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Abstract—A single frame radar-based multi-object tracker that
aims to improve data association for better tracking perfor-
mance is proposed. Firstly, a baseline tracker based on track-
by-detection paradigm was implemented for automotive radar.
Secondly, investigation on the performance of the tracker when
tracking individual classes separately versus all classes together
was performed. Thirdly, appearance features were extracted from
a neural network and added as an additional metric to the cost
matrix for improved data association. Extensive experiments on
the 2D RadarScenes dataset and a 3D proprietary Lunewave
dataset (in partnership with NXP Semiconductors) showed a
consistent improvement in the tracking performance using the
approach proposed by adding features extracted from a neural
network.

Index Terms—Data association, track-by-detection, detector

I. INTRODUCTION

In conventional automotive radar tracking literature [1],
a system model is defined for state prediction and update,
resorting to multiple complex procedures for data association
and track management. The properties of the tracked objects
such as size, position, velocity are used for generating the cost
matrix to match measurements / detection with tracks (men-
tioned as “geometric features” in this work). However, other
characteristics of the radar point cloud such as radar cross
section (rcs), distribution of points, distribution of doppler
etc. (mentioned as “appearance features” in this work) are not
fully utilized since they are more difficult to model using hand
crafted rules. This may result in sub-optimal performance of
the tracker when two objects are close together, or when there
are many false detections.

Recent state-of-the-art research on multi object tracking
for automotive applications is mostly based on deep learn-
ing. However, most of these multi object tracking networks
originate from camera or lidar domain, and hence do not
incorporate radar characteristics into the network. For in-
stance, most of the research is based on track-by-detection
paradigm whereby an object is detected at each frame and its
association with a corresponding track is found [2]. Neural
network based feature extractors are also used, especially in
the camera domain to provide appearance features which can
be used to compare detections with tracks [3]. These methods
produce good results in the case of camera or lidar where the

object localization is fairly accurate because of the detailed
information available through these sensors for each frame.
However, the development of this approach for radar-based
multi-object tracking is still underexplored.

A major problem with radar data is that single frame object
detection is extremely challenging since radar data is sparse,
exhibits miss detections and contains a lot of clutter [4]. Some
approaches [5] use multiple frames for object detection and
tracking, but this creates latency in the processing which is
not acceptable for real time applications. To decrease the
chance of missing any object detections, the score threshold
can be decreased to include detections with lower confidence.
However, this can increase the chances of noise being detected
as objects. This makes data association more challenging
since the tracker has to make data associations between tracks
with not only true object detections but also noise detections.
Obtaining discriminative features that helps to distinguish
between true objects and noise can help the data association
algorithm to separate noise from true objects.

In this paper, we propose to use a single frame, multi
object tracker (MOT) based on track-by-detection approach
where neural network based appearance features are utilized to
improve data association. As shown in Figure 1, the proposed
tracker follows the following steps inspired by [6]: (1) A
Pointpillar radar object detector [7] to perform object detection
from radar point cloud. (2) a Kalman filter to obtain next
state prediction from the previous states. (3) a data association
module to associate detections with the predicted states using
motion and appearance features. (4) a Kalman filter to update
the states for the tracks which are matched with detections. (5)
a track management module to determine whether to assign
unmatched detections to new tracks as well as whether to
remove unmatched tracks.

We evaluated our proposed tracker on the opensource 2D
RadarScenes dataset, containing only 2 spatial dimensions
[8] as well as on a proprietary 3D Lunewave dataset [9],
containing 3 spatial dimensions. Our proposed method out-
performs the baseline tracker using only motion features for
data association by improving MOTA (multi object tracking
accuracy) [10] by 2.83% on car class and 4.40% on pedestrian
class on the RadarScenes dataset as well as improving MOTA
by 1.14 % on the car class on the Lunewave dataset. The main
contributions of the paper are as follows: (1) We designed a
baseline radar multi object tracker suitable for single frame978-1-6654-8278-3/23/$31.00 ©2023 IEEE
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Figure 1. Proposed single frame multi object tracker for automotive radar.
The difference from the baseline is that a neural network feature extractor was
used to generate appearance features that were used as additional features for
data association.

processing. (2) We modified the baseline tracker to use both
motion and appearance features in the cost matrix, which
helps in improving data association. (3) We compared the
performance of tracking all classes of objects together versus
tracking each class individually and showed that tracking all
class of objects together may provide better result as compared
to tracking individual classes for lower resolution radar.

