6.3.2) as the
base scenario’s topology. This topology is very common for industry practice. It is a subset of the complete
topology of the Solvinity when the full trace was collected, but we cannot release the exact topology or the
entire workload of Solvinity due to confidentiality.

From the base scenario, Capelin derives candidate scenarios as follows. First, it creates a temporary topol-
ogy by choosing half of the clusters in the topology, consisting of average-sized clusters and machines, com-
pared to the overall topology. Second, it varies the temporary topology, in four dimensions: (1) the mode of
operation: replacement (removing the original half and replacing it with the modified version) and expansion
(adding the modified half to the topology and keeping the original version intact); (2) the modified quality:
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Table 6.5: Aggregate statistics for both workloads used in this study. (Notation: AP = Solvinity.)

Characterization AP Azure

VM submissions
per hour

Mean (×10−3) 31.836 4.547
CoV 134.605 17.188

VM duration [days]
Mean 20.204 2.495

CoV 0.378 3.072

CPU load [TFLOPs]
Mean (×102) 9.826 64.046

CoV 2.992 4.654

volume (number of machines/cores) and velocity (clock speed of the cores); (3) the direction of modification:
horizontal (more machines with fewer cores each) and vertical (fewer machines with more cores each); and
(4) the kind of variance: homogeneous (all clusters in the topology-half modified in the same way) and het-
erogeneous (two thirds in the topology-half being modified in the designated way, the remaining third in the
opposite way, on the dimension being investigated in the experiment).

Each dimension is varied to ensure cores and machine counts multiply to (at least) the same total core
count as before the change, in the modified part of the topology. For volume changes, we differentiate be-
tween a horizontal mode, where machines are given 28 cores (a standard size for machines in current de-
ployments), and vertical modes, where machines are given 128 cores (the largest CPU models we see being
commonly deployed in industry). For velocity changes, we differentiate between the clock speed of the base
topology and a clock speed that is roughly 25% higher. Because we do not investigate memory-related effects,
the total memory capacity is preserved. Due to confidentiality, we can only describe the derived topologies
in relative terms.

6.3.4. Listing of Full Results
In the subsections below, we will highlight a small selection of the key metrics for each experiment. For
full transparency, we present the entire set of metrics for each experiment in the appendices. Appendix C
visualizes the full results for all metrics and Appendix D lists the full results for the two most important metrics
in tabular form.

6.3.5. Horizontal vs. Vertical Resource Scaling
Our main findings from this experiment are:

MF1: Capelin enables the exploration of a complex trade-off portfolio of multiple metrics and capacity
dimensions.

MF2: Vertically scaled topologies can improve power consumption (median lower by 1.47x-2.04x) but can
lead to significant performance penalties (median higher by 1.53x-2.00x) and increased chance of VM failure
(median higher by 2.00x-2.71x, which is a high risk!).

MF3: Capelin reveals how correlated failures impact various topologies. Here, 147k–361k VM-slices fail.

The scale-in vs. scale-out decision has historically been a challenge across the field [117][50, §1.2]. We
investigate this decision in a portfolio of scenarios centered around horizontally (symbol ) vs. vertically ( )
scaled resources (see §6.3.3). We also vary: (1) the decision mode, by replacing the existing infrastructure ( )
vs. expanding it ( ), and (2) the kind of variance, homogeneous resources ( ) vs. heterogeneous ( ). On
these three dimensions, Capelin creates candidate topologies by increasing the volume ( ) and compares
their performance using four workload intensities, two of which are shown in this analysis. We consider three
metrics for each scenario: Figure 6.3 (top) depicts the overcommitted CPU cycles, Figure 6.3 (middle) depicts
the power consumption, and Figure 6.3 (bottom) depicts the number of failed VM time slices.

Our key performance indicator is overcommitted CPU cycles, that is, the count of CPU cycles requested
by VMs but not granted, either due to collocated VMs requesting too many resources at once, or due to
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Figure 6.3: Results for a portfolio of candidate topologies and different workloads (§6.3.5): (top) overcommitted CPU cycles, (middle)
total power consumption, (bottom) total number of time slices in which a VM is in a failed state. Table 6.3 describes the symbols used to
encode the topology.

performance interference effects taking place. We observe in Figure 6.3 (top) that vertically scaled topolo-
gies (symbol ) have significantly higher overcommission (lower performance) than their horizontally scaled
counterparts ( , the other three symbols identical). The median value is higher for vertical than for hor-
izontal scaling, for both replaced ( ) and expanded ( ) topologies, by a factor of 1.53x–2.00x (calculated



70 6. Evaluation of Capelin, through Experiments with a Real-World Prototype

as the ratio between medians of different scenarios at full load). This is a large factor, suggesting that ver-
tically scaled topologies are more susceptible to overcommission, and thus lead to higher risk of perfor-
mance degradation. The decrease in performance observed in this metric is mirrored by the granted CPU
cycles metric in Figure C.1b, which decreases for vertically scaled topologies. Among replaced topologies (all
combinations including ), the horizontally scaled, homogeneous topology ( ) yields the best perfor-
mance, and in particular the lowest median overcommitted CPU. We also observe that expanded topolo-
gies ( ) have lower overcommission than the base topology, so adding machines is worthwhile. We observe
all these effects strongly for the full trace (3,063 PFLOPs), but less pronounced for the lower workload intensity
(1,531 PFLOPs).

But performance is not the only criterion for capacity planning. We turn to power consumption, as a proxy
for cost analysis and environmental concerns. We see here that vertically scaled topologies ( ) drastically im-
prove power consumption, for median values by a factor of 1.47x–2.04x, contrasting their worse performance
compared to horizontal scaling ( ). As expected, all expanded topologies ( ), which have more machines,
incur higher power-consumption than replaced topologies ( ). Higher workload intensity (i.e., for the 3,063
PFLOPs results) incurs higher power consumption, although less pronounced than earlier.

We also consider the amount of failed VM time-slices. Each failure here is full-stop (§6.2.5), which typi-
cally escalates an alarm to engineers. Thus, this metric should be minimized. We observe significant differ-
ences here: the median failure time of a homogeneous vertically scaled topology ( ) is between 2.00x–2.71x
higher than the base topology. This metric shows similarities qualitatively with the overcommitted CPU cy-
cles. Vertical scaling is correlated not only with worse performance, but also with higher failure counts. We
see that vertical scaling leads to a significant increase in the maximum number of deployed images per phys-
ical host (Figure C.2b), which leads to larger failure domains and thus potentially higher failure counts. The
effect is less pronounced when making heterogeneous compared to homogeneous procurement.

Our findings show that Capelin gives practitioners the possibility to explore a complex trade-off portfolio of
dimensions such as power consumption, performance, failures, workload intensity, etc. Optimization ques-
tions surrounding horizontal and vertical scaling can therefore be approached with a data-driven approach.
We find that decisions including heterogeneous resources can provide meaningful compromises between
more generic, homogeneous resources; they also lead to different decisions related to personnel training (not
shown here). We show significant differences between candidate topologies in all metrics, translating to very
different power costs, long-term. We conclude that Capelin can help test intuitions and support complex de-
cision making.

6.3.6. Expansion: Velocity
Our main findings from this experiment are:

MF4: Capelin enables exploring a range of resource dimensions frequently considered in practice, such as
component velocity.

MF5: Increasing velocity can reduce overcommitted CPU cycles by 3.3%.

MF6: Expanding a topology by velocity can improve performance by 1.54x, compared to volume expansion.

In vertical horizontal scaling, practitioners are also faced with the decision of which qualities to scale.
This experiment varies the velocity of resources both homogeneously and heterogeneously, while replacing
or expanding the existing topology. Figure 6.4 depicts the explored scenarios and their performance, in the
form of overcommitted CPU cycles.

We find that in-place, homogeneous vertical scaling of machines with higher velocity leads to slightly
better performance, by a percentage of 3.3% (compared to the base scenario, by median). In this dimen-
sion, performance varies only slightly between homogeneously and heterogeneously scaled topologies, for
all metrics (see also Appendix C). Expanding the topology homogeneously ( ) with a set of machines
with higher CPU frequency helps reduce overcommission more drastically, also improving it beyond the low-
est overcommission reached by the homogeneous vertical expansion explored in the previous experiment, in
Figure 6.3. When expanding, this cross-experiment comparison shows an improvement of performance of a
factor of 1.54x.
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Figure 6.4: Overcommitted CPU time for a portfolio of candidate topologies and different workloads, for Experiment 6.3.6.

Figure 6.5: Overcommitted CPU cycles for a portfolio of operational phenomena (the “none” through “all” sub-plots), and allocation
policies (legend), for Experiment 6.3.7.

6.3.7. Impact of Operational Phenomena
Our main findings from this experiment are:

MF7: Capelin enables the exploration of diverse allocation policies and operational phenomena, both of
which lead to important differences in capacity planning.

MF8: Modeling performance interference can explain 80.6%—94.5% of the overcommitted CPU cycles.

MF9: Different allocation policies lead to different performance interference intensities, and median over-
committed CPU cycles different by factors of 1.56x–30.3x compared to the best policy–high risk!

This experiment addresses operational factors in the capacity planning process. We explore the impact
of better handling of physical machine failures, the impact of (smarter) scheduler allocation policies, and
the impact of (the absence of) performance interference on overall performance. Figure 6.5 shows the im-
pact of different operational phenomena on performance, for different allocation policies. We observe that
performance interference has a strong impact on overcommission, dominating it compared to the “failures”
sub-plot, where only failures are considered, or with the “none” sub-plot, where no failures or interference
are considered. Depending on the allocation policy, it represents between 80.6% and 94.5% of the overcom-
mission recorded in simulation for the “all” sub-plot, where both failures and interference are considered.
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Figure 6.6: Total power consumption for a portfolio of candidate topologies (legend), subject to different workloads (the “all-pri” to
“all-pub” sub-plots), for Experiment 6.3.8.

This is visualized more in detail in Figure C.9d, which plots the interference itself, separately.

We also see the large impact that live resource management (in this case, the allocation policy) can have
on QoS. Median ratios vary between 1.56x and 30.3x vs. the best policy, with active-servers (see §6.2.4) gener-
ally best-performing. While the random policy is second-best in terms performance, its performance is much
worse for other metrics, such as power consumption (Fig. C.9e), failures (Fig. C.9f), and maximum number of
VMs per machine (Fig. C.10a). Finally, we observe that enabling failures increases the colocation ratio of VMs
(see Figure C.10a).

We conclude Capelin can help model aspects that are important but typically not considered for capacity
planning.

6.3.8. Impact of Public vs. Private Cloud Workloads

Our main findings from this experiment are:

MF10: Capelin enables exploring what-if scenarios with new workloads as they become available.

MF11: Power consumption can vary significantly more in all-private vs. all-public cloud scenarios, with the
range higher by 4.79x–5.45x.

This experiment explores the impact that a new workload type can have if added to an existing workload,
an exercise capacity planners have to consider often, e.g., for new customers. We combine here the 1-month
Solvinity and Azure traces (see §6.3.2).

Figure 6.6 shows the power consumption for different combinations of both workloads and different
topologies. We observe the unbiased variance of results [35, p. 32] is positively correlated with the fraction
of the workload taken from the public cloud (Azure). Depending on topology, the variance increase with this
fraction ranges from 4.78x to 5.45x. Expanding the volume horizontally ( ) leads to the lowest increase in
variance. The workload statistics listed in Table 6.5 show that the Azure trace has far fewer VMs, with higher
load per VM and shorter duration, thus explaining the increased variance. Last, all candidate topologies have
a higher power consumption than the base topology.

We also observe performance degrading with increasing public workload fraction (see Figure C.13c), call-
ing for a different topology or more sophisticated provisioning policy to address the differing needs of this
new workload. We see that horizontal volume expansion ( ) provides the best performance in the ma-
jority of workload transition scenarios. We conclude Capelin can support new workloads as they appear, so
before they are deployed.
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Figure 6.7: Overcommitted CPU cycles for a portfolio of sampled HPC workloads on a series of candidate topologies, for Experiment 6.3.9.

