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Preface 
 

In the 4th quarter of 2009, KPN (”Koninklijke PTT Nederland NV”) launched a project, to boost up the 

capacity management of its packet switched (PS) mobile core network. The fastest growing PS 

services are already running on a core network and most new services should be accommodated as 

well. KPN’s capacity management project consists of both research and development aspects. The 

M.Sc. graduation project of the author is part of the research aspects. This thesis primarily focuses on 

robustness analysis and capacity management, where the PS mobile core network is treated as a 

case study. A more elaborate report, called the KPN deliverable, which also focuses on the details of 

the network has been delivered to KPN. The boundaries of this thesis were based on the available 

network-specific information at KPN (during the time of the graduation project) and the time limit for 

the M.Sc. project set by TU Delft.  

I am grateful to many people, who provided me with information, documentation and support during 

the course of the project.  In the first place I would like to thank my university Professor Piet Van 

Mieghem, my supervisor at TU Delft Fernando Kuipers and my company supervisor Johan Kromjong. I 

am also thankful to Jeroen van Huessen, who always shared his knowledge and experience regarding 

the PS mobile core. Furthermore, I would like to thank the managers (Will Boesveld, Marco de 

Nooijer, and Ben Perk), who gave me the opportunity to participate in the capacity management 

group at KPN. Last but not least I would like to thank the whole Care Customer Department for their 

kind cooperation and for the fun times at KPN. 

 

 

 

 

 

 

 

 

 

Note 1: This thesis is accompanied by a CD containing programming work, network drawings, tables with 

network specific information, network related matrices, the KPN deliverable, and this thesis. 

Note 2: As this version of the thesis is meant to be publicly available, the author has deliberately removed 

some classified information in order to protect KPN’s investments. Complete or partial information has 

been removed from figure 2.6, table 4.2, figure B1, figure E1, table E3 and table E4.  
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Summary 
 

This thesis treats robustness analysis and capacity management, such that the techniques and tools 

used (and devised) for research are applicable to any network, while KPN’s near future PS mobile 

core network is used as a case study. As a necessary step, this core network has been made insightful 

in the form of network and graph theoretical drawings on the subnet level, but also on the level of 

the complete core.  

Most of the academic work focuses on robustness analysis, where edge, vertex and algebraic-

connectivity are treated as robustness measures. A survey is made based on these three connectivity 

types. For designed networks, consisting of several node types, the best way of increasing robustness 

is by solving either the edge-connectivity-augmentation or the vertex-connectivity-augmentation 

problem. These augmentation problems are to find a minimum set of new edges to be added to a 

graph, such that the resilience to link and node failures increases. The author has made use of 

existing algorithms for solving these respective problems. Both algorithms provide optimal solutions 

in the case of an unweighted graph. There is some freedom of choosing vertex pairs for adding new 

edges to increase a network’s robustness, when increasing the edge and/or vertex-connectivity. 

Increasing the algebraic-connectivity is an NP-complete problem for the general case. The heuristic 

approaches submitted to the core network and its subnets gave less efficient solutions for increasing 

the algebraic connectivity. Some calculations have been done to see how the algebraic-connectivity 

of the core network changes as the edge as well as the vertex-connectivity is increased by edge 

addition. 

The algorithm for increasing the edge-connectivity is quite abstract. The most difficult and time 

consuming part is to construct a cactus representation, which is a compact graph representation of 

all the minimum cuts of the network. An existing abstract cactus construction algorithm is analyzed 

and extended with 5 subroutines, such that it can be implemented. In general there are various 

cactus representations that can be used to represent the minimum cuts of a single network.  

Finally, we address the capacity management issues from a research perspective, since no 

measurements were possible on the case study network, at the time of writing. Therefore, this part 

focuses on bandwidth management and vertex criticality of nodes. A first tool, called the CTA-edge-

Betweenness program, has been programmed to compute what percentage of each edge will be 

loaded with traffic and to find out which edges are prone to congestion. This tool can be used as an 

indicator for dimensioning the bandwidth of the edges in the case where no measurements are 

available. A second tool, named the vertex-criticality program, computes how important each 

element is with respect to the network it belongs to. Both tools were tested with the PS mobile core 

network as the test network.  

The tools discussed in the previous paragraph are useful in the process of performing proactive 

capacity management, especially when a network is still in its design phase. To use them effectively, 

complete network information and traffic routing schemes are necessary. 
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1 Introduction 
 

1.1 Background information 
 

Within the Netherlands, KPN is the largest service provider for both fixed and mobile Telephony, and 

a big competitor for Television and Internet provisioning. In order to provide adequate service to its 

customers, KPN has to manage, maintain and expand a large network consisting of a large variety of 

components. The KPN mobile network is a complex network, which can be divided into several 

domains as shown in figure 1.1.  

Circuit switched domain

Packet switched domain

Radio access domain Transport domain

 
Figure 1.1: Domains of the KPN network 

Currently, network and traffic information is gathered in an un-automated fashion from different 

tools. As a consequence the layout of the network architecture is not known in detail. Furthermore, 

partial management mechanisms are implemented for small parts of the core network. These 

“islands” are not interconnected and not completely structured yet. The data is only used when 

there is a problem or bottleneck somewhere in the network. This means that performance 

management (and capacity management) is done in a reactive way. To improve this situation, KPN 

has launched a capacity management project with the purpose of managing the capacity of the 

Packet Switched (PS) and the transmission domain [57], which form KPN’s PS mobile core network.  

 

1.2 Problem statement 
 

The main problem that KPN wants to deal with is improving the manner in which the data traffic in 

the core network is currently managed. There is a danger that parts of the PS core network may get 

overloaded especially in busy periods. From a research perspective, the main problem is analyzing 

how the robustness of the network can be increased as efficient as possible. 

 

1.3 Focus of the thesis 
 

The focus of this M.Sc. thesis will be on robustness analysis and capacity management of the PS – 

and Transmission domain, which will often be referred to as the PS or Intelligent Edge mobile core. 
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Because the network architecture and topology were not known, an extra task was to make these 

two domains more insightful. 

Within the scope of KPN’s capacity management project the main purpose of the M.Sc. thesis is 

twofold. Firstly, it is important to deliver general methods and tools for increasing the robustness of 

a network. Secondly, general techniques and tools are required that provide initial insights in where 

capacity shortages and congestion are most likely to occur. For both topics, the packet switched (PS) 

mobile core network is treated as a case study.  

 

1.4 Methodology and thesis outline 
 

Methodology: 

1. Literature study regarding: - The PS mobile core network (case study). 

- Graph theory. 

- Robustness of networks. 

- Connectivity and related algorithms. 

- Capacity management. 

2. Defining the M.Sc. thesis proposal. 

3. Applying /formulating algorithms for increasing connectivity (and robustness). 

4. Simulations regarding robustness analysis. 

5. Modifying and applying algorithms for capacity management. 

6. Simulations regarding capacity management. 

7. Writing the thesis. 

 

Thesis outline: 

Chapter 2 describes the network architecture and topology of the PS mobile core network, which is 

expected to be operational in the near future. The most important results are network drawings 

based on the Intelligent Edge design.  

Chapter 3 focuses on robustness analysis, where edge, vertex and algebraic-connectivity are treated 

as measures.  Research is also done regarding the relationship between the different connectivity 

types. Furthermore, an existing abstract algorithm is analyzed and extended, such that it can be used 

for writing a program that generates a representation of all min cuts (called cactus representation). 

This chapter contains most of the academic work. 

Chapter 4 finally addresses the capacity management issues from a research perspective, where it is 

important to bear in mind that no measurements were possible on the target network, at the time of 

writing. Therefore the research is limited to bandwidth management on the network connections 

and a new term called vertex-criticality that indicates the importance of each network element.  
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2 Network Architecture of the PS mobile core network 
 

KPN’s PS mobile core network consists of several subnets, each with specific functionalities with 

respect to the services running on the network. The subnets are primarily responsible for processing 

and/or transmission of data.  

Figure 2.1 shows a high level logical overview of how several networks are interconnected. The aqua-

blue clouds on the right and below represent external networks from KPN’s point of view. The 

Mobidata network is used for Operation and Maintenance purposes, while the Radio access network 

represents the combined GSM (2G)/UMTS (3G) cellular network of KPN in the Netherlands. The 

Mobile IP Backbone and the Intelligent Edge network, together form the PS mobile core network, 

which is the case study in this thesis. 

Mobile IP Backbone

Mobidata 

(Network Management)

Intelligent Edge

Other Local Operators

Radio Access Network

MMS Domestic 

Exchange

(MDX)

Internet

GPRS Roaming 

Exchange

(GRX)

 
Figure 2.1: Interconnections between KPN’s PS networks [2]. 

The physical connectivity between the IP BB and the Intelligent Edge network is quite different from 

the logical overview shown in figure 2.1. The Intelligent Edge network consists of 4 core PoP (Point of 

Presence) and 5 VRF (Virtual Routing Function) Lite locations, located in several Dutch cities, and are 

physically connected via the 10G mobile IP Backbone. As the name already reveals, this backbone is 

based on elements (routers) and connections that have a capacity of 10 Gbps. Figure 2.2 gives a high 

level view of the physical connectivity between the IP BB and Intelligent Edge network. The following 

sections describe the IP backbone and the Intelligent Edge network in more detail.  

Mobile 10G IP Backbone

Intelligent Edge

Core PoP

The Hague

Intelligent Edge

Core PoP AmsterdamIntelligent Edge

Core PoP

Rotterdam

Intelligent Edge

Core PoP

Arnhem

Intelligent Edge

VRF-Lite

Bussum

Intelligent Edge

VRF-Lite

Eindhoven

Intelligent Edge

VRF-Lite

Groningen

Intelligent Edge

VRF-Lite

Telfort ASD-Hemweg

Intelligent Edge

VRF-Lite

ASD-Nikhoff

High level (physical) view of PS domain 

 
Figure 2.2: Physical connectivity 10G IP BB and Intelligent Edge [2]. 
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2.1 The mobile IP backbone 
 

At the time of writing, there are 2 IP Backbones, namely the currently active 1G Mobile IP Backbone 

and the new Mobile 10G IP Backbone1.  In 2011, the traffic of PS services will migrate from the 1G to 

the new 10G backbone. The reason is that the older counterpart is getting saturated with both types 

of traffic (CS and PS), especially due to the exponential growth of the PS traffic. As a response on 

traffic growth, KPN has decided to separate these traffic types, each on its own backbone. This 

means that at the backbone level, the installed capacity for PS traffic increases from a shared 1 Gbps 

network to a dedicated 10 Gbps network, while CS traffic remains on the 1 Gbps network. As 

described in [37,2], the 10G IP BB provides Location redundancy, MPLS IPv4 VPNs, backbone 

redundancy, fast rerouting and interconnections to external networks.  

The 10G IP BB will have a similar topology and functionality as its 1G counterpart, with the exception 

that only 4 (instead of 5) core PoP locations will constitute the new backbone. Figure 2.3 shows the 

10G IP BB [58]. 

