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Abstract

Airborne gravimetry is an important tool for the geodesy and geophysics com-
munities. Able to provide medium to high-resolution measurements over large
areas, it is the link between the low-resolution satellite measurements and
expensive terrestrial campaigns, especially in remote areas. To explore the
potential of airborne gravimetry, the Gravimetry using Airborne Inertial Nav-
igation (GAIN) project was recently established at the faculty of Aerospace
Engineering at TU-Delft, and is currently building and testing an in-house
strapdown airborne gravimetry system with the objective of providing low-
cost, high-accuracy gravity data for use in a wide range of applications in
geodesy and geophysics. Within this thesis, the inertial sensors that will be
used within the GAIN strapdown IMU are calibrated and modeled with a
simulator to predict the accuracy of the airborne system when completed. A
sensitivity study of several campaign parameters is done to understand which
parts of the hardware and operating conditions are critical to the performance
of the system.

Of the list of applications for airborne gravity data, natural resource
exploration is one of the more demanding in terms of accuracy and resolution,
with a requirement of 0.5-2 mGal at 2 km resolution. This is beyond the range
of current strapdown systems, so in addition to assessing the performance of
the current strapdown system, additional tests were made to see what would
be needed to achieve this higher level of accuracy.

The simulation results suggest that the performance of the GAIN strap-
down system, under ideal conditions, would be 1.4mGal at 2km resolution.
Furthermore, the performance is limited by the accelerometers whose accuracy
must improve by a factor of three before the 0.5 mGal level can be achieved;
however, other options were identified that could also be used to achieve this.
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Abstract

Airborne gravimetry is an important tool for the geodesy and geophysics commu-
nities. Able to provide medium to high-resolution measurements over large areas,
it is the link between the low-resolution satellite measurements and expensive ter-
restrial campaigns, especially in remote areas. To explore the potential of airborne
gravimetry, the Gravimetry using Airborne Inertial Navigation (GAIN) project
was recently established at the faculty of Aerospace Engineering at TU-Delft, and
is currently building and testing an in-house strapdown airborne gravimetry sys-
tem with the objective of providing low-cost, high-accuracy gravity data for use
in a wide range of applications in geodesy and geophysics. Within this thesis, the
inertial sensors that will be used within the GAIN strapdown IMU are calibrated
and modeled with a simulator to predict the accuracy of the airborne system when
completed. A sensitivity study of several campaign parameters is done to under-
stand which parts of the hardware and operating conditions are critical to the
performance of the system.

Of the list of applications for airborne gravity data, natural resource explo-
ration is one of the more demanding in terms of accuracy and resolution, with a
requirement of 0.5-2mGal at 2km resolution. This is beyond the range of cur-
rent strapdown systems, so in addition to assessing the performance of the current
strapdown system, additional tests were made to see what would be needed to
achieve this higher level of accuracy.

The simulation results suggest that the performance of the GAIN strapdown
system, under ideal conditions, would be 1.4 mGal at 2 km resolution. Furthermore,
the performance is limited by the accelerometers whose accuracy must improve by
a factor of three before the 0.5 mGal level can be achieved; however, other options
were identified that could also be used to achieve this.
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Introduction

The gravity field of the Earth is not constant; it is complex and varies from point
to point over the Earth’s surface. The most visible effect of this is caused by the
flattening of the Earth (due to rotation) causing the polar regions to experience
a higher gravitational pull as they are nearest to the center of the Earth. How-
ever, smaller and more localized variations of the gravity field exist, reflecting the
Earth’s morphology, topography, hydrology, ice masses and every phenomenon that
involves movement of masses. The link between mass-distribution and the gravity
field of the Earth is what makes its determination so valuable to the scientific
community.

To study the gravity field one must first be able to represent it in a mathemat-
ical model. The concept of spatial frequency often arises in the domain of gravity
field modeling. The concept of frequency is normally applied to signals that ex-
tend over the time domain; any signal in the time domain can be expressed as
the sum of all the frequencies that compose it, where each frequency corresponds
to a sinusoid extending over a certain period of time. The same analogy can be
applied to describe Earth’s gravity field, but now using this concept of spatial
frequency; the gravity field extends over the surface of the Earth (and not over
time) and it can be divided into independent frequency components each corre-
sponding to a sinusoid that extends over a certain surface length, or wavelength.
When talking about spatial frequencies of the gravity signal it is common to use
the half-wavelength measure because it is roughly equivalent to the spacing be-
tween observations required to observe this frequency. For example, if a grid of
gravity measurements is uniformly spaced with 5 Km interval, than the maximum
half-wavelength observable from such dataset corresponds to roughly 5 Km. The
maximum half-wavelength that can be observed is also called resolution. In this
thesis the terms low-frequency, medium-frequency and high-frequency are directly
related to the gravity field of the Earth and refer to spatial resolutions above
150 km, 5 to 150 km and below 5 km respectively.

For many applications in the Earth sciences, accurate knowledge of the gravity
field can be used to determine both the shape (i.e., heights) and sub-surface prop-
erties (densities, mass transport, etc.) of a region. Oddly enough, the intuitive
concept of height is interlaced with the gravity field of the Earth. The geoid is
the equipotential surface of the gravity field which most closely follows the mean
sea level and it is used as a height reference in many different applications; it is
used to precisely determine the orbits of satellites, in the unification of countries’
height reference systems, in inertial navigation and precise attitude determination,
sea level monitoring and leveling by Global Positioning System (GPS). Each of



these applications have different requirements in the accuracy of the known geoid
(Bruton, 2000). For local and regional geoid calculation, the requirements in the
knowledge of the local gravity field can be placed at 2mGal (1 mGal = 1x1073 Gal,
where 1 Gal = 1x1072 m/s?) accuracy for spatial resolutions of 5-14 Km (Kennedy,
2002). Any change in the gravity field with time can be directly attributed to any
mass-transport phenomenon and, if continuous measurements of the gravity field
are made at different time epochs, then one can begin to monitor the evolution
of ice masses, ground water and tectonics. The requirements for these applica-
tions are placed at 1-3 mGal with a spatial resolution of 5-10 Km (Kennedy, [2002)).
One of the more demanding applications in geophysics involves natural resources
exploration. Typical gravity field accuracy requirements for petroleum and gas
exploration range from 0.5-2 mGal at 1-2 Km half-wavelengths (Kennedy|, 2002).

Global models of the gravity field exist, which have been computed from many
years of data from various sources (e.g., satellite laser ranging (SLR) data or radar
altimetry of the sea surface) and more recently from three gravity dedicated mis-
sions, Challenging Minisatellite Payload (CHAMP) in 2000, Gravity Recovery and
Climate Experiment (GRACE) in 2003 and the recently launched Gravity field and
steady-state Ocean Circulation Explorer (GOCE) in 2009 (Rummel et al., 2002)
all of them still collecting measurements. Satellite data provides global coverage
but, signal strength, especially in the higher frequencies, is seriously attenuated
with increasing height and therefore dedicated satellites are confined to improve
the knowledge over the long wavelengths (Rummel, 2003). Ground measurements
(i.e., single-point observations), with a very high accuracy are capable of mea-
suring the high-resolution features of the geoid but campaigns are very expensive
and hard to perform in remote and inaccessible locations. This is where airborne
gravimetry comes in.

Airborne gravimetry is the act of measuring the gravity signal from onboard an
aircraft. It is the link between satellite measurements and ground measurements.
It combines the advantage of being cheaper than ground measurements and more
accurate that satellite data in the medium to high-frequency part of the gravity
spectrum. For these reasons, airborne gravimetry is an important tool to effectively
measure relatively large regions that may be difficult to access, e.g., Greenland.

Low and medium-frequency resolution is most relevant for geodesy applications
where the shape of the Earth and its gravity field are of interest, while the medium
and high-frequency part of the spectra are of interest in geophysics to resolve and
characterize sub-terrain features. The most stringent requirements are placed by
resource exploration, and if these are met by airborne gravimetry, then all other
applications are automatically enabled.

Traditional gravimetry is done with very precise accelerometers, very precisely
aligned at the surface of the Earth. An accelerometer can be thought of a spring-
mass system inside a casing. Whenever a force comes into contact with the casing,
the inertia of the proof mass will deform the spring, and the deformation of the
spring is a direct measurement of the force acting on the accelerometer. An il-
lustration of an accelerometer is given in Figure [I.I] Consider an accelerometer
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Figure 1.1: Illustration of an accelerometer. In (a) no forces act on the casing and the
elastic deformation is null. In (b) the component of the force acting on the sensitive axis
of the instrument, F’, deflects the spring-mass system.

in the inertial frame, or i-frame, whose equation of motion can be written using
Newton’s 2°¢ Law in the inertial fram (Schwarz and Li, 1997).

dr?

mam = mi =F + mg(r) (1.1)
Where,
r — the position of the proof mass in the i-frame.
m — the mass of the proof-mass.
F — the sum of all the contact forces acting in the accelerometer casing.
g — the gravitational acceleration at the position of the proof mass.

Defining the specific force measured by the accelerometer f = % one can write,

r=f+g(r) (1.2)
and finally,
f=1—g(r) (1.3)

to realize that the output of the accelerometer is the sum of the kinetic acceleration
of the accelerometer, ¥, and the gravitational vector, g(r).

We then see that the forces acting on the accelerometer are divided in two
types,

Specific forces f which are measured by the accelerometer. As seen in Figure|l.1
the accelerometer measures the elastic deformation of the spring. This type
of forces acts in contact with the accelerometer casing. As the casing is
accelerated, the inertia of the proof-mass causes a deformation on the spring
which is then picked up by the instrument. Specific forces found onboard an
airplane are, e.g., the lift exerted on the wings of the airplane or vibrations
of the engines on the airplane structure.

'Eqn. will be derived later in Section after a proper definition of the inertial frame.
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Gravitational forces g which are not sensed by the accelerometer. The grav-
itational field of the Earth acts simultaneously on the accelerometer casing
and on the proof mass such that no elastic deformation is observed between
both of them.

Some confusion might be clarified with the following question. Assume, for sim-
plicity, that the Earth is not rotating and consider a static accelerometer, vertically
aligned, on the surface of the Earth,

What is the specific force measured by the accelerometer?

Since it has been established that an accelerometer does not sense gravitational
forces, one might be inclined to answer that the specific force measured by the
accelerometer is null. This is, however, not true. In fact, the measured specific
force is equal to the magnitude of the local gravity vector. The explanation for
this fact lies in the subtle detail that the accelerometer in the stated conditions is
not directly measuring the gravity vector, but rather the reaction exerted by the
surface of the Earth on the accelerometer, stopping it from free-falling towards the
center of the Earth.

Ground measurements of the gravity vector are very precise mostly because, by
placing a static accelerometer in the surface of the Earth, ¥ becomes constant and
it becomes possible to compute ¥ = w, X w, X r with great precision, where w, is
the angular velocity of the Earth and r is the position of the accelerometer in the
surface of the Earth. While Eqn. works very well for a static accelerometer, it is
not limited to this situation. The concept can be extended to any moving platform
as long as accurate knowledge of r exists. This is generally called mowving-base
gravimetry, and airborne gravimetry is the equivalent onboard an aircraft. This
has been for many years the biggest challenge in airborne gravimetry, the accurate
knowledge of the aircraft’s acceleration ¥ in the inertial frame.

Notice however that using Eqn. to compute the gravity vector g(r) requires
all components of the specific force vector f to be measured. An accelerometer
only senses the specific force component along its sensitive axis and therefore is
unable to measure the full vector. This drawback is easily solved by using a triad of
orthogonal accelerometers sensing all three components of the specific force vector
f.

The computation of the gravity vector through Eqn.[I.3|requires two conceptual
problems to be solved:

1. The ability to express the specific force vector f as measured by the ac-
celerometer triad in the i-frame frame where the equation is valid. This can
be equivalently expressed as a requirement for the attitude of the accelerom-
eter sensors relative to inertial space.

2. The separation of gravitational and non-gravitational accelerations.

Solving the attitude problem is normally tackled by using gyroscopes (i.e., ‘gy-
ros’). Gyros are inertial sensors that measure the angular velocity along its sen-
sitive axis. One immediately sees that, by building a triad of orthogonal gyros,



the angular velocity vector w becomes readily available. A device that combines
accelerometers and gyros, capable of measuring the angular velocities and acceler-
ations is called an Inertial Measurement Unit (IMU). Typically added to an IMU
is a computer system dedicated to processing the angular velocities and accelera-
tions to obtain the kinetic state of the system, i.e., the position and velocity of the
platform in a relevant frame. The combination of an IMU and onboard computer
is typically called an Inertial Navigation System (INS). The first rudimentary INS
system was applied by German rocket pioneer Wernher von Brown during the sec-
ond World War for the control and guidance of the V-2 ballistic missile. Since then
INS’s have been continually perfected and have found applications in spacecraft,
aircraft, ships, submarines, etc.

At this point it is important to realize that, as any real sensor, the considered
accelerometers and gyros are not perfect instruments. An accelerometer with no
specific force applied will, in general, yield measurements different than zero; the
observed offset is normally called a bias. Furthermore the accelerometer’s measure-
ments need to be transformed into acceleration units using a so-called scale factor.
The scale factor can be thought of as the scale of the ruler in Figure 1.1 Finally
the accelerometer electronics introduce noise in the measurements. All of these
parameters reflect the fact that the accelerometer is not a perfect instrument, and
this is identically true for the gyros where the same parameters are found.

There are two to different concepts of INS systems differing on the way they
handle the angular velocity measurements. The gimbaled or stabilized INS con-
cept consists in the physical realization of the frame in which the accelerometer
measurements are required. This is accomplished with a feedback of the gyro’s
signal into a mechanical platform which continuously aligns itself to the desired
frame; any rotation sensed by the gyros is immediately counteracted by the plat-
form where the accelerometers stand in such a way that their measurements are
related to the frame of choice.

In a strapdown INS, or SINS, the instrument platform is fixed to the vehicle and
relies on the computation of the attitude of the body using the gyro measurements.
Knowing the attitude of the body frame allows the specific force measurements to
be correctly transformed to the frame of choice.

In conclusion, the problem of expressing the specific for vector in the i-frame is
solved by using an INS system which has the capability of rotating, either mechan-
ically or mathematically, the specific force measurements from the body frame to
the i-frame. An illustration of both principles is given in Figure [1.2

Regarding the second problem, the separation of gravitational and non-
gravitational acceleration, the solution is accomplished by using an additional sys-
tem which provides purely kinematic information. The difference between the spe-
cific force provided by the INS, f, and the kinematic acceleration, ¥, is the gravity
vector, g, as implied by Eqn. 1.3, The kinematic acceleration can be obtained by
double differentiation of the position measurements done by a GPS receiver aboard
the airplane. Alternatives to GPS exist, like radar-altimeters, laser-altimeters, LO-
RAN (a terrestrial radio navigation system), etc., and have been used before GPS
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(a) Stabilized Platform (b) Strapdown INS

Figure 1.2: A stabilized platform (a) and the strapdown concept (b). Common to both
are the three accelerometers and three gyroscopes orthogonally oriented.

was available, however, nowadays they lose to GPS’s precision, availability and
tridimensionality.

A distinction is made here between scalar and wvector gravimetry. Vector
gravimetry attempts to recover the full gravity vector while scalar gravimetry
recovers only one of the components (normally along the vertical direction of the
navigation frame, or n-frame) or the magnitude of the gravitational vector. The
main advantage of vector gravimetry is that by measuring also the horizontal com-
ponents of the gravity vector a more direct and precise computation of the geoid
becomes possible with a much smaller survey area (Senobari, 2010). The first
stabilized platforms typically contained only one very precise accelerometer which
was mechanically aligned with the vertical direction of the local-level frame. These
kinds of platforms do not allow vector gravimetry applications, while the strap-
down concept, which requires a triad of accelerometers, inherently enables vector
gravimetry.

Airborne gravimetry has been studied and tested since the 1950’s with the
first reported flight experiments by [Nettleton et al.| (1960) and Thompson and
LaCoste| (1960). At the time there was not enough accuracy in the navigation
data to subtract the aircraft movement from the gravimeter signal. This lack of
accurate navigation data has hampered attempts for many years and a number
of different methods were tested until GPS became widely available. Rose and
Nash| (1972) attempted to use shipborne INS with navigation data from LORAN.
In the early 1980’s, renewed interest in airborne gravimetry was enabled by ad-
vances in the technology. Stabilized platforms were mounted on aircrafts keeping
the inertial sensors fixed in the navigation frame. The main technical advantage of
stabilized platforms is the dramatic reduction in the measuring range of the gyros
which maximizes their performance (King, |1998]). To obtain precise measurements



of the vertical acceleration, very accurate accelerometers along the vertical di-
rection were coupled with multiple combinations of navigational aids like radar
altimeters, LORAN-C, radar transponders and even the first prototypes of GPS
receivers (LaCoste et al., [1982; Brozena, 1984). With the establishment of GPS,
precise kinematic data was finally available and the integration of INS and GPS
for airborne gravimetry immediately became the standard. According to [Seno-
bari| (2010) results have been obtained at 3-5 mGal at the 10 km resolution with
stabilized platforms.

Evolutions in strapdown technology, facilitated through the increasing perfor-
mance of optical gyros technology (King), 1998), allowed reliable use of strapdown
INS systems for airborne gravimetry. The main advantages of a SINS are mostly
related to the absence of any precision mechanical parts: SINS are more reliable,
cheaper and lighter. They need a lower power supply, require less maintenance
and have a bigger operational flexibility. In Wei and Schwarz (1998) and (Glennie
and Schwarz| (1999) the integration of SINS and GPS systems is shown to match
the performance of their stabilized counterpart with an accuracy of 2-4 mGal at
5-7km resolution.

The first results at vector gravimetry were published by |Jekeli and Kwon| (1999)
with a claimed accuracy of 7-8 mGal for the horizontal components and 3 mGal for
the vertical components at 10 km resolution. |Li (2007) argues that the main diffi-
culty with vector gravimetry is the strong coupling between the attitude accuracy
and the errors in the horizontal accelerometers. To obtain absolute attitude obser-
vations, Mangold| (1997) integrated the INS with a star tracker with the purpose of
improving the attitude resolution for vector gravimetry. The latest results are de-
scribed in [Senobari| (2010) where a wave estimator is used with a claimed accuracy
of 2.4-4.2 mGal in the horizontal components at 10 km resolution. The wave esti-
mator is an estimator where the input disturbances are modeled deterministically
instead of statistically and the state vector is estimated with forward estimation
and backward restoration processes within a time window.

Recall Eqn. [1.3] and for simplicity omit the dependence of the gravity vector on
the position g = g(r). Additionally, denoting with a superscript the frame where
the vectors are defined, one can write,

R (1.4)

As argued above, the specific force vector f is measured by a triad of accelerome-
ters which are onboard an aircraft. Since the aircraft’s attitude is different than the
attitude of the inertial-frame, the measured specific force has to be appropriately
rotated to the i-frame. The rotation of vectors between frames is accomplished
using Direction Cosine Matrices (DCM) covered in Section [2.2] Assume that the
accelerometer triad is tied to the body-frame, or b-frame (properly defined in Sec-
tion7 and consider C, the DCM that transforms any vector from the b-frame
to the i-frame, one can write,

i =Cif+ g (1.5)



Solving for the gravity acceleration yields,
gl =+ - Cif (1.6)

to obtain the principle of gravimetry where it is seen that the gravity vector g
can be computed from the difference between the kinematic acceleration ¥ and the
specific force vector f correctly specified in the same frame.

Jekeli (2001) presents the two different approaches to the moving-base gravime-
try problem. Directly using Eqn. to compute the gravity disturbance vector is
called accelerometry and the details of this approach are described in Section [1.2]
Despite being simpler, the accelerometry approach relies on the knowledge of the
kinematic acceleration r which has only become possible with the establishment of
GPS technology. Previous attempts at airborne gravimetry could not provide ac-
curate enough kinematic acceleration and the inertial positioning method was used
instead where the gravitational vector is estimated from accumulated positioning
errors. This method is described in Section [IT.1l

1.1 Inertial Positioning

The inertial positioning approach relies on the difference between the position/ve-
locity indicated by the INS and any external kinematic information, to observe
the gravity vector. This is the most indirect way of computing the gravitational
vector and it was the first method to be introduced at a time where no widespread
kinematic measurement system, like GPS, was available.

The output of an INS system can be formalized by integrating both sides of
Eqn. yielding the velocity and position of the platform at any point in time,
given some initial starting values (rg,r),

t
ﬂm@=%+/6$”ﬁw’ (1.7)
t
riyg(t) = 1o+ 1yt —to) + / / CL > + ~'dt'dt’ (1.8)
to Jto

This is the task performed by the INS onboard computer. The first step is the
calculation of the Cf matrix from the gyro measurements and the second is the
numerical integration of the forces acting on the platform. Notice that the gravity
vector g' is unknown to the INS system and for that reason an approximate model,
i.e., the normal gravity model ~¢, is used in the integration instead.

The difference between an external observation of the position/velocity, at time
instant ¢, and the INS position/velocity is a direct observation of the errors in the
INS and GPS systems and of the difference between the assumed gravity model
~v and the real field g. The observation of the error is used in a Kalman filter
that simultaneously estimates the errors in the INS and the gravity disturbance
vector, which is the deviation of the true field g’ from the assumed one v°. The



Kalman filter is an optimal estimation technique especially suited to this kind of
problem and more details about its role in airborne gravimetry can be found in
Section [4.3.3

Before GPS existed, one of the ways of obtaining precise observations of the
kinetic state of the platform was to use Zero Velocity Update points or ZUPT’s.
ZUPT’s are pre-specified points along the trajectory where the platform is held
static for a short amount of time. The ZUPT’s coordinates are very accurately
known and, since the platform is static, the true position and velocity are com-
pletely determined. Nowadays however, GPS is available and it can be used instead
of (or in parallel with) the ZUPT’s to obtain accurate measurements of the kinetic
state of the platform.

