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Summary

A significant reduction in the levelized cost of electricity is necessary for offshore
wind farms to become a competitive energy source. Amongst other methods, overall
project cost reduction can be achieved by optimized support structure design. An
upcoming trend is the use of ‘XL monopiles’, which provide a cost effective founda-
tion solution for offshore wind farms in deeper water and are able to support larger
turbines.

One of the most governing design criteria for offshore wind turbines is the fatigue
limit state. Current practice is to check compliance of a structural design with this
criterion by means of a large number of simulations. In these simulations a monopile
is typically modelled using beam theory. For the large diameter monopiles, structural
design has become less slender and more thin-walled. This implies that, in relation
to the global bending deformations, shell deformations will have a more pronounced
contribution to the total deformations in the structure as compared to smaller diam-
eter piles. The goal of this study is to investigate if these shell deformations have a
significant contribution to the stresses in these large diameter structures, during fa-
tigue limit state design load cases. Beam theory is unable to capture this phenomena
and thus a more advanced modelling method is required.

A semi-analytical structural model of a monopile is developed using coupled cir-
cular cylindrical shell segments. Soil-structure interaction characteristics are incor-
porated based on a translation from three dimensional finite element modelling.
With a transformation to generalized coordinates it is shown how the structural
model can be connected to a model of a wind turbine’s tower and rotor nacelle as-
sembly in a manner that allows for computationally effective numerical calculations.
Making use of the continuous description of the model, internal stresses at any loca-
tion in the monopile’s shell can be obtained directly from the deformation behaviour.
Additionally, following the shell equations, the monopile’s shell deformations can be
isolated from its global bending behaviour, which allows for a transparent analysis.
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The dynamic behaviour of the monopile in various design load cases is analysed
using time-domain simulations. These are performed using a state-of-the-art nu-
merical code which accounts for structural-, aero- and controller dynamics. Wave
loading is additionally incorporated as a distributed surface loading using diffrac-
tion theory. It is found that the shell deformations are sensitive to loading at high
frequency bands where typically very little wave energy is present. Assuming Airy
waves, as is the standard practice in the offshore industry, only a minor quasi-static
contribution of the shell deformations on the monopile’s internal stresses is found.
The sensitivity to breaking waves, which excite the structure at a wide frequency
range, and the sensitivity to the slenderness of the monopile are explored as well. It
is found that an increase of the monopile’s diameter induces additional shell defor-
mation behaviour.
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A area m−2

a radius, induction factor m
B boundary condition matrix −
b(s) shearing section width m
C damping matrix −
c damping coefficient Nsm−1

D displacement field m
D extensional rigidity coefficient, diameter Nm−1, m
d depth m
E Young’s modulus Nm−2

F reaction force N
G shear modulus Nm−2

g gravitational acceleration ms−2

H wave height m
h wall thickness m
I interface condition matrix −
I area moment of inertia m4

K stiffness matrix −
K flexural rigidity coefficient, stiffness operator or coefficient Nm,

Nm−1

k thickness parameter, stiffness coefficient, wave number −, Nm−1,
radm−1

L length, shell stiffness operator m, Nm−1
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Abbreviations
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Chapter 1

Introduction

1.1 Background

Using the wind as a clean and renewable energy source is becoming increasingly
popular. As stated in the energy agreement, the Dutch government aims to generate
14% of all energy from renewable sources in 2020, rising to 16% in 2023. Amongst
other sources of renewable energy, offshore wind turbines will act as a contributor
towards this goal [1]. A significant reduction in the levelized cost of electricity
(LCOE) is necessary for offshore wind farms to become a competitive energy source.1

A reduction of an offshore wind farm’s LCOE can be achieved by increasing its energy
yield or lowering its overall project cost. Amongst other methods, a higher energy
yield can be obtained by increasing the turbine size and overall project cost reduction
can be achieved by optimized support structure design.

The most popular and simple support structure type is the monopile, being often
significantly cheaper than jacket, gravity based or floating type solutions. Monopiles
were thought to be only feasible on locations with relatively shallow water depth
while supporting relatively small turbines. In deeper water and when using larger
turbines, the jacket types foundations start to take over as more feasible solutions.
An upcoming trend is the use of ‘XL monopile’ foundations. These large diameter
monopiles are expected to be the most cost effective foundation type in up to 40
m of water depth while being able to support 5-8 MW turbines. The monopiles are

1The LCOE is a metric which attempts to compare different methods of electricity generation. Here the
LCOE is defined as the per-kilowatt hour cost of building and operating a power plant over an assumed
life-time.
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2 1. INTRODUCTION

thus expected to partly take over jacket type support structures which were previ-
ously considered economically effective in the range of 25-50 m waterdepth while
supporting 2-5 MW turbines [2]. Significant saving potentials on the overall project
costs are predicted by the industry using the new large diameter monopile technol-
ogy [3].

1.2 Problem statement

In the design process of offshore wind turbine support structures, many time domain
simulations are required to quantify the lifetime loading on the structure. Current
practice is to design offshore monopile foundations using calculations based on beam
theories, as beam elements are simple and computationally effective. While beam
theories are able to accurately predict the global bending behaviour of slender struc-
tures, such as offshore wind turbines with a monopile foundation, they are not able
to predict the deformation of the monopile’s shell. This may lead to a loss in ac-
curacy in the assessment of soil-structure interaction and the prediction of stresses
within the monopile’s shell due to environmental loading. In this study the following
definitions are adopted: the global bending deformations of the monopile are defined
as all deformations that displace the vertical centreline of the monopile, while the
shell deformations of the monopile are defined as deformation of the monopile’s shell
relative to the monopile’s vertical centreline.

With the increased use of large diameter monopiles, structural design has become
less slender and more thin-walled. This implies that, when compared to the global
bending deformations, the monopile’s shell deformations will be more pronounced
for the large diameter monopiles. While it is expected that, over the structure’s life-
time, the majority of the stress within the monopile’s shell will be caused by global
bending behaviour, it is currently unknown how much these shell deformations con-
tribute to the fatigue lifetime of large diameter offshore wind turbines.

It can therefore be stated that, for the design process of large diameter monopiles,
(i) the application of beam theory needs justification, and (ii) an assessment of the
contribution of shell deformation on the predicted fatigue lifetime is to be made. In
order to predict the deformation of the monopile’s shell using a research model, a
description of the environmental loading and boundary conditions along its circum-
ference is to be included. To this end, several practices in the design of offshore wind
turbines are no longer sufficient. These are: (i) one-dimensional representation of
the wave loading as a vertical line load, and (ii) one-dimensional representation of
soil-structure interaction.

CONFIDENTIAL



1.3. PAST RESEARCH 3

1.3 Past research

A superelement study on an offshore wind turbine with a monopile foundation was
performed by Engels [4]. A prediction of significant excitation of eigenmodes dom-
inated by shell deformation due to wave loading was made. It was suggested that
the predicted excitation of these modes could be caused by the application of wave
loads in the numerical model as nodal point loads. Whether the excitation of the
shell deformation modes due to wave loading is also physical, was not investigated.

1.4 Research objective

From the problem statement and the previous paragraph on the past research we
conclude that there is a need to better understand the role of shell deformation in
the analysis of large diameter offshore monopile support structures. This study will
specifically focus on the fatigue limit state (FLS), which corresponds to failure of the
structure due to cyclic loading. Since the monopile’s fatigue lifetime can be directly
related to the stress generated in the monopile’s shell during its service life, the main
research objective is hereby defined as the following.

Gain insight in the contribution of shell deformation on the internal stresses, with
respect to the stresses caused by global bending, in a large diameter monopile.

The secondary objective of this study is to propose a method that incorporates
the effect of the shell deformation in the assessment of the life-time loading of off-
shore monopile foundations. For this purpose a structural model of a large diameter
monopile is to be developed which: (i) accounts for both global bending and shell
deformations, (ii) is computationally effective when assessing the structure’s life–
time loading, and (iii) takes into account the distribution of the wave loading and
the soil reaction forces over the circumference of the monopile.

1.5 Approach

A case study is performed in which the stress caused by global bending deforma-
tions and shell deformations in a large diameter monopile are analysed. For this
purpose, two structural models of an offshore wind turbine with a large diameter
monopile foundation are developed. For several design load cases the two models
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4 1. INTRODUCTION

will be analysed in the time domain, as is the current practice in the industry. In
the first and second model, the structural behaviour of the monopile is described
by respectively Timoshenko’s theory for beams and Flügge’s theory for thin circular
cylindrical shells. These models will be referred to as the beam model and the shell
model. The beam model will be able to capture the global bending behaviour of the
monopile while the shell model will be able to capture both global bending and shell
deformations. Insight on the previously stated research objective is then gained by
comparison of: (i) the total stress levels in the monopile’s shell as predicted by the
beam model and the shell model, and (ii) the ratio of stress in the monopile’s shell
caused by global bending deformations to stress caused by shell deformations, both
as predicted by the shell model.

For both models the equations of motion governing the monopile are derived,
which are then solved in a semi-analytical way. A semi-analytical solution proce-
dure to the problem is chosen, because it provides insight in the mechanisms that
cause the global bending and shell deformation within the monopile support struc-
ture. An analytical or semi-analytical method is also preferable for its computational
efficiency when compared to alternatives such as the finite element method (FEM),
while it additionally provides a continuous solution of the structural response. In
order to familiarize ourselves with the governing equations, solution strategies and
predicted response of the monopile in both structural models, a parameter study is
performed. In the parameter study, the static and dynamic behaviour of cylinders of
various dimensions is analysed using both Timoshenko’s beam theory and Flügge’s
shell theory. This study may indicate if a difference in the monopile’s predicted
global bending behaviour by the two models of the offshore monopile is expected.

Once the relations to describe the structural behaviour of beams and circular
cylindrical shells are known, several steps are taken to model a reference case off-
shore wind turbine. First, soil-structure interaction characteristics are obtained using
an available three-dimensional FEM model of a soil. The soil’s properties in the FEM
model are based on seismic measurements. From this FEM model an equivalent
distributed elastic foundation is derived. Secondly, it is shown how, using interface
conditions, several analytically described cylinder segments can be coupled to each
other. The cylinder segments are used to model the parts of the monopile above
the sea level, submerged in water and embedded within the soil. Various segments
are used to model the part of the monopile below the mudline. For each segment
a unique magnitude of the soil stiffness can be assigned. This procedure allows for
the implementation of a non-homogeneous soil-stiffness profile in the models with-
out unnecessary complication of the governing equations. Third, wave action on the
monopile is analysed according to diffraction theory. Using Airy’s wave theory and
the JONSWAP spectrum, the wave action is calculated for several design load cases
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1.6. SCOPE 5

based on site specific parameters. Fourth, wind loading on the rotor and the con-
nection of the monopile to the tower is incorporated in this study by coupling of the
monopile to Siemens’ BHawC using the Craig-Bampton substructuring method. The
Craig-Bampton method transforms the monopile into a superelement, located at in-
terface level of the wind turbine, which represents the monopile’s dynamic behaviour
in the time domain simulations. BHawC, which abbreviates Bonus Horizontal axis
wind turbine Code, is an aero-elastic code capable of performing non-linear time
domain simulations of the turbine and tower which include controller effects of the
turbine. The tower and turbine are modelled within BHawC with Timoshenko beam
elements, using the FEM. The shell model is schematically visualized in figure 1.1.
For the beam model, the continuous shell segments are replaced by continuous beam
segments.

Resulting from the BHawC simulations is a time series of the loading and defor-
mations of the monopile support structure. Since for both the beam and shell model
the monopile is described continuous in space, stresses at any location within the
monopile’s shell can be determined directly from the deformations.

1.6 Scope

To limit the model’s complexity and to keep calculation results transparent, several
simplifications were made when translating the physical reality to a research model.

– Physically, the environment of an offshore wind turbine is very complex and
coupled with the structure through many interaction mechanisms. This study
will take into account the structural motion due to the controller and the wave
loading in the determination of the wind loads. As generally accepted in prac-
tice [5], the direct effect of wind and structural motion will be neglected in the
assessment of the wave loading.

– Wave loading is calculated by means of diffraction theory, assuming a linear
and harmonic wave field. This implies that the frequency bands governing the
vast majority of the wave loading will be significantly lower then the lowest
eigenfrequencies corresponding to modes dominated by shell deformation be-
haviour. It is therefore expected that shell deformation behaviour will mainly
be induced quasi-statically. It is possible that breaking waves, which excite the
structure at a wide frequency range, will induce additional shell deformation
behaviour. This effect is not considered in this study.
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6 1. INTRODUCTION

Wind loadingTurbine controller

Wave loading

Soil-structure interaction

Foundation model

Siemens’ BHawC

Continuous shell segments

Connected through C-B method

Figure 1.1: Schematic representation of the shell model, as used for the case study.
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1.6. SCOPE 7

– The wind loading is assumed to be negligible on all structural parts apart from
the rotor plane.

– This study will consider the behaviour of the monopile to be fully linear elastic.
Additionally, stresses in the structure will solely be derived with the structure’s
FLS in mind. While the shell deformations of the monopile are usually associ-
ated with ultimate limit state (ULS) buckling strength calculations, buckling is
not considered in this work.

– The shell deformations of the monopile are believed to be mainly induced by
wave loading and soil-structure interaction. The effect of the wind loading is
assumed to be small. With model simplicity in mind, the stiffness of the con-
nection between the tower and the monopile is overestimated and modelled as
a rigid-ring connection. Additionally the tower sections are solely modelled us-
ing Timoshenko beam elements. These modelling choices effectively eliminate
the coupling of the shell deformation between the tower and the monopile.

– An effect different from wave loading that could possibly introduce shell de-
formation behaviour is the coupling between the structure’s modes. In this
study perfectly orthogonal eigenmodes are considered, which is not an exact
representation of reality.

– Significant simplifications are made to the modelling of the soil stiffness. While
the soil behaviour is non-linear, non-local and may experience influence from
the ocean’s waves, soil stiffness is represented using a set of local and linear
distributed springs. The application of linear springs is assumed to be feasible
as only small displacements occur within the soil due to the monopile’s be-
haviour. Non-local effects are partly taken into account with the translation
from the FEM model by means of the circumferential wavenumber method.

– The distributed springs that represent the soil are able to exert a tension force
on the monopile’s shell. While the soil has no meaningful physical tensional
strength, this can be thought of as an effective tensional strength resulting
from a reduction of the static soil pressure on one side of the shell. The static
soil pressure works on both sides of the shell and, assuming the monopile to be
unplugged, is of the same magnitude on both sides. The static pressure exerted
by the soil on the pile is zero at the mudline and increases with penetration
depth. Therefore, near the mudline, the effective tensional strength of the soil
can be overestimated. Note that also the difference between the active and
passive reaction of the soil is neglected in this study.
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8 1. INTRODUCTION

– In this study the monopile is modelled as a perfect cylinder with no inhomo-
geneities. This makes the model unfit for the accurate prediction of edge dis-
turbance effects for monopiles with a traditional transition piece and a grouted
connection.

1.7 Thesis outline

The outline for the remainder of this thesis follows the approach as described in sec-
tion 1.5. Chapters 2-5 present all theory used in this study with an additional focus
on the implementation in the research models. Chapter 6 covers the simulations
with the research models and chapter 7 discusses the conclusions and recommenda-
tions derived from this work. A more detailed overview is present below.

Chapter 2 Chapter 2 presents the equations of motion given by Timo-
shenko’s theory for beams and Flügge’s theory for thin cir-
cular cylindrical shells. Solution procedures for the static
and dynamic analysis of cylinders according to both theo-
ries are discussed. The predicted global bending behaviour
of cylinders according to both theories is analysed.

Chapter 3 In chapter 3 a selected overview of different approaches
that can be used to incorporate soil-structure interaction
in the research models of the offshore wind turbine is pre-
sented. After this, a method to obtain characteristics of an
elastic foundation which approximates the reaction forces
of the soil on the monopile is discussed. The implemen-
tation of the method in the research models is elaborated
upon.

Chapter 4 In the fourth chapter coupling of various cylinder segments,
using interface conditions, as well as the transformation of
the structural models of the monopile into superelements
is discussed. An overview of the application of the two
strategies in the research models of the monopile is also
presented.
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1.7. THESIS OUTLINE 9

Chapter 5 In this chapter the relevant theoretical background of envi-
ronmental load analysis on offshore wind turbine support
structures is provided. Furthermore, the implementation of
environmental loading within the case study model is out-
lined. In this study two types of environmental loads are
considered: water wave loads and wind loads.

Chapter 6 Chapter 6 presents an overview of the simulations per-
formed with the research models. The resulting displace-
ments from the simulations are translated to stresses in the
monopile’s shell, which are then analysed over the entire
surface of the monopile.

Chapter 7 The last chapter summarizes the performed study and re-
sults. Fulfilment of the research objectives is also dis-
cussed. The report closes with recommendations for future
research.
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Chapter 2

Modelling a cylinder with shell
and beam theory

After a short introduction, the equations of motion given by Timoshenko’s theory for
beams and Flügge’s theory for thin circular cylindrical shells are presented. These equa-
tions will later be used to describe the structural behaviour of the monopile in the
research models. The remainder of this chapter is used to discuss the behaviour of a
uniform cylinder, modelled with both beam and shell theory, in three distinct cases. In
the first case the cylinder is subjected to static edge loading, while in the second case,
a cylinder in free vibration is considered. The theory discussed in the first and second
cases will be used to derive the generalized coordinates of the models for the monopile
as discussed in section 4.5. Using both shell and beam theory, a parameter is performed
which analyses the behaviour of cylinders of various dimensions in the first and second
case. The third and last case discussed, is the dynamic analysis of a cylinder by means of
modal expansion. This will prove to be similar to the analysis of a monopile by means
of the Craig-Bampton substructure method as discussed in section 4.4.

2.1 Introduction

As noted in Chapter 1, the monopile will be modelled using Timoshenko’s beam the-
ory and Flügge’s theory for circular cylindrical shells. In this chapter the static and
dynamic modelling of circular cylinders, according to both theories, is treated. The
considered cylinder will be thin-walled and of constant circular cross-section. The

11



12 2. MODELLING A CYLINDER WITH SHELL AND BEAM THEORY

h
L

a

Figure 2.1: Geometry of the thin-walled hollow cylinder

geometry of the cylinder is described by the radius to the middle of the wall surface
a, wall thickness h and axial length L. The geometry is depicted in figure 2.1. The
cylinder’s material is linear elastic, isotropic, homogeneous and is defined with a
Young’s modulus E, a Poisson’s ratio ν and a specific density ρ. This chapter serves
two purposes. First, this chapter presents derivations and solution procedures used
to develop a more advanced structural model. As will be seen in chapter 4, formula-
tions of the cylinder’s response due to static edge loading, eigenmodes and dynamic
response to loading in terms of the eigenmodes are used in the Craig-Bampton re-
duction of the monopile considered in the case study. Second, some differences
between the static and dynamic bending behaviour of cylinders modelled with Tim-
oshenko’s beam theory and Flügge’s theory are studied. The differences in predicted
response by the two theories found in this chapter will provide a theoretical basis
to understand the differences between shell and beam theory based modelling of
offshore wind turbines through more realistic but also more complex modelling.

2.2 Structural relations to model cylinders

2.2.1 Timoshenko’s theory for beams

Timoshenko’s beam theory can be seen as an extension of the Euler-Bernoulli beam
theory that includes a first-order transverse shear effect. The position of the beam
is described by two degrees of freedom: a lateral deflection w, measured from the
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Figure 2.2: A Timoshenko beam in its coordinate system.

beam’s centreline, and an angular rotation φ of the beam’s cross-sectional plane,
measured from the normal to the beam’s center line. In contrast to the Euler-
Bernoulli beam theory, the cross-sectional plane does not remain perpendicular to
the beam axis during bending in Timoshenko’s beam theory. A shear strain is gener-
ated through the additional rotation of the cross-sectional plane. [6, 7, 8]

Governing equations

Consider a beam element as visualized in figure 2.2, the position along the longitu-
dinal direction of the beam is described by the x-coordinate. The beam is subjected
to a transverse distributed load q, which works in the positive z direction. The trans-
verse motion w and cross sectional rotation φ of such a beam are described by Timo-
shenko’s beam theory with two coupled second-order partial differential equations:

ρA
∂2w

∂t2
+ c

∂w

∂t
+

∂

∂x

[
κAG

(
∂w

∂x
− φ

)]
= q,

ρI
∂2φ

∂t2
− EI ∂

∂x

(
∂φ

∂x

)
− κAG

(
∂w

∂x
− φ

)
= 0,

(2.1a)

(2.1b)

where c is a damping coefficient and G is the shear modulus of the beam which
is given by G = E/2(1 + ν). For a beam with a hollow circular cross section the
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14 2. MODELLING A CYLINDER WITH SHELL AND BEAM THEORY

cross-sectional area A and area moment of inertia I are given by

A = π

((
a+

h

2

)2

−
(
a− h

2

)2
)
, (2.2)

I =
π

4

((
a+

h

2

)4

−
(
a− h

2

)4
)
. (2.3)

For the shear coefficient κ the following formulation can be used [9]

κ =
6 (1− ν)

(
1 +m2

1

)2
(7 + 6ν)

(
1 +m2

1

)2
+ (20 + 12ν)m2

1

, (2.4)

where

m1 =
a+ h

a− h
. (2.5)

The bending moment, shear force, axial stress and shear stress in the beam can be
determined using

Mxx = EI
∂φ

∂x
,

Qxx = κAG

(
−φ+

∂w

∂x

)
,

(2.6a)

(2.6b)

σxx =
Mxxz

I
,

σxθ =
QxxS

(s)
z

b(s)I
.