GV2

(A-node)

AH

(A-node)

RT2

(A-node)

ASD2

(A-node)

GV2

(B-node)

AH

(B-node)

RT2

B-node

ASD2

(B-node)

Subnet A

Subnet B

 
Figure 2.3: The Mobile 10G IP BB [58] 

The 10G IP BB consists of 2 subnets, where the A and B collocated core routers are connected at each 

of the 4 core locations. The fully meshed A and B subnets, will provide the required redundancy, such 

that no single node (link) failure will affect the performance. All edge devices will be connected to 

both the A as well as the B subnet. Each of the two subnets should be able to support a maximum 

nominal load of 40% with respect to the entire backbone capacity.  

Routing 

A nice property of the 10G IP BB is that it supports load sharing between its two subnets. So in this 

configuration there is no primary and hot-standby subnet. Routing via transit locations is supported 

                                                           

1
 Note that in the future, when KPN steps over to an all IP network, there will be another migration from the 

Mobile 10G IP BB to the Generic IP Network (GIPN). This network is out of the scope of this thesis.  
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to prevent network disconnection in the case that multiple failures occur. When single failures occur, 

transit locations are avoided, which in turn avoids competition between single hop and multi-hop 

traffic paths. In order to be able to control traffic flows across the backbone and avoid unexpected 

behavior, all (OSPF) links are always assigned explicit link costs. There are no OSPF-enabled links on 

the backbone with default metrics. Furthermore, all links have the same metrics configured in both 

directions such that symmetry is preserved. Figure 2.4 (a) exemplifies how traffic is routed under 

normal conditions. Throughout the backbone the links connecting the A and B routers are assigned a 

weight of 100, while the cross links are configured to have a weight of 40 (to prevent routing via 

transit locations). Figure 2.4 (b) shows how the traffic flows in case of a link failure in the network. In 

case of a single backbone link failure, the cost of the best path between the two locations is 180. 

Therefore, paths passing through a transit location (like The Hague in the figure above) are prevented 

due to the higher required cost of 200. Due to a double failure in the Mobile IP Backbone, two 

locations may happen to have a best path via a third (transit) location.  

ZR2A

ZR2A
ZR2A

ZR2B

ZR2B
ZR2B

Amsterdam

Amsterdam

Rotterdam

Rotterdam

The Hague

The Hague

100

100

100

100
100

100

40

Standard path for traffic from 

The Hague to Amsterdam

Standard path for traffic from 

Rotterdam to Amsterdam

Routing under normal conditions

40
40

ZR2A

ZR2A
ZR2A

ZR2B

ZR2B
ZR2B

Amsterdam

Amsterdam

Rotterdam

Rotterdam

The Hague

The Hague

100
100

100
100

100

4040

40

Standard path for traffic from The 

Hague to Amsterdam

Failed link

X

Rerouted path for traffic from Rotterdam to Amsterdam

Total path cost: 180

Routing when a link failure occurs

(a) (b)

 
Figure 2.4: Traffic flow across the network during normal operation. 

Link redundancy in the 10G IP BB 

Between any combination of 2 core PoP locations two 10 Gbps connections are installed if they 

belong to the same subnet. If the primary link fails, the backup link will take over. With this 

configuration the probability of a 2 or 3 hop connection decreases. 

Edge Devices 

The (PS based) device types to be connected to the new Backbone are: Intelligent Edge routers, 

SGSNs, GGSNs, RNCs (at a later stage), MSTP signalling systems, DNS system, Li (Legal Intercept) and 

a CG (Charging Gateway). Clearly the voice related devices are left out in this device list, which 

emphasises the fact that only data traffic will be transmitted on the new IP Backbone. More detailed 

information about the new IP Backbone can be found in [37] and [58]. 
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2.2  Background of the Intelligent Edge Network 
 

The Intelligent Edge (IE) network is used to provide mobile users with (1) secure access to the 

Internet, (2) access to international roaming (via the GPRS Roaming Exchange) and (3) access to 

multimedia services. The redundancy implementation is generic for these connections. There are 2 

core routers at each location, providing connectivity to an external network. When one router fails 

the other is able to carry the complete traffic load. There is also a notion of location redundancy, 

such that if one location would fail, another one would be able to take over the load. At the time of 

writing, Amsterdam and Rotterdam core PoP locations provide such redundancy, while the Arnhem 

core PoP is being upgraded, such that it can become the 3rd redundant location [2].  

Intelligent Edge consists of the larger 4 core PoP subnets and the smaller 5 VRF Lite subnets (figure 

2.2), where the latter serve as an extension for providing specific functionality to the core locations.  

Figure 2.5 shows an example of the basic physical model of a core PoP subnet. An important 

implementation issue is that value added service related equipment are connected via an access 

switch to the core switch. When the access switch’s maximum capacity is reached, another access 

switch is connected to the core switch [37, 56]. This basic model does not show the connection of 

Mobile Office Online (MOO) switches, because they are not implemented in every core location. The 

model is used as a building block for making the drawing of the PS mobile core network shown in 

figure B1 in appendix B. (See appendix A for the abbreviations). 

ASWxA ASWxB

Core layer

Access layer

CSW1A CSW1B

SRLBxA
FRxA STARxA ZRxA

SRIPSxA

Load Balancer

Intrusion Prevention

System

SRLBxB
FRxBSTARxBZRxB

SRIPSxB

Load Balancer

Intrusion Prevention

System

DNS Authentication 

server
SMSC MMSC

Device types for value added 

services  
Figure 2.5: Physical model of an IE core PoP subnet [2]. 

Each IE core PoP consists of 3 security zones, which are logically separated by redundant firewalls. 

The separation into three zones is based on the level of security required to protect the network and 

thus leads to [37, 2]: 

1) A trusted zone, which is the most secure environment and contains systems managed by KPN.  

2) A semi-trusted zone, providing access to other networks/customers, based on Service Level 

Agreements (SLA’s). 

3) An untrusted zone, providing connectivity to “untrusted” networks (and customers), which are 

not based on SLA’s. The best known examples are the connections with the Internet. 
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Each zone is equipped with 2 zone routers, which are connected to the IP backbone (figure 2.6). Only 

the zone routers of the untrusted zone in the core PoP of Amsterdam and Rotterdam provide a 

connection to the Internet and the GPRS Roaming Exchange (GRX) network [37,56]. There are only 2 

VRF Lite routers per Lite subnet for all three zones.  Each Lite router is configured to be aware of one, 

two or three security zones, depending on the tasks of its subnet. An important implementation 

issue is that information cannot be forwarded between different zones at a VRF Lite location itself. 

Instead such information, destined for a different zone, needs to be routed via the nearest PoP 

location. In the PS Mobile core network, each zone router is connected to a backbone core router, via 

a 1 Gbps or 10 Gbps link. VRF Lite subnets have their own physical connections with these backbone 

routers. Figure 2.6 exemplifies this.  

Mobile IP Backbone

VLAN-based

Pseudo-wires

ZR1A

ZR1B

ZR2A

ZR2B

ZR3A

ZR3B

ZR1BZR1A ZR2BZR2A ZR3BZR3A

ZR1BZR1A ZR2BZR2A ZR3BZR3A

Mobile 

Services

(local 

switching 

domain)

Mobile 

Services
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Figure 2.6: Physical connectivity of IE to IP BB [2]. 
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2.3 The network model of Intelligent Edge with IP Backbone 
 

An additional but necessary part of the M.Sc. project is to make a network drawing of the complete 

PS mobile core network according to the intelligent edge design discussed earlier in this chapter. 

From this network a graph  should be derived as well, such that it can be submitted to 

robustness and capacity management analysis.  

The first suggestion was to install topology-mapping software (e.g. LanTopolog combined with LAN 

Surveyer) on a server and to run this server on the PS mobile core network. However this approach 

was cancelled, because of two issues: 

1. The current network still consists of the older 1G IP BB and MIPnet2 architecture, while the goal 

is to make the PS domain insightful according to the near future situation.  

2. A second major issue is that running topology-mapping software may be risky.  

Our approach was to use all the information in this chapter and discuss the situation with the design 

team of KPN. Figure B1 in appendix B shows the result and gives a good indication of how the new PS 

mobile core network will look like. The appendix contains a complete graph of the network as shown 

in figure B2. Finally figure B3 shows a relaxed graph of the core network where the clouds and 

(square) nodes are left out compared to figure B2. They are treated as external networks and specific 

functional nodes respectively. It is this relaxed graph which is treated as a case study for doing the 

analysis in the succeeding chapters.  

The PS mobile core network can be viewed as to consist of an A and B network, which provide 

mutual redundancy. The load is shared between these networks. For each device (connection) in the 

A network, there is a similar device (connection) in the B network. 

 

 

                                                           

2
 MIPnet is the predecessor of the Intelligent Edge network discussed in section 2.2. 
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3 Robustness Analysis and Connectivity 
 

This chapter focuses on the robustness analysis of the core network. The methods and tools are 

generic and can be applied to any network.  

In this thesis connectivity is a term used to determine how well devices in a network are connected 

to each other in order to transfer data back and forth. Two network elements are said to be 

connected when there exist at least one (single hop or multi hop) path between them. A network is 

said to be connected when there exists a path between any pair of arbitrarily chosen nodes of that 

network. Good connectivity is achieved, when multiple paths exists between devices, especially 

those in the core of the network. The higher the number of disjoint paths between any node pair, the 

better the corresponding network will be connected.  

Throughout this chapter Graph theory is used for describing and analyzing the KPN mobile core 

network. A graph is represented by , which consists of a set  of  vertices and a set  of 

 edges. All robustness and connectivity related simulations are done using MATLAB.  All the 

matrices that are used as input can be found in the KPN deliverable. Before starting with the analysis, 

section 3.1 surveys the research already done with respect to algebraic, edge and vertex-

connectivity. 
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3.1 A survey for connectivity as a measure for robustness 
 

Edge and vertex-connectivity are important for the robustness due to the fact that they quantify the 

extent to which a graph  (and the network it represents) can accommodate to edge and 

vertex failures. Recent research [84, 41, 42] shows that the algebraic-connectivity is always non-

decreasing (and usually increasing), with increasing edge – and/or vertex-connectivity. This implies 

that the algebraic-connectivity can be treated as a measure for the robustness. This survey focuses 

on all three connectivity types and its goal is to give a short description about the research already 

done by the scientific community. Furthermore, it briefly highlights a few potential topics that are 

still open to science.  

Algebraic-connectivity:  

Already in 1972 Miroslav Fiedler explained that the eigenvalues of the Laplacian matrix of a (simple) 

graph provide valuable information about the connectivity of the graph [15]. Fiedler explained that 

the number of eigenvalues equal to zero represents the number of connected components and that 

the 2nd smallest eigenvalue of a connected graph G is its algebraic-connectivity .  

