<]
TUDelft

Delft University of Technology

It's a Kind of Magic
A Novel Conditional GAN Framework for Efficient Profiling Side-Channel Analysis

Karayalgin, Sengim; Kréek, Marina; Wu, Lichao; Picek, Stjepan; Perin, Guilherme

DOI
10.1007/978-981-96-0944-4_4

Publication date
2025

Document Version
Final published version

Published in
Advances in Cryptology — ASIACRYPT 2024 - 30th International Conference on the Theory and Application
of Cryptology and Information Security, Proceedings

Citation (APA)

Karayalgin, S., Kréek, M., Wu, L., Picek, S., & Perin, G. (2025). It's a Kind of Magic: A Novel Conditional
GAN Framework for Efficient Profiling Side-Channel Analysis. In K.-M. Chung, & Y. Sasaki (Eds.),
Advances in Cryptology — ASIACRYPT 2024 - 30th International Conference on the Theory and Application
of Cryptology and Information Security, Proceedings (pp. 99-131). (Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 15491
LNCS). Springer. https://doi.org/10.1007/978-981-96-0944-4_4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-981-96-0944-4_4
https://doi.org/10.1007/978-981-96-0944-4_4

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

®

Check for
updates

It’s a Kind of Magic: A Novel Conditional
GAN Framework for Efficient Profiling
Side-Channel Analysis

Sengim Karayalgin!®)@®, Marina Kréek?®, Lichao Wu?®), Stjepan Picek*®,
and Guilherme Perin®

! Leiden University, Leiden, Netherlands
{s.karayalcin,g.perin}@liacs.leidenuniv.nl
2 Delft University of Technology, Delft, Netherlands
m.krcekQtudelft.nl
3 Technical University of Darmstadt, Darmstadt, Germany
lichao.wu@tu-darmstadt.de

4 Radboud University, Nijmegen, Netherlands

stjepan.picek@ru.nl

Abstract. Profiling side-channel analysis (SCA) is widely used to eval-
uate the security of cryptographic implementations under worst-case
attack scenarios. This method assumes a strong adversary with a fully
controlled device clone, known as a profiling device, with full access to
the internal state of the target algorithm, including the mask shares.
However, acquiring such a profiling device in the real world is challeng-
ing, as secure products enforce strong life cycle protection, particularly
on devices that allow the user partial (e.g., debug mode) or full (e.g., test
mode) control. This enforcement restricts access to profiling devices, sig-
nificantly reducing the effectiveness of profiling SCA.

To address this limitation, this paper introduces a novel framework
that allows an attacker to create and learn from their own white-box ref-
erence design without needing privileged access on the profiling device.
Specifically, the attacker first implements the target algorithm on a dif-
ferent type of device with full control. Since this device is a white box
to the attacker, they can access all internal states and mask shares. A
novel conditional generative adversarial network (CGAN) framework is
then introduced to mimic the feature extraction procedure from the ref-
erence device and transfer this experience to extract high-order leakages
from the target device. These extracted features then serve as inputs
for profiled SCA. Experiments show that our approach significantly
enhances the efficacy of black-box profiling SCA, matching or poten-
tially exceeding the results of worst-case security evaluations. Compared
with conventional profiling SCA, which has strict requirements on the
profiling device, our framework relaxes this threat model and, thus, can
be better adapted to real-world attacks.

© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASTACRYPT 2024, LNCS 15491, pp. 99-131, 2025.
https://doi.org/10.1007/978-981-96-0944-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0944-4_4&domain=pdf
http://orcid.org/0009-0000-1598-8400
http://orcid.org/0000-0001-8475-1853
http://orcid.org/0000-0002-7139-732X
http://orcid.org/0000-0001-7509-4337
http://orcid.org/0000-0003-3799-7636
https://doi.org/10.1007/978-981-96-0944-4_4

100 S. Karayalgin et al.

1 Introduction

Commonly used cryptographic algorithms, such as AES and 3DES, are math-
ematically secure, as simply knowing the input and output data along with
the details of the algorithm is insufficient to recover the key within a reason-
able computation time. However, cryptographic implementations on hardware
may introduce unintentional information leakages via, for instance, power con-
sumption [27], electromagnetic emission (EM) [1], execution time [26], temper-
ature [23], and acoustics [17]. These leakages could be exploited through side-
channel analysis (SCA) and finally extract secret information.

The research community has known the threat of SCA for more than 25 years.
Multiple attacks have been developed and can be generally categorized into two
groups, depending on the availability of the profiling device. Non-profiling SCA
leverages statistical methods, distinguishers, and leakage assessment techniques
to launch direct side-channel attacks. Examples of such attacks include Differ-
ential Power Analysis [28], Correlation Power Analysis [5], and Mutual Infor-
mation Analysis [18]. These attack methods are implicitly treated as real-world
security threats, mainly because an attack is directly mounted on the victim’s
device; querying encryption or decryption executions are the only requirements
to deploy the attack. On the other hand, research on profiling SCA, such as
template attack [11] and deep learning-based SCA [34,45] has largely aimed at
enabling worst-case security assessments [7] with an assumption of access to
an identical copy of the target device. A profiling model is first built by map-
ping the relationship between the leakage measurements and the corresponding
labels (key-related intermediate data) obtained from this copy. Then, an attacker
collects leakage measurements from the target device and feeds them to the pro-
filing model to obtain the label prediction. On top of this threat model, recent
works further assume insight into values of mask shares generated during cryp-
tographic executions [36], making the attack fully white-box. An attacker can
profile each intermediate data or mask share and can finally combine the profil-
ing results together to recover the secret. Although optimal attack performance
can be reached via this threat model, we argue this threat model, including the
access to an identical device copy and the mask-shares knowledge, is not realis-
tic, as secure products often enforce robust life cycle protections, especially on
devices that offer partial (e.g., debug mode) or full (e.g., test mode) user con-
trol. Even for the security evaluation labs that are supposed to have all design
details [42], this threat model is overly strong, as the mask shares are commonly
stored in protected registers and are not accessible even by a kernel user. Even
in evaluation settings for software implementations, it is often not possible to
access randomness as this would require modifications to the implementation
(e.g., using a known seed or instrumenting source code), which results in the
evaluation targeting a characterization of the implementation as opposed to the
actual target [30]. On the other hand, if an attack can be performed with this
attack assumption, attacks are significantly easier as an attacker can profile each
individual mask share and finally recover the secret with, for instance, Soft Ana-
lytical Side-Channel Attacks [40].

It’s a Kind of Magic 101

This paper introduces a novel framework based on conditional generative
adversarial networks (CGAN) to address the overly strong attack assumptions
in profiling side-channel analysis (SCA). In line with [30], we assume that the
attacker is aware of the cryptographic implementation and masking scheme used
on the target device. With this design knowledge, the attacker sets up a similar
cryptographic implementation on a different type of the device, referred to as
the reference implementation. Since the attacker is not restricted by the device
type, they can freely choose devices that grant full control and access to all
internal states of the target algorithm, including mask shares. The proposed
CGAN-based structure is then introduced to mimic white-box feature selection
performed on the reference implementation and efficiently extract features from
a target implementation with unknown masks. This framework transforms a con-
ventional (black-box) profiling attack into a white-box profiling attack but with
reduced attack assumptions. Additionally, our framework enhances the inter-
pretability of the attack on the target dataset by splitting the feature extraction
and exploitation phases, providing deeper insights into the attack process.

In summary, our main contributions are:

— We propose a novel conditional generative adversarial network-based SCA
framework (CGAN-SCA) that allows an adversary to leverage the knowledge
from a reference implementation to extract features from a target implementa-
tion. This modified threat model and corresponding CGAN-based framework
demonstrate the potential risks that arise when an adversary has full control
over an implementation similar to the target one.

— The proposed framework allows an adversary to convert a black-box profil-
ing attack towards a white-box profiling attack capability, which drastically
improves the black-box profiling attack performance. Our results demonstrate
that applying our framework significantly reduces the difficulties of finding
an optimal profiling model in a non-worst-case security evaluation.

— The proposed CGAN-SCA framework can extract features from high-order
leakages, such as first-order masking schemes. We provide a detailed analysis
to demonstrate how the generator in a CGAN architecture precisely mimics
the features selected from a reference implementation.

— Our results indicate that once an efficient CGAN architecture is found, a
hyperparameter search for a profiling attack can be done with negligible effort,
similar to a worst-case security evaluation.!

Note: More experimental results can be found in [25]. Our source code is avail-
able in an anonymous repository.?

! We refer to Section 6 of [30] for a discussion about difficulties in finding deep learning-
based profiling models in worst and non-worst case security evaluations.
2 https://anonymous.4open.science/r/cgan_sca-TA33/.

https://anonymous.4open.science/r/cgan_sca-7A33/

102 S. Karayalgin et al.

2 Background

2.1 GANs and CGANs

Generative models are machine learning models that learn the underlying prob-
ability distribution of a given dataset [19]. Their primary objective is to generate
new samples that resemble the training data in terms of statistical properties and
structure. While discriminative models focus on learning the decision boundary
between different classes or categories of data, generative models aim to under-
stand and capture the characteristics and patterns of the entire dataset.

Generative adversarial networks proposed a novel way to train generative
models [20]. The overall idea is to adversarially train a generator and discrim-
inator where the discriminator attempts to differentiate between real and gen-
erated images, and the generator is trained to generate fake images that fool
the discriminator. These types of models have been used extensively across a
wide variety of domains. Examples include image generation [20], image trans-
lation [24], and speech-synthesis [29].

As shown in Fig. 1a, the structure consists of two adversarial models compet-
ing against each other: a generator G, with parameters ,, and a discriminator
D, with parameters ;. The main goal of the generator is to take input noise dis-
tribution p(z) and to produce synthetic or fake output data G(z,6,) that follows
a data distribution present in real data. The discriminator is trained to provide
the probability D(x, 6;) that an input data = comes from a real training set or
the generator. Both generator and discriminator are trained simultaneously in
a way that 6, to minimize log(l — D(G(z))) and 6 to minimize log D(z), as
following a min-max game with value function:

min max V (G, D) = By 108 D@)] + Bavpioyflg(1 = DG (1)

Conditional Generative Adversarial Networks (CGANs) [32], illustrated in
Fig. 1b, are a variant of the traditional GAN architecture incorporating addi-
tional information to guide the generation process. In CGANs, the generator
and discriminator receive extra input in the form of conditional variables, which
can be class labels, attribute vectors, or any other auxiliary information. This
conditioning allows for generating more targeted and controlled outputs.

