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Formal Verification of Unknown Dynamical
Systems via Gaussian Process Regression

John Skovbekk , Student Member, IEEE, Luca Laurenti , Member, IEEE, Eric Frew ,
and Morteza Lahijanian , Member, IEEE

Abstract—Leveraging autonomous systems in safety-
critical scenarios requires verifying their behaviors in the
presence of uncertainties and black-box components that
influence the system dynamics. In this work, we develop
a framework for verifying discrete-time dynamical sys-
tems with unmodeled dynamics and noisy measurements
against temporal logic specifications from an input–output
dataset. The verification framework employs Gaussian pro-
cess (GP) regression to learn the unknown dynamics from
the dataset and abstracts the continuous-space system as
a finite-state, uncertain Markov decision process (MDP).
This abstraction relies on space discretization and transi-
tion probability intervals that capture the uncertainty due
to the error in GP regression by using reproducible kernel
Hilbert space analysis as well as the uncertainty induced
by discretization. The framework utilizes existing model
checking tools for verification of the uncertain MDP ab-
straction against a given temporal logic specification. We
establish the correctness of extending the verification re-
sults on the abstraction created from noisy measurements
to the underlying system. We show that the computational
complexity of the framework is polynomial in the size of the
dataset and discrete abstraction. The complexity analysis
illustrates a tradeoff between the quality of the verifica-
tion results and the computational burden to handle larger
datasets and finer abstractions. Finally, we demonstrate
the efficacy of our learning and verification framework on
several case studies with linear, nonlinear, and switched
dynamical systems.

Index Terms—Bayesian inference, data-driven certifica-
tion, data-driven modeling, formal logic, formal verification,
Gaussian processes (GPs), Markov decision processes
(MDPs).

I. INTRODUCTION

R ECENT advances in technology have led to a rapid
growth of autonomous systems operating in safety-critical

domains. Examples include self-driving vehicles, unmanned

Received 19 June 2024; revised 25 October 2024 and 20 December
2024; accepted 7 January 2025. Date of publication 22 January 2025;
date of current version 30 July 2025. This work was supported in part
by NSF under Grant 2039062 and in part by NSF Center for Unmanned
Aircraft Systems under Grant IIP-1650468. Recommended by Associate
Editor Z. Shu. (Corresponding author: John Skovbekk.)

John Skovbekk, Eric Frew, and Morteza Lahijanian are with the
Smead Aerospace Engineering Sciences Department, University of Col-
orado, Boulder, CO 80305 USA (e-mail: john.skovbekk@colorado.edu;
eric.frew@colorado.edu; morteza.lahijanian@colorado.edu).

Luca Laurenti is with the Delft Center for Systems and Control, TU
Delft, 2628 CD Delft, The Netherlands (e-mail: l.laurenti@tudelft.nl).

Digital Object Identifier 10.1109/TAC.2025.3532812

aircraft, and surgical robotics. As these systems are given such
delicate roles, it is essential to provide guarantees on their
performance. To address this need, formal verification offers
a powerful framework with rigorous analysis techniques [1],
[2], which are traditionally model-based. An accurate dynamics
model for an autonomous system, however, may be unavail-
able due to, e.g., black-box components, or so complex that
existing verification tools cannot handle. To deal with such
shortcomings, machine learning offers capable methods that
can identify models solely from data. While eliminating the
need for an accurate model, these learning methods often lack
quantified guarantees with respect to the latent system [3]. The
gap between model-based and data-driven approaches is in fact
the key challenge in verifiable autonomy. This work focuses on
closing this gap by developing a data-driven verification method
that can provide formal guarantees for systems with unmodeled
dynamics.

Formal verification of continuous control systems has been
widely studied, e.g., [4], [5], [6], [7], [8], [9], [10]. These
methods are typically based on model checking algorithms [1],
[2], which check whether a finite-state model satisfies a given
specification. The specification language is usually a form of
temporal logic, which provides rich expressivity. Specifically,
probabilistic linear temporal logic (LTL) and probabilistic com-
putation tree logic (PCTL) are used to define specifications for
stochastic systems [1], [2]. To bridge the gap between continuous
and discrete domains, a finite-state abstraction is constructed.
This takes the form of a finite Markov process if the latent system
is stochastic [10], [11], [12], and the resulting frameworks admit
strong formal guarantees. Nevertheless, these frameworks are
model-based and cannot be employed for analysis of systems
with unknown models.

Machine learning has emerged as a powerful tool for learning
unknown functions from data. In particular, Gaussian process
(GP) regression is becoming widespread to learn dynamical
systems due to its predictive power, uncertainty quantification,
and ease of use [13], [14]. By conditioning a prior GP on
a dataset, GP regression returns a posterior distribution that
predicts the system dynamics via the application of the Bayes
rule. However, the main challenge in using GP regression (and
machine learning in general) for verification in the context of
safety-critical applications is the need to formally quantify the
error in the learning process and propagate it in the verification
pipeline. Existing data-driven approaches often lack the required
formalism and/or are limited to linear systems.
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Fig. 1. Overview of our learning-based, formal verification framework.

This article introduces an end-to-end data-driven verification
framework that enables the use of off-the-shelf model-based ver-
ification tools and provides the required formalism to extend the
guarantees to the latent system. An overview of the framework
is shown in Fig. 1. Given a noisy input–output dataset of the
latent system and a temporal logic specification (LTL or PCTL
formula), the framework produces verification results in the form
of three sets of initial states: Qyes, Q?, and Qno, from which the
system is guaranteed to fully, possibly, and never satisfy the
specification, respectively.

Beginning with the dataset, the framework learns the dy-
namics via GP regression and formally quantifies the distance
between the learned model and the latent system. For this step,
we build on the GP regression error analysis in [15] and derive
formal bounds for the constants in the error term. Specifically,
by relying on the relation between reproducing kernel Hilbert
spaces (RKHS) and kernel functions, we establish upper bounds
for the RKHS constant of a function and the information gain.
Using these bounds, the framework then constructs a finite-state,
uncertain Markov decision process (MDP) abstraction that in-
cludes probabilistic bounds for every possible behavior of the
system. Next, it uses an existing model checking tool to verify
the abstraction against a given PCTL or LTL formula. Here, we
specifically focus on PCTL formulas since a model checking
tool for uncertain MDPs is readily available [9]. Finally, the
framework closes the verification loop by mapping the resulting
guarantees to the latent system.

The main contribution of this work is a data-driven formal
verification framework for unknown dynamical systems. The
novelties include the following.

1) Formalization of the GP regression error bound in [15]
by deriving bounds for its challenging constants.

2) An abstraction procedure including derivation of optimal
transition probability bounds.

3) A proof of correctness of the final verification results for
the latent system.

4) An illustration of the framework on several case studies
with linear, nonlinear, and switched dynamical systems
as well as empirical analysis of parameter trade-offs.

A. Related Work

Recently, there has been a surge in applying formal veri-
fication methods to dynamic systems with machine learning
components [16], [17]. We begin with a brief overview of model

checking for verification, and then discuss its application to
learning-based approaches for dynamic systems.

Verification of continuous-space systems via model check-
ing requires constructing a finite abstraction with a simula-
tion [11], [18]. An appropriate and widely-used abstraction
model for continuous stochastic systems is the interval-valued
MDP (IMDP) [9], [11], [19], [20], [21]. The advantage of IMDPs
is their capability to incorporate multiple sources of uncertainty
as well as the availability of their model checking tools with
PCTL and LTL specifications [9], [22], [23]. For a system
with unknown dynamics and non-Gaussian measurement noise,
however, it is not clear how to construct such an abstraction. In
this work, we address this problem by studying a method for
formalization of all the sources of uncertainties to enable IMDP
abstraction construction from data with formal guarantees.

Data-driven verification methods can be categorized to lin-
ear and nonlinear assumptions on the latent system dynamics.
Existing work on linear systems include methods to verify
parameterized, time-invariant dynamics subject to performance
specifications [24], [25], [26], [27], to perform system iden-
tification with statistical guarantees [28], and to monitor the
safety of stochastic linear systems with unmodeled errors [29].
For nonlinear systems, existing methods are largely based on
sampling the latent system and using statistical bounding to
generate safety or reachability guarantees [30], [31], [32], [33],
[34], [35], [36]. Specifically, the DryVR framework relies on
learning discrepancy functions for an unknown, deterministic
system [30], and NeuReach learns a neural-network for com-
puting probabilistic reachable sets by sampling deterministic
system trajectories [34]. Recently, jointly performing reinforce-
ment learning and formal verification can guarantee safety and
stability for parameterized polynomial systems from sampled
trajectories [37]. Those results, however, are limited to reacha-
bility property analysis from the sampled initial conditions, and
many consider noiseless measurements of the system.