In [41, 42] the relationship between  and the robustness for complex networks is studied for 

E.R. random graphs, W.S. small world graphs and B.A. scale free graphs. It is shown that the speed 

with which  increases, by edge addition, is topology dependent and that in some cases the 

speed of increasing  is lower than increasing the vertex-connectivity  by adding edges 

[41]. For other (complex) networks (such as (lognormal) geometric random graphs, regular lattice 

graphs and power law graphs) similar research is not yet conducted (to the knowledge of the 

author). Reference [4] also shows that  is a lower bound for  if  is not a complete graph 

and that  otherwise. Recently a study has been done, where the 

importance of a vertex (or edge) is quantified by the algebraic-connectivity of the remaining network 

after the removal of the vertex (or edge) [61]. Another different method to look at robustness is to 

increase  of a complex regular network, without adding vertices or edges, but by a technique 

called “random-rewiring” as described in [75].  

The maximum algebraic-connectivity augmentation problem is proven to be NP-complete [69]. 

Therefore heuristic approaches have been devised to solve this problem [84].  

An important point (not explicitly mentioned in the literature) is that even though  can be 

computed for weighted graphs [13, 54 and 51], it is usually the unweighted case that is treated when 

using  as a robustness measure. However, it is surely interesting to investigate the weighted 

 in relation to the robustness. In particular for the case that an edge weight represents the cost 

to remove the corresponding edge relative to the graph. In general the mean path length decreases 

as new edges are added to a graph, to increase . Another interesting open problem is to find an 

optimization that maximizes robustness and minimizes the delay time in a network as efficient as 

possible, when cost constraints limiting the number of vertices/edges are considered important [7].  

There is a wealth of literature describing properties of the algebraic-connectivity in general, but also 

for special cases and/or topologies.  There are already several surveys [68, 67, 66, 64 and 1] related 

to the algebraic-connectivity that have been published over the years, that discuss interesting topics 
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like the Laplacian spectrum, applications of Laplace eigenvalues, Congruence and Equivalence, 

weighted graphs and max-cuts, Optimal numberings, Classifications of bounds to   as a function 

of other graph invariants, applications of Fiedler vectors, etc. A lot of research has also been 

conducted on a special type of graph, namely the tree [28, 65, 14, 29, 54, and 53]. It is interesting to 

see if similar research can be applied on other topologies (e.g. directed and undirected cycle (or ring) 

graphs, hierarchical graphs etc.). It is also interesting to know that the properties of Fiedler’s 

definition remain valid for digraphs [90]. Another important topic regarding   that has received 

attention is its upper and lower bound, which are summarized neatly in [1]. 

Edge-connectivity:  

Research regarding connectivity already started in the 70s when Eswaran and Tarjan introduced the 

terms bridge-connectivity and bi-connectivity for undirected graphs [12]. They also showed how to 

make a digraph strongly connected. Furthermore, they proved that solving these problems optimally 

for weighted directed and weighted undirected graphs is NP-complete. With this the foundation was 

put in place for edge-connectivity (and vertex-connectivity). 

Most research has been done on unweighted undirected -edge-connected graphs resulting in 

different approaches and many efficient algorithms are considered for special cases [12, 19] as well 

as the general case (for any augmentation value ) [73, 88, 87, 17, 8, 25 and 72]. One of the 

most interesting findings is the one of Frank [17], who gave an  algorithm which also extends 

to the more general augmentation problem. Then Nagamochi and Ibaraki [72] used maximum 

adjacency ordering in their approach and by combining their minimum cut algorithm with the 

approach of Frank [17], they produced a (faster)  time algorithm for 

augmenting a graph to achieve -edge-connectivity. They also showed how to extend the 

problem for the situation where the connectivity target is a real value. Cai and Sun [8] also found an 

interesting algorithm that works for any multi-graph. In [44] it is indicated that the -edge-

augmentation problem, without introducing parallel new edges is NP-complete, but if the target 

connectivity is a predefined integer, this problem is solvable in polynomial time. In the author’s 

opinion, understanding the construction of a cactus representation of a graph [71, 73] is important to 

understand the edge-augmentation problem. An algorithm for constructing a cactus that 

corresponds to the explanation in [73] can be found in [71]. However, this algorithm is not detailed 

enough to be used for programming purposes. In fact this algorithm is extended in section 3.3 to 

make it useful for programming purposes. 

For unweighted directed graphs Gabow [24] found an  time algorithm that 

finds the edge-connectivity, which runs slightly faster for an undirected graph. However this is not an 

algorithm that augments a digraph. On the other hand for unweighted directed trees (or digraphs 

whose underlying graph is a tree) there exists a polynomial time solution for increasing the edge-

connectivity [47]. In [9] it is also shown that the successive augmentation property also holds for 

digraphs. Apart from the special cases (including strong connectivity), Frank [17] and Gabow [25] 

have found algorithms for the general digraph case with respective time complexities of  and 

. 

The weighted edge-augmentation problem is NP-complete for both undirected graphs and digraphs.  

However, several approximation algorithms have been devised [22, 50] for special cases. The special 

weighted cases for bi -, bridge – and strong connectivity have been studied by Frederickson and Já’Já’ 
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[22] and they have found approximation algorithms with reasonable time bounds. Benczur [4] also 

found an algorithm that runs in  time. For the special weighted case, where 

edge costs arise from node costs, Frank [17] found a polynomial-time solution. For another special 

case where  is a spanning sub-graph of a 2-edge-connected weighted graph, it is possible to 

achieve 2-edge-connectivity in polynomial time [26]. Other special cases are treated in [89]. 

For weighted digraphs in general Jensen, Frank and Jackson [43] proved that the edge-augmentation 

is NP-complete. For mixed graphs (containing directed and undirected edges) they have obtained 

interesting results for 2 extreme cases (This includes the case of adding only directed edges or the 

other case of adding only undirected edges). It would be odd if no heuristic approaches would have 

been proposed for the weighted case. Based on maximum weight matching algorithms, Taoka and 

Watanabe [81] have obtained heuristic algorithms. Apart from [22, 43] not much attention has been 

paid to weighted digraphs. It is interesting to do research to see if there are polynomial-time or 

approximation algorithms for special topologies and the case of specific weight functions.  

Vertex-connectivity:  

Vertex-connectivity-augmentation has also received much attention by the scientific world. Again 

most of the literature focuses on unweighted undirected graphs. The specific case to make a graph 

2-connected is treated by Eswaran and Tarjan [12], Rosenthal and Goldner [79] and Hun and 

Ramachandran [38]. Watanabe and Nakamura [86] and Jordan [46] independently solved the case 

for achieving 3-connectivity, while Hsu [34] produced an algorithm to upgrade a 3-connected graph 

to a 4-connected one. Increasing the connectivity of a -connected graph (where  can be any 

integer) by 1 has received most of the attention [46, 45, 56, 60, 55 and 10], which is no surprise as 

this is a case that is often targeted in practice. For this case Jordan [45, 46] gave an algorithm that 

finds an edge set larger than the optimum size by a value no more than . This result was 

extended by Jackson and Jordan [39] for the general connectivity augmentation to a set at most 

 more than the optimum (where η is an integer augmentation value). With 

the general connectivity is meant that the target connectivity is , with  indicating the 

connectivity of the original graph and  being any integer augmentation value. For this general 

augmentation, the known optimal result is an  polynomial time algorithm by 

Jackson and Jordan [40], where  is an exponential function of k. For some special cases they 

prove even stronger results, such as the case where . On the negative side the 

complexity of the vertex-connectivity augmentation problem is a longstanding open question [83, 39 

and 40]. In [86] it is also mentioned that augmenting a graph , with zero edges to become k-

connected, where , is NP-complete. Vegh [83] has produced a polynomial time algorithm for 

finding an optimal solution to increase the connectivity of any -connected unweighted undirected 

graph by . As it is important to understand the concept of -shredders ( -separators) when 

discussing vertex-connectivity, an interesting result produced by Cheriyan [10] is not unimportant. In 

[10] a deterministic algorithm is treated, which finds all k-shredders in  time. 

The concept of shredders (and separators) is important for solving the vertex-connectivity-

augmentation problem. 

The vertex-connectivity for digraphs has been treated by Frank and Jordan [20]. They found a min-

max formula that finds the minimum number of required new edges to make an unweighted digraph 

-connected. Frank and Vegh [21] came up with an optimal polynomial time algorithm to 
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make a -connected digraph -connected. For the specific case of rooted directed trees 

Masuzuwa, Hagihara and Tokura [62] have devised an optimal sequential algorithm to achieve k’-

connectivity, where k’ is the target connectivity. 

As the weighted vertex-connectivity-augmentation problem for graphs is NP-complete [83, 74 and 

76], alternative approaches are required to deal with the problem. The 1st way is to consider 

algorithms for special cases, as discussed in [18, 34, 38, 35, 36, 46, 83 and 85]. Most of these 

references discuss specific connectivity targets (  and/or  are specific values) and the tree topology 

has also received much attention. Despite the NP-completeness, it remains interesting to find and 

solve more special cases (e.g. special topologies and special weight functions) for which an optimal 

polynomial-time solution does exist. To exemplify, such a solution is found for the special case if each 

edge weight is characterized by a node induced cost function [83]. A 2nd way is to develop heuristic 

algorithms and for this it is recommended to read [30] (for a review). Finally approximation 

algorithms can be designed [76, 48, 49, 50, 78 and 23] that still produce an acceptable outcome in 

polynomial time. To mention a good example, Khuller and Thurimella [50] have found an 

 approximation algorithm, which augments any k-edge-connected 

weighted graph to achieve a  or even a -connected graph. They also show that 

techniques can be used that run in  time, provided that  is odd. 
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3.2 Increasing the algebraic-connectivity 
 

This section focuses on increasing   (and therefore increasing the robustness) of the PS mobile 

core network by adding as few new edges as possible. As proposed by Fiedler  is the 2nd smallest 

eigenvalue of the Laplacian matrix ( ) of the graph  [41], which is considered as a measure for 

the robustness of the graph. 

Before discussing the algebraic-connectivity, the notations to be used are presented. The topology of 

a network is represented by a graph . The most important matrices are the Degree matrix , 

the Adjacency matrix  and the Laplacian matrix .  is a diagonal matrix where each entry 

(on the diagonal) represents the nodal degree.  is an unweighted representation of all the edges in 

a network. This matrix consists of 0’s and 1’s, where a 1 (0) at position  indicates the existence 

(non-existence) of a link from node  to node .  

The set of all  eigenvalues3 of  is called the Laplacian spectrum of  and is represented as: 

. Two important pieces of information that can be obtained from this 

spectrum are:  

1. If , the graph is disconnected. 

2. The number of eigenvalues equal to 0 is equal to the number of components or clusters of . 

Because multigraphs cannot be submitted to the analysis of the , the PS mobile core network is 

treated as a simple graph in this subsection. Another important point is that all the graphs to be 

analyzed consist of bidirectional links, which has the advantage that and  are symmetric.  