(2.7a)

(2.7b)

In the aforementioned equations z is the in-plane distance from the centre of the
circular cross section, which equals the cylinder’s radius. S(s)

z and b(s) are the first
moment of area and the width of the shearing section respectively. In order to solve
for w(x) and φ(x), the definition of four boundary conditions, two at each end of the
beam, is necessary.

2.2.2 Flügge’s theory for thin circular cylindrical shells

Shells can be seen as plate structures with the additional characteristic of curvature.
In literature various theories are presented to describe the behaviour of thin shells. A
comprehensive study on the vast amount of different shell theories was performed by
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Figure 2.3: A circular cylindrical shell in its coordinate system.

Leissa [10]. It was shown that circular cylindrical shells are often described using an
eighth-order system of three coupled partial differential equations, based on Love’s
first formulations [11]. The governing equations have three degrees of freedom: the
axial displacement u, the circumferential displacement v and the radial displacement
w. These degrees of freedom are a function of a longitudinal coordinate x and a
circumferential coordinate θ. A circular cylindrical shell in its coordinate system
can be observed in figure 2.3. It was found that various circular cylindrical shell
theories can be described using the equations of Donnell-Mushtari supplemented
with a unique contribution which is multiplied by a constant k. The dimensionless
thickness parameter k is given by

k =
h2

12a2
. (2.8)

While the various theories fundamentally have many things in common, a single
set of equations has not been agreed upon in literature. In this thesis, the linear
relations published by Flügge [12] for thin circular cylindrical shell are used. The
equations are also known as Flügge-Byrne-Lur’ye in literature.
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16 2. MODELLING A CYLINDER WITH SHELL AND BEAM THEORY

Governing equations

In terms of displacements the equilibrium of a circular cylindrical shell is in general
described by a system of three coupled partial differential equations is the form of

ρh
∂2u

∂t2
+ c1

∂u

∂t
− L1{u, v, w} = qx,

ρh
∂2v

∂t2
+ c2

∂v

∂t
− L2{u, v, w} = qθ,

ρh
∂2w

∂t2
+ c3

∂w

∂t
− L3{u, v, w} = qz,

(2.9a)

(2.9b)

(2.9c)

where for i=1, 2 and 3, ci denotes the damping coefficient in a given direction and

Li{u, v, w} = Li1u+ Li2v + Li3w. (2.10)

Li1, Li2 and Li3 are partial differential operators with respect to x and θ. In Flügge’s
shell theory the partial differential operators are defined by the following.

L11 =
D

a2

[
a2 ∂

2

∂x2
+ (1 + k)

1− ν
2

∂2

∂θ2

]

L12 = −L21 =
D

a2

[
1 + ν

2
a
∂2

∂x∂θ

]

L13 = L31 =
D

a2

νa ∂
∂x

+ k

(
−a3 ∂

3

∂x3
+

1− ν
2

a
∂3

∂x∂θ2

)
L22 =

D

a2

[
(1 + 3k)

1− ν
2

a2 ∂
2

∂x2
+

∂2

∂θ2

]

L23 = L32 =
D

a2

[
−k 3− ν

2
a

∂3

∂x2∂θ
+

∂

∂θ

]

L33 = −D
a2

1 + k∇4 + k

(
1 + 2

∂2

∂θ2

)

(2.11a)

(2.11b)

(2.11c)

(2.11d)

(2.11e)

(2.11f)

In the equations above, the following notation was used: ∇2 = a2 ∂2

∂x2 + ∂2

∂θ2 ,∇
4 =

∇2∇2 = a4 ∂4

∂x4 +a2 ∂4

∂x2∂θ2 + ∂4

∂θ4 , D = Eh
1−ν2 . Internal membrane forces and moments
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in the shell wall are related to the displacement by the following relations.

Nxx =
D

a

(
a
∂u

∂x
+ ν

∂v

∂θ
+ νw

)
− K

a

∂2w

∂x2

Nθθ =
D

a

(
∂v

∂θ
+ w + νa

∂u

∂x

)
+
K

a3

(
w +

∂2w

∂θ2

)

Nθx =
D

a

1− ν
2

(
∂u

∂θ
+ a

∂v

∂x

)
+
K

a3

1− ν
2

(
∂u

∂θ
+ a

∂2w

∂x∂θ

)

Nxθ =
D

a

1− ν
2

(
∂u

∂θ
+ a

∂v

∂x

)
+
K

a3

1− ν
2

(
a
∂v

∂x
− a ∂

2w

∂x∂θ

)

Mxx =
K

a2

(
a2 ∂

2w

∂x2
+ ν

∂2w

∂θ2
− a∂u

∂x
− ν ∂v

∂θ

)

Mθθ =
K

a2

(
w +

∂2w

∂θ2
+ νa2 ∂

2w

∂x2

)

Mθx =
K

a2
(1− ν)

(
a
∂2w

∂x∂θ
+

1

2

∂u

θ
− 1

2
a
∂v

∂x

)

Mxθ =
K

a2
(1− ν)

(
a
∂2w

∂x∂θ
− a∂v

∂x

)

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.12f)

(2.12g)

(2.12h)

In these equations K = Eh3

12(1−ν2) . The membrane forces and moments acting on a
section of a circular cylindrical shell are visualized in figure 2.4. Normal and shear
stresses can be obtained using relations valid for thin plates:

σxx =
Nxx
h
± z 12Mxx

h3
,

σθθ =
Nθθ
h
± z 12Mθθ

h3
,

σxθ =
Nxθ
h
± z 12Mxθ

h3
,

(2.13a)

(2.13b)

(2.13c)

where z denotes the distance from the centreline of the shell wall. Solving the shell
problem requires the formulation of eight boundary conditions, four at each end of
the shell.
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Figure 2.4: Membrane forces, shear forces, surface loading and membrane moments
acting on a shell segment.

2.3 Static loading

In this section the modelling of cylinders with Timoshenko’s beam theory and Flügge’s
theory for circular cylindrical shells will be discussed. First a solution procedure for
both theories will be presented. It is shown that in order to find an analytical solu-
tion to the shell problem, the interface load can be decomposed as a Fourier series
of harmonic functions along the cylinder’s circumference. Off all the terms in the
Fourier decomposition of the loading, only one term will cause a bending response
of the shell. At the end of this section a parameter study is performed that compares
the bending behaviour of a shell and beam cylinder of various dimensions.

2.3.1 Timoshenko’s theory for beams

A Timoshenko beam subjected solely to static loading is described by equations 2.1a
- 2.1b while taking all time derivatives with respect to time equal to zero. The gov-
erning relations can now be written as ordinary differential equations with respect
to x.

− d

dx

[
κAG

(
dw

dx
− φ

)]
= q

−EI d
dx

(
dφ

dx

)
− κAG

(
dw

dx
− φ

)
= 0

(2.14a)

(2.14b)
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After some substitution the rotation and lateral displacement of the beam can be
solved from

d3φ

dx3
=

q

EI
,

dw

dx
= φ− EI

κAG

d2φ

dx2
.

(2.15a)

(2.15b)

The solutions for w and φ yield a total of four unique integration constants which
can be determined using boundary conditions. The unknown integration constants
can be solved from

Rc = 0 (2.16)

where c is a vector containing the unknown integration constants and R is a matrix
containing the boundary condition relations. When only loading at the edges of
the beam is considered, the external distributed loading term q in equations 2.14a -
2.15b is omitted. The loading on the edges can enter through the boundary condition
relations.

2.3.2 Flügge’s theory for circular cylindrical shells

When considering a circular cylindrical shell subjected to static loading, the govern-
ing relations follow from equations 2.9a - 2.9c while omitting all time-dependence.

−L1{u, v, w} = qx

−L2{u, v, w} = qθ

−L3{u, v, w} = qz

(2.17a)

(2.17b)

(2.17c)

In equations 2.17a - 2.17c the displacements are a function of both x and θ. In order
to simplify the set of partial differential equations, the loading on the shell surface
qx, qθ and qz and the displacements u, v and w are each expressed as Fourier series
of harmonic functions which are symmetric with respect to the axis θ = 0.

qx(x, θ) =

∞∑
n=0

Qxn(x) cos(nθ)

qθ(x, θ) =

∞∑
n=0

Qθn(x) sin(nθ)

qz(x, θ) =

∞∑
n=0

Qzn(x) cos(nθ)

(2.18a)

(2.18b)

(2.18c)
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20 2. MODELLING A CYLINDER WITH SHELL AND BEAM THEORY

u(x, θ) =

∞∑
n=0

Un(x) cos(nθ)

v(x, θ) =

∞∑
n=0

Vn(x) sin(nθ)

w(x, θ) =

∞∑
n=0

Wn(x) cos(nθ)

(2.19a)

(2.19b)

(2.19c)

The application can be extended to asymmetric loading using a combination of
trigonometric series.

The total response of the shell is now expressed in terms of various circumferen-
tial deformation mode shapes, which are visualized in figures 2.5a - 2.5f. Each cir-
cumferential deformation mode can be analysed individually. Three different types
of circumferential deformation shapes are distinguished [13]. The axis symmetric
mode indicated by n = 0 describes behaviour which is constant along the circumfer-
ential direction. The response of the shell in tangential direction is decoupled from
the response in axial and radial direction. This mode describes expansion in the ra-
dial and axial direction of the shell, as well as torsion. The mode noted with n = 1 is
commonly referred to as the beam mode. This mode caries the bending response of
the shell due to the resultant lateral load, similar to beam theory. The rotation of the
cross-section due to the resultant overturning moment is accounted for. Unlike beam
theory, the three shell displacements u, v and w can describe cross-sectional ovali-
sation, which occurs when the solution for W (x) differs from the solution for V (x).
Another difference with respect to beam theory is that the solution for the n = 1
mode contains an edge disturbance which mainly originates from constrains to the
cross-sectional deformation. The self-balancing modes are indicated with n > 1. The
response of a ring to circumferential loading distributed with n > 1 is fully described
by the deformation of the circular shape, the center point will not be displaced. For
an unconstrained cylinder the circumferential response will be the same as for a ring
with the same circular profile. In this case only the membrane forces, moments and
transverse shear forces in the circumferential direction will occur. If displacement
constraints are enforced along a circular edge, membrane forces and moments in the
axial direction are induced.

With the formulation of the circumferential deformation shapes, the governing
differential equations for the circular cylindrical shell under static loading can be sig-
nificantly simplified into a set of ordinary differential equations with respect to x for
each circumferential wavenumber n. This is done by substitution of equations 2.19a
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(a) n=0 (b) n=1 (c) n=2

(d) n=3 (e) n=4 (f) n=5

Figure 2.5: Circumferential deformation shapes of circular cylindrical shells.
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22 2. MODELLING A CYLINDER WITH SHELL AND BEAM THEORY

- 2.19c and 2.18a - 2.18c into equations 2.17a - 2.17c. The resulting equations will
have a common factor of cos(nθ) or sin(nθ), which may be dropped from the equa-
tions. The total solution for the axial displacement distributions Un, Vn and Wn can
be taken as the summation of the homogeneous and the particular solution to the
differential equations. Since in this section only the response of a cylinder to loading
at the edges is considered, the external loading on the shell surface is put to zero.
Therefore, only the homogeneous solution remains. The homogeneous solution can
be taken in the form of

Un(x) = Aeλ
x
a ,

Vn(x) = Beλ
x
a ,

Wn(x) = Ceλ
x
a .

(2.20a)

(2.20b)

(2.20c)

Substitution of equations 2.20a - 2.20c allows the transformation of the ordinary
differential equations into a set of three linear equations which can, for the homo-
geneous case, be written as

L̂11 L̂12 L̂13

L̂21 L̂22 L̂23

L̂31 L̂32 L̂33


AB
C

 =

0

0

0

 , (2.21)

using

L̂11 = λ2 − 1− ν
2

n2(1 + k),

L̂12 = −L̂′21 =
1 + ν

2
λn,

L̂′13 = −L̂′31 = νλ− k
(
λ3 +

1− ν
2

λn2

)
,

L̂′22 = −n2 + λ2(1 + 3k)
1− v

2

L̂′23 = L̂′32 = −n+
3− ν

2
kλ2n,

L̂′33 = −1− k
(
λ4 − 2λ2n2 + n4 − 2n2 + 1

)
.

(2.22a)

(2.22b)

(2.22c)

(2.22d)

(2.22e)

(2.22f)

These homogeneous equations have a unique solution for A, B and C if the deter-
minant of their coefficients is set to zero. The expansion of the determinant will lead
to an equation in λ which is known as the characteristic equation. The characteristic
equation is of the eighth order in λ and will therefore yield eight roots. The total

CONFIDENTIAL



2.3. STATIC LOADING 23

solution for un, vn and wn is taken as

un(x) =

8∑
j=1

Anje
λnj

x
a cos(nθ),

vn(x) =

8∑
j=1

Bnje
λnj

x
a sin(nθ),

wn(x) =

8∑
j=1

Cnje
λnj

x
a cos(θ).

(2.23a)

(2.23b)

(2.23c)

The coefficients Anj , Bnj and Cnj can be related to each other through the linear
relations given by equation 2.21. Since the determinant of the system was set to
zero, any two of the three relations may be used for this purpose. Substitution
of the corresponding value for λnj into equation 2.21 allows the coefficients to be
expressed as

Anj = αnjCnj and Bnj = βnjCnj . (2.24)

Note that for the circumferential wavenumbers of zero and one, some roots of the
characteristic equation will be zero. Therefore a polynomial term will also arise in
the equations of u, v and w, taking the place of one or more exponential terms.
Remaining is the determination of the eight unknown integration constants Cnj for
each circumferential wavenumber n. These are obtained by introducing boundary
conditions. The eight unknown integration constants can then be solved from

Rc = 0, (2.25)

where c is a vector containing the unknown integration constants and R is a matrix
containing the boundary condition relations. External forces on the edges of the shell
can be included in the boundary condition relations. Once the integration constants
are calculated for each circumferential wavenumber, the total response of the shell
is known.

While not shown in this section, the structural response of a circular cylindrical
shell to distributed loading on the cylinder’s surface can only be calculated analyt-
ically for certain cases. Using Flügge’s shell theory, only the case where the cir-
cumferential wavenumber is equal to one or zero can be analysed analytically due
to a uniform or linearly distributed surface load. For any higher circumferential
wavenumber this is not possible as the general solution will not have enough free
constants to adapt to both the surface loading and the boundary constraints. Alter-
natively, a cylinder due to static distributed loading with a constant or linear distri-

CONFIDENTIAL



24 2. MODELLING A CYLINDER WITH SHELL AND BEAM THEORY

bution in the axial direction can be analysed directly using Morley’s theory [13], for
all circumferential wavenumbers.

2.3.3 Parameter study of a cantilever cylinder subjected to static
edge loading

In this section a parameter study is presented which compares the behaviour of can-
tilever cylinders modelled with Flügge’s shell theory and Timoshenko’s beam theory.
The comparison is made for a cylinder subjected to a lateral static load and an over-
turning static moment, which are analysed separately. In the analyses, the lateral
displacement of the cylinders centre point and the rotation of the cross-sectional
plane are calculated at the free end. For the aforementioned structural reactions,
the ratio between the shell and beam solutions are calculated as a function of the
length over diameter ratio, L/D and the diameter over wall thickness ratio, D/h.
For the shell calculations two types of boundary conditions at the free end are con-
sidered. The first type is a rigid ring, the second type is a completely free end.

For the calculations in this section a poison’s ratio of 0.3 [−] and a Young’s mod-
ulus of 210 · 109[Nm−2] are used. Our considered cylinder will be clamped at x = 0
and is free at x = L. For calculations with the shell model in combination with the
completely free end boundary condition, the circumferential distribution of the force
has to be specified. The lateral force can be represented with a radial or a tangential
load with a circumferential wavenumber of n = 1, a tangential load was chosen in
this section. The overturning moment is represented as an axial load, also with a
circumferential wavenumber of n = 1.

For the Timoshenko beam model, the following boundary conditions are defined


w = 0 at x = 0

φ = 0 at x = 0

M = M (L) at x = L

V = V (L) at x = L,

where M (L) and V (L) are chosen depending on the load case, which is explained
below. For the shell model without the rigid ring at x = L, the boundary conditions
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are defined as 

u = 0 at x = 0

v = 0 at x = 0

w = 0 at x = 0

φ = 0 at x = 0

Mxx = 0 at x = L

Nxx = P
(L)
1x at x = L

Tx = P
(L)
1θ at x = L

Sx = 0 at x = L,

where Tx is the effective membrane shear force given by

Tx = Nxθ −
Mxθ

a
(2.26)

and Sx is Kirchhoff’s transverse shear force, which is related to the transverse force
Qx by

Sx = Qx +
∂

∂θ

Mxθ

a
, Qx =

1

a

(
∂

∂x
Mxx +

∂

∂θ
Mxθ

)
. (2.27)

P
(L)
1x and P (L)

1θ = 1/π are again dependant on the load case. For the shell model with
the rigid ring stiffener at x = L the last four boundary conditions are replaced with
the following. 

v + w = 0 at x = L

φ+
u

a
= 0 at x = L

aNxx −Mxx = M (L) at x = L

Sx + Tx = V (L) at x = L

Four cases are considered. In these cases the cylinder will be subjected to

1. only a lateral load and will have a completely free end in the shell model. The
load is distributed with a pure tangential load.

2. only a lateral load and will have a rigid ring stiffener at x = L in the shell
model.

3. only an overturning moment and will have a completely free end in the shell
model. The moment is distrusted as a pure axial load.
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Figure 2.6: Displacement and rotation ratios for various values of L/D and D/h
for a clamped-free cylinder at the free end, loaded with either a lateral load or an
overturning moment at the free end.
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Figure 2.7: In the left figure, the static response of a circular cylinder subjected to a
tangential load at the upper edge is shown. In the right figure, the same cylinder is
considered, now due to a radial load at the upper edge.
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4. only an overturning moment and will have a rigid ring stiffener at x = L in
the shell model.

The effective lateral load used in beam theory is related to the circumferential load
distribution used with shells by the following relation

V = 2a

π∫
0

P1θ sin2(θ) + P1zcos2(θ)dθ. (2.28)

Where V is the effective lateral load, P1θ and P1z are the tangential and radial load
amplitudes respectively for n = 1. The resulting overturning momentM (L) is related
to the axial load distribution Px in a similar manner. The ratio’s for the clamped-free
cylinder can be observed in figure 2.6. Analyses of a shell with rigid ring boundary
condition yield similar results as shown in figure 2.6. It can be observed that the ratio
between the shell and the beam solution approaches 1 for increasing slenderness of
the cylinder. For very low values of L/D the predicted responses by Timoshenko’s
theory start to deviate from Flügge’s theory, where the later one is considered to
be more accurate. This deviation could be caused by various mechanisms, possibly
related to edge disturbance in the shell problem or the shear coefficient κ for the
beam problem. For the remainder of this study, these deviations are considered not
important and are therefore not discussed further.

In the calculation presented above involving a lateral edge load and the free
boundary condition for the shell cylinder, the lateral load was chosen with tangen-
tial distribution. This was done as a radial load distribution which will induce a
disturbance near the free edge. In figure 2.7 the response of a circular cylinder with
L/D = 2 and D/h = 100 due to a radially and tangentially distributed edge load
is shown. The total lateral load is the same in both calculations. An edge distur-
bance at the free end due to the radial edge load is observed. Note that in both
figure’s also an edge disturbance near the clamped end can be observed in the radial
response of the shell. Edge disturbances in shell structures is a well known phenom-
ena. The axial length of the edge disturbance region solely depends on properties of
the cross section of the cylinder. For increasing slenderness of the cylinder the edge
disturbance region will become smaller relative to the cylinder’s axial length.
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2.4 Free vibration

2.4.1 Introduction

In this section a method to analyse cylinders with general boundary conditions in
free vibration according to shell and beam theory are presented. It is shown how
undamped eigenfrequencies and eigenmodes can be determined. This is done by as-
suming synchronous motion at a natural frequency, which allows us to separate time
from the equations of motion and reduce the problem to a set of ordinary differen-
tial equations. Note that this would only hold for an undamped system. For shells
also the dependence on the circumferential coordinate is separated from the equa-
tions. Resulting is a set of equations from which the remaining unknowns, the axial
distributions for the displacements, can be solved in general form. Using bound-
ary constraints the undamped eigenfrequencies and eigenmodes can be solved. A
parameter comparison is performed of the first and second natural frequency, as cal-
culated with beam and shell theory, of cantilever cylinders with various L/D and
D/h. As is shown in chapter 4, undamped eigenmodes can be used to express the
internal degrees of freedom of a structure using a Craig-Bampton reduction.