For complex objectives beyond safety and reachability, exist-
ing approaches construct finite-state abstractions from observed
system data [38], [39], [40], [41], [42]. These methods require
rigorous error quantification of the data-driven models to guar-
antee the correctness of the verification results. Such errors
can be quantified with deterministic bounds [41], probably-
approximately correct bounds [27], [33], [34], [35], [39], [43],
or Bayesian probabilistic bounds [38], [40]. Among these tech-
niques, PAC-based methods provide straightforward results, but
they rely heavily on the number of samples and primarily do not
consider measurement noise to the best of the authors’ knowl-
edge. In addition, unlike Bayesian methods, the guarantees they
provide are conditioned on a confidence that is not rooted in a
probability measure on the system. In this work, we consider
unknown nonlinear systems with measurement noise, and our
approach is Bayesian-based and provides guarantees based on
well-defined probability measure over system trajectories.

To quantify probabilistic uncertainty, GP regression is widely
employed due to its universal approximation property and ma-
ture theory [13]. For unknown dynamic systems, GP regression
has been used to learn maximal invariant sets in reinforcement
learning [44], [45], [46], [47], for runtime control and safety
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monitoring of dynamic systems [29], [48], and to construct
barrier certificates for verifying system safety [49], [50]. A
limitation of GP regression method is that the correctness of
the predicted distribution is conditioned on that fact that the
latent function is drawn from the prior process, which may be
too restrictive as an assumption for various applications [14].
Furthermore, it only supports Gaussian additive noise [13].
These limitations can be relaxed if the latent function lies in the
RKHS defined by the GP kernel. Then, the noise can be non-
Gaussian, and more importantly, the GP error can be quantified
probabilistically [15], [41], [47], [49], [50] for arbitrary latent
continuous functions. A closely-related work uses deterministic
RKHS-based GP errors to construct a deterministic transition
system and verify against LTL specifications when there is
no measurement noise [41]. Nevertheless, that and many other
existing works that use the RKHS setting rely on ad-hoc param-
eter approximations of the error term, which, strictly speaking,
revokes the correctness of the resulting guarantees. In this work,
we also employ RKHS-based approach but provide a formal
method for determining the error parameters, enabling hard
guarantees.

II. PROBLEM FORMULATION

We consider a discrete-time controlled process given by

x(k + 1) = f(x(k),a(k))

y(k) = x(k) + v(k) (1)

k ∈ N, x(k) ∈ R
n, a(k) ∈ A, y(k) ∈ R

n

where A = {a1, . . . , a|A|} is a finite set of actions, f : Rn ×
A→ R

n is a (possibly nonlinear) function that is unknown, and
y is a measurement of x with noise v(k), a random variable
with probability density function pv. We assume that pv is a sta-
tionary and conditionally R-sub-Gaussian distribution1 and the
R parameter of the distribution is known, but the knowledge of
the explicit form of the distribution is not necessary. Intuitively,
y is a stochastic process whose behavior depends on the latent
process x, which itself is driven by actions from A.

The evolution of (1) is described using trajectories of the states
and measurements. A finite state trajectory up to step k is a
sequence of state-action pairs denoted by ωk

x = x0
a0−→ x1

a1−→
. . .

ak−1−−−→ xk. The state trajectory ωk
x induces a measurement (or

observation) trajectory ωk
y = y0

a0−→ y1
a1−→ . . .

ak−1−−−→ yk via the
measurement noise process. We denote infinite-length state and
measurement trajectories byωx andωy and the set of all state and
measurement trajectories by Ωx and Ωy , respectively. Further,
we use ωx(i) and ωy(i) to denote the ith elements of a state and
measurement trajectory, respectively.

A. Probability Measure

We assume that the action at time k is chosen by (unknown)
control strategy πy : Ωk

y → A based on the measurement tra-
jectory up to time k. Note that, even though πy is deterministic,

1Conditional R-sub-Gaussian distributions are those whose tail decay at least
as fast as the tail of normal distribution with variance R2 conditioned on the
filtration up to the previous step. This class of distributions includes the Gaussian
distribution itself and distributions with bounded support [51].

given a finite state trajectory, the next action chosen by πy is
stochastic due to the noise processv,which induces a probability
distribution over the trajectories of the latent process x. In par-
ticular, given a fixed initial condition x0 ∈ R

n and a strategy πy,

we denote withωk,πy,x0
y,v0,...,vk the measurement trajectory with noise

at time 0 ≤ i ≤ k fixed to vi and relative to the inducing state
trajectory Ωk

x such that Ωk
x(0) = x0.2 We can then define the

probability space (Ωk
x,B(Ωk

x),P),whereB(Ωk
x) is the σ-algebra

on Ωk
x generated by the product topology, and P is a probability

measure on the sets in B(Ωk
x) such that for a set X ⊂ R

n [52]

P(ωx(0) ∈ X) = 1X(x0)

P(ωx(k) ∈ X | ωx(0) = x0) =∫
. . .

∫
T
(
X | x, πy(ωk−1,πy,x0

y,v0,...,vk−1)
)

pv(vk−1) . . . pv(v0)dvk−1 . . . dv0

where

1X(x) =

{
1, if x ∈ X
0, otherwise

is the indicator function, and

T (X | x, a) = P(ωx(k) ∈ X | ωx(k − 1) = x,ak−1 = a)
(2)

is the transition kernel that defines the single step probabilities
for (1). In what follows, we call t(x̄ | x, a) the density function
associated to the transition kernel, i.e.,

T (X | x, a) =
∫
X

t(x̄ | x, a)dx̄.

Intuitively, P is defined by marginalizing T over all possible
observation trajectories. Note that as the initial condition x0 is
fixed, the marginalization is over the distribution of the noise up
to time k − 1. We remark that P is also well defined for k =∞
by the Ionescu–Tulcea extension theorem [53].

The above definition of P implies that if f were known,
the transition probabilities of (1) are Markov and deterministic
once the action is known. However, we stress that, even in the
case where a is known, the exact computation of the above
probabilities is infeasible in general as f is unknown. Next, we
introduce continuity assumptions that allow us to estimate f and
consequently compute bounds on the transition kernel T .

B. Continuity Assumption

Taking functionf as completely unknown leads to an ill-posed
problem. Hence, we assume f belongs to a RKHS, which is
a Hilbert space of functions that lie in the span of a positive-
definite kernel function. This is a standard assumption [14], [15]
that constrains f to be a well-behaved analytical function on a
compact (closed and bounded) set.

Assumption 1 (RKHS Continuity): For a compact set W ⊂
R

n, let κ : Rn × R
n → R be a given kernel and Hκ(W ) the

RKHS of functions over W corresponding to κ [14]. Let the

2Note that Ωk
x is uniquely defined by its initial state x0 and the value of the

noise at the various time steps, i.e, v0, . . ., vk.
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RKHS-norm of f be ‖f‖κ (defined in Lemma 2 in Appendix).
Then, for each a ∈ A and i ∈ {1, . . . , n}, f (i)(·, a) ∈ Hκ(W )
and for a constantBi > 0, ‖f (i)(·, a)‖κ ≤ Bi, where f (i) is the
ith component of f .

Although Assumption 1 limits f to a class of analytical
functions, it is not overly restrictive as we can choose κ such
that Hκ is dense in the space of continuous functions [54]. For
instance, this holds for the widely-used squared exponential
kernel function [13]. This assumption allows us to use GP
regression to estimate f and leverage error results as we detail
in Section III-A.

C. PCTL Specifications

We are interested in the behavior of the latent process x as
defined in (1) over regions of interest R = {r1, . . . , r|R|} with
ri ⊂ R

n. For example, these regions may indicate target sets that
should be visited or unsafe sets that must be avoided both in the
sense of physical obstacles and state constraints (e.g., velocity
limits). In order to define properties over R, for a given state x
and region ri, we define an atomic proposition pi to be true (�) if
x ∈ ri, and otherwise false (⊥). The set of atomic propositions is
given byAP = {p1, . . . , p|R|}, and the label functionL : Rn →
2AP returns the set of atomic propositions that are true at each
state.

PCTL [2] is a formal language that allows for the expression
of complex behaviors of stochastic systems.

We begin by defining the syntax and semantics of PCTL
specifications.

Definition 1 (PCTL Syntax): Formulas in PCTL are recur-
sively defined over the set of atomic propositions AP in the
following manner:

State Formula φ := � | p | ¬φ | φ ∧ φ | P��p[ψ]

Path Formula ψ := Xφ | φU≤kφ | φUφ
where p ∈ AP , ¬ is the negation operator, ∧ is the conjunction
operator, P��p is the probabilistic operator, ��∈ {≤, <,≥, >}
is a relation placeholder, and p ∈ [0, 1]. The temporal operators
are theX (Next),U≤k (Bounded-Until) with respect to time step
k ∈ N, and U (Until).