This method is suitable for applications where the used vehicle has the opera-
tional flexibility to stop, like a car or a helicopter, or in areas where GPS coverage
is scarce (e.g., forest, city) such that an additional source of kinematic observations
is required.

One of the main advantages of this method is the numerical integration of the
specific force measurements which smooths the noise in the measured specific force
vector.

The main disadvantage of this approach is the requirement for a stochastic
model for the gravity disturbances in the Kalman filter. Whether the gravity
disturbance can be interpreted as a stochastic process or not is an open discussion.
The gravity field is regarded by many as a purely deterministic quantity and Jekeli
(2001)) states that even if the gravity field is accepted as a stochastic process, it still
cannot be properly described in a linear differential equation, or as a finite-order
model, as required in the Kalman filter. Another disadvantage is the instability of
the INS system along the vertical channel which, unless provided with very frequent
observations as given by GPS, disables the estimation of the gravity disturbance
along the vertical direction.

The first demonstration of this method was carried out by |Rose and Nash
(1972) using LORAN observations aboard a ship. More recently [Li (2007) also
applies this error model with GPS kinematic position and velocities observation
for a land-based vehicle.

1.2 Accelerometry

The accelerometry approach is conceptually the simplest one. It is the direct appli-
cation of Eqn.[1.6] The inherent simplicity of this method is however counteracted
by the noise present in the specific force and kinematic acceleration measurements.
Establishing a comparison with the inertial positioning, the requirements for the
noise in the measurements are much more strict with this approach. The specific
forces measured by the accelerometers are no longer smoothed by the integration
operation while the double differentiation of GPS positions into kinematic acceler-
ations highly magnifies the noise present in the measurements. Many publications
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Figure 1.3: Spectra of the errors in the GPS and INS measurements vs. the gravity
disturbance signal. Panel (a) shows the errors in the raw measurements and panel (b)
the corrected measurements.

address the determination of GPS acceleration, e.g., Kennedy| (2002); Bruton et al.|
(1999); |Jekeli and Garcia (1997)), which is the critical task in the accelerometry
approach.

According to Kaula’s rule (Kaulal the power of the gravity field signifi-
cantly decreases with spatial frequency. Most of the power is concentrated at the
low frequency part of the spectrum. To effectively measure the gravity signal up
to the range of interest the errors in the IMU and GPS systems have to be kept
below the power of the gravity disturbance signal. In the low-frequency part of
the spectrum the IMU errors are dominant due to the very static nature of the
biases and scale factors present in the inertial sensors. Over the high-frequency
part, the GPS errors dominate due to the double differentiation process. Also the
INS errors have some energy at these frequencies due to the noise in the inertial
sensors. In practice this means that only a small medium-frequency window of
possibility exists for airborne gravimetry and to use it one must properly handle
the errors in both measuring systems.

As a simple illustration of the noise levels involved consider the following spec-
trums computed from the simulations done later in this thesis. In Figure you
can compare the power spectral density (PSD) of the errors in the INS and GPS
systems without any filtering vs. the gravity disturbance signal. In Figure[1.3b|the
same plot is show after low-pass filtering both IMU and GPS systems to remove
the high-frequency errors, and after correcting the IMU for low frequency errors.
The gravity disturbance signal is now stronger than the system errors within the
frequency range of interest. The used low-pass filtering will be discussed later
in Section .31 and the correction of the INS measurements will be discussed in
Section

Even within the accelerometry approach slightly different ways of evaluating
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Eqn. can be found in the literature. Two different scalar approaches of this
accelerometry method are compared in Wei and Schwarz| (1998)). The Rotation
Invariant Scalar Gravimetry (RISG) is the accelerometric approach where no at-
titude information is necessary. The need for attitude information is dismissed by
comparing the norm of the specific force to the norm of the kinematic accelera-
tion. The output of this method is the magnitude of the gravitational vector and
the potential advantage is the removal of the errors introduced by the gyroscopes,
while tolerating the errors of all three accelerometers, which add up in the norm
computation. In the Strapdown Inertial Scalar Gravimetry (SISG) approach only
the vertical component of the gravity vector in the n-frame is computed. In the
same publication the conclusions show that the RISG approach offers a lower level
of performance than the SISG method.

Jekeli and Kwon! (1999)) present the first results in airborne vector gravimetry.
Low pass filtering is applied to the GPS and INS measurements to reduce the
high frequency noise and a wavenumber correlation filter is used to decorrelate
the gravity signal from the INS system errors. In a later publication, Kwon and
Jekeli (2001) use a Kalman filter, similar to the one typically used in the inertial
positioning method, to estimate the low-frequency errors of the IMU. The Kalman
filter observations are the differences between the INS and GPS accelerations. This
publication proposes the evaluation of Eqn. in the inertial frame, as adopted in
this thesis, contrasting with previous methods where the more complex navigation
frame is used to compute the gravity vector. In this publication a comparison is also
done between using, or not using, a stochastic gravity model in the Kalman filter.
The results were found to be slightly better when no gravity model is assumed.

1.3 The GAIN Project

In 2007, the Physical and Space Geodesy (PSG) chair at TU-Delft, in cooperation
with the Mathematical Geodesy and Positioning (MGP) and Control and Simu-
lation (C&S) groups, initiated the Gravimetry using Airborne Inertial Navigation
(GAIN) project. The goal of the project is to develop, implement and operate
a strapdown airborne gravimetry system capable of matching the performance of
commercial airborne gravimeters both in accuracy and resolution but at a fraction
of the cost. The short term goal is to develop an in-house, low-cost IMU capable of
measuring data suited to all applications of airborne gravimetry. This places the
accuracy requirement of system at the 0.5 mGal level at the 2 km spatial resolu-
tion. The long term goal of the project is to miniaturize the strapdown system and
install it aboard unmanned aerial vehicles (UAVs). Using multiple small UAV’s
equipped with this miniaturized system would result in cheaper, simpler and faster
airborne gravimetry surveys compared with the more complex logistics involved in
any current airplane/helicopter surveys.

While several well-known commercial strapdown INS systems are available on
the market, building an in-house IMU is motivated by the fact that commercial
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INS’s, besides being more expensive, do not allow the retrieval of raw data from
the inertial sensors. The output of the system is filtered with proprietary algo-
rithms suited for inertial navigation applications. Much more will be learned in
the construction and calibration of the IMU and the access to the raw instrument
data allows the development and benchmarking of different algorithms aimed at
airborne gravimetry.

The GAIN project makes use of the Cessna Citation II airplane partially owned
and operated by the aerospace (L&R) faculty, and which is equipped with a triad
of GPS antennas capable of providing measurements of the airplane’s in-flight
attitude. This is one of the innovations being developed in the context of airborne
gravimetry. Solving the attitude of the airplane involves computing two baselines
between the three antennas mounted on the wing, nose and fuselage of the airplane.
The method used in this calculation, the constrained Least Squares AMBiguitity
Decorrelation Adjustment (LAMBDA) is described in Teunissen| (2006), and the
accuracy of the GPS attitude solutions delivered by the MGP group is better than
0.1° (Alberts et al., 2010]).

The inertial sensors planned for the GAIN project include a set of recently
purchased Fizoptika VG951 fiber-optic gyroscopes, three Honeywell QA3000 ac-
celerometers, a similar (but cheaper) set of JAE Type-3 accelerometers, along with
a state-of-the-art 2-axis calibration table. This hardware will be used to construct

and calibrate an in-house IMU.

o

Figure 1.4: The GAIN IMU Figure 1.5: The Cessna Citation

1.4 Statement of the Problem

The research carried out in this thesis is relevant in the context of the GAIN
project, and seeks to address the following two research questions:

1. Considering the purchased inertial sensors and under ideal conditions, what is
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the expected level of performance of the GAIN strapdown airborne gravime-
try system?

2. What improvements are necessary to achieve the 0.5 mGal accuracy at 2km
resolution, that will enable all current applications of airborne gravimetry
data?

These questions are relevant in the context of the GAIN project, because as the
IMU is being built, the work done in this thesis will quantify the performance level
one can expect from the system in development and it will allow us to understand
where improvements are necessary to achieve the accuracy goal of 0.5 mGal at 2 km
wavelength required for applications such as petroleum exploration.

To answer these questions a model of the complete strapdown system is imple-
mented and, through simulations, the accuracy level of the system is estimated.
The inertial sensors that will be used in the IMU are calibrated in this thesis to
estimate their overall level of performance and error behavior. The gyros are cali-
brated with the recently purchased rate table at the L&R faculty. The accelerom-
eters availability was severely delayed within the time span of this thesis and for
that reason only a limited calibration of them was performed. The performance of
the GPS system is estimated by personal communication with the MGP experts
in the field here at the L&R faculty. All of the knowledge gathered about each
component of the strapdown/DGPS system is then transported to the simulations
domain where an estimate of the performance can be obtained. Simulated flights
are made where the corresponding data measured by the IMU and GPS systems is
created. This data is made realistic by adding errors similar to the ones expected
from the real instruments and these noisy measurements are then processed, using
the appropriate techniques, into gravity disturbance vectors along the flight path.
The differences between the “real” gravity anomaly and the computed one will
provide an estimate of the overall performance level of the system.

Expected improvements in the GPS solutions such as the GPS Block III satel-
lites and the European Galileo constellation and possible improvements in inertial
sensor technology will determine the evolution of the strapdown system over the
next few years. This motivates the sensitivity study that was also carried out,
where the accuracies of each component (accelerometers, gyros, GPS) are var-
ied and the limiting factors of the system’s accuracy are identified. Any future
improvements in the GPS and/or inertial sensors can be mapped into the corre-
sponding improvement of the strapdown system with this sensitivity study.

An additional advantage of the implemented simulator is that it allows further
studies about the behavior of the system regarding the various parameters that
involve any campaign without actually performing an expensive flight campaign.
Another consequence of the simulator, is that as soon as a real campaign has
been completed it can be processed within the software implemented in this thesis.
Many improvements might be necessary until this is possible but the groundwork
has been already laid out.

13



While the validity of the results might be deemed too optimistic because any
simulated environment is always a simplification of reality, it was at all times
ensured that the maximum level of realism is kept through the simulator and that
every simplification made is clearly stated in this report. The results are then
subject to all the simplifications made, and therefore they represent the lower
bound of the system’s accuracy, the best performance that one can expect under
ideal conditions.

An overview has been given about the two main methods used in airborne
gravimetry: inertial positioning and accelerometry. While both of the methods
have been implemented (their underlying models are very similar), it was seen
that the accelerometry approach is simpler, faster and easier to obtain results
with; there are less numerical integrations and the Kalman filter becomes smaller
and easier to tune. For that reason the accelerometry approach has been used in
the results presented in this thesis.

Within the Kalman filter used in the accelerometry approach a choice has to
be made whether a gravity model is used or not. The alternative of not using any
model is seen in [Kwon and Jekeli (2001) where the author recovers the gravity
anomalies from the Kalman filter residuals. The advantages of using a stochastic
model within the Kalman filter are that by estimating the gravity disturbances
this signal will not interfere with other parameters’ estimation as might happen
when no model is used. Using a model also provides statistical information about
the estimated gravity disturbance which does not happen in the alternative. How-
ever, using a model of the gravity field increases the number of parameters to be
estimated within the Kalman filter resulting in a bigger model, making it slower
to iterate and very hard to tune. Furthermore, as pointed out before, the grav-
ity signal cannot be formally expressed in a suitable way inside the Kalman filter
and imposing a certain expected model can deteriorate the results; Jekeli (1994)
shows the estimation of the gravity field to be sensitive to the chosen model and
in Kwon and Jekeli (2001)) poorer results are obtained when using typical gravity
models than when using no model. From the above discussion it is argued that
the advantages of the no-model approach are stronger and this is the choice made
in this thesis.

In this report a comprehensive introduction to the mathematical tools relevant
to airborne gravimetry is given in Chapter 2l In Chapter [3| the calibrations of the
inertial sensors are reported and an error model is built describing the errors in
the used inertial sensors. In Chapter |4 an overview of the implemented software is
provided and in Chapter [5| the results of several simulations are shown. Finally, in
Chapter [6] the conclusions of this thesis are gathered and some recommendations
for future work are made.

14



Background Information

In this chapter the mathematical principles behind the concepts of airborne
gravimetry will be illustrated. Several topics will be approached, many of which
the reader might already be familiar with. In the following sections the following
topics will be elucidated,

e Reference frames relevant to airborne gravimetry.

Rotations and transformations between frames.

Numerical differentiation.

Numerical integration.

Linear perturbations.

2.1 Reference Frames

2.1.1 The z-frame

The inertial frame, or i-frame, considered throughout this work is based on the
International Celestial Reference System, [ICRS| (2010). The ICRS defines the
International Celestial Reference Frame (ICRF) as a cartesian right-handed system
located at the barycenter of the solar system where,

e z-axis points towards the celestial sphere pole;

e x-axis direction is along the celestial equator in a direction fixed by the mean
right ascension of 23 quasars at the time of creation of the ICRF.

e y-axis such that the three axes define a right-handed orthogonal cartesian
system.

The current realization of the ICRF is maintained by the International Earth
Rotation and Reference Systems Service (IERS), which continuously measures the
positions of distant stars and quasars to keep the ICRF fixed relative to inertial
space (read distant stars and quasars) within 4+ 20 mas, or milliarcsecond defined
as 1/3.6x10%°. More details about the ICRF can be found in [CRS| (2010)).

The i-frame used throughout this report can then be defined as a shifted version
of the ICRF placed at the center of mass of the Earth.

In a Newtonian sense, an inertial frame is defined as a reference frame where
Newton’s 1% Law is valid. It states,
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In the absence of force, a body either remains at rest or moves in a
straight line with constant speed.

In the light of this, the defined i-frame in fact, not an inertial frame. Any body
placed at rest in the proximity of the Earth, with no forces applied, will gradu-
ally accelerate towards the center of mass, thus violating Newton’s 15* Law. The
gravitational acceleration experienced by the body is not the result of a physically
applied force but rather the result of the Earth’s gravitational field (Jekeli, 2001).
In practice this means that Newton’s Laws have to be modified to be valid in this
pseudoinertial i-frame.
Newton’s 2"! Law can be written as,
d

F = = (mi) (2.1)

Without any loss of generality, one can assume that the mass remains constant,
F =my (2.2)

In the i-frame Eqn. [2.2]is then modified to include the gravitational acceleration
g

mgyg(r) + F =m;t (2.3)
where,

mg — is the gravitational mass

m; — is the inertial mass

Using the Weak Principle of Equivalence, both kinds masses are assumed to be
equal and one can simplify Eqn. defining the specific force f = %,

r=f+g(r) (2.4)

Eqn. is Newton’s 2" Law in the considered i-frame. It can be applied to
describe the movement of any of any body in the inertial frame and applying it to
the movement of an accelerometer is the concept behind moving-base gravimetry.

2.1.2 The e-frame

The e-frame is defined by the International Terrestrial Reference System (ITRS),
and is more commonly known as Earth Centered Earth Fixed (ECEF) frame.
The e-frame is realized by locating the center of mass (CoM) of the Earth and
by measuring its rotation in inertial space with the help of satellite laser ranging
(SLR), GPS, very long baseline interferometry (VLBI), lunar laser ranging (LLR)
and Doppler Orbit determination and Radiopositioning Integrated on Satellite
(DORIS) measurements taken by various centers distributed around the world
IERS| (2010). The frame is further adjusted with a no-net-rotation condition which
corrects for tectonic motions on the surface of the Earth.
The origin of the e-frame is then at the center of mass of the Earth,
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e z-axis coincides with the mean polar axis, close to the Earth’s spin axis.

e x-axis points towards the intersection of the mean Greenwich meridian and
the equatorial plane.

e y-axis such that the three axes define a right-handed orthogonal cartesian
system.

xe

Figure 2.1: Illustration of the e-frame and the relation with the i-frame.

The angle between the e-frame and the i-frame is called Greenwich Apparent
Sidereal Time (GAST) and it is the angle between the Greenwich Meridian and
the xz-plane of the i-frame.

2.1.3 The n-frame

The navigation frame, or n-frame, is one of the frames commonly used to express
the navigation of a vehicle. It is also known as a local-coordinate frame or local-
level frame which stems from the fact that its orientation depends on the vehicle’s
current position and hence it has a local nature.

The starting point towards the definition of the n-frame is the geodetic reference
system. The geodetic reference system defines an ellipsoid of revolution which is
shaped to be as close as possible to the Earth’s geoid. There are several geodetic
reference systems that have been proposed throughout the years. In the following
work the Geodetic Reference System 1980 (GRS80) will be used which is the
internationally adopted Earth-approximating ellipsoid 1992).

On the reference ellipsoid a set of coordinates is defined; the geodetic latitude,
¢, is the angle between the equatorial plane and the ellipsoidal normal which inter-
sects the vehicle. The geodetic longitude, A, is the angle between the Greenwich
meridian plane and the local meridian plane and A is the height above the ellip-
soidal surface. This orthogonal trio of coordinates in combination with the defined
reference ellipsoid define the location of a point in three-dimensional (3D) space.
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Figure 2.2: The n-frame

The origin of the n-frame is the vehicle,
e z-axis is aligned with the local ellipsoidal normal in the down direction.

e x-axis is aligned along the plane tangent to the local meridian in the North
direction.

e y-axis is also defined in the tangent plane but now in the East direction.

The n-frame is depicted in Figure 2.2l Another name used to describe this
frame is the NED frame because its axes point respectively towards the North,
East and Down directions. Notice that the ellipsoidal normal does not, in general,
point towards the center of the ellipsoid or analogously the center of the Earth.

The usefulness of such a frame is that the horizontal and vertical directions
are decoupled into different axes for all the points on the surface of the Earth.
This means that a strongly vertical phenomenon, like gravity, will be almost fully
confined to the vertical axis of the n-frame.

2.1.4 The b-frame

The body frame, or b-frame, is defined in the vehicle to be navigated; in the case
of airborne gravimetry this vehicle is an airplane. In general the body frame is
defined with its origin in the CoM of the airplane or alternatively on the same
location as the INS system onboard the airplane,

e x-axis is defined in the forward direction of the airplane.
e z-axis is defined vertical in the down direction.

e y-axis is such that the coordinate system becomes right-handed.
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Figure 2.3: Illustration of the b-frame aboard the Cessna Citation.

The b-frame is depicted in Figure [2.3] For a real system the definition of the
b-frame has to be more rigorously defined so that after a thorough calibration
it becomes possible to translate the measurements taken by the inertial sensors
(accelerometers and gyroscopes) from their sensitive axes to the b-frame. However
the rigorous definition the b-frame in this thesis will be relaxed to the definition
provided above. This is possible because we will assume that the INS system has
been perfectly calibrated such that it now provides all the measurements directly
in the b-frame.

All the relevant frames have been presented and the next step is to establish
the framework which allows us to translate the quantities written in one frame into
any of the other frames.

2.2 Frame Transformations
The relation between frames with different attitudes is of primary importance in
airborne gravimetry. The attitude of a frame (relative to another one) can be

expressed in many ways and the ones used throughout this thesis will be briefly
discussed,

e Direction Cosine Matrices

e Quaternions

e Euler angles

Each of the techniques will be only briefly explained and the more unfamiliar-

ized reader is referred to (2001)) where the content and notation used in the
following sections is based upon.
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2.2.1 Direction Cosine Matrices

A direction cosine matrix, or DCM, is simply a matrix that transforms a vector
coordinatized in one frame into another frame. The matrix can be constructed in
the following way.

Consider two frames, s and f, and an arbitrary vector r which can be appropri-
ately written in both considered frames,

S __ S S S .S S_ .S
r —rl,ex—l—ryey—l—rzez

r/ = rgej; + rjjeg; + rfef

eA

C33

£

C21

A

Figure 2.4: Projection of f-frame basis into the s-frame

Furthermore it is possible to write the base vectors of the f-frame in the s-frame.
This is done by projecting each of the f-frame basis vectors into the s-frame basis
as,

s s s

eiﬁ =c1€, + C12ey + ci3€;
s s s

ef = C21€, + ngey + C23€, (27)

Y
s s s
eg = (C31€, + C32ey + C33€,

where, e.g., c11 is the projection of e/ into €% obtained as,

s
z =

cin=¢el el =|lel ||| € | cosa = cosa (2.8)

and o is the angle between the two basis vectors. Each of the ¢;; coefficients is
represented in Figure [2.4
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Replacing Eqn. 2.7 in Eqn. 2.6 and rearranging,

I‘f = (0117“9]: + 0127"5 + 0137’5) ei
(0217“9]: + 0227"?5 + 0237’5) eZ (29)
(0317“9]: + 0327"‘5 + 0337’5) ej,
And comparing with Eqn. one can finally write,
Ty €11 Ci2 (13 (e
’I"Z = |C21 Co2 Ca23| - T; (210)
7 C31 C32 (33 3
Or using matrix notation,
r*=Cj-rf (2.11)

C} is the linear transformation that rewrites an arbitrary vector from the f-
frame (the lower index) into the s-frame (the upper index). Additionally C} is an
orthogonal matrix and the inverse transformation can be easily obtained,

cf = (C) = (0} (212)

2.2.2 Euler Angles

A transformation between two frames with arbitrary attitudes can be described
by 3-angles along some or all of the coordinate axes.