2.4.2 Decoupling Timoshenko’s beam equations

The dynamic, homogeneous and undamped Timoshenko beam equations are given
by

ρA
∂2w(x, t)

∂t2
− ∂

∂x

[
κAG

(
∂w(x, t)

∂x
− φ(x, t)

)]
= 0,

ρI
∂2φ(x, t)

∂t2
− EI ∂

∂x

(
∂φ(x, t)

∂x

)
− κAG

(
∂w(x, t)

∂x
− φ(x, t)

)
= 0.

(2.29a)

(2.29b)

In order to separate time from the equations, the following solution is attempted:

φ(x, t) = Φ(x)η(t),

w(x, t) = W (x)η(t).

(2.30a)

(2.30b)

For this it can be shown, see for example reference [14], that the solution for the
time dependant part η(t) can be expressed as a complex exponent multiplied with a
unknown constant η̂ in the form of

η(t) = η̂eiωt (2.31)
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Substitution of equations 2.30a - 2.30b and 2.31 into equations 2.29a - 2.29b, while
omitting the harmonic time-dependant exponent in all terms and dividing by η̂, gives
a set of ordinary differential equations.

−ω2ρAW (x)− d

dx

[
κAG

(
dW (x)

dx
− φ(x, t)

)]
= 0

−ω2ρIΦ(x)− EI d
dx

(
dΦ(x)

dx

)
− κAG

(
dW (x)

dx
− Φ(x)

)
= 0

(2.32a)

(2.32b)

2.4.3 Decoupling Flügge’s shell equations

The dynamic shell equations for the homogeneous case and while omitting damping
can, according to Flügge, be written as

ρh
∂2u

∂t2
− L1{u, v, w} = 0,

ρh
∂2v

∂t2
− L2{u, v, w} = 0,

ρh
∂2w

∂t2
− L3{u, v, w} = 0.

(2.33a)

(2.33b)

(2.33c)

Here L1, L2 and L3 are still defined by equations 2.10 and 2.11a - 2.11f. Simi-
lar as for the Timoshenko beam equations, the assumption of synchronous motion
also holds when searching for eigensolutions. Furthermore, judging from equa-
tions 2.33a - 2.33c, the time dependant function must be harmonic. Since boundary
conditions of a cantilever cylinder are to be described along the circumference of
the cylinder, the spatial functions can also be split up. This is done in the same way
as presented in the static analysis in section 2.3.2. Summarizing, we can write the
solution to equations 2.33a - 2.33c in the following form:

umn(x, θ, t) = Umn(x) cos(nθ)eΩmnt/τ ,

vmn(x, θ, t) = Vmn(x) sin(nθ)eΩmnt/τ ,

wmn(x, θ, t) = Wmn(x) cos(nθ)eΩmnt/τ ,

(2.34a)

(2.34b)

(2.34c)

where the dimensionless frequency parameter is introduced for convenience as Ωmn =
ωmnτ where ωmn is the natural frequency for the combination of circumferential
mode n and axial mode m. Furthermore, τ =

√
(1− ν2) ρa2/E. Substitution of
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equations 2.34a - 2.34c into 2.33 and omitting the time and circumferential depen-
dant functions leaves us with a set of ordinary differential equations with respect to
the axial displacement distributions Umn(x), Vmn(x) and Wmn(x).

2.4.4 Solving for eigenfrequencies and eigenmodes

Deriving the characteristic equation In order to derive the characteristic equa-
tions of both the beam and shell equations, the form of the solution for the axial
displacement distributions has to be assumed. For the shell equations the same form
is assumed as in section 2.3.2. For the Timoshenko beam equations a similar form is
taken:

W (x) = Beλx/a,

Φ(x) = Ceλx/a.

(2.35a)

(2.35b)

This allows for the transformation of the ordinary differential equations into linear
algebraic equations. For the Timoshenko beam these equations are given by[

−ω2ρA− κAGλ2 κAG

−κAG −ω2ρI − EIλ2 + κAG

][
B

C

]
=

[
0

0

]
(2.36)

For Flügge’s shell theory the equations are given by 2.21, while adding the inertia
terms to the diagonal. Thus, in equation 2.21 the coefficients are still given by 2.22a
- 2.22f, with the exception of the diagonal terms, which are now defined as:

L′11 = Ω2 + λ2 − 1− ν
2

n2(1 + k),

L′22 = Ω2 − 1− ν
2

λ2 + n2 − 3

2
(1− ν) kλ2,

L′33 = Ω2 + 1 + k
(
λ4 − 2λ2n2 + n4 − 2n2 + 1

)
.

(2.37a)

(2.37b)

(2.37c)

Or in a more general form, the systems resulting from both theories are now de-
scribed by

Cû = 0, (2.38)

where the vector û contains the coefficients B and C in the case of Timoshenko’s
beam theory, and the coefficients A, B and C in case of Flügge’s shell theory. For the
non-trivial solution of the set of algebraic equations the determinant of the matrix
C must equal zero. ∣∣C∣∣ = 0 (2.39)
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Expansion of the determinant yields the characteristic equation. For the Timoshenko
beam theory the eigenmodes are now given by

wm(x, t) =

4∑
j=1

Bmje
λmj

x
a eiωmt

φm(x, t) =

4∑
j=1

αmjBmje
λmj

x
a eiωmt

(2.40a)

(2.40b)

and for Flügge’s shell theory the following formulations are used.

umn(x, θ, t) =

8∑
j=1

αmnjCmnje
λmnj

x
a cos(nθ)eiΩmnt

vmn(x, θ, t) =

8∑
j=1

βmnjCmnje
λmnj

x
a sin(nθ)eiΩmnt

wmn(x, θ, t) =

8∑
j=1

Cmnje
λmnj

x
a cos(nθ)eiΩmnt

(2.41a)

(2.41b)

(2.41c)

In equations 2.40a - 2.41c subscripts m and n denote the axial and circumferential
mode number respectively. The values for λm are given as the mth roots to the
characteristic equation for the Timoshenko beam. Similarly, the values for λmn are
obtained through the characteristic equation for the shell using a circumferential
wavenumber of n. Additionally, for all combination’s of n, m and j the coefficients
αmj , αmnj and βmnj can be determined by substitution of the values for λmnj or
λmj in equation 2.38, similar as presented in section 2.3.2. Note that all these
coefficients, as well as λmj and λmn will now be a function of frequency.

Solving for the eigenfrequencies To find non-trivial solutions for the integration
constants, the determinant of the boundary condition matrixR of the homogeneous
system must equal zero. ∣∣R∣∣ = 0 (2.42)

Equation 2.42 is used to determine the natural frequencies of the system. The ex-
pansion of equation 2.42 will lead to a complex equation. Therefore its roots can
be obtained by analysing when the absolute value of this equation, as a function of
frequency, approaches zero. Most conveniently this is done numerically, especially
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Figure 2.8: Example calculation of the log-determinant of the boundary condition
matrix for the shell problem versus the frequency parameter.

for the equations governing the shell problem. An example of the determinant of
the boundary condition matrix for a shell problem as a function of the dimensionless
frequency parameter Ω is presented in figure 2.8. Note that in the figure the de-
terminant never actually reaches zero, this is explainable by the sensitivity to small
increases in ∆Ω used in the numerical calculation. The minimum points in figure 2.8
are to be interpreted as natural frequencies of the cylinder [15]. Alternatively, the
real and imaginary parts of the determinant can also be investigated separately.

Solution for the mode shapes When the natural frequencies of the cylinder are
known, all parameters within the boundary condition matrix are determined. Equa-
tion 2.42 can now be used to determine the integration constants cj . However, since
the determinant of the boundary condition matrix is set to zero, the boundary con-
dition matrix is singular. Due to this singularity J − 1 out of J integration constants
can be solved. To accomplish this, one of the integration constants must be assigned
a convenient arbitrary value. Any one of the coefficients can be chosen. Once one in-
tegration constant has been assigned a convenient value, a finite number of J − 1 by
J − 1 matrices can be constructed. The remaining integration constants can be cal-
culated from these matrices and are proportional to the arbitrary chosen value [16].
In the case that the determinant truly equals zero, an arbitrary construction can be
chosen. If the determinant is close to zero, it is advisable that calculations of the
mode shapes resulting from several J − 1 by J − 1 matrices are compared with each
other in order to verify the correctness of the calculations. Once the integration con-
stants are calculated the mode shapes are obtained. Using the described method, the
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solutions for the mode shapes may be complex valued. In order to obtain real-valued
displacements, the solutions are multiplied by a complex rotation mapping eα

√
−1,

where α is determined to rotate the displacements through the complex plane onto
the real axis [17].

2.4.5 Parameter study of a cantilever cylinder in free vibration

Similar to section 2.3.3 a parameter study is presented which compares cantilever
cylinders modelled with Flügge’s shell theory and Timoshenko’s beam theory. This
comparison is made for cylinders in free vibration. The cylinder’s first and second
dimensionless eigenfrequencies for the beam modes are calculated using both theo-
ries. The shell equations of circumferential wavenumber n = 1 are thus considered.
The comparison has once again been done for various L/D ratio’s. h/D has been
chosen equal to 1/100, which is a realistic value for the wall thickness to diame-
ter ratio of an offshore monopile foundation. The same material properties were
used as in section 2.3.3. Furthermore, the shell has a free end boundary at x = L.
Comparisons for the first eigenfrequency can be observed in figures 2.9 and 2.10
while the comparisons for the second eigenfrequency can be observed in figure 2.11
and 2.12. It is concluded that Timoshenko’s beam theory and Flügge’s shell theory
show good agreement on the prediction of eigenfrequencies of the investigated cylin-
ders. For comparative purposes, the prediction of the eigenfrequencies according to
Euler-Bernoulli’s beam theory has also been concluded. These predictions show a
notable mismatch with both Flügge’s theory and Timoshenko’s theory, especially for
low values of L/D.
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Figure 2.9: Comparison of the first dimensionless eigenfrequency of a cantilever cylin-
der with h/D = 100 according to Flügge’s theory, Timoshenko’s theory and Euler-
Bernoulli’s theory.
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Figure 2.10: Ratio of Timoshenko’s and Euler-Bernoulli’s prediction to Flügge’s pre-
diction of a cantilever cylinder’s first eigenfrequency with h/D = 100.
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Figure 2.11: Comparison of the second dimensionless eigenfrequency of a cantilever
cylinder with h/D = 100 according to Flügge’s theory, Timoshenko’s theory and Euler-
Bernoulli’s theory.
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Figure 2.12: Ratio of Timoshenko’s and Euler-Bernoulli’s prediction to Flügge’s pre-
diction of a cantilever cylinder’s first eigenfrequency with h/D = 100.
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2.5 Forced vibration by means of modal expansion

2.5.1 Introduction

The method presented in this section to analyse a Timoshenko beam and a Flügge
shell cylinder in forced vibration will be based on the previously derived eigenmodes.
Knowing the eigenvalues of the cylinder makes it possible to obtain the forced so-
lution in terms of these eigenvalues. This is referred to as modal expansion. An
advantage of this method is that it is computationally fast. For this study in particu-
lar, modal expansion is a desirable method as it will give insight into how much each
mode contributes to the total response of the structure. When analysing the stress
levels in the cylinder wall, contributions made by shell modes with a circumferential
wavenumber of n > 1 are thus easily observed. Hereby insight can be obtained in
the contribution of shell deformation to the fatigue life time of the structure. Modal
expansion is widely used in the dynamic analysis of circular cylindrical shells and,
as is shown in chapter 4, modal expansion shares the same concept with various
model reduction methods applied to discrete systems. The theory presented in this
section can thus be used to apply the reduction methods discussed in chapter 4 to
the continuous shell and beam equations.

2.5.2 Modal participation factor

Consider a cylinder subjected to a given dynamic surface loading. The load will ex-
cite the modes of the cylinder in various amounts. These amounts are quantified for
each mode by means of a modal participation factor. Mathematically, any response
of the system can be expressed as a combination of all the orthogonal vectors that
satisfy the structure’s boundary conditions. Since beams and shells are continuous
systems, the number of degrees of freedom is infinite. Therefore, the response of the
structure must be expressed as an infinite series of orthogonal vectors. Using beam
theory, in general we take

ψ(x, t) =

∞∑
k=1

Ψk(x)ηk(t), (2.43)

where ψ(x, t) is the total response of the system in a given direction, Ψk(x) is the kth
eigenmode in the given direction and ηk(t) is the time dependent modal participa-
tion factor for the kth mode. When using a shell theory, also the dependence on the
circumferential coordinate θ must be accounted for. The equivalent of equation 2.43
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is then written as

ψ(x, θ, t) =

∞∑
k=1

Ψk(x, θ)ηk(t), (2.44)

where the total response of the system and kth mode shape in a given direction are
now given by ψ(x, θ, t) and Ψk(x, θ) respectively. In both equations 2.43 and 2.44
the modal participation factors are unknown and have to be determined, as will be
explained in the following subsections.

Modal participation factors for Timosenko’s beam theory

The inhomogeneous dynamic Timoshenko beam equations are given by equations 2.1a
- 2.1b. Note that an equivalent viscous damping coefficient c has only been taken
into account for the lateral displacement of the beam. In this section it is assumed
that the rotational damping is negligible compared to the damping acting on the
displacement. Alternatively, if a rotational damping term is added in the equation of
motion the relations in the remainder of this section must be changed accordingly.

The solutions for the deflection w(x, t) and rotation φ(x, t) of the Timoshenko
beam will be expressed by the following series

w(x, t) =

N∑
k=1

Wk(x)ηk(t),

φ(x, t) =
N∑
k=1

Φk(x)ηk(t).

(2.45a)

(2.45b)

where N is the number of modes taken into consideration. By substitution of equa-
tions 2.45a - 2.45b into equations 2.1a - 2.1b, making use of equations 2.30a - 2.30b,
multiplying both sides of the first and second equation with the pth mode shapes
Wp(x) and Φp(x) respectively, integrating over length L of the beam, applying the or-
thogonality property of eigenmodes and summing the two resulting equations gives
the equation for the modal participation factor [18]. This equation can be written
as

d2ηk(t)

dt2
+ 2ξkωk

dηk(t)

dt
+ ω2

kηk(t) = Fk(t), (2.46)
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where

ξk =
c

2ωk

∫ L

0

Wk(x)2dx∫ L

0

ρIΦk(x)2 + ρAWk(x)2dx

,

Fk(t) =

∫ L

0

q(x, t)Wk(x)dx∫ L

0

ρIΦ(x)2 + ρAWk(x)2dx

.

(2.47a)

(2.47b)

The modal participation factor for the kth mode can now be solved from equa-
tion 2.46. The modal paticipation factor equation is a simple oscillator equation.
In order to solve the transient response, two initial conditions must be specified.
The amplitude η̂k of the modal participation factor for the steady state response due
to harmonic loading can be determined directly from

η̂k =
F ∗k(

ω2
k − ω2

)
+ 2

, (2.48)

determining F ∗k using
Fk(t) = F ∗k e

iωt. (2.49)

The modal participation factor ηk for the kth mode for the steady state response is
now given by

ηk(t) = η̂ke
iωt−αk , (2.50)

where the phase angle αk is given by

αk = tan−1

(
2ξk(ω/ωk)

1− (ω/ωk)2

)
. (2.51)

Modal participation factor for Flügge’s shell theory Determination of the modal
participation factor for shell theory is similar as demonstrated for Timoshenko’s
beam theory. The difference here is that three equations of motion are used and
that the viscous damping is assumed to be the same in all principle directions. How-
ever, the assumption on the viscous damping can be relaxed leading to a slightly
different derivation of the following equations. The starting point is the inhomoge-
neous dynamic equations of motion from Flügge’s theory including viscous damping.
These are given by equations 2.9a - 2.9c, where all terms Li(u, v, w) are again de-
fined by equations 2.11a - 2.11f and substituting c1 = c2 = c3 = c. For a shell theory
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the solution for the axial, circumferential and radial displacements, respectively, will
be an infinite series defined as

u(x, θ, t) =

n∑
k=1

Uk(x, θ)ηk(t),

v(x, θ, t) =

∞∑
k=1

Vk(x, θ)ηk(t),

w(x, θ, t) =

∞∑
k=1

Wk(x, θ)ηk(t).

(2.52a)

(2.52b)

(2.52c)

Using an approach similar to the one presented for Timoshenko’s beam theory, the
equation for the kth modal participation factor for shell theory can be written as

ω2
kηk(t) + 2ξkωk

dηk(t)

dt
+
d2ηk(t)

dt2
= Fk(t), (2.53)

where
ξk =

c

2ρhωk
(2.54)

and

Fk(t) =

∫ L

0

∫ 2π

0

qx(x, θ, t)Uk(x, θ) + qθ(x, θ, t)Vk(x, θ) + qz(x, θ, t)Wk(x, θ)dxdθ

ρA

∫ L

0

∫ 2π

0

Uk(x, θ)2 + Vk(x, θ)2 +Wk(x, θ)2dxdθ

.

(2.55)
Note that in order to arrive at this equation, the equations of motion where inte-

grated over both the axial and circumferential coordinate. Similar to the Timoshenko
beam, analysis of the shell’s transient response needs two initial conditions. The
steady state response can be analysed using equations 2.48 - 2.51 while substituting
in equations 2.53 and 2.5.2.

2.6 Conclusions

In this chapter the static and dynamic modelling of cylinders according to Timo-
shenko’s beam theory and Flügge’s shell theory has been discussed. Several conclu-
sions can be made.
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– As was discussed in section 2.3.2, nature of the static response of a circular
cylindrical shell subjected to a load depends on the distribution of the load
over the cylinder’s circumference. A load with a given harmonic circumfer-
ential distribution n will solely induce a response with the same harmonic
circumferential distribution n. This also holds for the response to dynamic
loading, as can be derived from equation 2.5.2. It can be observed that Fk will
equal zero if the loading terms qx, qθ and qz have a different circumferential
wavenumber than the mode shapes Uk , Vk and Wk.

– Taking note of the previous statement, a monopile’s shell deformation be-
haviour can be isolated from its global bending behaviour when using a cir-
cular cylindrical shell theory. For this, consider an offshore monopile subject
to a certain load P (x, θ). P can be expressed in terms of a summation of the ax-
ial distributions P̂n(x) multiplied with circumferential distributions cos(nθ) or
sin(nθ). For each term with n 6= 1 cross-section deformations, and thus stresses
induced in the monopile’s shell, are not considered using Timoshenko’s beam
theory.

– From section 2.3.3 it can be observed that Flügge’s shell theory and Timo-
shenko’s beam theory are in agreement with each other with respect to the
rotation and lateral displacement of the center point of the cylinder due to
edge loading. For increasing slenderness and thin-walledness of the cylinder,
the ratio between the Timoshenko beam and Flügge shell solution approaches
1.

– Cross sectional deformation can also occur for a cylinder subjected to a load
with a circumferential distribution of n = 1 as the radial displacement am-
plitude can differ from the tangential displacement amplitude. A possible
cause for this is the edge disturbance phenomena. An edge disturbance occurs
near constraints regarding the cross sectional deformation, such as a rigidly
clamped or rigid ring boundary condition. An edge disturbance will also be
induced by loads at a free edge, the edge disturbance due to radial loading
will be more prominent compared to tangential or axial loading. The length of
the region affected by the edge disturbance will decrease relative to the axial
length of a cylinder with increasing slenderness of the cylinder. This can be
observed in section 2.3.3.

– Judging from section 2.4.5 it can be concluded that the predictions of the first
and second (beam) eigenfrequency of a circular cylinder with Timoshenko’s
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42 2. MODELLING A CYLINDER WITH SHELL AND BEAM THEORY

beam theory and Flügge’s shell theory converge towards each other with in-
creasing slenderness of the cylinder. Compared to Euler-Bernouli’s beam the-
ory, the Timoshenko beam theory is in much better agreement with Flügge’s
shell theory, especially with decreasing slenderness of the cylinder.
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Chapter 3

Soil-structure interaction

This chapter starts with a selected overview of different approaches that can be used
to incorporate soil-structure interaction in the research models of the offshore wind
turbine. After this, a method to obtain characteristics of an elastic foundation which
approximates the reaction forces of the soil on the monopile is discussed. This method
forms the basis for modelling the soil-structure interaction in the remainder of this
study. The implementation of this method in the research models is therefore discussed
in the closing section of this chapter.