 

3.2.1 Strategies for increasing the algebraic-connectivity 

Increasing  with the fewest links is proven to be NP-complete [69]. This is the reason that 

heuristic strategies are applied in the analysis of increasing , where the target graph is 

converted to a simple graph. The first strategy is an idea of the author, while the other two were 

obtained from chapter 5 of [84]. The strategies differ in the way that a “new” edge to be added is 

chosen. 

Strategy 1: 

This strategy starts out with computing  and the corresponding . After the 1st edge is added, 

the new  and corresponding  are computed. This procedure is done  times, namely for all 

the  possibilities to add a new edge. However, only that edge which 

gives the maximum  is stored along with its corresponding . If there is a tie the first edge with 

the maximum  is chosen. If the “maximum ” edge is found, then for the next iteration,  the 

corresponding  becomes the starting situation for adding the 2nd new edge. The 2nd, 3rd till the last 

                                                           

3
 Eigenvalues are calculated using the following equation: det(L- I), where I is an identity matrix with the same 

dimensions as the Laplacian matrix. More information regarding eigenvalues can be found in chapter 4 of [77]. 
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new edge to be added are chosen the same way as the 1st one.  The robustness is non-decreasing, 

because  cannot decrease by adding edges. 

Strategy 2: 

This strategy is based on increasing  by sequentially adding a link between a node of minimum 

degree and any other node. The first node found in  with minimum degree is chosen and the new 

link connecting this node and another node which yields maximum increase of , is added. and 

 conforming to this addition are stored and the next iteration can start, using these matrices as its 

starting point. Note that this strategy attempts to increase the minimum degree of the overall graph 

and therefore it increases . 

Strategy 3 (Fiedler vector strategy): 

This strategy makes use of the Fiedler vector , which is the vector corresponding to 

the 2nd smallest eigenvalue. The 2 vertices, to which the next new edge should be added to increase 

, is derived from this vector.  The vector-indices, say  and , of the 2 values  and  in , 

whose absolute difference  is the maximum (compared to every other possible 

combination), correspond to the indices of these vertices (  and ) and are used to find them. The 

edge is added between these vertices,   is computed and  and  are modified accordingly. The 

next iteration (where the 2nd new edge is added) can start using the modified matrices as its input. 

Every next iteration proceeds in a similar way, until the predefined number of iterations is achieved. 

The next subsection discusses the results obtained from simulations done in Matlab, according to the 

above strategies. The structure of the MATLAB source codes are presented in appendix C. 

 

3.2.2 Results of increasing the algebraic-connectivity 

 

This subsection presents the most important results obtained regarding the simulations for 

increasing .  The results (regarding the 3 strategies) of subnet core PoP ASD/RT4 and those of 

the complete network are presented. The reason for also doing the simulations on subnet level is 

because it yields results that are relatively cheap, as only indoor edges are to be added. The figures 

corresponding to the results of core PoP ASD/RT are shown in appendix B. For each figure 

representing a strategy, there is a summary of how many links are required to achieve  and 

of course  itself. A value just higher than 1, means that the graph is at least 2-connected, as 

 is a lower bound of the (vertex) connectivity. Note that for a graph (which is not complete) the 

following holds: 

    (3.1) 

The target of at least 2-connectedness has physical meaning for the network, because any single link 

or node failure is not enough to disconnect the network.  

                                                           

4
 Results of the other IE subnets are similar and do not add anything extra from an academic perspective. They 

can be found in the KPN deliverable. 
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Increase of algebraic-connectivity of core PoP ASD/RT 

Figure 3.1 represents the graph for the identical subnets in Amsterdam and Rotterdam. Figure 3.2 

shows the increase in  as “new” edges are added according to the 3 strategies. The figure clearly 

indicates that for subnet ASD/ RT, strategy 3 (strategy 1) is the most (least) efficient in increasing 

5. For few “new” edges (less than 6) this is not always true, but even then the differences are 

minor.  
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Figure 3.1: Current situation regarding core PoP ASD/RT and corresponding BB routers. 
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Figure 3.2: Comparison of suboptimal strategies for ASD/RT. 

 

                                                           

5
 This holds for all the other Intelligent Edge subnets. 
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Algebraic-connectivity of the IP BB 

From figure 2.4 it is clear that  of the mobile 10G IP BB exceeds the target ( ). It is 

therefore pointless in running the experiments for the backbone. What is interesting is the fact that 

, because this subnet is 4-connected. This corresponds with the leftmost inequality of 

equation 3.1. 

Increase of the algebraic-connectivity of the entire graph 

In reality it is not possible to add an edge between any two arbitrary vertices, due to the fact that not 

all network nodes perform the same functions or process the same traffic streams. Using any of the 3 

strategies, the results (appendix D) are such that many “new” edges are incompatible with the way 

the network works and/or too expensive to be implemented. This is not unexpected, because firstly 

the strategies do not distinguish between different node types and secondly these strategies will 

most likely choose some expensive edges that connect vertices belonging to different subnets as 

they tend to increase  the most.  
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3.3 A programmable algorithm for cactus construction 
 

Before it is explained how the edge-connectivity can be increased, it is important to understand how 

a cactus representation, , is constructed.  represents every minimum cut of the original 

graph , in a compact form, where  is the cactus graph consisting of node-set  

and link-set  and  is a mapping of the vertices   of  to the nodes  of  6. 

Cactus construction is quite difficult and often a time consuming task, especially if  

represents a large network. This section focuses on extending and explaining Nagamochi’s algorithm 

[70] that can be used for the construction of . In the knowledge of the author, and via contact 

with Nagamochi it is believed that no implementation presently exists.   

Nagamochi’s algorithm (figure 3.3 and 3.4) does not indicate how to perform a couple of essential 

steps or how to obtain some information. The main contribution here is to develop and test 

programmable algorithms to help perform these key steps, which are then integrated into 

Nagamochi’s algorithm, such that the latter can be used for programming purposes. The 

contributions are the following: 

1. An algorithm for choosing an edge  for performing line 3 in algorithm 3.2. 

2. An algorithm for the construction of an st-MC-partition (a partition of the graph as a result of 

all the min cuts separating s and t), required in line 11. 

3. An algorithm for the construction of an st-Cactus representation , required in 

line 4. 

4. An algorithm for merging multiple cacti and joining their mappings to construct an integral 

cactus representation , as indicated in line 16. 

5. An algorithm for converting a cactus representation into a cycle-type normal cactus (CNC) 

representation. 

It is relevant to understand the parent and child algorithm (figures 3.3 and 3.4, respectively) that 

constitute Nagamochi’s algorithm, such that it becomes clear to the reader how the contributed 

algorithms fit in the former to finally produce algorithms 3.3 and 3.4 (figure 3.5 and 3.6, 

respectively). Algorithms 3.1 and 3.2 are explained next, while the 5 new algorithms (which are 

considered to be subroutines of algorithm 3.2) are explained in subsection 3.3.1 to 3.3.5. 

Algorithm 3.1 is used to compute the minimum cut value of the target graph  (line 1) and to 

initialize a list  (line 2) that should keep track of already found minimum cuts, such that they can 

be identified as old. Once identified they will be prevented from being used more than once in 

algorithm 3.2, which is the child of algorithm 3.1 and called in line 3 of the latter. The parent-child 

approach is used, because algorithm 3.2 is recursive as it may call itself as shown in lines 8 and 14.  

                                                           

6
 From now on the entities of a cactus are referred to as nodes and links, while those of a target graph are 

referred to as vertices and edges. When vertices are contracted together, the element containing these 

vertices is also referred to as a node. This may prevent confusion and ambiguity from the reader’s perspective. 
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If the graph, of which a cactus representation should be constructed, consists of only 1 vertex, the 

cactus will be trivial ( ), meaning that it consists of 1 node and no edges. In this case the 1st 

line of algorithm 3.2 does the job. It is more interesting to see what happens if  consists of multiple 

vertices connected by edges. In this case an edge is chosen between vertices  and  (line 3).  

 Algorithm 3.1 Construct 

Input:  An edge weighted graph . 

Output:  The Cycle-type Normal Cactus (CNC) representation  for . 

1. Compute ; (%  is the minimum cut value of ) 

2. ; (% initialize an empty list) 

3.  (% make a call to the subroutine named Cactus) 

  
Figure 3.3: Parent algorithm for constructing the cactus representation. 

 Algorithm 3.2 Cactus  

Input:  A graph , a subset , and a real number . 

Output:  A cactus representation  for a set  of minimum cuts. 

1. if |V(G)| = 1 then return the trivial cactus . 

2. else 

3.  Choose an edge , with capacity  . 

4. if  or the -cactus representation  represents no minimum cut other than 

those . (%  represents an already found minimum cut) 

5. then 

6.   ; 

7.   ; 

8.    (% recursive call) 

9.   return  

10.  else 

11.   for each  in the -MC-partition  do 

12. , denoting by  the vertex obtained by contracting ; 

13.    if  then  end. 

14.     (% recursive call) 

15.   end 

16.   ; 

17.   Convert  into CNC representation. 

18.   return  

19.  end  

20. end 
 

Figure 3.4: Child algorithm for constructing the cactus representation. 

Line 4 it tests if the chosen edge is critical or if the st-cactus-representation  (explained 

in section 3.3.3) contains only old cuts (of ). If the edge is not critical or if all the cuts are 

elements of , the algorithm executes lines 6-9. Line 6 actually shows that a contraction7 of s and 

t should take place, which has the result that the target graph  changes. Therefore, the list  

should be updated as such, that  is removed from it as shown in line 7. With this modification a 

                                                           

7
 Contraction: A subset of vertices is merged together into a single new node and all self loops are removed. All 

the edges that were previously connecting the contracted vertices with other vertices are connecting these 

other vertices with the new node, after the contraction. This type of contraction is sometimes called edge-

contraction. 
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new minimum cut can be detected or the number of vertices (of ) decreases after each recursive 

call. In line 8 such a recursive call is made and line 9 returns the cactus representation. 

If none of the conditions in line 4 are satisfied, the algorithm continues from line 11. The st-MC-

partition ( ) is necessary for executing the for-loop from lines 11-15. This is a 

partitioning of the graph based on all the min cuts separating s and t and is explained in more detail 

in section 3.3.2. The loop is required to find the indivisible cuts , which are not compatible with  

. These cuts are called indivisible because they do not separate s and t. The 

compatible cuts  are the ones separating s and t. They are compatible with 

 and are represented by the st-cactus-representation .  

Contraction is used again in line 12, with respect to all vertices, except the ones in  (for 

each ). The contracted node is referred to as . In line 13 it is shown 

that a new list  is created if the degree of , denoted as , is equal to the min cut value . 

Notice that  if  is empty. It is important to understand this, especially due to the fact 

that a recursive call is made in line 14 to obtain a cactus representation  of graph . If the old 

cuts were not managed in this way, the algorithm would result in an infinite number of recursions 

and never terminate, because a contracted graph (the child of the originating graph) would always 

give an old cut, even if it were already detected in its parent graph. For a more elaborate explanation 

the author refers to section 5.3.2 of [71].  