The elementary rotations along each axis are well known from algebra and they
are written as follows,

[ 1 0 0

R.(o)=1|0 cosa sina (2.13)
i 0 —sina cos« |
[ cosa 0 —sina

Ry(a) = 0 1 0 (2.14)

sinae 0 CcoS &

cosa sina 0 |
R.(o) = | —sina cosa 0 (2.15)
0 0 1

When transforming a vector from one coordinate frame to another the order
in which the rotations are done is not arbitrary. Therefore a set of 3-angles is
meaningless until a rotation sequence is defined. There are many possible rotation
sequences but the 321 (or zyx) sequence will be used as is usual in navigation
applications. Under this convention the angle of rotation over the x-axis is called
roll and is denoted as n; the pitch, x, is the rotation over the y-axis and the yaw,
«, is the rotation over the z-axis.
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The transformation from the s-frame to the f-frame is the successive rotation
over the 3-axis in the specified order,

v = R.()R,(x)Re(0) r* (2.16)

To establish a bridge between direction cosine matrices and the defined Euler
angles one compares equations (2.11)) and (2.16]) from where it follows,

Cf = R.(n)R,(x)Re(a) (2.17)

and expanding on the right hand side,

COS 1) COS X cosmsiny sin« + sinncosa  — cosn sin y cos & 4 Sin 7 sin «v

C’Sf: —sinncosy —sinnsiny sina 4 cosn cos o sin 7 sin y cos o 4 cos 7 sin «
sin y — cos x sin « COS Y COS (.
(2.18)

Equation (2.18)) shows the equivalence between the DCM and the defined Euler
angles notation. The inverse relationship is the following,

x = sin! (cs1) (2.19)

2.2.3 Quaternions

A quaternion is an extension of the complex numbers in the same manner as the
complex numbers are an extension of the real numbers. While a complex number
can be written as z = a + bi a quaternion introduces two new imaginary “axes”, j
and k, such that a quaternion q can be written as,

q=a+bi+cj+dk (2.20)

where a,b,c and d are real numbers. Under this notation a is called the scalar part,
while b,c and d are the vector part of quaternion q.

The concept of quaternions is attributed to Sir William Hamilton, who in 1843
established the following fundamental relationship of quaternion algebra,

==k =ijk=—1 (2.21)

All the properties of quaternion algebra start with this equality, and despite being
an interesting domain of mathematics, they will not be covered in much detail and
the reader is referred to e.g., Kuipers| (1999), for additional details. Relevant to
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the topic of frame rotations and transformations are the definitions of quaternion
multiplication and the conjugate operator.

The conjugate of a quaternion, ¢*, is defined as the same quaternion ¢ with
negative vector part,

¢ =a—0bi—cj—dk (2.22)

The multiplication of two quaternions is derived using the distributive property
of multiplication and Eqn. [2.21] Using appropriate multiplications of ijk = —1
the following equalities can be derived,

ij=—ji=k
gk = —kj =i (2.23)
ki = —ik = j

Denoting the multiplication of two quaternions with the operator symbol, ®, one
can write,

q1 & go — (a1 + blZ + Clj + dlk).(ag -+ bQZ + ng -+ dgk) (224)

and applying the identities in Eqn. [2.21] and [2.23] to Eqn. [2.24] one can define
quaternion multiplication explicitly as,

@1 ®q = (a1as — biby — cicy — dydy)
+i (a1by + aghy + c1ds — cady)
+j (a1co + agey — byds + diby)
+k (a1dy + asdy + bica — c1b2)

(2.25)

How does all this relate to attitude and frame transformations? Quaternions
can be used to transform vectors between differently oriented frames. Consider
the relation between the s-frame and the f-frame as depicted in Figure 2.5l The
relation between frames s and f is such that the f-frame can be obtained by
rotating the s-frame along the vector v by an angle a.

With this in mind, the following quaternion is defined,

) . « . e
q5a+bz+0j+dk:cos§+evzsm§z+evysm§

where e,,, k € (z,y, z) are the components of the unit vector e, defined as,

j+ewﬁn%k (2.26)

. A%
vl

Notice that by definition the norm of q is 1,

2 2
lqll=Va2+b+c2+d?= \/cos (%) + sin (g> <e%m + e%y + e%z>

e

2
lal =1 (2.27)
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¢

Figure 2.5: The s-frame and f-frames. The f-frame is obtained by rotating the s-frame
along direction v by an angle a.

The final step before transforming the arbitrary vector r® into the f-frame is
to define a quaternion r, whose vector part is the vector rs,

r*=0+4+ryi+ryj+rk (2.28)

The vector rf can be obtained from the vector part of the quaternion ! com-
puted as,

rf=¢oreq¢ (2.29)

To establish the relationship between the DCM and the corresponding quater-
nion we can replace the arbitrary vector r for each of the base vectors of the
s-frame, ey, k € (z,y,2). Transforming each one of them using Eqn. and
gathering them in a matrix yields the following,

a?+b—c—d? 2bc — 2ad 2ac + 2bd
cl = 2ad + 2be a? —b* + c? — d? 2cd — 2ab (2.30)
2bd — 2ac 2ab + 2cd a?—b -+ d?

The inverse of this relationship is done by noticing that the trace of matrix

C =0,

trC =3a> -0 — 2 —d?
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using Eqn. 2.27]
trC + 1 = 4a®

a= %\/trC’ +1 (2.31)

Knowing the value of a,

1
b= E (02,3 - 03,2)
1
- _ 2.32
& 1a (03,1 01,3) ( )
1
d= E (01,2 - 02,1)

2.2.4 Transformation between the i- and e-frames

The e-frame is attached to the Earth and constantly rotates with it while the i-
frame has a fixed attitude relative to inertial space. The angular velocity of the
Earth, w,, is, by definition of both frames, along the z-axis. The transformation
between these two frames is then accomplished by rotating along the z-axis by the
appropriate angle,

Cf = R,(w.At)

Ci = (C5)™" = R.(—w.At) (2.33)

where At is the time interval since both frames were coincident and
we = 7.2921159 x 107° rad.s™' is one of the defining constants of the GRS80 el-
lipsoid (Moritz, |1992).

2.2.5 Transformation between the e- and n-frames

The coordinates in the n-frame are the geodetic latitude ¢, geodetic latitude A,
and height above reference ellipsoid h. This is not a cartesian coordinate set (like
the e-frame) so the transformation of coordinates cannot be accomplished with a
rotation of the position vector. Additional quantities that describe the considered
ellipsoid have to be defined before the coordinate transformation can be applied.
As mentioned in Section[2.1.3|the adopted ellipsoid is the GRS80 with the following
defining constants,

a = 6378137 m

2.34
f =1/298.257222101 (2.34)

where a is the semimajor axis of the ellipsoid, and f is the ellipsoidal flattening.
The square of the ellipsoid eccentricity, €2, is computed as,

e =2f — f? (2.35)
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and, just like the flattening term f, the eccentricity e describes how much the
ellipse deviates from being circular.

The radius of curvature of the ellipsoid in the prime vertical N can be computed
as in Eqn. [2.36] This is the distance along the ellipsoidal normal, from the ellipsoid
surface to the polar axis.

a

N = (2.36)

V1 —e2sin? ¢

The transformation between the two sets of coordinates is then given by (Jekeli,
2001)),

x° (N + h) cos ¢ cos A
y| = | (N+h)cos¢psin (2.37)
2° (N(1—€?)+ h)sing

The inverse relationship is of an iterative nature and it can be written as,

[ ton! 2° (1 N e?N sin gb) |
¢ /er + yeQ z€
o ot (1) 25

xe

|22+ y2cosd 4 (2° + 2N sing)sing — N

The iteration is done in the ¢ equation with the starting assumption that h =0
such that,

z° 1
tan-! 2
¢o = tan ( P 62) (2.39)

this typically converges to the real value of ¢ in one or two iterations after which
h can be computed as shown. The expression for the computation of A has a more
robust form that the one presented in |Jekeli| (2001) as it avoids the singularity at
high latitude valuedT|

The transformation matrix that relates the n-frame with the e-frame is obtained
in the following way,

e rotate the n-frame along the y-axis (pointing East) until the xy-plane is
parallel to the equatorial plane; this happens for the angle of A + 7/2

e rotate this intermediate frame along the z-axis until it is oriented with the
e-frame; this happens for the angle —\

!This was a suggestion in the implementation notes by Rob Comer (rob.comer@mathworks.com) of
the ecef2geodetic function of the Mapping Toolbox for MATLAB R2007b
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Refer to Figure for a better visualization of the sequence of rotations involved
in the transformation. The transformation matrices between both frames can then

be defined as,
Cp = R(=A)Ry(¢ +7/2)

Cr=(C5) ™ = R(NRy(—¢ — 7/2) (2.40)

2.2.6 Transformation between the b- and n-frames

The b-frame relates to the n-frame by the roll, pitch and yaw angles of the
platform(n, x and « respectively). The transformation of vectors between these to
frames is then accomplished simply by,

Cp = R.(a)Ry(x)Rx(n)

1 (2.41)
C1b = (Cn) - Rz(_a)Ry(_X)Rx(_n)
2.2.7 Small Angles Approximation
If an angle ( is very small the following approximations are valid,
cosff~1 (2.42)
sin 3 ~ 3 (2.43)

Consider now Eqn. representing the DCM in terms of the Euler attitude
angles. If these attitude angles are very small the matrix expression can be sim-
plified to,

I n —x
cl=|l-n 1 al|=I-0 (2.44)
X —« 1

where W is the skew-symmetric matrix of the small Euler angle vector ¢ =
[a X n]T defined as,

0 -n X
U= [px] = n 0 —«a (2.45)
- « 0

2.2.8 Differential Equation of the Rotation

When considering frames that rotate with respect to each others it becomes im-
portant to be able to describe the changing attitude in terms of rotational trans-
formations (Jekeli, 2001)). Lets consider the motion of frame f relative to frame s.
To do this, the derivative of the attitude matrix between s- and fframes, C7, is
evaluated using the definition of derivative,

&f — lim Cl(t+ot) — CI(t)
) ot

(2.46)
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The attitude at time (¢ 4+ 0t) can be seen as two consecutive rotations, the
attitude at time ¢ and the change in the attitude of the f-frame during time 6t,
5C/, such that,

CI(t+ot) = 5CT CI(t) (2.47)

Since 0t is an infinitesimal amount of time, the change in the attitude is very small
and 0C7 can be evaluated using the small angle approximation in Eqn. as,

6Cf =1 -0/ (2.48)
Substituting in Eqn. [2.46]
f _
lim CI(t+d6t) — CL(t)
5t—0 ot

_UnNCcf) — of
o =D - Ol
6t—0 ot

pf
=—lim —C/
it g 1

¢ =

yf
Since V is the skew symmetric matrix of the attitude angles, élimo 50 represents
t—

an infinitesimal angular displacement over an infinitesimal amount of time which
is the definition of angular velocity. This term can then be written as the skew

symmetric matrix of the angular velocity vector that describes the angular velocity

of f- relative to s- and coordinatized in the s-frame Qf = [wf X,

Cf = -l ci)

S

Using the fact that wf: ;= —wﬁ the following equalities apply,

fo_ I s s
Of = -0} = -Cl 05,3 (2.49)

and Eqn. [2.50) known as Puasson equation (Salychev, [1998)), can be written,
Cl =013, (2.50)

This is the equation that will later be used to translate the angular velocity
vector measured by the IMU gyros in the b-frame, w?, into the attitude of the
platform relative to the inertial frame Cj.

2.3 Numerical Differentiation
Numerical differentiation is used in several quantities throughout this report. It

will be used to compute accelerations from given positions (i.e., , simulated GPS
positions) and to compute angular velocities from a given set of attitude angles.
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All the quantities mentioned are of a discrete nature; they are time-series of mea-
surements and the exact computation of their derivatives is not possible. The
sought derivatives are approximated using finite differences methods.

The numerical differentiation is done by first considering an arbitrary continu-
ous function, f(z). Writing the Taylor expansion series of f(z £ h) yields,

Fla+ ) = £(a) + b @) + (@) + ()

Iy (2.51)
flx—=h) = f@) = hf'(2) + ") + O(h%)
Using the linear combination,
fx+h)+ f(x—h)=2f(z) + A" (z) + O(R?) (2.52)
f(x+h) — f(x —h) =2hf'(z) + O(R®) '
now we solve the system of equations for f’ and f”,
f”(.ﬁlj) _ f(x+h) _2];(21;)_’_]0(1:_}7/) +O(h3) (2 53)
f/(I) _ f(x+ h) B f(x B h) —|—O(h3)

2h

Considering h as the sampling period of the data series to be differentiated,
Eqn. gives expressions for the 15 and 2"%-order derivatives exact up to the
order of h3. In the same way, but using more data points, more accurate expressions
of the derivatives could be obtained.

2.4 Numerical Integration

Throughout this report numerical integration will be used to process the discrete
measurements of the inertial sensors into the relevant quantities, namely the angu-
lar velocity measured by the gyros is integrated into the attitude of the platform.
Although not implemented in this thesis similar procedure could be applied to
integrate the specific force measurements into the position and velocity of the
platform.

A very compact introduction to the numerical integration methods used in this
work is provided in the following paragraphs. This is by no means a complete
reference of numerical integration methods. The intent is simply to state the
methods that were used. For a better insight on Runge-Kutta methods the reader
is referred to|Jekeli (2001}, chap. 2) where the Runge-Kutta methods are thoroughly
explained or to a more specific numerical methods reference (e.g., Chapra and
Canale| (2010).
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The class of problems which need to be numerically integrated in the context of
airborne gravimetry can be represented as a system of linear first-order differential
equations,

y=fty) (2.54)
y(tn) = p (2.55)
where f is a linear function of time, ¢, y is the variable to be integrated and u are

the initial conditions of y.
Applying a Taylor series expansion to y(t,) allows us to write,

h? h™

Y(tns1) = y(tn) + hy(tn) + gy(tn) oot %y(m) (tn) +--- (2.56)
Where,
t, — 1is the initial time of the integration step.
t,y1 — 1is the final time of the integration step.
h — is the integration step size, h =t, 1 — t,.

Noticing Eqn. [2.54], one can write the derivatives of y in terms of f,

y(tn) = ft + fyf
Y(t,) = fit + fuf +  (for + fouf) + [y (fe + [0 f)

= fut 2l + Ff? B+ 1 (2.57)

where f; = ?j—;.

Equation Eqn. [2.56|shows us that the variable y can be evaluated at time ¢,
having only the initial conditions, y(t¢,), and all the derivatives of function f up
to order m. In general these high-order derivatives are not accessible and this is
where the Runge-Kutta integration methods steps in.

The idea behind the Runge-Kutta methods is to replace the knowledge of the
high-order derivatives of y by the evaluating f at several points in the neighborhood
of t,. The general form of a Runge-Kutta method is the following,

Ynt1 = Yn + h(arky + ok + ... + ki) (2.58)
with,
kl = f(tm yn)
]{32 = f(tn =+ 62h, Yn + 6271h]€1) (259)

ks = f(tn + Bsh, yn + €31hky + €32hk5)

30



Where,

h — is the integration step size
k; — is aslope of y (the value of f) at some intermediate point 7 € [tg; ]
«; — are constants that weight each of the slopes k;

The values of «;, 8; and ¢, ; are chosen such that the difference between the
integrated y,.1 and the real value y(t,1) is smaller than a certain power of h,

Yni1 — Y(tni1)| < OB (2.60)

The above condition describes an m-order Runge-Kutta algorithm. A 4'"-order
Runge-Kutta algorithm has an error magnitude smaller than the fifth power of the
integration step size, h°.

The value of the parameters is determined by making the Taylor expansion of
f(t,y) around the point (¢,,y,) in Eqn.[2.59] The expanded expressions for ki, ko
and k3 are then substituted in Eqn.[2.58 Finally by comparing this with Eqn. [2.56]
where the derivatives of y are replaced by the corresponding derivatives in f as in
Eqn. , a set of constraints is obtained for the values of «;, 3; and €; ;. These
conditions are not independent, and therefore some degree of freedom still exists
in the choice of these parameters. In fact different choices of parameters create
then different Runge-Kutta methods.

For the sake of brevity, we will simply state the different values of the parame-
ters for the integration methods that will be used. The simplest integration method
we will use is a 2"-order method known as the midpoint rule. The integration is
done using only the derivative at the middle of the integration interval (ay = 0
and ag = 1),

Yn+1 = Yn + th

h h
k2 = f(tn + §a Yn + §f(tna yn>)

Another method that will be used is a 3'%-order method with the following
structure,

(2.61)

h
Ynt1 = Yn + 5 (k1 + 4ko + ks3)

h h '
ky = f(t, + 5 Yn + §k1)

k3 - f(tn + h, Yn — hkl + 2hk’2)
This method is also known as Simpson’s rule when f(t,y(t)) = f(t).

2.5 Linear Perturbations

To analyze the performance of the strapdown system, it is important to estimate
the errors in the inertial sensors from the output of the IMU. To do this a model
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must exist that describes how the errors in the measurements propagate to the
output to the system. In general the equations that rule the behavior of errors in
the modeled system are obtained by applying the theory of linear perturbation.
Consider the following differentiable function f evaluated at a given set of
parameters (o, 3, ,w).
One defines the perturbation of f around an arbitrary nominal point

(QOaﬁ07' te 70‘}0) as,
5f:f(040+(5067/6+5/8, ,W+6W) _f(a07607 ,(,d(]) (263)

The first term of Eqn. is expanded in a Taylor series around the nominal
point. Only the first order terms are kept, and the differentials are understood as
small deviations from the nominal value, normally seen as errors,

0 0 0
5 = s o+ n) + G200+ L5644 550 flan, oy ) (260)
and the derivatives are evaluated at the nominal point {ag, By, ,wo}-
The linear perturbation of function f can be simply written as,
af 3f of
of = ) + =0 2.
= Grda+ 5B+ e+ Gl (2.65)

With Eqn. one can understand of how the errors of each parameter prop-
agate into an error of the function (or model).
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Calibration

In this chapter the calibration of the JAE Type-3 accelerometers and the Fizoptika
VG951 gyroscopes is detailed. The purpose of the calibration is to understand how
the instrument outputs can be related to the physical quantity they are measuring
and to characterize the parameters involved in the transformation. Additionally
during the calibration the noise level of the instruments can be visualized which
will then be replicated in the simulations. In the final section of this chapter an
error model for the inertial sensors is defined, later applied to the Kalman filter.

It should be noted that the calibration of the accelerometers was not thorough
and many details remain to be clarified. The major reason for this is owed to
the late availability of the instruments for calibration. The necessary electron-
ics that convert the analog signal provided by the instrument into a digital form
to be logged over time are still under development and only a prototype inter-
face was available for the work done in this thesis. The gyro calibrations were
more complete; however, there are still some aspects that require more testing and
validation. Nonetheless most of the specifications of the instruments were cross-
checked against the manufacturer’s specifications and this knowledge could later
be propagated into the simulation domain.

3.1 The Accelerometer Calibration

To simulate a working INS, knowledge about the accelerometers and how to cor-
rectly transform the measured voltages into the corresponding accelerations is es-
sential to obtain any useful results. The accelerometers used in the present section
are the JAE JA-5 Type III servo accelerometer, which are very similar to the
Honeywell QA-3000. The accelerometer datasheet states the following,

e The instrument bias, b,, is smaller than 4 mG ~ 4000 mGal.

e The instrument nominal scale factor, k., is stated to be between 1.197 and
1.463 mA.G™!, which can be translated into 0.4326 to 0.5287mGal.uV ™1
where the readout resistor used was 1580€). G is defined as the normal
gravity at 45° latitude, i.e., G = 9.80665 m.s 2.

e The root mean square of the instrument’s noise is stated to be smaller than
5mV for sampling frequencies below 500 Hz and with the maximum scale
factor this value can be computed to about 2592 mGal.

The interface electronics used in the following experiments were created by René
Reudink, a research technician within the Physical and Space Geodesy group at
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TU-Delft. The accelerometer signal is digitized through an analog/digital (A/D)
converter and then sent to a microprocessor responsible for displaying, storing
and communicating with the computer through a HyperTermina]H interface. The
system is completed with a power supply in the form of a simple battery. The
sampling rate is 4 Hz and two kinds of measurements are taken: the voltage, V', at
the terminals of the readout resistance and the working temperature, 7.

The voltage V measured by the accelerometer is a function of the specific force,
f, along the sensitive axis of the instrument and the temperature of the instrument,
T. Additionally the accelerometer contains a constant bias term 1}, and a noise
parameter puy. Explicitly,

V=V+kof +V(T)+ py (3.1)
Where,
V, — is a voltage bias of the accelerometer
ke — is the scaling factor between the input specific force and the mea-
sured voltage.
V(T) - is a function relating the voltage output of the instrument to the
working temperature.
iy — is the accelerometer noise parameter.

Model Eqn. 3.1 reflects the relation V' = f(f, T'), however a more useful model is
the one used to compute the specific force from the measured voltage, f = f(V,T).
Therefore one can rewrite Eqn. in the following way,

F= LWV = )

Rq
and noticing the change in notation the sought model is found to be,
f=rV =b—HT) = puq (3.2)

Where,
Ky = K — is scaling factor between the measured voltage and the in-
put specific force.

= Z—b — is the accelerometer bias.
f(T) = V@ s function describing the temperature dependency of the
Ra
Sensor.
g = ‘;—Z — is the noise of the instrument.

The accelerometer is a very temperature sensitive instrument, and therefore the
temperature model f(7") needs to be carefully studied to obtain useful results from
the instrument; however, in the context of this thesis, a temperature controlled
facility where relevant testing could be done was not available and therefore a

'a computer communication software normally bundled with Windows up to and including Windows
XP.
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temperature calibration of the instrument was not carried out. In the absence of
knowledge about the temperature model, the following approach was taken in the
calibration procedures. If the measured temperature, T, changes only by a small
amount, then the first-order Taylor expansion around the mean temperature 7 is
valid,

- df

{(T) ~{(T) + —

| T (3.3)

T=T

and 07 are the deviations of the recorded temperature from the nominal one.
Replacing Eqn. in model Eqn. , notice that f(7") is a constant value and can
be included in the bias term.