2.2 Generative Models for SCA

Generative models in side-channel analysis have been limited to a few applica-
tions. In [41], the authors considered generative adversarial networks for data
augmentation. Later, a more elaborated analysis with conditional generative
adversarial networks also considered data augmentation [33]. Both analyses were
applied to protected AES implementations. In [44], the authors considered Vari-
ational AutoEncoders (VAE) to generate reconstructed and synthetic traces that
model the true conditional probability distribution of real leakage traces. In [13],
the authors proposed the EVIL-machine, a framework using a GAN-like struc-
ture to find a suitable leakage model for the target device, replacing the need

It’s a Kind of Magic 103

(Xrear)

(Zrear)
e T

Y o —
B ‘ Jraxe)
TN N\ o -~
z Generator Xrake .

(a) GAN (b) CGAN

Discriminator

Discriminator

Fig.1. GAN and CGAN structures.

for prior knowledge of the leakage characteristics. The structure is extended to
mount non-profiled attacks that exploit the learned leakage model. In [10], the
authors presented an approach using a GAN-based structure to mitigate the
issues related to the portability of profiling models. Like our framework, the
authors extracted an intermediate representation of the leakages from a pro-
filing device and then trained a generator to extract a similar representation
from unlabeled attack traces measured on another device of the same model.
They considered only unprotected implementations running on the same device
model. Finally, in [16], a GAN structure is used to translate between side-channel
domains. To accomplish this, pairs of traces are required. Again, only unpro-
tected implementations are considered. While these works consider GAN struc-
tures to transform leakage traces, these require paired measurements in different
side-channel domains [16] or only consider portability [10]. As such, the differ-
ences between the adversarial and target datasets are fairly minimal, allowing for
training the GAN structure without labels. In this work, the differences are more
significant, necessitating the inclusion of labels in the discriminator to facilitate
the convergence of our models.

When we look at applications in DLSCA where information on other imple-
mentations is utilized to build more powerful models, the use cases are still
limited. Several works have looked at utilizing transfer learning techniques to
limit the profiling complexity of attacking novel targets [15,38,43]. These works
generally look at fine-tuning models that were pre-trained on a similar task,
which reduces the number of profiling traces required from the profiling device.
Similarly, several works incorporate knowledge of the masking scheme to imple-
ment tailored DL layers that explicitly recombine secret shares [9,30]. The main
benefits here are, again, to reduce the number of required profiling traces. The
CGAN-SCA framework that we propose in the next section acts as a feature
extractor from raw datasets, and therefore, our work can also be seen as a pre-
processing method. Regarding applying deep neural networks for preprocessing
leakage traces specifically, we refer to Section 4.2 from [36]. We emphasize that
none of the related works consider a generative adversarial architecture to effi-
ciently extract features from a target dataset by learning the probability distri-
bution from an adversarial dataset, as detailed next.

104 S. Karayalgin et al.

2.3 Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR) measures the strength of a desired signal com-
pared to the background noise level, indicating the clarity and quality of the
signal in relation to the interference or irrelevant information present. In the
side-channel analysis context, SNR is a measure of the amount of leakage that
is present in a side-channel trace. It is defined as:

Var(E(X|Y))

M BV (X))

(2)
Here, E represents the arithmetic mean function and Var is the variance. Gener-
ally, we assume X to be a single point in a side-channel trace, and we condition
on Y, representing the intermediate value leaked.

3 CGAN-SCA Framework

This section proposes a novel profiling attack framework based on conditional
generative adversarial networks for side-channel analysis (CGAN-SCA). To this
end, we propose an extended profiling SCA threat model, as described next.

3.1 Threat Model and Notations

The classic threat model for profiled attacks in SCA assumes an attacker has an
open and programmable copy of the attacked device [11]. With this privileged
access right, an attacker can enable and disable countermeasures and has access
to mask shares used to generate masks (on the profiling device). This threat
model allows an evaluator to create templates for each secret share straight-
forwardly and then explicitly recombine the retrieved shares during the attack
phase. As a consequence, this attack assumption leads to near-optimal attack
performance with relatively limited resources [8]. However, as mentioned in the
introduction, access to mask shares is often not possible in practical settings.
In line with the scheme-aware threat model proposed in [30], where an attacker
has (some) knowledge of the implementation specifics of the masking scheme
but does not have access to mask shares, this work extends this threat model by
including an additional device (on top of the profiling and attack device) that
runs a similar implementation in a fully white-box setting (i.e., with access to
mask values during profiling). We refer to this device as the reference implemen-
tation. Here, access to mask values is not a problem as the reference is a separate
implementation the adversary develops themselves. Therefore, any restrictions
that apply to the identical device clone that is used in conventional profiling SCA
do not apply to the reference implementation. In scenarios where an attacker has
access to the target source code, this can even be used to create the reference
dataset by instrumenting it and taking separate measurements. In less permis-
sive scenarios where an attacker only knows the type of countermeasure (i.e., the
target is protected with first-order Boolean masking), they can create a different

It’s a Kind of Magic 105

implementation that runs the same (type of) countermeasure. If a similar pub-
lic dataset is available, the reference implementation could even be a publicly
released dataset.

One may doubt the similarity between the reference device and the target
device. It is intuitively clear that the more similar the reference and target device
are, the better. However, when differences are too large, the framework might not
be able to improve over standard profiling attacks. Broadly, it is advisable to take
devices (and implementations) that operate on the same word sizes. In practice,
this means that it seems unlikely that using a software device that operates
on 8 bits of the internal state at a time as a reference can help when we are
trying to attack a hardware (or bit-sliced) implementation that operates on larger
states. Based on our results, improvements to black-box attacks can be achieved
even when reference and target are running on different device architectures and
running different implementations of the same masking scheme. A more in-depth
discussion can be found in Sect. 8.

Based on our threat model, we refer to three categories of trace sets: X,.y,
Xprof, and Xiqrget, representing leakages from the reference, profiling, and target
devices, respectively. For clarity, X,y has known key(s) and masks, X, has
known key(s) and unknown masks, and Xqrger has unknown key and masks. A
feature selection process over X,.y results in an adversarial dataset? for the pro-
posed CGAN, also referred to as reference features f,..s. The features extracted
with the proposed CGAN-based architecture from X,,;.,r and Xyqrgct are referred
to as target or generated features f,.or and fiqrget- Ny, is the number of features
in the fref, fprof, OF frarget sets. The validation set is a subset of X,,,.,¢, denoted
as Xyq with features f,q;. Note that the validation set is excluded from training
and used to simulate attacks for hyperparameter tuning.

3.2 A Novel Conditional GAN Framework

The proposed Conditional GAN-based framework, referred to as CGAN-SCA,
is illustrated in Fig. 2. The structure consists of the following main blocks:

1. Feature selection (top of Fig. 2): this block receives at its inputs the set of ref-
erence side-channel measurements X,.; and the masks (randomness) associ-
ated with this dataset. This block outputs the features fr.s (i.e., the adversar-
ial dataset), which should contain the most leaky samples from X, similar
to the points of interest (POI) selection. In this paper, we consider differ-
ent methods for feature selection: SNR, Linear Discriminant Analysis (LDA),
and Principal Component Analysis (PCA). The feature selection process must
only be done once for each reference dataset and feature selection method.

2. Generator G (middle of Fig. 2): this block receives the side-channel measure-
ments from the target implementation at its inputs, X,.or or X¢grget- The
generator’s output is the set of extracted features, fpror O fiarget, also a

3 The term adversarial is not connected with the domain of security of Al e.g., adver-
sarial examples, but with the fact that it is a dataset used by an adversary utilizing
a GAN.

106 S. Karayalgin et al.

. S __

: 29 CGAN

. O X

. X,e 28 Framework :
! ®

. known key(s), > D E) fres .

. known masks % =

. = n

: 32

. L S

: Yrey T

. c

: E Digss™>

: 5 2

. Xprof fval i z

: known key(s), —> 0 Forof

. unknown masks o

. Q

YI’V‘UJ

T

Profiling Attack fprof Profiling Model

Generator
(after training)

A 4

X target
unknown key, Foai/target Key Recovery P(k)—>
unknown masks

Fig. 2. Proposed CGAN-SCA framework. X,.; is the reference dataset with known
secrets (i.e., masks and keys), Xprof is the profiling set with known key(s) and unknown
masks, and Xyqrge: is the target device with unknown key and mask. Y.y and Yprof
are corresponding labels to the X,..; and X,,.s datasets, respectively.

latent representation of the traces. It is trained to generate fy,os that looks
real to the discriminator.

3. Discriminator D (upper right of Fig. 2): this block receives at its input the set
of features (fres or fpros) and the corresponding set of labels (Yrer or Yprof).
The output of the discriminator is a value representation of the loss func-
tion. The discriminator is trained to discriminate between real and generated
features (frer and fpror) using labels Yy and Yppof.

4. Profiling attack (lower half of Fig.2): after the generator G is trained, it is
used to generate fyror and fiarget/foar and a profiling attack is applied on
these features. The attack follows the same classic profiling attack structure
(i.e., profiling and attack phases), where any type of profiling model can be
used. The main difference is that the model is profiled with extracted features
fprof to attack fiarget/ foar, which should contain only leaky points of interest
from the original target traces.

The main goal of training the proposed CGAN model is to generate fiqrget
outputs with the same dimension as given by f,..r and with most of its features
containing main side-channel leakages from Xiqr4c:. Thus, the generator acts
as a feature extraction or dimensionality reduction mechanism. Different from
a classic CGAN structure where the generator receives at its inputs a random
source and a label, our generator receives only the original traces Xiarger from the
target implementation and no labels. This is important as for Xyqygct, we do not

It’s a Kind of Magic 107

have labels Yiqrget, and if the generator relies on labels for extracting features,
it is not possible to apply the generator to Xy4rgc+ as labels are unavailable. We
emphasize that this architecture is a new concept introduced in this paper.

The main goal in training the generator G is to learn parameters g such
that new samples f,..y are statistically indistinguishable from samples from
reference fr.r. In other words, we train g to transform input target traces
Xtarget to the probability distribution of f;..¢. Determining the distance between
two distributions is a two-sample hypothesis test problem, which is difficult for
complicated distributions with high dimensions. Therefore, we will also judge
the quality of the generator by computing the SNR between fiqrger (i-€., the
output of the generator) and the high-order secret shares from the target device.
In our threat model, an attacker does not know these high-order secret shares
from Xiqrget, and these values will not interfere with the training of generator
and discriminator models. Here, we consider them only to visually confirm that
the generator extracts meaningful representations from Xi4rge:. It is important
to note that, during the CGAN training, we can only use X,,,..s, as the structure
requires the knowledge of its labels Y),.,¢. In this paper, the labels Y;..r and Yj.o¢
are always the value of the S-box output byte from the first AES encryption
round, without assuming the knowledge of any mask value.