Definition 2 (PCTL Semantics): The satisfaction relation |=
is defined inductively as follows, for state formulas:

1) x |= � for all x ∈ R
n;

2) x |= p ⇐⇒ p ∈ L(x);
3) x |= (φ1 ∧ φ2) ⇐⇒ (x |= φ1) ∧ (x |= φ2);
4) x |= ¬φ ⇐⇒ x � φ;
5) x |= P��p[ψ] ⇐⇒ px(ψ) �� p, where px(ψ) is the

probability that all infinite trajectories initialized at x
satisfy ψ.

For a state trajectory ωx, the satisfaction relation |= for path
formulas is defined as follows:

1) ωx |= Xφ ⇐⇒ ωx(1) |= φ;
2) ωx |= φ1U≤kφ2 ⇐⇒ ∃i ≤ k s.t. ωx(i) |= φ2 ∧
ωx(j) |= φ1 ∀j ∈ [0, i);

3) ωx |= φ1Uφ2 ⇐⇒ ∃i ≥ 0 s.t. ωx(i) |= φ2 ∧ ωx(j) |=
φ1 ∀j ∈ [0, i).

The common operators bounded eventually F≤k and
eventually F are defined, respectively, as P��p[F≤kφ] ≡

P��p[�U≤kφ], and P��p[Fφ] ≡ P��p[�Uφ]. The glob-
ally operators G≤k and G are defined as P��p[G≤kφ] ≡
P�̄�1−p[F≤k¬φ], and P��p[Gφ] ≡ P�̄�1−p[F¬φ], where �̄�
indicates the opposite relation, i.e, <̄ ≡ >, ≤̄ ≡ ≥, ≥̄ ≡ ≤, and
>̄ ≡ <.

As an example the property, “the probability of reaching the
target by while avoiding unsafe areas, and with probability at
least 0.95 of eventually reaching the secondary target if the
breach area is entered, is at least 0.95” can be expressed with
the PCTL formula

φ = P≥0.95 [(¬punsafe ∧ (pbreach

=⇒ P≥0.95[Fpsecondary])) U ptarget] .

D. Problem Statement

The verification problem asks whether (1) satisfies a PCTL
formula φ under all control strategies. It can also be posed as
finding the set of initial states in a compact set X ⊂ R

n, from
which (1) satisfies φ.

In lieu of an analytical form of f , we assume to have a
dataset D = {(xi, ai, yi)}di=1 generated by (1) where yi is the
noisy measurement of f(xi, ai), and d ∈ N

+. Using this dataset,
we can infer f and reason about the trajectories of (1) (via
Assumption 1). The formal statement of the problem considered
in this work is as follows.

Problem 1: LetX ⊂ R
n be a compact set,R a set of regions

of interest, andAP its corresponding set of atomic propositions
(as defined in Section II-C). Given a dataset D generated by (1)
and a PCTL formula φ defined over AP , determine the initial
states X0 ⊂ X from which (1) satisfies φ without leaving X .

Our approach to Problem 1 is based on constructing an IMDP
abstraction (formally defined in Section III-C) of the latent
process x using GP regression and checking if the abstraction
satisfies φ. We begin by estimating the unknown dynamics with
GP regression and, by virtue of Assumption 1, we leverage exist-
ing probabilistic error bounds on this estimate. We present upper
bounds on the constants required to compute this probabilistic
error and derive bounds on the transition kernel in (2) over a
discretization of the spaceX . Then, we construct the abstraction
of (1) in the form of an uncertain (interval-valued) MDP, which
accounts for the uncertainties in the regression of f and the
discretization of X . Finally, we perform model checking on the
abstraction to get sound bounds on the probability thatx satisfies
φ from any initial state.

Remark 1: We remark that our IMDP abstraction construc-
tion is general, and hence, can be used for the verification of (1)
against properties in other specification languages, such as LTL.
We specifically focus on PCTL properties mainly because of the
availability of its model checking tool for IMDPs [9].

III. PRELIMINARIES

A. GP Regression

GP regression [13] aims to estimate an unknown func-
tion f : Rn → R from a dataset D = {(xi, yi)}di=1 where yi =
f(xi) + vi and vi is a sample of a normal distribution with zero
mean and σ2

v variance, denoted by vi ∼ N (0, σ2
v). The standard
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assumption is that f is a sample from a prior GP with zero-valued
mean function and kernel function κ0.3

Let X and Y be ordered vectors with all points in D such
that Xi = xi and Yi = yi. Further, let K denote the matrix
with element Ki,j = κ0(xi, xj), k(x, X) the vector such that
ki(x, X) = κ0(x, Xi), and k(X, x) defined accordingly. Pre-
dictions at a new input point x are given by the conditional
distribution of the prior at x given D, which is still Gaussian and
with mean μD and variance σ2

D given by

μD(x) = k(x, X)T
(
K + σ2

vI
)−1

Y (3)

σ2
D(x) = κ0(x, x)− k(x, X)T

(
K + σ2

vI
)−1

k(X, x) (4)

where I is the identity matrix of size d.
As mentioned previously, the noise in Process (1) is sub-

Gaussian, so the standard assumption that f is a sample from the
prior GP cannot be used. Hence, we cannot directly use (3) and
(4) to bound the latent function. Rather, as common in [14], we
rely on the relationship between GP regression and the RKHS.

B. Error Quantification

The reliance on a positive-definite kernel function is the
basis for relating a GP with kernel κ with an RKHS Hκ. For
universal kernels (such as the squared exponential function), the
associated RKHS is dense in the continuous functions on any
compact set [55].

Given Assumption 1, the following proposition bounds the
GP learning error when f is a function in Hκ, without posing
any distributional assumption on f .

Proposition 1 ([15], Theorem 2): Let W be a compact
set, δ ∈ (0, 1], and D be a given dataset generated by f with
cardinality |D| = d. Further, let Γ > 0 be a bound on the max-
imum information gain of κ, i.e., γdκ ≤ Γ, and B > 0 such that
‖f‖κ ≤ B. Assume that v isR-sub-Gaussian and thatμD andσD
are found by setting σ2

v = 1 + 2/d and using (3) and (4). Define
β(δ) = B +R

√
2(Γ + 1 + log 1/δ). Then, it holds that

P (∀x ∈W, |μD(x)− f(x)| ≤ β(δ)σD(x)) ≥ 1− δ. (5)

Proposition 1 assumes that the noise on the measurements is
R-sub-Gaussian, which is more general than Gaussian noise.
Nevertheless, the probability bound (5) depends on bounding
the constants ‖f‖κ and γdκ which are described as challenging to
compute in the literature [56] and are often bounded according to
heuristics without guarantees [46], [49]. In this work, we derive
formal upper bounds for each of these terms in Section IV-B2.

C. Interval Markov Decision Processes

An IMDP is a generalization of a MDP, where the transitions
under each state-action pair are defined by probability inter-
vals [57].

Definition 3 (IMDP): An IMDP is a tuple I =
(Q,A, P̌, P̂, AP, L) where

1) Q is a finite set of states,

3Extensions with nonzero mean are a trivial generalization [13].

2) A is a finite set of actions, where A(q) is the set of
available actions at state q ∈ Q,

3) P̌ : Q×A×Q→ [0, 1] is a function, where P̌(q, a, q′)
defines the lower bound of the transition probability from
state q ∈ Q to state q′ ∈ Q under action a ∈ A(q),

4) P̂ : Q×A×Q→ [0, 1] is a function, where P̂(q, a, q′)
defines the upper bound of the transition probability from
state q to state q′ under action a ∈ A(q),

5) AP is a finite set of atomic propositions, and
6) L : Q→ 2AP is a labeling function that assigns to each

state q possibly several elements of AP .
For all q, q′ ∈ Q and a ∈ A(q), it holds that P̌(q, a, q′) ≤

P̂(q, a, q′) and∑
q′∈Q

P̌(q, a, q′) ≤ 1 ≤
∑
q′∈Q

P̂(q, a, q′).

Let D(Q) denote the set of probability distributions over Q.
Given q ∈ Q and a ∈ A(q), we call taq ∈ D(Q) a feasible dis-
tribution over states reachable from q under a if the transition
probabilities respect the intervals defined for each possible suc-
cessor state q′, i.e., P̌(q, a, q′) ≤ taq (q

′) ≤ P̂(q, a, q′). We denote
the set of all feasible distributions for state q and action a by Ta

q .
A path ω of an IMDP is a sequence of state-action

pairs ω = q0
a0−→ q1

a1−→ q2
a2−→ . . . such that ai ∈ A(qi) and

P̂(qi, ai, qi+1) > 0 (i.e., transitioning is possible) for all i ∈ N.
We denote the last state of a finite path ωfin by last(ωfin) and
the set of all finite and infinite paths by Pathsfin and Paths ,
respectively. Actions taken by the IMDP are determined by a
choice of strategy π which is defined below.

Definition 4 (Strategy): A strategy π of an IMDP I is a
function π : Pathsfin → A that maps a finite path ωfin of I onto
an action in A. The set of all strategies is denoted by Π.

Once an action is chosen according to a strategy, a feasible
distribution needs to be chosen from Ta

q to enable a transition
to the next state. This task falls on the adversary function θ as
defined below.