6.3.9. Impact of HPC Workloads
Our main findings from this experiment are:

MF12: Capelin enables exploring what-if scenarios that include emerging workloads within existing work-
loads, such as HPC workloads.

MF13: A transition from no HPC to only HPC, with constant load, can adversely impact performance by a
factor of up to 5.58x.

This experiment explores the impact that a differing subset of a workload can have on the performance
of the larger enclosing workload. We focus on HPC as the differing workload. Such questions are common to
capacity planning around workload compositions. These can change significantly over time, e.g. with certain
types of workloads becoming more popular. We use the 1 month Solvinity trace here, since it consists of a
subset of HPC VMs as well as other “conventional” VMs. We up-sample and down-sample the HPC fraction,
according to the method described in Section 6.3.2.

We observe that changing the composition of a workload consisting of both HPC and non-HPC compo-
nents can have significant impact on the performance of the system, even if the total load is kept constant.
We see a decrease by a factor of 5.58x in the worst case, when the total load is kept the same but the compo-
sition is changed from non-HPC to full-HPC. Amongst candidate topologies, we see vertical volume scaling
performing best in scenarios with higher HPC fractions, while horizontal scaling seems to perform best in
scenarios devoid of any HPC workload fraction.

We also observe that the sampling method can have significant impact on performance. If workload com-
position is altered by count-sampling, the resulting overcommission is up to 2.86x times less severe compared
to by alteration by load-sampling. We see a potential link with the alignment of burst patterns that can lead
to a higher chance of burst request collisions when sampled on load, since the average total load of a HPC
VM appears to be lower but also more concentrated in certain regions.

6.4. Discussion
We now summarize the contributions of this chapter and discuss possible threats to their validity.

6.4.1. Summary
We present a working software prototype of Capelin with key features of the design outlined in Chapter 5.
Our results show that Capelin can support capacity planning processes, exploring changes from a baseline
scenario alongside four dimensions. We found that capacity plans common in practice could potentially lead
to significant performance degradation, e.g., 1.5x–2.7x. We also gave evidence of the important, but often
discounted, role that operational choices and operational phenomena play in capacity planning.
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6.4.2. Threats to Validity
We discuss potential threats to internal validity, construct validity, and external validity.

Internal Validity
The absence of public experiment data artifacts can be seen as a threat to internal validity, since causal and
aggregated findings that we claim may in theory not be reflected by full, confidential data artifacts. The
confidentiality of the trace and topology we use in simulation prohibits the release of detailed artifacts and
results. However, an anonymized version of the trace is available in a public trace archive [58], which can be
used to explore a restricted set of the workload. The HPC classifications cannot be made public, since they
would reveal sensitive information on the nature of the anonymized workloads. The Azure traces used in the
experiment in §6.3.8 are public, along with our sampling logic for their use, and can therefore be locally used
along with the codebase.

Construct Validity
A threat to validity to construct validity could be seen in the validity of the outputs of the (extensions to the)
simulator itself. This threat also partially extends to external validity, since it impacts both the quality and
reliability of measurements in our study as well as the degree to which findings can be extrapolated. We cover
this threat extensively in Appendix B, commissioning a third party report of validation efforts taken to ensure
validity and soundness of the simulator.

External Validity
Building topologies in practice requires consideration of many different kinds of resources. In our study, we
only actively explore the CPU resource dimension in the capacity planning process, to restrict the scope.
Adding or removing CPUs to/from a machine however can relate to different types of memory or network
becoming applicable or necessary. This can have impacts on costs and energy consumption, impacting the
quality of decision support provided and limit external applicability of the tool. This could therefore be seen
as a threat to external validity. Nevertheless, the performance should suffer only minimal impact from this,
since CPU consumption can be regarded as the critical factor in these considerations. In addition, future
extensions to the simulation model OpenDC will directly become available to planners using Capelin.
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Conclusion and Future Work

Accurately planning cloud datacenter capacity is key to meeting the needs of the 2020s society whilst saving
costs and ensuring environmental sustainability. Although capacity planning is crucial, the current practice
has not been analyzed in decades and publicly available tools to support practitioners are scarce. In this
work, we have progressed towards addressing this shortcoming with a systematic overview of the practice
and a novel approach to capacity planning. This section summarizes the contributions of this thesis and
looks forward to future lines of research emerging from it.

7.1. Conclusion
In this work, we address three main research questions related to the problem of capacity planning. Having
detailed the capacity planning problem in Chapter 1 and surveyed the state-of-the-art in knowledge related
to it in Chapter 2, and having presented our contributions in Chapters 3 through 6, we can now address the
questions, individually.

(RQ1) State-of-the-art: How to capture and assess the current state-of-the-art of capacity planning for
cloud infrastructure?

This work presents a systematic overview of the literature and uncovers the current state of the field.
A series of meta-analyses helps derive unique insights from the surveyed publications. We have also
conducted a unique community survey, using guided interview with diverse practitioners from a variety
of backgrounds, whose results led us to synthesize five functional requirements.

(RQ2) Design of a system: How to design a capacity planning system for cloud infrastructure that responds
to key issues faced in the community?

We have designed Capelin to meet the requirements synthesized from our survey of interviews. Our
decision support tool features the ability to model datacenter topologies and virtualized workloads, to
express what-if scenarios and QoS requirements, to suggest scenarios to evaluate, and to evaluate and
explain capacity plans. Capelin uses a novel abstraction, the capacity planning portfolio, to represent,
explore, and compare a variety of scenarios.

(RQ3) Evaluation of a system: How to evaluate a capacity planning system for cloud infrastructure?

We have implemented a working prototype of Capelin, extending the OpenDC codebase significantly
in the process. Experiments based on real-world workload traces collected from private and public
clouds demonstrate Capelin’s capabilities. Results show that Capelin can support capacity planning
processes, exploring changes from a baseline scenario alongside four dimensions. We found that ca-
pacity plans common in practice could potentially lead to significant performance degradation, e.g.,
1.5x–2.7x. We also gave evidence of the important, but often discounted, role that operational choices
(e.g., the allocation policy) and operational phenomena (e.g., performance interference) play in capac-
ity planning.

75
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We have released Capelin as FOSS for capacity planners to use. Discussions with partners in academia
and industry are promising and show interest in the adoption of Capelin. Solvinity, the cloud provider that
has offered data artifacts for experimentation, sees large potential in Capelin:

“Predicting the future has always been one of the big wishes in life. Predicting demand in IT has
always been the wish of the CIO. The Capelin initiative brings this wish a bit closer to reality. Its
simulation capabilities based on big data gives IT leaders a tool to predict capacity demand for
their datacenters. This solution is highly promising for many.”

Bas Demmink – CTO, Solvinity

7.2. Future Work
This work provides the foundation for research and development for a field that has previously received in-
sufficient attention and currently lacks innovation. We identify five directions of future work building on the
contributions of this thesis:

1. We intend to conduct a structured survey, in the form of a textual questionnaire, to reach a larger base
of capacity planning practitioners and augment the initial findings made in our interview study. Such
a textual questionnaire would consist of a set of qualitative and predominantly quantitative questions,
answered and submitted remotely by a large set of practitioners. The choice for flexibility in the ap-
proach taken in our initial survey has allowed us to quickly adapt to what questions and topics we see
being raised and considered relevant. Now that an initial survey exists, a more structured survey could
be formulated and would be able to reach a far wider audience, since per-interlocutor efforts would
be significantly lower. The analysis of such a survey could build a more systematic foundation for the
frame of findings found in the initial survey.

2. We plan to deepen and engineer Capelin to be fit for deployment in a production context. Improve-
ments in this context can be divided into two categories: development of the OpenDC platform, and
of Capelin in particular. First, we are continuously working to improve and extend the capabilities
of the OpenDC simulation platform. This includes research into realistic resource models, upcoming
workload types, and resource management strategies. Any improvements in this category are directly
applicable to Capelin users, as well. Second, we plan to implement Capelin’s full feature set (including
capacity plan generation and portfolio suggestion components) and make it widely adoptable by en-
gineering fast, interactive components and including a broad library of pre-built topologies and work-
loads. We also plan to add dedicated integrations between Capelin and leading monitoring systems
and topology definition software, from vendors such as VMware and open-source monitoring software
projects such as Grafana. This will make it easier for practitioners to input their current situation into
the tool and start work directly from that point. Such an integration could for example serve as a link
with a monitoring database that directly imports usage data on the last one month of operation into
the Capelin database.

3. Building on the previous area of future work, we are investigating the use of Machine Learning and Ar-
tificial Intelligence search techniques to make the Capacity Plan Generator component more capable of
exploring the enormous design-space. While capacity planning will likely remain a human-centered
activity with tools only providing support, a tool can significantly alleviate the load on the human prac-
titioner. Automatic design space exploration can further assist capacity planners by evaluating many
different points in the design space and presenting key trade-offs to the planner. Multi-objective op-
timization algorithms, found both in conventional Artificial Intelligence techniques and in Machine
Learning approaches, should be evaluated on this problem specifically. A user study of chosen ap-
proaches compared against proposed approaches could validate the quality of proposed plans.

4. We see opportunities for research into cloud user behavior when emerging resources are deployed, a
factor especially relevant in scientific clouds. We find three main opportunities: First, we find from in-
terviews that emerging resource types (such as new kinds of accelerator hardware) are sometimes only
slowly adopted by a user base. Research into automatic porting, widespread education, and assistance
tools could help ease and speed up this adoption process, to ensure higher usage utilization and reduce
waste. Second, we find that user behavior when provided with new capacity is still poorly understood.
We find in interviews that there is a variable delay between the expansion of available resources and
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the scaling up of demand to meet those resources, resulting in frequent resource waste. Future work
could investigate this behavior and the role that cloud administrators and capacity planners can play in
reducing this delay, such as through more fine-grained capacity plans. Third, we see potential for syn-
ergy between the previous two directions and a workload forecasting component driven by Machine
Learning techniques. The behavior may be better understood and forecast with the help of pattern
recognition and extrapolation algorithms.

5. We also plan to include more workload types, such as virtualized FaaS workloads. A tool such as Capelin
has the potential to allow capacity planners to investigate new workloads far before they even enter
their infrastructure. It can also point out changes that might be needed to facilitate those new work-
loads. This kind of foresight can help inform decision-making and long-term planning, especially with
workloads on which intuition might still be difficult to form, due to their novel and emerging nature.





A
Capacity Planning Interview Script

In this chapter, we list the interview script used for the interviews described in Chapter 4. To encode instruc-
tions to the reviewer, we use the following notation. The font determines the type of instruction: Questions
are written in standard fonts, emphasis indicates instructions to be read to the interlocutor by the interviewer
(not necessarily verbatim), and mono-space font represents instructions for the reviewer. The questions are
numbered for cross-reference and divided into 5 category. Each question is assigned one out of three priority
levels, indicated by asterisks (*, **, and ***), with three stars indicating the highest priority. Each category
(section) of questions is allocated a number of minutes, listed between parentheses.

A.1. Part 1: Overview (15’)
Thanks for agreeing to meet with me. To get the most out of this conversation, would you allow me to record
the conversation for note-taking purposes? I will not share the recording with anyone else but you, if you want
a copy, and I will delete the recording at the end of my thesis project.

If you have any concerns about sharing this kind of information with me, let us talk quickly and openly
about it. We hope you will share openly. Rest assured, we want more to learn about the issues around capacity
planning than to publish on it.

I will transcribe the recording for myself, and for any use of a snippet of your words, I will ask you specifically
for approval to release, with due reference, unless you want me to keep the author anonymous, of course.

We are interested in learning more about how businesses think about having IT infrastructure and services
always available and plentiful. We call this capacity planning, and know we are referring here only to IT and
the IT team, and not to other types of “capacity”. We want to learn and share with you what processes are used,
what challenges exist, and how can we help solve them.