_ df
f=rV —b—fT)— —| 6T — pia
const T=T
f=r,V —bp — kpdT — p, (3.4)

In the first few experiments the accelerometer was left, vertically positioned,
logging the voltage and working temperature. This kind of static experiment,
without any acceleration reference for calibration, were mainly carried out with the
purpose of verifying the working capability of the system. In the absence of any
external observation of the acceleration any estimation procedure is compromised;
however, one can try to estimate the noise level of the system by noticing that, in
this static setup, the accelerometer is excited by the local gravity vector, g;, which
is unknown but constant. Replacing f in equation Eqn. by ¢g; and linearizing
the temperature model as in Eqn. [3.4] the following is obtained,

V=Vo+kag + Vi 460 0T + pv
bE;gnst.

:b—f-liT(ST—l—,uV

This model can be translated in a typical least-squares (LS) form,

= Ax

\%

[1 5T] (3.5)
= [b IQT}T

Y
Y
A
x
The estimate is computed as,

B = (ATA) " ATy (3.6)

And the noise of the instrument can finally be estimated from the residuals of the
fit as,

o) = oy — AL) (3.7)
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The initial testing of the accelerometer was conducted in the L&R faculty. The
accelerometer was left, in the vertical position, recording 22 hours of data at the
274 floor of the building. The gathered data is shown in Figure .

With the results of this static experiment, it was possible to approxi-
mate the scale factor of the instrument. The average of the recorded voltage
was V = 2.072151 V, and the local magnitude of the gravity vector is G =
9.8124m.s~2. With these values, the scale factor x, can be estimated as,

GG

= — = —=.G =0.482 vt .
K 7 G.VG 0.4828 mGal.u (3.8)

which is within the instrument specifications. The quietest period of the night
(from 23h to 05h) was selected in Figure [3.1] and the instrument noise was esti-
mated as in Eqn. |3.7. The standard deviation of the noise in the measurements
was found to be 85.65 1V, and using the estimated scale factor, this value can be
translated into 44.41 mGal.

-4500 ' ' ' ' ' 1 12864

e T T T T T 301
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-6000 - 2858

3 , , , | | 297 -6500 2856

. . . . . .
5 s 05 1 15 2 25 3

T3ime [s] ‘ x10* Time [s] x10°
Figure 3.1: Data logged from the ac- Figure 3.2: Accelerometer measurements
celerometer at the L&R faculty. spanning 3 days.

It was seen from the results that the building was constantly experiencing small
vibrations, especially when the elevators were moving. Even during the night, when
the elevators are stopped and the AC is turned off, the movement of the building
is enough to mask the noise of the instrument. For this reason, the location of the
following experiments was changed to a 6-floor building in the vicinity chosen for
its structural rigidity and ease of access. In this location, two experiments were
carried out.

The first experiment (in the new location) was another static test, conducted
over 3 days in the basement of the aforementioned building, with the main pur-
pose of evaluating the long-term stability of the logging system. Additionally, by
recording data during the night, when the inhabitants are sleeping and the eleva-
tors are still, the variations in the recorded signal can be attributed to the system’s
noise. The basement is where the conditions are the quietest and the temperature
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is relatively stable over long periods. In Figure the gathered dataset is shown.
Notice the scaling of the axes in comparison with the ones in Figure taken
at the L&R building, to see a significantly smaller magnitude of the measured
accelerations and much more stable temperature.

The marked area in Figure [3.2] represents about 2h 15min and it was selected to
estimate the level of noise of the instrument because of its relatively stable signal
and small temperature variation. The standard LS approach is used once again to
estimate the system noise level as in equation Eqn. 3.7, The standard deviation of
the system noise in the basement was found to be 6.02 V. Once again, using the
estimated scale factor, this value can be translated to 3.12 mGal.

The second experiment was done to observe the sensitivity of the instrument
and to have an idea of the magnitude of the temperature influence on the measure-
ments. This was done by using a very precise, relative gravimeter, the Scintrex
CG-5, and taking 30 min samples of data with both instruments on the 1st, 3rd
and 6th floors (see Figure [3.3).

The gravity gradient along the radial direction of the Earth at surface height
is approximately -0.33mGal.m~!. This means that in the distance between 2
floors (ca. 6-7m), one can expect a change in the gravity vector of about 2mGal.
From the measurements taken by the relative gravimeter the change in gravity was
2.3 mGal.

(a) The accelerometer platform (b) Accelerometer and Gravimeter recording
measurements.

Figure 3.3: On the left the accelerometer platform with two perpendicular water-levels
and two adjustable screws for tilt correction. On the right a picture of both systems
logging data side-by-side

The temperature differences between the floors were quite high and, given the
high temperature sensitivity of the accelerometer, a large signal variation can be
seen in the measurements between floors and even for the same floor while the
accelerometer temperature stabilizes. The logged accelerations and temperatures
from the three floors are shown in Figure The figure highlights the strong
correlation between the measured temperature and acceleration.

37



With the relative gravimeter a very accurate reference of the local gravity ac-
celeration is available to calibrate the accelerometer. Estimating the parameters of
the model in Eqn. in a LS sense yields the values in Table [3.1} The calibrated

accelerometer is plotted against the gradiometer reference value in Figure |3.4b

Parameter Value

Scale Factor Ky 0.05628 mGal.uV—!
Bias b —5559.67 mGal
Temperature Coefficient xp 74.2751 mGal.cC~!
STD Residuals o(pa) 1.03902 mGal

Table 3.1: Estimated Accelerometer Parameters

-SOOOs T T T T T T T T T T 30

-5500

5235

+,

5230 + T

nv

-6000 -

L Lt L L L
12 1.4 16 18 2
Time [s] x10°

-6500

o .
02 04 06 08 1 22 . ) P

Time [s]

L
12 1.4 22

(a) Acceleration and temperature plots (b) Accelerometer vs. Gravimeter

Figure 3.4: In Figure the raw acceleration (blue) is clearly correlated with measured
temperature (red). Figure plots the calibrated accelerometer (blue), obtained after
the LS fit, and the acceleration measured by the gravimeter (green).

The estimated bias is above the datasheet specification of 4000 mGal, but not
significantly. Furthermore, due to the temperature model linearization, part of the
estimated bias is actually temperature dependent and in that sense it not actually
a proper bias. Since the temperature was not controlled during the experiment, it
is not possible to know if the instrument bias is within specifications or not.

In an attempt to better model the temperature dependency, a second order
polynom of the temperature was used in the fit, with no real improvement. It seems
that the temperature inside the accelerometer casing experiences a time delay
relative to the one measured by the temperature sensor embedded in the external
part of the accelerometer casing. The actual temperature inside the casing seems to
change slower than the one recorded by the thermometer. This is not clearly seen
in any of the shown figures and therefore it is left as a matter of future investigation
using more thorough calibrations of the accelerometer. The temperature modeling
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was not further pursued in the context of this thesis, but it became apparent from
these experiments that the temperature has a very big impact on the measured
acceleration, and it requires careful modeling and/or control to reach the maximum
performance of the sensor under a more dynamic environment. This is also clearly
stated in Meyer et al.| (2003, sec. 6.2.3) where the similar Honeywell QA3000
accelerometers were tested.

The estimated scale factor, 0.05mGal.;zV 1!, is one order of magnitude smalled
than the datasheet specification, between 0.43 and 0.52mGal.V~!. The explana-
tion can be attributed once again to the temperature dependency of the sensor.
Since each floor had a different temperature, a large correlation between the grav-
ity and temperature signals exists which might have lumped most of the of scale
factor together with the temperature coefficient. This would explain the large dis-
crepancy between the obtained value and the previously estimated one. Further
testing will clarify this issue. The experiment can be improved by exploring a
larger working range of the accelerometer (instead of the small ~5mGal variation
used in this experiment) while keeping the temperature of the instrument as steady
as possible.

The standard deviation of the residuals leads to the conclusion that the noise
level of the instrument is 1 mGal at / Hz sampling rate. This value is 2 to 3 orders
of magnitude smaller than the specified 2592 mGal value at 500 Hz sampling rate.
Since the sampling rates are quite different it is not possible to conclude whether
the instrument is operating within specs.

From this experiment it becomes clear that variations in the temperature se-
riously degrade the quality of the accelerometer measurements and therefore ac-
curate knowledge about the temperature model is required for further calibration
activities. From the first static experiment it was possible to observe that the
accelerometer scale factor (the only observable parameter in this kind of test) is
within the range specified in the datasheet. With additional experiments, the bias
and noise level of the instrument still could not be correctly compared with the
datasheet specifications; it is assumed for the remaining of this thesis that the JAE
JA-5 Type III accelerometers are working within specifications.

The Honeywell QA3000 accelerometers have also been purchased by the GAIN
project and while being very similar to the previous ones, they claim better per-
formance. The stated bias and scale factors are the same as the ones stated for
the JAE JA-5, but the noise level is claimed to be <70 mGal, two orders of magni-
tude smaller. These accelerometers were not calibrated in the course of this thesis
because they were unavailable during this period. Assuming again that the Honey-
well accelerometers will also perform within specifications, they are more accurate
than the JAE’s and therefore these are the accelerometers that will be considered
for the simulations of the GAIN strapdown airborne gravimetry system.

39



3.2 The Gyro Calibration

The Fizoptika VG951 fiber-optic gyroscopes (FOG) have been calibrated using the
Acutronic AC2237 rate table at the L&R faculty. Similarly to the accelerometer
calibration, the parameters of interest in the FOG are the bias, scale factor and
noise level.

The basic idea behind any calibration is to find the relation between the instru-
ment’s output and the physical quantity that it measures. Since, in general, the
physical quantity is not available directly (that’s why the sensor is needed in the
first place) the sensor is calibrated against a more precise reference. In this case,
the rate table is the reference and the gyro is placed on top of it. By simultaneously
logging the table and the gyro it becomes possible to find this relation.

Figure 3.5: Picture of the gyro calibration on the rate table

Several problems were identified during the course of this study regarding the
data logging process, and have been corrected to the best possible extent. First,
and for comparison purposes, a fit without considering any of the problems is
shown. The phenomenon that adversely affect the fit will be identified and a final
fit will be shown where the observed problems have been dealt to the furthest
extent.

The fit between the gyro and the table is done using the following 3'-order
model (Fizoptikal [2010)),

V3
Q=0+ SFV + SF3— + 14 (3.9)
Vit

where,
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V' — raw gyro output [V]

Vi — gyro output voltage at maximum working range [V]
) — rate table angular velocity [deg.s™!]
Qy — gyro bias [deg.s!]
SF; — the i®-order scale factor [deg.s1.V~1]
Qy — gyro bias [deg.s™!]
tg — gyro noise [deg.s]

The VG951 datasheet (Fizoptikal 2010) states the following specifications,
e The instrument bias €}y is smaller than 8.33(3) x 1073 deg.s*
e The instrument scale factor SF; is within 41.6(6) + 15% deg.s'. V!

e The nonlinearity at half of the gyro range is smaller than nl|vf vy < 3%
-2

e The nonlinearity at maximum working range is smaller than nl|V:VM < 15%

e The noise PSD is constant in the instruments working frequency and is about

10pV.v/ H=z . This means that the RMS of the noise e can be computed has
follows,

06 = PSD X +/f,
=10 x 107% % /300
=1.73205 x 107V

multiplying by the nominal scalefactor,

= 1.73205 x 107 x 41.6667
= 7.21572 x 107" deg.s™!

The nonlinearity term can be written as the quotient between the nonlinear
part and the linear part of the model disregarding the bias,

V3
near nonlinear
so the nonlinearity can be easily computed as,
SFY
[ = - 3.11
nl=—op (3.11)

The gyro noise RMS value can be estimated from the formal error of the LS
fit. More precisely,

oe=¢ele=(y— Ax)".(y — Ax) (3.12)
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with,

y:[Ql Qy - QN]T
; Ve
1 W “//—5
Ao |t
vy
RGNS

T = [QO SFl SFg]T

and the computed value of o, accounts for the gyro noise and mismodeling errors.
When using an appropriate model, the computed value should approximate the
noise level of the instrument. When the computed value is excessive compared
with the specification, this often means that the model used is inadequate to
describe the data and as such the resulting fit has poor quality.

In November 2007, a flight test was performed by the GAIN project using a
commercial INS system alongside the IMU currently in development. Unfortu-
nately, the gathered accelerometer data did not meet the required accuracy but
much has been learned from this experience. In this test flight, the angular veloc-
ities measured by the gyro triad were never bigger that 10°.s'. For that reason,
the range of interest for the calibration is shortened to £15°.s! range to obtain
a better fit to the instruments’ parameters (the full range of the instrument is
+80°.s!). The mechanical input to the instrument was selected to be a sinusoidal
wave with an amplitude of 15°.s and a frequency of 0.74 Hz.

In Table the results of the fit are shown and crosschecked with the figures
from the datasheet. Notice the high RMS value of the residuals and then notice
Figure [3.6| where the residuals are plotted. The residuals exhibit a deterministic
behavior and this means that the obtained fit has poor quality and the model
used does not correctly describe the relation between the gyro and the rate table
measurements. It is imperative to understand what is happening to obtain a better
description of the instrument.

Table 3.2: Results of the LS fit to the model in Eqn. compared with the gyro
specifications.

’ Parameter ‘ Fit ‘ Datasheet ‘ ‘
Qo deg.s! 4.40252x107% | < 8.33(3)x1073 | v
SF, deg.st/V | 37.2285 € 41.66(6)+15% | v
nl|vim 1.37% < 3% v

2
nlly_y,. 10.9% < 15% v
RMS(e) degs?! 3.77860x107°1 | < 7.21572x1079 | X
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Figure 3.6: Residuals of the LS fit between the VG951 FOG and rate table measurements.
Note that the residuals are not plotted vs. time but vs. the measured voltage.

There are some features in the residuals that need to be acknowledged. First
notice in Figure the circular trajectory that the residuals describe with each
cycle of the sinusoidal input. After some investigation it was possible to conclude
that this is caused by a time delay between the measurements made by the gyro
(or the rate table) and their time of registration. Notice also in Figure the
stripe pattern in the residuals which was found to be caused by an oversampling of
the gyro measurements. Both of these problems severely degrade the performance
of the parameter estimation and need to be appropriately dealt with.

3.2.1 Data Downsampling

The datalogging setup is quite complex and several considerations have to be
made before applying the LS fit. The first critical problem lies in the different
sampling rates of the gyro and logging system. The rate table is responsible for
logging its own angular velocity along with several other important variables. The
gyro sampling rate is 300 Hz and it is connected to a dSPACE system which is
responsible for logging the gyro messages. To implement the synchronization of
both datalogging systems the rate table clock is fed to the dSPACE system in
a way that the logging of the gyro and table is coordinated by the table clock.
The problem is that, the rate table has an internal 2000 Hz clock that can only be
divided by integers resulting in the nearest possible 333.33 Hz. This means that,
during the datalogging, the gyro is being oversampled, creating several repeated
messages throughout the dataset. This creates two immediate problems: repeated
gyro messages are being used throughout the LS fit and the delay between the
time of measurement and the corresponding registration time varies with each
gyro sample. The stripe pattern of the residuals in Figure is caused precisely
by this oversampling. The oversampling phenomenon is illustrated in Figure |3.7]
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Figure 3.7: The oversampled gyro as logged by the DSPACE system. fg, and f,,s stand
for the gyro and oversampling frequencies respectively.

It is necessary to have both datasets at the same sampling frequency and aligned
in time if any useful results are to be obtained from the calibration. To have both
datasets aligned in time we need to correct the oversampling of the gyro data and
downsample the table data to 300 Hz. This is done using the following algorithm,

1. Find the gyro repeated messages. The best way to do this is to use the
COUNTER status of the gyro message. It counts from 1 to 16 and, if it is
repeated, then it implies the message is repeated.

2. Delete the repeated gyro samples.

3. Create a new time vector starting at the first repeated message, with fg’y1 S
increments for the whole range of the data, and interpolate the table data into
the new time vector, downsampling it to the gyro frequency. The interpola-
tion method used is a standard cubic interpolation provided by MATLAB.

This procedure is exemplified in Figure |3.8 where the recovered gyro signal has
a constant unknown time delay 6 < A. The time alignment of both data streams
is considered in the following section.

Figure 3.8: Correcting the oversampled gyro measurements. Notice that the processed
gyro measurements will have a constant time offset relative to the original data.
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3.2.2 Time Alignment

Correcting the unknown delay between both data streams is critical to the calibra-
tion procedure. The table is rotating with a certain angular velocity, w(t). This
function is observed by both gyro and rate table at slightly different times. Then,
using a Taylor expansion of w(t), one can write

w(t +0t) = w(t) + w(t)dt + %c&(t)étQ +...

Assuming that 0t is small, terms beyond first order can be neglected and rearrang-
ing the equation gives

Wt + 6t) — w(t) = w(t)ot (3.13)

If the table and gyro measurements have a certain time delay between them, their
difference should be proportional to the table acceleration. For a sinusoidal input,
the maximum angular acceleration happens at zero angular velocity while the zero
angular acceleration happens for the maximum and minimum angular velocities.
The circular shape described by the residuals in Figure shows exactly this
behavior which indicates the presence of a time delay between the gyro and table
measurements.

We now intend to estimate this time delay and compensate the gyro measure-
ments for it. It would be possible to include the time delay parameter in the model
Eqn. [3.9; however, to maintain a separation between preprocessing of the data and
parameter estimation, another (equivalent) approach was taken. Assume that the
gyro measurements are delayed relatively to the table measurements, such that,
O = w(t) and Qg = w(t+ t). Then, according to Eqn. the residuals of the

fit, e, can be written,
e =y — Quy = thlét +

and the time delay can be estimated also in a LS from the residuals of the fit as:
ot = (25, Qu) 1% e (3.14)

To correct for the time delay between the gyro and table measurements the
following iterative scheme is applied,

1. Make a LS fit between the gyro and the table using model in (3.9)).

2. Estimate the time delay between both streams from the residuals of the fit

using (B-1).

3. If the estimated delay is smaller than 1% of the sample time, stop. Otherwise
continue to 4.
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4. With the estimated time delay, correct the gyro measurements by interpolat-
ing them to the correct time instant.

5. Go back to 1.

Ths algorithm normally stops after 2 or 3 iterations.

After using the above algorithm in the dataset, it became apparent that a vary-
ing time delay remained. This is well observed by inspecting the residuals versus
the table acceleration depicted in Figure|3.9, The color of each point translates the
time at which the sample was measured, allowing the distinction between different
parts of the dataset. Notice that at the beginning of the dataset (in blue) the
slope of the points is negative while at the end of the dataset (in red) the slope is
opposite.

017
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002t
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-0.02 ¢

-0.04 ¢
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008

0100 50 0 50 100
Table Acceleration [deg/s2]

Figure 3.9: Residuals vs. Table Acceleration. The color indicates the time at which
the sample was recorded. The changing slope shows that a variable delay exists in the
dataset.

To correct for this varying time delay, the dataset is segmented in smaller parts;
for each part a time delay is estimated in the same way as before ( eq. Eqn. m)
After having a set of time delays for each different part of the dataset a continuous
delay function is linearly interpolated from this discrete set to correct as accurately
as possible the delay of each sample.

3.2.3 LS Fit with the processed data

At this point the datasets are aligned in time, sampled with the same frequency
and a final LS fit can be made. The results can be seen in Table 3.3 and the
residuals are plotted in Figure |3.10]
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Table 3.3: New estimated parameters after processing and comparison with the gyro
specifications

] Parameter \ Fit \ Datasheet \ ‘
Qo deg.s! 4.27807x107% | < 8.33(3)x1073 | v
SF,; deg.st/V | 37.2535 € 41.66(6)+15% | v
nll,_vy 1.34% < 3% v

2
nlly_y,. 10.7% < 15% v
RMS(e) degst 1.76490x 107" | < 7.21572x107% | X
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Figure 3.10: Residuals of the LS fit after processing the gyro and table measurements.
Note that the residuals are not plotted vs. time but vs. the measured voltage

The obtained fit is better and has succeeded in eliminating the circular shape
and stripe patterns present in the previous residuals; however, an unknown oscil-
lating signal still permeates the residuals. The cause of this signal is unknown
and it is important to point out that this signal is already observed in the first
fit made. This means that it was not introduced by any of the preprocessing rou-
tines applied. The argument is made here that this signal is not introduced by
the gyro but instead by some systematic error in the data logging or by the rate
table controller. To illustrate this argument, consider the following situation. The
table records several variables in its dataset. In the first attempts of calibration
the variable RATE_EST was used as the instantaneous rate of the table. However,
it was later found out that this signal is actually filtered by the table controller
and thus, it is not, in a proper sense, an observation of the table angular velocity.
Using this variable was affecting the LS fit. To avoid this, the instantaneous rate,
1, was instead computed by numerically differentiating the logged position of the
table in time. This is an example of how unexpectedly the table recorded variables
introduced error in the LS residuals. Accepting that this unknown signal is not a
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part of the gyro’s output, it is possible to observe two distinct ribbons of data in
the residuals with a hysteresis-like behavior. These ribbons are the gyro’s signal
and from their thickness it is possible to conclude that their standard deviation is
well within the value specified for the instrument.

On a final note about this chapter, notice that no temperature dependency was
included in the gyro model. There is however, an influence of the temperature on
the sensor and it is important to properly calibrate it. However a technical solution
that allows the control of the gyro’s temperature while rotating on the calibration
table is being developed by the C&S group and therefore was not yet available for
the work performed in this thesis. Omitting the temperature dependency from the
gyro model in the presented results is, nonetheless, argued as valid since the gyro is
much less temperature sensitive than the accelerometer and during the calibrations
the temperature within the lab was kept stable to within 1°C.