After training the CGAN structure, the trained generator model is used to
transform the profiling, validation, and attack sets from X,y and Xqrger into
forof and fiqrget, as shown in the bottom part of Fig.2. Note how this feature
extraction process (i.e., predicting fiarget from Xiqrger) does not involve any
label. In the next phase, we utilize the transformed fpror and fiarger sets to
launch standard profiling attacks. In the attack phase, we obtain the probability
P(k) for each key candidate k, which allows us to derive the guessing entropy or
success rate [37] of the correct key. Therefore, the main advantage of using the
CGAN-SCA framework as a preprocessing step is that feature extraction can
be done against a black-box profiling target, allowing key recovery results closer
to white-box profiling attack performance without expensive hyperparameter
tuning efforts, as shown in Sect. 7.

3.3 CGAN Architecture

We conducted preliminary experiments on the CGAN-SCA framework to deter-
mine well-performing (though not yet optimal) architectures for both the dis-
criminator and generator models. Since this work only addresses synchronized
datasets, we verified that small MLP-based architectures for the discriminator
and generator already demonstrate satisfactory performance. However, a thor-
ough hyperparameter search is essential to achieve better results. In the case
of desynchronized measurements, CNN-based layers are highly recommended,
but this is beyond the scope of this paper and will be explored in future works.
In this section, we first describe the architectural choices for the discriminator
and generator. Then, we discuss how to evaluate the efficacy of CGAN feature
selection. We cover the specifics of our hyperparameter searches to find optimal
solutions in Sect. 4.2.

108 S. Karayalgin et al.

During the training of the CGAN model, the objective of the discriminator is
to distinguish between f,..r and fp.of. Conversely, the objective of the generator
is to generate f,.or that is similar to fr.y. While these objectives will result in
realistic-looking fprof, the generator is not forced to extract the side-channel
leakages from X,,,; in any way as it is not conditioned. While a conventional
CGAN model, where labels Y, are provided to both the generator and the
discriminator, seems like a straightforward solution to alleviate this problem,
the labels are unavailable during the attack phase. In other words, the generator
needs to convert Xigrger into frarger without labels. As such, we provide labels
only to the discriminator, which only received fp.os. This choice allows the dis-
criminator to check whether the provided leakages in f,.,r correspond to the
label Y),.of. This will then force the generator to use the side-channel leakages
in Xpror in its generated fp,o¢ as otherwise, the discriminator can easily classify
fproy as fake.

Discriminator Architecture. We first look at how to construct the discrimi-
nator model as a poorly configured discriminator will always result in the CGAN
model failing to generate useful fi4rget- Our main goal in constructing the dis-
criminator is to ensure it uses the leakages in f,..y and fpror and does not ‘mem-
orize’ the correct fr.y. Several works have shown the capability of MLPs to learn
to classify first-order protected datasets from relatively small intervals containing
leaky samples [3] or even raw traces [34]. Thus, it should be relatively easy for an
MLP-based discriminator to learn to combine leakages when its inputs contain
only leaky samples. Developing architectures for other schemes should also be
straightforward, as full access to secret shares of the reference implementation
is available. Pre-training (part of) the discriminator in a classification task, as
is done in [10], can also be an option. Learning higher-order schemes can then
be accomplished using knowledge of secret shares during training [14,31].

The discriminator serves two primary purposes: (1) classifying the input,
which comprises a combination of labels and features, into two classes (0 or
‘fake’ and 1 or ‘real’), and (2) comprehending the relationship between labels
and features. In the second case, we expect the discriminator to recognize an
input combination of labels and features as ‘real’ if the features represent the
corresponding label class. If the discriminator cannot classify whether a given
combination of features and labels is real or fake, we assume that the generated
features, denoted as fprof, are as realistic as the reference features f..y. The
discriminator model is set with a binary cross-entropy loss function.

The number of features in fr.r and fpror is limited to a maximum of Ny =
100, as the evaluated datasets contain a limited number of leaky points of interest
to what concerns the processing of high-order leakages (e.g., masks and masked
S-box output bytes). In the first experiments from Sect. 4, we define Ny = 100 for
ASCADr, ASCADf, and DPAv4.2. For CHES CTF 2018 and ESHARD-AES128,
we consider Ny = 20, as these two datasets are more noisy than previous ones.

Figure 3 illustrates the generic structure of the MLP-based discriminator
architecture. The input label (due to the conditioned fashion of the CGAN

It’s a Kind of Magic 109

structure) is concatenated with the input features that can be either f,..; or
fprof. For this architecture, we use relatively large, fully connected (dense) lay-
ers after the embedding layer of the class label. Later, in Sect.4, we refer to
the number of dense layers after the embedding layer as dense layers embedding,
in which the number of neurons in these layers will be referred to as neurons
embedding. After the concatenation layer, we consider dense layers, and each
one of them is followed by a dropout layer. Similarly to the embedding layers,
the number of dense layers after the concatenation, whose are always inter-
leaved with a dropout layer, will be referred to as dense layers dropout, each
one with a number of neurons referred to as neurons dropout. The output layer
of the discriminator always employs the sigmoid activation function for binary
classification. Dropout layers are included in the discriminator as a means of reg-
ularization. We recommended performing hyperparameter tuning, using random
search [34] as detailed in Sect.4.2, to determine the optimal number of dense
layers, their activation functions, and the corresponding number of neurons. To
reduce the search space, this model utilizes the Adam optimizer with a learn-
ing rate of 0.0025 and a (8 value of 0.5. These hyperparameters are commonly
employed in MLP-based profiling attacks [3,36], and we assume they will also
yield favorable results in this case. We emphasize that tuning is performed for
the rest of the hyperparameters.

Features

(f'ref or fpraf)

Dloss

Concatenation
Dense
Dropout

Label —

(Yre OF Yirop)

Embedding
Dense

Fig. 3. Generic architecture for the discriminator.

Generator Architecture. Different from the originally proposed CGAN struc-
ture [32] and its variants [12,46], our generator receives at its input real data
Xprof/Xtarger rather than a noise distribution p(z). The generator architecture is
a simple MLP structure without any regularization mechanism. What is expected
from the generator is to learn a mapping function f(z,0g) : Xiarget — frarget
representing a feature extraction process. When Xyqrge: is a set of leakage
traces collected from a first-order masked AES implementation, the generator is
expected to transfer from the input to the output the features from Xy, gc+ that
contain the highest SNR values with respect to two secret shares in the case of

the first order masked dataset.

110 S. Karayalgin et al.

While the task the generator needs to perform is conceptually fairly simple,
in practice, learning to extract leaky points of interest can be difficult. This
is especially true when attacks against the (resampled) full-length traces are
considered. In Table9 of [34], we see that only between 0% and 5% of random
models result in successful attacks against full-length traces, while when features
are selected based on SNR values in the white-box scenario, almost all of them
can successfully recover the target key byte. As such, finding an architecture that
is well-tuned to the task of extracting these features also requires hyperparameter
tuning effort.

3.4 Assessing CGAN’s Efficiency

Our CGAN-SCA framework assumes that only the reference device is fully con-
trolled and that its secret shares are known. On the other hand, the randomness
used to generate masks of the profiling/target dataset is unknown. This creates
a challenging situation where accurately verifying the quality of the extracted
features from Xprof/Xtarget becomes difficult. In simpler terms, we aim to mea-
sure the extent to which fi4,get represents the extracted high-order leakages
from Xiqrge+ when the target is an n-order masked implementation. To demon-
strate the effectiveness of our CGAN-SCA solution, we utilize publicly available
AES-128 datasets that also provide access to masks. Consequently, we calcu-
late the SNR of the secret shares derived from the extracted features, fiarget,
which comes from the generator’s output. These SNR values are computed solely
to confirm that the trained generator can automatically extract leakages from
Xtarget- We emphasize that the CGAN model is neither trained nor validated
using any information regarding the masks associated with the target dataset.
Thus, for the targeted implementation, the threat model always follows the clas-
sic black-box profiling attack scenario.

At the end of each CGAN training epoch, we predict the generator with the
attack set from the target dataset Xi4rget, and we compute the SNR between
extracted features fiqrger and the secret shares. This gives us two vectors with
the same number of features from fi4rge¢. From these SNR vectors, we store
the maximum SNR value. As the results from Sect. 4 confirm, the generator can
extract features from Xi4rger, and the SNR values of secret masks from fiorges
are high.

4 Experimental Results

This section first introduces the reference implementation we considered in this
paper. Then, we perform a hyperparameter search to find generator and dis-
criminator architectures for different reference and target dataset combinations.
The best CGAN architectures are used to conduct profiling attacks and compare
them with the state-of-the-art.

It’s a Kind of Magic 111

4.1 Datasets

Our framework requires limited similarity between the reference and target
implementations. To illustrate this, this paper considers five publicly available
AES software implementations and each of them can serve as a reference imple-
mentation. The implementation details and side-channel measurement setup are
detailed in Table 1. The AES is implemented on different platforms with different
instruction set architectures and clock speeds. In terms of leakage measurement,
besides the difference in the leakage sources, the side-channel acquisition pro-
cess varies significantly between each implementation: ASCAD datasets were
acquired with a sampling rate of 2G samples per second (S/s), the ESHARD-
AES128 dataset was measured with a sampling rate of 200MS/s (for other
datasets, this information is not available).

Table 1. Dataset setups. All the datasets implement the AES-128 algorithm.

Dataset ‘Side—Channel Type‘Platform and ISA ‘Clock Speed‘Countermeasure
ASCADS [3] EM AVR RISC (8 bits) AMHz Boolean Masking
ASCADr [3] EM AVR RISC (8 bits) AMHz Boolean Masking
DPAv4.2 [4] Power AVR MIPS (8 bits) AMHz RSM Masking

CHES CTF 2018 [22] Power ARM Cortex-M4 (32 bits) 168MHz Boolean Masking
ESHARD-AES128 [39] EM ARM Cortex-M4 (32 bits) 30MHz ~ Boolean Masking

The side-channel leakages of four of them, namely ASCADr, ASCADI,
DPAv4.2, and CHES CTF 2018, are the same as adopted for the NOPOI sce-
nario in [34] (see Sect. 2.3 and Table reftab:hpspssearch of [34] for specific details
of the selected intervals). The raw side-channel measurements from ASCADr,
ASCADf, DPAv4.2, and CHES CTF 2018 contain large traces with 100 000,
250000, 150 000, and 150 000 sample points per trace, respectively. Working with
such large intervals is computationally intensive, and in this paper, we also con-
sider window resampling with a window of 20 and a step of 10. The resampled
datasets result in preprocessed side-channel measurements with 25000, 10000,
15000, and 15000 samples per trace, and we consider 200000, 50 000, 70 000,
and 30 000 measurements as profiling sets for ASCADr, ASCADf, DPAv4.2, and
CHES CTF 2018, respectively. For all datasets, we consider 5000 measurements
as validation sets and another 5000 as attack sets.