3.1 Introduction

For a structure embedded in or founded on the soil, the behaviour of the structure
affects the behaviour of the soil, and the behaviour of the soil affects the behaviour
of the structure. Kinematic interaction mechanisms exist between the soil and the
structure, such as the resistance of the soil to the deformations of an embedded pile.
Also inertial interaction mechanisms occur. Due to dynamic forces exerted by the
structure on the soil, deformation waves will propagate through the soil and away
from the structure, which causes radiation damping [19]. In this chapter the soil-
stiffness which resists the small amplitude motion of the monopile will be addressed.

In the design practice of offshore wind turbines specifically, soil-structure inter-
action is traditionally modelled by the p-y curve method [5]. 1 The small ratio of

1The soil resistance is modelled as uncoupled non-linear lateral springs where the spring stiffness is
extracted by p-y curves. However, this method was developed for slender piles with diameters up to
approximately 2.0 m [20].
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44 3. SOIL-STRUCTURE INTERACTION

embedded length over diameter that is currently employed in the industry, most
probably invokes a fundamentally different soil reaction than the reaction for which
the p-y curves were originally calibrated [21]. Additionally, the p-y curve method
only predicts an effective lateral soil reaction. The distribution of the soil’s resistance
along the pile’s circumference and the soil’s response to self-balancing shell modes
is thus not accounted for.

In this study another approach is chosen. Instead, use has been made of an avail-
able FEM model of a given soil. The FEM model consists of several homogeneous,
isotropic and horizontally stratified soil layers, which are described using a mesh
of linear solid elements within the commercial software package Ansys. The mate-
rial properties, i.e., Young’s modulus, Poisson’s ratio and specific density, as well as
the thickness of the soil layers are related to in situ seismic measurements of the
nearshore wind farm Westermeerwind. The model is circular in the horizontal plane
and the degrees of freedom of the nodes at the bottom and the sides of the model are
constrained. Furthermore, the elements are meshed using cylindrical coordinates.
Time-domain simulations of an offshore wind turbine directly coupled to the FEM
model would not be computationally effective. Therefore, it is desirable to obtain an
alternative way to incorporate the soil-structure characteristics of the soil described
by the FEM model in the research models used in this thesis.

Three methods to incorporate soil-structure interaction in the research models
are considered. The first method consists of a modal expansion with respect to the in
vacuo modes of the monopile and those of the soil. The modes of the two systems can
be coupled using interface conditions and the orthogonality properties of the modes
[22]. In the second method, an augmented FEM is to be developed in which the
monopile is included. The augmented FEM model can be transformed into a single
superelement using a substructuring method. In the third method soil-structure
interaction is accounted for by an equivalent spatial distribution of linear uncoupled
elastic springs which act on a model of the monopile. To obtain the equivalent soil
stiffness distribution, displacements are enforced upon the nodes within the soil in
the FEM model. The stiffness is then obtained by dividing the nodal reactions forces
by their displacements. In this study the last of the aforementioned methods is
chosen. The reasoning for this is as follows: an equivalent soil stiffness distribution
provides clear insight in the behaviour of the soil, while analysis of the offshore wind
turbine remains conceptually simple and close to the current design practice.
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3.2. DERIVATION OF AN EQUIVALENT ELASTIC SPRING STIFFNESS 45

Figure 3.1: Front (left) and top (right) view of a vertical cylinder supported in the
radial direction by an elastic foundation.

3.2 Derivation of an equivalent elastic spring stiffness

3.2.1 Introduction

This section describes the derivation of a spatial distribution of linear uncoupled
elastic springs which approximate the reaction of the soil to deflections of the monopile.
In this section it is assumed that the monopile extends from a certain depth within
the soil to the mudline and is modelled as a circular cylindrical shell. The monopile’s
radius and wall thickness are assumed to be uniform along its length. In general,
the soil reaction forces will enter the equations governing the motions of the shell
by the following

ρh
∂2u

∂t2
+ c1

∂u

∂t
− L1{u, v, w}+K1{u, v, w} = qx,

ρh
∂2v

∂t2
+ c2

∂v

∂t
− L2{u, v, w}+K2{u, v, w} = qθ,

ρh
∂2w

∂t2
+ c3

∂w

∂t
− L3{u, v, w}+K3{u, v, w} = qz,

(3.1a)

(3.1b)

(3.1c)

where K1, K2 and K3 are yet unknown functions of u, v and w that represent the
soil’s reaction forces on the shell. To clarify, for a circular cylindrical shell supported
by an elastic foundation in the radial direction with respect to the shell’s surface,
assuming a constant foundation stiffness in the axial and circumferential direction,
the foundation stiffness terms in equation 3.1 are given by

K1{u, v, w} = 0, K2{u, v, w} = 0, K3{u, v, w} = k̂z, (3.2)
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46 3. SOIL-STRUCTURE INTERACTION

where k̂z is a constant which represents the magnitude of the stiffness in the radial
direction. A schematization of a shell supported in the radial direction by an elastic
foundation is shown in figure 3.1.

For the research models, the functions K1, K2 and K3 must now be chosen in
correspondence with the considered FEM model of the soil. To keep the analysis
of the shell similar to chapter 2, the functions K1, K2 and K3 represent uncoupled
elastic springs. As opposed to a set of uncoupled distributed springs, a three dimen-
sional FEM model is able to capture the non-local behaviour of the soil. 2 However,
a set of distributed springs can be tuned to approximate the reaction of the FEM
model due to a given displacement field. The procedure for this is as follows.

Let SMP be a surface within the FEM model. SMP is an open, vertical cylinder
with a radius a, which extends from the mudline to a depth L and has a centreline
which coincides with the vertical centreline of the FEM model. SMP represents
the geometry of the part of the monopile which is embedded in the soil. NMP is
the set of nodes in the FEM model which lie on SMP . Three distinct displacement
fields, given by Dx, Dθ and Dz, are imposed upon NMP and for each displacement
field the nodal reaction forces and moments are calculated for all nodes ∈ NMP .
The displacement fields Dx, Dθ and Dz consist solely of displacements which are
respectively axial, tangential and radial with respect to SMP . At the locations of
NMP , equivalent discrete spring stiffness constants can be determined as

k̃qij = F qi /u
q
j (3.3)

where k̃qij is the stiffness constant of an elastic spring, exerting a force Fi upon node
q ∈ NMP in direction i due to a displacement uj of q in direction j. The magnitude
of k̃qij will depend on the chosen displacement fields. Therefore, the displacement
fields should represent the behaviour of the monopile in the soil. The following two
sections describe the derivation of the characteristics of the elastic foundation based
on two types of the displacement fields.

3.2.2 The circumferential wavenumber method

As discussed in chapter 2, solutions to the shell equations can be found by decompos-
ing the loading and resulting deformations as a Fourier series of harmonic functions
along the cylinder’s circumference. The deformations of the shell are thus assumed

2Here non-local behaviour implies that a reaction force at a given location within the soil, due to an
enforced displacement field, depends on the entire displacement field, rather than solely the displacement
at the given location.
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Figure 3.2: A top view (left) and frontal view (right) of the displacement field D4z,
taken from the Ansys graphical user interface.

to be of the following form.

u(x, θ) =

∞∑
n=0

Un(x) cos(nθ)

v(x, θ) =

∞∑
n=0

Vn(x) sin(nθ)

w(x, θ) =

∞∑
n=0

Wn(x) cos(nθ)

(3.4a)

(3.4b)

(3.4c)

For each circumferential wavenumber n, the corresponding equations of motion can
be solved independently in order to find solutions for Un(x), Vn(x) and Wn(x). The
equivalent soil stiffness terms K1{u, v, w}, K2{u, v, w} and K3{u, v, w} will be de-
rived separately for each circumferential wavenumber n. For this purpose, the for-
mulations of the displacement fields, corresponding to circumferential wavenumber
n, are chosen as

Dnx = û cos(nθ),

Dnθ = v̂ sin(nθ),

Dnz = ŵ cos(nθ).

(3.5a)

(3.5b)

(3.5c)

Here θ describes the position along the circumference of SMP while û, v̂ and ŵ are
constants which denote the amplitudes of the displacement fields in respectively the
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Figure 3.3: A comparison of the normalized distribution of reaction forces in the FEM
model in the radial direction at x = xp, due to D4z, given by F q4z/F̂4z(xp) (×) and
cos(4θ) (−)

axial, tangential and radial direction. It is noted that the displacement of the nodes is
constant over the vertical direction and only varied along the circumference of SMP

in the FEM model. A representation of the radial displacement field D4z, acting on
NMP in the FEM model, is given in figure 3.2. Note that only displacements of the
nodes with a distance a from the centre point of the model are visualized.

Distribution of reaction forces over the circumferential direction
Due to all displacement fields it is found that, along the circumference of SMP , the
nodal reaction forces follow a harmonic distribution with the same circumferential
wavenumber as the displacement fields. In other words, due to a given displacement
field Dnj the reaction forces can be described by

F qnxj = F̂nxj(x) cos(nθ),

F qnθj = F̂nθj(x) sin(nθ),

F qnzj = F̂nzj(x) cos(nθ),

(3.6a)

(3.6b)

(3.6c)

where q denotes the number of a node. F̂nij(x) is the amplitude of the reaction
forces at x. The amplitudes F̂nij(x) are equal to the reaction force at the vertical
lines θ = 0 for i = x or i = z, and to the reaction force at θ = π

2 for i = θ. Note that
equation 3.6 still describes the discrete reaction forces at the individual nodes. An
example calculation of a normalized distribution of the nodal reaction forces over
the circumference of SMP is visualized in figure 3.3. The reaction forces in figure 3.3
act in the radial direction and are calculated at x = xp = −10 due to D4z.

Stiffness profiles in the vertical direction
While along the circumferential direction of SMP the distribution of the soils reac-
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3.2. DERIVATION OF AN EQUIVALENT ELASTIC SPRING STIFFNESS 49

tion forces can be formulated using harmonic functions, the profile along the verti-
cal direction of SMP is much more irregular. For the circumferential wavenumbers
n = 1 to n = 10 the soil’s (discrete) spring stiffness profiles are given in figure 3.4.
The stiffness profiles K̂nij are obtained by dividing the amplitudes of the reaction
forces F̂nij by the amplitudes of the displacement fields û, v̂ or ŵ. It can be noted
that these spring stiffness profiles equal the profiles for the reaction forces in [New-
ton] at the nodes on the lines θ = 0 or θ = π

2 due to displacement fields with unit
amplitude, i.e., using equation 3.5 with û = v̂ = ŵ = 1.

Interpretation of the obtained stiffness profiles
First, we distinguish between two types of stiffness profiles, defined as direct stiffness
profiles and coupled stiffness profiles. For i = x, θ and z, the profiles K̂nii, i.e.,
K̂nxx, K̂nθθ and K̂nzz, are referred to as direct stiffness profiles. These profiles
relate reaction forces in a direction i due to a displacement of the nodes in the same
direction. For i = x, θ and z, and j = x, θ and z, the profiles K̂nij , where i 6= j,
are referred to as coupled stiffness profiles. These profiles relate reaction forces in a
direction i due to a displacement in a different direction j.

It is observed that direct stiffness profiles (i) are of higher magnitude then the
indirect stiffness profiles, (ii) are always positive, (iii) indicate a similar vertical
position of stiff and soft soil layers, and (iv) increase in magnitude for increasing
n. If a node in the mesh is displaced in the direction i, it is not hard to imagine
that the reaction force in the direction i will be of a larger magnitude then the
reaction forces in the other two directions. While the reaction forces in the direction
of the displacement are directly related to the stress strain relations governing the
solid elements, the reaction forces in the other directions are introduced through
Poisson’s effect. For all soil layers the Poisson’s ratio is defined as 0.3 < ν < 0.5,
it is thus expected that the reaction forces in the same direction as the enforced
displacements are of the largest magnitude. It is also expected that these reaction
forces counteract the displacements, and therefore lead to positive values for the
stiffness profiles. The increase of the soil stiffness for increasing n can be explained
using the curvature of the displacement fields. A higher value for n will introduce
a higher rate of change of the curvature of the line that describes the displacement
field in the horizontal plane. This will lead to reaction forces of a higher magnitude
at the nodes in the FEM model.

The indirect stiffness profiles K̂nθz and K̂nzθ describe coupling between forces
and displacements in the horizontal plane. The characteristics for these profiles are
similar to the characteristics of the direct stiffness profiles. Additionally the stiff-
ness profiles prove to be symmetric, this is expected since the FEM model consists
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Figure 3.4: Plot of the discrete spring stiffness profiles for n = 1 to n = 10. The
values for the spring stiffness at the nodes are all plotted as black dots. Coloured lines
connect the dots corresponding to each value of n. The color of the lines representing
n=1 to n=10 can be observed from left to right in (a). In all figure’s the vertical
axis represents the position relative to the mudline in [m] and the horizontal axis
represents the spring stiffness at the node in [N/m].
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of linear solid elements. The profiles that describe the coupling between the vertical
and the horizontal plane are given by K̂nxθ, K̂nxz, K̂nθx and K̂nzx. These profiles
appear to be very irregular and contain both negative and positive values. The oc-
currence of both negative and positive values is to be expected. For example, due
to a displacement field which describes radial contraction of NMP , the nodes near
the upper layer of the model will be pulled downwards while the nodes positioned
around the bottom of SMP will be pulled upwards. This leads to a different sign
in the obtained stiffness for the nodes at the top and the bottom of the model. The
irregularity in the obtained stiffness profile may have a threefold of causes: (i) dif-
ferent soil layers which are present in the model, (ii) only nodes above a certain
depth in the model are displaced, and (iii) there is a difference in boundary con-
ditions at the top and bottom of the model, at the top the nodes are free to move
in any direction while at the bottom of the model the nodes are constrained. The
spikiness of the obtained stiffness profiles may be explained using the distance be-
tween the nodes in the vertical plane. It might be the case that a more refined mesh
would lead to a smooth stiffness profile. It is striking that the pair K̂nxθ and K̂nθx

as well as the pair K̂nxz and K̂nzx are not symmetric (or antisymmetric, depend-
ing on the definition of the global axis system). This may also be explained by the
distance between the nodes in the vertical direction. If the stiffness would consist
of a irregularly shaped, but smooth function with a high rate of change of curva-
ture, small numerical errors may have a big influence on the values obtained for the
reaction forces at the discrete nodes. Therefore, the discrete stiffness profiles may
appear to be non-symmetrical. Due to time constraints on this research, no further
investigation was performed on the derived stiffness profiles. It was concluded that,
while some of the indirect stiffness profiles are probably derived incorrect, they are
still usable for the remainder of this study. It should be noted that in all calculations
with the circumferential wavenumber method, 38 nodes were used in the vertical
direction of SMP while 200 nodes were used over the circumference of SMP . The
high resolution along the circumference of SMP was chosen in order to accurately
represent the harmonic functions that describe the displacement fields. In hindsight
it might have been a better choice to redistribute the density of the nodes more
equally over both the vertical direction and the horizontal plane.

The stiffness profiles derived using a wavenumber of n = 0 show similar prop-
erties to the ones presented in figure 3.4, the direct profiles appear regular with an
indication of the soft and stiff soil layers. Only two indirect profiles exist. The profiles
describe the coupling between the vertical and radial direction. Similar irregularities
to those in the indirect profiles for higher numbers of n are noticeable. Similar to the
relations governing the behaviour of circular cylindrical shells for n = 0, the tangen-
tial direction is uncoupled from the other directions due to symmetry. Because the
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Figure 3.5: Plot of the discrete spring stiffness profiles for n = 0. The values for the
spring stiffness at the nodes are all plotted as black dots, which are connected by a
light blue line. In all figure’s the vertical axis represents the position relative to the
mudline in [m] and the horizontal axis represents the spring stiffness at the node in
[N/m].

obtained stiffness profiles for n = 0 are of different shape and/or magnitude com-
pared to the profiles obtained for n > 0, they are presented separately in figure 3.5.

Formulation of the total stiffness distribution
In order to keep analysis of the shell on the equivalent elastic foundation similar to
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the methods presented in chapter 2, some assumptions are made. It is assumed that
between any two successive nodes on any vertical line in SMP , the stiffness of the
elastic foundation is constant. The shell is hereby divided into 37 segments in the
vertical direction. Since (i) both the reaction forces and the displacement fields are
described by harmonic functions with the same wavenumber over the circumference
of SMP , and (ii) the stiffness distributions are constant for each shell segment, the
terms corresponding to the elastic foundation in equations 3.1 can, for each individ-
ual segment, be written asK

(s)
1 {u, v, w}

K
(s)
2 {u, v, w}

K
(s)
3 {u, v, w}

 =


k

(s)
nxx k

(s)
nxθ

1

n

∂

∂θ
k

(s)
nxz

−k(s)
nθx

1

n

∂

∂θ
k

(s)
nθθ −k(s)

nθz

1

n

∂

∂θ

k
(s)
nzx k

(s)
nzθ

1

n

∂

∂θ
k

(s)
nzz


u(s)(x, θ)
v(s)(x, θ)
w(s)(x, θ)

 ,
(3.7)

where (s) denotes the segment. In equation 3.7 the derivatives with respect to θ are
introduced to ensure that all terms have the proper distribution in the circumferen-
tial direction. Analysis of the segmented shell is discussed in detail in chapter 4. The
values for the stiffness constants, given by k(s)

nij for i = x, θ, z and j = x, θ, z are
derived using the discrete stiffness profiles over the vertical direction, as shown in
figure 3.4 in combination with equation 3.6. The stiffness of the discrete springs is
distributed over the surface of SMP assuming a constant distribution in the vertical
direction and a harmonic distribution in the circumferential direction. A detailed
overview of the steps involved is given in appendix A.

3.2.3 The mode shape method

Another possibility is to derive an equivalent soil stiffness according to the modal
behaviour of the wind turbine. Since the first eigenmode of the wind turbine is
the most design driving, an attempt was made to determine an equivalent soil stiff-
ness distribution which approximates the reaction of the soil due to displacement
of the monopile according to this first eigenmode. In order to determine the first
eigenmode, an augmented FEM model was developed which included a mesh of the
monopile and tower using shell elements. In this model the nodes of the soil were
fixed to the monopile and the effect of the RNA on the modal behaviour of the wind
turbine was taken into account by applying a point mass and rotary inertia to the
top of the tower. The extended model is shown in figure 3.6a.

The nodal displacements corresponding to the first eigenmode are obtained through
an eigenvalue analysis. An impression of the first modeshape is given in figure 3.6b.
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(a) Impression of the extended model. (b) Impression of the first mode shape.

Figure 3.6: Impression of the extended model and the first mode shape.

The obtained displacements are decomposed into three displacement fields which
contain the axial, tangential and radial displacement of the nodes with respect to
the monopile’s surface. Due to each of the three displacement fields, reaction forces
on the nodes in the continuum model are obtained in the axial, tangential and ra-
dial direction with respect to the surface SMP . The stiffness profiles were derived
following the same procedure as in section 3.2.2. As can be seen in figure 3.7, a
singularity effect is found at a distance of -20 m relative to the mudline. This effect
is due to the division of nodal reaction forces by small nodal displacements. Direct
implementation of the stiffness with the non-physical singularity effects in the re-
search model will lead to local disturbances of the deformation of the shell wall,
most notable in the radial direction. It is therefore desirable to circumvent these
mathematical anomalies. For this purpose, several methods are available. The first
method involves curve fitting in order to derive an equivalent stiffness profile, which
may be defined using a higher order polynomial function. An application of this
method to derive a stiffness profile for an Euler-Bernoulli beam is shown in [21].
The implementation of a comparable method for a shell problem is considered to be
too demanding from a computational point of view. Much more unknowns will be
present in the derivation and the calculations necessary to solve these unknowns are
computationally more expensive. In a different method, the area directly surround-
ing the singularity effects could be neglected altogether. An equivalent stiffness in
the neglected region can then, for example, be approximated using interpolation.

CONFIDENTIAL



3.2. DERIVATION OF AN EQUIVALENT ELASTIC SPRING STIFFNESS 55

×107
-1 0 1 2

-40

-30

-20

-10

0

(a) K1zz

-0.5 0 0.5 1
-40

-30

-20

-10

0

(b) W1(x)

Figure 3.7: (a) Plot of the discrete spring stiffness profile K1zz, derived using the
mode shape method. The values for the spring stiffness at the nodes are all plotted as
black dots, which are connected by a light blue line. The vertical axis represents the
position relative to the mudline in [m] and the horizontal axis represents the spring
stiffness at the node in [N/m]. (b) The radial deformations according to the first
eigenmode of the wind turbine. The vertical axis represents the position relative to the
mudline in [m] and the horizontal axis represents the normalized deformation shape
in [m].
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The circumferential wavenumber
method

The mode shape method

No knowledge of the mode shapes re-
quired

Capture non-local effects of the soil
Calculate only once per circumferential
wavenumber
No singularity effects in the stiffness
profiles

Table 3.1: Comparison of the positive aspects governing the circumferential
wavenumber method and the mode shape method.