Line 16 indicates that the st-Cactus representation  representing the set of compatible 

cuts  should be merged together with each cacti  for each , to obtain a 

complete cactus representation . All the cuts taken together from each of the aforementioned 

cacti represent the set of indivisible cuts . From lemma 5.21 of [71] the union of  and  

represent all minimum cuts of graph  ( ). This means that  represents all 

minimum cuts of . 

However, the aforementioned cactus representation is not necessarily a unique representation of 

 for . This means that there are more possible cactus representations, which adequately 

represent all the min cuts of the same graph. In line 17  is converted to a cycle-type normal 

cactus (CNC) representation. The latter is simplified and still represents each and every min cut of . 

There may also be multiple possible CNC representations for the same graph. Think of the case when 

a different s and/or a different t is chosen. 

Figures 3.5 and 3.6 show the modified Construct and Cactus algorithms, respectively, where the 

contributions of the author are written in blue en explained in the succeeding subsections. By 

combining these explanations with those of algorithm 3.1 and 3.2, it should be possible to 

understand algorithm 3.3 and 3.4 and to write a program accordingly. 

Time complexity of algorithm 3.3 and 3.4 

Line 6 of algorithm 3.4 calls subroutine “Update st-MC-partition”, which has a complexity of , 

as computed in section 3.3.2. This is the part with the highest complexity of algorithm 3.4. Let  

be the number of times that algorithm 3.4 is invoked due to its recursive nature. Lemma 5.27 of [71] 

shows that . The complexity of algorithm 3.4 is therefore . 

This results in the fact that the complexity of algorithm 3.3 is also . 
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 Algorithm 3.3 Construct 

Input:  An edge weighted graph . 

Output:  The CNC representation  for . 

1. Compute ; 

2. ; 

3.  

4. set special-recursive-call = false; 
 

Figure 3.5: Resulting parent algorithm for constructing cactus representations. 

 Algorithm 3.4 Cactus  

Input:  A graph , a subset , and a real number . 

Output:  A cactus representation  for a set  of minimum cuts. 

1. if |V(G)| = 1 then return the trivial cactus . 

2. else 

3.  Choose vertex pair {s,t}, such that ; (% usually s (t) has the smallest (largest) label) 

4.  call → subroutine choose s and t;  

5.  call → subroutine Construct st-MC- partition; 

6.  call → subroutine Update st-MC- partition; 

7.  call → subroutine Constructing st-cactus-representation; 

8. if  or the -cactus representation  represents no minimum cut other than 

those . 

9. then 

10.   ; 

11.   ; 

12.   set special-recursive-call = false; 

13.    (% recursive call) 

14.   return  

15.  else 

16.   for each  in the -MC-partition  do 

17. , denoting by  the vertex obtained by contracting ; 

18.    if  then  end. 

19.    set special-recursive-call = true; 

20.     (% recursive call) 

21.   end 

22.   call → subroutine Merger of cacti; 

23.   call → subroutine Construct CNC representation; 

24.   return  

25.  end  

26. end 

 
 

Figure 3.6: Resulting child algorithm for constructing cactus representations. 

 

3.3.1 An algorithm for choosing an edge when constructing a cactus 

 

This subsection focuses on the 1st sub-algorithm, called algorithm 3.5 (figure 3.7). In line 3 of 

algorithm 3.2 it is shown that an edge  with a capacity  should be chosen. 

According to this line any two vertices s and t may be arbitrarily chosen, as long as they are 
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connected by an edge8. One way to do this is to simply call the first and the last vertex s and t, 

respectively. However, one could use a strategy, such that the choice is made in a “smart” way, as is 

done by algorithm 3.5. This “smart” way of choosing has the advantage that the minimum cuts are 

found in less recursive calls and therefore makes the algorithm faster. 

 Algorithm 3.5: Choose s and t 

Input: special-recursive-call (%true or false) 

  and  (%  maps the vertices of the original graph  to those of ) 

  

   

 Node s and node t 

Output: s and t, such that {s,t} is an edge 

1.  if special-recursive-call = false 

2.  return s and t; 

3. else 

4.  for each    

5.   if degree( ) =  

6.    add  to mdn; (% mdn is a vector of minimum degree nodes) 

7.   end 

8.  end 

9.  if   2 

10.   for each  

11.    if there is an edge , such that  

12.     ; ; 

13.    elseif there is an edge , such that . 

14.     ; ; 

15.    else 

16.     ; ;  

(%  is the neighbor list of vertex ) 

17.    end 

18.   end 

19.  elseif  1 

20.   ; ; 

21.  else 

22.   Choose an arbitrary node as s; ; 

23.  end 
24.  end 
  

Figure 3.7: An algorithm for choosing an edge {s,t}. 

Algorithm 3.5 verifies if it is invoked during a recursive call in line 14 (not the one in line 8) or by the 

parent algorithm for the first time. If it is the latter, it just takes the s and t that is treated as input by 

algorithm 3.5. When algorithm 3.5 is invoked during a recursive call (line 14), the algorithm makes a 

                                                           

8
 Algorithm 3.2 says that an edge should be chosen, but actually it is the vertices connected by the edge that 

are important, because the st-MC-partition and st-cactus-representation use s and t as input.  
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proper choice according to the network’s topology, such that the new cuts can be found in less 

recursive calls. It first examines and stores all the vertices of degree equal to the minimum cut value 

(lines 4-8). After that it verifies if there is more than 1 (or just 1) of such vertices, by examining how 

many elements are contained in the minimum degree nodes (mdn) vector. If there are at least 2 

vertices in the mdn vector (line 9-18), and there exists an edge between them, one of them is chosen 

as s and the other as t. Notice that there is a preference not to choose . This is due to the fact that 

 is an old cut and by choosing a different vertex (if possible), there is a bigger chance of finding a 

new cut. Figure 3.8 (a) and (b) show examples when (not) to choose . Notice that the colored 

vertices belong to the mdn vector. The third case (as exemplified by figure 3.8 (c)) occurs when there 

exists no edge between the vertices in the mdn vector (line 16). Preferably, a vertex  of the 

mdn vector is chosen and a neighbor is chosen as t. If there is only one vertex in the mdn vector, it is 

chosen as s and a neighbor as t as shown in (line 20 and figure 3.8 (d)). Finally, if there are no vertices 

in the mdn vector, an arbitrary connected vertex pair may be chosen (line 22 and figure 3.8 (e)). 
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Figure 3.8: Examples of choosing s and t where the min cut value is 4. 

Time complexity of algorithm 3.5 

The time complexity of algorithm 3.5 (and those in the succeeding 4 subsections) will be derived by 

analyzing the lines of the pseudo code that have a significantly high complexity order. Therefore they 

can be used to determine the worst case time performance, for high values of the variable . 

Lines with relatively low complexity order have no significant impact in the determination of the 

complexity order and are not discussed in detail. (E.g. lines 1-3 of algorithm 3.5 do not contribute a 

significant amount of time to determine the worst case time bound). Lines 4-8 has a worst case 

running-time function of , where the constant  is chosen sufficiently large9. To 

determine , the following lines (line 10, 16, 20 and 22), with significantly high order of 

computation time  are analyzed. The result is: , ,  and 

. Notice that the power of n depends on the amount of iterations that the respective 

                                                           

9
 Every constant  or  is chosen sufficiently large in its respective worst case function, whenever the 

complexity of an algorithm is analyzed. 
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line of code undergoes. For these 4 lines, the number of loops (nested in each other) determines the 

number of iterations.  We find  if lines 10-17 are executed or  

otherwise. The worst case running-time function of algorithm 3.5 is found to be , by 

adding  with . This means that the complexity is . (For information 

regarding complexity analysis, it is advised to read [11]). 

 

3.3.2 Constructing the st-MC-partition 

 

This section describes two algorithms that when used together are able to compute the st-MC-

partition of an arbitrary connected graph. An st-MC-partition is a partitioning of the target graph  

into smaller subsets of vertices -MC-partition, where . This partitioning is based 

on the  compatible minimum cuts. Because they separate  from  they are said to be 

compatible with the st-MC-partition. The next figure gives an example of such a partition on a graph 

consisting of 9 vertices. There are 4 min cuts that are compatible with the st-MC-partition 
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Figure 3.9: Example of st-MC-partition 

It is tricky to formulate an algorithm that works for every connected graph. The author did not find 

any algorithm that was able to do the job10, and thus started with the formulation of algorithm 3.6. 

Later it would seem that not all partitions would be found by this algorithm for some graphs and 

algorithm 3.7 was added as an extension to solve this problem as well. Both these algorithms11, 

shown in figure 3.11 and 3.13 respectively, are explained next.  

Algorithm 3.6 starts with creating the contraction-list, containing all the vertices of the target graph 

and copying its contents to a list called original-list (lines 1-4). The former list is used to keep track of 

how the vertices will be contracted in the succeeding parts of the algorithm, while the latter is used 

in step 4. The algorithm tries to find all the compatible minimum cuts, by using a min-cut subroutine 

that outputs the flow value  (or minimum cut value), but also 1 cut, namely the one closest to the 

                                                           

10
 Professor Nagamochi was contacted and according to his opinion it is quite difficult to write a program that 

generates such an st-MC-partition. He advised to read [71] to obtain some insight, but also indicated that there 

was no algorithm in his work for achieving this. 

11
 Due to the lack of time, the author was not able to proof that these algorithms are exact. 
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source s. For this subroutine various algorithms can be used, such as a maxflow-mincut algorithm 

(e.g. based on Goldberg’s push-relable algorithm) or Nagamochi’s min-cut algorithm [71] (based on 

maximum adjacency ordering).   

In step 2, subroutine-min-cut outputs the first cut, which is stored in the Cut_list (line 5).  After that 

all the vertices in Cut_list are contracted into a single node and the target graph and contraction-list 

are updated (lines 6-7). 

Step 3 is a while loop that runs until the number of vertices in  is equal to 2, because at that stage 

the last compatible cut (the one closest to t) is already found. This step consists of two major parts, 

which are both illustrated with examples in figure 3.10. In the first part (lines 9-20) the algorithm 

searches the node containing vertex s, called Snode and generates a neighbor list of this node, 

denoted as . Then it contracts each element of  separately with the Snode (line 

13) and tries to find the next cut (using subroutine-min-cut) closest to Snode (and therefore closest 

to s).  Figure 3.10 (b) and (c) show this for each neighbor. Notice that after each contraction the 

graph is restored and the cut is only stored if it satisfies the conditions of line 17. When it has 

finished doing this for each neighbor, it starts with the second part of step 3. In this part the 

algorithm starts using the same reference graph as was the case for each neighbor in the first part 

(from figure 3.10 (a) producing 3.11 (d)). Basically the second part is identical to the first part except 

that the contraction is based on the entire neighbor list and that the contracted graph and 

contraction-list are now stored to be used for the next iteration of the while loop. 
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Figure 3.10: Examples to explain algorithm 3.6. 

