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Abstract. The first and second order sensitivity analysis of the eigenvalue problem of generalised, non-

symmetric matrices using perturbation theory is developed. These results are then applied to sensitivity 

analysis of wave propagation in structures modelled using the wave and finite element (WFE) method.  

Three formulations of the WFE eigenvalue problem are considered: the transfer matrix method, the 

projection method and Zhong’s method. The sensitivities with respect to system parameters of 

wavenumbers and wave mode shapes are derived. Expressions for the group velocity are presented. 

Numerical results for a thin beam, a foam core panel and a cross-laminated timber panel are used to 

demonstrate the proposed approach. It is shown that sensitivities can be calculated at negligible 

computational cost. 

Keywords: generalised eigenproblems; perturbation theory; wave propagation; WFE; Sensitivity 

analysis. 

1.  Introduction 

The characteristics of wave propagation in structures – wavenumbers, wave mode shapes, group 

velocity, reflection and transmission coefficients, etc – depend on the material and geometric properties 

of the medium [1].  Changes (or uncertainties) in these properties result in changes (or uncertainties) in 

the wave properties. This paper concerns sensitivity analysis relating changes in the physical properties 

to changes in the wavenumbers and wave mode shapes. A related problem is the estimation of group 

velocity. The particular emphasis is on complicated structures (e.g. laminates) where analytical 

solutions are not available and where the wave characteristics are estimated numerically, in this paper 

using a finite element-based technique. In this wave and finite element (WFE) method [2,3] the 

dispersion behaviour is found by solving an eigenproblem. Potential applications of the results include: 

sensitivity analysis, the determination of the most important parameters on which wave behaviour 
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depends and the development of robust designs; model updating and the estimation of physical 

properties and dispersion behaviour from measurements; uncertainty modelling, relating uncertainties 

in physical properties to uncertainties in wavenumbers, reflection or transmission coefficients, and 

hence to uncertainties in vibrational behaviour, response, noise transmission, etc; the estimation of 

group velocity, which is found from the rate of change of wavenumber with respect to frequency; 

stability analysis; identification and determination of the cut-off, veering or crossing behaviour of 

branches of the dispersion curves. 

 

Perturbation theory can be used to evaluate the sensitivity of the eigencharacteristics of a system with 

respect to changes in a parameter, without requiring the eigenproblem to be solved multiple times. In 

particular, this approach yields approximate expressions for the eigenvalues and eigenvectors of the 

perturbed system which are computed via matrix multiplications, reducing the computational cost 

drastically. When applied to structural dynamics, the system is frequently characterized by symmetric 

matrices, and therefore much research effort has focused on the analysis of so-called symmetric systems 

which are characterized by symmetric eigenvalue problems. Solutions for first order perturbations of 

the eigenproblem for real symmetric matrices with respect to a parameter can be found in [4-7], for 

example. However, the matrices that result from WFE analysis are asymmetric and often complex [2,3]. 

As shown also in recent developments on WFE applications to problems on noise transmission [8, 9], 

periodic structures [10], beams with asymmetric cross-section [11], two-dimensional structures [12, 

13], pipes [14] and cylinders [15]. 

 

In this paper the first and second order derivatives of the eigensolutions with respect to the system’s 

parameters are derived for generalized, asymmetric eigenproblems. The analysis of real, non-symmetric 

matrices for the case of weak and strong interaction with equal eigenvalues was considered by Seyranian 

[5-7]. The problem of distinct eigenvalues was addressed in [5] but did not include results for the second 

order sensitivity. Recent developments on this topic have been presented in [16].  The eigensolutions 

derivatives found below are then applied to WFE models, for which the matrices involved are 

asymmetric and normally complex. 

 

The paper is organised as follows. The generalised eigenproblem and eigensolution sensitivities are 

presented in section 2. Both first and second order perturbations are developed. Three forms of the WFE 

eigenvalue problem and their perturbations are discussed in section 3. Estimation of the group velocity 

is discussed. Section 4 contains numerical examples concerning eigenvalue sensitivities, while section 

5 contains the conclusions. 
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2.  The generalised eigenproblem and eigensolution sensitivities 

This section presents the sensitivities of the eigenvalues and eigenvectors of the generalised eigenvalue 

problem. The analysis follows that in [5] with additional expressions for the second order sensitivities 

being developed below.   