The fifth dataset is ESHARD-AES128, and it consists of side-channel mea-
surements collected from a software-masked AES-128 implementation running
on an ARM Cortex-M4 device. The AES implementation is protected with a
first-order Boolean masking scheme and shuffling of the S-box operations. In
this work, we consider a trimmed version of the dataset that is publicly avail-
able? and includes the processing of the masks and all S-box operations in the

* https://gitlab.com/eshard /nucleo_sw_aes_masked_shuffled.

https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled

112 S. Karayalgin et al.

first encryption round without shuffling. This dataset contains 100000 mea-
surements, which are split into groups of 90000, 5000, and 5000 for profiling,
validation, and attack sets, respectively.

ASCADf and ESHARD-AES128 datasets are the only datasets in which the
profiling, validation, and attack keys are equal and fixed. For the rest of the
datasets, profiling, validation, and attack keys differ.

4.2 CGAN Hyperparameter Search

Through preliminary experiments, we have already confirmed that identifying
effective generator and discriminator architectures is a cost-effective process,
as most of the hyperparameter combinations we have tested yield satisfactory
results, but better sets of hyperparameters can be found. For this purpose, we
employ a random search approach with predefined hyperparameter ranges, as
outlined in Table 2. Dense layers may have different numbers of neurons for the
generator, and the subsequent layer never has more neurons than the previous
layer. This design choice reduces the search space. Due to the limited options
available for each specific hyperparameter, the number of potential generator
architectures is capped at 744, while the number of potential discriminator archi-
tectures is limited to 324. Consequently, there exists a total of 241 056 possible
CGAN hyperparameter selections. In addition, the generator and discriminator
employ the Adam optimizer with fixed learning rates. For the discriminator, we
set the learning rate to 0.0025, while for the generator, the learning rate is set
to 0.0002. The discrepancy in learning rates follows [21]. Like other neural net-
work training procedures, the CGAN training process is conducted in batches,
with a fixed batch size of 400 measurements across all hyperparameter configu-
rations and experiments from this paper. Although the batch size and learning
rates could also be included in the hyperparameter search process, we decided
to fix these as using poor learning-rate/batch-size combinations would result in
training an unnecessarily large amount of non-converging models.

Table 2. Hyperparameter search ranges for generator and discriminator architectures.

Generator Discriminator

Hyperparameter Options Hyperparameter Options

Dense layers 1,2,3,4 Dense layers Embedding|1, 2, 3

Neurons 100, 200, 300, 400, 500 Neurons Embedding 100, 200, 500

Activation Function|linear, relu, selu, Dense layers Dropout |1, 2, 3

elu, leakyrelu, tanh Neurons Dropout 100, 200, 500

Dropout Rate 0.5, 0.6, 0.7, 0.8
Activation Function leakyrelu

To identify the best hyperparameter setup, we need an evaluation metric. As
conventional machine learning metrics are generally not suitable for assessing

It’s a Kind of Magic 113

models in SCA [35], we perform a profiling attack (on the validation set) on
extracted features to evaluate the trained models. The target dataset X,,..¢ is
split into profiling and validation sets. As illustrated in Fig. 2, the input to the
generator is the profiling set X,,,.,5. After the CGAN training is finished for every
hyperparameter search attempt, we predict on profiling and validation sets from
Xprog With the trained generator. This gives us fpror and fyqr, respectively. For
both sets, the keys are assumed to be known, allowing us to validate the whole
process. To check how well the trained generator can extract leaky features from
Xprof, we perform a profiling attack by training a profiling model with fp,of
and by computing guessing entropy from f,,;. The profiling model consists of a
4-layer MLP (each layer with 100 neurons and elu activation function) trained
for 100 epochs. These hyperparameters were defined based on preliminary exper-
iments and delivered relatively efficient profiling attack results. Here, we could
also tune the profiling model architecture to find the optimal solution, which
is a process that we cover in Sect.7. The trained generator that extracts fp,of
and f,q resulting in the most successful profiling attack (i.e., the profiling model
that requires the least number of validation traces f,q; to reach guessing entropy
equal to one) is considered the optimal solution.

The inputs to the discriminator in the CGAN architecture include the
extracted features (fres or fpror) and their corresponding labels (yref OF Yprof)-
The labels yrey or ypror refer to one output byte from the first S-box in the
first AES encryption round: S-box(d; ; & k; ;). d; j (resp. k; ;) denote the j-th
plaintext byte (resp. j-th key byte) from the i-th side-channel measurement.
Only when ESHARD-AES128 is involved, the datasets are labeled according to
the Hamming weight of S-box output bytes, i.e., HW (S-box(d; ; ®k; ;)), as this
dataset leaks in this leakage model and no successful attack results were found
otherwise. Note that y,.r or y,roy need to be labeled with the same leakage
model.

Next, we provide results for ASCADr reference datasets. This dataset was
selected as a reference here as it provides the best results across the board.
Results with different reference datasets can be found in [25, Appendix A].

4.3 ASCADr as the Reference Dataset

In our first analysis, ASCADr is considered the reference dataset. We deploy a
random hyperparameter search process for each target dataset with 100 search
attempts. The CGAN is trained for 200 epochs for each of these search attempts.
At the end of each training epoch, we compute SNR between generated fea-
tures fiarge: and secret shares, specifically, the masks and masked S-box out-
put, available with the target dataset. It is important to note that, as mentioned
in Sect. 3.4, these secret shares are assumed to be unknown to the attacker.
However, in this context, we utilize their knowledge to provide evidence of our
results.

Table3 lists the best-found CGAN hyperparameters when ASCADf,
DPAV4.2, ESHARD-AES128, and CHES CTF 2018 are considered as target
datasets. Each profiling attack conducted after each hyperparameter search

114 S. Karayalgin et al.

attempt is applied only to the target key byte. When the target dataset is
ASCADf, the target key byte is ko, the first masked key byte in this dataset.
For the DPAv4.2, ESHARD-AES128, and CHES CTF 2018 datasets, the target
key byte is kq.

Table 3. Best CGAN hyperparameter for different target datasets when ASCADr is
a reference dataset.

Generator Network

Hyperparameter ASCADfDPAv4.2 ESHARD-AES128/CHES CTF 2018
Dense layers 1 4 3 4

Neurons 300 200-200-200-100|500-500-500 100-100-100-100
Activation Function linear |linear leakyrelu linear

Discriminator Network

Hyperparameter ASCADfDPAv4.2 ESHARD-AES128/CHES CTF 2018
Dense layers Embedding) 2 1 1 2

Neurons Embedding 100 100 200 200

Dense layers Dropout |3 1 1 1

Neurons Dropout 200 200 200 200

Dropout Rate 0.7 0.8 0.7 0.5

Activation Function leakyrelu|leakyrelu leakyrelu leakyrelu

After finding the best CGAN architecture for each target dataset when
ASCADr is set as the reference dataset, we repeat the CGAN training plus
the profiling attack for the rest of the key bytes in the target dataset.

Our datasets are all first-order masked AES implementations. The extracted
features fiarger should contain leakages from the masked S-box output byte
and the mask. However, as the Boolean masking operation is commutative, the
generator cannot know what secret share should be the first or the second share.
However, the order of secret shares in the generator’s output has no impact on
the whole process as long as the generator can extract leaky features from the
two secret shares from Xj4,ge¢. Notably, for masking schemes where the order
of share values matters for recombination, the generator should learn to order
shares accordingly.

Figure4 shows the evolution of the maximum SNR values for each secret
share during CGAN training. This plot illustrates the results for all target key
bytes, and the average SNR is illustrated in blue for share 1 and orange for
share 2. The results are provided for ASCADf, DPAv4.2, and ESHARD-AES128
as target datasets.” Note that these figures also show the maximum SNR values

5 As masks are unavailable for the CHES_CTF 2018 dataset, we cannot perform this
analysis for this target.

It’s a Kind of Magic 115

from the fr.; (in dashed green line) and X;4rger (dashed red line), which are
averaged over SNR obtained from secret shares associated to each key byte. As
we can see, for all target key bytes, the generator can extract features fiarget
from Xiqrget, which results in high SNR values. This confirms that our proposed
CGAN structure can efficiently extract features from high-order leaky points. In
Sect. 6, a visualization analysis is applied to the generator to express in more
detail what features are extracted from Xyqrget.

10t

1
WMW‘V

100 /‘ |
. 100,

o {
= |
7]

SNR

—— Mean SNR share 1 fiarget /| —— Mean SNR share 1 fiarget [— Mean SNR share 1 fiager
~~- Mean SNR share 1 frer 101 ~~—- Mean SNR share 1 frer | ==~ Mean SNR share 1 fror
-== Mean SNR share 1 Xearger -=-' Mean SNR share 1 Xearger 10-11| === Mean SNR share 1 Xiarger
Mean SNR share 2 farger Mean SNR share 2 farger | Mean SNR share 2 fiarget
—— Mean SNR share 2 fr —— Mean SNR share 2 fer —— Mean SNR share 2 frr
—— Mean SNR share 2 Xearger 10-2 —— Mean SNR share 2 Xearger —— Mean SNR share 2 Xiarger
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
CGAN Training Epochs CGAN Training Epochs CGAN Training Epochs
(a) ASCAD. (b) DPAv4.2. (c) ESHARD-AES128

Fig. 4. Performance of CGAN architecture against different target datasets, Xtarget,
when ASCADr is the reference dataset.

Another interesting outcome from the results shown in Fig.4 is that when
DPAv4.2 and ESHARD-128 are the target datasets, the averaged SNR levels
from fiarger (extracted features) are higher than the SNR levels from Xiqpget
(raw datasets). This occurs due to averaging but also because for some of the
target key bytes, the SNR from fi4rge; is higher than the SNR from Xiupge:-
This emphasizes the high capability of the trained generator to act as an efficient
feature extractor.