Definition 5 (Adversary): Given an IMDP I, an adversary
is a function θ : Pathsfin ×A→ D(Q) that, for each finite path
ωfin ∈ Pathsfin and action a ∈ A(last(ωfin)), chooses a feasible
distribution taq ∈ Ta

last(ωfin). The set of all adversaries is denoted
by Θ.

Once a strategy is selected, the IMDP becomes an interval
Markov chain. Further, choosing an adversary results in a stan-
dard Markov chain. Hence, given a strategy and an adversary,
a probability measure can be defined on the paths of the IMDP
via the probability of paths on the resulting Markov chain [9].

IV. IMDP ABSTRACTION

To solve Problem 1, we begin by constructing a finite ab-
straction of (1) in the form of an IMDP that captures the state
evolution of the system under known actions. This involves
partitioning the set X into discrete regions and determining
the transition probability intervals between each pair of discrete
regions under each action to account for the uncertainty due to
the learning and discretization processes.
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A. IMDP States and Actions

In the first step of the abstraction, the setX is discretized into
a finite set of nonoverlapping regionsQX such that

⋃
q∈QX

q =
X. The discretization must maintain consistent labelling with
the regions of interest R = {ri}|R|i=1 where ri ⊆ X , i.e., (with
an abuse of the notation of L)

L(q) = L(ri) iff L(x) = L(ri) ∀x ∈ q.
To ensure this consistency, the regions of interest are used as the
foundation of the discretization. Then, we define

Q = QX ∪ {qX̄}, where qX̄ = R
n \X.

The regions in Q are associated with the states of the IMDP,
and with an abuse of notation, q ∈ Q indicates both a state of
the IMDP and the associated discrete region. Finally, the IMDP
action space is set to the action set A of (1).

B. Transition Probability Bounds

The IMDP transition probability intervals are pivotal to ab-
stracting (1) correctly. For all q, q′ ∈ Q and action a ∈ A, the
intervals should bound the true transition kernel

P̌(q, a, q′) ≤ min
x∈q T (q

′ | x, a)

P̂(q, a, q′) ≥ max
x∈q T (q

′ | x, a).

The bounds on the transition kernel T must account for the
uncertainties due to unknown dynamics and space discretization.
We use GP regression and account for regression errors to derive
these bounds for every (q, a, q′) tuple.

1) IMDP State Images and Regression Error: We perform
GP regression using the given dataset D and analyze the evolu-
tion of each IMDP state under the learned dynamics. In addition,
the associated learning error is quantified using Proposition 1.

Each output component of the dynamics under an action is
estimated by a separate GP, making a total of n |A| regressions.
Let μ(i)

a,D(x) and σ
(i)
a,D(x), respectively, denote the posterior

mean and covariance functions for the ith output component
under action a obtained via GP regression. These GPs are used
to evolve q under action a, defined by image

Im(q, a) =
{
μ
(i)
a,D(x) | x ∈ q, i ∈ [1, n]

}
which describes the evolution of all x ∈ q.

The worst-case regression error is

e(i)(q, a) = sup
x∈q
|μ(i)

a,D(x)− f (i)(x, a)|

which provides an error upper-bound for all continuous states
x ∈ q. To use Proposition 1 for probabilistic reasoning on this
worst-case error, the supremum of the posterior covariance in q
denoted by

σ
(i)
a,D(q) = sup

x∈q
σ
(i)
a,D(x)

is used. Both the posterior image and covariance supremum can
be calculated for each IMDP state using GP interval bounding

as in [58]. Then, Proposition 1 is applied with a scalar ε(i) ≥ 0

P
(
e(i)(q, a) ≤ ε(i)

)
≥ 1− δ (6)

where δ satisfies ε(i) = β(δ)σ
(i)
a,D(q).

2) Bounds on the RKHS Parameters: The computation of
P(e(i)(q, a) ≤ ε(i)) via Proposition 1 requires two constants: the
RKHS norm ‖f (i)‖κ and information gain γdκ. In this section,
we provide formal upper bounds for these constants.

Proposition 2 (RKHS Norm Bound): Let f (i) ∈ H whereH
is the RKHS defined by the kernel function κ. Then

‖f (i)‖κ ≤ supx∈X |f (i)(x)|
infx,x′∈X κ(x, x′)

1
2

(7)

for all x, x′ ∈ X .
The proof is provided in the Appendix, which relies on the

relationship between the RKHS norm and the kernel function.
Proposition 2 bounds the RKHS norm by the quotient of

the supremum of the function and the infimum of the kernel
function on a compact set. Note that (7) requires the square root
of the kernel in the denominator. Hence, so long the chosen
kernel is a positive function (e.g., squared exponential), we can
compute a finite upper bound for the RKHS norm. As X is
a finite-dimensional compact set, it can be straightforward to
calculate bounds as in the following remark.

Remark 2: An upper bound for the numerator of (7) can be
estimated using the Lipschitz constant Lf(i) of f (i) (or an upper
bound of it). That is, the supremum in the numerator can be
bounded by

sup
x∈X
|f (i)(x)| ≤ |f (i)(x′)|+ Lf(i)diam(X)

where x′ is any point in X , diam(X) := supx,x′∈X ‖x− x′‖
is the diameter of X . The term |f (i)(x′)| can be bounded by
sampling at a single point x′ if the measurement noise has
bounded support or can be set using a known equilibrium point in
X , i.e., a point that satisfiesf(x′) = x′ and using the components
therein. The Lipschitz constant itself can be estimated from data
with statistical guarantees [59], [60].

The information gain γdκ can be bounded using the of size
of the dataset and the GP hyperparameters as in the following
proposition.

Proposition 3 (Information Gain Bound): Let d be the size
of the dataset D and σv the parameter used for GP regression.
Then, the maximum information gain is bounded by

γdκ ≤ d log(1 + σ−2v s)

where s = supx∈X κ(x, x).
The proof is provided in the Appendix and relies on the pa-

rameters for regression and positive-definiteness of κ to employ
Hadamard’s inequality. While this bound on γdκ is practical, it
can be further improved by using more detailed knowledge of
the kernel function, such as its spectral properties [61].

3) Transitions Between States in QX : To reason about
transitions using the images of regions, the following notations
are used to indicate the expansion and reduction of a region and
the intersection of two regions.
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Definition 6 (Region Expansion and Reduction): Given
a compact set (region) q ⊂ R

n and a set of n scalars c =
{c1, . . . , cn}, where ci ≥ 0, the expansion of q by c is defined
as

q(c) = {x ∈ R
n | ∃xq ∈ q s.t. |x(i)q − x(i)| ≤ ci

∀i = {1, . . . , n}}
and the reduction of q by c is

q(c) = {xq ∈ q | ∀x∂q ∈ ∂q, |x(i)q − x(i)∂q | > ci

∀i = {1, . . . , n}}
where ∂q is the boundary of q.

The intersection between the expanded and reduced states
indicate the possibility of transitioning between the states. This
intersection function is defined as

1V (W ) =

{
1, if V ∩W �= ∅
0, otherwise

for sets V and W .
The following theorem presents bounds for the transition

probabilities of Process (1) that account for both the regression
error and induced discretization uncertainties using Proposi-
tion 1 and sound approximations using the preceding definitions.

Theorem 1: Let q, q′ ∈ QX and ε, ε′ ∈ R
n be nonnegative

vectors. For any action a ∈ A, the transition kernel is bounded
by

min
x∈q T (q

′ | x, a)

≥
(
1− 1X\q′(ε) (Im(q, a))

) n∏
i=1

P
(
e(i)(q, a) ≤ ε(i)

)
and

max
x∈q T (q

′ | x, a)

≤ 1−
n∏

i=1

P
(
e(i)(q, a) ≤ ε′(i)

) (
1− 1q′(ε′) (Im(q, a))

)
.

Proof: The proof of Theorem 1 relies on bounding the prob-
ability of transitioning from q to q′ conditioned on the learning
error ε (ε′) given by (6), and using the expanded (reduced) image
of q with ε (ε′) to find a point in q that minimizes (maximizes)
this bound. We provide the proof for the upper bound on T , and
the lower bound follows analogously.

Let q′ denote subsequent states of q, and suppose ωx(k) ∈ q
for an arbitrary timestep k. The probability of transitioning to
q′ under action a is upper-bounded beginning with transition
kernel and using the law of total probability conditioned on the
learning error

max
x∈q P(ωx(k + 1) ∈ q′ | ωx(k) = x, a)

= max
x∈q (P(ωx(k + 1) ∈ q′ ∧ e(q, a) ≤ ε | ωx(k) = x)

+ P(ωx(k + 1) ∈ q′ ∧ e(q, a) > ε | ωx(k) = x))

= max
x∈q (P(ωx(k + 1) ∈ q′ | e(q, a) ≤ ε, ωx(k) = x)

× P(e(q, a) ≤ ε)
+ P(ωx(k + 1)∈q′ | e(q, a) > ε, ωx(k)=x)P(e(q, a) > ε)) .