2.1  The generalised eigenproblem for fixed system parameters 

Let us consider the generalized eigenvalue problem (EP) expressed as 

 

( ) ( )=B p u C p u ,                          (1) 

 

where ( )B p  and ( )C p  are complex, non-symmetric system matrices of dimensions m m  (with ( )C p  

being non-singular) and are functions of n real system parameters in the 1n  vector p. Here   and u 

are the eigenvalue and right eigenvector. The left EP  

 

 ( ) ( )T T=z B p z C p ,  (2) 

 

involves the left eigenvector z. For specific values of the parameters 0=p p , the two EPs can be written 

as 

 

 
0 0 0 00 0 0 0 0 0; ;T T

 = =B u C u z B z C  (3) 

 

where ( )0 0=B B p  and ( )0 0=C C p , and 
0z  and 

0u  are the left and right eigenvectors which are 

normalised such that 

 

 
0 0 0 1T =z C u . (4) 

 

The jth and kth eigenvectors also satisfy the orthogonality conditions 

 

 

 0, 0 0, 0, 0 0, 0,;T T

k j jk k j j jk  = =z zC u B u , (5) 

 

being jk   the Kronecker delta (i.e. 1jj =  and 0jk =  for j k ). The following derivations will be 

made for the jth eigenvalue and the corresponding eigenvector. For simplifying the notation, the 

subscript j will be omitted in what follows. 
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2.2  Perturbation of the eigenproblem  

Consider a perturbation of order   of the system parameters 
0

p  in an arbitrary vector of variation 

( )1,...,
T

ne e=e , such that 

 

 
0 ; 1= + =p p e e . (6) 

 

As a result, the system matrices can be expressed as 

 

2 2

0 1 2 0 1 2...; ...   = + + + = + + +B B B B C C C C                      (7) 

 

where 

1 1

1, 1,

;r r

r n r nr r

e e
p p= =

 
= =

 
 

B C
B C ;                    (8) 

 

2 2

2 2

, 1, , 1,

1 1
;

2 2
r s r s

r s n r s nr s r s

e e e e
p p p p= =

 
= =

   
 

B C
B C ,  (9) 

 

where all the partial derivatives are evaluated at 0=p p . Consequently, each eigenvalue and right 

eigenvectors can be expanded as powers series in  as 

 

 2 2

0 1 2 0 1 2...; ...      = + + + = + + +u u u u  (10) 

 

where, in a similar fashion to Eq. (8) and Eq. (9), 

 

1 1

1, 1,

;r r

r n r nr r

e e
p p




= =

 
= =

 
 

u
u ;                     (11) 

 

2 2

2 2

, 1, , 1,

1 1
;

2 2
r s r s

r s n r s nr s r s

e e e e
p p p p




= =

 
= =

   
 

u
u ,   (12) 

and where all the partial derivatives are evaluated at 0=p p . 

2.3  First order perturbation of the eigensolution 

The first order derivative of the eigenvalue 1 , assuming that the unperturbed eigenvalues o  are 

distinct, can be obtained by substituting Eqs. (6) and (7) in Eq. (1), using the normality and orthogonality 

conditions (Eqs. (4) and (5)) and keeping the first order terms, resulting in   
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 0 1 0 1 0

T

rp





= −


z B C u                         (13) 

 

The same result can be obtained by considering the derivative with respect to the parameter rp  of the 

eigenvalue problem in Eq. (1)  [5].  This can be rewritten as 

 

    ( )0 0 0 0 0 0

r r r rp p p p


 

    
− = + − 

    

u C B
B C C u                                 (14) 

 

Eq. (14) is a linear algebraic system with unknown derivatives rp   and  rp u . Since the matrix 

( )0 0 0−B C  is singular, the solution of Eq. (14) exists if and only if  

 

 0 0 0 0 0T

r r rp p p




   
+ − = 

   

C B
z C u                               (15) 

 

Pre-multiplying the left and the right hand side of Eq. (14) by 0

T
z ,  and noting the results in Eq. (3), it 

follows that [5] 

    

0 0 0

0 0 0

T

r r

T

r

p p

p




  
− 

   =


B C
z u

z C u
                                  (16) 

 

Given the normalization condition in Eq. (4), Eq. (16) reduces to Eq. (13).   