4.4 Profiling Complexity of the CGAN-SCA Framework

In this section, we evaluate the profiling complexity of the CGAN as a feature
extractor and its impact on the complexity of a black-box profiling attack on the
target dataset. This is conducted by varying the number of measurements from
Xproy that is considered for the training of generator and discriminator architec-
tures. This will allow us to check whether using reduced X, datasets still pro-
vides efficient applications of our proposed CGAN-SCA framework. An attacker
that is limited in the number of measurements from the target device is a realistic
assumption, and having a framework that works well under these circumstances is
beneficial for security assessments. Note that we do not limit the number of traces
that can be collected from a reference implementation as in our extended threat
model. We assume this is not a serious limitation for an attacker.

In this experimental setup, we first find hyperparameters that work in more
limited scenarios. The best architectures found in Sect. 4.2 using the full target
datasets do not generalize well when fewer traces are available. Thus, we repeat

116 S. Karayalgin et al.

the random hyperparameter search using the ranges provided in Sect. 4.2. We run
100 search attempts combination and select the best generator and discriminator
architectures using the validation metric explained in Sect. 3.4. For this random
search, we considered 300000 traces from Xpof.

Using the best-found generator and discriminator architectures, we then train
CGAN models using the reference dataset and 10 000 through 70 000 traces with
10000 trace steps. To check how the CGAN model trained with different num-
bers of profiling traces X,,,s impacts the performance of a black-box profiling
attack, we ran a random search using the obtained fy,,; with varying numbers of
profiling traces. As the main idea here is to focus on the process that is efficient
with less hyperparameter tuning efforts with respect to finding a good profiling
model, we decided to limit the profiling model size to small MLP networks with
up to four hidden layers. The hyperparameter ranges for the profiling attack
model search are shown in Table4.

Table 4. Hyperparameter search ranges for MLP as a profiling attack model.

Hyperparameter Options

Dense layers 1,2,3,4

Neurons 20, 50, 100, 200, 300, 400, 500

Activation Function |elu, selu, relu, leakyrelu, tanh

Learning Rate 0.001, 0.005, 0.0001, 0.0005

Batch Size 100, 200, 300, 400

Weight Initializationjrandom (normal/uniform), he (normal/uniform), glorot (normal/uniform)

For comparison, we also run these attacks in a white-box (WB) profiling
scenario (following the white-box DL setup in Sect.7) where features from
Xprof/Xtarger are selected based on SNR.

As can be seen in Table 5, the CGAN framework can be used even in scenar-
ios where only limited profiling traces are available from the target device. The
columns indicate the number of profiling traces Xy, considered for training
the CGAN architecture. Successful attacks are possible with only 10000 profil-
ing traces in both tested scenarios. While the attack results are not as efficient as
with more traces, the ability of the CGAN network to learn in this limited sce-
nario is somewhat surprising as the conventional discriminative DLSCA models
often require significantly more profiling traces to generate efficient models [30].
In fact, our results are more aligned with the scheme-aware adversary who uti-
lizes knowledge of the masking scheme to explicitly embed the combination of
secret shares into a neural network layer (namely, the Grouprecombine- [30] and
Bilinear [9] layers). As such, we note that including reference traces has similar
benefits to these layers in terms of aiding the networks in learning the secret-
share recombination.

Furthermore, in Table5, we see that training a CGAN model with larger
numbers of profiling traces can alleviate the need for using the full profiling set

It’s a Kind of Magic 117

in the subsequent attack phase. The CGAN feature selection has a similar effect
to selecting features in a white-box setting. While using more profiling traces has
clear benefits regarding attack performance, the feature selection provided by
the CGAN makes it significantly easier for attack models to converge in limited
scenarios by eliminating the presence of uninformative samples. This emphasizes
that the CGAN framework can, to an extent, emulate feature selection effectively
without having access to the mask shares of a target device.

Table 5. Number of traces to reach GE =1 for varying numbers of profiling traces for
ASCADr vs. DPAv4.2

CGAN training traces

Profiling Traces|10 00020 000 30 00040 000 50 000 60 000 70 000 WB
70 000 - - - - - - 9 1
67500 - - - - - - 1 1
65000 - - - - - - 10 1
62 500 - - - - - - 9 1
60 000 - - - - - 19 10 2
57500 - - - - - 21 10 1
55000 - - - - - 20 10 1
52500 - - - - - 25 11 2
50000 - - - - 21 20 11 1
47500 - - - - 22 25 12 1
45000 - - - - 22 26 10 2
42500 - - - - 24 22 11 2
40000 - - - 29 25 25 11 2
37500 - - - 3 21 29 11 2
35000 - - - 31 25 22 11 2
32500 - - - 3 26 23 15 2
30000 - - 14 36 25 29 12 2
27500 - - 11 35 28 30 15 2
25000 - - 15 37 29 29 15 2
22500 - - 18 38 2t 28 20 2
20000 - 28 21 39 33 28 19 3
17 500 - 30 21 45 31 34 27 3
15000 - 37T 26 58 45 56 34 3
12 500 - 32 3 72 70 66 60 4
10000 627 48 38 99 89 155 96 4
7500 680 56 46 131 143 107 203 5
5000 797 91 78 251 252 372 285 12

118 S. Karayalgin et al.

5 The Analysis of the Latent Space

In this section, we analyze how variations in the construction of f,.; can impact
how the generator network performs at extracting features. We first look at
the effect of organizing leaky features in f..y in various ways and whether the
generator network can mimic these patterns accurately. Second, we investigate
whether f,.¢ can also be created using alternative pre-processing methods, such
as PCA and LDA.

5.1 Varying f,.r Leakage Pattern

Here, we analyze whether the generator network in the CGAN framework can
mimic the leakage patterns present in the adversarial set f..r. This analysis
provides more insights into the relationship between the generator and discrim-
inator. As explained before, the generator needs to extract main features from
Xtarget, and it is important to confirm if these extracted features fiqrge: follow
the pattern from reference features f,..y. This is an expected outcome from the
generator as it follows the principle of GAN architectures where the generator
is trained to produce outputs that are statistically similar to the adversarial
dataset (which, in our case, is given by frey).

This analysis considers ASCADr to be the reference dataset and ASCADf to
be the target dataset. This scenario was chosen as these datasets have very high
SNR peaks concerning their secret shares and are of the same implementation
and device model, simplifying the analysis without expensive hyperparameter
tuning efforts. Note, however, that these datasets were acquired with distinct
acquisition settings.

From the SNR-based feature selection process on ASCADr, we select 50
features for each secret share to have a total of Ny = 100. Thus, we organize
these features in two different patterns, as shown in Figs. 5a and 5c. During the
training of the CGAN architecture, at the end of each epoch, we compute the
SNR levels for the secret shares on fiqrget, provided by the generator. Note in the
results given in Figs. 5b and 5d how the generator learns to mimic precisely the
leakage distributions from f,.s. These plots represent the range of minimum and
maximum SNR values obtained during CGAN training epochs (i.e., we compute
the SNR at the end of each CGAN training epoch). The solid lines represent
the mean SNR values. These results confirm that our generator can extract
leaky features from the input target traces Xyqrge:- An essential insight derived
from this analysis is the significant role played by the feature selection process
in transforming X,.r into fr.r for the generator’s feature extraction task. The
number and distribution of leaky points of interest in f,..r directly impact the
generator’s performance on its task.

5.2 Varying Reference Feature Selection Method

While it is clear that the generator can effectively emulate feature selection
of SNR peaks, this method is relatively straightforward when compared with

It’s a Kind of Magic 119

methods currently used in literature, like LDA [6] or PCA. It is interesting to
verify whether our framework allows alternative feature selection methods to be
emulated. To this end, we run experiments using LDA and PCA for constructing
fres. For both methods, we first select the 100 highest SNR features for each
share and then transform these features into 5 components per share. Thus, in
total, the number of features becomes Ny = 10. To test whether the framework
can also emulate these methods, we run attacks against DPAv4.2 using ASCADr
as a reference. To tune models for these cases, we run a hyperparameter search
using the same ranges as in Sect. 4.2.

In Fig. 6, we see that the more complex feature selection methods used for the
reference dataset still result in converging generators. After training generator
and discriminator models, when both PCA and LDA are taken into account
for feature selection from the reference dataset, we apply profiling attacks on
extracted features fpror and fiarger. We can retrieve the correct key byte with
4 and 3 traces for PCA and LDA, respectively. The final performance is similar
to the performance of the generators in Sect.4, and the attack performance is
comparable to the attacks with the same datasets in Table 6. From these results,
we can conclude that the CGAN framework is not limited to only using SNR-
based feature selection and also performs well for alternative solutions.

6 Visualizing Generator’s Feature Extraction with LRP
Attribution Method

In the previous section, we demonstrated that the generator effectively extracts
features from Xiqrge+ by mimicking the pattern observed in frr. Additionally,
we also verified that the feature selection method to produce f,.r has little
impact on the whole CGAN-SCA results. This section applies the Layer-wise
Relevance Propagation (LRP) [2] method to analyze the generator further. LRP
is a cost-effective solution that provides interpretability and, for our case, con-
firms that the generator accurately captures leakage from actual leaky points of
interest from Xy4ge¢. The primary objective of this section is to present evidence
that the generator, although not conditioned with labels, can extract features
from the high-order leaky points of interest rather than functioning solely as a
preprocessing step that leads to dimensionality reduction.

In Fig.7, we provide two scenarios. The figure on the top-left shows the
LRP values obtained from the trained generator when the reference dataset is
ASCADr, and the target dataset is ASCADf. The generator’s output produces
ftarget With Ny = 100 features per trace. For this case, the selected pattern
for frey is exactly what is shown in Fig.5a. Thus, as the generated features
ftarger have the same shape as shown in Fig. 5b, we compute LRP for the first
50 features for share 1 and the other 50 features for share 2. Comparing with
the SNR values obtained from the same target key byte of ASCADf (plot on
the bottom-left of Fig. 7), we see that the generator extracts the correct features
from Xiarget-

120 S. Karayalgin et al.

gl — Share 1 6. — Share 1
—— Share 2 —— Share 2
5_
6,
o4 o
& 4 &
2_
0’
20 40 60 80 100 20 40 60 80 100
Features Features
(a) frer (ASCADI). (b) frarget (ASCADE).
gL — Share 1 81 —— Sharel
—— Share 2 7 —— Share 2
61 61
5,
24 o
G 4 G4
3.
24 2
1,
0+ 0
20 40 60 80 100 20 40 60 80 100
Features Features
(¢) fref (ASCADr). (d) frarget (ASCADY).

Fig. 5. SNRs of frcs (left) with the corresponding fiarget (right).

