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Since the 1983 definition of the speed of light in vacuum as a fundamental constant with the exact value

of 299 792 458 m=s the question has remained as to what apart from the wave front travels at that speed. It

is commonly assumed that the entire electromagnetic waveform in free space does. Here it is demon-

strated, both theoretically and experimentally, that the near- and intermediate-field dynamics of the

vectorial electromagnetic field is much more complex than simple outwards propagation. In particular, it

is shown that there exists a region close to the source, where, while the wave front travels outwards at the

speed of light, the main body of the waveform appears to go inwards or back in time. The same effect may

also lead to apparent superluminal results in free space.
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Around the year 1983 it had been decided to link the
etalon of length to the speed of light in vacuum [1]. This
has effectively put an end to the measurements of the
‘‘actual’’ velocity of light which is now defined to have
an exact numerical value. However, there remains a seem-
ingly simple question: what exactly travels at
299 792 458 m=s? It is more or less universally agreed
that the wave front of the electromagnetic pulse in vacuum
does. It is also often assumed that the electromagnetic
waveform, which follows the wave front, also travels at
that speed in free space. This assumption is essential for
such technologies as radar ranging, travel-time tomogra-
phy, and information transfer which all rely on an extre-
mum or a slope of an impulse, or the envelope of a wave
packet [2,3]. Yet, these practically useful waveform fea-
tures do not always travel at the speed of light.

It is a well-known fact that dispersive media may dras-
tically change the shape of the envelope, so that the group
velocity significantly deviates from the velocity of light in
the bulk medium [4–8]. Recently, it has been reported that
‘‘localized microwaves’’ travel at what appears to be a
superluminal velocity in free space [9]. Although, the
proposed theory and the accuracy of the measurements
were subsequently disputed, there are no fundamental
constraints prohibiting such behavior [10,11].

Here we look at the problem from a more general point
of view, without specific reference to the Bessel-like X
beams. It turns out that the apparent velocity of a character-
istic feature (e.g., extremum or slope) of the electromag-
netic waveform is not constant even in vacuum. This
follows from the detailed analysis of the classical causal
three-dimensional time-domain radiation formula. The
near- and intermediate-field contributions both contain an
additional relative time-delay with respect to the far-field

part. These relative time delays gradually disappear with
the distance from the source. Thus the overall dynamics of
the radiated field is a combination of two motions: one is
the usual outward motion at the speed of light; the other is a
relative inward motion. This leads, in particular, to the
apparent superluminal results for the velocity of selected
waveform features in the near- and intermediate-field
zones. Here it is also predicted and experimentally dem-
onstrated with microwaves that there exists a region close
to the dipole source where the relative inward motion
dominates and the main body of the waveform appears to
travel back in time, which could be naively interpreted as
an example of anticausal behavior.
According to the Maxwell equations, which govern the

propagation of the electromagnetic field, the source of the
field is the electric current density J:

�r�Hðx; tÞ þ "0@tEðx; tÞ ¼ �Jðx; tÞ;
r�Eðx; tÞ þ�0@tHðx; tÞ ¼ 0:

(1)

Mathematically, causality enters here in the form of an
assumption that the changes in the current cause the
changes in the field. In particular, it is typically assumed
that the field is zero everywhere before the current is
switched on. Once the current density of the source is
given as a function of space and time, and the surrounding
medium is a free space, the Maxwell equations can be
solved analytically, thus providing an explicit radiation
formula for the fields everywhere outside the source at
all times. In subscript notation to denote the Cartesian
components of the electric field strength and the current
density, using Einsteins summation convention, this im-
portant formula may be written as follows (see, e.g., [12]):
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Where �n ¼ ðxn � x0nÞ=jx� x0j represents a unit vector
pointing from the location x0 inside the finite spatial do-
main D occupied by the source towards an observer situ-
ated at x, �kn is the Kronecker delta, and
tR ¼ t� jx� x0j=c0 is the so-called retarded time. It is
this last simple expression for the retarded time, which one
is tempted to apply to deduce the speed of light from the
observed time-delay for a traveling electromagnetic im-
pulse. Yet, the retarded time enters the three terms of the
above radiation formula in three different ways. The terms
correspond to the near-, intermediate-, and far-field zones,
in accordance with the relative dominance of their spatial
decay factors.

Sufficiently away from the source, the last term domi-
nates. If it was the only term present, then the temporal
dependence of the field would look like a somewhat dis-
torted (differentiated) but otherwise just a shifted-in-time
and reduced-in-magnitude copy of the current. Hence,
having done measurements at two known locations, one
further away from the source than the other, we can apply
the retarded-time formula to some obvious feature of the
waveform, say a particular extremum, and recover the
speed of light. However, due to the presence of the near-
and intermediate-field terms in (2) the field dynamics is far
more complex than that.