  

As shown in [5], the expression for 1u  is obtained by differentiating Eq. (4) so that  

 

       0 0 0T

rp


=


z

u
C . (17) 

 

Multiplying this equation by the complex conjugate of the left eigenvector 
0z ,  and adding this term to 

the LHS of Eq. (14) [5,17], it follows that [5] 

 

      ( )1

0 1 0 0 1 1 0

rp
 −

=  + −


u
C C B u                            (18) 

 

where 0  is a non-singular matrix given by [5] 
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T

0 0 0 0 0 0 0 = − + z zB C C                                   (19) 

 

Eqs. (13)  and (18) are first-order perturbations of the eigensolutions for the non-symmetric system of 

Eq. (1) with matrices of dimensions m m . These results reduce to those for symmetric eigenproblems 

for which B, C are real and symmetric and the left and right eigenvectors are equal. 

 

When there is only a single parameter p, Eqs. (13)  and (18) reduce to  

 

 0 1 0 1 0;T

p





= −


z B C u          (20) 

 

( ) ( )
1

T

0 0 0 0 0 0 1 0 0 1 1 0;
p

  
−

= − + + −


z z
u

B C C C C B u       (21) 

 

with  

1 1; .
p p

 
= =

 

B C
B C       (22) 

 

2.4  Second order perturbation of the eigensolution 

The second order derivatives of the eigenproperties can be used to investigate local curvature effects, 

and therefore wave phenomena such as cut-off, veering and locking. The second order derivatives of 

the eigenvalues can be found by taking the derivatives of the eigenvalue problem in Eq. (1) with respect 

to the parameters rp  and sp . This can be written as 

 

 

( )
2 2 2 2

0 0 0 0 0 0 0

0 02

r s r s r s r s r s s r

r s s r r s s r r s s r

p p p p p p p p p p p p

p p p p p p p p p p p p

  
 

 


          
− = + − + + +   

              

                
+ + + − +     

                

u C B u u
B C C u C

C C C u C u B u B u
u

 (23) 

 

As for the first order case, since ( )0 0 0−B C  is singular, Eq. (23) has a solution if and only if the terms 

on the RHS of Eq. (23) premultiplied by 0

T
z  equal zero. Moreover, because of Eq. (3), the second order 

derivative of the eigenvalue is 
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( )

2 2

0 0 0
2

0 0 0 0

0 0 0

/

2

r s r s r r sT T

r s

s s r r s s r r s s r

p p p p p p p

p p

p p p p p p p p p p p

 


   


        
− + −    

          =
                  
 + − − + − +     

                 

B C B C u
u

z z C u
B C u u u C C

C u

 .  

(24) 

 

Because of Eq. (4) and (17), and by differentiating Eq. (4) so that  

 

       0 0 0T

rp


=


z

C
u , (25) 

Eq. (24) can be now written as 

 

 
2 2 2

0 0 0 0 0

T

r s r s r s r r s s s rp p p p p p p p p p p p


  

             
= − + − + −     

                 

B C B C u B C u
z u  (26) 

 

The expression for 2u can be obtained by differentiating Eq. (4) giving  

 

       

2

0 0 0T

r sp p


=

 
z

u
C . (27) 

 

Multiplying this equation by the complex conjugate left eigenvector 
0z , and adding this term to the left 

hand side of Eq. (23), we find that  

 

2 2 2 2
1

0 0 0 0 0

0 02

r s r s r s r s r s s r

r s s r r s s r r s s r

p p p p p p p p p p p p

p p p p p p p p p p p p

  


 


−
          

=  + − + + +   
              

                
+ + + + − +      

                 

u C B u u
C u C

C C C u C u B u B u
u

  .     (28) 

 

When there is only a single variable parameter p, Eqs. (26)  and (28) reduce to  

 

( ) ( )
2

0 2 0 2 0 1 0 1 12
2 2T

p


 


=  − + −  

z B C u B C u ;         (29) 

 

( ) ( )
2 2

1
T

0 0 0 0 0 0 2 0 2 1 0 0 1 0 0 1 1 12 2
2 2 2

p p p

 
   

−      
= − + − + + + + −   

      

z z
u

B C C C B C C u C C B u      
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(30) 

 where 

2 2

1 2 22 2

1 1
; ; .