(Q1) *** How important is it to have IT infrastructure and services always available and plentiful in your
business?

(Q2) *** What kind of services do you provide? How important is it for your different services?

(Q3) *** Can you give us an example of a success in capacity planning? Share with us a good idea, a good
process, some situation when all worked well?

(Q4) *** Can you give us an example of an insuccess in capacity planning? Share with us a mistake, an
erroneous process, some situation when many things failed to worked well or took much more
to get through than expected?

(Q5) *** What does the typical process for capacity planning look like at your company? You can start
with an overview, or even from a concrete example, like how to get a new cluster in operation.

(Q6) ** A few yes or no questions:

1. Do you have “what if” scenarios?

2. Do you consider hybrid or public clouds to be part of your capacity planning process?
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3. Would you be willing to share historical data on capacity planning?

4. Do you consider human personnel (availability, experience, training) when planning for
new capacity?

A.2. Part 2: The Process (15’)
(Q7) *** Who are the stakeholders? Who gets to take the decision? Who gets to give input? Is this a board-

level decision? Is it left to operations?

(Q8) *** On what time and infrastructure scale are your typical decisions?

(Q9) *** What factors do you take into account when making capacity planning decisions? Does this
differ per stakeholder; if so, how?

(Q10) ** What is the margin for error in the decision making process?

(Q11) * How frequently are capacity planning decisions made? Also, how long does a decision take?

(Q12) * What kind of data sources do you consult in your capacity planning process?

(Q13) * What kind of tools do you use in your capacity planning process? For planning, recording, shar-
ing information at different levels in the organization, etc.

(Q14) ** How are errors or issues about capacity planning preserved? How frequent/severe are the errors
that are made? How do people learn from these issues?

A.3. Part 3: Inside Factors (15’)
(Q15) *** What kinds of IT services and infrastructure are part of your capacity planning processes?

(Q16) ** I will ask the same question about four kinds of workloads.
What are your capacity planning processes for business-critical workloads?
What are your capacity planning processes for big data workloads?
What are your capacity planning processes for serverless workloads?
What are your capacity planning processes for high performance computing workloads?

(Q17) *** How do you try to combine multiple workloads in the same capacity planning process? Shared
infrastructure? Shared services? What role do hybrid or public cloud offerings play in your ca-
pacity planning process?

(Q18) *** Because serverless workloads are so new, I’d like to ask a couple more questions about them.
With such fine-granularity and variable workloads, how do you reason about needs?
Do you reason differently about them than about other (more traditional) workloads?
How do you reason about workload isolation (performance, availability, security, etc.)?

(Q19) * What are some typical “what if” scenarios?

A.4. Part 4: Outside Factors (10’)
(Q20) *** What regulatory constraints (laws, standards; e.g. GDPR, concerning where you get the capacity)

play a role in the decision process?

(Q21) *** What financial aspects (costs of resources, personnel, etc.) or technical aspects (new generation
of hardware/software/IT paradigms) play a role in the decision process?

(Q22) *** How and which human factors are involved in your decision making on resource capacity plan-
ning?

(Q23) ** Do you make capacity planning decisions on a multi-datacenter level, or on a local level?

(Q24) *** Do you do capacity planning specifically for production, development, and/or test?

(Q25) * What are some typical “what if” scenarios?
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A.5. Part 5: Summary and Follow-Up (5’)
(Q26) *** What would your ideal process for capacity planning look like? Something that is not already

there?

(Q27) ** Which other processes do you see capacity planning linked with? For example, managing change,
evolution of business requirements, etc.?

(Q28) ** What other aspects would you like to share?

Follow-Up Points
Explain what I will do with the information.
Ask if they want a summary or report related to my thesis project.
If they answered "yes" to sharing historical data, follow up here.





B
External Validation of the Simulation

We have commissioned a third-party to report on validation steps taken to ensure the results of the simulator
are valid, sound, and reliable. This report is written by Fabian Mastenbroek, core simulation engineer on the
OpenDC team. The report is reproduced below.

We discuss here the validity of the outputs of the (extensions to the) simulator. Capelin uses datacenter-
level simulation using real-world traces to evaluate portfolios of capacity planning scenarios. Although real-
world experimentation would provide more realistic outputs, evaluating the vast amount of scenarios gener-
ated by Capelin on physical infrastructure is prohibitively expensive, hard to reproduce, and cannot capture
the scale of modern datacenter infrastructure, notwithstanding environmental concerns. Alternatively, we
can use mathematical analysis, where datacenter resources are represented as mathematical models (e.g.,
hierarchical and queuing models). However, this approach is limited because its accuracy relies on preex-
isting data from which the models are derived. Further considering the complexity and responsibilities of
modern datacenters, this approach becomes infeasible.

Given that the effectiveness of Capelin depends heavily on (the correctness of) simulator outputs, we
have worked very carefully and systematically to ensure the validity of the simulator. For the validity of the
simulator, we consider three main aspects: (1) validity of results, (2) soundness of results, and (3) reliability
of results. Below, we discuss for each of these aspects our approach and results.

B.1. How to ensure simulator outputs are valid?
We consider simulator outputs valid if a realistic base model (e.g., the datacenter topology) with the addi-
tion of a workload and other assumptions (e.g., operational phenomena) can reflect realistically real-world
scenarios based on the same assumptions.

We ensure validity of simulator outputs by tracking a wide variety of metrics (see Section 6.2.6) during
the execution of simulations in order to validate the behavior of the system. This selection is comprised of
metrics of interest which we analyze in our experiments, but also fail-safe metrics (e.g., total requested burst)
that we can verify against known values.

Moreover, we employ step-by-step inspection using the various tools offered by the Java ecosystem (e.g.,
Java Debugger, Java Flight Recorder, and VisualVM) to verify the state of individual components on a per-cycle
basis.

B.2. How to ensure simulator outputs are sound?
While the simulator may produce valid outputs, for them to be useful, these outputs must also be realistic
and applicable to users of Capelin. That is, the assumptions that support the datacenter model must hold in
the real world, for the simulator outputs to be sound and in turn be useful. Concretely, a particular choice of
scheduling policy might produce valid results, yet may not reflect reality.

To address this, we have created “replay experiments” that replicate the resource management decisions
made by the original infrastructure of the traces, based on placement data from that time. We do not support
live migration of VMs that occurs in the placement data, since VM placements are currently fixed over time
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Figure B.1: Validation with a replay policy, copying the exact cluster assignment of the original deployment. For a legend of topologies,
see Table 6.3.

Figure B.2: Validation with a replay policy, copying the exact cluster assignment of the original deployment. For a legend of topologies,
see Table 6.3.

in OpenDC. However, the majority of VMs do not migrate at all. Capacity issues due to not supporting live
migration are resolved by scheduling VMs on other hosts in the cluster based on the mem policy.

The “replay experiments” are run in an identical setup to the experiments in Section 6.3 and its results are
compared to the active-servers allocation policy. We find that:

1. The total overcommitted burst shows distributions that are similar in shape but differ in scale, for both
policies. This can be explained by the fact that active-servers policy is not as effective as the man-
ual placements on the original infrastructure in addition to the influence of performance interference
(Figure B.2)

2. Other metrics exhibit very similar distributions. Small differences may be accounted to the number of
VMs being slightly smaller in the “replay experiments“ due to missing placement data (Figure B.1).

Furthermore, we have had several meetings with both industry and domain experts to discuss the simu-
lator outputs in depth, validate our models and assumptions, and spot inconsistencies. Moreover, we have
had proactive communication with the experts about possible issues with the simulator that arose during
development, such as unclear observations.
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B.3. How to ensure no regression in subsequent simulator versions?
Although we may at one point trust the simulator to produce correct outputs, the addition or modification
of functionality in subsequent versions of the simulator may inadvertently affect the output compared to
previous versions.

We safeguard against such issues by means of snapshot testing. With snapshot testing, we capture a snap-
shot of the system outputs and compare it against the outputs produced by subsequent simulator versions.
For this test, we consider a downsized variant of the experiments run in this work and capturing the same
metrics. These tests execute after every change and ensure that the validity of the simulator outputs is not
affected. In case some output changes are intentional, the test failures serve as a double check.

Furthermore, we use assertions in various parts of the simulator to validate internal assumptions. This
includes verifying that messages in simulation are not delivered out-of-order and validating that simulated
machines do not reach invalid states.

Finally, we employ industry-standard development practices. Every change to the simulator or its exten-
sions requires an independent code review before inclusion in the main code base. In addition, we automat-
ically run for each change static code analysis tools (e.g. linting) to spot common mistakes.





C
Full Visual Experiment Results

In the figures on the following pages, we visualize the full set of metrics (§6.2.6) for each experiment. We
differentiate between select overviews (depicting only the results of a subset of workloads) and summary
overviews (aggregating over all workloads).
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88 C. Full Visual Experiment Results

(a) Requested CPU cycles (b) Granted CPU cycles

(c) Overcommitted CPU cycles (d) Interfered CPU cycles

(e) Total power consumption (f) Total number of time slices in which a VM is failed, ag-
gregated across VMs

(g) Mean CPU usage (h) Mean CPU demand

Figure C.1: Performance of different horizontally and vertically expanded topologies, compared across workloads. For a legend of topolo-
gies, see Table 6.3. Continued in Figure C.2.
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(a) Mean number of VMs per host (b) Max number of VMs per host

(c) Total VMs Submitted (d) Total VMs Queued

(e) Total VMs Finished (f) Total VMs Failed

Figure C.2: Performance of different horizontally and vertically expanded topologies, compared across workloads. For a legend of topolo-
gies, see Table 6.3.
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(c) Overcommitted CPU cycles
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(d) Interfered CPU cycles
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(e) Total power consumption
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(f) Total number of time slices in which a VM is failed, ag-
gregated across VMs
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(g) Mean CPU usage
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(h) Mean CPU demand

Figure C.3: Performance of different horizontally and vertically expanded topologies, compared across workloads. Results aggregated
across the full set of workloads, including workloads not displayed in the more detailed figure. For a legend of topologies, see Table 6.3.
Continued in Figure C.4.
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(b) Max number of VMs per host
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(c) Total VMs Submitted
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(d) Total VMs Queued
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(e) Total VMs Finished
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(f) Total VMs Failed

Figure C.4: Performance of different horizontally and vertically expanded topologies, compared across workloads. Results aggregated
across the full set of workloads, including workloads not displayed in the more detailed figure. For a legend of topologies, see Table 6.3.