Furthermore, we present an example using the ESHARD-128 dataset. In this
case, the generator is trained with ASCADf as the reference dataset. Following
the same process as in the previous example, we obtain the results depicted
on the right side of Fig. 7. It is noteworthy how the generator can extract fea-
tures that align with the location of SNR peaks concerning the processing of
high-order leakages. This interpretability analysis confirms the generator’s effec-
tiveness in extracting high-order leakages from a target dataset when it is not
even conditioned to any label class. Indeed, only conditioning the discrimina-
tor in our proposed CGAN structure is enough to implement efficient feature
extraction from masked datasets. However, as the CGAN structure never sees
the labels from the target attack set and is still able to extract features from this

It’s a Kind of Magic 121

—— Max SNR share 1 |
—— Max SNR share 2 1o

™ wMNWWWN w’U\W‘MM

SNR

—— Max SNR share 1
—— Max SNR share 2

0 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Epochs Epochs

(a) PCA (b) LDA

Fig. 6. Maximum SNR evolution for the best model hyperparameter search ASCADr
vs. DPAv4.2 using LDA/PCA for generating fref.

Xrer = ASCADT, Xtarget = ASCADF Xrer= ASCADF, Xtarget = ESHARD — AES128

—— Share1 —— Share1
| —— share2 ~—— Share2

N
[
)

o
o

.4
LRP Magnitude

LRP Magnitude

o
o
°

T T T T T T T T T T T T T
o 2000 4000 6000 8000 10000 200 400 600 800 1000 1200 1400

Samples Samples
Xtarget = ASCADf Xtarget = ESHARD — AES128
4 —— Share 1 —— Share 1
—— Share 2 - —— Share 2
« «
G 27 &
0.1
0 0.0 4 u‘*
T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 200 400 600 800 1000 1200 1400

Samples Samples

Fig.7. Comparison between LRP magnitude and SNR values from secret shares
obtained for a single target key byte.

attack set efficiently, we may intuitively conclude that the generator learns to
extract input features from specific positions. The results in this section provide
conditions to make the application of the CGAN-SCA framework to black-box
profiling attacks more interpretable. It points out the locations in the target
dataset Xyqrget, Where feature extraction can expose potential vulnerabilities in
the implemented countermeasures.

7 Profiling Attacks and Comparison with State-of-the-Art

We employ state-of-the-art profiling attack methods as a benchmark to compare
against our results. More precisely, we compare the number of attack traces that
are necessary to achieve guessing entropy equal to 1 when the attack considers
up to 2000 traces. Moreover, we compare the success of a hyperparameter search
process. The following analysis is conducted for each dataset:

122 S. Karayalgin et al.

- CGAN-SCA with DL-based profiling attack (CGAN-SCA): this attack
is implemented with the CGAN-SCA framework presented in Sect.3.2. The
CGAN-SCA architecture is trained to achieve an efficient generator model that
converts Xy of and Xiarger traces into fprop and fiarger. After obtaining these
extracted features, we apply a DL-based profiling attack.

- DL-based black-box profiling attack (BBDL): in this case, we apply
DL-based profiling SCA on datasets without feature selection. The attack is
considered a black box as the profiling phase does not consider any knowledge
about countermeasures or secret randomness.

- DL-based white-box profiling attack (WBDL): this profiling attack
assumes that during profiling, an adversary can implement feature selection as
countermeasures (i.e., the masking scheme) and secret randomness (i.e., secret
masks) are known. Therefore, feature or points of interest selection can be applied
to profiling and attack traces.

- White-box Gaussian Template Attack (WBTA): this process follows
a white-box profiling attack in which points of interest are selected based on
the set of highest SNR peaks obtained with the knowledge of secret masks.
For all scenarios, we select 1000 points of interest by targeting a second-order
leakage function (500 points of interest for each share), which is reduced with
linear discriminant analysis (LDA) to 10 points of interest. Afterward, we build
Gaussian templates with them.

ASCADf DPAV4.2 CHES_CTF
102_ —— WB-TA 1_02_ 102_
—— CGAN
—— WB-DL
—— BB-DL
w
O 1014 101 101 4
109 ‘ —10° 1 , —10°4 j ‘
10! 103 10! 103 101 103

Number of traces

Fig. 8. GE results for key-byte 2 for various targets and methods (ref: ASCADr)

The first three profiling methods, which consist of deep learning-based pro-
filing models, include a hyperparameter tuning process for a small MLP model.

It’s a Kind of Magic 123

For each of the 16 target key bytes from the full AES 128-bit key, we search
for 100 random MLP architectures using the same hyperparameter ranges from
Table 4. Each of these MLP architectures is then trained, validated, and tested
separately with:

1. forofs frarget, and fyqr sets, respectively, obtained by predicting the generator
G with the profiling, validation, and attack sets from the Xp.or and Xiarget-
This way, we implement the aforementioned CGAN-SCA with DL-based
profiling attack;

2. original Xp,¢ (split into profiling and validation traces) and Xtqrget, to imple-
ment the aforementioned DL-based black-box profiling attack: BBDL.

3. SNR-based selected features from X0 and Xiqrger to implement the afore-
mentioned DL-based white-box profiling attack: WBDL.

Through this comparison, we emphasize the significantly reduced effort from
the CGAN-SCA approach in finding an efficient profiling model that shows per-
formance comparable to optimal profiling models, as is expected for WBDL
and WBTA. Table 6 provides the performance of the five aforementioned profil-
ing attack methods on datasets listed in Sect.4.1. For the case of CGAN-SCA
methods, we provide results for different reference datasets. This table shows
results with different colors to differentiate among profiling attack categories for
better readability.

As can be seen in Fig.8 and Table 6, the attacks using ASCADr as a refer-
ence for all targets improve substantially over the BBDL attacks. Furthermore,
in the best-case scenarios for ASCAD(r/f) and DPAv4.2, results are compara-
ble to attacks following white-box assumptions.® Only for ESHARD, and when
DPAv4.2 is used as a reference, we see that white-box attacks still substan-
tially outperform our attacks. We mostly attribute this to the larger difference
in implementations/devices, which we discuss in more depth in Sect. 8.

Table 7 shows the search success from the hyperparameter search part of DL-
based profiling attack methods. The search success indicates the percentage of
times a profiling model has reached the guessing entropy of 1 with less than 2 000
attack traces. The percentages are the average of all target key bytes. CGAN-
SCA and WBDL present similar performances and are significantly superior to
black-box DL. This finding is impressive if we remember that CGAN-SCA is
a black-box (i.e., non-worst case) profiling approach. The results from Table 7
corroborate what was already shown in [34]: spending significant effort on hyper-
parameter search process eventually results in a high-performing deep neural net-
work against first-order masking in AES implementations. However, what mat-
ters in this table is the search success, which informs more about the chances of
finding a good group of hyperparameters and training settings. Although black-
box DL-based profiling attacks result in successful attacks with (in some cases)
very few required attack traces, the search success with CGAN-SCA frame-
work and white-box DL approaches are significantly higher. For instance, when

5 While it seems likely that CHES_CTF 2018 results are competitive with white-box
attacks, we cannot verify this as mask values are not available.

124 S. Karayalgin et al.

Table 6. The minimum number of attack traces to obtain guessing entropy equal to
1. The symbol x indicates that the target key byte is not recovered with 2000 attack
traces. The NA indicates that the attack is not applicable because the target key bytes
are unprotected.

ko ki ke ks ka ks ke kr ks ko kio ki kiz kiz ki Kkis

Target

ASCADr
Method
CGAN-SCA (ref: ASCADf)] NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CGAN-SCA (ref: DPAv4.2)) NA NA 4 2 2 2 5 11 10 2 6 8 5 2 2 2
White-box DL NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Black-box DL NA NA 1 2 3 1 29 5 1 166 9 9 9 6 1 1
White-box TA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ASCADf
CGAN-SCA (ref: ASCADr) | NA NA 1 1 1 1 1 4 1 5 1 15 5 1 5
CGAN-SCA (ref: DPAv4.2) NA NA 3 3 2 2 2 3 7T 2 5 2 7 5 2 5
White-box DL NA NA 1 1 1 1 1 4 1 2 13 3 1 1
Black-box DL NA NA 9 6 9 8 18 x 271 6 20 6 x 34 17 7
White-box TA NA NA 1 1 1 1 1 1 4 1 2 1 8 4 1 5
DPAv4.2
CGAN-SCA (ref: ASCADr)| 1 8 2 B 3 2 4 2 7 2 8 8 2 2 5 2
CGAN-SCA (ref: ASCADf)| 5 2 8 12 3 6 5 9 4 3 7T 6 3 2 5 8
White-box DL 1 1 1 2 3 1 2 1 3 1 2 2 1 1 2 1
Black-box DL x 315 140 «x x 1454 x X X X X
White-box TA 3 2 2 3 2 3 3 2 5 3 4 3 2 2 3 2

CHES CTF 2018

CGAN-SCA (ref: ASCADr) 36 24 22 20 51 19 21 36 34 18 25 23 24 22 22 19
CGAN-SCA (ref: ASCADf) 19 39 27 30 19 14 22 25 32 15 29 30 33 18 27 18
CGAN-SCA (ref: DPAv4.2) | 91 47 36 115 159 200 73 138 858 56 136 50 557 78 124 52
Black-box DL x 471 367 77 668 1327 304 1216 1369 957 83 662 x 459 413 380
ESHARD-AES128

CGAN-SCA (ref: ASCADr)| 556 1105 312 224 709 257 396 206 967 385 244 272 309 294 292 299
CGAN-SCA (ref: ASCADf) 491 1248 528 357 1539 532 641 493 622 552 373 513 732 406 454 572
CGAN-SCA (ref: DPAv4.2) 13563 x x 1242 x x x 1051 x 1787 1643 x x x x X

White-box DL 640 1546 875 727 x 774 799 667 x 846 487 745 1162 649 818 1037
Black-box DL 758 748 625 616 1957 950 536 700 x 769 846 479 1527 769 572 462
White-box TA 67 81 97 89 110 75 123 107 152 100 100 89 127 87 111 111

Table 7. Search success for ML.LP-based profiling attack with random hyperparameter
search. The percentage indicates the number of successful MLP models out of 100, and
it is averaged for all target key bytes.

Method | CGAN-SCA | CGAN-SCA | CGAN-SCA (White-box|Black-box
Target (ref: ASCADr) (ref: ASCADS)|(ref: DPAv4.2)] DL DL
ASCADr NA 72.80% 90.47% 99.88% 8.92%
ASCADf 64.22% NA 68.25% 70.58% 9.24%
DPAv4.2 65.07% 62.16% NA 63.68% 0.74%
CHES CTF 2018 61.10% 99.55% 33.15% NA 12.14%
ESHARD-AES128 94.56% 54.48% 10.17% 63.68% | 35.60%

It’s a Kind of Magic 125

ASCADr is set as a reference, and DPAv4.2 is set as a target, the search success
for a black-box DL is 0.74%, while for CGAN-SCA is 65.07%. For the case when
ASCAD(f is the reference and CHES CTF 2018 is the target, the search success
increases from 12.14% for a black-box approach to 99.55% with our CGAN-SCA
framework. This justifies the need for feature selection (in the case of white-box)
or feature extraction (in the case of CGAN-SCA framework) to speed up secu-
rity evaluations. Since our proposed solution is also black-box, it becomes very
attractive for efficiently assessing the security of masked implementations.