2 2p p p

  
= = =

  

u B C
u B C     (31) 

 

The results in this section are used in the following sections to compute the eigencharacteristics of a 

system modelled using the WFE approach. 

3.  The WFE eigenproblem and sensitivity analysis 

In this paper the perturbations developed in section 2 are applied to determine the sensitivities of the 

wavenumbers and wave mode shapes that describe wave propagation in a medium. For simple situations 

analytical solutions are available, and perturbations follow straightforwardly. The focus here is on more 

complicated constructions for which the wave characteristics are found using the WFE method. 

 

The WFE method for free wave propagation [2,3] involves developing a finite element model of a short 

segment of the structure of length   as shown in Figure 1. This involves the degrees of freedom (DOFs) 

q and nodal forces f of the segment. The mass and stiffness matrices M and K are determined. Time 

harmonic motion at frequency  is assumed and the dynamic stiffness matrix (DSM) 2= −D K M  is 

formed. This relates the DOFs and nodal forces by 

 

 =f Dq .  (32) 

 

Damping can be included by a viscous damping matrix C or by K being complex. Under the propagation 

of a wave, the DOFs and nodal forces at the ends of the segment are related by 

 

 ; ; ;
L L

R L R L

R R

 
   

= = − = =   
   

q f
q q f f q f

q f
  (33) 

 

where ( )exp ik = −  , with k being the wavenumber, which is generally complex, and the subscripts 

L, R denote the left and right ends of the segment. The FE model may involve internal nodes and their 

DOFs condensed. The periodicity conditions in Eq. (33) are applied and an eigenproblem follows, the 

solutions yielding the eigenvalues ( )exp ik = −   with the eigenvectors being the wave mode shapes, 

i.e. the DOFs and nodal forces under the passage of the free wave. 

 

The WFE eigenproblem can be phrased in at least 3 different ways as described below.  These result in 

eigenproblems of the form of Eq. (1).  The parameter vector p may contain any of the material, 

geometric or physical properties of the segment, or the frequency  which is involved in the calculation 
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of the DSM. The results derived in the previous section can then be applied to determine the sensitivity 

of the eigenvalues and eigenvectors with respect to a parameter.   

3.1  The transfer matrix of the segment 

The first form of the eigenproblem involves the transfer matrix T of the segment. The DSM is 

partitioned into 

 

 LL LR

RL RR

 
=  

 

D D
D

D D
,    (34) 

 

By rearranging Eq. (32), the DOFs q and nodal forces f at the left and right ends of the segment can be 

related by  

 1; ;
R L LL

LR

R L RL RR LL RR

−
−     

= = =     
− + −     

q q ED E
T T E D

f f D D ED D E
,    (35) 

 

In the notation of Eq. (1), B = T and C = I. For the case of a single parameter p the first order matrix 

derivatives are 

 

 1 1,
LL LL

RL RR LL RR LL RR LL RR RR

  − −
 = =
     − + + + − − 

E D ED E
B C 0

D D ED D E D D ED D E D E
,    (36) 

 

where ( )  denotes d/dp and LR
 = −E ED E . Given the eigenvalue derivative p  , the derivative of 

the wavenumber is 

 

 
( )expi ikk

p p

 
=

  
  (37) 

  

 

While the transfer matrix approach is perhaps the simplest intuitively, it is prone to poor numerical 

conditioning [18] and this is exacerbated for the case of sensitivity estimation. 

3.2  Projection of the equations of motion onto the left-hand DOFs 

Projecting the equations of motion onto the left-hand DOFs qL leads to a quadratic eigenproblem that 

can be recast as the linear eigenproblem [2,3] 

 

 
( )

RL LRL

RL LL RR LR L




     
− =      − − +      

0 D qD 0
0

D D D 0 D q
.     (38) 
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Hence 

 

 
( )

,
RL RL

RL LL RR LR

   
= =   − − +   

0 D D 0
B C

D D D 0 D
    (39) 

 

and the matrix derivatives follow straightforwardly. 