92 C. Full Visual Experiment Results

(a) Requested CPU cycles (b) Granted CPU cycles

(c) Overcommitted CPU cycles (d) Interfered CPU cycles

(e) Total power consumption (f) Total number of time slices in which a VM is failed, ag-
gregated across VMs

(g) Mean CPU usage (h) Mean CPU demand

Figure C.5: Performance of different topologies expanded on velocity, compared across workloads. For a legend of topologies, see Ta-
ble 6.3. Continued in Figure C.6.
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(a) Mean number of VMs per host (b) Max number of VMs per host

(c) Total VMs Submitted (d) Total VMs Queued

(e) Total VMs Finished (f) Total VMs Failed

Figure C.6: Performance of different topologies expanded on velocity, compared across workloads. For a legend of topologies, see Ta-
ble 6.3.
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(c) Overcommitted CPU cycles
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(d) Interfered CPU cycles
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(f) Total number of time slices in which a VM is failed, ag-
gregated across VMs
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(g) Mean CPU usage
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(h) Mean CPU demand

Figure C.7: Performance of different topologies expanded on velocity, compared across workloads. Results aggregated across the full
set of workloads, including workloads not displayed in the more detailed figure. For a legend of topologies, see Table 6.3. Continued in
Figure C.8.
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(a) Mean number of VMs per host
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(b) Max number of VMs per host
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(c) Total VMs Submitted
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(d) Total VMs Queued
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(f) Total VMs Failed

Figure C.8: Performance of different topologies expanded on velocity, compared across workloads. Results aggregated across the full set
of workloads, including workloads not displayed in the more detailed figure. For a legend of topologies, see Table 6.3.
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(a) Requested CPU cycles (b) Granted CPU cycles

(c) Overcommitted CPU cycles (d) Interfered CPU cycles

(e) Total power consumption (f) Total number of time slices in which a VM is failed, ag-
gregated across VMs

(g) Mean CPU usage (h) Mean CPU demand

Figure C.9: Impact of operational phenomena and different allocation policies on the base topology. For a legend of topologies, see
Table 6.3. Continued in Figure C.10.
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(a) Mean number of VMs per host (b) Max number of VMs per host

(c) Total VMs Submitted (d) Total VMs Queued

(e) Total VMs Finished (f) Total VMs Failed

Figure C.10: Impact of operational phenomena and different allocation policies on the base topology. For a legend of topologies, see
Table 6.3.
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(b) Granted CPU cycles

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Overcomm. CPU Cycles [MFLOP] ×10
11

none

interference

failures

allO
p

e
ra

ti
o

n
a
l 
P

h
e
n

o
m

e
n

a

(c) Overcommitted CPU cycles

0.0 0.5 1.0 1.5 2.0 2.5

Interfered CPU Cycles [MFLOP] ×10
11

none

interference

failures

allO
p

e
ra

ti
o

n
a
l 
P

h
e
n

o
m

e
n

a

(d) Interfered CPU cycles

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Total Power Consumption [Wh] ×10
8

none

interference

failures

allO
p

e
ra

ti
o

n
a

l 
P

h
e

n
o

m
e

n
a

(e) Total power consumption

0 1 2 3 4

Total Num. Failed VM Slices ×10
6

none

interference

failures

allO
p

e
ra

ti
o

n
a
l 
P

h
e
n

o
m

e
n

a

(f) Total number of time slices in which a VM is failed, ag-
gregated across VMs

0 2000 4000 6000 8000

Mean Host CPU Usage [MHz] 

none

interference

failures

allO
p

e
ra

ti
o

n
a
l 
P

h
e
n

o
m

e
n

a

(g) Mean CPU usage

0 2000 4000 6000 8000

Mean Host CPU Demand [MHz] 

none

interference

failures

allO
p

e
ra

ti
o

n
a
l 
P

h
e
n

o
m

e
n

a

(h) Mean CPU demand

Figure C.11: Impact of operational phenomena and different allocation policies on the base topology. For a legend of topologies, see
Table 6.3. Continued in Figure C.12.
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Figure C.12: Impact of operational phenomena and different allocation policies on the base topology. For a legend of topologies, see
Table 6.3.



100 C. Full Visual Experiment Results

(a) Requested CPU cycles (b) Granted CPU cycles

(c) Overcommitted CPU cycles (d) Interfered CPU cycles

(e) Total power consumption (f) Total number of time slices in which a VM is failed, ag-
gregated across VMs

(g) Mean CPU usage (h) Mean CPU demand

Figure C.13: Impact of a composite workload (consisting of private and public workloads) on different topologies. For a legend of topolo-
gies, see Table 6.3. Continued in Figure C.14.
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(a) Mean number of VMs per host (b) Max number of VMs per host

(c) Total VMs Submitted (d) Total VMs Queued

(e) Total VMs Finished (f) Total VMs Failed

Figure C.14: Impact of a composite workload (consisting of private and public workloads) on different topologies. For a legend of topolo-
gies, see Table 6.3.
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Figure C.15: Impact of a composite workload (consisting of private and public workloads) on different topologies. For a legend of topolo-
gies, see Table 6.3. Continued in Figure C.16.
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Figure C.16: Impact of a composite workload (consisting of private and public workloads) on different topologies. For a legend of topolo-
gies, see Table 6.3.



104 C. Full Visual Experiment Results

(a) Requested CPU cycles (b) Granted CPU cycles

(c) Overcommitted CPU cycles (d) Interfered CPU cycles

(e) Total power consumption (f) Total number of time slices in which a VM is failed, ag-
gregated across VMs

(g) Mean CPU usage (h) Mean CPU demand

Figure C.17: Performance of increasing an increased relative intensity of HPC workloads compared to others, on different topologies.
For a legend of topologies, see Table 6.3. Continued in Figure C.18.
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(a) Mean number of VMs per host (b) Max number of VMs per host

(c) Total VMs Submitted (d) Total VMs Queued

(e) Total VMs Finished (f) Total VMs Failed

Figure C.18: Performance of increasing an increased relative intensity of HPC workloads compared to others, on different topologies.
For a legend of topologies, see Table 6.3.
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(h) Mean CPU demand

Figure C.19: Performance of increasing an increased relative intensity of HPC workloads compared to others, on different topologies.
For a legend of topologies, see Table 6.3. Continued in Figure C.20.
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Figure C.20: Performance of increasing an increased relative intensity of HPC workloads compared to others, on different topologies.
For a legend of topologies, see Table 6.3.



108 C. Full Visual Experiment Results

(a) Requested CPU cycles (b) Granted CPU cycles

(c) Overcommitted CPU cycles (d) Interfered CPU cycles

(e) Total power consumption (f) Total number of time slices in which a VM is failed, ag-
gregated across VMs

(g) Mean CPU usage (h) Mean CPU demand

Figure C.21: Validation with a replay policy, copying the exact cluster assignment of the original deployment. For a legend of topologies,
see Table 6.3. Continued in Figure C.22.
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(a) Mean number of VMs per host (b) Max number of VMs per host

(c) Total VMs Submitted (d) Total VMs Queued

(e) Total VMs Finished (f) Total VMs Failed

Figure C.22: Validation with a replay policy, copying the exact cluster assignment of the original deployment. For a legend of topologies,
see Table 6.3.





D
Full Tabular Experiment Results

In the tables on the following pages, we list the full results of two of the most important metrics (defined in
§6.2.6) for each experiment: overcommission and power consumption.

Table D.1: Results of the horizontal vs. vertical scaling experiment, with key metrics and their mean and standard deviation.

Topology Workload Op. Phen. Alloc. Policy Overcommission [MFLOP] Power Consumption [Wh]
median std median std

base 306 PFLOP all active-servers 0 7.653e+07 1.106e+08 1.343e+07
base 766 PFLOP all active-servers 1.059e+09 1.514e+09 1.128e+08 1.288e+07
base 1532 PFLOP all active-servers 1.192e+10 5.622e+09 1.137e+08 1.32e+07
base 3063 PFLOP all active-servers 5.691e+10 1.131e+10 1.151e+08 1.32e+07

306 PFLOP all active-servers 0 7.655e+07 1.105e+08 1.341e+07

766 PFLOP all active-servers 8.603e+08 1.492e+09 1.125e+08 1.285e+07

1532 PFLOP all active-servers 1.124e+10 5.613e+09 1.131e+08 1.314e+07

3063 PFLOP all active-servers 5.261e+10 1.212e+10 1.142e+08 1.315e+07

306 PFLOP all active-servers 7.288e+05 2.182e+08 9.139e+07 1.109e+07

766 PFLOP all active-servers 1.678e+09 3.129e+09 9.311e+07 1.064e+07

1532 PFLOP all active-servers 1.263e+10 6.379e+09 9.365e+07 1.087e+07

3063 PFLOP all active-servers 6.172e+10 1.377e+10 9.466e+07 1.086e+07

306 PFLOP all active-servers 1.466e+08 1.348e+09 5.327e+07 6.447e+06

766 PFLOP all active-servers 5.407e+09 4.606e+09 5.443e+07 6.197e+06

1532 PFLOP all active-servers 2.661e+10 1.035e+10 5.498e+07 6.326e+06

3063 PFLOP all active-servers 1.054e+11 2.293e+10 5.585e+07 6.351e+06

306 PFLOP all active-servers 4.594e+07 4.369e+08 7.239e+07 8.774e+06

766 PFLOP all active-servers 3.174e+09 3.518e+09 7.388e+07 8.423e+06

1532 PFLOP all active-servers 1.915e+10 8.997e+09 7.455e+07 8.615e+06

3063 PFLOP all active-servers 8.054e+10 1.323e+10 7.575e+07 8.638e+06

306 PFLOP all active-servers 0 0 1.757e+08 2.133e+07

766 PFLOP all active-servers 2.351e+08 2.375e+09 1.79e+08 2.048e+07

1532 PFLOP all active-servers 5.07e+09 5.265e+09 1.798e+08 2.093e+07

3063 PFLOP all active-servers 3.311e+10 1.195e+10 1.813e+08 2.095e+07

306 PFLOP all active-servers 0 6.543e+04 1.567e+08 1.904e+07

766 PFLOP all active-servers 3.597e+08 3.238e+09 1.597e+08 1.826e+07

1532 PFLOP all active-servers 6.354e+09 5.345e+09 1.605e+08 1.866e+07

3063 PFLOP all active-servers 3.74e+10 1.284e+10 1.618e+08 1.868e+07

Continued on next page
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112 D. Full Tabular Experiment Results

Table D.1: Results of the horizontal vs. vertical scaling experiment, with key metrics and their mean and standard deviation.

Topology Workload Op. Phen. Alloc. Policy Overcommission [MFLOP] Power Consumption [Wh]
median std median std

306 PFLOP all active-servers 0 4.804e+06 1.187e+08 1.442e+07

766 PFLOP all active-servers 1.265e+09 2.186e+09 1.21e+08 1.383e+07

1532 PFLOP all active-servers 1.098e+10 5.14e+09 1.218e+08 1.412e+07

3063 PFLOP all active-servers 5.072e+10 1.248e+10 1.232e+08 1.414e+07

306 PFLOP all active-servers 0 3.796e+07 1.377e+08 1.673e+07

766 PFLOP all active-servers 8.684e+08 1.667e+09 1.403e+08 1.606e+07

1532 PFLOP all active-servers 9.854e+09 5.417e+09 1.411e+08 1.641e+07

3063 PFLOP all active-servers 4.787e+10 1.087e+10 1.425e+08 1.644e+07
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Table D.2: Results of velocity experiment, with key metrics and their mean and standard deviation.

Topology Workload Op. Phen. Alloc. Policy Overcommission [MFLOP] Power Consumption [Wh]
median std median std

base 306 PFLOP all active-servers 0 7.653e+07 1.106e+08 1.343e+07
base 766 PFLOP all active-servers 1.059e+09 1.514e+09 1.128e+08 1.288e+07
base 1532 PFLOP all active-servers 1.192e+10 5.622e+09 1.137e+08 1.32e+07
base 3063 PFLOP all active-servers 5.691e+10 1.131e+10 1.151e+08 1.32e+07

306 PFLOP all active-servers 0 7.656e+07 1.105e+08 1.342e+07

766 PFLOP all active-servers 1.059e+09 1.511e+09 1.126e+08 1.286e+07

1532 PFLOP all active-servers 1.179e+10 5.547e+09 1.135e+08 1.317e+07

3063 PFLOP all active-servers 5.504e+10 1.134e+10 1.147e+08 1.318e+07

306 PFLOP all active-servers 0 7.657e+07 1.106e+08 1.343e+07

766 PFLOP all active-servers 1.059e+09 1.514e+09 1.127e+08 1.287e+07

1532 PFLOP all active-servers 1.183e+10 5.608e+09 1.135e+08 1.318e+07

3063 PFLOP all active-servers 5.527e+10 1.131e+10 1.149e+08 1.319e+07

306 PFLOP all active-servers 0 0 1.758e+08 2.135e+07

766 PFLOP all active-servers 2.803e+08 2.374e+09 1.791e+08 2.05e+07

1532 PFLOP all active-servers 5.02e+09 5.349e+09 1.8e+08 2.096e+07

3063 PFLOP all active-servers 3.298e+10 1.203e+10 1.816e+08 2.097e+07

306 PFLOP all active-servers 0 4.703e+04 1.758e+08 2.135e+07

766 PFLOP all active-servers 2.803e+08 2.374e+09 1.792e+08 2.05e+07

1532 PFLOP all active-servers 5.043e+09 5.352e+09 1.801e+08 2.097e+07

3063 PFLOP all active-servers 3.423e+10 1.221e+10 1.817e+08 2.098e+07
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Table D.3: Results of operational phenomena experiment, with key metrics and their mean and standard deviation.