3.2.4 Discussion on the circumferential wavenumber method and
the mode shape method

In the previous sections, two distinct methods were discussed which can be used
to obtain an equivalent elastic foundation from the FEM model. While the mode
shape method will arguably lead to the best approximation of the equivalent elastic
foundation, it also has negative aspects. While the mode shape method is able to
capture the non-local behaviour of the soil, it also requires the knowledge of the
mode shapes beforehand. Additionally, the non-local effects are only taken into ac-
count if the resulting displacements from the continuous shell are the same as, or
at least similar to, the displacements used to calculate the equivalent elastic founda-
tion. This may lead to a large number of calculations that need to be performed in
the augmented FEM model. Additionally, undesirable mathematical anomalies will
occur in the obtained stiffness curves in the region where the displacement fields
approach zero. On the contrary, the circumferential wave number method does not
come with these negative aspects. The only negative aspect governing the circum-
ferential wavenumber method is that the non-local effects of the soil are only partly
taken into account. A short overview of the positive and negative aspects governing
the circumferential wavenumber method and the mode shape method is presented
in tables 3.1 and 3.2. The calculations regarding soil-structure interaction for the
remainder of this study will follow the circumferential wavenumber method. The
application of this method in the research models is elaborated upon in section 3.3.
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The circumferential wavenumber
method

The mode shape method

Capture non-local effect partially

Requires knowledge of the mode
shapes
Needs to be calculated for each mode
Singularity effects in the in the stiffness
profiles

Table 3.2: Comparison of the negative aspects governing the circumferential
wavenumber method and the modal method.

3.3 Application in the research models: deriving the
elastic foundation’s characteristics

3.3.1 Overview

A schematic overview of the steps that are taken in order to account for soil-structure
interaction in this study is presented in figure 3.8. Using the circumferential wavenum-
ber method, displacement fields are enforced on a set of nodes within the FEM model
of the soil. The set of nodes is chosen in correspondence with the monopile under
consideration. Through 3 static calculations per n, the nodal reaction forces on the
nodes are obtained. At the nodes, equivalent discrete spring stiffness values are ob-
tained by division of the nodal reaction forces through the enforced displacements.
The discrete equivalent springs are transformed to a distributed elastic foundation,
which is applied to the continuous shell model of the monopile. Based on figure 3.2
a harmonic distribution with wavenumber n over the monopile’s circumference is
assumed. The monopile within the soil is partitioned in 36 segments in the vertical
direction. Each segment is assigned a constant stiffness distribution over the vertical
direction, which is based on the stiffness profiles obtained in section 3.2.2. For each
shell segment, the terms representing the derived equivalent elastic foundation are
given by equation 3.7. In order to obtain the stiffness distributions for the Timo-
shenko beam model, the stiffness distributions corresponding to n = 1 for the shell
model are integrated over the circumference of the monopile. It should hereby be
noted that the stiffness distribution K1xx will be translated to a stiffness working on
the rotational degree of freedom of the Timoshenko beam mode while distributions
K1θθ and K1zz are translated to a stiffness working on the deflection of the Timo-
shenko beam. The indirect stiffness profiles are translated accordingly. The elastic
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foundation can enter the equations of motion governing the Timoshenko beam as

ρA
∂2w

∂t2
+ c

∂w

∂t
+

∂

∂x

[
κAG

(
∂w

∂x
− φ

)]
+K1{w, φ} = q,

ρI
∂2φ

∂t2
− EI ∂

∂x

(
∂φ

∂x

)
− κAG

(
∂w

∂x
− φ

)
+K2{w, φ} = 0,

(3.8a)

(3.8b)

where for each segment (s)[
K

(s)
1 {w, φ}

K
(s)
2 {w, φ}

]
=

[
k

(s)
qw k

(s)
qφ

k
(s)
pw k

(s)
pφ

][
w(s)(x)
φ(s)(x)

]
, (3.9)

with
k(s)
qw = πa

(
k

(s)
θθ + k(s)

zz − k
(s)
θz − k

(s)
zθ

)
,

k
(s)
qφ = πa2

(
k

(s)
θx − k

(s)
zx

)
,

k(s)
pw = πa2

(
k

(s)
xθ − k

(s)
xz

)
,

k
(s)
pφ = πa3k(s)

xx .

(3.10a)

(3.10b)

(3.10c)

(3.10d)

In equations 3.10 a different notation for the subscripts was chosen in order to avoid
confusion with the stiffness distributions governing the shell equations.

3.3.2 Comparison with the FEM model

For the region within the soil we can mimic the displacements corresponding to
the first modeshape of the complete wind turbine using a static analysis. For this
purpose, the FEM model of the soil is augmented with the part of the monopile
below the mudline. At the mudline, a static lateral load and a static overturning
moment are applied to the monopile. It was found that a ratio of force to moment
equal to 1:200 gives the best approximation of the first modeshape for the monopile
under consideration in this study. It was also found that, using a ratio of 1:200 in
the static analysis, the resulting deformation shape of the monopile is dominated by
the overturning moment.

As a verification of the obtained stiffness profile by means of the circumferential
wavenumber method, a comparison is made with the FEM model. For this purpose,
a static analysis is performed which compares the response of the augmented FEM
model to the response of the continuous shell and beam model on the elastic founda-
tions for two load cases. For the first and second load case respectively, the monopile

CONFIDENTIAL



3.3. APPLICATION IN THE RESEARCH MODELS: DERIVING THE ELASTIC
FOUNDATION’S CHARACTERISTICS 59
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Figure 3.8: Flowchart for the calculation of the elastic foundations for the case study.
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is subject to a lateral load of 1 MN and an overturning moment of 1 MNm , which
are both applied at the mudline. The resulting deformation shapes of the monopile
are shown in figures 3.9 and 3.10. It is observed that the curves that represent
the continuous model do not match the curves predicted by the FEM model. Good
agreement is found between the continuous shell and beam model, which is to be
expected based on the formulation of the stiffness profile and observations made in
chapter 2.

Based on previous reasoning it is believed that the continuous shell and beam
model will be able to represent the first bending mode of the wind turbine in a
matter that is sufficient for the further calculations in this study. While it is obvious
that a true equivalent elastic foundation was not derived, it is believed that the soil-
structure interaction is still taken into account in a manner which is good enough
for the remainder of this study. While not further investigated, it can be argued that
the response of the continuous shell model better approximates the behaviour of the
augmented FEM model for higher values of n. For n = 1 the monopile laterally
deforms within the soil, which leads to significant non-local effects in the vertical
direction. As for higher values of n, the deformations of the shell are symmetrical in
various planes. Therefore, the non-local effects over the vertical direction for n > 1
are expected to be of less importance with respect to those corresponding to n = 1.
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Figure 3.9: Comparing the monopile’s response predicted by the continuous shell
model and the FEM model due to a lateral load and an overturning moment at the
mudline. The x-coordinate is defined from the bottom of the monopile, at x = 0, until
the mudline, at x = 36.5. U , V and W represent the axial distributions of the shell
deformations.
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Figure 3.10: Comparing the monopile’s response predicted by the continuous Tim-
oshenko beam model and the FEM model due to a shear force and an overturning
moment at the mudline. The x-coordinate is defined from the bottom of the monopile,
at x = 0, until the mudline, at x = 36.5. U and V represent the axial distributions of
the shell deformations while w and φ represent the deformations of the beam.
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Chapter 4

Analysis by superelements

In this chapter two strategies are presented to describe the mechanics of the monopile
support structure using solely continuous and homogeneous beam or cylindrical shell
segments. The first strategy involves the coupling of various segments, in order to ac-
commodate for inhomogeneities in the vertical direction, by using interface conditions.
The second strategy involves a transformation of the entire model of the monopile into
a single superelement. The superelement is expressed in terms of a set of generalized
coordinates, which are derived according to the Craig-Bampton substructuring method.
The application of the two strategies to the research models of the monopile is also
discussed.

4.1 Introduction

In a superelement analysis of a structure, said structure is divided into a set of su-
perelements which each represent a different part of the structure. In literature, sev-
eral terms are used to refer to these superelements such as components, segments,
sections or substructures, depending on the nature of the structure, the selection of
the parts and the method of analysis. A location where two or more parts of the total
structure are connected to one another is referred to as an interface. This chapter
will cover two methods that are based on the superelement concept. In section 4.2
a method is discussed that can be used to simplify the partial differential equations
describing a continuous system. The simplification is obtained by analysing the sys-
tem as a set of interconnected parts, which will be referred to as segments. The
behaviour of each individual segment can be expressed by the general solution to
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S(1)

S(2)

S(3)

Figure 4.1: A cylinder consisting of three superelements modelled with shell theory
(left) and beam theory (right).

the partial differential equations describing only the segment. The general solu-
tions for all of the interconnected segments can then be coupled through boundary
and interface conditions in order to describe the behaviour of the total system. In
sections 4.3 and 4.4, model reduction and substructuring for dynamic systems is dis-
cussed. The term substructuring is used here as a collective term for methods that
express the equations of motion of a structure in terms of generalized coordinates
and make use of a set of constraint equations to describe the connection between the
substructures. These substructures can be seen as superelements. Section 4.5 will
discuss the application of the various superelement methods to the research models.

4.2 Coupling of continuous shell and beam segments

Division of a large and complex structure into a set of superelements can be used to
simplify the systems of equations describing the structure’s behaviour. This division
can for example be applied to a beam which consists of several segments, where
each segment has unique material properties. Using this method, calculation of the
response of a non-homogeneous circular cylindrical shell or beam remains straight
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forward and in accordance with chapter 2. Similarly, this method can be used to add
ring stiffeners between two cylindrical shell sections or to couple a cylindrical shell
element to a shell element with a different type of geometry, such as a conical or
spherical section [23, 24].

In this section it is shown how a model of a cylinder can be divided into a set of
segments in the axial direction. When using a beam theory, the interface is defined
as a point along the axial coordinate xi. When using a circular cylindrical shell
theory, the interface is also defined at an axial coordinate xi, division along the
circumferential coordinate is not required. At the interface, each segment will be a
circular cylindrical shell, connected trough a circular line [13]. Once the division
into segments is made, the behaviour of the entire cylinder can be described with
a piecewise function. For a cylinder with outer boundaries x1 and x4, consisting of
three segments S(1), S(2) and S(3), where segments S(1) and S(2) are connected to
each other at interface x2 and where S(2) and S(3) are connected with each other at
interface x3, the response φ(x, θ) of the cylinder is described by

φ(x, θ) =


φ(1)(x, θ) if x1 ≤ x ≤ x2,

φ(2)(x, θ) if x2 ≤ x ≤ x3,

φ(3)(x, θ) if x3 ≤ x ≤ x4,

(4.1)

where x1 < x2 < x3 < x4 and the response of segment S(i) is described with
φ(i)(x, θ). The general form of the functions for the segments φ(i)(x, θ) can be solved
individually from their governing differential equations. The integration constants
governing the functions for all segments can be solved trough boundary and in-
terface conditions. Using beam theory, two boundary conditions are used at each
end of the cylinder and 4 interface conditions are used at each interface. For two
Timoshenko beam segments S(i) and S(i+1) connected at xi + 1 with no additional
interface physics, continuity is enforced using the following relations

wi = wi+1 at x = xi+1,

φi = φi+1 at x = xi+1,

V i = V i+1 at x = xi+1,

M i = M i+1 at x = xi+1.

For two circular cylindrical shell elements the continuity conditions at the interface
would be given by
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

ui = ui+1 at x = xi+1,

vi = vi+1 at x = xi+1,

wi = wi+1 at x = xi+1,

φi = φi+1 at x = xi+1,

M i
xx = M i+1

xx at x = xi+1,

N i
xx = N i+1

xx at x = xi+1,

T ix = T i+1
x at x = xi+1,

Six = Si+1
x at x = xi+1.

The boundary condition matrix R will be of the following form

R =



B
(1)
t · · · · ·
I

(1)
b I

(2)
t · · · ·

· I
(2)
b I

(3)
t · · ·

· ·
. . .

. . . · ·
· · · I

(N−2)
b I

(N−1)
t ·

· · · · I
(N−1)
b I

(N)
t

· · · · · B
(N)
b


, (4.2)

where B and I are block matrices that represent boundary and interface conditions
respectively. The subscripts b and t denote the top and bottom of the segments. The
B matrices are of size k × l while the I matrices are of size 2k × l. When using a
beam theory, k = 2 and l = 4. When using a shell theory, k = 4 and l = 8.

4.3 Model reduction methods for discrete systems

To represent a structure with a discrete model, often a high spatial resolution is
desired in order to analyse the structure’s deformation behaviour and stress distri-
butions in high detail. However, a high spatial resolution also comes with a high
computational cost, as it requires a many degrees of freedom. Especially in dy-
namic time simulations of detailed finite element models, computational costs can
become unacceptable. Fortunately, procedures to reduce a system’s number of de-
grees of freedom without altering the spatial resolution are available, these methods
are known as model reduction methods. A model reduction method makes use of
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the following representation:

u = Rq̃. (4.3)

Where u is a vector containing the original degrees of freedom, R is the reduction
basis matrix, describes the transformation to the system’s generalized coordinates.
The vector q̃ represents the amplitudes of these generalized coordinates. Reduction
of the system can be obtained by selection of a set of generalized coordinates which
is much smaller then the number of original degrees of freedom. If the system’s
eigenmodes are chosen as generalized coordinates, then the columns of R contain
the deformation shapes of the eigenmodes and q̃ contains the amplitudes of these
eigenmodes. This would be equivalent to the modal expansion technique as dis-
cussed in section 2.5, but now applied to discrete systems.

When applying the reduction method, the equation of motion governing a dis-
crete dynamic system can be transformed from

Mü+Cu̇+Ku = p, (4.4)

into

M̃ ¨̃q + C̃ ˙̃q + K̃q̃ = p̃, (4.5)

where M , C and K are the system’s mass, damping and stiffness matrices respec-
tively and p denotes the dynamic external load vector. The reduced matrices M̃ , C̃
and K̃ and reduced load vector p̃ are given by

M̃ = RTMR

C̃ = RTCR

K̃ = RTKR

p̃ = RTp

(4.6a)

(4.6b)

(4.6c)

(4.6d)

where AT denotes the transpose of a given matrix A. Note that when using this
method, while a high spatial resolution is maintained, only an approximate solution
is found as the systems motion is limited to the set of generalized coordinates. In
the following section it is shown how the model reduction principle is applied in the
Craig-Bampton substructure method.
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(a) Static constraint mode (b) Fixed interface vibration mode

Figure 4.2: A Static constraint mode (a) and a fixed interface vibration mode (b) of a
substructure as used in the Craig-Bampton method.

4.4 The Craig-Bampton substructuring method

4.4.1 Formulation of the reduction basis

Substructuring has found application in the offshore wind industry as it provides a
way to analyse complex support structures, such as jackets, in a computationally ef-
fective way during time domain simulations [25]. The Graig-Bampton method [26]
is a substructuring method that expresses the behaviour of a structure in terms of
structural modes. The method is often used in combination with finite element mod-
els since it reduces the degrees of freedom of the model to the number of modes
taken into consideration. Two types of structural modes are used in the Craig-
Bampton method, these are referred to as static constraint modes and fixed interface
vibration modes. The two types of modes are visualized in figure 4.2.

Static constraint modes are obtained by enforcing a unit displacement of a single
boundary degree of freedom while keeping all other boundary degrees of freedom
constrained. The set of static constraint modes includes a mode for each boundary
degree of freedom. Fixed interface vibration modes are eigenmodes of the structure
determined with all boundary degrees of freedom constrained. The set of fixed
interface vibration modes is given by N eigenmodes, where N is the number of
modes taken into consideration. The Craig-Bampton method can be seen as an
extension of the Guyan-Irons method [27, 28] with the method of modal expansion.
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Consider a system as described by equation 4.4. The system is partitioned into
internal and boundary degrees of freedom which are denoted with subscripts i and
b respectively.[

M bb M bi

M ib M ii

][
üb

üi

]
+

[
Cbb Cbi

Cib Cii

][
u̇b

u̇i

]
+

[
Kbb Kbi

Kib Kii

][
ub

ui

]
=

[
f b

f i

]
(4.7)

The internal degrees of freedom of the system are approximated as follows using the
Craig-Bampton method

ui ≈ Ψcub + Φiηi, (4.8)

while the boundary degrees of freedom remain present in the reduced system. The
previous approximation leads to the following reduction basis[

ub

ui

]
≈

[
I 0

Ψc Φi

][
ub

ηi

]
= RCB q̃ (4.9)

where ui and ub are the internal and boundary degrees of freedom of the system
respectively, Ψc and Φi are the sets of static constraint modes and fixed interface
vibration modes respectively, RBC is the Craig-Bampton reduction matrix and q̃ is
the set of unknowns of the reduced system. The original system, as described by
equation 4.4, can be transformed into a reduced system using equation 4.5 and 4.6
with substitution of RCB as the reduction matrix R.

4.4.2 Assembly of substructures

Similar to the assembly of segments in section 4.2, substructures can also be assem-
bled to each other at their interfaces. This is done by enforcing continuity at each
interface degree of freedom. A system consisting of multiple substructures can be
assembled using a procedure taken from [29]. The equations of motion of a sub-
structure s may be written as

M (s)ü+C(s)u̇+K(s)u = f (s) + g(s). (4.10)

In this equation M (s), C(s) and K(s) denote the substructure’s mass, damping and
stiffness matrices respectively, f (s) is the external force vector and g(s) is the vector
of connecting forces with the other substructures. The equations of motion of k
substructures that are to be coupled, can be written in a block-diagonal format as

Mü+Cu̇+Ku = f + g (4.11)

where
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M , diag
(
M (1), ...,M (k)

)
=


M (1) · ·

·
. . . ·

· · M (k)

 ,
C , diag

(
C(1), ...,C(k)

)
, K , diag

(
K(1), ...,K(k)

)

u ,


u(1)

...

u(k)

 , f ,


f (1)

...

f (k)

 , g ,


g(1)

...

g(k)

 .
Continuity is now enforced through the compatibility and equilibrium conditions.
The compatibility condition is expressed as

Bu = 0 (4.12)

where B is a signed Boolean matrix which operates on the interface degrees of free-
dom. The compatibility condition states that any pair of matching interface degrees
of freedom u(k) and u(l) must have the same displacement, i.e., u(k) − u(l) = 0. The
equilibrium condition is enforced by

LTg = 0 (4.13)

where L is the Boolean matrix localizing the interface degrees of freedom of the
substructures in the global dual set of degrees of freedom. The equilibrium condi-
tion states that the resultant of the pair of dual connection forces acting on a pair
of matching interface degrees of freedom must equal zero. Note that if model re-
duction is applied to a substructure, the reduced formulation for the mass, stiffness
and damping matrices as well as the degrees of freedom can be substituted in the
relations presented in this section.

4.5 Application in the research models: modelling the
monopile

4.5.1 Overview

A schematic overview of the application of steps related to superelement modelling
in the research model is presented in figure 4.3. First, two structural models of the
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Figure 4.3: Flowchart for the application of superelement modelling for the research
models.
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monopile are developed using Timoshenko’s beam theory and Flügge’s circular cylin-
drical shell theory, as described in chapter 2. The elastic foundation, as derived in
chapter 3 is included by dividing the monopile in 37 segments in the axial direction
according to section 4.2. The 36 lowest segments represent the part of the monopile
embedded within the soil while the top segment represents the part of the monopile
from the mudline to the interface level. The monopile support structure will act
as a single substructure. Using the Craig-Bampton method, the monopile will be
transformed into a superelement which is connected to the tower at the interface
level. This superelement can then be coupled to Siemens’ BHawC in order to run
time-domain simulations of the foundation coupled to the tower and RNA.

The motion of the monopile in a three-dimensional coordinate system is de-
scribed by 6 degrees of freedom. Similar to the classical application of the Craig-
Bampton analysis, these degrees of freedom are contained in a column vector u,
which now consists of functions of x, θ and t as

ushell =


ua(x, θ, t)
va(x, θ, t)
wa(x, θ, t)
ub(x, θ, t)
vb(x, θ, t)
wb(x, θ, t)

 , ubeam =


wa(x, t)
φa(x, t)
wb(x, t)
φb(x, t)
Λ(x, t)
Θ(x, t)

 , (4.14)

where for the displacements of the shell and beam model, the notation as in chap-
ter 2 is used. Λ and Θ denote the vertical and torsional motion in the Timoshenko
beam model.1 The subscripts a and b denote the orientation of the shell and beam
model with respect to the axis system as presented in figure 4.4. Subscript a denotes
that the positive lateral deflection of the monopile is defined in the q̂x direction,
while subscript b denotes a positive lateral deflection in the q̂y direction.