In the last step Cut_list and original-list are used to construct the st-MC-partition. First they are 

added in the st-MC-partition as shown in line 21 (see the above partition of figure 3.12, which 

corresponds to the running example). Then all elements of , already stored in its predecessors 

, should be removed from  . And finally all empty , if any, should be removed from 

the st-MC-partition (see the resulting partition at the bottom of figure 3.12). 
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 Algorithm 3.6: Construct -MC-partition 
 
Input:  Graph  % Adjacency matrix, Adjacency list or some other representation of G. 

Source node  
Destination node  

Output:  -MC-partition 
Cut_list between  and  

Initialization: MC-partition ← empty list 
   ←  
  Contraction-list ← empty list 
(% Step 1: Construction of a contraction-list) 
1. for i = 1 to  
2.         add i as a singleton set {i} to the Contraction-list; 
3. end 
4. Original-list ← Contraction-list; 
(% Step 2: Find the first cut and contract all the nodes on the source side) 
5. ( , Cut_list) := Subroutine-min-cut( ) (%Cut_list contains vertices on the s-side of G) 
6. G := ; (% Apply contraction) 
7. update Contraction-list ; 
(% Step 3: Constructing the Cut_list) 
8. while  
9.  find Snode in Contraction-list; (% find the node containing vertex s in the Contraction-list) 
10.  Construct a neighbor set of Snode; 
11.  foreach  and ( ) 
12,   Temp-list := Contraction-list; 
13.    := ; 
14.   update Temp-list; 
15.   find Snode and Tnode in Temp-list;  

(% find the nodes containing vertices s and t (respectively) in the contraction-list) 
16.   (flowvalue, Cut) := Subroutine-min-cut( ); 
17.   if  and  
18.    add Cut to Cut_list; 
19.   end 
20.  end 
21.  find Snode in Contraction-list; 
22.  Construct a neighbor list of Snode, where ; 
23.   := ; 
24.  update Contraction-list; 
25.  find Snode and Tnode in Contraction-list;  

(% find the nodes containing vertices s and t (respectively) in the contraction-list.) 
26.  (flowvalue, Cut) := Subroutine-min-cut( ) 
27.  if  and  
28.   add Cut to Cut_list; 
29.  end 
30. end 
(% Step 4: Construct -MC-partition out of Cut_list) 
31. -MC--partition = (Cut_list ∪ Original-list); 
32. for -MC-partition,   

33.  remove all elements common to both  and  from ; 

34. end 
35. for -MC-partition 
36.  if  
37.   remove ; 
38.  end 
39. end 
  

Figure 3.11: Algorithm st-MC- partition 
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 St-MC-partition =  

 St-MC-partition =  

 
Figure 3.12: Example step 4 of algorithm 3.6. 

However, algorithm 3.6 has a serious flaw in that it misses certain partitions in the case that merging 

the neighbor list  (2nd part of step 3) does not produce a new cut, while merging with at 

least one of the neighbors (1st part of step 3) of the same list does produce such a cut. To rectify this 

flaw algorithm 3.7 (figure 3.13) serves as an extension. 

Time complexity of algorithm 3.6 

The time complexity of the 4 steps of algorithm 3.6 are first analyzed/derived and then used to 

obtain the overall complexity of the algorithm. The worst case running-time function for step 1 is 

. In step 2, line 5 makes a call to Subroutine-min-cut, where it is chosen to use the 

minimum cut algorithm derived by Nagamochi12 [71] that has complexity . If 

, then . The contraction in line 6 requires a modification of a 

representation (usually an adjacency matrix) of . Because such a representation is 2-dimensional, 

which requires 2 loops for programming, . The contraction list can be modeled as a 2-

level nested list, which also requires a 2-level nested loop. Because each level has at most  

elements (in the worst case), . Combining  gives 

 for step 2. By looking at lines 8-30 in step 3, one can see that lines 12-19 will 

require relatively large running time, because it runs in the for loop (line 11) that in turn runs in the 

outer while loop (line 8). Line 16 has the largest order running time, as it calls subroutine-min-cut . 

For the worst case it is assumed that the contraction in line 23 is such, that in each successive 

iteration the target graph is smaller by 1 vertex. This yields: 

 and  and  is an integer (where the while and for 

loop correspond to  in ).  Further manipulation and rewriting results in: 

 .  

This means that the complexity of step 3 is represented by 

, where  is chosen large enough. Finally, the complexity of step 4 can be represented by 

, because lines 32-34 can be programmed by a 2-level nested for loop. Adding 

the worst case running-time functions (of the 4 steps) and choosing a large enough constant results 

in , which means that algorithm 3.6 has complexity 

. 

Algorithm 3.7 uses the output st-MC-partition and the Cut_list of algorithm 3.6 as its most important 

input parameters. It zooms into each partition -MC-partition and tries to find compatible cuts 

that might have been missed. Because partitions consisting of a single vertex cannot produce such a 

                                                           

12
 This minimum cut algorithm is one of the faster algorithms that can be used to obtain the minimum cut value 

 between source s and a destination t, as well as the minimum cut closest to the source. 
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cut, they are filtered out by line 2. As an example the graph of figure 3.14 is perfect, because when 

applying algorithm 3.6 it produces the following incomplete st-MC-partition: 

. The 3rd partition should actually be split up 

into three partitions as shown in figure 3.14. In this subsection we now jump from our running 

example to this example and we return to the former again in the next subsection.   

 Algorithm 3.7: Update (s,t)-MC-partition 

Input: -MC-partition =  (% as computed by algorithm 3.6) 

 Cut_list (% as computed by algorithm 3.6) 

 Graph  and  

 Node s and node t (% from algorithm 3.6) 

Output: -MC-partition (% updated) 

 Cut_list (% updated) 

1. for each -MC_partition   

2. if  do 

3.   Merge all elements before   into a single node: ; (% skip if ) 

4.   Merge all elements after   into a single node: ; (% skip if )   

5.   if  do 

6.    ; 

7.   elseif  do 

8.    ; 

9.   else 

10.    ; 

11.    ; 

12.   end  

13.   Create a mapping of vertices of  into nodes: map; 

14.    ← node that contains s in map; 

15.    ← node that contains t in map; 

16.   Create a neighbor list of  in , excluding  from it: ; 

17.   (Cut_list) := Procedure update Cut_list (Cut_list, , map, , ) 

   (% Procedure update Cut_list is a subroutine of this algorithm) 

18. end 

19. end 

(% Now the -MC-partition is created out of Cut_list) 

20. Create a list of all the vertices in : Original-list; 

21. Clear -MC--partition 

22. -MC--partition = (Cut_list ∪ Original-list); 
23. for -MC-partition,   

24.  remove all elements common to both  and  from ; 

25. end 
26. for -MC-partition 
27.  if  
28.   remove ; 
29.  end 
30. end 

  
Figure 3.13: Algorithm for updating st-MC-partition. 

Lines 3–12 indicate that the input graph is submitted to a contraction that contracts all the vertices 

before and after partition . Partition  is now interesting to use as an example for this discussion 
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and for this partition the upper left graph of figure 3.16 can demonstrate the result of this code. Note 

that . The map created in line 13 maps the vertices of the input 

graph  to the nodes of this graph in figure 3.16. Using this map ,  and  can 

be derived. When this is done, algorithm 3.7 calls upon its subroutine in line 17, which is shown as 

algorithm 3.8 in figure 3.15. This subroutine produces an updated Cut_list, which now includes each 

and every compatible cut with respect to s and t. This complete list is now used to construct a new 

updated st-MC-partition as indicated by lines 20–30. These lines will not be explained here, because 

it is similar to the code corresponding to step 4 of algorithm 3.6 and therefore the explanation of the 

latter suffices here as well. 
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Figure 3.14: Example of a graph that requires algorithm 3.6 and 3.7 to find all cuts. 

Steps 1 and 2 of algorithm 3.8 are very similar to step 3 of algorithm 3.6. In both cases  is first 

merged with each element of the neighbor list  and then merged with the whole list. In the 

case of algorithm 3.8 there is a minor difference in the fact that the contracted graphs are stored at a 

later stage (step 3 of algorithm 3.8), if a min cut is found. In this case  (line 29) or  (line 

36. This means that the contracted graph is the new target graph in the next recursion. Figure 3.16–

3.18 illustrates how the contraction in step 1 and 2 takes place. The mapping is also done similarly to 

that of algorithm 3.7. The main goal of step 3 of algorithm 3.8 is to stop the recursive process if no 

new cut is found in  or to store the correct contracted graph and update if at least one new cut is 

found. In the latter case, the subroutine makes a recursive call to itself, such that it can compute 

other new cuts, if any (or stop if none). In the example of figure 3.16 a new cut is found when vertex 

6 is merged with . Therefore the lower left graph is the starting graph in the next recursive call. 

The algorithm continues working in this recursive fashion, until no more new cuts are detected in 

partition . Figures 3.17 and 3.18 show the results of the 1st and 2nd recursive call for  of the 

example. When algorithm 3.8 has finished running for each  it returns the updated 

Cut_list to algorithm 3.7, which processes it as explained before. Information about the structure of 

the source code of this subsection can be found in figure C5 and C6 of appendix C. 

Time complexity of algorithm 3.8 

First the complexity of algorithm 3.8 is derived and after that this result is used to do the same for 

algorithm 3.7. In a similar (but less involved) way as the  function was derived for step 3 of 

algorithm 3.6, the following is obtained for step 1 of algorithm 3.8: 

. This time there is a for loop (line 2), which is considered to be upperbounded by  and 

therefore the latter is multiplied with something in the order of the complexity of subroutine-min-cut  
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to obtain . Because the order of  is higher than that of any line in step 2, 

, if  is chosen large enough. In step 3 it is shown 

that the algorithm is recursive, which means that recurrent equation is required, in which something 

of the order of  appears in each recursive call. The worst 

case would be if during each recursive call, the target graph would become smaller by one vertex 

(after contraction by line 29 or 36) and the obtained result would be the input for the next recursion. 

So the number of vertices would decrease as follows: . (The recursion would 

surely stop if , because a trivial graph cannot produce a min cut (lines 23-25)). By combining 

the results (and neglecting subscripts) of the three steps, the following equation is achieved: 

. To simplify this equation,  is 

integrated in the above and after some simplification (for a large number of vertices  ), 

the following is obtained: . 

Substitution gives  the following: 

. 

. 

 

. 

 , because no minimum cut can be found in a trivial graph. Therefore no recursive call 

can be invoked anymore (lines 23-25) and the recursion stops. By applying some math to the above, 

the recursive equation can be written as: . 

From this we find that  is upperbounded as follows: . This 

means that algorithm 3.8 has complexity . 