3.3 The method of Zhong and Williams 

Zhong’s method [19,20] is the perhaps the most numerically robust approach to solving the 

eigenproblem, especially for large system matrices. The eigenproblem becomes 

 

  
( ) ( )

( ) ( )
, , .

LL RR LR RLL RL

LR RL LL RRL LR




− + − −    
− = =    

− − +     

D D D Dq D 0
B C B C

D D D Dq 0 D
     (40) 

 

In this case also the matrix derivatives follow straightforwardly. The double eigenvalues  in this 

formulation are related to ( )exp ik = −  by  

 

 
( )

21 1 41
,

1 2


 

  

 −
= =

+
     (41) 

 

so that the sensitivities are related by 

 

 
( )
( )

2
2

2

1

1p p

 



+ 
=

 −
     (42) 

 

3.4 Group velocity estimation 

The group velocity has been estimated in a number of ways using FE-based approaches.  For undamped 

systems it is identical to the energy velocity and can be found by calculating the ratio of the time average 

energy flow and energy density [2]. Finnveden [21] differentiated the equations of motion of a spectral 

finite element model, with the resulting solution yielding the group velocity: this is an analogous 

approach to that developed here for WFE models. Finally, the wavenumbers can be estimated at two, 

close frequencies and the group velocity estimated by a finite difference approach (e.g. [22]). 

 

In the notation of this paper, the group velocity can be found by choosing the parameter as  
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 2p =   (43) 

 

and noting that  

 

 
p


= −



D
M   (44) 

 

For the second eigenformulation we therefore have 

 

 
( )

,
RL RL

RL LL RR LRp p

    
= − = −   − − +    

0 M M 0B C

M M M 0 M
    (45) 

 

with analogous expression for the third eigenformulation.  The group velocity for a propagating wave 

is then given by 

 

 
1

2
gc

k k p






= =

  
  (46) 

  

and is hence given directly from the calculated wavenumber derivative. 

 

3.5 Estimation of matrix derivatives  

The sensitivity analysis requires the matrix derivatives p B  and p C . Where analytical 

expressions for K and M are available, these derivatives follow immediately.  Matrix sensitivities might 

be available in some commercial and in-house codes, particularly where model updating applications 

are required. If not, then they can be numerically estimated using a finite difference approximation after 

generating K and M for a number of values of the system properties. 

4.  Numerical examples 

In this section various results for the first order sensitivities are presented.  For the first example results 

are compared with analytical predictions. Analytical solutions are not available for the second and third 

examples. 

 

4.1 Thin beam undergoing axial and bending vibration  

Consider a thin beam undergoing axial and bending vibrations.  The axial and transverse displacements 

are v and w respectively. The axial and bending wavenumbers of the propagating waves are respectively 

[23] 
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2

4;a b

A
k k

E EI

  
= =   (47) 

 

where E, , A and I are respectively the elastic modulus, density, cross-sectional area and second 

moment of area.  There is also a bending nearfield wave, which decays exponentially with distance, and 

is not considered further. The group velocities are 

 

 

2

4
, ,

1
;

2
g a g b

E EI
c c

A



 
= =   (48) 

 

The WFE model consists of a single, two-noded element with 3 nodal DOFs  , ,
T

v w w x=  q  at each 

node. The shape functions for axial and transverse displacements are taken as linear and cubic functions 

of x respectively, leading to the mass and stiffness matrices given in Appendix A [24]. 

 

Figure 2 shows the wavenumbers, taking 9 2210 10  N/E m=  , 
37850 /kg m = , thickness = 15 mm 

and width = 30 mm. At the largest frequency shown 1k   and hence FE discretisation errors are 

noticeable. The numerical predictions are almost real-valued, with the imaginary parts (not shown) 

resulting from rounding errors etc. The projection method (section 3.2) and Zhong’s method (section 

3.3) give virtually identical results, with results using the projection method shown. The agreement with 

the theory is very good but of decreasing accuracy as frequency increases due to discretisation effects. 

The transfer matrix approach, however, suffers from poor numerical conditioning and yields accurate 

solutions only up to a frequency of approximately 44 10 =   rad/s and results are not shown. 