Topology Workload Op. Phen. Alloc. Policy Overcommission [MFLOP] Power Consumption [Wh]
median std median std

base 306 PFLOP none mem 0 0 1.102e+08 1.335e+07
base 306 PFLOP none mem-inv 5.662e+07 3.309e+09 1.108e+08 1.347e+07
base 306 PFLOP none core-mem 0 0 1.102e+08 1.335e+07
base 306 PFLOP none core-mem-inv 8.319e+07 2.172e+09 1.106e+08 1.344e+07
base 306 PFLOP none active-servers 0 6.543e+04 1.106e+08 1.346e+07
base 306 PFLOP none active-servers-inv 1.026e+08 2.163e+09 1.104e+08 1.342e+07
base 306 PFLOP none random 0 7.099e+04 1.105e+08 1.345e+07
base 306 PFLOP interference mem 1.951e+09 1.786e+09 1.102e+08 1.335e+07
base 306 PFLOP interference mem-inv 8.42e+09 5.136e+09 1.108e+08 1.347e+07
base 306 PFLOP interference core-mem 1.222e+09 1.487e+09 1.102e+08 1.335e+07
base 306 PFLOP interference core-mem-inv 1.09e+10 3.629e+09 1.106e+08 1.344e+07
base 306 PFLOP interference active-servers 0 1.573e+06 1.106e+08 1.346e+07
base 306 PFLOP interference active-servers-inv 1.203e+10 6.329e+09 1.104e+08 1.342e+07
base 306 PFLOP interference random 1.36e+08 1.069e+09 1.105e+08 1.345e+07
base 306 PFLOP failures mem 0 0 1.102e+08 1.335e+07
base 306 PFLOP failures mem-inv 9.672e+07 2.497e+09 1.107e+08 1.346e+07
base 306 PFLOP failures core-mem 0 0 1.102e+08 1.335e+07
base 306 PFLOP failures core-mem-inv 1.045e+08 2.164e+09 1.106e+08 1.344e+07
base 306 PFLOP failures active-servers 0 4.703e+04 1.106e+08 1.343e+07
base 306 PFLOP failures active-servers-inv 1.026e+08 2.165e+09 1.104e+08 1.342e+07
base 306 PFLOP failures random 0 3.939e+07 1.105e+08 1.341e+07
base 306 PFLOP all mem 1.423e+09 1.917e+09 1.102e+08 1.335e+07
base 306 PFLOP all mem-inv 8.388e+09 5.075e+09 1.107e+08 1.346e+07
base 306 PFLOP all core-mem 1.502e+09 2.269e+09 1.102e+08 1.335e+07
base 306 PFLOP all core-mem-inv 1.079e+10 3.501e+09 1.106e+08 1.343e+07
base 306 PFLOP all active-servers 0 7.653e+07 1.106e+08 1.343e+07
base 306 PFLOP all active-servers-inv 1.148e+10 5.756e+09 1.104e+08 1.342e+07
base 306 PFLOP all random 2.613e+08 1.797e+09 1.105e+08 1.341e+07
base 766 PFLOP none mem 0 0 1.121e+08 1.279e+07
base 766 PFLOP none mem-inv 1.734e+09 5.145e+09 1.137e+08 1.306e+07
base 766 PFLOP none core-mem 0 0 1.121e+08 1.279e+07
base 766 PFLOP none core-mem-inv 7.918e+08 3.135e+09 1.135e+08 1.301e+07
base 766 PFLOP none active-servers 0 1.242e+05 1.128e+08 1.293e+07
base 766 PFLOP none active-servers-inv 2.481e+09 8.611e+09 1.13e+08 1.296e+07
base 766 PFLOP none random 0 2.897e+06 1.13e+08 1.294e+07
base 766 PFLOP interference mem 1.901e+10 6.425e+09 1.121e+08 1.279e+07
base 766 PFLOP interference mem-inv 2.65e+10 9.494e+09 1.137e+08 1.306e+07
base 766 PFLOP interference core-mem 1.838e+10 7.025e+09 1.121e+08 1.279e+07
base 766 PFLOP interference core-mem-inv 2.905e+10 7.354e+09 1.135e+08 1.301e+07
base 766 PFLOP interference active-servers 5.298e+08 1.934e+09 1.128e+08 1.293e+07
base 766 PFLOP interference active-servers-inv 4.045e+10 1.41e+10 1.13e+08 1.296e+07
base 766 PFLOP interference random 2.085e+09 3.228e+09 1.13e+08 1.294e+07
base 766 PFLOP failures mem 0 2.956e+07 1.121e+08 1.279e+07
base 766 PFLOP failures mem-inv 1.499e+09 3.789e+09 1.135e+08 1.301e+07
base 766 PFLOP failures core-mem 0 8.401e+06 1.121e+08 1.279e+07
base 766 PFLOP failures core-mem-inv 1.077e+09 3.287e+09 1.132e+08 1.298e+07
base 766 PFLOP failures active-servers 0 3.987e+07 1.127e+08 1.289e+07
base 766 PFLOP failures active-servers-inv 2.134e+09 8.564e+09 1.128e+08 1.295e+07
base 766 PFLOP failures random 0 1.11e+08 1.128e+08 1.289e+07
base 766 PFLOP all mem 1.859e+10 6.785e+09 1.121e+08 1.278e+07
base 766 PFLOP all mem-inv 2.603e+10 7.593e+09 1.135e+08 1.303e+07
base 766 PFLOP all core-mem 2.069e+10 6.969e+09 1.121e+08 1.278e+07
base 766 PFLOP all core-mem-inv 2.878e+10 7.465e+09 1.134e+08 1.298e+07
base 766 PFLOP all active-servers 1.059e+09 1.514e+09 1.128e+08 1.288e+07
base 766 PFLOP all active-servers-inv 3.754e+10 1.48e+10 1.129e+08 1.295e+07
base 766 PFLOP all random 3.214e+09 2.526e+09 1.129e+08 1.289e+07
base 1532 PFLOP none mem 2.108e+06 1.128e+08 1.124e+08 1.302e+07
base 1532 PFLOP none mem-inv 5.12e+09 7.258e+09 1.157e+08 1.36e+07
base 1532 PFLOP none core-mem 1.023e+06 1.213e+09 1.124e+08 1.303e+07
base 1532 PFLOP none core-mem-inv 2.448e+09 4.48e+09 1.155e+08 1.358e+07
base 1532 PFLOP none active-servers 4.9e+05 4.845e+08 1.137e+08 1.325e+07
base 1532 PFLOP none active-servers-inv 1.242e+10 1.189e+10 1.148e+08 1.347e+07
base 1532 PFLOP none random 2.81e+06 1.536e+09 1.14e+08 1.329e+07
base 1532 PFLOP interference mem 7.042e+10 1.328e+10 1.124e+08 1.302e+07

Continued on next page
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Table D.3: Results of operational phenomena experiment, with key metrics and their mean and standard deviation.

Topology Workload Op. Phen. Alloc. Policy Overcommission [MFLOP] Power Consumption [Wh]
median std median std

base 1532 PFLOP interference mem-inv 5.968e+10 1.333e+10 1.157e+08 1.36e+07
base 1532 PFLOP interference core-mem 7.529e+10 1.181e+10 1.124e+08 1.303e+07
base 1532 PFLOP interference core-mem-inv 5.868e+10 1.052e+10 1.155e+08 1.358e+07
base 1532 PFLOP interference active-servers 9.837e+09 4.374e+09 1.137e+08 1.325e+07
base 1532 PFLOP interference active-servers-inv 8.973e+10 1.804e+10 1.148e+08 1.347e+07
base 1532 PFLOP interference random 1.326e+10 6.45e+09 1.14e+08 1.329e+07
base 1532 PFLOP failures mem 2.4e+07 4.724e+08 1.124e+08 1.302e+07
base 1532 PFLOP failures mem-inv 3.479e+09 6.233e+09 1.154e+08 1.351e+07
base 1532 PFLOP failures core-mem 6.982e+07 1.22e+09 1.124e+08 1.302e+07
base 1532 PFLOP failures core-mem-inv 2.127e+09 4.865e+09 1.151e+08 1.349e+07
base 1532 PFLOP failures active-servers 1.613e+06 1.18e+09 1.137e+08 1.319e+07
base 1532 PFLOP failures active-servers-inv 8.15e+09 1.143e+10 1.142e+08 1.338e+07
base 1532 PFLOP failures random 4.024e+06 2.341e+09 1.139e+08 1.324e+07
base 1532 PFLOP all mem 7.815e+10 1.253e+10 1.124e+08 1.302e+07
base 1532 PFLOP all mem-inv 5.715e+10 9.696e+09 1.152e+08 1.353e+07
base 1532 PFLOP all core-mem 7.581e+10 1.721e+10 1.124e+08 1.302e+07
base 1532 PFLOP all core-mem-inv 5.885e+10 1.096e+10 1.153e+08 1.349e+07
base 1532 PFLOP all active-servers 1.192e+10 5.622e+09 1.137e+08 1.32e+07
base 1532 PFLOP all active-servers-inv 8.486e+10 1.848e+10 1.145e+08 1.339e+07
base 1532 PFLOP all random 1.432e+10 6.048e+09 1.139e+08 1.323e+07
base 3063 PFLOP none mem 2.118e+10 1.58e+10 1.132e+08 1.303e+07
base 3063 PFLOP none mem-inv 8.24e+09 9.127e+09 1.195e+08 1.433e+07
base 3063 PFLOP none core-mem 1.254e+10 8.967e+09 1.141e+08 1.322e+07
base 3063 PFLOP none core-mem-inv 9.598e+09 1.125e+10 1.195e+08 1.434e+07
base 3063 PFLOP none active-servers 1.201e+09 2.916e+09 1.151e+08 1.327e+07
base 3063 PFLOP none active-servers-inv 3.632e+10 3.072e+10 1.174e+08 1.4e+07
base 3063 PFLOP none random 1.872e+09 4.763e+09 1.156e+08 1.336e+07
base 3063 PFLOP interference mem 2.455e+11 2.342e+10 1.132e+08 1.303e+07
base 3063 PFLOP interference mem-inv 1.178e+11 1.717e+10 1.195e+08 1.433e+07
base 3063 PFLOP interference core-mem 1.944e+11 2.155e+10 1.141e+08 1.322e+07
base 3063 PFLOP interference core-mem-inv 1.208e+11 2.077e+10 1.195e+08 1.434e+07
base 3063 PFLOP interference active-servers 4.914e+10 1.23e+10 1.151e+08 1.327e+07
base 3063 PFLOP interference active-servers-inv 2.161e+11 3.762e+10 1.174e+08 1.4e+07
base 3063 PFLOP interference random 5.421e+10 1.603e+10 1.156e+08 1.336e+07
base 3063 PFLOP failures mem 2.779e+10 1.701e+10 1.135e+08 1.315e+07
base 3063 PFLOP failures mem-inv 6.364e+09 8.511e+09 1.188e+08 1.412e+07
base 3063 PFLOP failures core-mem 8.847e+09 8.367e+09 1.143e+08 1.317e+07
base 3063 PFLOP failures core-mem-inv 6.153e+09 7.126e+09 1.187e+08 1.413e+07
base 3063 PFLOP failures active-servers 2.111e+09 4.357e+09 1.151e+08 1.319e+07
base 3063 PFLOP failures active-servers-inv 3.255e+10 2.869e+10 1.168e+08 1.38e+07
base 3063 PFLOP failures random 9.814e+08 3.34e+09 1.156e+08 1.328e+07
base 3063 PFLOP all mem 2.217e+11 3.067e+10 1.134e+08 1.332e+07
base 3063 PFLOP all mem-inv 1.147e+11 1.401e+10 1.188e+08 1.407e+07
base 3063 PFLOP all core-mem 1.561e+11 2.525e+10 1.144e+08 1.327e+07
base 3063 PFLOP all core-mem-inv 1.216e+11 1.887e+10 1.188e+08 1.405e+07
base 3063 PFLOP all active-servers 5.691e+10 1.131e+10 1.151e+08 1.32e+07
base 3063 PFLOP all active-servers-inv 2.035e+11 2.452e+10 1.17e+08 1.383e+07
base 3063 PFLOP all random 5.885e+10 1.098e+10 1.156e+08 1.325e+07
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Table D.4: Results of composite workload experiment, with key metrics and their mean and standard deviation.