3.3 Sensor Error Models

In a pre-flight calibration, the parameters of the gyro model Eqn. are deter-
mined to the best possible extent. These parameters will be used during the flight
to transform the voltage measurements provided by the gyro into the corresponding
angular velocity as accurately as possible. However the instrument parameters are
slightly volatile, i.e., they change with time, working conditions, temperature, with
each instrument reset, etc. Having calibrated the model parameters pre-flight, the
real parameters during the mission are, generally speaking, slightly different. Ex-
actly the same is true for the accelerometers and therefore it is necessary to know
how much do the inertial sensor parameters change with time. This is depicted
in Table where the repeatability of the gyro and accelerometer parameters is
shown.

Table 3.4: The repeatability of the inertial sensor parameters as stated in the respective
datasheets.

Acc | Bias repeatability o(by) < 40 mGal
Scale Factor repeatability | o(kq) < 100 ppm

Gyro | Bias repeatability o(by) < 8.33(3) x10~* deg.s!
Scale Factor repeatability | o(xq) < 80 ppm

The measurement done by an accelerometer, f, is computed from the measured
voltage V' and temperature T' according to the model Eqn. using previously
calibrated values for each of the coefficients,

f=b+ K,V + kT + pg (3.15)

If the bias and scale factor parameters slightly deviate from their calibrated state,
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then the computed acceleration f will also deviate from the real value such that,

f: (Ky — 0Ky)V — (b — 0b) — kT + pg
f: KoV —b— KT +0b + 0K,V + g
=

f—f=0b+0k,V + g

0Ky
§f =6b+ - nvf/wa
~f
6f = 6b+ 0kf + i (3.16)

This is then the error model used to relate the computed acceleration f and
the real acceleration f. The same model can be used for the gyros, and Eqn. [3.16
can be expanded to a vectorial form for the accelerometer and gyro triads. Letting
the term diag( ) represent a function that transforms a 3D vector into a diagonal
matrix, we have,

6f° = b, + diag(f*)dk, + p,

st e (3.17)
wy, = 0by + diag(@”)dk, + p,
Where,
ob, — 1is vector with the bias for each accelerometer.
0K, — 1s the vector with the scale factor errors for each accelerometer.
@, — is the white noise vector of the accelerometer triad.
d0b, — is vector with the bias for each gyro.
0k, — 1is the vector with the scale factor errors for each gyro.
p, — is the white noise vector of the gyro triad.

This error model for the inertial sensors will be later applied within the Kalman
filter responsible for the estimation of the IMU errors.
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The Simulation Software

A collection of MATLAB routines was developed to simulate the GAIN strapdown
airborne gravimetry system. The software was designed with multiple goals in
mind; the first and most important is that it allows the data gathered in an airborne
gravimetry system to be processed into the gravity disturbance vector at flight
level. Beyond this, the software was developed with the intention of studying the
airborne gravimetry system through simulation; it allows us to understand the
effect that each instrument has on the accuracy of the output and which of them
are critical to the performance of the system.

A short overview of the developed software is given below and all the mentioned
steps are clearly detailed in the following sections of this chapter.

The software is divided in two major parts as depicted in Figure The first
part deals with the generation of data that GPS and IMU systems would record
when flown along a given trajectory and attitude. The second part deals with the
actual processing of the GPS and IMU measurements into a gravity disturbance
vector at flight level.

The dataset generation part was implemented with flexibility in mind. The
inputs are a sufficiently smooth[] timeseries of coordinates and attitudes of the
platform. The routine then generates the measurements that would be recorded

!discontinuities in the accelerations will results in problems during the processing

Trajectory '—) @ —= INS @
Synthetic Processin _Gravity
Dataset | g Disturbance
Attitude I——) ) =— GPS J—)

Truth

Figure 4.1: Division of the software in two parts: synthetic dataset generation (1) and
dataset processing (2). The synthetic dataset generation receives a list of positions and
attitudes to yield the corresponding GPS and IMU measurements. The processing part
accepts a dataset of GPS and IMU measurements to yield the gravity disturbance vector
at flight level.
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by the accelerometers, gyros and GPS system while the platform moves through
the given trajectory. Additionally it was made possible to configure the gyros,
accelerometers and GPS sampling frequencies, their model parameters, noise and
the gravity disturbance model.

At the end of the processing a dataset is created with the simulated GPS and
IMU measurements along the desired path. At the same time a truth dataset is
created with all the error-free information relevant to the simulation. This truth
dataset establishes the reference to which every processed variable can be easily
compared allowing us to debug the software during development phase and to
evaluate the performance of the system at the end of each simulation.

The data processing part is divided into several distinct tasks. First the GPS
positions are transformed from the e-frame into the ¢-frame where the processing
of the data will take place. The kinematic acceleration, X?, is computed from the
transformed positions.

As mentioned in Chapter [I], the accelerometry approach will be implemented,
where the gravity disturbance vector is obtained from the difference between the
total acceleration, as measured by the IMU and the kinematic acceleration, as
measured by the GPS system. However, GPS is primarily used to obtain the
position of the platform and to use GPS as an acceleration sensor one must double
differentiate the measured positions. Before computing the gravity disturbance
vector it is necessary to deal with the errors in the INS and GPS accelerations. The
GPS errors exist mainly in the high frequencies due to the double differentiation
of the position measurements and these errors are removed with a low-pass filter.
The INS contains significant noise in the low-frequency, due to the biases and scale
factors, and in the high-frequency parts of the spectrum due to the intrinsic noise
of the accelerometers. To remove the high-frequency noise, low-pass filtering is
applied, equivalent to the one used on the GPS-accelerations and the low-frequency
errors are corrected with the parameters estimated by the Kalman filter.

The first step is then to low-pass filter the IMU specific force and GPS accel-
eration measurements. After this, a loop through all the data begins where one or
more of the following tasks are performed:

e the most recent angular velocity measurements are integrated and the atti-
tude matrix of the platform is updated. With the newly computed attitude
the specific measurements, f°, are rotated into the inertial frame, f°.

e to keep track of the evolution of the errors in the system the Kalman filter
continuously propagates the error state vector in time.

e at a GPS epoch, an observation of the acceleration and attitudd? of the
platform becomes available. By comparing the GPS and IMU accelerations
and attitudes, an observation of the errors in the system is made and this
new information is used by the Kalman filter to update the current estimate.

Zattitude observations are actually optional.
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As soon as the Kalman filter is updated with an observation, the estimated
attitude error is used to correct the attitude integrator, and the roll, pitch,
yaw errors in the state vector are reset to zero. This estimation procedure
is called closed-loop estimation, (Jekeli, |2001; Tapley, 2004) and it becomes
necessary in nonlinear systems such as this one. The reason is that the IMU
gyros contain bias terms which, when integrated, continuously divert the
computed attitude from the real one where the linearized model is not valid.
Continuously correcting the integrated attitude bounds the attitude errors
within the region of validity of the model.

When all of the data has been processed within the Kalman filter, the specific
force measurements are corrected with the estimated bias and scale factors and
the gravity disturbance vector is computed and compared to the true one to assess
the performance of the system.

4.1 Gravity Model

The gravity model used within the software is divided in two parts. One is the
normal gravity model, which approximates the real gravity field. This normal
gravity can be a simple point-mass model as used in this thesis or any other more
sophisticated models that exist to describe the gravity field of the Earth. The
choice of normal gravity model is not important within the simulator since this
is not the one that will be measured by the system. The system is only sensitive
to gravity disturbances which are the deviations of the real field from the normal
model and these are introduced in the gravity disturbance model. Both of them are
described in detail in the following sections.

4.1.1 Normal Gravity Model

At several points in the generation of datasets and of the processing a normal
gravity model is necessary. At all of these points the gravity model used is the one
detailed in this section.

The normal gravity vector model 4*(r") used in the software is also presented in
Jekeli (2001). A very simple point-mass model will be used where the whole mass
of the Earth is compacted to single point located at the origin of the inertial frame.
With this assumption the Earth’s gravity model is fully described by Newton’s Law
of Gravitation,

The GMpg parameter is called geocentric gravitational constant and is defined
as the product of the universal gravitational constant, GG, and the mass of the
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Earth, Mg. The value used for this parameter is presented in Moritz (1992) and
is one of the defining constants of the GRSS80 ellipsoid.

GMp = 3.986005 x 10" m?/s? (4.2)

Notice that the input to the model is the position in the i-frame, r’. Since most
of the variables used in the software are defined in the i-frame, there was no need
to implement alternative inputs to the function (e.g., the e-frame position).

4.1.2 Gravity Disturbance Model

The most important gravity model, however, is the model for the gravity distur-
bance that we wish to estimate within the (simulated) airborne gravimetry system.
The gravity disturbance, Ag, is defined as the difference between the real grav-
ity vector, g, and a model, «, at the same position in space. This model can be
as simple as the one discussed in the previous section, or any other more complex
one. Independently of the chosen model, the gravity disturbance represents the
deviation of the real gravity field from the one we know (or assume) to be true,

Ag=g-—~ (4.3)

The considered gravity disturbance model has previously been used in |Alberts
(2009, chap. 5, data set 2). The gravity disturbance is computed in a 6.5x6.5
degrees (630x730 km) area over Texas/Oklahoma in the USA, with a coordinate
center at 33.25° N 100.00° W. The gravity disturbance values were computed from
several global geopotential models, EGM96?, GPM98H and EIGEN-CG03d in

the following way:
e From degrees 121 to 360 data is computed from EGM96.

e From degrees 361 to the maximum degree 1800, data is computed from
GPM98b.

e To simulate realistic gravity disturbances, the more recently published model
EIGEN-CGO03c was subtracted from degrees 121 to 360.

The values of the gravity disturbances were computed on a grid consisting of
66 East-West profiles at an altitude of 2km. The distance between each profile is
0.1° (= 10 km) and the spacing of points along the grid is 1arc-min. A surface
plot of the whole dataset can be seen in Figure [£.2] All the performed simulations
obtain their gravity disturbance vector from this dataset and the continuous gravity
disturbance function is emulated by using cubic interpolation between the nodes
of the provided grid.

3Lemoine et al.| (1998)
4Wenzel| (1998)
SForste et al.| (2008)
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Figure 4.2: Surface plot of the gravity disturbance model over a map of the region.

The provided grid contained only scalar values instead of a real 3d gravity
vector. To accommodate this into a gravity disturbance vector as computed by
the airborne gravimetry system, the scalar values are assumed represent the vertical
component along the n-frame and the horizontal components are assumed to be
null.

4.2 Synthetic Dataset

In this section, the tasks involved with the synthetic dataset generation (i.e., step
1 in Figure will be explored in detail.

The synthetic dataset is created with a routine that generates the measurements
taken by the GPS and INS systems in a simulated flight. The routine was designed
to be independent of any particular flight path; therefore, to actually use the
routine one must first generate a time series of positions and angles describing the
trajectory and attitude of the aircraft. First, an example will be shown of how the
positions and attitude were generated for a specific flight path and some techniques
that have been applied to ensure good results. After this, it will be shown how the
IMU and GPS measurements are generated for any specified given flight path.

4.2.1 Creating a flight path

In this section the creation of the flight path shown in Figure[4.3] later used for the
simulations, will be illustrated. To fully describe the kinematics of the platform the
attitude of the platform at every time epoch also needs to be defined. For conve-
nience, the set of positions is described with geodetic coordinates and the attitude
angles describe the transformations between the body axes and the local naviga-
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tion frame (i.e., the n-frame). The shown trajectory was built by concatenating

Latitude @
(]
[E%]
T

N N

NN Y Y

1 1 1 1 1 1
-100.4 -100.2 -100 5998 99.6 994
Longitude ®

Figure 4.3: The trajectory built for the simulations

straight flight paths with half-circles defined in the geodetic coordinate space. The
straight paths have constant latitude and the samples are equally distributed in
space according to the desired sampling frequency and airplane speed. The half
circles are built using sin and cos functions maintaining the linear velocity of the
airplane. During the half-circles, to keep a certain degree of realism, a 5° roll angle
is set and the yaw angle is such that the body x-axis is tangent to the circle at
every sample.

A major difficulty arises in this kind of exercise whenever changing from a
straight section to the half-circle one. At the point of transition, a discontinuity
in the aircraft acceleration naturally arises. Since the attitude is also different in
both segments, a discontinuity also occurs in the attitude angles. To ensure that
the acceleration computed from the positions and the angular velocities computed
from the attitude are continuous, one must ensure that the transitions between the
segments are done smoothly. A B-spline smoother tool was found to provide good
results in this context. Consider a set of values x at a discrete set of time samples.
To minimize the discontinuities in the second derivative a new set of smoothed
values x, can be found by minimizing the following functional,

X, = argmin (PZ i — %[>+ (1= P) Y HD%@-W) (4.4)

where D is the differentiation functional.
The smoothing parameter, P, is the only choice controlling the amount of
smoothing done by the method. When P=1, the method does nothing as the
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smoothed points will be the same as the initial ones. When P=0, the smoothing
fully minimizes the norm of the second derivative which results in a LS fit of a line
to the given points. Anywhere in between is the ideal amount of smoothing which
can be chosen by trial and error. More details can be seen in the documentation
of the MATLAB function csaps from the spline toolbox. This tool is remarkably
flexible and can be used for almost all imaginable trajectories one wishes to build.
An example of the results obtained with this method is shown in Figure [£.4] where
the roll angle around the transition point between a straight path and a half-circle
path is depicted. In the former the roll angle is set to 0° and in the latter the
angle is set to 5°. Here you can see the before and after smoothing where the P
parameter has been chosen such that the transition spans over roughly 30 seconds
of data.

—=— hefore smoothing
—— after smoothing

Rall Angle [*]

1 1 1 1 1
3455 3460 3465 3470 3475
Time [s]

Figure 4.4: B-Spline smoother results with smoothing parameter P = 0.02

At this point, a set of geodetic coordinates describing the trajectory and a set
of angles describing the attitude have been created and smoothed ensuring that
no sharp discontinuities exist in the derivatives of the generated values. An ab-
straction of this specific flight path is now possible, and the problem becomes more
general: for a given set of positions and attitude angles, how can the corresponding
measurements of the IMU and GPS systems be generated?

4.2.2 Creating the IMU and GPS measurements

The IMU system uses a triad of accelerometers to measure the acceleration vector
of the vehicle. The gyro triad is responsible for measuring the angular velocity
vector of the platform. The hardware is aligned with the body frame and therefore
it records this data in the b-frame. Typically the GPS system provides positions
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in the e-frame. In the specific case of the L&R Cessna Citation II airplane, a triad
of GPS antennas is placed at the fuselage, wing and nose of the aircraft which
enables the post-mission computation of attitude measurements (Alberts et al.
2010). The assumption is made that GPS-attitude observations are provided as
direction cosine matrices, Cf, describing the transformation between the b-frame
and the i-frame.

Most of the equations used in this section have been seen in Section [2} however,
they will be repeated when convenient.

Recalling equation Eqn. [1.3] describing the specific force f measurement, we
will add the superscripts [ to clarify the frame in which the variables are defined,

This is the equation that defines the specific force measurements made by the
accelerometer triad. There are two ingredients in this equation: the inertial accel-
eration of the platform, ©*, and the gravitational acceleration at the accelerometer
position, gt.

To compute the inertial acceleration, the positions of the platform in the i-
frame must be computed first and then double-differentiated in time. The set of
positions provided is in geodetic coordinates, r9°°; and to transform them into the
i-frame one must first convert them to the equivalent Cartesian set of coordinates,
¢, as in equation Eqn. [2.37]

x° (N + h) cos ¢ cos A
‘=1 y° | = (N + h) cos ¢ sin A (4.6)
2© (N (1—¢?)+h)sing

The positions in the e-frame are then rotated into the i-frame using the transfor-
mation Cf. The transformation between the e-frame and the i-frame is platform
independent since it is governed only by the rotation of the earth. It can be
computed by expanding equation Eqn. [2.33]

cos w At —sinw,At 0

Cf = R.(—w.At) = | sinw.At  cosw.At 0 (4.7)
0 01

and the positions in the i-frame can be computed as,
r' = C'r (4.8)

The angular velocity of the Earth, we, is one of the defining constants of the GRS80
model published in Moritz| (1992)),

We = 7292115 x 10~ rad/s (4.9)
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Finally, the computed positions are double-differentiated into the inertial ac-
celeration using the central finite differences method in equation Eqn. [2.53]

R v

P 7 (4.10)
where,

[ — 1is the IMU sampling time

k — is an indexation of the positions such that r, = r(tg + kh)

With the newly computed positions in the i-frame it is also possible to compute
the normal gravity vector g’ with Eqn. and all the ingredients necessary to
compute the specific force measurements are ready.

At this point, the accelerometer measurements f? can be computed in the iner-
tial frame. Notice that the accelerometers measure the specific force in the b-frame
and therefore the final step involves the rotation of the computed accelerometer
measurements into the body frame f* = C? fi. The C? transformation required to
do this is defined as,

ct=ctorer (4.11)
with,
—singcosA —sin¢g —cos@cosA
Cl'= | —singsin A  cosA —cos¢sin\ (4.12)

cos ¢ 0 —sin ¢

Cf has been computed in Eqn. and C® = (C7)™", the attitude of the platform
relative to the navigation frame, one of the inputs to this function.

The gyros in the IMU record the angular velocity of the body frame relative
to inertial space in the coordinates of the body frame, w?. The angular velocity
must be computed from the successive attitude angles of the platform. There
are as many ways of solving this problem, as ways to represent rotations all with
their advantages and disadvantages. The quaternion approach will be used for its
singularity-free representation. The first step is then to translate the set of C}
rotation matrices into their corresponding quaternion form q. This is done by
using Eqn. [2.31] and Eqn. [2.32]

The differential equation of the attitude in quaternion form can be seen in
Eqn. , however, Lizarralde and Wen| (1996) proposed an alternative form of
this equation, which is very convenient for the calculation of the angular velocity. In
the following derivation the subscripts of w? and q? will be omitted for simplicity.

4= Bla)w (4.13)
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with

—q1 —¢2 —g3
qo q3 —q2
E = 4.14
(q) —q3 qo q1 ( )
2 —q qo

The Jacobian, E(q), satisfies the following properties,

E(q)"E(q) =1
E(q)"q=0

The velocity vector can be computed then as,

w =2E(q)"q (4.15)

_ Adi+1 — Ai—1

5 (4.16)

qi

Finally the GPS positions and GPS attitude observations need to be generated.
Typically GPS has a lower sampling rate (between 1 and 10 Hz) than the IMU
system (typically 50 Hz). The GPS and IMU sampling rates are additional inputs
to the dataset generation routine, but nonetheless it is assumed that GPS has a
lower sampling rate.

GPS provides position measurements in the e-frame, and therefore they are
copied from the already computed r¢ appropriately down sampled. As for the
attitude, the transformation matrix between the inertial and the b-frame Cj is
also accordingly down sampled.

The accelerometers and gyros in the IMU and the GPS receivers are not perfect
instruments and their measurements contain noise and other errors like biases and
scale factors in the case of the inertial sensors. In the final part of this section
these errors are added to the computed measurements, thus simulating the errors
present in the real measurements.

According to the sensor error model in equation Eqn. the accelerometer
measurements contain a bias, a scale factor and white noise for each accelerometer.
Values for these parameters are chosen a-priori for each accelerometer and added
to the computed accelerometer measurements f°, vielding the noisy accelerometer
measurements f°.

o = 0by + (1 + 0ka) £ + g (4.17)
The same procedure is done for the gyros,

@y, = Oby + (14 0kg) Wiy + pig (4.18)
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As for the GPS measurements, the standard deviation of the GPS positions is
previously defined and the corresponding white noise realization is added to the
positions,

Tops = Taps + e (4.19)

The GPS attitude measurements are first transformed using a direction cosine
matrix to the corresponding attitude angles according to equation Eqn. [2.19] We
denote © as the set of obtained Euler angles. To this set of angles, a white noise
realization with an a-priori defined standard deviation is added, yielding the noisy
GPS attitude observations 1,

Y=+ py (4.20)

The attitude angles are then transformed back into the corresponding noisy direc-
tion cosine matrix C} according to Eqn.

All of the above information is summarized and illustrated in the flowchart
depicted in Figure [4.5

4.3 Processing

In this section, the dataset gathered by the IMU and GPS is processed into a
gravity disturbance vector at flight level, as indicated in Step 2 in Figure {4.1|
There are three major tasks involved with this process: the computation of the
GPS accelerations, the computation of the platform attitude and the estimation of
the biases and scale factors in the IMU instruments. These three tasks are outlined
in the following sections.

4.3.1 GPS Processing

For the processing of the GPS measurements the assumption is made that a list
of GPS positions of the aircraft in the e-frame is provided. The task is now to
compute the GPS accelerations in the inertial frame and the attitude of the aircraft
relative to the inertial frame.

The first step is to rotate the measured position to the i-frame where the
gravity disturbance vector will be computed. The position in the i-frame is simply
computed by appropriately rotating the measured position in the e-frame,

x' = (! x° (4.21)

To compute the kinematic acceleration of the aircraft, the GPS position has
to be differentiated; however, as pointed out by |[Kreye and Hein (2003), GPS
cannot directly provide the accuracy required for airborne gravimetry without any
reduction of the high-frequency noise. Several publications are dedicated to the
differentiation of GPS measurements and there are two methods of computing the
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Figure 4.5: Ilustration of the synthetic dataset generation. An arrow from A to B
indicates B depending on A.

kinematic acceleration. |Jekeli and Garcial (1997) proposed the computation of the
acceleration by differentiating the phase measurements of the GPS signal instead
of differentiating the computed positions. For obvious reasons, the first one is
the phase method and the latter the position method. The motivation for the
phase approach lies with the fact that the GPS-positions are already a quantity
processed from GPS measurements, and therefore obtaining the acceleration from
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the raw phase measurements is argued to be a more natural use of GPS as an
acceleration sensor. The biggest advantage of the phase method is that the phase
cycle slips, which affect the position determination, will not affect the precision of
the computed accelerations. However in this thesis, the GPS sensor will not be
modeled to the extent of generating phase measurements and therefore the option
of directly differentiating the GPS positions will instead be pursued.