 

The analytical sensitivities of the wavenumbers with respect to the material parameters are  

 

 ,
22

a ak k

E E EE

  

 

 
= = −

 
  (49) 

 
1/4 1/41/2 1/2

, .
4 4

b bk kA A

EI E E EI

   

 

    
= = −   

    
      (50) 

 

The sensitivities, evaluated using the method described in section 3.2, are shown in Figure 3,  while 

Figure 4 shows the analytical and predicted group velocities. Figure 5 shows the absolute values of the 

relative errors for wavenumber, sensitivities and group velocity.  The agreement is good, with relative 

errors increasing as frequency increases, typically as 2.  Given that at the highest frequency shown 

1bk   , FE discretisation effects would be expected to be apparent.  For this example, the numerical 
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results for the sensitivities and group velocity are virtually identical.  Note that the sensitivities and 

group velocity are up to an order of magnitude less accurate than wavenumber estimates, while the 

accuracy of the results for the axial waves is up to an order of magnitude worse for axial waves than 

bending waves, due in part to the fact that a higher order FE shape function is used to describe the 

bending behaviour. 

 

4.2 Foam cored panel  

The second example is the sandwich panel shown in Figure 6.  The skins are 0.5mm thick (

104.9 10 Pa,E =   31600kg/m   = and Poisson’s ratio 0.15 = ) while the core is 6.35mm thick 

foam  ( 98.3 10 Pa,E =   3160kg/m  and 0.34 = = ). Damping is neglected here to ensure that the 

propagating wavenumbers are real, but it is straightforward to include a complex elastic modulus, 

especially for the core.  All wavenumbers are then complex.  Figure 6 also indicates the FE mesh of the 

cross-section that was used. One ANSYS SOLID 45 element (now implemented within SOLID 185) 

was used to mesh each skin and 6 elements used to mesh the core, giving a total of 8 elements. Each 

element has 8 nodes, each of which has three nodal degrees of freedom, in-plane and transverse 

displacements, giving 27 DOFs in the WFE model.  The length of the meshed region was =0.001m, 

which gives good accuracy for wavenumbers up to about k=1000/m.  

 

The wavenumbers for this isotropic structure are shown in Figure 7(a). In the frequency range shown 

there are three propagating waves, these broadly being extensional, shear and bending waves of the 

plate.  Further propagating waves cut off at higher frequencies and involve higher order modes across 

the thickness of the sandwich panel.  Figure 7(b) shows the normalised sensitivities ( )G k dk dG  of 

the wavenumbers with respect to the shear modulus of the core. The matrix derivatives were estimated 

using a finite difference approximation, varying G by ±10%. As would be expected, the axial 

wavenumber is insensitive to the shear modulus, while the shear wavenumber is very sensitive, while 

the bending wave is increasingly sensitive to the shear modulus of the core as frequency increases. 

 

4.3  Cross-laminated timber panel 

Cross-laminated timber (CLT) panels are constructed from a number of layers of wooden beams laid at 

right-angles in adjacent layers and bonded with adhesive [25] (Figure 8). Layering the timber in this 

way gives a relatively high stiffness in all directions for the wooden panel, which has relatively low 

mass compared with other traditional building materials such as concrete or brick [26]. Because of these 

advantages, and the fact that CLT structures can be assembled quickly and easily on-site, CLT is gaining 

in popularity as a building material in many countries [27]. However, due to their low mass and high 

stiffness, CLT structures are prone to poor acoustic performance, both for sound transmission over the 

whole audio-frequency range and for structure-borne sound transmission, typically impact noise below 
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1kHz. The vibroacoustic behaviour is not well understood and is a subject of current research activity, 

given that there is a need for improved design tools.  

 

The properties of wood are highly uncertain and depend on many factors including the tree growing 

conditions, what part of the tree the wood is taken from, the direction in which the panel is cut, knots, 

grain slope etc. The elastic properties along- and cross-grain differ by an order of magnitude [28]. For 

example, the density of radiata pine varies from 340-540 kg/m3 while the along-grain elastic modulus 

ranges from 6-14 GPa, correlates to some degree with density and is substantially higher than the cross-

grain value [29]. The mechanical properties of a specific panel often need to be determined from 

experimental measurements, while uncertainty modelling is required to develop robust designs. 