Topology Workload Op. Phen. Alloc. Policy Overcommission [MFLOP] Power Consumption [Wh]
median std median std

base all-pri failures active-servers 5.356e+08 2.428e+09 4.382e+07 3.95e+06
base pri-75-pub-25 failures active-servers 4.324e+10 3.961e+10 4.369e+07 4.089e+06
base pri-50-pub-50 failures active-servers 1.358e+11 9.609e+10 4.353e+07 4.548e+06
base pri-25-pub-75 failures active-servers 2.838e+11 1.168e+11 4.352e+07 6.325e+06
base all-pub failures active-servers 4.032e+11 1.541e+11 3.988e+07 9.219e+06

all-pri failures active-servers 1.094e+07 5.261e+08 6.885e+07 6.188e+06

pri-75-pub-25 failures active-servers 4.378e+10 3.267e+10 6.872e+07 6.294e+06

pri-50-pub-50 failures active-servers 1.022e+11 9.59e+10 6.862e+07 6.703e+06

pri-25-pub-75 failures active-servers 2.505e+11 1.061e+11 6.911e+07 9.373e+06

all-pub failures active-servers 3.325e+11 1.444e+11 6.102e+07 1.355e+07

all-pri failures active-servers 2.181e+08 3.535e+09 4.694e+07 4.228e+06

pri-75-pub-25 failures active-servers 3.912e+10 3.111e+10 4.684e+07 4.359e+06

pri-50-pub-50 failures active-servers 1.25e+11 1.008e+11 4.667e+07 4.733e+06

pri-25-pub-75 failures active-servers 2.456e+11 1.116e+11 4.664e+07 6.696e+06

all-pub failures active-servers 3.572e+11 1.698e+11 4.242e+07 9.665e+06

all-pri failures active-servers 1.862e+07 5.246e+08 6.901e+07 6.204e+06

pri-75-pub-25 failures active-servers 4.804e+10 3.466e+10 6.883e+07 6.318e+06

pri-50-pub-50 failures active-servers 1.234e+11 9.76e+10 6.872e+07 6.752e+06

pri-25-pub-75 failures active-servers 2.658e+11 1.131e+11 6.922e+07 9.444e+06

all-pub failures active-servers 3.829e+11 1.559e+11 6.125e+07 1.369e+07
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Table D.5: Results of HPC experiment, with key metrics and their mean and standard deviation.

Topology Workload (HPC) Op. Phen. Alloc. Policy Overcommission [MFLOP] Power Consumption [Wh]
median std median std

base 0% VM set-size all active-servers 9.257e+10 3.891e+10 1.153e+08 1.316e+07
base 25% total load all active-servers 2.454e+11 2.889e+10 1.142e+08 6.333e+06
base 50% total load all active-servers 2.735e+11 6.93e+09 1.426e+08 5.504e+06
base 100% total load all active-servers 5.166e+11 6.571e+09 1.718e+08 6.85e+06
base 25% VM set-size all active-servers 7.443e+10 1.021e+10 1.124e+08 3.687e+06
base 50% VM set-size all active-servers 1.145e+11 1.019e+10 1.119e+08 3.729e+06
base 100% VM set-size all active-servers 1.805e+11 5.062e+09 8.978e+07 9.291e+06

0% VM set-size all active-servers 6.552e+10 3.524e+10 1.811e+08 2.095e+07

25% total load all active-servers 1.465e+11 5.719e+09 1.773e+08 5.881e+06

50% total load all active-servers 2.648e+11 1.575e+10 1.902e+08 5.968e+06

100% total load all active-servers 5.166e+11 4.903e+09 2.183e+08 1.336e+07

25% VM set-size all active-servers 6.5e+10 5.853e+09 1.769e+08 5.87e+06

50% VM set-size all active-servers 9.971e+10 6.943e+09 1.765e+08 5.913e+06

100% VM set-size all active-servers 1.853e+11 1.925e+09 1.241e+08 5.926e+06

0% VM set-size all active-servers 8.389e+10 3.47e+10 1.233e+08 1.412e+07

25% total load all active-servers 2.112e+11 1.678e+10 1.2e+08 4.002e+06

50% total load all active-servers 2.594e+11 1.784e+10 1.311e+08 7.406e+06

100% total load all active-servers 4.931e+11 1.062e+10 1.582e+08 1.065e+07

25% VM set-size all active-servers 7.193e+10 1.027e+10 1.204e+08 3.941e+06

50% VM set-size all active-servers 1.058e+11 7.143e+09 1.199e+08 4.002e+06

100% VM set-size all active-servers 1.767e+11 6.772e+09 8.401e+07 4.051e+06

0% VM set-size all active-servers 6.617e+10 3.526e+10 1.815e+08 2.097e+07

25% total load all active-servers 1.47e+11 7.966e+09 1.776e+08 5.883e+06

50% total load all active-servers 2.655e+11 1.287e+10 1.905e+08 5.97e+06

100% total load all active-servers 5.172e+11 5.641e+09 2.186e+08 1.317e+07

25% VM set-size all active-servers 6.479e+10 6.759e+09 1.772e+08 5.862e+06

50% VM set-size all active-servers 1.009e+11 4.881e+09 1.768e+08 5.926e+06

100% VM set-size all active-servers 1.854e+11 2.108e+09 1.243e+08 5.936e+06
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Table D.6: Results of the replay experiment (see Appendix B), with key metrics and their mean and standard deviation.

Topology Workload Op. Phen. Alloc. Policy Overcommission [MFLOP] Power Consumption [Wh]
median std median std

base 3063 PFLOP none replay 393283398 1.076e+09 9.646e+07 1.225e+07
base 3063 PFLOP none active-servers 1200611704 2.916e+09 1.151e+08 1.327e+07



Acronyms

CMMI Capability Maturity Model Integration. 15

COBIT Control Objectives for Information and Related Technologies. 16

FaaS Function as a Service. 44, 77

FOSS Free and Open Source Software. 5, 59, 76

GDPR General Data Protection Regulation. 13, 45, 80

HPC High Performance Computing. 8, 37, 39, 44, 60, 61, 67, 73, 74

IaaS Infrastructure as a Service. 1, 3, 17

IT Information Technology. 14, 15, 79, 80

ITIL Information Technology Infrastructure Library. 15

MOF Microsoft Operations Framework. 16

PaaS Platform as a Service. 3, 17

PCA Principal Component Analysis. 19

QoS Quality of Service. 2, 8, 9, 40, 51, 52, 56, 72, 75

SaaS Software as a Service. 1

SLA Service Level Agreement. 2, 3, 9, 12–14, 16, 20, 27, 29, 30, 51, 67

SLI Service Level Indicator. 65

SLO Service Level Objective. 2, 9, 12, 51, 53, 54, 56, 65

TOGAF The Open Group Architecture Framework. 16

VM Virtual Machine. 1, 8, 9, 17, 20–22, 37, 39, 44, 54, 59–65, 67–70, 72, 73, 88–109

119





Bibliography

[1] CMMI v2.0, 2018. URL https://cmmiinstitute.com/cmmi.

[2] The TOGAF Standard, 2018. URL https://publications.opengroup.org/c182.

[3] Geetha Adinarayan. Monitoring and capacity planning of private clouds: the challenges and the solu-
tion. IEEE Cloud Computing for Emerging Markets, CCEM 2012 - Proceedings, pages 180–182, 2012.

[4] Omid Alipourfard et al. Risk based planning of network changes in evolving data centers. Proceedings
of the 27th ACM Symposium on Operating Systems Principles, page 414–429, 2019.

[5] Virgílio A.F. Almeida and Daniel A. Menascé. Capacity planning: An essential tool for managing Web
services. IT Professional, 4(4):33–38, 2002.

[6] Tayfur Altiok and Mesut Gunduc. A Capacity Planning Tool for the Tuxedo Middleware Used in Trans-
action Processing Systems. In Winter SImulation Conference, pages 502–507, 2001.

[7] George Amvrosiadis et al. On the diversity of cluster workloads and its impact on research results. In
2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages
533–546, 2018.

[8] Georgios Andreadis. Literature on Cloud Capacity Planning – Dataset, 2020. URL https://doi.org/
10.5281/zenodo.3989102.

[9] Georgios Andreadis et al. A reference architecture for datacenter scheduling: Design, validation, and
experiments. SC’2018, pages 478–492, 2018.

[10] Danilo Ardagna, Barbara Panicucci, and Mauro Passacantando. A game theoretic formulation of the
service provisioning problem in cloud systems. Proceedings of the 20th International Conference on
World Wide Web, WWW 2011, pages 177–186, 2011.

[11] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The Datacenter as a Computer: De-
signing Warehouse-Scale Machines. Synthesis lectures on computer architecture. Morgan and Claypool,
2018. 3rd Edition.

[12] Salman A Baset, Long Wang, and Chunqiang Tang. Towards an understanding of oversubscription in
cloud. 2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks
and Services, 2012.

[13] Rabih Bashroush and Moustafa Noureddine. A cost effective cloud data centre capacity planning
method based on modality cost analysis. International Journal of Communication Networks and Dis-
tributed Systems, 11(3):250–261, 2013.

[14] Joe Bauer and Al Bellamy. Latent Effects of Cloud Computing on IT Capacity Management Structures.
International Journal of Computer and Communication Engineering, 6(2):111–126, 2017.

[15] Joseph Frederick Bauer. Understanding How Organizations Operate Their IT Capacity-Management
Processes. PhD thesis, 2015.

[16] Betsy Beyer et al. Site Reliability Engineering: How Google Runs Production Systems. O’Reilly Media,
2016.

[17] Robert Birke et al. Failure analysis of virtual and physical machines: Patterns, causes and characteris-
tics. 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2014,
pages 1–12, 2014.

121

https://cmmiinstitute.com/cmmi
https://publications.opengroup.org/c182
https://doi.org/10.5281/zenodo.3989102
https://doi.org/10.5281/zenodo.3989102


122 Bibliography

[18] Mark Blackburn and Green Grid. Five ways to reduce data center server power consumption. The Green
Grid, 42:12, 2008.

[19] Raphael Bolze et al. Grid’5000: A large scale and highly reconfigurable experimental grid testbed. Int.
J. High Perform. Comput. Appl., 20(4):481–494, 2006.

[20] Tim Browning. Capacity Planning for Computer Systems. Academic Press, 1994.

[21] Rodrigo N. Calheiros et al. Cloudsim: a toolkit for modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning algorithms. Softw. Pract. Exp., 41(1):23–50, 2011.

[22] David Candeia, Ricardo Araujo Santos, and Raquel Lopes. Business-Driven Long-Term Capacity Plan-
ning for SaaS Applications. IEEE Transactions on Cloud Computing, 3(3):290–303, 2015.

[23] Marcus Carvalho, Daniel A. Menascé, and Francisco Brasileiro. Capacity planning for IaaS cloud
providers offering multiple service classes. Future Generation Computer Systems, 77:97–111, 2017.

[24] Marcus Carvalho et al. Multi-dimensional admission control and capacity planning for iaas clouds with
multiple service classes. Proceedings - 2017 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGRID 2017, pages 160–169, 2017.

[25] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of Resource Provisioning Cost in Cloud
Computing. IEEE Transactions on Services Computing, 5(2):164–177, 2012.