The remainder of this paper is organized as follows: Section
II reviews the related work. Section III describes the tracking
framework and proposed method. Section IV describes the ex-
periments performed with a discussion on the results. Section
V concludes this work.

II. RELATED WORK

Paper [6] showed that applying a simple track-by-detection
pipeline with detections generated by a state-of-the-art detector
can give very promising tracking performance for lidar. Since
a similar technique using automotive radar is developed in
this work, research related to this technique for multi object
tracking is briefly reviewed in this section.

Radar Object Detection: [11] performs joint object clas-
sification / detection using PointNets [12]. [13] uses GNNs
(graph neural networks) [14] to perform object detection. [7]
uses PointPillars [15] to perform object detection. In our pro-
posed approach, we used [7] for radar object detection because
of its simplicity, good performance and wide adaptability.

Discriminating Features: [16] uses micro-Doppler sig-
natures to extract appearance features which are combined
with motion features to perform tracking using Deep Metric
Learning [17]. [18] performs joint non-line-of-sight object
detection and tracking using temporal sequence of doppler
velocity and positional measurements. However, both of these
methods need temporal frames for feature extraction. [19] uses
classification as an additional feature together with motion fea-
tures for tracking. Inspired by this, we used a similar approach
but instead of using hard classification labels, we opted for
the softer appearance features coming from a classification
network [20] as the additional features.

Data Association: Some methods [21] learn to estimate
cost matrix whereas; other methods use deterministic distance

functions to estimate cost function for data association includ-
ing IoU (Intersection-over-Union) distance [6], Mahalanobis
distance [22], and Generalized IoU distance [23]. Here, we
used the latter approach because of limited training data for
training the tracker.

III. PROPOSED APPROACH

A. Baseline Tracker

We developed a tracking pipeline inspired by [6] to perform
MOT using automotive radar, as shown in Figure 1.

Radar Object Detection: The first step in the pipeline is
object detection. This helps to ease the task of data association
as the number of detected objects are much smaller than the
total number of radar points, reducing the number of possible
data associations. PointPillars [7] was used which provides
both detection and classification of the desired objects (3 road
users: car, pedestrian and bicycle). The input was a radar point
cloud which was processed through the network to obtain the
object detections.

State Prediction: The users present in the scene are dy-
namic and hence, can change their location at each frame.
In order to track their state parameters, we need a motion
model of the system to predict the states of the object in
the next frames. The states include object’s center (x, y, z),
velocity (vx, vy , vz), size (l, w, h) and orientation (θ). Since
we perform tracking at a high frame rate (10 Hz) for road
users following a relatively smooth motion, we used a constant
velocity to model the movement of the objects.

Data Association: The object detection block generated
detections at the current frame whereas the Kalman filter
state prediction module generated the predicted location of the
tracks. Next, detections are matched with the tracks. Typically,
a cost matrix is used which computes the cost of assigning
each track with each detection. In the baseline approach,
difference in motion features between the detected objects and
tracks was used as the cost matrix. For the data association
module, a single hypothesis strategy was applied where each
track was compared with all detections that are within a certain
distance to the track. This helps to reduce the complexity of
the problem and was solved using the Hungarian Algorithm
[24]. The outcome of the algorithm were a set of matched
detections (Dmatch) and tracks (Tmatch) as well as unmatched
detections (Dunmatch) and unmatched tracks (Tunmatch).

State Update: To account for the inaccuracies in state
prediction, we used the matched detections to correct the states
of the tracks. Bayes rule was used to update the final states
of the matched objects based on the measured detections and
predicted track states. In this respect, the states were converted
into estimated measurements and these were compared with
the actual measurements (detections) to provide the required
vectors for measurement update equation. Since the object
measurements (x,y,z,l,w,h,θ) are a part of the state vector,
we used a linear Kalman filter as a measurement equation to
convert from states to measurements.