8 Discussion

Profiling attack results presented in this paper are aligned with the state-of-the-
art for the evaluated datasets (see [34] for the ASCAD, CHES CTF 2018, and
DPAv4.2 datasets. To the authors’ knowledge, there are no published ESHARD-
AES128 dataset results for profiling attacks). Such results were possible due to
the following additional elements in a security assessment process:

1. Using a (white-box) reference dataset. The CGAN-SCA structure
requires a reference device with similar implementation specifications to the
target one. This paper shows that reference and target datasets can be gath-
ered from different devices, cryptographic designs (with at least the same
cryptographic algorithm and a similar masking scheme), varying source codes,
and different acquisition setups. For some experimental examples, reference
and target datasets come from different side-channel types (e.g., power and
electromagnetic analysis). Together with the availability of a reference imple-
mentation, it should also be possible to implement feature selection from
this same implementation. This paper assumes that secret masks from the
reference implementation are known to compute feature selection.

2. The employment of a generative model for feature extraction from
target side-channel measurements. As specified in Sect. 3.2, the CGAN-
SCA framework can implement feature extraction from a target dataset, and
a reference dataset is used as an adversarial dataset. We are aware that this
whole process increases the complexity of the analysis because a CGAN archi-
tecture (i.e., generator and discriminator neural networks) needs to be trained
before applying a profiling attack on the extracted features from the target
dataset. However, our experimental analysis demonstrated that when an effi-
cient CGAN architecture is found, and the extracted features contain high
SNR levels concerning the leakage of intermediate variable (e.g., masks and
masked S-Box outputs), defining a profiling model becomes relatively easy.
Therefore, in practice, the efforts to find an efficient profiling model (see [34]
where the authors performed very costly hyperparameter tuning processes)
are transferred to defining an efficient CGAN architecture.

3. Hyperparameter tuning for generator and discriminator models.
An efficient CGAN architecture requires some carefully tuned generator and
discriminator models. Overall, this is the only time-consuming part of the
proposed CGAN-SCA framework. However, this whole process brings clear

126 S. Karayalgin et al.

benefits, as a feature extraction process from raw side-channel measurements
becomes possible without assuming any knowledge about low-level counter-
measure details and secret randomness.

Our results present three broad categories of ‘similar’ implementations, allow-
ing us to give some takeaways on how similar the reference implementation must
be:

1. ASCAD(f/r) vs. ASCAD(f/r): The reference device and implementation
are the exact same. This scenario can occur when an attacker/evaluator has
access to the source code of an implementation but cannot alter this imple-
mentation on the target device. In such a scenario, the attacker/evaluator
could utilize an instrumented version of the source to create a reference
dataset. Our results in Sect. 4 show that the inclusion of this reference imple-
mentation results in significantly improved attack results over black-box DL
attacks, and the results are competitive with white-box approaches.

2. ASCAD(f/r) vs. DPAv4.2: The reference and target devices are similar
in that both are 8-bit micro-controllers with RISC-based micro-architectures.
The measurements for these targets are in different side-channel domains
(EM for ASCAD vs Power for DPA). Both implementations incorporate
Boolean masking-based countermeasures, although the specifics of the imple-
mentations differ somewhat. For DPAv4.2, an RSM-based masking scheme is
employed, which results in 16 possible mask values, while for both ASCAD
versions, we have 256 possible mask values. Results here still showcase strong
improvements over black-box DL, especially when DPAv4.2 is the target, but
the attacks are somewhat less efficient than white-box attacks.

3. (ASCAD/DPA) vs. (CHES_CTF/ESHARD): We target 32-bit micro-
controllers with ARM micro-architectures while using 8-bit AVR micro-
controllers as the reference. The implementations are broadly similar in that
these are all software AES implementations protected with first-order Boolean
masking. As we see in Table6, the attacks against both CHES_CTF and
ESHARD are better than the black-box DL attacks when ASCAD is used as
the reference, while the results are similar to (CHES_CTF), or worse than
(ESHARD) black-box attacks when DPA is used as the reference. Addition-
ally, we see that for ESHARD, the performance of white-box attacks is still
significantly better than that of our CGAN-SCA setups.

In ideal cases where the reference implementation only differs in terms of
allowing the knowledge of mask values,” we see that results are competitive with
white-box attacks. The device model and architecture similarity are more impor-
tant than countermeasure implementation for other settings. While our results
do not allow for strong requirements on the reference implementation, overall,
the necessary ‘similarity’ to improve over black-box attacks is not extremely
stringent. In some of the tested settings where the devices differ in terms of
micro-architecture and implementation, we still see improvements over black-box

" The ASCAD(f/r) vs. ASCAD(f/r) scenario.

It’s a Kind of Magic 127

attacks although the performance in these cases is worse than their white-box
counterparts. In addition, it is more important to ensure the devices are similar
in terms of, e.g., micro-architecture or bus size, over specific countermeasure
implementation details (i.e., RSM vs. Boolean masking).

9 Conclusions and Future Work

This paper proposes a novel CGAN-based framework to automatically extract
features from a target dataset when the adversarial dataset comes from a similar,
open, and fully controlled implementation. Our solution differs from conventional
CGAN architectures from the literature: the generator receives real (target)
traces instead of noise, and it is not conditioned with label class, allowing it to
extract features from an unlabeled attack set. By applying our framework to five
publicly available masked AES datasets, we obtain profiling attack results that
significantly surpass the state-of-the-art black-box security assessment and rival
the performance of worst-case (white-box) security evaluations. The proposed
CGAN-SCA framework can precisely extract features from high-order leakages
by mimicking the feature distribution present in a reference dataset. Our method
makes hyperparameter tuning in a deep learning-based profiling attack almost
negligible, similar to white-box deep learning-based security evaluations.

For future work, we plan to investigate the effectiveness of CGAN architec-
tures to extract features from high-order masking schemes. Moreover, we plan
to implement more complex generator and discriminator models, such as CNN-
based architectures, which could extract features from desynchronized datasets.
More complex CGAN structures could potentially reduce some of our frame-
work’s limitations, such as using a reference dataset with a minimum acceptable
SNR level regarding the n secret shares. A way to define a cost-efficient early
stopping metric during CGAN training could also be an interesting research
direction. Finally, we plan to explore whether the proposed structure can be
adapted to non-profiling settings.

Acknowledgements. This work was performed using the ALICE compute resources
provided by Leiden University.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Jr., B.S.K., Kog, C.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,
August 13-15, 2002, Revised Papers. Lecture Notes in Computer Science, vol. 2523,
pp- 29-45. Springer (2002). https://doi.org/10.1007/3-540-36400-5_4

2. Bach, S., Binder, A., Montavon, G., Klauschen, F., Miiller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLOS ONE 10(7), 1-46 (07 2015). https://doi.org/10.1371/journal.
pone.0130140

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140

128

10.

11.

12.

13.

14.

S. Karayalgin et al.

Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptographic Engi-
neering 10(2), 163-188 (2020). https://doi.org/10.1007/513389-019-00220-8
Bhasin, S., Bruneau, N., Danger, J., Guilley, S., Najm, Z.: Analysis and improve-
ments of the DPA contest v4 implementation. In: Chakraborty, R.S., Matyas,
V., Schaumont, P. (eds.) Security, Privacy, and Applied Cryptography Engineer-
ing - 4th International Conference, SPACE 2014, Pune, India, October 18-22,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8804, pp. 201-218.
Springer (2014). https://doi.org/10.1007/978-3-319-12060-7_14, https://doi.org/
10.1007/978-3-319-12060-7_14

Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings. Lecture Notes in Computer Science, vol. 3156, pp. 16—
29. Springer (2004). https://doi.org/10.1007/978-3-540-28632-5_2

Bronchain, O., Cassiers, G., Standaert, F.: Give me 5 minutes: Attacking ASCAD
with a single side-channel trace. IACR Cryptol. ePrint Arch. p. 817 (2021), https://
eprint.iacr.org/2021/817

Bronchain, O., Durvaux, F., Masure, L., Standaert, F.: Efficient profiled side-
channel analysis of masked implementations, extended. IEEE Trans. Inf. Forensics
Secur. 17, 574-584 (2022). https://doi.org/10.1109/TIFS.2022.3144871
Bronchain, O., Standaert, F.: Side-channel countermeasures’ dissection and the
limits of closed source security evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020(2), 1-25 (2020). https://doi.org/10.13154/tches.v2020.i2.1-25

Cao, P., Zhang, C., Lu, X., Gu, D., Xu, S.: Improving deep learning based second-
order side-channel analysis with bilinear CNN. IEEE Trans. Inf. Forensics Secur.
17, 3863-3876 (2022). https://doi.org/10.1109/TIFS.2022.3216959

Cao, P., Zhang, H., Gu, D., Lu, Y., Yuan, Y.: AL-PA: cross-device profiled side-
channel attack using adversarial learning. In: Oshana, R. (ed.) DAC ’22: 59th
ACM/IEEE Design Automation Conference, San Francisco, California, USA, July
10 - 14, 2022. pp. 691-696. ACM (2022). https://doi.org/10.1145/3489517.3530517
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Kog, C.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13-28. Springer (2002).
https://doi.org/10.1007/3-540-36400-5_3

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, 1., Abbeel, P.: Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain. pp. 2172-2180 (2016), https://proceedings.neurips.cc/paper/
2016/hash/7c9d0b1f96aebd7b5eca8c3edaal9ebb- Abstract.html

Cristiani, V., Lecomte, M., Maurine, P.: The evil machine: Encode, visualize and
interpret the leakage. In: Proceedings of the 38th ACM/SIGAPP Symposium on
Applied Computing. p. 1566-1575. SAC 23, Association for Computing Machinery,
New York, NY, USA (2023). https://doi.org/10.1145/3555776.3577688

Dubrova, E., Ngo, K., Gartner, J.: Breaking a fifth-order masked implementation of
crystals-kyber by copy-paste. IACR Cryptol. ePrint Arch. p. 1713 (2022), https://
eprint.iacr.org/2022/1713