Bruton et al. (1999) presents an extensive study of different numerical differ-
entiators and their performance. For its simplicity and good results the Savitzky-
Golay smoothing (Savitzky and Golay, 1964) presented in this publication has
been chosen for implementation. Using this technique, a polynomial is fit to the
GPS positions in a LS sense, and the computation of the velocity and acceleration
are straightforward from the estimated coefficients of the polynomial.

Consider the function, f(t), and within this function a window of length [ is
defined, centered around sample f; with an indexation ¢ = [—1/2 : [/2]. To the
function f inside the defined window the following polynomial of order n will be

fit:
P, = ag + ayi + agi’ + ... + a,i” (4.22)
with the 2°¢ derivative,

dP?

7 = 2a2 + Gagi + n(n — 1)a,i" > (4.23)
Substituting for the point at middle of the window,

dpP?

W o = 2@2 (424)

Using unweighted least squares, the coefficients of the polynomial can be com-
puted as:

-1

a=(ATA) A"t (4.25)

where
T
a=[ag a1 ay .. ay) (4.26)
T
f=|fit o Sooo ] (4.27)
[ dP daP daP ... 4P
dag i:—% daq i:—é dasg i:—é dan, i:—%

A= | 4& dar dapP dapP 4.98
daol;g  darf;g  dazf; g P (4.28)
daP daP dapP 4ap
dag |._ 1 dai |._1 daz |._1 day 1

L =3 =3 =3 7
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There are two important details that can be used to minimize the computation
time of the algorithm. First, the A matrix is independent of function f(¢) and
therefore (A7 A)™' AT needs to be computed only once. Second, since we are only
interested in the acceleration vector, only the ay coefficient needs to be computed
for each sample. Therefore only the 3™ line of (AT A)"'AT needs to be used in
Eqn. [£.25] Computing the acceleration is then straightforward using Eqn.

Applying this algorithm still requires the appropriate choice of the polynomial
order n and the window length [. The frequency analysis of this method can be
seen in the same publication (Bruton et all [1999) and the choice of parameters is
linked with the desired system resolution. The actual choice of filter parameters
is discussed in Section [B.1l

At this point, a low-pass filtered set of GPS-accelerations have been computed
in the i-frame.

4.3.2 IMU Processing

As pointed out in Section the accelerometry approach will be implemented
and to compute the gravity disturbance vector as in Eqn. the specific force
measurements have to be rotated into the i-frame. To do this, the transformation
matrix C} has to be integrated from the angular velocity measurements made by
the gyros.

Starting from the differential equation of rigid body rotation FEqn. [2.50

Ci = i, (4.29)
This relation can also be expressed in quaternion form (Jekeli, 2001)),
.1
q=54q (4.30)
0 wy Wy W,
A= —Wy 0 Wy —Wy
| Wy —w, 0  ws
—W, Wy —Wg 0

where no confusion is anticipated by using the simplified notation q = q? and

— b
w:wib

The problem is now to integrate the above equation to obtain the attitude
of platform q(t) at every time instant. Notice that equation Eqn. can be
expressed as

q(t) = £(t, q(t)) (4.31)

with,

f = —A(t)q(t) (4.32)
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falling into the class of problems described in Section . Therefore the a 3"d-order
Runge Kutta method will be used to integrate equation Eqn. [4.30]

The considered method evaluates function f at three points, the integration
start point #,, the mid-point ¢,/ and the final point of the integration ¢, .
This means that a datapoint is necessary in the middle of every integration step.
We denote with index [ the discrete set of measurements taken by the gyros, and
define the integration step size h = 2[. One can now apply Eqn. [2.62| explicitly to
the quaternion differential equation with the new index notation

h
qQ=q-2+ 6 (ki +4k; + k3) (4.33)
ki =f(ti—2, qi-2)
h
k (ti—1, d1—2 + §k1) (4.34)

o =f
k3 = f(tl, qQi—2 — hkl + 2hk2>

Expanding each of the k’s using the explicit expression of f

1
k, = 5141—2011—2 (4.35)
1 h (1
ky = 5141—1 [Qz—z + 5 (5141—2(11—2)]
1 h
= EAZ_I [I + ZAZ_2:| qQi—2 (436)
1 1 1 h
ks = 5141 |:ql—2 — h. (5141—2%—2) + 2h. (5141—1 {I + ZAZ—2:| ql—Q):|
1 h h
= §Al |:I - §Al—2 + h'Al—l ([ —|— ZAl_z):| (437)

where once again the notation has simplified with A; = A(¢;) and q; = q(t;).
Replacing equations Eqn. [4.35, Eqn. £.36] and Eqn. in Eqn. yields
after simplification

h h? h
q= |1+ T2 (Aia+ A +A)+—= I+ ZAl A1 A

12
h? A
+EAI (A11 S 2)} q-2 (4.38)

Equation Eqn. [4.38 allows the calculation of the attitude q of the platform at
every 2"! sample of gyro data. Note that the algorithm requires the initial attitude
qo to be provided. When working with simulated dataset the initial conditions are
set to their true values. When dealing with a real dataset, however, this is not
possible. In this situation, special alignment procedures are done with a static
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IMU until the alignment of the platform is accurately known (Jekeli, 2001, chap.
8).

Note also that the unit norm condition is not ensured by the integration method.
To avoid this numerical problem in the computed attitude, the computed quater-
nion can be normalized at the end of every integration step in the following way

_ q;
| a |l

a (4.39)

Finally, the integrated quaternion q; can be easily transformed into the corre-
sponding direction cosine matrix Cgl using equation Eqn. and the INS accel-
erations are rotated to the i-frame.

The routine described in this section is iterated through all datapoints in par-
allel with a Kalman filter estimating the errors in the inertial sensors. The used
Kalman filter is outlined in the following section.

4.3.3 Kalman Filtering

The Kalman filter is one of the most successful estimation theories that has been
consistently applied to numerous applications since the 60’s. It is a recursive filter
that estimates the state of a dynamic system from a set of noisy measurements
in a statistically optimal sense. It was first developed by Rudolf E. Kalman in a
publication of 1960 (Kalman, |1960). There is a very wide range of topics covered
in a Kalman filter and a more specialized reference is \Brown and Hwang (1997)).

There are several reasons to use a Kalman filter to estimate the errors in the
strapdown system instead of other estimation approaches. It allows the opti-
mal combination of information provided by various independent sensors, and this
means that it can be effectively used to combine the measurements of the GPS
and IMU systems to estimate the errors in them. It is with this intention that the
Kalman filter is applied in this section. The IMU error parameters are continu-
ously changing and they need to be estimated on a per-epoch basis. With typical
50 Hz sampling rate, the number of estimated parameters rapidly becomes too big
for any batch approach. Furthermore the Kalman filter is especially suited to the
kind of problem at hands; the GPS system works typically at a lower rate than the
IMU providing observations of the errors in the IMU. The Kalman filter is able to
propagate the current estimate through time until an observation (GPS sample)
becomes available. As GPS data gaps can be expected, especially for the atti-
tude solution as seen in the GAIN flight in November 2007 (Alberts et al., 2010)),
the Kalman filter is flexible to accommodate these gaps in an optimal manner.
Precisely for this characteristic the Kalman filter has proven results in navigation
application since the 80’s and more recent results in airborne gravimetry can be
seen in e.g., Kwon and Jekeli| (2001)); [Li (2007)); |Studinger et al.| (2008)).

Other techniques have been attempted such as neural networks (Wang et al.|
2006) and particle filters (Gustafsson et al. 2002) but the Kalman filter remains
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the standard estimation technique for airborne gravimetry as all other attempts
require complicated training procedures and are not ideal (Li, [2007)).

The Kalman filter has some drawbacks in that it requires precise knowledge of
the dynamic model used and the noise statistics for the observations and model
variables must be completely known. Too ‘loose’ a-priori information (the variance-
covariance matrices) and the filter will diverge from the real state, too ‘narrow’ and
the resulting estimate will be biased (Mohamed and Schwarz,|1999). In the specific
case of airborne gravimetry, even if the model and noise statistics are perfectly
known a-priori the Kalman filter estimates are still influenced by vehicle dynamic
variations, filter tuning, environment changes, etc. (Wang et al., 2006). To relax
this requirement adaptive techniques are introduced where the filter parameters
are continuously adjusted to better adapt to the current conditions. Two different
adaptive concepts are proposed in |Mohamed and Schwarz (1999) and |Li (2007)
uses a Two-Stage Extended Kalman Filter implementation. In the work done
in this thesis the adaptive schemes were not implemented as in the simulated
environment because the models and noise statistics are not considered to change
during simulation time. Nonetheless these ideas should be taken into consideration
when processing any real dataset.

In the following the Kalman filter is introduced in Section |4.3.3.1] and it is then
applied to the airborne gravimetry model in Section [4.3.3.2]

4.3.3.1 Kalman Filter Model

Consider the following model:

XE = @kyk_lxk_l + GWk (440)
with,
Vi — N(O, Rk)
Where,
X, — 1is the state vector at time instant k.
®pr—1 — is the state transition matrix from time instant k-1 to k.
G — is the matrix relating the random variable wj with the state
vector Xi.
yr — is the observation vector at time instant k.
H, — 1is the observation matrix.
W,V — are zero-mean random variables with the specified Gaussian dis-
tributions.

The Kalman filter is designed on the basis of this model. The state vector x
represents the state of the system at each point in time. The transition matrix ®

67



is the matrix that determines how the state at one time influences the next state of
the system. The observation vector y represents any form of information that can
be related to the state vector through the linear relation H. The w and v vectors
define the statistical nature of the state and observation vector respectively; in
practice these terms are used to describe the noise in the model.

The task is now to obtain the optimal estimate X,,; of the state vector based
on the previous knowledge of x and of it’s observations y. First what is meant
by optimal estimate must be properly defined. To distinguish what makes one
estimate better than another a metric must be defined, a cost function which
quantifies the error in the estimate. There are many kinds of cost functions but
the most meaningful for the current problem is the quadratic error cost function
as follows,

JEx) =% -x)Q % —x)" (4.42)

where X is a given estimate of the real state x and Q is a possible weight matrix
that assigns different weights to each component of the x vector. Q) is defined as
symmetric and positive definite.

The optimal estimate X,,; is defined as the estimate X that minimizes the de-
fined cost function. However since x and X are random variables the minimization
is done on the expected value of this function of random variables. The expectancy
operator &£ is defined as,

E(x) = /X - f(x)dx (4.43)

Where,
x — is any random variable.
P — is the probability domain of x.
f(x) — 1is the probability density function of x.

So the explicit expression for X, is found to be

Ropr = argmin & (J(X,x)) = (4.44)
o4& ({i(;’ x)) (4.45)
0= = (%X —x)Q (% —x)"f(x)dx (4.46)
0= /(f(apt —x)Q + (Ropr — x) Q" f(x) dx (4.47)

P
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Since Q is a symmetric matrix and X, is a constant value,

0 =20Q Xopt /f(x) dx —2Q /Xf(x) dx & (4.48)
N N
=1 =&(x)
%o = E(2) (4.49)

This is the Minimum Mean Square Error (MMSE) estimator and it’s usefulness
lies in the fact that it is independent of the chosen (Q matrix and only the knowledge
of the expected value of the density f(x) is required.

The MMSE estimator will now be applied to the model in Equn. [£.40] and the
optimal estimates of x; will be obtained based on the previous state x;_i, this
is the prediction step. When an observation y, becomes available the current
estimate xj is updated with this new source of information, this is the filtering
step.

The prediction step equations are obtained assuming that x;_; is a Gaussian
random variable with known expected value X;_; = £(x,_1) and known autoco-
variance matrix Py_; = cov(xg_1, X,_1). The covariance is a linear function of two
random variables defined as,

P=cov(z,y) =& [(x—E@)) (v - E(y)T)] (4.50)
The optimal estimate of x;, is given by,

}A(k = S(Xk)
= E(Ppp—1Xk—1 + Grwy)
= @kyk,lg(xk,l) + Gk(g(Wk)
= (I)ch—l)A(k—l +0 (4.51)

The covariance matrix is obtained then,

Py = cov(xy, Xx)
=& [(Xk — S(Xk)> (Xk — E(Xk))T]
=& [(q)k,k—lxk—l +Gpwy — ‘Pk,k—lfik—ﬂ) ((I)k,k:—lxk—l + Gpwy, — (I)k,k—l}zk—1>T:|

= @k,k_lé' [(Xk—l — )A(k_l)(Xk,_l — )A(k_l)T} (I)g,k—l + Gké'(wkwkT)GZ

- q)k,kflpkflq)g,kq + GG (4.52)

At any point an observation yj of the state vector becomes available and it
is necessary to update the current state vector x; with this additional source of
information. This is the filtering step and it can be formally written as the optimal

69



estimate of x; given the observation yj. If we denote the updated state vector with
a '+’ superscript, then the following can be written,

x| = E(xx|yx) (4.53)

To evaluate the above expression better insight on the conditional probability
density function f(xg|yx) is necessary. Using Bayes’ rule one can write,

f(ylxw) f(xx)
f(yx)
Notice Eqn. [4.540 Once yj is known the term f(yy) is a constant and only

works as a scaling factor of f(xy|yx) not changing its shape. We will assume that

Xy, follows an a-priori known Gaussian distribution N < (ug, Py).
Finally notice that Eqn. can be rewritten in the following way,

Vi = Yi — HpXy, (4.55)

f(xklyr) = (4.54)

and that once the value of x;, is known, and assuming that the observation noise
and the state vector are independent, the probability distribution of yx|xy is equal
to the density vy, only shifted by the value Hx. Explicitly f(yi|xi) = N —
(H kXL, Rk)

So according to Bayes’ rule the density that we seek to know f(x|y) is the
product of two gaussian distributions scaled by a constant. It can be shown that
the product of two guassian distributions is also a gaussian distribution, scaled by
a constant (see [Jekeli| (2001, chap. 7)) and therefore,

Ny (Hyxy, Ri) . Ny (wy,, Py)

_ 4.56
foaly) ) (4.56)
N (P74 HE R HO) T HE RSy + P we), (B + HER H) ™)
f(xklyr) = %
2
(4.57)
So accordingly, the updated state vector is defined as, ;7 = N (u}, P) and,
u = E(xilyr) = P (HE R 'y + Py hwy) (4.58)
-1
P = covixelys) = (P + HI R Hy) (4.59)

The expression for the covariance matrix in Eqn. requires three matrix
inversions to be computed. As the size of the state vector and observation vector
increase this becomes computationally heavy. The most common form of these
equations introduces the Kalman gain matrix K,

112_ =u; + K(y — Huk) (460)

Pr = (I - KH)P, (4.61)
-1

K = PHT (HPkHT + R) (4.62)
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where only one matrix inversion is necessary. The equivalence between both forms
is shown in Section [Al

So finally the Kalman filter can be resumed to the following equations. Given
the previous time step estimate X;_; and the corresponding covariance matrix Py
the prediction step of the Kalman filter is applied to obtain,

Ry, = Ppop_1Ru1 (4.63)

P, = cbk,k—lpk—lq)lzgk_l + GkaGf

When an observation y; becomes available its information is used to update the
current state vector. This is the update step of the Kalman filter,

Pr = (I — KpHy) P, (4.66)
—1
Ky = PHT (HkP,jHT + Rk) (4.67)

4.3.3.2 Application to the strapdown-GPS airborne gravimetry system.

The aim of this section is to apply the general Kalman filter model as outlined
in equations Eqn. and Eqn. to the errors of a strapdown-GPS system.
The following error dynamics formulation can be found in Kwon and Jekeli (2001)).
Other examples are applied for the inertial positioning method can be found in
Jekeli| (2001) where the author derived a general formulation of the system errors
for an arbitrary frame a-frame. [Salychev| (1998)) also derives the system error
equations but specifically for the n-frame.

In the following derivation the fundamental equation of airborne gravimetry
will be expressed in terms of the errors and noise of the inertial sensors. This is
accomplished by systematically applying the linear perturbations method outlined
in Section 2.5

The fundamental equation of airborne gravimetry Eqn. [1.6] restated here for
convenience,

gh=%"—f (4.68)
Perturbing the above equation yields,
ogt = 0% — of" (4.69)

The statistical model considered for the error in the GPS computed acceleration
is assumed to contain only white noise,

0%’ = pg

pe =N = (0, Dg) 470
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This is not a totally realistic assumption since the double differentiation amplifies
the noise in the higher frequencies, however after appropriate low-pass filtering,
the white noise approximation becomes valid (Kwon and Jekeli, [2001)).

As for the error in the IMU acceleration,

fi = Cif* = 6f' = 6C; £ + C} 5f° (4.71)
The term f° has already been considered in Eqn. m,
6’ = b, + diag(f*) ke + 1, (4.72)

The error in the computed attitude, dCy, represents the small misalignment
between the real transformation C} and the erroneously computed one Cf. Using
the small angle approximation in Eqn. one can write,

Ci=(1-1)C; (4.73)

where W is the skew-symmetric matrix of the small angles vector @’ representing
the error in the computed attitude. Substituting in the linear perturbation of Cj

0Ci=Ci—Cf = —V'Ci (4.74)
and finally substituting Eqns. and in Eqn. yields
6f' = Cib, + Ci diag(f’)k, + Cf p, — V'C £

note that,

—WICE = £ x 4 (4.75)
to obtain,

of! = Cib, + Ci diag(f*)k, + C} p, + £ x 1’ (4.76)

The term )" still needs to be expressed in terms of instrument errors. Let’s
apply the perturbation theory to Puasson’s equation shown in [2.50

6C; = 6C; Qb + Cf 50, (4.77)
Replacing §C§ and 6C} with Eqn. and its time derivative,
d

& (—ViC)) = —W'Cy Qb + Cf o0k,
—VICE - VICE = —WICi Qb + C o,

Using again Puasson’s equation, Cf = Ci Qb both —¥Ci Qb terms cancel out
and,
—ViC = Cj 60,
U= —Cy 68,CY
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which in vector form can be equivalently expressed as

X

W = —Ci b, (4.78)

and dw?, is the error in the angular velocity vector measured by the IMU gyros.
Finally from the model of the gyro errors in Eqn. [3.17],

Sw?, = by + diag(w},) K, + 1, (4.79)

Substituting equation Eqn. [4.79|into Eqn. [4.78| and reshaping it to matrix form
we obtain the following system,

'l’bi

00 —C{ 0 —Cidiag(wh)| [v* —Ci 0 0 0 0] [pg

14 |pa 00 0 0 0 b, 0 000 0|0
b, =100 0 o0 0 by|+| 0 000 0[]0
dt | 00 0 0 0 Ky 0 0000 |0
Ky 00 0 0 0 Ky 0o 000 o0|]|o0
(4.80)

where the biases and scale factors of the inertial sensors are modeled as random
constants, e.g., b, = 0. Every 0 in the matrices represents a [3x3] null matrix and
every zero in the vector represents a [3x1] null vector.

The form of the equation Eqn. is typically the starting point of any Kalman
filter implementation. This is due to the fact that the above system of first-order
differential equations can be rewritten as,

x(t) = F(t)x(t) + G(t)u(t) (4.81)

This differential equation can be solved for x(t) and evaluated at a discrete set
of points as,

X(t+ 0t) = Dppsrex(t) + w(t) (4.82)

where the transition matrix ® as seen in the Kalman filter model in Eqn.
has appeared in the solution. Considering the high sampling rate of the INS, the
following first order solutions are accurate,

d =~ T+ Fot (4.83)
w(t) = N(0,GD,otG") (4.84)

More details on discretization of the continous system can be seen in |Jekeli| (2001,
chap. 7.4).

At this point it is still necessary to define which observations will be used in
the Kalman filter and apply the filter observation model in Eqn. [£.41]

The observations that will be used in the Kalman filter are the differences
between the accelerations provided by the INS and GPS systems and the differences
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between the integrated INS attitude and the GPS attitude measurements. The
differences between both systems expose the low-frequency errors in the IMU and
allow the Kalman filter to estimate them correctly. This will be done formally in
the following paragraphs. Consider the following observation model,

yi =f — (%' — 3" (4.85)
where,
y1 — is the acceleration residual.
fi — is the measured INS acceleration.
x! — is the computed GPS kinematic acceleration.
')ji — is the gravity model in Section evaluated at the GPS indicated
position.

Expanding the computed variables in terms of their errors and their true value,
y1 =+ 0f" — (X' + 0% — 4" — 07")
and using equation Eqn.
y1=0f — 0% + 04 + ' — g’
—
=—Ag?
y1 = 6f" — 0%" + 0v' — Ag’ (4.86)

with Eqn. 4.76| 0%’ reflects the errors in the computed GPS acceleration and
this term has been modeled as white-noise in equation Eqn. m The term §~°
translates the error in the computed normal gravity vector and with the considered
model in Section [4.1], this error can be explicitely written as,

In Eqn. 4.86], 6f° reflects the error in the INS system and this term is expanded

' = %&ZGPS =I1"rgpg (4.87)

The highest value of the gravitational tensor, I'!, happens along the radial
direction near the surface of the Earth and is approximately 0.3x107° m/s?/m
change in the gravity vector. This means that a positioning error of 1m in the
radial direction will cause an error in the observations of about 0.3 mGal and since
DGPS accuracies are well below the 1m level, the error §4* is small enough to be
left unmoddeled.