Time complexity of algorithm 3.7 

The recursive subroutine Update_Cut_list in line 17 of algorithm 3.7 has the highest complexity of all 

the other lines of its pseudo code. Because this subroutine is called  times (  is the number of 

partitions in st-MC-partition) and because , the complexity of algorithm 3.7 is . 
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 Algorithm 3.8: Update Cut_list 

Input: Graph  and map 

 Cut_list 

  

 Node s and node t 

  and  

Output: Graph  and map (% updated) 

(%Step1: Contract each neighbor of Snode and store all new min cuts) 

 Cut_list (% updated) 

  and  (% updated) 

1. Create j_list and Cut_list_1; (% These are empty lists) 

2. for each  do 

3.  ; 

4.  Create ; (%mapping the vertices of  to the nodes of ) 

5.   ← location of s in ; 

6.   ← location of t in ; 

7.  (flowvalue, Cut) := subroutine-min-cut( ) 

8.  if (flowvalue = ) and ( ) 

9.   add Cut to Cut_list_1; add j to j_list; 

10.  end  

11.  Create a neighbor list of , excluding : ;  

12. end 

(%Step2: Contract the whole neighbor list of Snode and store a new min cut, if any) 

13. ; 

14. Create ; (%mapping the vertices of  to the nodes of ) 

15.  ← location of s in ; 

16.  ← location of t in ; 

17. (flowvalue, Cut) := subroutine-min-cut( ) 

18. Create Cut_list_2; 

19. if (flowvalue = ) and ( ) 

20.  add Cut to Cut_list_2; 

21. end 

22. Create a neighbor list of , excluding : ; 
(% Step 3: Add cuts to Cut_list and start recursive call if required) 
23. if (Cut_list_1 = empty) and (Cut_list_2 = empty) 
24.  return Cut_list 
25. end 
27. if (Cut_list_1 ≠ ) and (Cut_list_2 =  ) 
28.  for each  do 

29.   ; ; 
30.   ; ; 
31.   Move k

th
 element from Cut_list_1 to Cut_list; 

32.   (Cut_list, , map, , )) := Procedure update Cut_list (Cut_list, , map, , ) 
   (%This is a recursive call) 
33.  end 
34. end 
35. if Cut_list_2 ≠  ) 

36.  ; ; 

37.  ; ; 
38.  Move all elements from Cut_list_1 (if any) and the element of Cut_list_2 to Cut_list; 

39.  (Cut_list, , map, , )) := Procedure update Cut_list (Cut_list, , map, , ) 
  (%This is a recursive call) 
40. end 
  

Figure 3.15: Algorithm update Cut_list. 
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Figure 3.16: Example of the process of updating the Cut_list (1). 
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Figure 3.17: Example of the process of updating the Cut_list (2). 
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Figure 3.18: Example of the process of updating the Cut_list (3).  



3. Robustness Analysis and Connectivity 

 35 

3.3.3 Constructing the st-cactus-representation 

 

One of the most crucial parts of constructing a cactus representation, is the construction of an st-

cactus-representation , which represents all compatible cuts separating s and t. 

Algorithm 3.9 (in figure 3.22, 3.23 and 3.24) is able to construct such a representation in 5 steps. 

Steps 2 and 5 were already algorithmically available in [71]. The other steps and the integration of all 

5 steps are new. The explanation will be done with the aid of the example, which was called the 

running example in the previous subsection. 

Step 1 creates a contracted graph  out of the original graph , where all the vertices in the 

same partition -MC-partition  are contracted into a single node and this is done for each and 

every partition. If the graph in figure 3.9 were to be treated as , then  , with  and 

, would become the graph shown in the next figure. 
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Figure 3.19: Example of contracted graph according to st-MC-partition. 

Steps 2 to 5 are only invoked if the target graph consists of more than 2 vertices. Notice that this is 

an interesting situation, because if the target graph consists of only 1 or 2 vertices the st-cactus-

representation is a trivial cactus or two nodes connected by 2 edges, respectively. In the case of 1 

vertex, Nagamochi’s algorithm will never invoke algorithm 3.9, due to the if statement in line 1 of 

algorithm 3.4. In the case of 2 vertices,  consists of only 2 nodes connected by 2 links. Notice 

that -MC-partition. Now the explanation of the more interesting case, steps 2-5, will be 

done with the help of the running example. 

Step 2 creates segments of the vertices of  that will later on be used to construct circular-

minimum-cut partitions 13 and minimum-cut partitions . These partitions are then used 

to create cycles and chains, respectively, which are the building blocks of . But as step 2 

is only concerned with the segmentation it is now relevant to explain how the segments are derived 

and which segments generate the chains (cycles). Chain segments are derived from partitions that 

are included in , while cycle segments are derived form 

the partitions included in . Each element  of  can be treated as a 

chain segment. Out of the elements of  the cycle segments can be constructed as follows: 

 if  and  holds [71].  is equal to the first 

                                                           

13
 A circular-minimum-cut partition is a partition that results in a cycle graph, as will be shown later in this 

section. For detailed information it is recommended to read section 5.1 of [71]. 
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and  is equal to the last  in a segment . The right graph of figure 3.19 shows the segments of 

the running example. Step 2 stores the chain and cycle segments in -list and -list, respectively. 

Lines 6-15 are concerned with constructing the cycle segments, while the remaining lines in step 2 of 

the algorithm are devoted for constructing the chain segments. 

Step 3 is concerned with constructing the chains out of the  segments. But before such a chain 

graph can be constructed, it is first necessary to construct  for each  segment (lines 27-61). 

This is done by storing all the vertices of all the  appearing before (after) the partition 

corresponding to , say , into a single sub-list and placing it in front of (behind)  in . If there 

is no  before (after) , no sub-list is placed before (after) . After constructing , this 

minimum cut partition is used to construct the chains (lines 62-68). If  is the first or last element of 

, then a chain consisting of 2 nodes is constructed. Otherwise, a chain consisting of 3 nodes is 

constructed. In all cases the  serves as a mapping for the respective chains and each node is 

connected with 2 links to each neighbor in the chain. This means that a chain representation 

 is constructed for each . The chains on the right in figure 3.20 demonstrate 

this for the running example. 

    

  

  

  
  

  

  

  

  

    

  

  

  

 
Figure 3.20: Chains and cycles of running examples. 

Step 4 first constructs the circular-minimum-cut partitions  (lines 68-85). In this phase the 

values  and  are also computed and stored in two separate vectors (lines 74-76). A segment  

does never include  or  and is therefore always between other partitions of st-MC-partition. The 

vertices of each  before (after) each cycle segment  are stored into a sub list and placed as the 

first (last) element in  for each . From each , a cycle is constructed where each node 

is connected by one link to each of its two neighbors (lines 86-89). Step 4 generates a cycle 

representation  for each  as step 3 did for the situation regarding the chains. 

The cycles on the left in figure 3.20 demonstrate the result of step 4 for the running example. 

Step 5 finaly merges the chains and cycles together in the correct order to construct . 

The chain corresponding to  is the one that the construction was started with (lines 91 and 92), as 

it contains vertex s. This chain is initially stored as . Then lines 95 and 96 are used for 

merging/unifying the first cycle representation   with the last stored  

and the result in turn is stored as . Then comes the tricky part where during the same 

iteration a chain will be combined with the last  if the condition in line 97 is satisfied. If 

not, the next iteration of the for loop starts without the addition of a chain in the current iteration. 

Figure 3.21 exemplifies how the chains and cycles are combined to construct the st-cactus-

representation. The Matlab code structure is shown in figure C7 of appendix C. 
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Figure 3.21: Example of constructing st-cactus-representation out of chains and cycles. 

 Algorithm 3.9: Constructing -cactus-representation 
 
Input:  Graph  (% Adjacency matrix, Adjacency list or some other representation of G) 
   

-MC-partition (% of size r) 
Output:   

(% Step 1: Merge all the vertices of into nodes according to the -MC-partition) 
1.  

2. for each -MC-partition do 
3.  ; 

4. end 

5. if  

(% Step 2: Segment the obtained graph, such that it can be converted into chains or cycles later on) 
6.   (%initialization values) 
7.  create -list and -list 
8.  while  do 

9.   while  do  end 

10.   if  then  
11.    ; ; ;   

12.    add  to -list; 
13.   end 
14.   ; 
15.  end 
16.  ;  
17.  add  to  -list; 
18.  ;  
19.  while  
20.   if  
21.    ; ; add  to  -list; 

22.   end  
23.    
24.  end 
25.  := ; 

26.  add  to  -list; (% -list =  ) 

(% Step 3: Construct the chains corresponding to the segments in -list)  
27.  create Chain-partitions and chain-cacti; 
28.  for each -list do 

 
Figure 3.22: Algorithm for constructing st-cactus-representation (part 1). 
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 29.   create ; (% an empty list) 

30.   create before-list, between-list and after list; 
31.   if  

32.    for each -MC-partition do 
33.     if  
34.      add all elements of  to before-list; 
35.     else 
36.      add all elements of  to after-list; 
37.     end 
38.     add before-list to ; add after-list to ; 

39.    end 
40.   elseif  

41.    for each -MC-partition do 
42.     if  

43.      add all elements of  to after-list; 
44.     else 
45.      add all elements of  to before-list; 
46.     end 
47.     add before-list to ; add after-list to ; 

48.    end 
49.   else 
50.    for each -MC-partition do 
51     if  appears before  

52.      add all elements of  to before-list; 
53.     elseif  =  

54.      add all elements of  to between-list; 
55.     else 
56.      add all elements of  to after-list; 
57.     end 
58.     add before-list to ; add between-list to ; add after-list to ; 

59.    end 
60.   end 
61.   add to chain-partitions 

   (% now we construct the graphs of the chain-partitions) 
62.   If  

63.    Construct  consisting of 2 nodes, each one connected by 2 links to its neighbor; 

64.   else 

65.    Construct  consisting of 3 nodes, each one connected by 2 links to its neighbor(s); 

66.   end 

67.   add  to chain-graphs; 

68.  end 
(% Step 4: Construct the cycles corresponding to the segments in -list) 
69.  create Cycle-partitions and cycle-cacti; (% empty at initialization) 
70.  create and ; (% empty at initialization) 
71.  for each -list do 
72.   create ; (% an empty list)   

73.   index-small ; index-large ; 
74.   if  index-small then index-small:= ; end 
75.   if  index-large then index-large:= ; end 
76.    index-small;   index-large; 
77.   create before-list and after list; (% empty at initialization) 
78.   for each -MC-partition do 
79.    if  appears before  
80.     add all elements of  to before-list; 

  
Figure 3.23: Algorithm for constructing st-cactus-representation (part 2). 
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 81.    elseif  appears after  
82.     add all elements of  to after-list; 
83.    end 
84.   end 
85.   add before-list,  and after-list in ordered fashion to ; 

   (% now we construct the graphs of the chain-partitions) 

86.   Construct  consisting of size( ) nodes, each one connected by 1 link to each neighbor; 

87.   add  to cycle-cacti; 

88.   add to cycle-partitions 

89.  end 

(% Step 5: Construct  and ) 

  (% Initialization) 

90.  create a list of all the vertices of : vertex-list; 

91.   ; (% from chain-graphs) 

92.  ; (% from chain-partitions) 

93.  ; ; 

94.  for each -list (%  is the index of ) 

95.   ;  

96.   ; 

97.   if  

98.    ;  

99.    ; 

100.     