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-540-28632-5_2
https://eprint.iacr.org/2021/817
https://eprint.iacr.org/2021/817
https://doi.org/10.1109/TIFS.2022.3144871
https://doi.org/10.13154/tches.v2020.i2.1-25
https://doi.org/10.1109/TIFS.2022.3216959
https://doi.org/10.1145/3489517.3530517
https://doi.org/10.1007/3-540-36400-5_3
https://proceedings.neurips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://doi.org/10.1145/3555776.3577688
https://eprint.iacr.org/2022/1713
https://eprint.iacr.org/2022/1713

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

It’s a Kind of Magic 129

Genevey-Metat, C., Gérard, B., Heuser, A.: On what to learn: Train or adapt a
deeply learned profile? IACR Cryptol. ePrint Arch. p. 952 (2020), https://eprint.
iacr.org/2020/952

Genevey-Metat, C., Heuser, A., Gérard, B.: Trace-to-trace translation for SCA. In:
Grosso, V., Péppelmann, T. (eds.) Smart Card Research and Advanced Applica-
tions - 20th International Conference, CARDIS 2021, Liibeck, Germany, Novem-
ber 11-12, 2021, Revised Selected Papers. Lecture Notes in Computer Science, vol.
13173, pp. 24-43. Springer (2021). https://doi.org/10.1007/978-3-030-97348-3_2
Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 8616, pp. 444-461. Springer (2014). https://doi.org/10.1007/978-3-662-44371-
225

Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13,
2008. Proceedings. Lecture Notes in Computer Science, vol. 5154, pp. 426—442.
Springer (2008). https://doi.org/10.1007/978-3-540-85053-3_27

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http://
www.deeplearningbook.org

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances
in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada. pp. 2672-2680 (2014), https://proceedings.neurips.cc/paper/2014/hash/
5calde9b122{61f8f06494c97blafcct3- Abstract.html

Heusel, M., Ramsauer, H., Unterthiner, T, Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Guyon,
I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA. pp. 6626-6637 (2017), https://proceedings.neurips.cc/
paper/2017/hash/8a1d694707eb0fefe65871369074926d- Abstract.html

Hu, Y., Zheng, Y., Feng, P., Liu, L., Zhang, C., Gohr, A., Jacob, S., Schindler,
W., Buhan, I., Tobich, K.: Machine learning and side channel analysis in a CTF
competition. JACR Cryptol. ePrint Arch. p. 860 (2019), https://eprint.iacr.org/
2019/860

Hutter, M., Schmidt, J.: The temperature side channel and heating fault attacks.
In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Appli-
cations - 12th International Conference, CARDIS 2013, Berlin, Germany, Novem-
ber 27-29, 2013. Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8419, pp. 219-235. Springer (2013). https://doi.org/10.1007/978-3-319-08302-
515

Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. pp. 5967—
5976. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.632

https://eprint.iacr.org/2020/952
https://eprint.iacr.org/2020/952
https://doi.org/10.1007/978-3-030-97348-3_2
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-540-85053-3_27
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://eprint.iacr.org/2019/860
https://eprint.iacr.org/2019/860
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1109/CVPR.2017.632

130

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

S. Karayalgin et al.

Karayalcin, S., Krcek, M., Wu, L., Picek, S., Perin, G.: It’s a kind of magic: A novel
conditional GAN framework for efficient profiling side-channel analysis (extended
version). Cryptology ePrint Archive, Paper 2023/1108 (2023), https://eprint.iacr.
org/2023/1108

Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Proceedings of CRYPTO’96. LNCS, vol. 1109, pp. 104-113.
Springer-Verlag (1996)

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. Lec-
ture Notes in Computer Science, vol. 1666, pp. 388-397. Springer (1999). https://
doi.org/10.1007/3-540-48405-1_25

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of the
19th Annual International Cryptology Conference on Advances in Cryptology. pp.
388-397. CRYPTO ’99, Springer-Verlag, London, UK, UK (1999), http://dl.acm.
org/citation.cfm?id=646764.703989

Kong, J., Kim, J., Bae, J.: Hifi-gan: Generative adversarial networks for efficient
and high fidelity speech synthesis. In: Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual (2020), https://proceedings.neurips.cc/paper/
2020/hash /c5d736809766d46260d816d8dbc9eb44- Abstract.html

Masure, L., Cristiani, V., Lecomte, M., Standaert, F.: Don’t learn what you already
know scheme-aware modeling for profiling side-channel analysis against masking.
TIACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 32-59 (2023). https://doi.
org/10.46586/tches.v2023.11.32-59

Masure, L., Strullu, R.: Side channel analysis against the anssi’s protected AES
implementation on ARM. TACR Cryptol. ePrint Arch. p. 592 (2021), https://
eprint.iacr.org/2021/592

Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR
abs/1411.1784 (2014), http://arxiv.org/abs/1411.1784

Mukhtar, N., Batina, L., Picek, S., Kong, Y.: Fake it till you make it: Data aug-
mentation using generative adversarial networks for all the crypto you need on
small devices. In: Galbraith, S.D. (ed.) Topics in Cryptology - CT-RSA 2022 -
Cryptographers’ Track at the RSA Conference 2022, Virtual Event, March 1-2,
2022, Proceedings. Lecture Notes in Computer Science, vol. 13161, pp. 297-321.
Springer (2022). https://doi.org/10.1007/978-3-030-95312-6_13

Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for deep learning-
based side-channel analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2022(4), 828-861 (Aug 2022). https://doi.org/10.46586/tches.
v2022.i4.828-861, https://tches.iacr.org/index.php/TCHES /article/view /9842
Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel evalu-
ations. JACR Transactions on Cryptographic Hardware and Embedded Systems
2019(1), 209237 (Nov 2018). https://doi.org/10.13154/tches.v2019.11.209-237,
https://tches.iacr.org/index.php/ TCHES /article/view /7339

Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: Deep learning-based
physical side-channel analysis. ACM Comput. Surv. (oct 2022). https://doi.org/
10.1145/3569577, just Accepted

https://eprint.iacr.org/2023/1108
https://eprint.iacr.org/2023/1108
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html
https://doi.org/10.46586/tches.v2023.i1.32-59
https://doi.org/10.46586/tches.v2023.i1.32-59
https://eprint.iacr.org/2021/592
https://eprint.iacr.org/2021/592
http://arxiv.org/abs/1411.1784
https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.46586/tches.v2022.i4.828-861
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

It’s a Kind of Magic 131

Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 443-461. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

Thapar, D., Alam, M., Mukhopadhyay, D.: Deep learning assisted cross-family
profiled side-channel attacks using transfer learning. In: 22nd International Sym-
posium on Quality Electronic Design, ISQED 2021, Santa Clara, CA, USA, April
7-9, 2021. pp. 178-185. IEEE (2021). https://doi.org/10.1109/ISQED51717.2021.
9424254

Vasselle, A., Thiebeauld, H., Maurine, P.: Spatial dependency analysis to extract
information from side-channel mixtures: extended version. J. Cryptogr. Eng. 13(4),
409-425 (2023). https://doi.org/10.1007/S13389-022-00307-9

Veyrat-Charvillon, N., Gérard, B., Standaert, F.X.: Soft analytical side-channel
attacks. In: Advances in Cryptology—ASTACRYPT 2014: 20th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, ROC, December 7-11, 2014. Proceedings, Part I 20. pp. 282—
296. Springer (2014)

Wang, P., Chen, P., Luo, Z., Dong, G., Zheng, M., Yu, N., Hu, H.: Enhancing the
performance of practical profiling side-channel attacks using conditional generative
adversarial networks. CoRR abs/2007.05285 (2020), https://arxiv.org/abs/2007.
05285

Wu, L., Perin, G., Picek, S.: Not so difficult in the end: Breaking the lookup table-
based affine masking scheme. In: Carlet, C., Mandal, K., Rijmen, V. (eds.) Selected
Areas in Cryptography - SAC 2023 - 30th International Conference, Fredericton,
Canada, August 14-18, 2023, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 14201, pp. 82-96. Springer (2023). https://doi.org/10.1007/978-3-
031-53368-6_5

Yu, H., Shan, H., Panoff, M., Jin, Y.: Cross-device profiled side-channel attacks
using meta-transfer learning. In: 58th ACM/IEEE Design Automation Conference,
DAC 2021, San Francisco, CA, USA, December 5-9, 2021. pp. 703-708. IEEE
(2021). https://doi.org/10.1109/DAC18074.2021.9586100

Zaid, G., Bossuet, L., Carbone, M., Habrard, A., Venelli, A.: Conditional varia-
tional autoencoder based on stochastic attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2023(2), 310-357 (2023). https://doi.org/10.46586/tches.v2023.i2.
310-357

Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient cnn archi-
tectures in profiling attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020(1), 1-36 (Nov 2019). https://doi.org/10.13154 /tches.
v2020.i1.1-36, https://tches.iacr.org/index.php/ TCHES /article/view /8391

Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: IEEE International Conference on Com-
puter Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. pp. 2242-2251. IEEE
Computer Society (2017). https://doi.org/10.1109/ICCV.2017.244

https://doi.org/10.1109/ISQED51717.2021.9424254
https://doi.org/10.1109/ISQED51717.2021.9424254
https://doi.org/10.1007/S13389-022-00307-9
https://arxiv.org/abs/2007.05285
https://arxiv.org/abs/2007.05285
https://doi.org/10.1007/978-3-031-53368-6_5
https://doi.org/10.1007/978-3-031-53368-6_5
https://doi.org/10.1109/DAC18074.2021.9586100
https://doi.org/10.46586/tches.v2023.i2.310-357
https://doi.org/10.46586/tches.v2023.i2.310-357
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.1109/ICCV.2017.244

	It's a Kind of Magic: A Novel Conditional GAN Framework for Efficient Profiling Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 GANs and CGANs
	2.2 Generative Models for SCA
	2.3 Signal-to-Noise Ratio (SNR)

	3 CGAN-SCA Framework
	3.1 Threat Model and Notations
	3.2 A Novel Conditional GAN Framework
	3.3 CGAN Architecture
	3.4 Assessing CGAN's Efficiency

	4 Experimental Results
	4.1 Datasets
	4.2 CGAN Hyperparameter Search
	4.3 ASCADr as the Reference Dataset
	4.4 Profiling Complexity of the CGAN-SCA Framework

	5 The Analysis of the Latent Space
	5.1 Varying fref Leakage Pattern
	5.2 Varying Reference Feature Selection Method

	6 Visualizing Generator's Feature Extraction with LRP Attribution Method
	7 Profiling Attacks and Comparison with State-of-the-Art
	8 Discussion
	9 Conclusions and Future Work
	References