Track Management: A track management module is also
needed to manage the addition of new objects that appear in
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the scene and removal of objects that are no longer present
in the scene. Here, the unmatched detections (Dmatch) can be
potential new objects and the unmatched tracks (Tunmatch) can
be potentially deleted. We followed [6] by keeping a minimum
number of frames (Tbirth) where an object is constantly
detected before it is assigned to a new track and a minimum
number of frames (Tdeath) where the track is not detected
before it is deleted.

B. Adding Appearance Features to Improve Data Association

Although motion features can be used to compare detections
with tracks, using only them can fail in the case when two
objects are very close together or when a false detection or
missed detection is matched with a track. In these cases,
additional information can help perform correct data asso-
ciation. For this, a neural network can be trained to extract
discriminative features for each of the object that is being
tracked. These discriminative “appearance” features can then
be used as an additional value in the cost matrix to compare
between detected objects and tracks. Detections coming from
the same object will have similar features but those from other
objects or noise will have dissimilar features. So, matching
these features between detected objects and tracks can improve
data association. Moreover, since there are many noisy object
detections in radar data, these appearance features can help to
distinguish them from true objects reducing the possibility of
incorrect data associations.

In this respect, a neural network was trained for classifica-
tion and its intermediate features were used as discriminative
features to match detections with tracks. The motivation to use
a classifier network as compared to other common methods
in camera literature (such as Siamese architecture [25]) is that
unlike camera domain, datasets in radar domain are limited and
so, training a classifier is a relatively simpler task than training
a neural network for siamese matching or reidentification
tasks.

To compare the appearance features of objects with tracks,
a cosine similarity based measure was used. In order to
obtain the appearance features for the objects, the following
procedure was followed. Firstly, points present within the
object bounding box were extracted. Secondly, these points
were passed through a classification network which uses an
architecture similar to [12]. Lastly, the intermediate features
from this network were taken as the appearance features. On
the other hand, the appearance features for the tracks were
taken from the features of the matched detected objects on
the previous frame. The overall cost matrix was obtained using
(1), (2), (3):

capp = 1− Fdet ∗ Ftrk

∥Fdet∥∥Ftrk∥
, (1)

cdis = dist(xdet, xtrk), (2)

ctot = cdis + λcapp, (3)

where Fdet: appearance features from detection, Ftrk: appear-
ance features from track, xdet: motion features from detection,
xtrk: motion features from track, λ: positive real number

C. Tracking All Classes Together

Because of the sparsity of radar data, there are very few
detections per object, especially for pedestrians. This makes
the classification of these objects challenging causing the
object detector to output inconsistent class labels for different
frames. If we use a tracker that tracks each class separately as
is done in [6], we observed a decrease in tracking performance
for some cases. So, we also investigated a more conventional
tracking approach where all the objects of different classes
were tracked together without using the classification labels.
This was beneficial for tracking since in many cases object
classifications from the object detections were not very robust.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Datasets

A major challenge in the radar domain is the lack of open
source datasets. Since machine learning algorithms are highly
dependent on quality of data, it is important to have a dataset
that is large in size and that is representative of the problem to
address. Most of the research in automotive radar community
is done by industry with proprietary data.

RadarScenes Dataset: We used the opensource 2D
RadarScenes dataset [8] for our experiments which provides
ground truth label of classes and tracks ids for each moving
point. In spite of some limitations such as the lack of height
information, and the availability of the annotations only for
moving objects, we decided to use this dataset because it is
large, provides high quality annotations for each individual
points and has a decent azimuth resolution of 0.5°-2° . Also,
it can be a good reference dataset to compare our method with
the existing works [5] in future.

In our experiments, we use the data coming from sensor
3 which is tilted by 25° from the car’s front axis. Based on
the point annotations for each point, we generated ground truth
bounding boxes for each dynamic object annotated in the scene
with a corresponding track id. Then, we trained a modified
version of PointPillar network [7] to perform object detection
using point cloud coming from single frame. Separately, for
each annotated object, we extracted the points present within
that object and used these cluster of points to train a modified
version of PointNet++ architecture [12] for classification to
generate the appearance features. These appearance features
were then used to modify the cost matrix part of the data
association module to improve tracking.