 

The CLT panel considered here has 6 layers of equal thickness and is 0.1m thick in total. The nominal 

properties are listed in Table 1. The segment in the WFE model is 5mm square, with 3 ANSYS SOLID 

45 elements per layer, giving 18 elements in total and 57 DOFs at each corner of the segment. This 

structure is anisotropic, so that the wavenumbers depend on the direction of wave propagation. 

Numerical results for waves propagating in the global y-direction are presented, with the wavenumber 

in the other in-plane direction being set to zero. 

 

The propagating wavenumbers are shown in Figure 9.  At low frequencies (Figure 9(a)) there are 3 

propagating wave modes dominated by bending, in-plane shear and in-plane axial motion. As frequency 

increases, the “bending” mode becomes increasingly affected by shear in the transverse layers. At 

higher frequencies many other wave modes cut on, involving through-thickness effects, including 

substantial shear in the weaker layers, significant symmetric transverse displacements etc. The wave 

characteristics are considered in detail in [30].  The sensitivity with respect to the along-grain elastic 

modulus 
x

dk dE  and the normalised sensitivity ( )x x
E k dk dE  are shown in Figures 10 and 11.  At 

lower frequencies (Figure 10), where the behaviour can be interpreted as an equivalent plate, the axial 

and bending wave modes are seen to be sensitive to Ex while the shear wave mode is insensitive, as 

would be expected. The axial wave has a normalised sensitivity of approximately -0.5, the same as axial 

waves in a homogeneous solid, the cross-grain stiffness of the transverse layers being very small. The 

normalised sensitivity of the bending wave tends to -0.25 at zero frequency, the same value as the 

bending wave in a homogeneous thin plate, but the effects of shear in the transverse layers become 

significant at low frequencies, the dependence of the sensitivity with frequency changing from -1/2 to 

approximately -1. At higher frequencies (Figure 11) the behaviour is very complicated.  Higher wave 

modes cut on above 1kHz, involving through-thickness effects where the motion can no longer be 

regarding as that of an equivalent plate. These modes can be important both for sound transmission and 

structure-borne sound [30].  Note that around 2300 Hz two wave modes appear to lock and veer (see 
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Figure 9(b)), with the sensitivities in Figure 11 becoming very large: here, two eigenvalues become 

equal so that the eigenvalue sensitivities developed in section 2 are no longer valid.  

 

 

5.  Concluding remarks 

In this paper a perturbation approach was used to evaluate the first order and second order sensitivities 

of the eigenproperties of complex, non-symmetric matrices. The results were then applied to wave and 

finite element models to estimate the sensitivity of the wavenumber with respect to system parameters.  

Expressions for the group velocity were derived. Three different eigenformulations were presented, 

namely, the transfer matrix method, the projection method and Zhong’s method. Numerical results for 

a thin beam, a foam cored panel and a cross-laminated timber panel were presented to demonstrate the 

applicability of the proposed approach. The computational cost over and above the generation of the 

FE matrices is small: for example, for the last, most complicated, example, wavenumbers, wave mode 

shapes and sensitivities were calculated using non-optimised Matlab code at less than 10ms per 

frequency. 

It is worth noting that the sensitivity expressions derived break down for the case of equal (or very 

close) eigenvalues. There are two situations, termed weak or strong interaction in [5], corresponding to 

mode crossing or veering/instability in modal analysis, or wavenumber crossing or veering/locking for 

wave propagation. For spatially varying properties, additional problems arise at and around any critical 

sections, also known as turning points, at which part of a waveguide of a particular wave mode is 

propagating in one frequency range (cut-on transition), while it is non-propagating in another range 

(cut-off transition). As a result, the changes in the characteristics of wave propagation at these critical 

sections typically lead to strong wave reflections. These situations are the subject of future work. 