To better understand the effect of the first two terms in
(2) on the overall time-dependence consider a current in
the form of a monocycle, i.e., a single period of a sinusoi-
dal oscillation sinð!ctÞ of a given angular frequency !c,
starting at t ¼ 0 and ending at t ¼ 2�=!c. Elementary
calculus shows that the first (leftmost in time) maximum
of the current will happen at tinter ¼ �=ð2!cÞ. The time
derivative of the current has its first maximum at tfar ¼ 0,
and the first maximum of the current’s time integral is at
tnear ¼ �=!c. Hence, for the relative positions of the first
maxima we have the relation tfar < tinter < tnear; i.e., the
first maxima of the near- and intermediate-field terms are
retarded with respect to the first maximum of the far-field
term. In the case of a monochromatic signal this is nothing
else but the usual local phase shift between the current and
the voltage in an ac circuit, which could be deduced al-
ready from the first of the Maxwell equations (1). It is
difficult to prove but easy to convince yourself on a few
simple examples that a similar relative shift of extrema will
be observed with other, more general waveforms as well.

The total radiated field is a weighted sum of the three
contributions, where the first one dominates very close to
the source. Thus, the relative shift of an extremum with
respect to its far-field shape will be a function of position.

We may expect, in particular, that the waveform extrema
will be measurably retarded in the near-field zone, even in
the immediate vicinity of the source. As we move further
away from the source, the influence of the near- and
intermediate-field terms on the overall time-dependence
will rapidly diminish in inverse proportion to the cube and
square of the distance. Hence, in addition to the causal time
retardation, which shifts the waveform to the right along
the time axis, the extrema will gradually loose their initial
relative near- and intermediate-field retardations, i.e.,
move to the left along the time axis. It is difficult to tell
which of the two tendencies will dominate in the overall
time dependence. We resort here to simple numerical
calculations which demonstrate, in particular, that there
exists a region where the second (relative) motion domi-
nates, and the main body of the waveform appears to be
traveling back in time, namely, for progressively larger
distances from the source we receive extrema of the wave-
form at progressively earlier times.
In the case of a point-dipole model the spatial integrals

in the radiation formula are evaluated analytically [12,13].
The resulting formula is especially simple for the direction
of observation orthogonal to the direction of the dipole
moment (see Fig. 1), since along the measurement line the
electric field vector is parallel to the current in the source.
We take the excitation current to be a finite sinusoidal wave
packet with 4 GHz central frequency and simulate the
waveforms received at increasing distances from the
source spanning the spatial interval from 10 to 100 mm,
i.e., both the near- and the intermediate-field zones.
The simulated results are presented in Fig. 2, where the

top part gives all the waveforms as a single image. The
horizontal axis is time (c0t in metres), the vertical axis is
the distance between the source and the receiver along the
measurement line (also in meters), and the amplitude of the

Impulse  Sampling scope Trigger

Measurement line 

Distance to 
source

Dipoles

FIG. 1. The near-field measurement setup with two identical
vertically polarized dipole antennas placed at a varying distance
along the measurement line.
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electric field strength at the receiver as a function of time is
encoded in color. The near-field zone corresponds to the
bottom area of the top image.

A signal traveling at the speed of light should follow the
so-called light cone. This light cone looks as a rising 45�
line for convenience also shown in the left part of the top
image. In such a color-coded image a waveform with a
fixed shape traveling at the speed of light should look like a
series of colored stripes all parallel to the light cone line
with the color intensity decaying upwards. We see that the
leftmost part of the wave packet—its wave front—does
indeed follow the light cone. However, the main body
(inner part) of the wave packet, at small distances (bottom
of the image) makes an initial bend in time to the left and
begins to follow the light cone only somewhat further from
the source (middle and top of the image). To see what
really happens, in the second plot of Fig. 2 we present the
details of the first five near-field waveforms as a function of
time, received at five progressively increasing distances
from the source. These waveforms correspond to the bend-
ing in the bottom of the color-coded image. Now it is
clearly visible that, while the edges of the wave packet
shift to the right, the inner part shifts to the left, i.e., travels
back in time. Paradoxically, an observer in the immediate
vicinity of the source will receive the sequence of extrema
somewhat later than another observer slightly further away.

The actual experiment was performed using a pair of
unbalanced 31 mm long copper wire dipoles. The source
antenna was fed by an approximately Gaussian impulse,
with 71.4 ps FWHM duration (Picosecond Pulse Labs

impulse generator, model 3500). The internal trigger of
the generator is used to trigger the Agilent Infiniium DCA-
J 86100C mainframe with a 20 GHz sampling module
(Agilent 86112A), which recorded and averaged the wave-
form received by the second dipole. Both antennas natu-
rally deform the original Gaussian waveform, so that the
received signal looks like a wave packet simulated above.
The results are presented in Fig. 3 in the form identical to
the simulations of Fig. 2.
The results are qualitatively similar to the previously