Next, P(ωx(k + 1) ∈ q′ | e(q, a) ≤ ε, ωx(k) = x) is upper
bounded using the intersection indicator, P(ωx(k + 1) ∈
q′ | e(q, a) > ε, ωx(k) = x) is upper bounded by one, and
P(e(q, a) > ε) is replaced by the equivalent 1− P(e(q, a) ≤ ε)

≤ max
x∈q

(
1q′ (Im(q, a)) P(e(q, a) ≤ ε)

+ 1 · (1− P(e(q, a) ≤ ε)))

= max
x∈q

(
1q′ (Im(q, a))

n∏
i=1

P(e(i)(q, a) ≤ εi)

+ 1−
n∏

i=1

P(e(i)(q, a) ≤ εi)
)

where the last inequality is due to fact that the components of v
are mutually independent. Rearranging these terms, we obtain
the upper bound on T . �

The width of the transition probability intervals in Theorem 1
relies on the choices of ε and ε′. The following proposition
provides the optimal values for both ε and ε′.

Proposition 4: Let ∂W denote the boundary of a compact
setW ⊂ R

n. The distance between the upper and lower bounds
in Theorem 1 is minimized if ε′ = ε and ε is chosen such that
for each i ∈ [1, n]

ε(i) = inf
x∈∂Im(q,a), x′∈∂q′

|x(i) − x′(i)|.

The proof for Proposition 4 is provided in the Appendix.
The intuition for this proposition is as follows. Consider the

image Im(q, a) and the intersection Im(q, a) ∩ q′. There are
three possible outcomes; 1) the intersection is empty, 2) the
intersection is nonempty but not equal to Im(q, a), and 3) the
intersection is equal to Im(q, a). By examining Theorem 1, it is
clear that if (2) is true, then we get trivial transition probability
bounds of [0,1]. In this case, the choice of ε does not matter.
If (1) is true, then the bounds are [0, P̂(q, a, q′)] and we have
an opportunity to get a nontrivial upper bound. The best upper
bound is achieved by choosing large ε to capture more regression
error, but small enough to keep the indicator function zero. This
is achieved by choosing ε according to Proposition 4, which
corresponds to minimizing the L1 norm of x− x′. Finally, if (3)
is true, then the bounds are [P̌(q, a, q′), 1] and the approach is
similar.

4) Transitions to qX̄ : Transition intervals to the unsafe state
qX̄ are the complement of the transitions to the full set X , or

P̌(q, a, qX̄) = 1− P̂(q, a,X)

P̂(q, a, qX̄) = 1− P̌(q, a,X)

where P̌(q, a,X) and P̂(q, a,X) are calculated with Theorem 1.
Finally, the unsafe state has an enforced absorbing property
where P̌(qX̄ , a, qX̄) = P̂(qX̄ , a, qX̄) = 1.

The IMDP abstraction of Process (1) incorporates the uncer-
tainty due to the measurement noise, the uncertainty of f , and the
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induced error from discretizing the continuous state space. The
width of the transition intervals quantifies the conservativeness
of the IMDP abstraction with respect to the underlying system.
In the worst-case, a transition interval of [0,1] indicates that the
transition is possible but provides no meaningful information
about the true transition probability. Likewise, smaller intervals
indicate the abstraction better models the underlying system.

V. VERIFICATION

In this section, IMDP verification against PCTL specifications
is summarized, and the correctness of the verification results on
the IMDP abstraction is established via Theorem 2.

A. IMDP Verification

PCTL model checking of an IMDP is a well established pro-
cedure [9]. For completeness, we present a summary of it here.
Specifically, we focus on the probabilistic operator P��p[ψ],
where ψ includes the bounded until (U≤k) or unbounded until
(U ) operator, since the procedure for the next (X ) operator is
analogous [9]. In what follows,ψ is assumed to be a path formula
with U≤k, which becomes U when k =∞.

For an initial state q ∈ Q and PCTL path formulaψ, letQ0 and
Q1 be the set of states from which the probability of satisfying
ψ is 0 and 1, respectively. These sets are determined simply
by the labels of the states in Q. Further, let p̌k(q) and p̂k(q)
be, respectively, the lower-bound and upper-bound probabilities
that the paths initialized at q satisfy ψ in k steps. These bounds
are defined recursively by

p̌k(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if q ∈ Q1

0, if q ∈ Q0

0, if q /∈ (Q0 ∪Q1) ∧ k = 0
min
a

min
θa
q

∑
q′ θ

a
q (q
′)p̌k−1(q′), otherwise

(8)

p̂k(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if q ∈ Q1

0, if q ∈ Q0

0, if q /∈ (Q0 ∪Q1) ∧ k = 0
max

a
max
θa
q

∑
q′ θ

a
q (q
′)p̂k−1(q′), otherwise.

(9)

In short, the procedure exactly finds the minimizing and max-
imizing adversaries with respect to the equations above for
each state-action pair, and then determines the minimizing and
maximizing action for each state. It is guaranteed that each
probability bound converges to a fix value in a finite number
of steps. Hence, this procedure can be used for both bounded
until (U≤k) and unbounded until (U ) path formulas. See [9] for
more details. The final result is the probability interval

[p̌k(q), p̂k(q)] ⊆ [0, 1]

of satisfying ψ within k time steps for each IMDP state q ∈ Q.
Similar to the transition intervals, the widths of the satisfaction
probability intervals are a measure of the conservativeness of
the verification results.

Given the PCTL formula φ = P��p[ψ], the satisfaction inter-
vals are used to classify states as belonging to Qyes, Qno, or Q?,
i.e., those states that satisfy, violate and possibly satisfy φ. For

example, when the relation �� in formula φ is > and p is the
threshold value inherent to φ

q ∈
⎧⎨
⎩
Qyes, if p̌k(q) > p
Qno, if p̂k(q) ≤ p
Q?, otherwise.

Thus, Qyes consist of the states that satisfy φ, and Qno consists
of the states that do no satisfy φ for every choice of adversary
and action. Q? is the set of indeterminant states for which no
guarantees can be made with respect toφdue to large uncertainty.

B. Verification Extension and Correctness

The final task is to extend the IMDP verification results to
Process (1) even though the IMDP does not model the measure-
ment noise on the system. This is possible by observing that the
value iteration procedures in (8) and (9) are solved by finding the
extreme actions at each state. All other actions have outcomes
that lie in the satisfaction probability intervals. The following
theorem asserts that these intervals, defined for q, bound the
probability that all paths initialized at x ∈ q satisfy ψ.

Theorem 2: Let q ∈ Q be both a region inX and a state of the
IMDP abstraction constructed on dataset D, and p̌(q) and p̂(q)
be the lower- and upper-bound probabilities of satisfyingψ from
q computed by the procedure in Section V-A. Further, let x ∈ q
be a point and P(ωx |= ψ | ωx(0) = x, πy) be the probability
that all paths initialized at x satisfy ψ under strategy πy given
D. Then, it holds that

P(ωx |= ψ | ωx(0) = x, πy) ≥ p̌(q)
P(ωx |= ψ | ωx(0) = x, πy) ≤ p̂(q)

for every strategy πy.
Proof: We present the proof of the lower bound; the proof

for the upper bound is analogous. Furthermore, in what follows
for the sake of a simpler notation, we assume that πy is station-
ary, i.e., πy : Rn → A. The case of time-dependent strategies
follows similarly. The following lemma shows a value iteration
that computes the probability of satisfying ψ from initial state x
under πy in k steps.

Lemma 1: LetQ0 andQ1 be sets of discrete regions that sat-
isfy ψ with probability 0 and 1, respectively, andX0 = ∪q∈Q0 q
and X1 = ∪q∈Q1 q. Further, let V πy

k : Rn → R be defined re-
cursively as

V
πy

k (x) =

⎧⎪⎪⎨
⎪⎪⎩
1, if x ∈ X1

0, if x ∈ X0

0, if x /∈ (X0 ∪X1) ∧ k = 0
Ev∼pv, x̄∼T (·|x,πy(x+v))[Vk−1(x̄)], otherwise.

Then, it holds that V πy

k (x) = P(ωk
x |= ψ | ωx(0) = x, πy).