As for the term Ag?® it represents the difference between the model and the real
gravity vector. This is called the gravity disturbance vector and it is precisely the
quantity we wish to measure. Following the approach taken by Kwon and Jekeli
(2001) and as pointed in Section[L.4] no stochastic model of the gravity disturbance
vector will be introduced in the Kalman filter and therefore this term will be left
unmodeled. The observation model is then finally written as,

yi+Ag = Cib, + Cf diag(f)k + G o, + £ x % — pg (4.88)
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The next observation, ys, is the difference between the IMU integrated attitude
and the GPS attitude observations and it is an innovation introduced in this thesis.
The attitude error 9" is obtained from the the difference between the INS and
GPS attitude matrices. At every GPS epoch, the CgGPS solution is compared to

the integrated attitude matrix CgINS and the difference between both can be seen
as the rotation 0C' such that,

C’ZINS - 60 C’Z’:GPS
5C=Cy  CP (4.89)

1GPS

Having computed dC it can be transformed into the small angle vector 9" using
equation Eqn. 2.19] The statistical model for the observations is then,

yo = ' + (4.90)

Gathering both observation vectors from equations Eqn. and Eqn.
and expressing them in matrix form,

»
i % [ b ba
V=[G G b, ™ (1.91)
K’g
with,
vi < N(0, D¢ + Ci D,C?) (4.92)
vy = N(0, Dy) (4.93)

which can be written in more compact form as,

Notice that equation Eqn.[4.94is already suited to the Kalman filter observation
model as expressed in Eqn. [4.41]

At this point the Kalman filter model has been defined for a strapdown/GPS
system and, remembering Section [4.3.3.1], the system error state vector is propa-
gated through time using the prediction equations. As soon as a GPS observation
is available, an observation of the system state, yx, can be computed and the
filtering equations are applied.

It is important to note that the observation model used in the Kalman filter
(see equations Eqn. and Eqn. are obtained from the linearization of a
non-linear model. The most obvious implication of this fact is that these models
are only adequate within a small neighborhood of the linearization point, or more
accurately when x; ~ 0. In general, the gyro measurements contain a bias error
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Figure 4.6: The difference between the computed and the GPS observed pitch angles for
a open and closed-loop estimation schemes.

and the integrated attitude will continually drift away from the real attitude which,
if left uncorrected, will very soon leave the validity region of the linearized models,
and the Kalman filter will diverge from the real state. To avoid this problem
we will use the Closed-Loop Estimation (Jekeli, 2001, chap.7) where after each
observation the estimated attitude error is used to correct the attitude integrator.
An illustration of this is given in Figure [4.6] where the difference between the
computed and the GPS observed pitch angle is plotted for the open and closed-
loop approaches. As you can see, due to the bias in the pitch gyro, the integrated
pitch angle continually departs from the unbiased GPS measurement. With a
closed-loop approach, the integrator is reset to the best estimate of the pitch angle
whenever a GPS observation is available.

Consider that at time instant ¢ = ¢, a GPS observation is available, the obser-
vation vector yj, has been computed, and the update state x; is determined. The
first three components of the state vector x; represent the estimate of the attitude
error 1,5; and they are used to reset the current integrated attitude égk First

~

transform the estimated attitude error 1,02 into the corresponding DCM, 4C'._using
Eqn. . Now reset the integrated attitude matrix Cj according to Eqn. 4.74}

Cit =507C;, (4.95)
and reset the state vector,

=10 0 0" (4.96)
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Before the Kalman filter is fully specified one must define the initial conditions
and the variance-covariance matrices of the observations and model. The initial
state is set to 0’s and the initial autocovariance matrix was tuned to the values
seen in Table The Q and R matrices that describe the errors in the model and
measurements are shown in Table 4.3 and Table respectively.

The state covariance matrix, Fy, was first approximated by squaring the re-
peatability parameters given by the instrument datasheets (see Table and
squaring the expected accuracy of the GPS-attitude system found later in this
thesis in Table 5.2 After this initial approximation the P, matrix is empirically
tuned to maximize the performance of the obtained results, a common procedure
whenever Kalman filters are used.

The scaling parameters found in the R matrix intend to approximate the at-
tenuation of the errors in the INS and GPS accelerations due to low-pass filtering,
where W represents the length of the low pass filter used. These scaling parameters
have been also empirically determined using a small set of different length low pass
filters.

Notice how the Q and R matrices are expressed in terms of the dispersion
matrices of each of the models considered for the accelerometers, gyros, GPS-
positioning and GPS-attitude. Later on, simulations will be run for different noise
levels of each instrument, and instead of tuning the Kalman filter to each specific
combination of the noise in each dataset, the specified filter is tuned for all the
datasets and low pass filters used.

Table 4.1: Initial State Vector xg.

X | Y| Z]| Unit
Attitude Error | ' | 0 | 0 | O | rad
AccBias | b, | 0| 0 | 0 | mGal
Gyro Bias | by | 0 | 0 | O | deg/hr
Acc Scale Factor | k., | 0 | 0 | O
Gyro Scale Factor | K, | 0 | 0 | O

Table 4.2: Diagonal of Initial State Dispersion Matrix Fy.

X Y Z Unit
Attitude Error | 4° 0.01 0.01 0.01 deg?
Acc Bias | b, 100 100 100 | mGal?
Gyro Bias | by 400 400 400 deg? /hr?
Acc Scale Factor | k, | 1x10710 | 1x10716 | 1x10~10
Gyro Scale Factor | K, | 1x1071° | 1x1071° | 1x1071°
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Table 4.3: Diagonal of Model Noise Covariance Matrix .

X Y Z

Attitude Error | ¥ | Dy, | Dy, | Dy,
Acc Bias | b, 0 0 0
Gyro Bias | by | 0 0 0
Acc Scale Factor | Kk, 0 0 0
Gyro Scale Factor | k4 | 0 0 0

Table 4.4: Diagonal of Observation Noise Covariance Matrix R.

X Y Z

Acceleration Difference | y1 |  CiDoCl(g557)> + Da (15w )>

Attitude Difference Y2 Dy,
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The Simulations

In this chapter the results obtained from different simulations will be presented.
First, the resolution of the system will be defined and an appropriate low-pass
filter will be presented that is used to remove the high-frequency noise of the GPS
and IMU measurements. After that we will look at the results of the Kalman
filter and draw some conclusions on how to correct the low-frequency errors in the
IMU system. Finally, the computed gravity disturbance values are computed and
conclusions about the expected performance of the system can be made.

If a need to improve the airborne gravimetry system exists, then it becomes
very important to know where efforts should be placed in order to maximize the
improvement in the overall accuracy of the system. To understand which parts of
the system play a bigger role in the overall error budget an analysis is done on
the sensitivity of the system’s accuracy to different precisions of the measurements
taken by the IMU and GPS systems. Conclusions can then be made about which
parts of the system should be improved in the future.

While hardware improvements can become extremely expensive or even im-
possible in the near future, additional concepts are also studied which could have
an impact on the accuracy of the system. Multi-sensor, multi-pass systems and
different vehicle speeds are considered with the goal of achieving the 0.5 mGal
accuracy.

There are many different hardware solutions for INS systems with the conse-
quence of many different configurations. Because the GAIN IMU is still under
development, specific information about sampling frequencies not yet available.
There isn’t a predefined optimal sampling frequency for the inertial sensors to
work. One of the strapdown datasets which has been used by many publications
(Wei and Schwarz, [1998; |Jekeli, 2001, to name a few) has been recorded at 50 Hz
for the IMU and 2 Hz for the GPS system. In another publication Salychev et al.
(2000)) describes a strapdown system outputting inertial data at 46 Hz and GPS at
1 Hz. Meyer et al.| (2003) shows a 50 Hz INS with 1 Hz GPS. These two parameters
are configurable in the implemented software, but for the simulations the chosen
values are similar to the ones here mentioned. The values used in the simula-
tions consider IMU measurements taken at 50 Hz and GPS measurements taken
at 2.5 Hz. This means that every 20 INS samples a GPS sample is expected.

In the following simulations a 100 km flight path is used as shown in Figure 5.1}
The trajectory of the airplane is plotted in the black line over the gravity distur-
bance surface. The profile was flown with constant 220 Km/h speed at constant
altitude of 2 Km. The airplane is at steady leveled flight with the body x-axis
pointing in the direction of movement and the z-axis pointing towards the Earth
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along the local vertical direction.
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Figure 5.1: The 100km flight path simulated in the presented results plotted over a
colormap of the vertical gravity disturbance.

Ideally through calibration the instrument biases would be known a-priori.
However, since these parameters change with temperature, time and other fac-
tors errors representing these deviations from the calibrated state are introduced
in the simulated instruments as mentioned in Section The following biases
are added to the instruments’ measurements where the values were chosen to be
within the repeatability specifications stated by the manufacturer and depicted in
Table [3.4 By doing this it will be possible to demonstrate the capability of the
Kalman filter to identify these residual biases of each instrument and correct them
effectively when processing the data.

Table 5.1: Biases added to the INS measurements.

ACC GYRO

2| 10 mGal | 3.0 deg/hr
yP 40 mGal | —3.0 deg/hr
22| =20 mGal | 1.5 deg/hr

One simplification made here is that no scale factor errors will be introduced
in the dataset. The reason to do so is related to the trajectory of the airplane.
Since the airplane’s attitude is kept constant relative to the navigation frame and
no changes in the acceleration’s occur in the data, the forces and angular velocities
acting on each of the body axes are approximately constant during the whole flight.
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Noticing the sensor errors model in equation Eqn. [3.17] if the accelerations and
angular velocities are constant, then the error introduced by the scale factor term is
also constant and therefore indistinguishable from a bias. Being indistinguishable,
nothing will be gained by trying to estimate them and the option was taken to leave
out of the measurements. Accordingly, since no scale-factor errors are introduced
in the data, the scale-factor errors dx will not be estimated in the Kalman filter.
Finally it is necessary to define the level of noise in each of the measurements
within the airborne gravimetry system. This is presented in table Table[5.2] These
values reflect the expected performance level of the GAIN SINS/DGPS system.

Table 5.2: White noise realizations added to the measurements.

Measurement | Source STD of the noise
Accelerometer | [Honeywell| (2010) o(p,) <70mGal

Gyro Fizoptikal (2010) o(p,) <2.95x1073°/s
GPS Position | Personal communication with MGP o(r) <lcm

GPS Attitude | |Alberts et al. (2010) o(y) <0.1°

Whenever two simulations are compared the seed of the random generator is
the same for all of them. This means that the actual noise realization is the same
for both simulations.

5.1 Low-Pass Filtering

Before processing the IMU and GPS data in the Kalman filter the high frequency
noise has to be removed from the measurements. The low pass filter used in the
simulations is the Savitzky-Golay smoother presented in Section [4.3.1] Recalling
the content of that section, it was stated that the GPS accelerations are computed
by fitting a n'"-order polynomial to the set of GPS-positions spread over an I-
second window. Equivalent low-pass filtering has to be used on the IMU specific
force measurements for consistency.

If the position of the platform is assumed to be a n**-order polynomial, then the
acceleration of the platform is a (n — 2)™-order polynomial because a(t) = dz;gt).
The equivalent low-pass filter used in the INS specific force measurements is then
a (n — 2)"-order with an [ second window Savitzky-Golay smoother.

The parameters of the low-pass filter, the window length [ and the filter order
n have to be chosen. The most important factor is the design of the low-pass
filter is the cutoff frequency. Different applications of airborne gravimetry require
different resolutions, but the goal is set to have an airborne gravimetry system with
enough accuracy for any application, and as seen in Chapter [I|the most demanding
application is natural resource exploration which requires a system resolution of
at least 2 Km.

The resolution of an airborne gravimetry system has two limiting factors. In
the cross-track direction the system is limited by the spacing between consecutive
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flight lines. In the along track component the system is limited by the ratio be-
tween airplane speed and the cutoff frequency of the low-pass filter (Bruton|, [2000).
The Cessna Citation II airplane has a nominal speed of 220 Km/hr, and if the res-
olution of the system is defined at 2 Km, than this equates to a cutoff frequency
of 1.53x1072Hz. Three low-pass filters have been designed to match this cutoff
frequency: a 5%-order filter with 110s length, a 15""-order filter with 315s length
and a 25"-order filter with 480s length. The frequency response of these filters
shown shown in Figure [5.2
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Figure 5.2: Comparison of low-pass filters with 5%, 15" and 25'""-order polynoms.
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In this figure it can be seen that the higher order filters have a sharper transition
between the pass- and stop-bands, which results in a higher attenuation of the
unwanted signal. Bruton et al.| (1999) have obtained the best results with 25-order
filters, however this leads to a comparatively large filter length which results in
some numerical instability of the method and larger amounts of unprocessed data.
For this reason, and since simplistic white noise is being used, the 5% -order filter
will be used during the simulations. In a real dataset the actual implementation
of the low-pass filter will depend on the assumptions made about the noise in the
data and the frequency content of the gravity disturbance vector, which is also
related to the actual vehicle speed and to the application requirement. The 5%-
order filter is deemed appropriate for the current simulations and additional, more
sophisticated filter designs are not pursued in the context of this thesis.

In the simulation plots it will be noticeable that the simulation starts at not
a t=0s but a few seconds later. The explanation for this is related to the width
of the low pass filter used in the GPS and IMU measurements. To compute the
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kinematic acceleration at any point a number of GPS positions centered around
this point is required where the actual number of samples depends on the filter
length, as described in Section [4.3.1l The start of the simulation is then only
possible at t = [/2s where [ is the filter length in seconds.

5.2 Kalman Filter Results

In this section a comparison will be established between the results of the normal
dataset and the perfect dataset. The normal dataset is the one that reflects the
expected noise from the hardware that will be used in the real system as seen in
Table 5.2l To the perfect dataset no noise is added to the measurements, reflecting
an ideal strapdown airborne gravimetry system.

The comparison between both datasets is done for two reasons: the perfect
dataset illustrates the correct functioning of the software. Secondly, by comparing
the normal dataset with the perfect one, some conclusions can be drawn about the
observability of certain estimated components.

5.2.1 Estimated Gyro Biases

The estimated gyro biases are depicted in Figure [5.3] It can be seen that for the
perfect dataset they are immediately well estimated. As for the normal dataset
they rapidly converge to their true values except, the yaw gyro bias, which is the
least observable one as it requires the most time to settle around the correct value.

The yaw bias is the least observable because, in a leveled flight, a change in
the yaw angle does not change the orientation of the gravity vector in the b-frame
and therefore no error in the residual acceleration can be observed.

Gyro Bias[deg/hr]
Gyro Bias [deg/hr]

3 —

, , , , , , | . , , , , , , |
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Time [s] Time [s]

(a) Perfect Dataset (b) Normal Dataset

Figure 5.3: Gyro Biases estimated by the Kalman filter. The dashed line represents the
true errors introduced in the synthetic dataset.
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5.2.2 Estimated Accelerometers Biases

For the correct interpretation of the results it is necessary to notice that the x-
and y-accelerometers are kept horizontal and the z-accelerometer is kept in the
vertical during the simulations, because the b-frame is leveled with the n-frame
(see Section [£.2.1)). The major difference between the horizontal and vertical ac-
celerometers is that only the latter is exposed to the gravity signal.

30

20k — R

Acc Bias [mGal]
Acc Bias [mGal]

=301

a0

L L L L - L L L L L L L
0 500 1000 1500 4OO 200 400 600 800 1000 1200 1400 1600

Time [s] Time [s]

(a) Perfect Dataset (b) Normal Dataset

Figure 5.4: Accelerometer biases estimated by the Kalman filter. The dashed lines
represent the true errors introduced in the synthetic dataset.

Looking at Figure it is seen that the horizontal biases immediately con-
verge to their real values. The vertical bias, however, seems to wander around the
true value. Since in the perfect dataset there are no measurement errors, this de-
viation is attributed to the gravity disturbance felt along the vertical axis. Recall
the observation equation (Eqn. 4.88)), where the gravity disturbance error Ag’ was
left unmodeled, and this unmodeled signal is now disturbing the estimation of the
vertical bias. To illustrate this argument consider Figure[5.5] The real accelerome-
ter bias is plotted as the red dashed line, constant at -20 mGal. The accelerometer
biases were modeled in the Kalman filter as random constants (Eqn. and
therefore the filter estimates them by simply averaging the error along the respec-
tive channel. If the only error source was the -20 mGal accelerometer bias then
this process would work perfectly; however, for the vertical channel, the error is
not only the z-accelerometer bias but also the gravity disturbance signal and there-
fore the estimated bias follows the average gravity disturbance. This can seen by
comparing the estimated bias (red line) with the average of the error (green line).

A very thorough study of bias estimation applied to real data can be found in

Bruton et al. (1999), where the author has used a similar Kalman filter without
any stochastic assumptions for the gravity disturbance. The author realizes the
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Figure 5.5: Estimated bias (red) follows the Figure 5.6: The iterative approach applied
mean of the error along the vertical channel  to the vertical bias estimation. The real bias
(green) is depicted with red dashed line.

accelerometer biases from real flight data were not constant and not even linear.
Several stochastic models were attempted as bias models with limited success. The
author finally argues that the gravity disturbances might be affecting the vertical
bias estimation, in a manner all similar to the perfect dataset results, and an
iterative approach is proposed to tackle this difficulty:

1. Run the Kalman filter to estimate the accelerometer biases and obtain a first
approximation of the gravity disturbance.

2. Rerun the Kalman filter and, to the normal gravity model, add the approx-
imate gravity disturbance obtained in the previous step, thus removing it
from the filtering process. The rationale for this is that by including more in-
formation about the gravity field in the estimation process the accelerometer
biases should be more accurately estimated.

3. This process is iterated until the differences between consecutive gravity dis-
turbances are smaller than a threshold value.

This iterative process has been attempted with the perfect dataset and the results
are plotted in Figure [5.6] Notice how with each iteration the estimated bias pro-
gresses towards a constant value; however, the final estimate of any iteration still
differs from the real one by a constant and therefore the real value is not still not
correctly estimated which was the motivation for using this method in the first
place.

Estimating the accelerometer bias correctly through the specified Kalman filter
is only feasible if it can be completely separated from the gravity disturbance.
However, as pointed out by \Jekeli (2001), this is still the case with any other
Kalman approach, even when using the most sophisticated stochastic models of
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the gravity disturbance. The stochastic nature of the gravity disturbance has to
be different from that of the sensor errors in a way that the Kalman filter is able to
distinguish them correctly. In practice, this means that, in these simulations the
accelerometer biases are not distinguishable from the average gravity disturbance
value. To obtain the correct bias, external information is required to correctly
estimate the vertical accelerometer bias. This will be discussed in Section [5.3]

Examining the results of the normal dataset in Figure the vertical chan-
nel is very observable and follows the expected trajectory as seen in the perfect
dataset. As for the horizontal biases, they are much less observable and they do
not seem to converge to their real values. |Jekeli (2001}, chap. 5.4) points out that
in stabilized platforms, aligned with the navigation frame, the horizontal biases are
indistinguishable from a horizontal attitude error, a tilt error. If a small error in
the computed roll angle exists it will introduce a component of the gravity vector
into the y-accelerometer. In the same way, a bias in the y-accelerometer can be
translated into an error in the roll angle of the platform attitude. This is true
for stabilized platforms, slaved to the navigation frame, but a strapdown system
can make use of special maneuvers that will expose the horizontal accelerometer
biases. In the performed simulations, despite using a strapdown IMU, the attitude
of the platform was kept aligned with the navigation frame, the conditions under
which the horizontal biases become unobservable.

The only way of decoupling the tilt error from the horizontal biases is by using
external information such as the GPS-attitude measurements. Unfortunately, as
seen in the results of the normal dataset, the accuracy of the GPS-attitude is not
enough to estimate the correct values of the accelerometer biases. To illustrate this,
notice Figure where the estimated y-bias is plotted for different accuracies of
the GPS-attitude observations. It is obviously seen that increasing the accuracy of
the GPS-attitude measurements allows the correct estimation of the accelerometer
biases. This will be seen with more detail in Section [£.5.4]

5.3 Correcting the IMU Measurements

At the end of the Kalman filter processing, the biases of the gyros and accelerom-
eters have been estimated and it is now time to correct the IMU measurements
before computing the gravity disturbance vector.

Since a closed-loop estimation (page has been used, the attitude of the
IMU is continuously corrected by the latest Kalman filter estimate. At the end
of the processing the integrated attitude is already corrected and reflects the best
estimate of the real attitude of the platform.

The accelerometer biases were modeled as random constants in the Kalman
filter and therefore the IMU specific force measurements are corrected by sub-
tracting the final estimate of the filter. The final estimate represents the most
accurate knowledge of the constant bias along the respective b-frame axis. How-
ever, as seen in Section the vertical bias is not correctly estimated and some
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Figure 5.7: The estimated y-accelerometer bias for different accuracies of the GPS-
attitude observations. The normal dataset has an accuracy of 0.1deg. The true y-acc.
bias is shown in the blue dashed line.

source of additional information is required.

With a real dataset Glennie| (1999)) noticed that the accelerometer bias was not
constant, or even linear in time. It was, in fact, a non-linear parameter, and to
alleviate this problem the author proposed a crossover adjustment. A crossover
adjustment can be applied to a flight path consisting of several segments which
intersect themselves with any other at least two times. A simple illustration of
a possible flight path is given in Figure 5.8, The crossover adjustment means
that a bias and slope are considered for each straight segment. Two segments
intersecting at a crossover point must yield the same gravity anomaly value, since
it does not change with time. All the crossover points provide enough constrains to
compute the bias and slope of each segment of the full flight path. By subtracting
these computed terms the full flight path is made self-consistent, meaning that
two different segments will yield the same gravity disturbance at the crossovers.
This technique reduces the impact of a possible non-linearity of the accelerometer
bias. This kind of crossover adjustment can be seen as fitting the computed gravity
disturbance to an arbitrary plane in the region which then can be related to the
absolute gravity field with at least three ground measurements of the absolute
gravity field.

To apply this crossover adjustment to the specific case of our simulations, notice
that the bias in the accelerometer is constant and this fact simplifies the complexity
of the adjustment. With a constant bias there is no need to compute a slope for
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Figure 5.8: Example of self intersecting flight path required for a crossover adjustment

each segment or any crossover points, because all the segments will have the same
bias value; Only one ground observation (e.g., from an absolute gravimeter) is then
required to observe the real bias. This is how the accelerometer bias is assumed to
be determined in the simulations, and despite looking like an over-simplification,
this is a direct consequence of a crossover adjustment with the assumption of a
constant bias.