[26] Sivadon Chaisiri, Dusit Niyato, and Bu Sung Lee. Capacity planning for data center to support green
computing. 2014 11th Int. Joint Conf. on Computer Science and Software Engineering: "Human Factors
in Computer Science and Software Engineering" - e-Science and High Performance Computing: eHPC,
JCSSE 2014, pages 152–157, 2014.

[27] Mark Chamness. Capacity forecasting in a backup storage environment. USENIX Large Installation
System Administration Conference (LISA), 2011.

[28] Shuang Chen, Yanzhi Wang, and Massoud Pedram. Concurrent placement, capacity provisioning, and
request flow control for a distributed cloud infrastructure. 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6, 2014.

[29] Yanpei Chen, Vern Paxson, and Randy H Katz. What’s new about cloud computing security. University
of California, Berkeley Report No. UCB/EECS-2010-5 January, 20, 2010.

[30] Ludmila Cherkasova, Wenting Tang, and Sharad Singhal. An SLA-oriented capacity planning tool for
streaming media services. Proceedings of the International Conference on Dependable Systems and Net-
works, pages 743–752, 2004.

[31] Yi Ju Chiang and Yen Chieh Ouyang. Profit optimization in sla-aware cloud services with a finite capac-
ity queuing model. Mathematical Problems in Engineering, 2014, 2014.

[32] Gerry Coleman and Rory O’Connor. Using grounded theory to understand software process improve-
ment: A study of Irish software product companies. Information and Software Technology, 49(6):654–
667, 2007.

[33] Eli Cortez et al. Resource central: Understanding and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 153–167, 2017.

[34] Pratyush K. Deka et al. Adversarial impact on anomaly detection in cloud datacenters. In 2019 IEEE
24th Pacific Rim International Symposium on Dependable Computing (PRDC), pages 188–18809. IEEE,
2019.

[35] Jay L. Devore. Probability and Statistics for Engineering and the Sciences, 7Ed. Brooks Cole Cengage
Learning, 2009.



Bibliography 123

[36] Christoph Dorsch and Björn Häckel. Combining models of capacity supply to handle volatile demand:
The economic impact of surplus capacity in cloud service environments. Decision Support Systems, 58
(1):3–14, 2014.

[37] Dmitry Duplyakin et al. The design and operation of cloudlab. 2019 USENIX Annual Technical Confer-
ence, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019, pages 1–14, 2019.

[38] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder. Learning from failure across multiple clusters:
A trace-driven approach to understanding, predicting, and mitigating job terminations. In 37th IEEE
International Conference on Distributed Computing Systems, ICDCS 2017, pages 1333–1344, 2017.

[39] Martin Ester et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining,
pages 226–231, 1996.

[40] Flexera. State of the Cloud Report. Tech. Rep., 2020.

[41] Matthieu Gallet et al. A model for space-correlated failures in large-scale distributed systems. In Euro-
Par 2010 - Parallel Processing, 16th International Euro-Par Conference, Ischia, Italy, August 31 - Septem-
ber 3, 2010, Proceedings, Part I, volume 6271, pages 88–100, 2010.

[42] Gartner Inc. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17% in 2020. Press Release,
2019.

[43] Frank Gens. Worldwide and Regional Public IT Cloud Services 2019–2023 Forecast. Tech. Rep. by IDC,
Doc. #US44202119, Aug 2019.

[44] Rahul Ghosh et al. Stochastic model driven capacity planning for an infrastructure-as-a-service cloud.
IEEE Transactions on Services Computing, 7(4):667–680, 2014.

[45] James Glanz. Data Centers Waste Vast Amounts of Energy, Belying Industry Image. N.Y. Times, 2012.

[46] Daniel Gmach et al. Capacity management and demand prediction for next generation data centers.
Proceedings - 2007 IEEE International Conference on Web Services, ICWS 2007, (July):43–50, 2007.

[47] Marcelo Goncalves et al. Performance Inference: A Novel Approach for Planning the Capacity of IaaS
Cloud Applications. Proceedings - 2015 IEEE 8th International Conference on Cloud Computing, CLOUD
2015, pages 813–820, 2015.

[48] Albert G. Greenberg et al. The cost of a cloud: research problems in data center networks. Computer
Communication Review, 39(1):68–73, 2009.

[49] Neil J. Gunther. Guerrilla Capacity Planning. Springer, 2007.

[50] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing Theory in Ac-
tion. Cambridge University Press, Online, 2013.

[51] Nikolas Herbst et al. Quantifying cloud performance and dependability: Taxonomy, metric design,
and emerging challenges. ACM Transactions on Modeling and Performance Evaluation of Computing
Systems, 3(4), 2018.

[52] Hewlett-Packard Development Company. HP Capacity Advisor Version 7.4, 2014. URL https://supp
ort.hpe.com/hpsc/doc/public/display?docId=emr_na-c04453044. [Online; accessed 25-May-
2020].

[53] Takahiro Hirofuchi, Adrien Lebre, and Laurent Pouilloux. Simgrid VM: virtual machine support for a
simulation framework of distributed systems. IEEE Trans. Cloud Computing, 6(1):221–234, 2018.

[54] David Hixson et al. Capacity Planning. USENIX ;login, February, 2015.

[55] Phillip C. Howard. IS Capacity Management Handbook Series-Volume 1-Capacity Planning. Institute
for Computer Capacity Management, 1992.

https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04453044
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04453044


124 Bibliography

[56] Woonghee Tim Huh, Robin O. Roundy, and Metin Çakanyildirim. A general strategic capacity planning
model under demand uncertainty. Naval Research Logistics, 53(2):137–150, 2006.

[57] IBM. IBM Z Performance and Capacity Analytics tool, 2019. URL https://www.ibm.com/us-en/ma
rketplace/z-decision-support-for-capacity-planning. [Online; accessed 25-May-2020].

[58] Alexandru Iosup et al. The Grid Workloads Archive. Future Generation Computer Systems, 24(7):672–
686, 2008.

[59] Alexandru Iosup et al. The opendc vision: Towards collaborative datacenter simulation and exploration
for everybody. ISPDC’17, pages 85–94, 2017.

[60] Alexandru Iosup et al. Massivizing computer systems: A vision to understand, design, and engineer
computer ecosystems through and beyond modern distributed systems. Proceedings - International
Conference on Distributed Computing Systems, 2018-July:1224–1237, 2018.

[61] Alexandru Iosup et al. The AtLarge Vision on the Design of Distributed Systems and Ecosystems. In
2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pages 1765–1776.
IEEE, 2019.

[62] ISACA. COBIT 2019 Framework -Governance and Management Objectives. 2019.

[63] ISO/IEC JTC 1/SC 40 IT Service Management and IT Governance. Iso/Iec 20000-1:2018, 2018. URL
https://www.iso.org/standard/70636.html.

[64] ITIL. ITIL Foundation. AXELOS, 2019.

[65] Iván Carrera Izurieta and Cláudio Resin Geyer. Impressionism in cloud computing a position paper on
capacity planning in cloud computing environments. ICEIS 2013 - Proceedings of the 15th International
Conference on Enterprise Information Systems, 2:333–338, 2013.

[66] Bahman Javadi et al. The failure trace archive: Enabling the comparison of failure measurements and
models of distributed systems. J. Parallel Distributed Comput., 73(8):1208–1223, 2013.

[67] Myeongjae Jeon et al. Analysis of large-scale multi-tenant GPU clusters for DNN training workloads.
In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019,
pages 947–960, 2019.

[68] Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Profiling services for resource optimization and ca-
pacity planning in distributed systems. Cluster Computing, 11(4):313–329, 2008.

[69] Haokun Jiang and Xiaotong Sun. Understanding Networking Capacity Management in Cloud Comput-
ing. In International Conference on Smart Computing and Communication, pages 516–526, 2017.

[70] Yexi Jiang, Chang Shing Perng, Tao Li, and Rong Chang. Self-adaptive cloud capacity planning. Pro-
ceedings - 2012 IEEE 9th International Conference on Services Computing, SCC 2012, pages 73–80, 2012.

[71] K. Kant and Youjip Won. Server capacity planning for web traffic workload. IEEE Transactions on Knowl-
edge and Data Engineering, 12(1):141–141, 1999.

[72] Arun Kejariwal and John Allspaw. The Art of Capacity Planning: Scaling Web Resources in the Cloud.
O’Reilly, 2017.

[73] A. Kimms. Stability measures for rolling schedules with applications to capacity expansion planning,
master production scheduling, and lot sizing. 1998.

[74] Younggyun Koh et al. An analysis of performance interference effects in virtual environments. In IEEE
International Symposium on Performance Analysis of Systems & Software, pages 200–209, 2007.

[75] Fanxin Kong and Xue Liu. GreenPlanning: Optimal Energy Source Selection and Capacity Planning
for Green Datacenters. 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems, ICCPS
2016 - Proceedings, pages 1–10, 2016.

https://www.ibm.com/us-en/marketplace/z-decision-support-for-capacity-planning
https://www.ibm.com/us-en/marketplace/z-decision-support-for-capacity-planning
https://www.iso.org/standard/70636.html


Bibliography 125

[76] Yousri Kouki and Thomas Ledoux. SLA-driven capacity planning for Cloud applications. CloudCom
2012 - Proceedings: 2012 4th IEEE International Conference on Cloud Computing Technology and Sci-
ence, pages 135–140, 2012.

[77] Samuel Kounev et al. Automated simulation-based capacity planning for enterprise data fabrics. SIMU-
Tools 2011 - 4th International ICST Conference on Simulation Tools and Techniques, pages 27–36, 2011.

[78] Rouven Krebs, Christof Momm, and Samuel Kounev. Metrics and techniques for quantifying perfor-
mance isolation in cloud environments. Science of Computer Programming, pages 116–134, 2014.

[79] Shui F. Lam and K. Hung Chan. Computer capacity planning: theory and practice. Academic Press,
1987.

[80] Tan N. Le et al. Joint capacity planning and operational management for sustainable data centers and
demand response. Proceedings of the 7th International Conference on Future Energy Systems, e-Energy
2016, 2016.

[81] Loo Hay Lee et al. Vehicle capacity planning system: A case study on vehicle routing problem with
time windows. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 33(2):
169–178, 2003.

[82] Sang Bum Lee and Hanan Luss. Multifacility-Type Capacity Expansion Planning: Algorithms and Com-
plexities. Operations Research, 35(2):249–253, 1987.

[83] Weiling Li et al. On Stochastic Performance and Cost-Aware Optimal Capacity Planning of Unreliable
Infrastructure-as-a-Service Cloud. In International Conference on Algorithms and Architectures for Par-
allel Processing, pages 644–657, 2016.

[84] Charles Loboz. Cloud Resource Usage-Heavy Tailed Distributions Invalidating Traditional Capacity
Planning Models. Journal of Grid Computing, 10(1):85–108, 2012.

[85] Raquel Lopes, Francisco Brasileiro, and Paulo Ditarso Maciel. Business-driven capacity planning of
a cloud-based IT infrastructure for the execution of web applications. Proceedings of the 2010 IEEE
International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW
2010, pages 1–8, 2010.

[86] Baochuan Lu, Linh Ngo, Hung Bui, Amy Apon, Nathan Hamm, Larry Dowdy, Doug Hoffman, and
Denny Brewer. Capacity Planning of a Commodity Cluster in an Academic Environment: A Case Study.
9th LCI International Conference on High-Performance Clustered Computing, 2008.

[87] Sara Lumbreras and Andrés Ramos. The new challenges to transmission expansion planning. Survey
of recent practice and literature review. Electric Power Systems Research, 134:19–29, 2016.

[88] Hanan Luss. Operations Research and Capacity Expansion Problems: a Survey. Operation Research, 30
(5):907–947, 1982.

[89] Joseph S. Martinich. Production and Operations Management. John Wiley & Sons, 1997.