4.5.2 Formulation of the reduction basis

The boundary degrees of freedom will be described by six static constraint modes,
corresponding to deflections in the directions q̂x to q̂αz. The internal degrees of free-
dom are represented by N ×M fixed interface vibration modes. Here M represents
the axial order of the modes and N the circumferential order. For this study it is ex-
pected that M = 16 is sufficient to describe the dynamic behaviour of the monopile

1In the equations governing the Timoshenko beam, as presented in chapter 2, axial and torsional
deformations are not taken into account. Λ and Θ represent dummy variables that describe the motion
of the monopile in the vertical and torsional direction. In actual calculations, the shell equations were
used to determine the torsional and axial behaviour of the monopile in both models.
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Figure 4.4: The boundary degrees of freedom visualized for the shell (left) and beam
(right) model.

in the research models. For the beam model N can only be chosen as 1, while for the
shell model N is chosen as 4. To clarify, the first 16 fixed interface vibration modes
are taken into consideration for the beam model. For the shell model, the first 16
modes are used for n =1, 2, 3 and 4, resulting in 64 modes. Combination of the
fixed interface vibration modes with the static constraint modes and accounting for
the orientations of the monopile, given by a and b, leads to the reduced system. This
system has 38 degrees of freedom using the beam model and has 134 degrees of
freedom using the shell model. The reduction basis matrices R are then formulated
as

R =
[
RG RE

]
(4.15)

where for the shell model, the static constraint modes are partitioned as

RG,shell =


uqx(x, θ) 0 uz(x, θ) 0 uqαy (x, θ) uαz(x, θ)
vqx(x, θ) 0 0 0 vqαy (x, θ) vαz(x, θ)
wqx(x, θ) 0 wz(x, θ) 0 wqαy (x, θ) wαz(x, θ)

0 uqy (x, θ) 0 uqαx(x, θ) 0 0
0 vqy (x, θ) 0 vqαx(x, θ) 0 0
0 wqy (x, θ) 0 wqαx(x, θ) 0 0


(4.16)
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where for i = x, y, z, αx, αy and αz, the functions uqi , vqi and wqi represent
the displacement fields of the monopile, due to a unit displacement enforced in
the direction q̂i at interface level, while displacements in all other directions are
constrained at the interface. The fixed interface vibration modes are included using

RE,shell =

[
RE1 RE2 RE3 RE4 0 0 0 0

0 0 0 0 RE1 RE2 RE3 RE4

]
(4.17)

where for circumferential wavenumber n = 1, 2, 3 and 4

REn =

un1(x, θ) . . . unM (x, θ)
vn1(x, θ) . . . vnM (x, θ)
wn1(x, θ) . . . wnM (x, θ)

 . (4.18)

For the beam model, similar relations are used.

RG,beam =


wqx(x) 0 0 0 wqαy (x) 0
φqx(x) 0 0 0 φqαy (x) 0

0 wqy (x) 0 wqαx(x) 0 0
0 φqy (x) 0 φqαx(x) 0 0
0 0 Λ(x) 0 0 0
0 0 0 0 0 Φ(x)

 (4.19)

RE,beam =

[
RE 0
0 RE

]
(4.20)

RE =

[
w1(x, θ) . . . wM (x, θ)
φ1(x, θ) . . . φM (x, θ)

]
(4.21)

4.5.3 Formulation of the reduced system

Once the reduction basis is defined, the reduced system can be derived. The mass
and stiffness matrices of the original systems are given by

M beam =


ρA 0 0 0
0 ρI 0 0
0 0 ρA 0
0 0 0 ρI

 , (4.22)

M shell = ρhI6, (4.23)
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where I6 is the 6× 6 identity matrix, and

Kbeam =



κAG
∂2

∂x2
−κAG ∂

∂x
0 0

−κAG ∂

∂x
−EI ∂

2

∂x2
+ κAG 0 0

0 0 κAG
∂2

∂x2
−κAG ∂

∂x

0 0 −κAG ∂

∂x
−EI ∂

2

∂x2
+ κAG


, (4.24)

Kshell = −


L11 L12 L13 0 0 0
L21 L22 L23 0 0 0
L31 L32 L33 0 0 0
0 0 0 L11 L12 L13

0 0 0 L21 L22 L23

0 0 0 L31 L32 L33

 . (4.25)

Since we are now dealing with a continuous system, the relations presented in sec-
tion 4.3 and 4.4 are not sufficient. In accordance with section 2.5 and [30, 31], the
reduced mass and stiffness matrices can be obtained by

M̃ =

∫ L

0

∫ 2π

0

RTMRdxdθ =

[
MGG MGE

MEG MEE

]
(4.26)

and

K̃ =

∫ L

0

∫ 2π

0

RTKRdxdθ =

[
KGG KGE

KGE KEE

]
. (4.27)

The matrices are partitioned in four blocks, denoted with subscripts G and E. MGG

and KGG contain the contribution of the static constraint modes, these matrices
equal the matrices obtained by the Guyan-Irons reduction method and are of size
6×6. MEE and KEE contain the contribution of the fixed interface vibration modes,
these matrices equal the matrices as obtained through a classical modal expansion,
which is discussed in section 2.5. These matrices are of size NM ×NM . Subscripts
GE and EG denote the coupling between the two sets of modes. The matrices
denoted with GE are of size 6 × NM . The matrices denoted with EG are the
transpose of the matrices denoted with GE and are thus of size NM × 6.

Since the mass matrix of the original system contains only constants, calculation
of the matrix governing the reduced system is straight forward. The stiffness matrix
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however, contains partial differential operators which lead to more complex com-
putations. It is therefore worthwhile to rewrite the equations in a simpler manner.
During the derivation of the static constraint modes it can be shown that

KRG = δ(x− L)FG (4.28)

where δ is the Dirac delta function. FG represents the edge loading, which can enter
through the boundary conditions, that results in the static constrain modes. Using
equation 4.28 it can be stated that

KGG =

∫ L

0

∫ 2π

0

RT
GKRGdxdθ =

∫ L

0

∫ 2π

0

RT
Gδ(x−L)FGdxdθ =

∫ 2π

0

(
RT
GFG

)
x=L

dθ

(4.29)
The fixed interface vibration modes are orthogonal on the stiffness matrix and thus
both KGE and KEG are zero matrices.

KEG =

∫ L

0

∫ 2π

0

RT
EKRGdxdθ = 0 (4.30)

KGE =

∫ L

0

∫ 2π

0

RT
GKREdxdθ = 0 (4.31)

Equation 4.30 is true due to equation 4.28. It can be argued that, due to symmetry,
KGE is also zero. Alternatively, this is shown by rewriting equation 4.28 as

RG = K−1δ(x− L)FG, (4.32)

therefore,

KGE =

∫ L

0

∫ 2π

0

δ(x− L)F TG

(
K−1

)T
KREdxdθ, (4.33)

which, since K is symmetric, equals

KGE =

∫ L

0

∫ 2π

0

δ(x− L)F TEREdxdθ = 0. (4.34)

Equations 4.34 and 4.30 equal zero since the normal modes are constrained at x =
L. MGE and MEG are not zero matrices due to the presence of both static constraint
modes and fixed interface vibration modes. It is additionally worthwhile to note
that, if the fixed interface vibration modes are normalized on the original system’s
mass matrix, then

MEE = I, (4.35)
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Figure 4.5: In the left figure, the static response of the reduced system and original
beam model due to a static lateral load are visualised. In the right figure, the dynamic
undamped response to a harmonic lateral loading of the reduced system is visualized,
the eigenfrequencies of the original system are shown for comparison.

where I is the identity matrix and

KEE = ω◦2n MEE (4.36)

where ω◦2n denotes the Hadamard, or piecewise, square of vector ωn.
The static and dynamic response of the undamped reduced system is compared

with the original system. This is done for both the shell and the beam model, which
yields comparable results. The comparison for the beam model can be observed
in figure 4.5. The static response of the reduced systems due to loading at the
interface shows an exact match with the original system up to calculation precision,
this is expected based on the reduced system’s formulation. The eigenfrequencies
of the original system show a minor deviation from resonance frequencies of the
undamped reduced system. The maximum deviation for the first 6 eigenfrequencies
was found to be~0.5%. A small deviation in the reduced system’s eigenfrequencies
is to be expected as only a limited number of modes are taken into consideration,
this is found to be acceptable for further calculations.

The reduced systems damping matrix is determined directly from the reduced

CONFIDENTIAL



78 4. ANALYSIS BY SUPERELEMENTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

2

4

6
·10−2

Frequency [Hz]

ξ

Figure 4.6: Damping ratio as a function of frequency.

mass and stiffness matrices, assuming Rayleigh damping. Therefore,

C̃ = αM̃ + βK̃ (4.37)

where α and β are tunable parameters. As a function of frequency, the damping on
the monopile in the research models is defined as in figure 4.6, where ξ is the ratio of
the system’s damping relative to the critical damping. Wave loading is incorporated
as

p̃ =

∫ L

0

∫ 2π

0

RTpxdθ, (4.38)

where p is determined as in chapter 5.
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Chapter 5

Environmental loading

In this chapter the relevant theoretical background of environmental load analysis on
offshore wind turbine support structures is provided. Furthermore, the implementation
of the environmental loading within the research models is outlined. In this study
two types of environmental loads are considered: water wave loads and wind loads,
which are determined using diffraction theory and blade element momentum theory,
respectively.

5.1 Theoretical background of wave loading

5.1.1 Introduction

This section provides the theoretical framework of ocean waves and their action on
offshore monopile support structures. Waves cause time-varying loading on offshore
structures. The assessment of wave action is essential in the determination of the
lifetime loading on an offshore wind turbine. The energy distribution over frequency
and period of ocean water waves originating from various sources is shown in fig-
ure 5.1. In order to determine the lifetime loading on an offshore wind turbine,
waves generated by the interaction between the wind and the free water surface
are most important [32]. These types of waves are, in short, referred to as wind
waves. Wind waves are important because a high amount of energy is present in the
frequency range between 0.1-1 Hz, which typically coincides with the first eigen-
frequency of an offshore wind turbine. Wind waves can be further classified in the
following manner. Waves with periods longer then 1/4 s are dominated by gravity
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Figure 1.1 Frequencies and periods of the vertical motions of the ocean surface (after Munk, 1950).Figure 5.1: Frequencies and periods of the vertical motion of the ocean surface [33].

and referred to as surface-gravity waves. If the waves are generated by the local
wind, they are irregular, short crested and are called wind sea waves. When the
waves leave their area of creation, they take on a regular and long crested appear-
ance and are called swell waves. Waves with periods shorter then 1/4 s are affected
by surface tension and referred to as capillary waves. Capillary forces generate small
ripples and cause sea spray on wave impact but are generally considered to be neg-
ligible when dealing with large offshore structure.

5.1.2 Harmonic wave components

While waves may be irregular in nature, they can be seen as a superposition of
regular harmonic wave components [34]. Each harmonic wave component has it’s
own direction of propagation, amplitude, period and length. The set of components
necessary to model a sea state at a certain location can be derived from a wave spec-
trum. A harmonic wave with length λ, height H, and period T , which propagates
over the free water surface in positive x direction at a distance d from the mudline,
is visualized in figure 5.2. The surface elevation ζ(x, t) of the wave is described by

ζ(x, t) = ζa sin(kx− ωt), (5.1)
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Figure 5.2: Harmonic wave definitions

where the wave’s amplitude, wave number and frequency are respectively given by

ζa =
H

2
,

k =
2π

λ
,

ω =
2π

T
.

(5.2a)

(5.2b)

(5.2c)

Now that the components of a harmonic wave are defined, it is shown how they can
be used in order to obtain a wave field based on a statistical description.

5.1.3 Statistical description of water movements

In the design process of offshore wind turbines it is assumed that, during the en-
tire life span of the structure, the water movement can be split up in a number of
stationary periods of 3-6 hours. These periods are called sea-states. For each sea-
state the vertical water movement at a given position is schematised as a stationary
Gaussian process with a mean equal to zero [35]. In practice, for locations in the
North Sea, often an energy distribution according to the JONSWAP spectrum [36] is
adopted [5]. The JONSWAP spectrum is given by

S(ω) =
αg2

ω5
exp

(
−5

4

ω4
p

ω4

)
γ

exp

−1

2

ω − ωp
σωp

2

, (5.3)
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where the generalized Philips’ constant α, wave frequency f , spectral peak frequency
fp and spectral width parameter σ are given by

α = 5π4

(
H2
sω

4
p

(2π)4g2

(
1− 0.287 ln(γ)

))
,

ωp =
2π

Tp
.

(5.4a)

(5.4b)

The peak enhancement factor γ is chosen between 1 and 5, depending on the ra-
tio of Tp to

√
Hs, where Hs is the significant wave height. If γ is chosen equal to

1, the JONSWAP spectrum reduces to the Pierson-Moskowitz spectrum [37]. The
difference between both spectra is in the development stage of the sea. The JON-
SWAP spectrum is used for young sea states, while the Pierson-Moskowitz spectrum
is used for fully developed sea states. Both the JONSWAP and the Pierson-Moskowitz
spectrum are single peaked spectra and account for wind generated waves. A dou-
ble peaked spectrum such as the Ochi-Hubble spectrum [38] or the Torsethaugen
spectrum [39] can be considered when a significant swell contribution is expected.

5.1.4 Velocity potential of an undisturbed wave

Wind waves are often described using a velocity potential function Φ. This velocity
potential is defined such that the derivative of Φ in a spatial direction equals the
particle velocity in that direction. In this study Airy wave theory [40] is used to
describe the propagation of water waves. This theory assumes that the fluid layer
has a uniform depth and that the fluid flow is non-viscous, incompressible, irrational
and that the fluid is homogeneous. Since the fluid is incompressible, the velocity
potential function must satisfy the Laplace equation.

∇2Φ = 0 (5.5)

The velocity potential function must also satisfy additional boundary conditions. For
an undisturbed wave, two boundary conditions are specified, one at the sea bed and
one at the free surface. At the seabed, the velocity potential in the vertical direction
must equal zero.

∂Φ

∂z
= 0 at z = −d (5.6)

The free surface boundary condition is derived from the linearised Bernoulli’s equa-
tion and states that the pressure in the fluid at the free surface must equal the at-
mospheric pressure. The atmospheric pressure can be omitted from the equation,
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which results in
∂Φ

∂t
+ gζ = 0 at z = 0, (5.7)

assuming that ζ is small relative to d. Resulting from equations 5.5-5.7, the velocity
potential of an undisturbed wave can be written as

Φ(i) = <
(
−gζa
ω

cosh(k(d+ z))

cosh(kd)
ei(kx−ωt)

)
. (5.8)

5.1.5 Diffraction theory

Diffraction theory will be used to determine the pressure on the offshore monopile
support structure induced by incident and radiated waves in this study. A solution for
the theoretical problem of harmonic water waves diffraction from a circular cylinder
is presented and experimentally verified in [41]. In this solution the assumptions
of Airy’s wave theory were used. An overview of the solution is presented in the
following.

Consider a cylinder with radius a which extends from the bottom through the
free surface of a fluid domain as visualized in figure 5.3. The cylinder is subjected to
wave action originating from a single direction. Locations in the fluid domain and on
the cylinder can be expressed in two coordinate systems. The first coordinate system
is Cartesian and consists of the x, y and z axis, where the x and y axes coincide
with the zero plane of the free surface, the x axis points in the propagation direction
of the waves, the y axis points in outward direction from the figure and the z axis
coincides with the centreline of the cylinder. The second coordinate system is polar
and consist of the z, θ and r coordinates. Here r is the radial distance from the
cylinder’s centreline and θ is the angle to the negative x axis. The velocity potential
of the incident wave is given by equation 5.8. In order to solve the radiation problem,
the expression for the velocity potential function of the incident wave, given by
equation 5.8, is transformed to polar coordinates by means of the following infinite
series:

Φ(i) = <

−gζa
ω

cosh(k(d+ z))

cosh(kd)

J0(kr) + 2
∞∑
n=1

inJn(kr) cos(nθ)


, (5.9)

where Jα denotes the Bessel function of first kind. The radiated wave is assumed to
move in outward direction r, symmetrically with respect to θ:

Φ(r)
n = <

(
Cne

−iωt
[
Jn(kr) + iYn(kr)

]
cos(nθ)

)
, (5.10)
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Figure 5.3: Cylinder subjected to wave action.

where Yα is the Bessel function of the second kind. Note that the wave vanishes at
r = ∞. The total velocity potential can be taken by superposition of the incident
wave potential Φ(i) and an infinite series of radiated waves Φ(r). The coefficients
Cn are determined such that the fluid velocity normal to the cylinder equals zero at
the cylinder’s surface. The resulting formulation of the total potential function, as
derived in [42], can be written as

Φ = <

gζa
ω
e−iωt cosh(k(d+ z))

cosh(kd)

[
J0(kr)− J′0(ka)

H
(2)′
0 (ka)

H
(2)
0 (kr) (5.11)

+2

∞∑
n=1

in

(
Jn(kr)− J′n(ka)

H
(2)′
n (ka)

H(2)
n (kr)

)
cos(nθ)


 ,

where H
(2)
α is the Hankel function of the second kind, which equals Jα − iYα.

A contour plot of an example calculation of different components of the velocity
potential at the free surface around a cylinder is given in figure 5.4. In the example
calculation the cylinder is situated in the center of the xy-plane and has a diameter
of 3.9 m. The wave is travelling in negative x direction, has a wave number of 2 m−1
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(a) Velocity potential of the incident wave.
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(b) Velocity potential of a single radiated
wave.
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(c) Velocity potential of all radiated waves
around a cylinder.
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Figure 5.4: Contour plots of the velocity potential of: (a) an incident wave, (b) a
single radiated wave, (c) all radiated waves around a cylinder and (d) the incident
and all radiated waves around a cylinder. For this calculation a cylinder with a radius
of 3.9 m, located in the center of the xy-plane and an incident wave with a wave
number equal to 2 m−1, which is travelling in negative x direction are used.
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and an amplitude of 1 m.
The pressure distribution on the cylinder can be calculated using the linearised

Bernoulli equation.

p = ρ
∂Φ

∂t
+ ρgζ (5.12)

5.2 Theoretical background of wind action

Figure 5.5: Local forces on an aerofoil [43].

In the industry, wind loading on the rotor of a wind turbine is calculated by
means of the Blade Element Momentum (BEM) theory, which is extensively de-
scribed in [44] and is a combination of momentum theory and blade element theory.
The change in momentum of a wind flow through the rotor plane is calculated using
momentum conservation. It is hereby assumed that the flow is incompressible and
the rotor acts as an actuator disk. The later assumption is generally only valid near
the blade tip but is used for the entire rotor plane nevertheless. On each blade ele-
ment, the lift and drag forces can be calculated based on the relative wind velocity

dFL =
1

2
ρaCLU

2
relc,

dFD =
1

2
ρaCDU

2
relc,

dF = dFLcosφ+ dFDsinφ,

(5.13a)

(5.13b)

(5.13c)
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where ρa is the density of air, CL and CD are the lift and drag constants respectively,
Urel is the relative wind velocity, c is the length of the cord and φ is the inflow angle.
The relative wind velocity is calculated by

Urel =

√(
U(1− a)

)2
+
(
Ωr(1 + a′)

)
, (5.14)

where U is the ambient wind velocity at the location of the aerofoil, a and a′ are axial
and tangential induction factors, Ω is the angular velocity and r is the distance from
the hub. Note that the induction factors should not be confused with the radius of a
cylinder or monopile, which is also denoted with a throughout the rest of this thesis.
A schematic overview of local forces on an aerofoil can be observed in figure 5.5.

5.3 Application in the research models: Calculating
wave and wind loading

5.3.1 Calculation of wave loading

The calculation process of wave loading for this study can be observed in figure 5.6.
For the various design load cases considered in this thesis, wave loads on the monopile
surface are calculated. First a wave generation tool, SWAG, which abbreviates for
Siemens WAve Generator, is used to generate an undisturbed wave field. SWAG cal-
culates a JONSWAP wave spectrum based on Hs and Tp. From this wave spectrum
the complex amplitudes of K harmonic wave contributions are determined in space
and time, where K depends on the simulation but roughly equals 10000. From
SWAG, the amplitude, frequency and wave number of the velocity potential func-
tion of each contributing wave is extracted at a point A. The point A represents
the point on the circumference of the monopile where the undisturbed wave makes
first contact with the monopile and is positioned at θ = 0, r = a and z = 0 in the
polar coordinate system defined in section 5.1.5. The location of A is visualized in
figure 5.7. According to diffraction theory, the total velocity potential is calculated
using the data extracted from SWAG for each incoming wave contribution. Note
that the monopile is considered to be rigid when the velocity potential functions are
determined.