Bruton| (2000) proposes an alternative way of correcting the low-frequency er-
rors in the strapdown system. The author noticed that the accelerometer biases,
despite being hard to describe in the time domain, are confined to the very low
frequency part of the spectrum, i.e., half-wavelengths bigger than 200 km. In that
sense, using a high-pass filter above this region should conceptually remove all
the errors in this area. This would yield a relative gravity field which could be
related to the absolute one, once again using a crossover adjustment or even using
a global geopotential model, which, with recent gravity missions, are expected to
achieved the required accuracy in this low frequency region (Sneeuw et al., 2002).
This implementation is attractive but would not bring any advantage to the cur-
rent simulations where the bias is actually only a constant. It is then left as a
recommendation for further investigation.

At this point, the high-frequency errors have been removed with the low-pass
filtering depicted in Section [5.1 and the low-frequency errors of the INS have been
corrected above. The gravity disturbance vector can now be computed.

5.4 Computed Gravity Disturbance Vector

By subtracting the GPS acceleration and IMU specific-force measurements in the
i-frame, as seen in equation Eqn. [I.0] the gravity disturbance vector is computed.
It is then rotated to the navigation frame and the resulting Ag" is plotted in
Figure[5.9 In this plot the real gravity disturbance is depicted as the black line and
in Figure[5.10|the difference between the computed and the real gravity disturbance
vectors is plotted. This is the error of the strapdown airborne gravimetry system.

The standard deviations of the error in the gravity disturbance are presented
in Table [5.3] The values of the perfect dataset are very small and are due to small
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Figure 5.10: The error in the computed gravity disturbance vector for the perfect dataset
(a) and the normal dataset(b).

Table 5.3: Standard deviations of the computed gravity disturbance for the normal and
perfect datasets.

Description | RMS(Ag") [mGal]

N E D
Perfect | 0.006 | 0.000 | 0.011
Normal | 16.355 | 8.949 | 1.259
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numerical errors in the integration of the attitude and the transformation matrices.

While this specific simulation yielded 1.259 mGal accuracy (in the vertical chan-
nel), the average result of nine different simulations places the performance of the
GAIN strapdown system at 1.4 mGal with 2 Km resolution for scalar gravimetry.
This is in line with the results claimed by Bruton| (2000) with 1.5 mGal at 2km
wavelength, and in a more recent field test Studinger et al| (2008) which show
results between 0.9-1.4 mGal at 5 Km resolution.

5.5 Sensitivity of the strapdown system to different mea-
surement accuracies.

In the following sections the sensitivity of the strapdown system accuracy is eval-
uated against variations in the accuracy of each measuring subsystem, namely:
accelerometer, gyro, GPS positioning and attitude. This is useful to determine
which of the mentioned devices constitutes the ‘bottleneck’ that limits the per-
formance of the strapdown system. Additionally, any possible improvements in
the performance of e.g., GPS positioning, can be linked to an improvement of the
overall system accuracy.

The discussion in the following sections is divided between the vertical and the
horizontal channels as they are quite different in nature and have different sensi-
tivities as will be seen in the following sections. When the term scalar gravimetry
is used, it refers to the vertical channel, and vector gravimetry refers to all three
components of the gravity disturbance vector.

5.5.1 Impact of Accelerometer Accuracy

Description | o(p,) [mGal] | RMS(Ag") [mGal]

N E D
2x worse INS Acc 140 | 16.361 | 9.122 | 2.484
Normal 70 | 16.355 | 8.949 | 1.259
2x better INS Acc 35 | 16.416 | 8.845 | 0.666
5x better INS Acc 14 | 16.594 | 8.945 | 0.356
10x better INS Acc 71 16.688 | 9.063 | 0.288
Perfect Accelerometers 0] 16.781 | 9.221 | 0.264

e The vertical component is very sensitive to accelerometer accuracy and be-
tween 2 and 5 times better accuracy the results cross the 0.5 mGal accuracy
level. It seems the accelerometer noise is the dominant error source for scalar
airborne gravimetry.

e Increasing the accuracy of the accelerometers does not significantly improve
the horizontal components because most of the error is due to the uncorrected
biases and not the actual noise of the accelerometers.
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5.5.2 Impact of Gyro Accuracy

Description | o(p,) [°/s] RMS(Ag") [mGal]

N E D
2x worse Gyros | 5.90 x1072 | 16.436 | 9.017 | 1.259
Normal | 2.95 x107% | 16.355 | 8.949 | 1.259
2x better Gyros | 1.48 x107° | 16.329 | 8.926 | 1.259
5x better Gyros | 0.59 x1072 | 16.329 | 8.924 | 1.259
10x better Gyros | 0.30 x1072 | 16.339 | 8.928 | 1.259
Perfect Gyros 0] 26.118 | 33.261 | 1.258

e The vertical component is not sensitive to changes in the gyros accuracy.
The roll and pitch angles are very observable and they are always kept by the
Kalman filter within a region where they do not affect the vertical component
of the gravity disturbance.

e The accuracy in the gyros measurements does not affect the horizontal com-
ponents of the gravity disturbance. The major part of the error in these
channels is owed to the uncorrected bias in the corresponding accelerometers.
In the performed simulation, as stated in Section [5.2.2] the lateral biases are
indistinguishable from the tilt error. One could think that an improvement in
the gyros accuracy would improve this situation however, this is not the case.
The gyros measurements provide only a reference between epochs, the change
in attitude between two epochs rather than an absolute observation of the
attitude. Therefore improving the gyros measurements doesn’t improve the
information of the absolute attitude and no improvement is obtained in the
estimation of the lateral biases. Notice that the results are slightly different
for the dataset where the gyros measurements are perfect because, in this
extreme situation, the GPS-attitude observations are completely disregarded
by the Kalman filter which aggravates the horizontal bias estimation.

5.5.3 Impact of GPS position accuracy

Description | o(pg) [em] | RMS(Ag") [mGal

N E D
2x worse GPS pos. 2| 16.447 | 9.028 | 1.329
Normal 1] 16.355 | 8.949 | 1.259
2x better GPS pos. 0.5 | 16.318 | 8.917 | 1.243
5x better GPS pos. 0.2 | 16.303 | 8.905 | 1.240
10x better GPS pos. 0.1 | 16.300 | 8.902 | 1.240
Perfect GPS positioning 0| 16.298 | 8.900 | 1.241

e The vertical component is slightly sensitive to the GPS position accuracy
but already at the normal dataset the results stabilize. This indicates the
accelerometers introduce the major component of the noise in the results.
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e The horizontal components necessary for vector gravimetry are not improved
by using better GPS positioning. Most of the error in the horizontal compo-
nents is due to the uncompensated accelerometer biases.

5.5.4 Impact of GPS attitude accuracy

Description | o(p,,) RMS(Ag")
N E D
No Observations 39.379 | 9.178 | 1.260

2x worse GPS att. 0.2° | 28.336 | 9.622 | 1.260
Normal 0.1° | 16.355 | 8.949 | 1.259

2x better GPS att. | 0.05° | 5.731 | 7.660 | 1.257
5x better GPS att. | 0.02° | 6.196 | 4.663 | 1.256
10x better GPS att. | 0.01° | 4.532 | 2.567 | 1.255
Perfect GPS attitude 0° | 1.443 | 1.419 | 1.256

e For the vertical component of the gravity disturbance the GPS attitude ob-
servations are not helpful and they do not improve the performance of the
system along this direction.

e For the horizontal channels the GPS-attitude observations are critical to cor-
rectly estimate the gravity disturbance. They provide the absolute informa-
tion that allows the decoupling between the horizontal biases and the tilt of
the platform, but they must be at least an order of magnitude better be-
fore the accuracy of the solution approximates that of the vertical channel
enabling vector gravimetry.

5.6 Sensitivity to Accelerometer and DGPS accuracies

It can be noticed from the above results that the accuracy of the vertical com-
ponent of the gravity disturbance vector is mostly sensitive to the GPS position
accuracy and the IMU accelerometer accuracy. With the goal of obtaining an air-
borne gravimetry system with a 0.5 mGal accuracy it is important to predict where
will improvements in any of these two systems maximize the overall accuracy of
the system. With this in mind, a number of simulations with varying parameters
was run to yield Figure In this figure, the axes are non-linear and point to-
wards the direction of improvement in the accuracy of each system. The predicted
performance of the GAIN strapdown system is marked by the red star and each
black dot represents one simulation performed. The surface is interpolated from
the results of all the simulations performed, and marked with a green band is the
border of the sub-0.5 mGal accuracy region.

As expected, it can be seen that the shortest path towards the 0.5 mGal region
corresponds to an improvement by a factor of three in the accuracy of the QA3000
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accelerometer measurements. Improvements in the GPS positioning do not signif-
icantly improve the results, since the accelerometers are the dominant source of
the error.
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Figure 5.11: Estimated accuracy (lo) of the strapdown system as a function of ac-
celerometer and DGPS accuracies.

5.7 Achieving 0.5 mGal accuracy

In the previous section it has been seen that a factor improvement of three is
required in the IMU accelerometers accuracy before the desired 0.5 mGal accuracy
can be achieved. This might be technologically impossible or extremely expensive
in the near future and alternative ways of improving the solution can be though
about.

Glennie (1999) studied multi-sensor configurations as a way to improve the
computed solution. With the measurements of N independent devices the accuracy
of the combined solution should increase by a factor of v/N. This assumption is
valid only in the scenario where redundant sensors are independent and do not
share any common errors which are not reduced in the combination.
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Table 5.4: Improvement in the accuracy of the system with increasing number of passes
over the same region.

#Passes | o(AgP) [mGal]
1 1.39
2 1.00
4 0.79
9 0.46

Using multiple GPS receivers would then result in a more accurate GPS solu-
tion, but GPS receivers onboard the same platform typically suffer from common
errors (e.g., ionospheric and tropospheric delays) and in reality the improvements
could be very small. Additionally, as seen in the previous chapter, an increase in
the accuracy of the GPS solution would not significantly increase the performance
of the system.

A multiple-IMU architecture would become rapidly very expensive and easily
result in very complex system before any significant improvements in the solution
would be noticed. Both these kinds of redundancies (IMU and GPS) were analyzed
in the same publication with data from a real campaign using two GPS and two
IMU systems, where the author concludes that the improvement was negligible
with any of these combinations.

Instead of using multi-sensor systems, one can think of a multi-pass system
where several passes are made above the same region, and in the combination the
overall results would increase by the same factor. Since the gravity signal does
not change (significantly) within campaign time spans this would be a feasible
technique of improving the accuracy at an increased operational cost per area of
survey. This technique has been applied successfully in Studinger et al.| (2008).
This is also demonstrated with the simulated system and the results are gathered
in Table 5.4

An additional way of increasing the accuracy of the system is to fly at lower
speed. The low-pass filter cutoff frequency is defined by the product of the res-
olution and the aircraft speed, f = 3. For the same resolution, A, if the vehicle
speed is reduced, then the cutoff frequency of the low-pass filter can be equally
reduced to remove a higher portion of noise from the data. A few simulations were
run with different cutoff frequencies until the accuracy of the computed gravity
reached 0.5 mGal. This happened at a cutoff frequency of 0.005 Hz which, aiming
for a 2km resolution, places the maximum vehicle speed at 72km/hr (instead of
the 220 km/hr used as nominal value for the Cessna).

5.8 Full flight path

To close the results section a survey campaign was simulated to measure the gravity
disturbance vector over a larger target area. The ~100x100 km region marked in
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Figure was chosen and an artificial flight path was generated to survey the
area. The selected region contains two very large features with high and low
values. Additionally, it also contains a smaller feature in the top-right corner. All
this can be seen in Figure [5.12b] where a zoom of the region is shown along with
the chosen flight path. The flight path itself consists of 10 straight paths, 10 km
apart, with half-circles connecting them. The profile was flown with a constant 220
km/hr speed at a constant altitude of 2 km. During the straight flight segments,
the airplane is at steady leveled flight in the same conditions as stated in the
beginning of this section. At the start of the turn the airplane rotates around its
roll axis with constant speed 0.5°/s for 10 seconds reaching the bank angle of 5°.
During the turn, the yaw axis of the airplane is also appropriately rotated such
that the airplane is always facing the direction tangent to the trajectory. At the
end each turn the airplane returns to the leveled flight state.
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Figure 5.12: Gravity disturbances dataset in panel (a) and simulated flight path over
the selected region in panel (b).

The results obtained in the simulation are plotted in Figure[5.13] The computed
gravity disturbance map has a resolution of 10km in the across track direction
due to the spacing between consecutive lines. In the along-track direction the
resolution is improved to 2 km due to the cutoff frequency of the filter. This
explains some elongation of the errors along the across-track component. In this
specific simulation, the standard deviation of the errors in the computed gravity
disturbance was 1.452 mGal.

The implemented simulator performed well in this more realistic scenario. The
presence of small and large, high an low features did not have an impact on the
recovered gravity anomaly.
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Figure 5.13: Results of the full campaign.
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Conclusions and
Recommendations

The purpose of this thesis work was to assess the accuracy of the GAIN strapdown
airborne gravimetry system, currently under development, and its applicability
high-resolution applications of airborne gravimetry data. For this purpose, the
inertial sensors acquired by the GAIN project have been calibrated and the knowl-
edge gathered about them was transported to the simulations domain, where the
performance of the complete system has been measured. In this chapter the main
results and recommendations are summarized, which directly address the research
questions outlined in Chapter [I}

6.1 Calibration

e An initial calibration of one of the accelerometers was performed and the scale
factor was observed to be within specifications. It was also observed that the
accelerometers are very sensitive to small variations in the temperature.

e A calibration of the gyros was also performed where the instrument was found
to be within product specifications.

6.2 Simulation

To obtain the results of this thesis, a strapdown airborne gravimetry simulator was
implemented. It was used to,

e Predict the expected accuracy of the GAIN strapdown system under ideal
conditions.

e Investigate the sensitivity of the system’s accuracy to different precisions in
each measurement.

e Investigate the impact of aircraft velocity on the accuracy of the system.

e Investigate the impact of multiple passes over the survey area.

6.3 Results

A realistic model of the GAIN strapdown airborne gravimetry system has been
simulated using the expected performance of the inertial sensors, as seen in the
calibrations. The following results were obtained,

97



e The predicted accuracy of the GAIN strapdown system is 1.4 mGal at 2km
resolution.

e The target accuracy of 0.5 mGal at 2km can be achieved by improving the
accuracy of the inertial acceleration by a factor of three. This can be accom-
plished through one of the following:

1. Reducing the aircraft speed from 220 km/hr to 72 km/hr. Whether this
is possible for the Cessna Citation II or not was not investigated.

2. Taking a minimum of 9 passes over each surveyed area. Repeated passes
over the same area reduce the uncertainty of the measurements.

3. Improving the accelerometer accuracy by a factor three.

4. Any sufficient combination of the above three.

e Under ideal conditions, GPS-attitude measurements do not improve the re-
sults of scalar airborne gravimetry.

e Vector gravimetry requires improved observability of the horizontal biases.
This can be achieved by,

1. Improving the accuracy of the GPS-attitude measurements by at least
an order of magnitude.

2. Performing special maneuvers with the SINS to decouple the horizontal
biases from the tilt error.

3. Any sufficient combination of the above two.

6.4 Recommendations

Some recommendations can be made to improve the results obtained in this thesis.
The calibration setup of the gyros is complex and the two synchronized data loggers
should be reduced to a single data logging system to avoid delays and systematic
errors. Additionally, the implemented GPS system is extremely simplistic and
more sophisticated models can be introduced to take into account atmospheric
delays, loss of lock, cycle slips, multipath and many other phenomena that might
have an impact in the accuracy of the system.

Since the IMU system is currently under development, the knowledge of the
hardware was far from complete. As soon as the electronics that will be used in the
IMU are finished, the accelerometers can be calibrated at the sampling frequency
in which they will operate. This will allow a more realistic characterization of the
noise in the instruments, which then can be included in the simulations.

A thorough temperature calibration has to be performed for the accelerometers
and gyros. It is necessary to know if any kind of temperature control over the
accelerometers is necessary, to obtain sufficiently stable measurements during the
time span of typical airborne surveys.
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No calibrations have been done with the complete IMU system and therefore
this important task still needs to be completed. As soon as the electronics are
ready and the individual sensors have been calibrated, they can be assembled in
the IMU and further calibrations are then required. These regard the placement of
each instrument inside the IMU, and the placement of the IMU inside the Cessna
Citation IT aircraft. Furthermore the calibration process should be automated, such
that it can be rapidly used before and after any campaign. The calibration process
of the IMU should yield, besides the individual sensor parameters (biases and scale
factors) presented in this thesis, additional ones regarding the placement of the
inertial sensors within the IMU casing: the misalignment of the each instrument’s
sensitive axis inside the IMU has to be known and compensated for; the positions
of the accelerometers inside the IMU have to be accurately known to account for
lever-arm effects. A lever-arm effect is a consequence of the accelerometer triad
geometry. Since not all the accelerometers can be placed at the origin of the IMU
frame, a rotation over the e.g., y-axis will create an acceleration measured by the
x- and z-axis accelerometers which must be compensated.

6.5 Future Work

This thesis work has set the foundations for additional studies regarding airborne
gravimetry and as such it leaves many open possibilities for future work. The
airborne gravimetry simulator can also be used to,

e Investigate the impact of airplane dynamics on the accuracy of a vector
gravimeter system. Airplanes exhibit typical flight dynamic modes (dutch
roll, phugoid, etc.) in which the aircraft motion excites frequencies that
can overlap with the region of interest. This is seen in published results
(e.g., Kwon and Jekeli (2001)), where the aircraft dynamics are evidently
influencing the horizontal components of the computed gravity disturbance.

e Investigate the impact of the trajectory on parameter observability and on the
accuracy of the system. Rotating the aircraft relative to the navigation frame
is an efficient way of exposing the biases in the horizontal accelerometers.
However increased rotation dynamics degrade the performance of the attitude
computation.

e Investigate the impact of the instruments sampling rate on the accuracy. A
higher sampling rate provides a better description of the continuous kinematic
state of the aircraft at the cost of higher noise levels in the measurements.

e Investigate the observability and the importance of estimating the scale fac-
tors in the accelerometers and gyros for typical airborne gravimetry flight
paths.

Of course many improvements are still required for more realistic simulations;
the used gravity disturbance model was limited to 10 km resolution. This can be
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expanded at least up to the system resolution of 2km. Furthermore the gravity
disturbances were pre-computed at the target altitude of 2km. In reality, the
power in the higher frequencies of the gravity field is rapidly attenuated with
altitude. A more realistic model would take this effect into account, which would
enable an investigation on the impact of altitude in the system’s accuracy. At
the same time, the simulator should be able to downward continue the computed
gravity disturbance to allow the comparison of results between flights at different
altitudes.
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Kalman Derivation

In this appendix we will establish the equivalence between

u=Ex|ly)=P(H"R 'y + P, 'ug) (A.1)
—1
P = cov(xly) = (P0—1 + HTR‘1H> (A.2)
and
u=uy+ K(y — Huy) (A.3)
P=(I—KH)P, (A.4)
—1
K = PHT <HP0HT + R) (A.5)

To prove the equivalence between both forms of the filtering step it is necessary
to prove that:

1. (A.1)) is equivalent to (A.3)
2. (A.2) is equivalent to (A.4)

Starting with

u=P(H'R 'y + P, tuy)
add and subtract PHT R~ Hu,,

u=PP'uy+ PH'"R 'y + PH"R"'Huy — PH"R"'Hu,
u=PP;'+H' R'H)uy + PH"R *(y — Huy)

=I

where equation Eqn. is used and finally,
u=uy+ PH' R (y — Huy)
The above equation is equivalent to (A.3)) if and only if PHY R™' = K. That can
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be shown manipulating both sides of equation Eqn. [A.2]

Pl=pP'+H'R'H []x Py H”
P'RH" = (Py'+ H'RT'H)P H”

P 'R H" =H'+ H'R'HP,H"

P'PH" = H'R™'(R+ HRH") (H'R™H)™' <[]
(H'RYHY'P 'R HY = (H'R"Y ' H'RY(R+ HP,H") [ x (PoH")™

N

-
=/

RHT ' P Py HT(PyHT) ™' = (R+ HP,H")(PyHT) ™ [

Vv
=/

PH'R™ = PBLH'(R+ HR,H") ™
and noticing the definition of K in Eqn. [A.5] one can finally write
PH'TR' =K

thus proving the equivalence between both forms of the state vector equations.

The covariance matrix filtering equations still needs to be proven equivalent,
as in #2, and this is done by showing that equation (A.4)) leads to (A.2)),

P=(I-KH)FR,
replacing K from equation ((A.5))

P=P,— PH"(HPH" + R)"'HP,
N1
P =Py~ R(H (HRH + R)ET) R

—1 -1
P=Py— P, (PO L H'RHT ) j
bringing both terms to the same dividend,
- —1 - -~ —1
P=P, (PO + H'RHT 1) (PO + H'RHT 1)-130 <P0 + H'RHT 1) Py

expanding the first term,

N1 N -1
j = P0<P0+H‘1RHT 1) Py — PO(P0+H—1RHT 1) P,

-~

=0

1\ 1 _
+ By(Po+ H'RHT) HTRHT
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~1\ L _
P=F (P0+H-1RHT 1) H'RH"™

- -1 -1 1
pP= (H—IRHT ) (P0+H—1RHT ) Po—l}

-1

P=[HTR'H PP + HTR—lHH-lRHTfP(;l]
L ‘7/—’1 ;?

- -1
P=|p"+ HTR*H}

which finishes this demonstration.
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