The proof of Lemma 1 is in the Appendix. Hence, to conclude
the proof of Theorem 2, it suffices to show that for x ∈ q,
V

πy

k (x) ≥ p̌k(q) for every k ≥ 0 and every πy. This can be
shown by induction similarly to [62, Thm. 4.1]. The base case
is k = 0, where it immediately becomes clear that

V
πy

0 (x) = 1X1(x) = 1Q1(q) = p̌0(q).
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For the induction step we need to show that under the assumption
that for every q ∈ Q

min
x∈q V

πy

k−1(x) ≥ p̌k−1(q)

holds, then V πy

k (x) ≥ p̌k(q).Assume for simplicity x /∈ (X0 ∪
X1), then we have

V
πy

k (x) = Ev∼pv,x̄∼T (·|x,πy(x+v))[Vk−1(x̄)]

=

∫ ∫
V

πy

k−1(x̄)t(x̄ | x, πy(x+ v))pv(v)dx̄dv

=

∫ (∑
q∈Q

∫
q

V
πy

k−1(x̄)t(x̄ | x, πy(x+ v))dx̄

)
pv(v)dv

≥
∫ (∑

q∈Q
min
x∈q V

πy

k−1(x)
∫
q

t(x̄ | x, πy(x+ v))dx̄

)
pv(v)dv

≥
∫ ∑

q∈Q
V

πy

k−1(q)T (q | x, πy(x+ v))pv(v)dv

≥ min
a∈A

∑
q∈Q

p̌k−1(q)T (q | x, a)

≥ min
a

min
θa
q

∑
q′
θaq (q

′)p̌k−1(q′)

= p̌k(q)

where the last inequality follows by Theorem 1 while the second
to last inequality follows by the induction assumption and by the
observation that the noise distribution pv only affects the choice
of the action. �

Theorem 2 extends the IMDP verification guarantees to (1),
even though (1) is unknown a priori and observed with noise. We
provide empirical validation of Theorem 2 in our case studies
in Section VI by comparing the verification results of a known
and learned system.

C. End-to-End Algorithm

Here, we provide an overview of the entire verification frame-
work in Algorithm 3 and its complexity. The algorithm takes
dataset D, setX ⊂ R

n, and specification formula φ, and returns
three sets of initial states Qyes, Qno, and Q?, from which (1) is
guaranteed to satisfy, violate, and possibly satisfyφ respectively.
Assuming a uniform discretization of X , the number of states
in the abstraction is |Q| = 2n + 1.

First, GP regression is performed n |A| times in Line 1 of
Algorithm 3. In general, each GP regression is O(d3), where
d is the number of input points in the dataset. GP regression
can reach a complexity closer to O(d2.6) through improved
Cholesky factorization, e.g., [63], although in practice many GP
regression toolboxes are fast enough. As this is repeated for each
action and output component, the total complexity of performing
all regressions is O(d3 n |A|).

Next, the GPs are used to find the image and poste-
rior covariance supremum of region in the discretization in
Algorithm 1. We perform this computation with a branch-and-
bound optimization procedure introduced in [58] until one of two

Algorithm 1: Bound State Images and Errors.

Input: Posterior GPs {GPa}, actions A, IMDP states Q
Output: Image and error bounds Im, e
1: Im← {}, e← {}
2: for q ∈ Q, a ∈ A do
3: Im(q, a)← OverapproximateImage(q,GPa)
4: e(q, a)← BoundError(q,GPa)

return Im, e

Algorithm 2: Calculate Transition Intervals.
Input: Image and error bounds Im, e, actions A, IMDP
states Q

Output: Transition interval matrices P̌, P̂
1: P̌← {}, P̂← {}
2: for (q, q′) ∈ Q×Q, a ∈ A do
3: ε← Proposition 4
4: P̌(q, a, q′), P̂(q, a, q′)← Theorem 1 using Im, e

returnP̌, P̂

termination criteria are reached: a maximum search depth T , or
a minimum distance between the bounds (e.g., 10−3). In our case
studies, we observe that the algorithm usually terminates long
before the maximum search depth is reached. The complexity of
this operation is O(2T d2 n |Q| |A|), where T allows a tradeoff
between accuracy and computation time. Hence, for a fixed T ,
the computations in Lines 3 and 4 are polynomial in size of
the dataset d, dimensions n, abstraction |Q|, action set |A|. We
note that the branch-and-bound method is exponential in T , and
|Q| can be exponential in the size of the dimensions if, e.g., a
uniform discretization is used.

The abstraction is completed by calculating the transition
probability intervals between each pair of discrete states under
each action using Theorem 1 and Proposition 4 (see Lines 2–4)
in Algorithm 2. The calculation of the transition probability
intervals between every state-action state pair is O(|Q|2 |A|) =
O(22n |A|), which is standard for IMDP construction.

Finally, we use an existing tool for verifying the abstraction
IMDP against specification formula φwith its inherent operator
�� and threshold value p (see Line 6). The correctness of the ob-
tained results is guaranteed by Theorem 2. PCTL model check-
ing of IMDP is polynomial in the size of the state-action pairs
and length of the PCTL formula [9]. Hence, the introduction
of a learned component to abstraction-based verification does
not fundamentally make the problem harder, as the exponential
influence of the discretization of the state-space (22n) is still
dominant.

VI. CASE STUDIES

We demonstrate the efficacy of our data-driven verification
framework through several case studies. We begin with veri-
fying a single-mode linear system and compare it with a bar-
rier function approach. Then, we show the influence of dif-
ferent parameters on the quality of the verification results and
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Fig. 2. Unbounded (k =∞) verification results for the known system and learned system using increasingly large datasets subject to φ =
P≥0.95[¬O U G]. (a) Known system. (b) 100 data points. (c) 500 data points. (d) 2000 data points.

Algorithm 3: Learning, Abstraction, and Verification.
Input: Data D, set X , spec. φ, AP , label fcn. L
Output: Initial states X0 that satisfy φ
1: {GPa} ← GP regressions for each a using D
2: Q←Partition(X) ∪ {qX̄}
3: Im, e← Algorithm 1
4: P̌, P̂← Algorithm 2
5: I ←AssembleIMDP(Q,A, P̌, P̂, AP, L)
6: Qyes, Qno, Q? ←VerifyIMDP(I, φ)

computation times. Finally, we demonstrate the efficacy of our
approach on switching and nonlinear systems.

For each demonstration, we specify the compact set X and
use a uniform-grid discretization of X of cells with side length
Δ. The synthetic datasets are generated by uniformly sampling
states from X , propagating through f , and adding Gaussian
noise with zero mean and 0.01 standard deviation. The squared-
exponential kernel with length scale 1 and scale factor 1 and the
zero mean function are used as the priors for GP regression,
and we selected an upper-bound for the numerator for each
example to employ Proposition 7. An implementation of our
tool is available online.4

A. Linear System

First, we perform a verification of an unknown linear system
with dynamics defined on R

2

x(k + 1) =

[
0.4 0.1

0.0 0.5

]
x(k), y(k) = x(k) + v(k)

and regions of interest with labels G and O as shown in Fig. 2.
The PCTL formula is φ = P≥0.95[¬O U G], which states that
a path initializing at an initial state does not visit O until G is
reached with a probability of at least 95%. The verification result
using the known dynamics is shown in Fig. 2(a), which provides
a basis for comparing the results of the learning-based approach.
This baseline shows the initial states that belong to Qyes, Qno,
and the indeterminate set Q?. Some states belong to Q? due to
the discretization, and subsets of Q? either satisfy or violate φ.

4[Online]. Available: https://github.com/aria-systems-group/
TransitionIntervals.jl

Fig. 2(a) asserts that most discrete states ideally belong to either
Qyes or Qno.

The verification results of the unknown system with various
dataset sizes are shown in Fig. 2(b) to (d). With 100 data points,
the learning error dominates the quality of the verification result
as compared to the baseline. Nevertheless, even with such a
small dataset (used to learn f ), the framework is able to identify
a subset of states belonging toQyes andQno as shown in Fig. 2(b).
Fig. 2(c) and (d) shows these regions growing when using
500 and 2000 datapoints, respectively. The set of indeterminate
states,Q?, begins to converge to the baseline result but the rate at
which it does slows with larger datasets. The computation times
for the datasets with 100, 500, and 2000 points were 2.9, 10.3,
and 140 s, respectively.

Compared to the abstraction built using the known system,
the learning-based abstractions are 48, 24, and 16 times more
conservative, respectively, in terms of average transition interval
widths. In the limit of infinite data, the error could be driven to
zero even with imperfect RKHS constant approximations, which
would cause the learning-based results to converge to the known
results in Fig. 2(a). Additional uncertainty reduction depends
on refining the states in Q? through further discretization at the
expense of additional memory and computational time. Below,
we examine the tradeoffs between discretization resolution with
the quality of the final results and the effect on total computation
time.

1) Comparison With Barrier Functions: We compare our
approach with a barrier method based on sum-of-squares (SOS)
polynomials with barrier degree eight [50], [64]. Thus, the
barrier is defined on R

2, the initial set is one of q ∈ Q, and
the unsafe set is the union of R2 \X andO. The key limitations
of the barrier method are threefold. First, barrier functions are
generated with respect to an initial set, so the generation of the
barrier is repeated for every discrete state. Second, barrier func-
tions are unable to generate meaningful results when the initial
state is adjacent to an unsafe state due to existing methods finding
only smooth barriers (such as a polynomial function). Finally,
the barrier methods use the uncertainty from Proposition 4 as a
confidence wrapper, meaning the results hold with a confidence.
In this case study, we set the confidence to 95%.