For convenience, the velocity potential function and the pressure on the cylinder
are split up in terms of n. As derived from equation 5.11 this can be done as

Φ0 = <

gζa
ω
e−iωt cosh(k(d+ z))

cosh(kd)

[
J0(ka)− J′0(ka)

H
(2)′
0 (ka)

H
(2)
0 (ka)

] (5.15)

CONFIDENTIAL



88 5. ENVIRONMENTAL LOADING

Site data
Generate JON-
SWAP spectrum DLC

Calculate
velocity potential
amplitudes at A

Calculate velocity
potenial of

radiated waves

Caclulate
pressure distri-
bution over the

monopile surface

Caclulate reduced
wave load
time series

Generalized
coordinates
of monopile

Structural
geometry

Figure 5.6: Flowchart for the generation of wave loading for the research models.
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and for n > 0

Φn = <

2in
gζa
ω
e−iωt cosh(k(d+ z))

cosh(kd)

[
Jn(ka)− J′n(ka)

H
(2)′
n (ka)

H(2)
n (ka)

]
cos(nθ)

 .

(5.16)
When using a circular cylindrical shell description of the monopile, for all n, the
radial loading pnz is determined using

pnz = ρ
∂Φn
∂t

+ ρgζ. (5.17)

When using a beam model to describe the monopile, only the term with n = 1 results
in a non-zero resultant force on the cylinder. The total resultant force is thus given
by

F =

∫ 2π

0

p1z cos(θ)adθ. (5.18)

For both descriptions of the monopile a time series of the water wave loading is
created. The loading is then projected onto the monopiles generalized coordinates
following section 4.5, which creates a time series of reduced load vectors. These
reduced load vectors will be input for the numerical time-domain analyses of the
wind turbine support structure using Siemens’ BHawC.

In this study three sea states are considered, using Hs = 1.13 and Tp = 5.89 for
the first sea state, Hs = 3.08 and Tp = 8.45 for the second sea state and Hs = 6.02
and Tp = 9.64 for the third sea state. The third sea state obviously contains more
energy then the first sea state, however, the energy distribution as a function of
frequency differs between the sea states. This is shown in figure 5.8 where the nor-
malized variance density of the three spectra is calculated. From figure 5.8 it is noted
that the majority of the wave energy is located below the first eigenfrequency of the
offshore wind turbine. Regardless of the wave spectrum, the distribution of the
wave loading over the various circumferential wave numbers n can be determined
based on the monopile’s geometry. In figure 5.9 the wave height independent norm
of the pressure at the free water surface was calculated for n = 1 to 6 using

p̂n =

∥∥∥∥∥∥2ρin
[

Jn(ka)− J′n(ka)

H(2)
n

H(2)
n (ka)

]∥∥∥∥∥∥ . (5.19)

Figure 5.9 on its own suggests a significant wave loading on the modes n > 1.
However, from figure 5.8 it can be observed that notably more wave energy is present
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Figure 5.8: Three normalized variance density spectra for various values of Hs and
Tp.
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Figure 5.9: Distribution of the wave loading over the circumferential wave numbers
as a function of frequency.
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in the region where p̂1 peaks, which equals 0.25 Hz, compared to the regions where
p̂2 to p̂6 peak, which are approximately 0.35 Hz, 0.43 Hz, 0.5 Hz 0.57 Hz and 0.6
Hz. Therefore, it is expected that the beam modes, with n = 1, will be significantly
more excited then the self balancing modes, with n > 1, by the wave loading.

5.3.2 Applicability of diffraction theory

In practice, the Morison equation [45] is often used to calculate wave loading on
offshore wind turbines [5]. The Morison equation displays an empirical relationship,
in terms of a mass coefficient CM and a drag coefficient CD, to calculate wave forces
on a small submerged cylinder. This relationship involves an inertia force and a
viscous drag force on the submerged cylinder and assumes that the object is small
such that it does not disturb the incident wave field. However, as the diameter of the
cylinder becomes large compared to the incident wavelength, the Morison equation
does not apply and a diffraction theory must be used. In this case, viscous drag
forces are assumed to be insignificant for smooth cylinders and the inertia forces
predominate [46]. The dominance of the inertia force over the drag force can be
expressed in terms of the Keulegang Carpenter number KC, which is defined as

KC = 2π
xa
D
, (5.20)

where xa is the horizontal water displacement amplitude and D is the diameter of
the cylinder. For low values of KC (KC < 3), the inertia force is dominant and
drag can be neglected [47]. For cylinders with small values of D/λ

(
D/λ < 0.2

)
the wave’s total force on the cylinder can be calculated with the Morison equation
using CM = 2. For higher values of D/λ the Morison equation does not suffice and
a diffraction theory is required [48]. Note that for low values of D/λ a diffraction
theory is also applicable, with an added benefit that the pressure distribution along
the circumference is also predicted.

For the wave loading considered in this study, the dominance of the inertial force
over the drag force is shown through calculation of the overturning moment at the
mudline of the monopile by means of the Morison equation. The relative contribu-
tion of inertia and drag to the total overturning moment as a function of time can
be observed in figure 5.10. While the drag component is arguably not negligible,
especially for the third sea state, it is assumed that for the purpose of this study,
diffraction theory will suffice when calculating the wave loading.
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Figure 5.10: The inertia and drag component of the overturning moment at the mud-
line for the first (left) and third (right) sea state, as predicted by the Morison equation.

5.3.3 Calculation of wind loading

In this study, wind loading is calculated using Siemens’ BHawC. Using BEM theory,
BHawC calculates the aerodynamic loading originating from a mean wind velocity
and a turbulence model. Without further elaboration it is stated that BHawC is able
to incorporate controller effects, can deal with a skewed and unsteady inflow, will
account for dynamic stall and tower shadowing effects, corrects for high induction
values and includes a correction for Prandtl’s tip loss. The wave spectra, as presented
in figure 5.8 are resulted from a mean wind speed at hub height of 7, 16 and 21 m/s
respectively. The fast Fourier transform (FFT) of the force in the turbine’s shaft
due to the wind loading and controller effects can be observed in figure 5.11. It
is observed that the peaks between 0.13 Hz and 0.17 Hz, depending on the mean
wind speed. A weak decreasing trend in the force as a function of frequency can be
observed in the higher frequency bands.
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Figure 5.11: FFT of the force in the turbine’s shaft due to wind loading and controller
dynamics.
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Chapter 6

Time-domain simulations

In order to gain insight in the first research objective, several time-domain simulations
are performed with the beam and shell models coupled to Siemens’ BHawC. The dynamic
behaviour of both models is analysed for various design load cases. It is then identified
how much the shell deformations affect the stress levels within the monopile’s shell.

6.1 Overview of the models, load cases and limita-
tions

In the preceding chapters, all relevant theory governing the research models has
been discussed. The implementation of the theory in the models was also presented.
Both foundation models are coupled to BHawC, in which the tower and RNA are
described with Timoshenko beam elements. The monopile foundation is included
as a superelement, which is connected to the lowest node of the tower, located at
the interface level. For the first model, which is referred to as the beam model, the
monopile foundation is represented by a superelement derived using Timoshenko’s
theory for beams. In the second model, which is referred to as the shell model,
Flügge’s relations for circular cylindrical shells are used to define the superelement
monopile foundation. In both models, the monopile is assumed to be of uniform
diameter and wall-thickness, which are respectively given by 7.8 m and 0.086 m.
This represents a monopile with a flange connection to the tower instead of a tran-
sition piece. The monopile’s embedded length within the soil is 36.5 m, the wa-
ter depth is 40 m and the interface level is located at 17 m above the mean sea
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Figure 6.1: Comparison of the eigenfrequencies of the fixed-interface vibration modes.
The eigenfrequencies governing the shell model are given by black ×’s while for the
beam model the eigenfrequencies are visualised as red circles.

level. Soil-structure interaction characteristics are derived using the circumferential
wavenumber method as per chapter 3.

In the foundation models, added mass has been accounted for by increasing the
monopile’s density. This is a significant simplification. Nevertheless, this method is
generally accepted by the industry. In this method, the mass of all the fluid contained
within the monopile and the fluid outside the monopile within a certain radius is ef-
fectively added to the mass of the monopile. This is believed to be less realistic when
dealing with shell deformation behaviour as (i) added mass is frequency dependant
and shell deformation behaviour is excited by a different frequency band then the
global bending deformations, and (ii) the modes governing the shell deformations
do not displace the cylinder’s centreline. A more formal approach to this problem is
to take note of the Helmholtz equation as in [49], however this is not considered in
this study.

The substructuring approach, where the tower is connected to the monopile at
a single node, effectively eliminates all coupling of the wind loading and controller
effects to the monopile’s shell deformations. It can be argued that the energy avail-
able in the higher frequency bands of the loading spectrum due to the wind and
controller dynamics is able to excite shell deformations in the monopile. A spectrum
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umean [ms−1] Hs [m] Tp[s]
Condition 1 7 1.13 5.89
Condition 2 16 3.08 8.45
Condition 3 21 6.02 9.64

Table 6.1: Summary of environmental conditions.

can be observed in figure 5.11. As is concluded in chapter 2, the shell modes will
only be excited by loading which has a corresponding circumferential wave number.
It is assumed that the loading terms originating from the wind field and controller
dynamics with circumferential wavenumbers of n > 1 are relatively small to those
corresponding to n = 1. Since several stiff flanges are present between hub height
and connection of the tower to the monopile, it is assumed that no loading with a
circumferential order of n > 1 will act on the monopile at the interface level.

A visual overview of the eigenfrequencies of the fixed-interface vibration modes
is given in figure 6.1, their nummerical values are listed in appendix C. The orthog-
onality of the modes is checked by means of a Modal Assurance Criterion, which can
be observed in appendix D. The lowest three eigenfrequencies of the modes with
n > 1 are given by 2.37 Hz for n = 2, 4.49 Hz for n = 2 and 5.10 Hz for n = 3. It
is noted that these frequencies are significantly higher than the first eigenfrequency
governing the entire wind turbines global bending behaviour, which equals 0.255
Hz. It additionally is observed that, for increasing n, the lowest eigenfrequencies
per n are spaced more closely together and that, for increasing m (numbering of
the eigenfrequencies for a given n), the lowest eigenfrequency per m shifts towards
higher n. Both observations are in agreement with literature [12, 17].

The two design load cases that are typically most governing with respect to the
fatigue limit state are given as a turbine in power production and a turbine which is
idling. The difference between the two load cases is in the behaviour of the rotor.
In the case of power production, the rotor will be rotating which introduces aerody-
namic damping to the wind turbine’s motion in the fore-aft direction. In the idling
load case, the rotor idles and thus little additional damping is introduced. It is there-
fore expected that more global bending deformations will be present for the idling
load case. This implies that the shell deformations will be relatively less pronounced.
Hence, the design load case under investigation is chosen as a wind turbine in power
production. For this load case it is assumed that the wind and waves are aligned,
which is again chosen based on the aerodynamic damping. Three environmental
conditions, defined by the mean wind speed at hub height and the sea state, are
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Figure 6.2: Position of circumferential coordinate A.

considered. These were previously discussed in section 5.3, the relevant parameters
are summarised in table 6.1.

6.2 Results

It was found that due to all three conditions, the relative influence of the shell de-
formations on the monopile’s stress levels was comparable. Here, the response to
condition 2 will be discussed in detail. This is done by (i) analysis of the resulting
axial stress at the mudline in the time and frequency domain, (ii) analysis of the
envelopes of the axial stress distributions over the axial coordinate, and (iii) analy-
sis of the resulting von Mises stresses over the monopile’s entire surface, based on
the standard deviation of the monopile’s generalized coordinates. If was found that
the predicted motion perpendicular to the loading direction was at least an order
of magnitude smaller then the predicted motion in the direction aligned with the
loading. Additionally the torsional and vertical degree of freedom had a negligible
influence on the monopile’s internal stresses.

Axial stress near the mudline
The maximum total stress levels predicted by both models occur near the mudline

at a circumferential coordinate A. The position of A relative to the loading direc-
tion on the circumference of the monopile is visualised in figure 6.2. Here primarily
stresses in the axial direction occur. In the following, the axial stress σxx at the cen-
treline of the monopile’s shell at this location is analysed. This is done separately
for the beam model, as well as the contribution of the modes governing the differ-
ent circumferential wavenumbers n for the shell model. Figure 6.3 shows σxx as a
function of time for n = 1 to n = 4 as predicted by the shell model. In figure 6.4,
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Figure 6.3: Time signals of the shell model’s predictions of the axial stress at location
A in the centre of the shell due to condition 2. All values are presented relative to the
maximum axial stress as obtained for n = 1.
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Figure 6.4: Time signal (a) of the stress as predicted by the beam model. FFT of the
predicted stress by both the shell and beam model (b). All predictions are made at
location A in the centre of the shell due to condition 2 and are presented relative to
the maximum axial stress as found for n = 1 using the shell model.
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the predictions by the beam model are shown, while additionally the FFT’s of (i) σxx
as predicted by the beam model, (ii) σxx due to all modes with n = 1, as predicted
by the shell model, and (iii) σxx due to all modes with n > 1, as predicted by the
shell model are shown. Note that all values are normalised with respect to the max-
imum stress that occurred for the shell model due to the modes corresponding with
n = 1. For the beam model and for the modes governing n = 1 for the shell model,
it was found that the stresses do not oscillate around zero. This is due to the, some-
what, constant wind loading on the rotor. Since for the fatigue limit state the stress
oscillations are governing, the mean has been subtracted from all time signals.

In figures 6.3 and 6.4 it is visible that the shell model and the beam model are in
excellent agreement on the stress levels governing the global bending behaviour of
the monopile. It can additionally be seen that the contribution of the shell deforma-
tions to the stresses in the axial direction at the investigated location are minor. Due
to condition 2, the contribution of shell deformations to the total axial stress lev-
els at the investigated location is in the order of 1%.

On an additional note, the presence of the first fore-aft global bending mode is
hardly noticeable in figure 6.4 (b) due to the contribution of significant aerodynamic
damping. However, in the side-to-side direction, a substantial peak is observed at
the 0.25-0.26 Hz frequency band, this can be observed in figure 6.5. It is therefore
expected that, if a load case with a misalignment between the incident wind and
wave direction or a load case in which the turbine is idling is investigated, the con-
tribution of shell deformations to the stress in the monopile will be of less relative
importance.

Axial stress envelopes
It was found that, over the vertical direction, the maximum stresses corresponding
to the shell deformations are found at different locations than the maxima of the
total axial stress. Nevertheless, it is still true that, for all n, a maximum value
of the axial stress due to shell modes with a circumferential wave number n is
found at the same circumferential coordinate as A. Note that, for each n, there
are 2n locations which contain the maximum axial stress amplitudes due to the
corresponding modes. These locations, with the exception of circumferential coor-
dinate A, will vary per n and follow the same circumferential distributions as the
mode shapes. To keep the comparison transparent, all stresses will remain anal-
ysed at circumferential coordinate A, at the centreline of the monopile’s shell. In
figure 6.6 the envelopes of the axial stress due to condition 2, as predicted by the
shell model, are visualised for n = 1 and n = 2. The stress as predicted by the beam
model can additionally be observed. These envelopes are obtained by calculation
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Figure 6.5: Normalized FFT of the motion at interface level in the fore-aft and side-
to-side direction for the shell model under loading condition 2.

of the stress profile over the entire axial direction at circumferential coordinate A
for each time step. The envelopes are then given by the extreme occurred stresses
at each x-coordinate. Once again, close agreement between the beam model and
the n = 1 modes of the shell model is found.

For n = 2, maxima in the stress envelope appears near the free water surface,
where the wave loading is of the highest magnitude. Additionally a maximum is
found at the interface level, where the modes with n > 1 experience a constrained
boundary. It can be observed that at these locations the modes governing n = 2
show a higher relative contribution towards the total axial stress levels then at the
location under previous investigation. At the interface level and the free water sur-
face respectively, this contribution is in the order of 9% and 4% with respect to the
axial stress due to the n = 1 modes at both locations.

The solutions for the modes with n > 2 show a much wider spread in the stan-
dard deviation of the modal participation factors, as is shown in figure 6.7. This is
possibly caused by the more localized distribution of the wave loading near the free
water surface. As can be observed from figure 5.9, these modes are subject to wave
loading in a higher frequency band. This is due to the balance of the pressure along
the monopile’s circumference which is related to the wave length. For increasing
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Figure 6.6: Envelopes of the axial stress distribution over the axial direction at cir-
cumferential coordinate A in the centre of the monopile’s shell due to condition 2.
The stress as predicted by the shell model is represented in black for n = 1 (a) and
n = 2 (b). The prediction following from the beam model is shown in red. All values
are normalised with respect to the maximum axial stress for n = 1 as given by the
shell model.
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Figure 6.7: Standard deviation of the fixed-interface vibration modes’ modal partici-
pation factors as predicted by the shell model due to condition 2 for n =1, 2, 3 and 4.
All values are normalized to the first mode per n.
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frequency, the wave loading at greater depths will significantly decrease as can be
seen from equation 5.16, noting that k increases for higher values of ω. The waves
therefore induce a more centralised pressure field, which is more likely to equally
distribute it’s energy over a wider set of axial mode distributions. It should also
be noted that since the linearised Bernoulli equation is used to determine the pres-
sure on the cylinder, the position of the applied pressure does not fluctuate with the
free water surface and remains at the mean sea level. While the fluctuation of the
free water surface can have a minor influence on monopile’s response if the wave
pressure is distributed over a significant depth, this is clearly not the case for the pre-
dicted wave loading on the shell modes with a higher circumferential wavenumber.
For the modes with n > 2, it is believed that the solution was not converged using
16 modes per n. Especially near the interface level, the stress envelopes can not be
predicted accurately. Since the stresses due to the n > 2 modes are at least an order
of magnitude lower then the stresses governing the n = 2 modes, they are from here
on left out of the comparison. On an additional note, it was found that the modes
with corresponding to n > 2 behave quasi-statically. Therefore, their response to
the wave loading for these modes can be determined by solely the reduced stiffness
matrix and the reduced wave loading in a static analysis.

It is observed that the predicted stresses, especially near the interface level, by
the modes corresponding to n = 2 are heavily influenced by the constrained bound-
ary at the interface level. It should therefore be noted that, if a traditional monopile
with a transition piece and a grouted connection is considered, the stress envelopes
may vary significantly. Additionally it is stated that, while here for each circumfer-
ential wavenumber n the stress envelopes are considered separately, fatigue of the
monopile’s steel is driven by the cycles of the total stress levels. Moreover, the fatigue
damage is not linearly dependant on the increase in stress amplitudes. The influence
of the shell deformations on the monopile’s fatigue life may therefore be very differ-
ent from the observed difference between the investigated stress envelopes. These
envelopes can however be used to estimate how much detail in a stress analysis may
be lost if one is to neglect shell deformations all together. The translation to fatigue
damage is not considered in this work.

Axial stress at the inner and outer edge of the monopile’s shell
In the previous, only the stress at the centre of the monopile’s shell was considered.
A circular cylindrical shell theory is also able to predict the stress at the outer and
inner edge of the monopile’s shell. These stresses vary from the stress at the centre of
the shell due to the presence of the membrane moments. These membrane moments
are highly sensitive to constraints and thus show a significant edge disturbance at
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the interface level and around the mudline. In figure 6.8 the distribution of the axial
component of the axial stress envelopes is shown at both the outer and inner edge
of the monopile’s shell. The highest relative contribution of the shell deformations
to the axial stresses was found at the free water surface and at the interface level.
At the outer edge of the monopile’s shell these contributions were found to be in the
order of 3% and 4% respectively, relative to the maximum axial stress, also at the
monopile’s inner and outer edge, as predicted using the n = 1 modes in the shell
model.

Von Mises stress distribution
In the previous sections, only a selected portion of the stress was analysed. In fig-
ure 6.9 the distribution of the equivalent tensile stress, or von Mises stress, over the
entire surface of the monopile due to condition 2 is presented. Here the von Mises
stress σv is given by

σv =
√
σ2
xx − σxxσθθ + σ2

θθ + 3σxθ, (6.1)

where σxx, σθθ and σxθ were calculated based on the standard deviation of the
amplitudes of the generalized coordinates. The absolute values of the normalized
total von Mises stress, as calculated using all modes, can be observed in figure 6.9.
The circumferential coordinate A is located at θ = 0. The difference between the
total von Mises stress and the von Mises stress calculated using only the n < 2 modes
is also visualised. A maximum difference in the order of 5% was found.

6.3 Variations to the simulations

Two variations to the simulations previously presented are performed. In variation
1, a monopile with an increased diameter is considered while in variation 2 the
influence of breaking waves is explored. The goal of these variations is to explore
situations in which the shell deformations could have a more significant relative
impact on the monopile’s stress levels. Whether these variations are also realistic is
rather questionable, conclusions drawn from this section should therefore be treated
with great caution. The results for these simulations can be observed in appendix E.