Lunewave Dataset: Since RadarScenes dataset is a 2D
dataset with no height information, we also use the 3D
Lunewave dataset in our experiments to assess the performance
of the tracker. Here, 3D bounding box annotations with corre-
sponding track ids are available for each object in the scene.
We performed a similar procedure of training a 3D object
detector based on PointPillar architecture and a classification
network based on PointNet++ architecture to obtain object
detections and corresponding appearance features which were
used to perform data association.
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B. Metrics

To evaluate our method, we used the widely used CLEAR
MOT metrics [10] that are also used by other autonomous
driving benchmarks such as KITTI [26] and NuScenes [27].
The metrics are described as follows:

• MOTA (multi object tracking accuracy): This metric
evaluates overall tracking accuracy by combining three
error sources: false positives, missed targets and identity
switches.

• MOTP (multi object tracking precision): This metric
considers the object localization performance via the
misalignment between the annotated and the predicted
bounding boxes.

• F1: This metric combines precision and recall into a
single metric using harmonic mean.

C. Results for RadarScenes Dataset

Quantitative Analysis: Table I, II provide a comparison of
the quantitative performance for a tracker tracking individual
classes with a tracker tracking all classes together for car
and pedestrian class respectively, on the validation set of
RadarScenes dataset. Improved performance is obtained if we
use a tracker that tracks detections coming from all the classes
together instead of separately tracking each of the classes. This
is because there are many objects with very few radar points
and the pointpillar object detector often does not provide a
very accurate class prediction for these cases. So, in these
cases, tracking individual classes can cause the tracker to track
different classes at different frames.

Table I, II also show the quantitative performance of our
tracking strategy of adding appearance features compared with
the baseline track-by-detection approach on car and pedestrian
class on the validation set of RadarScenes dataset. The major
effect of this strategy is on increasing MOTA since this method
focuses on the improving data association using appearance
features, whereas MOTP remains fairly constant since the
improvement in state prediction was not targeted.

Table I
TRACKING RESULTS ON RADARSCENES DATASET FOR CAR CLASS

Tracking Tracker Using Tracker Using Tracker Using
Metrics Individual Classes All Classes Appearance Features
MOTA 65.62 68.40 68.45
MOTP 51.51 51.12 51.65

F1 86.68 86.76 87.42

Table II
TRACKING RESULTS ON RADARSCENES DATASET FOR PEDESTRIAN

CLASS

Tracking Tracker Using Tracker Using Tracker Using
Metrics Individual Classes All Classes Appearance Features
MOTA 39.79 42.36 44.19
MOTP 47.97 47.62 48.52

F1 63.14 63.89 65.98

Qualitative Analysis: Figure 2 provides a visualization
of the performance between a tracker that tracks individual
classes and a tracker that tracks all classes together on a

sequence of images. Figure 2a shows the PointPillar detection
for 3 consecutive frames. A pedestrian is classified incorrectly
as bicycle in frame 2. Figure 2b shows the tracking results
for a tracker that tracks individual classes. The tracker starts
to track two objects at frame 2. This is because at frame 2, it
initiates a new track and starts to track bicycle as a new tracked
object separate from the tracked pedestrian object; whereas the
track for pedestrian object is also being kept as an unmatched
track for that frame. Figure 2c shows the tracking results for
a tracker that tracks all classes. For this case, the tracker is
able to correctly track a single object since the object detector
outputs only a single detection at different frames. This shows
that tracking all objects from different classes can be beneficial
for the case when the object classifications are not robust.

(a) Detections for 3 consecutive frames

(b) Tracking individual classes

(c) Tracking all classes together

Figure 2. Tracking of a pedestrian, which is classified incorrectly by the
PointPillar detector, as seen in 2D radar view (RadarScenes Dataset). (a)
Detections for 3 consecutive frames: incorrect classification at frame 2 (bicycle
in blue instead of pedestrian in red). (b) Tracking individual classes: incorrect
data association after frame 2. (c) Tracking all classes together: correct data
association.