The methods are compared first using the true system, and
then using 500 datapoints to learn the system. The state color
in Fig. 3 indicates satisfaction using our approach, and the state
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Fig. 3. Verification using our approach (colors) and SOS barriers
(outlines) for the known and learned systems. Bold outlines indicate a
satisfying barrier is found for that state, while dashed Xs indicate the
barrier does not satisfy safety. (a) Known system, k = 1. (b) Learned
system, k = 1. (c) Learned system, k = 5.

outlines indicate those using the barrier method. Our approach
provided more safety guarantees in both the known and data-
driven settings, especially beyond one step. After five steps, the
barrier-based method cannot guarantee satisfaction anywhere.
The complete runtimes for the learned results are 0.82 seconds
for our approach and 12 s for the barrier method. Our method
overcomes each of the limitations of the barrier approach, while
running ten times faster.

B. Parameter Considerations

The verification results on a linear system and computation
times are compared for varying the learning error and discretiza-
tion parameters, ε and Δ, respectively, and the efficacy of using
Proposition 4 to choose ε is highlighted. The unknown linear
system is given by

x(k + 1) =

[
0.8 0.5

0.0 0.5

]
x(k), y(k) = x(k) + v(k).

The specification is the safety formula P≥0.95[GX], i.e., the
probability of remaining within X is at least 95%.

We used 200 datapoints for the verification of this system.
To compare the effect of ε, we manually selected values to
be applied for every transition and compared the results with
using the criterion in Proposition 4. The discretization fineness
is studied by varying Δ to produce abstractions consisting of 17
states up to 10 001 states.

Fig. 4 compares the average satisfaction probability interval
sizes defined by

p̄ =
1

|Q|
∑
q∈Q

p̂(q)− p̌(q)

Fig. 4. Effect of the size of discretization and ε on the average satis-
faction probability interval size (verification error).

TABLE I
COMPONENT COMPUTATION TIMES FOR AN INCREASING NUMBER OF STATES

where a smaller value indicates more certain (less-conservative)
intervals, i.e., upper bound and lower bound probabilities are
similar. As the uniform choice of ε approaches 0.15, the average
probability interval size decreases although this trend reverses
as ε decreases further. This is due to ε becoming too small to
get nonzero regression error probabilities from Proposition 1.
However, by applying Proposition 4, we obtain an optimal value
for ε for every region pair, resulting in the smallest interval
averages p̄ for every discretization.

Note that there is an asymptotic decay in the average proba-
bility interval size as the discretization gets finer. This however
comes at a higher computation cost. The total computation times
for framework components are shown in Table I. The most
demanding component involves discretizingX and determining
the image over-approximation and error upper bound of each
state as discussed in Section IV-B. The transition probability
interval calculations involve checking the intersections between
the image over-approximations and their respective target states.
The unbounded verification procedure is fast relative to the time
it takes to construct the IMDP abstraction.

C. Switched System

We extend the previous example to demonstrate the verifi-
cation of a system with multiple actions. The unknown system
f(x(k), ai) = Aix(k) has two actions A = {a1, a2} where

A1 =

[
0.8 0.5

0.0 0.5

]
, A2 =

[
0.5 0

−0.5 0.8

]
.

Verification was performed subject to φ = P≥0.95[G≤kX] (the
probability of remaining in X within the k time steps is at least
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Fig. 5. Verification results for the switched system subject to φ =
P≥0.95[G≤kX]. (a) k = 1. (b) k =∞.

Fig. 6. Learned vector field for the autonomous nonlinear system. (a)
True vector field. (b) Learned vector field.

95%) using 400 datapoints for each action to construct the GPs.
The k = 1 and k =∞ results, in Fig. 5(a) and (b), respectively,
show the regions where the system satisfiesφ regardless of which
action is selected. The framework can handle a system with an
arbitrary number of actions so long there is data available for
each action.

D. Autonomous Nonlinear System

We perform verification on the unknown nonlinear system

f(x(k)) = x(k) + 0.2

[
x(2)(k) + (x(2)(k))2ex

(1)(k)

x(1)(k)

]

with the vector field shown in Fig. 6(a). The system is unstable
about its equilibrium points at (0,0) and (0,−1) and slows as
it approaches them. The flow enters the set X in the upper-left
quadrant, and exits in the others. This nonlinear system could
represent a closed-loop control system with dangerous operating
conditions near the equilibria that should be avoided.

A 2000-point dataset is used for GP regression with the
learned vector fields shown in Fig. 6(b). The specification
φ = P≥0.95[¬O U≤kG] commands to avoidO and remain within
X until G is reached within k steps. With Δ = 0.03125, the
uniform discretization yields 16 384 discrete states, which cul-
minated into an end-to-end verification runtime of 38 minutes.
The majority of this time involved computing the images and
error bounds for each discrete state, which is the only parallelized
part of the framework.

For k = 1 shown in Fig. 7(a), Qyes consists of the G regions
and nearby states that transition to the G regions with high
probability. The size of the Q? buffer between Qyes and Qno

Fig. 7. Verification results for the nonlinear system subject to φ =
P≥0.95[O U≤kG]. (a) k = 1. (b) k = 2. (c) k = 3. (d) k =∞.

provides a qualitative measure of the uncertainty embedded
in the abstraction. As k increases, Qyes modestly grows while
Qno shrinks. The k =∞ result shown in Fig. 7(d) indicates
where guarantees of satisfying or violating φ can be made
over an unbounded horizon. There are many more states in
Qyes as compared to even the k = 3 result. The increase of
Q? from k = 1 to k =∞ is due to the propagating learning
and discretization uncertainty over longer horizons. The dis-
cretization resolution plays an important role in the size of Q?,
as the uncertain regions are easily induced by discrete states
with possible self-transitions, which is mitigated with a finer
discretization.

E. 3-D Closed-Loop Dubin’s Car

Finally, we consider a discrete-time form of the Dubin’s car
model ⎡

⎢⎣xk+1

yk+1

θk+1

⎤
⎥⎦ =

⎡
⎢⎣xkyk
θk

⎤
⎥⎦+ΔT

⎡
⎢⎣sinc(ũ)v cos(θ + ũ)

sinc(ũ)v sin(θ + ũ)

u

⎤
⎥⎦

wherex ∈ [−1, 3] andy ∈ [0, 1] are the position, θ ∈ [−0.6, 3.8]
is the heading angle, u controls the change in heading angle
θ, ũ = 0.5uΔT , v is the constant speed, and ΔT is the time
discretization parameter.

The system models an aircraft that evolves in the environment
shown in Fig. 8(c) that is equipped with a feedback controller π
designed to satisfy the following specification: “avoid obstacle
O and reach a goal area D1; if the aircraft enters the geofenced
areaGF , it has to enter areaD2 before reachingD1.” The PCTL
formula for verification is

φ = P≥0.95 [(¬O ∧ (GF ⇒ P≥0.95[F D2])) U D1] .
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Fig. 8. Verification results for the Dubin’s car system at different ini-
tial headings subject to P≥0.95[(¬O ∧ (GF ⇒ P≥0.95[F D2]))U D1]. (a)
θ0 = π/2 →. (b) θ0 = 9π/10 →. (c) Trajectories with initial heading
colored to indicate prior satisfaction (>), violation (>), or indeterminant
(>) guarantees according to the framework.

To verify the (unknown) system, a dataset consisting of 100 000
datapoints was generated. To increase the speed of the frame-
work with this large dataset, GP regression was performed
locally, which has been shown to be improve efficiency in higher
dimensions [65]. For each discrete region, the nearest 1000 dat-
apoints according to a suitable SE(2) metric are used for local
dynamics modelling. In the same vein, local RKHS constants are
computed for each region. An automatic refinement procedure
was employed to repeatedly refine the subset of Q? that may
reach Qyes, with 12 refinement steps in total taking 35 hours.
With the initial discretization consisting of 280 states, 21.4%
and 17.5% of all states by volume belong to Qyes and Qno,
respectively. After the 12 refinement steps, the discretization
consists of 309 092 states with 49.3% and 26.4% belonging to
Qyes and Qno, respectively.

Fig. 8 presents the verification results in thex and y (North and
East) dimensions for two initial headings θ0, although results
were generated for all headings within [−0.6, 3.8] radians.
Fig. 8(c) shows trajectories of the system with controller π with
indicated initial headings that are colored according to their
performance guarantee. The classification of each initial state
as satisfying or violating the specification intuitively follows a
pattern depending on the initial heading. When this heading is
eastward, as seen in Fig. 8(a), the controller can steer the system
around the obstacle O if there is enough clearance. However,
when the initial region is South–Eastward, shown in Fig. 8(b),
the size ofQno around the obstacle grows as there is not enough
time to avoid the obstacle.