6.3.1 Variation 1: Monopile with an increased diameter

For this variation the diameter of the monopile is increased by a factor 1.5 while
the monopile is additionally slightly more thin-walled. The embedded length of
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Figure 6.8: Axial stress distribution over the axial direction at circumferential coordi-
nate A at the outer edge for n = 1 (a) and n = 2 (b), as well as the inner edge for
n = 1 (c) and n = 2 (d). All values are calculated due to condition 2 and are nor-
malised with respect to the largest axial stress for n = 1 as given by the shell model
for either the inner or outer edge of the monopile’s shell.
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Figure 6.9: Absolute value for the total von Mises stress (left) and the difference
between the total von Mises stress and the von Mises stress due to solely the modes
corresponding to n < 2 (right). Both figures are normalized to the maximum value of
the von Mises stress and are calculated for the centre of the shell due to condition 2.
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the monopile within the soil remains unchanged, while the distance above the free
water surface is increased such that the first eigenfrequency of the monopile’s fixed-
interface vibration modes governing global bending remains unchanged from the
previously considered model. The monopile’s density and characteristics of the elas-
tic foundation also remain unaltered. For this variation only loading condition 2 is
considered and calculations were solely performed using the shell model. For the lo-
cations under previous investigation, an increase of roughly a factor 3 can be seen in
the relative contribution of shell deformations to the total axial stress. Two possible
explanations for the increase in stress are given: (i) the monopile’s first eigenfre-
quency corresponding to n = 2 is significantly lowered to 1.84 Hz due to the change
in geometry, and (ii) the wave loading increases relative to the unchanged wind
loading due to significantly larger diameter.

6.3.2 Variation 2: Monopile subjected to breaking waves

In all the previous simulations, Airy’s theory was assumed to describe the incident
wave field. Additionally, when the waves are translated to a force acting on the
structure, they were assumed to remain harmonic. In reality, both assumptions can
be considered questionable, especially if one is interested in wave loading at high
frequency bands. As shown in [50], the impact of a breaking wave on a monopile
structure can excite a response in a wide frequency range. Here an attempt was
made to capture this behaviour, while still applying Airy’s wave theory and diffrac-
tion theory to derive the resultant wave forcing. For this purpose, the wave spectrum
governing condition 2 has been artificially enhanced to include an additional peak
which is located around the first eigenfrequency of the modes governing n = 2, as
can be seen in figure 6.10. The maximum value of this peak equals roughly 1/5 of
the peak in the variance density spectrum corresponding to condition 2. Due to this
variation no significant change in the relative contribution of shell deformations on
the axial stresses was found. This is most likely explained by the way that diffraction
theory distributes the wave loading over the modes governing various n, as can be
observed from figure 5.9.
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Figure 6.10: Normalized variance density spectrum of the incident waves for the
variation mimicking breaking waves.
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Chapter 7

Conclusions and
recommendations

7.1 Introduction

A contribution towards the reduction of the levelized costs of offshore wind elec-
tricity is made. Over-dimensioning, redundant conservatism and excessive use of
safety factors in the design process can be reduced by means of increasingly accurate
structural models and more comprehensive knowledge on the governing structural
behaviour. In this study, an advanced modelling method that accounts for shell de-
formations in monopile support structures is proposed with an additional focus on
the implementation of the model in aero-elastic simulations. Furthermore, the effect
of the more rigorous modelling method on the prediction of the monopile’s internal
stresses was investigated.

Two objectives for this study were defined in chapter 1, the first is given by the
following.

Gain insight in the contribution of shell deformation on the internal stresses, with
respect to the stresses caused by global bending, in a large diameter monopile.

The secondary objective of this study was to provide a method to incorporate the
effect of the shell deformation in the assessment of the life-time loading of offshore
monopile foundations. For this purpose, a model was to be developed which satisfied
three criteria: (i) the model accounts for both global bending and shell deformations,
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(ii) the model is computationally effective when assessing the structure’s life-time
loading, and (iii) the model takes into account the distribution of the wave loading
and the soil reaction forces over the circumference of the monopile.

Obviously, several simplifications and assumptions were made in this study and
thus we were unable to capture all involved mechanisms in their entirety. Neverthe-
less, it is believed that an important step towards the understanding and evaluation
of shell deformation behaviour in offshore wind turbine monopile foundations is
made.

7.2 Conclusions

From the time-domain simulations, several conclusions can be drawn directly related
to the first research objective. Note that these conclusions are based on observations
from a limited amount of simulations using a simplified and idealised model. Ad-
ditionally, these conclusions relate solely to the accuracy of stress calculations, a
translation to resulting fatigue damage was not made. In all cases considered, the
turbine was in power production and there was assumed to be no misalignment be-
tween the wind and wave loading. The monopile under investigation had a diameter
of 7.8 m.

- Stress was analysed over the entire surface of the monopile. The maximum
stresses were predicted around the mudline at the location where direction of
the normal to the shell’s circumference is exactly opposite to the direction of
the incident loading. Here the axial stresses were found to be dominant. A con-
tribution to the axial stresses in the order of 1% due to the shell deformations
was observed in the centre of the monopile’s shell at this location.

- It was found that the influence of the modes corresponding to n > 2 on the
stresses in the monopile was at least an order of magnitude lower then the
influence of the modes corresponding to n = 2.

- Shell deformation behaviour induces a different stress distribution as opposed
to global bending behaviour. This is due to the difference in the boundary con-
dition at the interface level and a different circumferential distribution of the
governing displacement functions. The form of the stress distribution therefore
varies for each circumferential wavenumber n.

- Due to the presence of the membrane moments, the stress on the outer edges
of the monopile’s shell differs from the stress at the centre of the shell. The
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maximum contribution of shell deformations to the axial stresses was analysed
at the outer edge of the shell at the interface level. This contribution was in
the order of 4% of the maximum axial stress at the monopile’s outer edge.

- Incorporating the effect of stress in all directions, by analysing the von Mises
stresses in the structure, a difference in the order of 5% between the stress
due to the global bending response of the shell model and the stress due to the
total response was observed in the centre of the monopile’s shell.

- Following diffraction theory, the predicted loading distribution over the monopile’s
circumference follows a similar Fourier decomposition as the structural re-
sponse of circular cylindrical shells. Waves in slightly higher frequency bands
become more dominant in the loading for increasing circumferential wavenum-
ber n. In this study it is found that these frequency bands move away from the
energy peak in the JONSWAP spectrum, leading to less energy in the wave
loading, for increasing n. Additionally it was found that the lowest eigenfre-
quencies for the first three self-balancing shell modes are significantly higher
than the frequency bands in which the wave loading terms with the corre-
sponding circumferential wavenumbers are dominant.

- The influence of the monopile’s diameter has been explored. It was found
that, for a monopile with a diameter that increased by a factor of 1.5, the
relative contribution of shell deformations on the axial stresses in the shell
increased roughly by a factor of 3. This is thought to be explained by either the
lowering of the lowest eigenfrequency for the modes corresponding to n = 2,
the increase in thin-walledness of the monopile or the increased dominance of
the wave loading with respect to the wind loading.

Several additional conclusions were drawn from the other topics that were ad-
dressed in this study. These conclusions are related to the evaluation of shell defor-
mations using the method proposed in this study.

- Using a circular cylindrical shell theory, the shell deformations of a monopile
support structure can be analysed. By means of a Fourier decomposition, the
monopile’s shell deformation behaviour can be decoupled from its global bend-
ing response, under the assumption of a perfect cylinder.

- Flügge’s theory for circular cylindrical shells and Timoshenko’s theory for beams
are in excellent agreement with each other with respect to the global bending
response of an offshore monopile foundation. This was verified by means of a
static analysis, an eigenvalue analysis, and aero-elastic simulations.
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- The circumferential wavenumber method was unable to derive true equiva-
lent soil-structure interaction characteristics from the FEM model of the soil.
While the obtained elastic foundation was considered sufficient for this study,
representation of the particular soil under investigation was unsuccessful.

- The superelement methods were able to provide a coupling between numerical
and analytical modelling. Model reduction techniques can be used to simplify
analytical problems or reduce the degrees of freedom of discrete systems, the
application follows the same procedures in both situations.

7.3 Recommendations

In this study two strategies related to the analysis of shell deformations in monopile
support structures were applied. On the one hand, the analysis of shell deformation
behaviour was integrated in a numerical aero-elastic code which is able to perform
time-domain simulations of the entire wind turbine structure in a wide variety of
load cases. On the other hand, the shell deformation behaviour was isolated from
the global bending behaviour of the monopile and decoupled from all the dynamic
effects above the interface level. The incorporation of both strategies may seem con-
tradicting at first glance. However, it is believed that valuable insight was obtained
in a wide variety of relevant mechanisms due to the broad scope of this study. For
the further development of knowledge on shell deformation behaviour in large di-
ameter offshore monopile’s two paths are proposed. It is believed that both paths
can be explored independently of each other.

- The first path focusses on a more detailed modelling of the monopile and fluid-
structure interaction. CFD simulations can aid in the realistic assessment of the
coupling between the fluid domain and the monopile, a focus on the added
mass for shell deformation is expected to be of importance. The assessment
of wave loading in higher frequency bands, such as the analysis of breaking
waves against the structure, can also be performed in more detail. Inhomo-
geneities to the here considered ideal cylinder can also be introduced if a FEM
model of the monopile is used. These can be appurtenances, a transition piece,
or a monopile of varying diameter. The greater level of detail allows for a more
proper assessment of edge disturbances, which can be significant in the calcu-
lation of resulting stresses in a shell-like structure. Additionally, the monopile
can now be directly coupled to more advanced soil models which incorporate
non-local soil-structure interaction characteristics. For this assessment, the
coupling with the tower can be omitted. Instead, a time-domain simulation
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using a simpler model can be used to obtain equivalent lateral reaction forces
and overturning moments at the interface level, which can be used as input for
the high detail monopile model. The coupling with an aero-elastic code hereby
becomes irrelevant.

- In the second path, attention is paid to the interaction with the shell deforma-
tion behaviour and the dynamics of the entire turbine. The resulting loading
on the self-balancing shell modes due to aero- and controller dynamics can be
incorporated. Additionally, the effect of coupling between eigenmodes gov-
erning global bending and eigenmodes governing shell deformation behaviour
can be analysed. This was neglected in this study under the assumption of
an ideal cylinder. Due to the significant presence of the wind loading in this
assessment, it is advisable that time-domain simulations should be performed
for a wide variety of load cases. For this purpose, a similar semi-analytical
integrated model, as presented here, can be developed. The model is to be
augmented such that it can incorporate the previously mentioned phenomena.
If the dynamic behaviour of the monopile is analysed in the modal domain,
which may be an effective method from a computational point of view, the im-
plementation of soil-structure interaction by means of a modal expansion can
additionally be explored.

Other, more general, recommendations can also be made. Perhaps the most ob-
vious one is the validation of all assumptions made during this study. The ones con-
sidered most imported are mentioned within the various recommendations in this
section. Other recommendations that are not captured in the previous statements
are given below.

Model validation using measurements. In this study, the predicted shell defor-
mation behaviour is purely based on a theoretical and idealised structural model.
Experimental validation of the eigenmodes and eigenfrequencies governing n > 1
can provide insight in the correctness of the presented calculations.

Generalising the results and translation to fatigue damage. Generalising the
results obtained in this study by means of an extended amount of simulations for
a wide variety of load cases may prove valuable. Ideally, the translation to fatigue
damage at governing design location should also be made. The incorporation of
statistics thus becomes important.
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Quasi-static estimation of shell deformations. In this study it was found that
the response of the shell modes corresponding to n > 2 to the wave loading can be
treated quasi-statically. It can be investigated for which situations this remains true.
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Appendix A

Translation from the discrete
spring stiffness profiles to a
distributed elastic foundation

This appendix is a direct extension of chapter 3. It is shown how the discrete spring
stiffness profiles, as obtained using the circumferential wavenumber method and the
mode shape method, can be translated to a distributed elastic foundation. This is
done in two steps. First, it is shown how the discrete nodal reaction forces can be
distributed over the axial and circumferential direction of SMP . Second, it is shown
how the same formulations can be used to directly translate the obtained discrete
spring stiffness profiles into a distributed elastic foundation.

A.1 Distributing the discrete forces over a surface

Distribution of the reaction forces in the circumferential direction

It was found that the discrete reaction forces of the soil in the FEM model can be
described by

F qnx = F̂nx(x) cos(nθ),

F qnθ = F̂nθ(x) sin(nθ),

F qnz = F̂nz(x) cos(nθ),

(A.1a)

(A.1b)

(A.1c)
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DISTRIBUTED ELASTIC FOUNDATION

where q denotes the number of a node, Fni(x) is the amplitude of the reaction forces
at x, which is equal to the reaction force at θ = 0 for i = x or i = z, and is equal to
the reaction force at θ = π

2 for i = θ. The translation to a distribution of the forces
along the circumference of SMP is given by

Fnx(x, θ) = F̃nx(x) cos(nθ),

Fnθ(x, θ) = F̃nθ(x) sin(nθ),

Fnz(x, θ) = F̃nz(x) cos(nθ).

(A.2a)

(A.2b)

(A.2c)

Where for j = x, θ and z
F̃nj = αnF̂nj . (A.3)

Here αn corrects for the discreteness in the circumferential direction in the FEM
model. αn can be determined using∫ θ2

θ1

Fnj(x, θ) = F̂nj(x), (A.4)

with

θ1 = − 2π

2N
, θ2 =

2π

2N
, if i = x, z,

θ1 = − 2π

2N
+
π

2
, θ2 =

2π

2N
+
π

2
, if i = θ,

(A.5a)

(A.5b)

where N is the number of nodes on SMP in the horizontal plane. Resulting from
this, αn is given by

αn = a
cos
(
π

2N

)
sin
(
π

2N

)
N + π

2N
, if n = 1,

αn = a
(n+ 1) sin

(
π n−1

2N

)
n+ (n− 1) sin

(
π n+1

2N

)
(n− 1)(n+ 1)

, if n 6= 1.

(A.6a)

(A.6b)

Distribution of the reaction forces in the axial direction
In this section it is assumed that between any two successive nodes on any verti-
cal line in SMP the force distribution is constant. Consider a beam as visualized
in figure A.1. The beam consists of two segments. Each segment has a length, de-
noted by Ls, and is subjected to a constant distributed load, denoted with qs. In
the translation to a discrete system, such as a finite element description with beam
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Ls Ls+1 Ls Ls+1

F̂s F̂s+1 F̂s+2
qs qs+1

Figure A.1: A schematization of a discrete beam (left) and a continuous beam (right).

elements, the distributed force is lumped to the nodes of the beam. This can be done
by integrating the loading over the shape functions of the beam. However, when the
loading is constant between each node, the forces at each node can alternately be
found as

F̂s =
qs

2Ls
,

F̂s+1 =
qs

2Ls
+

qs+1

2Ls+1
,

F̂s+2 =
qs+1

2Ls+1
.

(A.7a)

(A.7b)

(A.7c)

If a beam with more then three nodes is considered, a relation similar to A.7b can
be added for each additional internal node. If the problem is reversed and the
translation has to be made from a discrete beam to a continuous beam, the values
for qi and qi+1 can be found by

qs = 2F̂sLs,

qs+1 = 2F̂s+1Ls+1 − 2F̂sLs+1.

(A.8a)

(A.8b)

Again, if a beam with more then three nodes is considered, a relation similar to A.8b
can be added for each additional internal node. Using the relations similar to A.8
the reaction forces can be transformed to a distribution of the forces over the axial
direction.

A.2 Direct translation from a discrete spring stiffness
profile to a distributed elastic foundation

In section 3.2.1 it was shown how equivalent discrete spring stiffness constants at
the locations of NMP , can be determined as

k̃qij = F qi /u
q
j (A.9)
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where k̃qij is the stiffness constant of an elastic spring, exerting a force Fi upon node
q ∈ NMP in direction i due to a displacement uj of q in direction j.

In the following it is shown how the discrete springs are translated into distribu-
tions which are described with harmonic functions over the circumferential direction
of SMP and stepwise functions over the axial direction of SMP . This is done by tak-
ing the spring stiffness constants at a single vertical line in SMP . For i = x, z the
line at θ = 0 has to be taken, while if i = θ, the line at θ = π

2 has to be taken. These
lines represent the maxima of the spring stiffness constants. If a segment is defined
between each node on the vertical line, the characteristics of the elastic foundation
on each segment can be defined by

K
(s)
1 {u, v, w}

K
(s)
2 {u, v, w}

K
(s)
3 {u, v, w}

 =


k

(s)
nxx k

(s)
nxθ

1

n

∂

∂θ
k

(s)
nxz

−k(s)
nθx

1

n

∂

∂θ
k

(s)
nθθ −k(s)

nθz

1

n

∂

∂θ

k
(s)
nzx k

(s)
nzθ

1

n

∂

∂θ
k

(s)
nzz


u(s)(x, θ)
v(s)(x, θ)
w(s)(x, θ)

 ,
(A.10)

where, for the first and successive segments s

k
(1)
nij = αn2k̃

(1)
nijL1,

k
(s)
nij = αn2Ls

(
k̃

(s)
nij − k̃

(s−1)
nij

)
.

(A.11a)

(A.11b)
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Appendix B

Calculation of matrix products

This appendix shows how the calculation of matrix products can be performed per
entry of the resulting matrix. Let A, B and C be matrices of sizes n× n, n×m and
m× n respectively. If

G = AB, (B.1)

then G is thus of size n ×m. The individual entries Gi,j of G can alternatively be
found as

Gi,j =

n∑
k=1

Ai,kBk,j , (B.2)

for i = 1, 2, ..., n and j = 1, 2, ...,m. Here i denoted a row number while j denotes a
column number. Similarly for

H = CAB (B.3)

the individual entries Hi,j of H can be calculated from

Hi,j =

n∑
l=1

Ci,l

n∑
k=1

M l,kBk,j , (B.4)

where now i = 1, 2, ...,m and j = 1, 2, ...,m.
This method was applied in the derivation of the reduced matrices for the beam

and shell model. These reduced matrices were a result of multiplication of matrices
which consisted of functions rather then numerical values. Furthermore, each entry
in the resulting reduced matrix was to be integrated over one or several coordinates.
The entry wise calculation procedure as present above allowed to identify which
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functions were present in each integral, which was beneficial for the calculation
process.
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Appendix C

Eigenfrequencies of the
fixed-interface vibration modes

Beam Shell n = 1 Shell n = 2 Shell n = 3 Shell n = 4
3.5694 3.5707 2.3733 5.0982 9.6425
8.2893 8.2949 4.4853 5.5516 9.7954
13.066 13.087 7.7874 6.6739 10.154
16.056 16.066 11.808 8.5411 10.820
19.509 19.532 16.233 11.027 11.865
24.066 24.092 20.797 13.956 13.304
29.555 29.509 25.221 17.177 15.108
35.275 35.043 28.716 20.564 17.215
41.107 40.516 30.332 24.017 19.556
47.013 45.861 32.635 27.456 22.063
52.905 50.947 34.057 30.820 24.676
58.722 55.705 36.314 34.080 27.342
64.315 60.090 39.099 37.205 30.020
65.165 62.992 42.036 40.066 32.682
69.297 64.141 45.051 41.125 35.311
70.617 66.748 48.175 42.676 37.899
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Appendix D

Modal Assurance Criterion for
the fixed-interface vibration
modes

In this appendix the Modal Assurance Criterion is calculated for the fixed-interface
vibration modes in the shell model. The Modal Assurance Criterion is used for the
comparison of two eigenvectors φa and φb as

MAC =

(
φTa φb

)2(
φTa φa

) (
φTb φb

) . (D.1)
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Figure D.1: MAC for the fixed-interface vibration modes governing n = 1.
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Figure D.2: MAC for the fixed-interface vibration modes governing n = 2.
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Figure D.3: MAC for the fixed-interface vibration modes governing n = 3.
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Figure D.4: MAC for the fixed-interface vibration modes governing n = 4.
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Appendix E

Addtional results from the
time-domain simulations

This appendix is a direct extension of chapter 6. Figures E.1 and E.2 present the time
signals for the axial stress at the mudline at circumferential coordinate A while the
stress envelopes of the axial stress at circumferential coordinate A are additionally
shown. The data corresponds to simulations according to variation 1 and 2, as
described in section 6.3.
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Figure E.1: Time signals of the shell model’s predictions of the axial stress for n = 1
(a) and n = 2 (b). Envelopes of the axial stress distribution in the axial direction for
n = 1 (c) and n = 2 (d) . All values are calculated for the increased diameter pile at
circumferential coordinate A in the centre of the monopile’s shell and are normalised
with respect to the maximum axial stress for n = 1.
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Figure E.2: Time signals of the shell model’s predictions of the axial stress for n = 1
(a) and n = 2 (b). Envelopes of the axial stress distribution in the axial direction for
n = 1 (c) and n = 2 (d). All values are calculated for the breaking waves variation at
circumferential coordinate A in the centre of the monopile’s shell and are normalised
with respect to the maximum axial stress for n = 1.
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