[90] Peter Mell and Timothy Grance. The nist definition of cloud computing. Technical Report 800-145,
National Institute of Standards and Technology (NIST), 2011.

[91] Daniel A. Menascé and Virgílio A.F. Almeida. Capacity Planning for Web Services: metrics, models, and
methods. Prentice Hall, 2001.

[92] Daniel A. Menascé, Robert Peraino, Nikki Dinh, and Quan T. Dinh. Planning the capacity of a web
server: an experience report. In Computer Measurement Group Conference, 1999.

[93] Microsoft. Microsoft ® Operations Framework Version 4.0, 2008. URL https://docs.microsoft.c
om/en-us/previous-versions/tn-archive/cc506049%28v%3Dtechnet.10%29.

[94] Jeffrey C Mogul and John Wilkes. Nines are not enough: meaningful metrics for clouds. pages 136–141,
2019.

https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc506049%28v%3Dtechnet.10%29
https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc506049%28v%3Dtechnet.10%29


126 Bibliography

[95] Jeffrey C Mogul et al. Experiences with modeling network topologies at multiple levels of abstraction. In
17th USENIX Symposium on Networked Systems Design and Implementation (NSDI20), pages 403–418,
2020.

[96] Swarna Mylavarapu, Vijay Sukthankar, and Pradipta Banerjee. An optimized capacity planning ap-
proach for virtual infrastructure exhibiting stochastic workload. Proceedings of the ACM Symposium on
Applied Computing, pages 386–390, 2010.

[97] Shinji Nakadai and Kunihiro Taniguchi. Server capacity planning with priority allocation for service
level management in heterogeneous server clusters. 10th IFIP/IEEE International Symposium on Inte-
grated Network Management 2007, IM ’07, pages 753–756, 2007.

[98] Derek L. Nazareth and Jae Choi. Capacity management for cloud computing: a system dynamics ap-
proach. AMCIS 2017 - America’s Conference on Information Systems: A Tradition of Innovation, 2017-
Augus:1–10, 2017.

[99] Marius Noreikis, Yu Xiao, and Antti Yla-Jaaiski. QoS-oriented capacity planning for edge computing.
IEEE International Conference on Communications, 2017.

[100] Alberto Nuñez et al. iCanCloud: A flexible and scalable cloud infrastructure simulator. J. Grid Comput.,
10(1):185–209, 2012.

[101] Isaac Odun-Ayo, Olasupo Ajayi, Rowland Goddy-Worl, and Jamaiah Yahaya. A Systematic Mapping
Study of Cloud Resources Management and Scalability in Brokering, Scheduling, Capacity Planning
and Elasticity. Asian Journal of Scientific Research, 12(2):151–166, 2019.

[102] Per Olov Ostberg et al. Reliable capacity provisioning for distributed cloud/edge/fog computing appli-
cations. EuCNC 2017 - European Conference on Networks and Communications, pages 1–6, 2017.

[103] Ranjan Pal and Pan Hui. Economic models for cloud service markets: Pricing and Capacity planning.
Theoretical Computer Science, 496:113–124, 2013.

[104] Kiejin Park and Sungsoo Kim. A capacity planning model of unreliable multimedia service systems.
Journal of Systems and Software, 63(1):69–76, 2002.

[105] Jayneel Patel, Shahram Sarkani, and Thomas Mazzuchi. Knowledge based data center capacity re-
duction using sensitivity analysis on causal Bayesian belief network. Information Knowledge Systems
Management, 12(2):135–148, 2013.

[106] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[107] Frank W A D Prabath. Workload and Performance Aware Capacity Planning. PhD thesis, 2017.

[108] Hassan Raei. Capacity planning framework for mobile network operator cloud using analytical perfor-
mance model. International Journal of Communication Systems, 30(17):1–12, 2017.

[109] Venkateshwar Rao and Sarika Rao. Application of artificial neural networks in capacity planning of
cloud based IT infrastructure. IEEE Cloud Computing for Emerging Markets, CCEM 2012 - Proceedings,
pages 38–41, 2012.

[110] Neil Rasmussen. Power and Cooling Capacity Management for Data Centers. APC White Paper #150,
(Rev 0):18, 2007.

[111] Charles Reiss, John Wilkes, and Joseph L Hellerstein. Google cluster-usage traces: format and schema.
Google Inc., White Paper, pages 1–14, 2011.

[112] Chuangang Ren, Di Wang, Bhuvan Urgaonkar, and Anand Sivasubramaniam. Carbon-aware energy ca-
pacity planning for datacenters. Proceedings of the 2012 IEEE 20th International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS 2012, pages
391–400, 2012.



Bibliography 127

[113] Marcel Risch, Yannis Makrypoulias, and Sergios Soursos. Economics-Aware Capacity Planning for
Commercial Grids. Technical report, 2008.

[114] Jerry Rolia et al. A capacity management service for resource pools. Proceedings of the Fifth Interna-
tional Workshop on Software and Performance, WOSP’05, pages 229–237, 2005.

[115] Nilabja Roy, Abhishek Dubey, Aniruddha Gokhale, and Larry Dowdy. A capacity planning process for
performance assurance of component-based distributed systems. ICPE’11 - Proceedings of the 2nd
Joint WOSP/SIPEW International Conference on Performance Engineering, pages 259–270, 2011.

[116] Naidila Sadashiv, S. M.Dilip Kumar, and R. S. Goudar. Cloud capacity planning and HSI based opti-
mal resource provisioning. Proceedings of the 2017 2nd IEEE International Conference on Electrical,
Computer and Communication Technologies, ICECCT 2017, pages 0–5, 2017.

[117] Semih Salihoglu and M. Tamer Özsu. Response to "scale up or scale out for graph processing". IEEE
Internet Comput., 22(5):18–24, 2018.

[118] Nay Myo Sandar, Lin Min Min Myint, and Sivadon Chaisiri. An optimization approach to capacity
planning of aggregators and resource provisioning in cloud providers for meteorological sensor net-
work. Proceedings of the 2015 12th International Joint Conference on Computer Science and Software
Engineering, JCSSE 2015, pages 195–200, 2015.

[119] S Shang, Y Wu, J Jiang, and W Zheng. An Intelligent Capacity Planning Model for Cloud Market. Journal
of Internet Services and Information Security, 1(1):37–45, 2011.

[120] Siqi Shen, Vincent Van Beek, and Alexandru Iosup. Statistical characterization of business-critical
workloads hosted in cloud datacenters. Proceedings - 2015 IEEE/ACM 15th International Symposium
on Cluster, Cloud, and Grid Computing, CCGrid 2015, pages 465–474, 2015.

[121] Zhiming Shen et al. CloudScale: Elastic resource scaling for multi-tenant cloud systems. Proceedings
of the 2nd ACM Symposium on Cloud Computing, SOCC 2011, 2011.

[122] Amy Spellmann, Richard Gimarc, and Charles Gimarc. Green capacity planning: Theory and practice.
34th International Conference Computer Measurement Group, 2008.

[123] Ling Tang and Hao Chen. Joint Pricing and Capacity Planning in the IaaS Cloud Market. IEEE Transac-
tions on Cloud Computing, 5(1):57–70, 2017.

[124] Adel Nadjaran Toosi, Kurt Vanmechelen, Kotagiri Ramamohanarao, and Rajkumar Buyya. Revenue
Maximization with Optimal Capacity Control in Infrastructure as a Service Cloud Markets. IEEE Trans-
actions on Cloud Computing, 3(3):261–274, 2015.

[125] Daniel W Turner. Qualitative Interview Design: A Practical Guide for Novice Investigators. Qualitative
Report, 15(3):7, 2010.

[126] Alexandru Uta et al. An MRI-Like View into the Life of a Datacenter. USENIX ;login, Fall, 2020.

[127] Vincent van Beek, Giorgos Oikonomou, and Alexandru Iosup. A CPU Contention Predictor for
Business-Critical Workloads in Cloud Datacenters. In HotCloudPerf, pages 56–61, 2019.

[128] André van Hoorn. Model-Driven Online Capacity Management for Component-Based Software Systems.
2014.

[129] Arunchandar Vasan et al. Worth their watts? - an empirical study of datacenter servers. HPCA16, pages
1–10, 2010.

[130] Abhishek Verma et al. Large-scale cluster management at google with borg. pages 1–17, 2015.

[131] Laurens Versluis, Roland Mathá, Sacheendra Talluri, Tim Hegeman, Radu Prodan, Ewa Deelman, and
Alexandru Iosup. The Workflow Trace Archive: Open-Access Data from Public and Private Computing
Infrastructures-Technical Report. 2019.



128 Bibliography

[132] VMware. VMware Capacity Planner, 2009. URL https://www.vmware.com/nl/products/capacit
y-planner.html. [Online; accessed 25-May-2020].

[133] Jinru Wang, Meina Song, Qian Chang, and Qin Shu. Capacity Planning for Telecom Operation Support
System Cloud Migration. In International Conference on Human Centered Computing, pages 427–440,
2015.

[134] Wei Wang, Baochun Li, and Ben Liang. Towards optimal capacity segmentation with hybrid cloud pric-
ing. Proceedings - International Conference on Distributed Computing Systems, pages 425–434, 2012.

[135] Mark D. Wilkinson et al. The FAIR Guiding Principles for scientific data management and stewardship.
Nature SciData, 3, 2016.

[136] Peng Xiao et al. Detecting ddos attacks against data center with correlation analysis. Computer Com-
munications, 67:66–74, 2015.

[137] Jie Xu and Chenbo Zhu. Optimal Pricing and Capacity Planning of a New Economy Cloud Computing
Service Class. Proceedings - 2015 International Conference on Cloud and Autonomic Computing, ICCAC
2015, pages 149–157, 2015.

[138] Chun Zhang et al. An optimal capacity planning algorithm for provisioning cluster-based failure-
resilient composite services. SCC 2009 - 2009 IEEE International Conference on Services Computing,
pages 112–119, 2009.

[139] Qi Zhang et al. R-capriccio: A capacity planning and anomaly detection tool for enterprise services
with live workloads. ACM/IFIP/USENIX 2007 International Conference on Middleware, page 244–265,
2007.

[140] Ningxin Zheng, Quan Chen, Yong Yang, Jin Li, Wenli Zheng, and Minyi Guo. POSTER : Precise Capacity
Planning for Database Public Clouds. 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 457–458, 2019.

https://www.vmware.com/nl/products/capacity-planner.html
https://www.vmware.com/nl/products/capacity-planner.html

	Introduction
	Primer on Capacity Planning for Cloud Infrastructure
	Problem Statement
	Research Questions
	Approach
	Development and Dissemination
	Guidelines for Reading

	State-of-the-Art
	System Model for Datacenter Operations
	Capacity Planning Across Domains
	Capacity Planning for Computer Systems
	Capturing Capacity Planning Practice

	Systematic Literature Survey of Capacity Planning
	Overview
	Method
	Taxonomy of Capacity Planning Approaches
	Systematic Map of the Capacity Planning Literature
	Meta-Analysis of the Field
	Comparison to Theory
	Discussion

	Real-World Survey of Capacity Planning
	Overview
	Method
	Main Observations from the Interviews
	Full Observations from the Interviews
	Discussion

	Design of Capelin: A Capacity Planning System for Cloud Infrastructure
	Overview
	Requirements Analysis
	Overview of the Capelin Architecture
	Portfolio Abstraction for Capacity Planning
	Discussion

	Evaluation of Capelin, through Experiments with a Real-World Prototype
	Overview
	Implementation of a Software Prototype
	Experiments with Capelin
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Capacity Planning Interview Script
	Part 1: Overview (15')
	Part 2: The Process (15')
	Part 3: Inside Factors (15')
	Part 4: Outside Factors (10')
	Part 5: Summary and Follow-Up (5')

	External Validation of the Simulation
	How to ensure simulator outputs are valid?
	How to ensure simulator outputs are sound?
	How to ensure no regression in subsequent simulator versions?

	Full Visual Experiment Results
	Full Tabular Experiment Results
	Bibliography