 

There are various potential applications of the results developed here. The first is the calculation of 

group velocity (section 3.4) for which the matrix derivatives just depend on the mass matrix (equation 

(45)). Note also that the group velocity is calculated independently for each branch of the dispersion 

curve, in contrast to finite difference approaches, where the dispersion curves have to be tracked from 

one frequency to the next: this is problematical where two branches are close and may cross, veer or 

lock. A second area of application concerns uncertainty modelling, and the propagation of uncertainties 

in properties to uncertainties in various response quantities: for example, on-going work includes the 

effects of material variability in CLT panels on the air- and structure-borne noise performance, which 

depend on wavenumbers etc, and the attempt to put bounds on the performance. A third area concerns 

model updating, for example using measured wavenumbers to update a WFE model. 
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Appendix A  Mass and stiffness matrices for thin beam 

For axial vibrations, the nodal DOF vector is  
T

L Rv v=q  and the element matrices for an element 

of length L are [16] 

 

 
2 1 1 1

;
1 2 1 16

a a

AL EA

L

 −   
= =   

−   
M K  (51) 

 

For bending vibrations, the nodal DOF vector is  
T

L L R Rw w x w w x=    q  and the element 

matrices are [16] 

 

 

2 2 2 2

3

2 2

156 22 54 13 12 6 12 6

4 13 3 4 6 2
;

156 22 12 6420

4 4

b b

L L L L

L L L L L LAL EI

L LL

SYM L SYM L



− −   
   

− −
   = =
   − −
   
   

M K  (52) 

 

For an element undergoing both axial and bending vibrations, the nodal DOF vector is 

 
T

L L L R R Rv w w x v w w x=    q  and the mass and stiffness matrices follow by 

assembling the matrices above.  Note that derivatives with respect to the material properties E and  

and the geometric properties A and I follow straightforwardly. 
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Table 1. Material properties and stacking sequence of 

CLT panel. The local x-axis of each layer is along the 

grain and aligned at the angle relative to the global x-axis 

specified in the stacking sequence row. 

 

Material property  
-2

E  N.m
x

    
10

1.1 10  

-2
E  N.m

y
    

8
3.67 10  

-2
E  N.m

z
    

8
3.67 10  

-2
G  N.m

xy
    

8
6.9 10  

-2
G  N.m

yz
    

7
6.9 10  

-2
G  N.m

xz
    

8
6.9 10  

xy
  0.42  

yz
  0.3  

xz
  0.42  

  0.02  
-3 kg.m     450  

Stacking sequence 0 / 90 / 0 / 0 / 90 / 0       
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Figure 1. A segment of a uniform waveguide. 

Figure 1: A segment of a uniform waveguide. 

  Figure 2. Wavenumbers for a beam:               bending and            axial waves; 

theory (solid line) and WFE predictions (dotted line). 
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  Figure 3. Wavenumbers for a beam:               bending and            axial waves;  

(a) sensitivity with respect to density , (b) sensitivity with respect to elastic 

modulus E;  theory (solid line) and WFE predictions (dotted line). 

(a) 

(b) 
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  Figure 4. Group velocity for a beam:               bending and            axial waves;  

theory (solid line) and WFE predictions (dotted line). 
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    Figure 5. Relative errors for a beam: wavenumbers and group velocity for 

bending (dotted) and axial (dashed) waves; sensitivity with respect to r or E for 

bending (dash-dor) and axial (solid) waves. 
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Figure 6.  Foam-cored sandwich panel and 

FE mesh. 

 

 0.5mm 

6.35mm 
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(a) 

(b) 

  Figure 7. Foam-cored panel: (a) wavenumbers and (b) normalised sensitivity of 

wavenumbers with respect to shear modulus of the core: 
                    bending,                    shear and                     axial dominated waves. 

 

(a) 
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  Figure 8. Cross-laminated timber panel. 
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(a) 

(b) 

  Figure 9. Wavenumbers for CLT panel: (a) lower frequencies 
                    bending,                    shear and                     axial dominated waves. 

and (b) higher frequencies: 
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(a) 

(b) 

  Figure 10. CLT panel: (a) sensitivity and (b) normalised sensitivity of 

wavenumbers with respect to elastic modulus along-grain, lower frequencies: 
                    bending,                    shear and                     axial dominated waves. 
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(a) 

(b) 

  Figure 11. CLT panel: (a) sensitivity and (b) normalised sensitivity of 

wavenumbers with respect to elastic modulus along-grain, higher frequencies. 
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