While the controller was designed with the implicationGF ⇒
P≥0.95[F D2] in mind, the verification procedure identifies
shortcomings in the controller performance. For example, when

the initial heading is south-eastward [see Fig. 8(b)] or the system
is initialized in GF , in most regions there is no guarantee
that the system reaches D2 with at least 95% probability. Of
the two trajectories that pass through GF with θ0 = π/2 in
Fig. 8(c), one is classified as satisfying φ and the other classified
as indeterminant. This is due to the eastern regions of GF
in Fig. 8(a) having a high probability of reaching D2, which
satisfies the implication. The western portion ofGF , in addition
to the majority ofGF in the other case, does not have a minimum
probability that satisfies this relation. However, this does not
preclude the system from actually achieving the task as seen
in Fig. 8(c), since the maximum probability of reaching D2 is
above zero but not guaranteed to be at least 95%. In fact, further
refinement of the abstraction to reduce the transition uncertainty
may result in greater portions of GF satisfying the requirement
of reaching D2.

VII. CONCLUSION

We present a verification framework for unknown dynamic
systems with measurement noise subject to PCTL specifications.
Through learning with GP regression and sound IMDP abstrac-
tion, we can achieve guarantees on satisfying (or violating) com-
plex properties when the system dynamics are a priori unknown.
The maturation of this framework will address the challenges
of scaling to higher dimensions, which include the reliance on
larger datasets and more discrete states in the abstraction, which
can lead to the state-explosion dilemma.

Extensions to the framework could allow for synthesis with
measurement noise, general and nonlinear measurement models,
and the scaling issues of GP regression and the bounding of
state images and posterior covariance suprema. While effective
for GP regression, our interval-based abstraction method may
be applied to other types of learning-based approaches provided
sound probabilistic errors are available.

APPENDIX A
PROOF OF PROPOSITION 2

Proof: The proof relies on the following lemma, which gives
equivalent conditions involving a function f in an RKHSH, its
RKHS norm ‖f‖κ, and the associated kernel κ.

Lemma 2 (Theorem 3.11 from [66]): LetH be an RKHS on
X with reproducing kernel κ and let f : X → R be a function.
Then, the following are equivalent:

1) f ∈ H;
2) there exists a constant c ≥ 0 such that, for every finite

subsetF = {x1, . . . xn} ⊆ X , there exists a functionh ∈
H with ‖h‖κ ≤ c and f(xi) = h(xi) for all i = 1, . . . n;

3) there exists a constant c ≥ 0 such that the function
c2κ(x, x′)− f(x)f(x′) is a kernel function.

Moreover, if f ∈ H then ‖f‖κ is the least c that satisfies the
inequalities in 2 and 3.

Let f : X → R reside in the RKHSH defined by κ. Note that
any c that satisfies 3 in Lemma 2 also satisfies 2. due to the
assumption that f ∈ H and choosing h = f .

A kernel function κ is positive semidefinite if and only
if, for all finite subsets {x1, . . . xn} ⊂ X and real vectors
{b1, . . . bn} ∈ R

n,
∑

i

∑
j κ(xi, xj)bibj ≥ 0 which the given
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kernel satisfies. By Lemma 2, there exists a constant c ≥ 0 such
that ∑

i

∑
j

(c2κ(xi, xj)− f(xi)f(xj))bibj

=
∑
i

∑
j

κ(xi, xj)bibj − c−2f(xi)f(xj)bibj

=
∑
i

∑
j

κ(xi, xj)bibj −
∑
i

∑
j

c−2f(xi)f(xj)bibj ≥ 0

which leads to∑
i

∑
j

κ(xi, xj)bibj ≥
∑
i

∑
j

c−2f(xi)f(xj)bibj .

Assume κ(x, x′) ≥ 0. Then choose c ≥ 0 such that, ∀i, j
κ(xi, xj) ≥ |c−2f(xi)f(xj)|

c2 ≥ |f(xi)f(xj)|
κ(xi, xj)

which obligates the choice

c2 = sup
x,x′∈X

|f(x)f(x′)|
κ(x, x′)

≤ supx∈X f(x)2

infx,x′∈X κ(x, x′)
.

By Lemma 2, the right-hand side is an upper bound of ‖f‖2κ. �

APPENDIX B
PROOF OF PROPOSITION 3

Proof: The proof relies on Hadamard’s determinant bound-
ing inequality and s = supx∈X κ(x, x). LetK denote the kernel
matrix from d input points and kernel κ. Then, the maximum
information gain is bounded by

γdκ := max
K

log |I + σ−2K| ≤ max
K

log

d∏
i=1

|1 + σ−2Ki,i|

≤ log

d∏
i=1

|1 + σ−2s| =
d∑

i=1

log(1 + σ−2s)

= d log(1 + σ−2s)

where | · | is the matrix determinant function. �

APPENDIX C
PROOF OF PROPOSITION 4

Proof: Let P(εi) = (1− δi(εi)) denote the CDF of the prob-
abilistic regression error. In order to maximize the upper bound
in Theorem 1, the indicator function should return 1 and the
product with P(εi) should be maximizing. The indicator function
returns 1 if Im(q, a) ∩ q′ = Im(q, a). The most q′ can shrink is

inf
a∈∂Im(q,a),b∈∂q′

|a− b|.

Since P(εi) is nondecreasing, the choice of ε is maximizing. The
proof for the minimizing case is similar. �

APPENDIX D
PROOF OF LEMMA 1

Proof: Assume, for simplicity and w.l.o.g., that πy is station-
ary. Then V πy

k : Rn → R is defined recursively as

V
πy

k (x) =

⎧⎪⎪⎨
⎪⎪⎩
1, if x ∈ X1

0, if x ∈ X0

0, if x /∈ (X0 ∪X1) ∧ k = 0
Ev∼pv, x̄∼T (·|x,πy(x+v))[Vk−1(x̄)], otherwise.

To prove Lemma 1, we need to show that

V
πy

k (x) = P(ωk
x |= ψ | ωx(0) = x, πy)

that is the probability that a path of length k of Process (1)
initialized at x is equal to V πy

k (x).
The proof is by induction over the length of the path. The base

case is

P(ω0
x |= ψ | ω0

x(0) = x, πy) = 1X1(x) = V
πy

0 (x).

Then, to conclude the proof we need to show that under the
assumption that for all x ∈ R

n

P(ωk−1
x |= ψ | ωx(0) = x) = V

πy

k−1(x),

it holds that for all x ∈ R
n

P(ωk
x |= ψ | ωx(0) = x, πy) = V

πy

k (x).

Call X̄ = X \ (X0 ∪X1), that is the complement of set X0 ∪
X1, and define notation

ωk
x([i, k − 1]) ∈ X := ∀j ∈ [i, k − 1], ωk

x(j) ∈ X.
Assume w.l.o.g. that x ∈ X̄ . The final part of the proof is

P(ωk
x |= ψ | ωx(0) = x, πy)

=
k∑

i=1

P(ωk
x(i) ∈ X1 ∧ ωk

x([1, i− 1]) ∈ X̄ | ωk
x(0) = x, πy)

= P(ωk
x(1) ∈ X1 | ωk

x(0) = x, πy)

+

k∑
i=2

P(ωk
x(i) ∈ X1 ∧ ωk

x([1, i− 1]) ∈ X̄ | ωk
x(0) = x, πy)

=

∫ ∫
X1

t(x̄ | x, πy(x+ v))pv(v)dx̄dv

+

k∑
i=2

∫ ∫
X̄

P(ωk
x(i) ∈ X1 ∧ ωk

x([2, i− 1]) ∈ X̄ |

ωk
x(1) = x̄, πy) t(x̄ | x, πy(x+ v))pv(v)dx̄dv

=

∫ ∫
X1

t(x̄ | x, πy(x+ v))pv(v)dx̄dv

+

k−1∑
i=1

∫ ∫
X̄

P
(
ωk−1
x (i) ∈ X1 ∧ ωk−1

x ([1, i− 1]) ∈ X̄ |

ωk−1
x (0) = x̄, πy

)
t(x̄ | x, πy(x+ v))pv(v)dx̄dv

=

∫ ∫ (
1X1(x̄) + 1X̄(x̄)P(ωk−1

x |= ψ | ωx(0) = x̄, πy)
)
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t(x̄ | x, πy(x+ v))pv(v)dx̄dv

=

∫ ∫
P(ωk−1

x |= ψ | ωx(0) = x̄, πy)

t(x̄ | x, πy(x+ v))pv(v)dx̄dv

= V
πy

k (x)

where in the third equality we marginalized over the event
ωk
x(1) = x̄ and use the definition of conditional probability, and

in the fourth equality we use that for i < k and x ∈ X̄
P(ωk−1

x (i) ∈ X1 ∧ ωk−1
x ([1, i− 1]) ∈ X̄ | ωk−1

x (0) = x̄, πy)

= P(ωk
x(i+ 1) ∈ X1 ∧ ωk

x([2, i+ 1− 1]) ∈ X̄ |
ωk
x(1) = x̄, πy)

which holds because of the Markov property. �
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