discussed point-dipole simulation of Fig. 2 as we notice the
presence of the leftward bend in the bottom area of the top
image and the leftward shift of the main waveform body in
the bottom plot of the first five waveforms. However, the
radius of the negative velocity region of the actual dipole is
approximately 8 mm, whereas for the point-dipole model it
is almost twice as large (up to 15 mm). Also the relative
back-in-time shift of the measured waveform is somewhat
smaller. These discrepancies could be explained by several
factors not included in the point-dipole model. For ex-
ample, it does not take into account neither the mutual
interaction between the source and the receiver nor the
finite size of the real dipole antenna. Also the shape of the
time-domain waveforms is different in the simulations and
the experiment. Having said that, the phenomenon of the
locally negative velocity of the electromagnetic field in
free space is obviously confirmed.
What is the physical meaning of this effect? In particu-

lar, does it mean that the electromagnetic field and thus
light can propagate with a negative velocity in vacuum?
Obviously, if light would propagate, then it would do so at
the speed of light. This is what happens when we consider
the propagating (retarded) plane wave solution of the one-
dimensional wave equation. On the other hand, wave radi-
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FIG. 3 (color). Experimental observation of the free-space
negative waveform velocity. Top image: space-time waveform
dynamics; the leftward bend in the lower part of the image
indicates the negative velocity in the near-field. Bottom plot:
details of the first five near-field waveforms with inner peaks
traveling back in time.
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FIG. 2 (color). Simulation of the electric field strength in the
near- and itermediate-field zones of the point-dipole antenna fed
by a sinusoidal current. Top image: space-time wave packet
dynamics (see text); lower part of this image corresponds to
the near-field zone, where the leftward bending indicates nega-
tive velocity; middle and top part—positive velocity approaching
light cone behavior. Bottom plot: the first five near-field wave-
forms received at increasing distances from the source; the outer
edges shift rightwards—normal (light cone) behavior; the inner
part shift leftwards—negative velocity.
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ated by a finite 3D source is a superposition of infinitely
many plane waves. So, is this effect due to superposition
(interference)? Not entirely. One can easily obtain an ex-
plicit propagating solution looking almost exactly like the
last (far-field) term of (2) for the source-driven three-
dimensional scalar wave equation. Nevertheless, a similar
effect was, in fact, predicted for the scalar case in [14],
where the wave function of a free quantum particle with
zero angular momentum is considered. There, however, the
negative initial propagation of the average radial position
for a ring-shaped wave packet is specific to the two-
dimensional case, and is related to the violation of the
Huygens principle in the space of even dimensions [15].
The present effect has more to do with the vectorial struc-
ture of the Maxwell equations (1) and the equivalent vector
wave equation, which differs from the scalar one by the
often omitted rðr�Þ-term. Although the field is
divergence-free in vacuum, it is not inside the source, since
a time-dependent current may induce an instantaneous
nonzero local charge distribution, which (as shown here)
produces observable effects in the near- and intermediate-
field zones. As a result, light radiated by a real three-
dimensional source does not simply propagate, but rather
evolves in space time. This evolution begins to look like
propagation only sufficiently away from the source.
Interestingly, these effects would not be observable if we
could directly (and separately) measure the scalar and
vector potentials, since the latter obey source-driven scalar
wave equations. The near- and intermediate-field terms
appear if potentials are linked by the relativistic Lorenz
gauge, which is also something worth thinking about.

The counterintuitive nature of the negative velocity
stems from our desire to interpret the complicated but
perfectly causal evolution of the electromagnetic field as
a simple propagation. In my view this also explains some
of the recent apparently superluminal observations based
on the time-delay and distance measurements [9]. Consider
two observers (A and B) recording waveforms at different
distances from the source. The influence of the near- and
intermediate-field terms will be stronger for the nearest of
the two observers (A) and weaker for the other (B). Hence,
the extrema of the waveform will keep shifting backwards
in time, although this shift is now relatively small com-
pared to the overall forward motion of the wave packet. In
any case, (A) will see the extrema shifted more forward, if
compared to the same extrema as seen by (B). Hence, the
time-delay between similar extrema at (A) and (B) would
appear to be shorter than what is expected from the causal
retardation alone. Calculations using the retarded-time
formula will then produce an apparently superluminal
velocity of propagation approaching the speed of light
asymptotically from above as the distance from the source
increases, in agreement to what was obtained in [9]. On the

practical side, the present results show that algorithms
relying on the velocity of some particular feature of the
electromagnetic waveform (e.g., radar ranging) may re-
quire a correction beyond the simple travel-time schemes,
especially, if applied in the near- and intermediate-field
zones.
We have considered here the classical picture of the

electromagnetic field. Within this formalism it would be
interesting to investigate the effects of the finite size and
spatial and temporal coherence of the source on the extent
of the negative velocity region. Further, it is well known
that the quantum-optical formula for the dipole radiation is
identical to its classical counterpart used here [16] and
proven to contain the causal retardation up to all orders
in the mutual interaction of the source and receiver atoms
[17]. However, the role and physical meaning of the near-
and intermediate-field terms is by far less understood in
quantum optics.
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