Figure 3 provides a visualization of the performance be-
tween a tracker that uses only motion features and a tracker
that uses additional appearance features for a sequence of
images. Figure 3a shows the sequence of images from the
ground truth. There is a pedestrian (red label) which is present
at frame 1 and 2 but not in frame 3. Figure 3b shows the
output of the PointPillar detector for the same sequence of
scenes. The detector outputs pedestrian detection in frame 1,
misses the detection in frame 2, and makes an incorrect noisy
pedestrian class prediction coming from a noise point close to

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2025 at 08:58:17 UTC from IEEE Xplore.  Restrictions apply. 



the ground truth in frame 3. Figure 3c shows the output when
using a tracker that uses only motion features. The tracker
makes incorrect data association at frame 3 by associating
the track with the noisy detection since the tracker cannot
distinguish between the track and noise detection based only
on motion features. Figure 3d shows the output when a tracker
that uses additional appearance features for tracking was used.
In this case, the tracker makes correct data association at frame
3 by not associating the track with the noise detection. This
is because the appearance features of the tracked object and
the noise detection are different causing the cost between the
tracked object and noise detection to increase.

(a) Ground truth labels for 3 consecutive frames

(b) Detections for 3 consecutive frames

(c) Tracks using only motion features

(d) Tracks using additional appearance features

Figure 3. Tracking of a pedestrian (label in red), which is detected incorrectly
by the detector, as seen in 2D radar view (RadarScenes Dataset). (b) Detec-
tions for 3 consecutive frames: false detection at frame 3. (c) Tracks using
only motion features: tracker makes incorrect data association. (d) Tracks
using additional appearance features: tracker discards the incorrect detection
at frame 3 based on appearance features.

D. Results for Lunewave Dataset

Quantitative Analysis: Table III shows the quantitative
performance of the proposed MOT approach on car class of the
Lunewave validation dataset compared with the baseline track-
by-detection approach. Again, we can observe that adding the
classification features helps in improving MOTA performance.

Table III
TRACKING RESULTS ON LUNEWAVE DATASET FOR CAR CLASS

Tracking Tracker Using Tracker Using Tracker Using
Metrics Individual Classes All Classes Appearance Features
MOTA 58.98 58.63 60.12
MOTP 60.57 60.08 60.32

F1 78.45 78.45 79.71

Qualitative Analysis: Figure 4 provides a visualization
of the performance between a tracker that uses only motion
features and a tracker that uses additional appearance features
for a sequence of images. Figure 4a shows the sequence of
images from ground truth. Figure 4b shows the output of
the PointPillar detector for the same sequence of scenes. The
detector outputs incorrect car detections at frame 2 and 3.
Figure 4c shows the output when using a tracker that uses only
motion features. The tracker makes data association between
the two noise detections causing a false track to appear at
frame 3. Figure 4d shows the output when a tracker that uses
additional appearance features for tracking was used. In this
case, the tracker does not create a new track because the
appearance features of the two noise detections are different.

E. Limitations

Overall, we see that the proposed approach improves the
data association, but does not improve the localization per-
formance. This is because adding neural network features
does not improve state estimation. So, for future work, this
motivates us to use other approaches such as object detectors
with velocity estimation that can provide additional infor-
mation to state estimators which can result in improving
the localization performance. Moreover, radar multi object
tracker performance is much lower than what we can expect
from a single frame lidar based tracker. This is because the
performance of the tracker is highly dependent on the object
detector, which is not very robust for a single frame radar data.
For future work, we also plan to explore training the feature
extractor within the tracking framework instead of reusing the
features from classifier to enable better intra-class separation.

V. CONCLUSION

In this work, we proposed a novel real-time multi-object
tracker using single frame automotive radar data that aims to
solve the problems of data association for improved tracking
performance. There are two key concepts in the proposed
approach: (1) implementing a baseline tracker for single frame
radar-based processing and comparing performance between
tracking individual classes with all classes. (2) using ap-
pearance features to provide additional information that can
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(a) Ground truth labels for 3 consecutive frames

(b) Detections for 3 consecutive frames

(c) Tracks using only motion features

(d) Tracks using additional appearance features

Figure 4. Tracking of car objects (label in green, Lunewave Dataset). (a)
Ground truth labels for 3 consecutive frames. (b) Detections for 3 consecutive
frames: false detections at frame 2 and 3. (c) Tracks using only motion
features: tracker initiates a new track. (d) Tracks using additional appearance
features: tracker does not initiate a new track.

improve data association. Based on the experiments per-
formed on the 2D RadarScenes dataset and 3D Lunewave
dataset, we observed a consistent improvement in the tracking
performance when tracking all classes together along with
appearance features.
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