101.   end 

102.  end 

103. elseif  

104.   is a chain consisting of 2 nodes, each one connected by 2 links to its neighbor; 

105.  -MC-partition; 

106. end 

  
Figure 3.24: Algorithm for constructing st-cactus-representation (part 3). 

Time complexity of algorithm 3.9 

Only the lines of the pseudo code of algorithm 3.9, which require the largest processing time (for 

significantly large ) are considered. The running-time function is again derived for each step and 

then the corresponding results are added to compute the overall complexity order. For step 1, 

, because the contraction in line 3 requires a 2-level nested for loop, which 

should run for all  partitions in st-MC-partition. For line 8 (step 2) , while 

 applies for line 9. The last factor in the latter is due to the fact that an 

-segment  cannot be larger than  . This leads to 

 for line 6-18. Similarly . Adding 

the upperbounds of and results in  for step 2. Line 8 in step 3, 

has running-time function , because there can be no more than   

segments. This yields , which results in  for 

step 3. To obtain the function for step 4, we first state that , 

 and . (It takes a 2-level nested for loop to construct  (line 86)). This 

results in  for step 4. In step 5, the construction of both  and  

(lines 94-95) require 2-level nested for loops, each of size  at most. When taking the for loop of line 

94 into account, this results in . For the remainder of the algorithm, 

 holds. Because this last part is insignificant, the worst case 
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complexity is derived by adding the complexities of step 1 to 5. When using  as an upperbound 

the worst case running-time function of algorithm 3.9 becomes , This mean that 

the complexity is . 

 

3.3.4 Merging multiple cacti 

 

Algorithm 3.10 shows all the steps that are required for merging , representing all the 

compatible cuts , with the cacti  (where ) that together represent all the 

indivisible cuts . 

 Algorithm 3.10: Merger of cacti 

Input:  and  

  and ,  (%  is the number of elements of ) 

 A complete list of the vertices of : vertex-list. 

Output:  and  

1.  ; (% Initialization) 

2. ; (% Initialization) 

3. for  do 

4.  if  or (  and the cut separating the last 2 nodes is not old) 

5.   for each  do 

6.    for each  do 

7.     union-list := ; 

8.     if union-list = vertex-list 

9.      ; ; (% these are the nodes to be joined together) 

10.     end 

11.    end 

12.   end 

13. Update , such that  and that the mapping of the 

nodes  is added appropriately to the map ; 

14. , such that  is removed and that its incident links are 

connected directly to ; 

15.  end 

16. end  

17. ;   

18. ; 

  
Figure 3.25: Merging cacti to form the cactus representation. 

Figure 3.26 exemplifies the contracted graphs  on the left, produced by line 12 of algorithm 3.4.  

The graphs on the right in this figure illustrate the cacti , produced by line 14. It is also shown 

that  and  are trivial cacti. Remember that they are trivial because the final cut 

separating the last two nodes in  is already marked old. 

Algorithm 3.10 starts with the merging process by copying   to , as is done by 

lines 1 and 2. The latter is used further in the algorithm as a starting representation to which all the 

non-trivial cacti corresponding to indivisible cuts are added. Lines 3 and 4 together are used to select 
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all the non-trivial cacti for this merger. Lines 5-12 find the two nodes  and  

that need to be contracted as a new node in the merged graph. By repeatedly trying out the 

unification of one element of  and one of , one particular combination will be the same as the 

vertex-list, which is a list containing all the vertices of the target graph . When these two so called 

junction nodes are found, the vertex to node map  is updated as described in line 13. In line 14 it is 

shown how the cactus graph  is merged. 

  

  

  

  

  
G1:=G/{V(G)-V1} (R1,φ1)

2

1

2

1

V-{1,2}

s

t

G2:=G/{V(G)-V2} 3
t

s 3 V-{3}(R2,φ2) (Trivial)

G3:=G/{V(G)-V3}

G4:=G/{V(G)-V4}

G5:=G/{V(G)-V5}

4

6

5

s

t

(R3,φ3) 4 V-{4}

(R4,φ4)
8

7

8

7

V-{7,8}

s

t

9
t

s 9 V-{9}(R5,φ5) (Trivial)

 
Figure 3.26: Examples of cacti to be merged with st-cactus-representation. 

Figure 3.27 illustrates how the merging process, described in algorithm 3.10 takes place for the 

running example. Notice that the graph in the center of 3.27 (a) is the final graph of figure 3.21.  
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Figure 3.27: Example of merging cacti. 

Time complexity of algorithm 3.10 

The following functions are derived similarly as for the previous algorithms. The order is again 

determined by the amount of loops required to write a program according to the pseudo code of 

algorithm 3.10: 

1. .  

2. , because the number of nodes in  is . 

3. , because the number of nodes in  is . 
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4. , because the number of vertices mapped to node  is . 

5. . It requires a 2-level nested for loop, each of size  to perform 

line 14. 

Adding these equations and choosing a large enough constant  results in . 

Because , the resulting complexity for algorithm 3.10 is . 

 

3.3.5 Converting a cactus representation to a CNC cactus representation 

 

For converting a cactus representation into a CNC representation algorithm 3.11 (figure 3.61) should 

be invoked. A CNC representation does not contain empty 3-junction nodes nor does it contain an 

empty 2-junction node belonging to a 2-cycle. By applying algorithm 3.11, just after algorithm 3.10 all 

the empty 3-junction nodes are first removed.  Afterwards the empty 2-junction nodes of the 2-

cycles are removed and the CNC representation is achieved. 

 Algorithm 3.11: Construct CNC representation 

Input: and  

 A complete list of the vertices of : vertex-list. 

Output: and  

1. for each  do 

2.  if  is an empty node (% if n does not map to any vertex) 

3.   add  to empty-list; 

4.  end 

5. end  

6. for each  empty-list  

7.  if  is an empty 3-junction node 

8.   modify  and  according to 3-cycle insertion; 

9.  end 

10. end 

11. for each  do 

12.  if  is an empty node (% if n does not map to any vertex) 

13.   add  to empty-list; 

14.  end 

15. end  

16. for each  empty-list 

17.  if  is a 2-junction node and at least one of the cycles containing  is a 2-cycle 

18.   2-cycle-neighbour(k) ; 

19.   move the contents of the 2-cycle neighbor of  to ; 

20.   remove the 2-cycle neighbor of ;  

21.  end 

22. end 

  
Figure 3.28: Algorithm for converting to CNC representation. 
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Algorithm 3.11 initially starts to construct a list with all the empty nodes (lines 1-5). Then it looks if an 

element of this list is an empty 3-junction node. If so it applies a 3-cycle insertion and updates 

 accordingly (lines 6-10). A 3-cycle insertion14 is a process where an empty 3-junction node is 

replaced by a 3-cycle of empty nodes as illustrated in the next figure.  

3-cycle insertion

 
Figure 3.29: Example of 3-cycle insertion. 

Because the graph is modified, the empty nodes in the new  are stored in a new list (lines 11-

15). In the remainder of the algorithm, all empty 2-junction nodes in a 2-cycle are removed to obtain 

the CNC representation. Figure 3.30 illustrates how this algorithm works for our running example.  
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Figure 3.30: Example of constructing a CNC representation. 

Time complexity of algorithm 3.11 

For the first 5 lines of algorithm 3.11, , because the number of nodes in the cactus 

 is . In [71] it is shown that the number of empty nodes is also , which results in 

. If there is a 3-junction node in , it should satisfy the following properties: 

1. The degree of the node should be 6. 

2. It should have at least 3 neighbors. 

3. Each neighbor should be connected by 1 or 2 links to the 3-junction node. 

To identify the 3-junction node (line 7), a for loop of  is required. By doing this for all 3-junction 

nodes and using the loop of line 6 to iterate through all these nodes, the worst case running-time 

function for line 7 becomes . Once identified, a 3-cycle insertion should take place (line 

8). The modification of both  and  requires a 2-level nested for loop. This results in  

that can be extended to , because line 8 has the highest order in the range 6-

10.   (similarly as the first 5 lines). Because both line 19 and 20 require a 2-

level nested loop for the programming (excluding the for loop of line 16), the highest complexity 

order of line 16-22 is . This leads to . Adding , , 

 and  results in . Thus, the complexity of the algorithm is 

.  

                                                           

14
 3-cycle insertion in line 8 is actually a big step that can be programmed in various ways, depending in what 

format  is represented and submitted to the code. 
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3.4 Increasing the edge-connectivity 
 

This section introduces a technique to increase a graph’s robustness, which focuses more on the 

weakly connected parts of the network, rather than on the complete topology of the network15. In 

this section an edge-augmentation algorithm is treated that focuses on optimally augmenting the 

edge-connectivity of the PS mobile core network. For increasing the edge-connectivity of a graph, it is 

required to solve the edge-augmentation problem for a graph . The edge-augmentation 

problem is defined as to find the smallest set of edges to be added to , such that its edge-

connectivity can be increased by an integer value δ [73]. Thus,  will become -edge-

connected after applying the edge-augmentation procedure.  

Algorithm 3.12 (devised by D. Naor, D. Gusfield and C. Martel [73]) is used for augmenting core PoP 

ASD/RT and the PS mobile core network16.  To understand this algorithm it is relevant to understand 

some processes which can be seen as subroutines of the algorithm. These processes are explained 

next and afterwards the algorithm is treated. For an elaborate description it is recommended to 

resort to the literature [8, 12 and 73]. 

The first process to be clarified is the modified DFS algorithm, consisting of two stages. The 1st stage 

defines different colors for the different cycles of . The 2nd stage is characterized by a DFS traversal, 

which starts at an arbitrary node and obeys the following rule: If a node is visited for the first time via 

a link, which is part of a cycle (colored for example with red), then all other links incident to this node 

should be traversed, before traversing the other (red) link incident to that node. If the cactus is 

acyclic, the modified DFS procedure reduces to the standard DFS algorithm. 

Furthermore, it is necessary to say something about the edge demand function , where P may 

be any partition of the set V of vertices into disjoint subsets . This function is used to 

compute how many edges are required to achieve -connectivity and is defined as:  

  (3.2) 

Equation (3.2)17 takes the sum of the number of edges to be added to each . If for subset , 

, then at least  edges need to be added between  and another 

subset  (that also requires at least 1 edge, because ). Since the subsets are disjoint, 

each edge satisfies at most 2 requirements. This means that over all partitions P, at least 

 edges need to be added to a graph to make it ( )-connected [73].  

Finally it is important to know how the Extreme Sets Tree (EST) is constructed. The definition of EST 

states that a set  is -extreme if and only if  is strictly smaller than each of its proper 

subsets. This definition states for any  that , given that . Lemma 4.2 in 

                                                           

15
 When increasing  to increase the robustness, the focus is on the whole graph. 

16
 Results involving other subnets are in the KPN deliverable. 

17
 In equation 3.2 k is the edge-connectivity before edge augmentation,  is the amount to increase the edge-

connectivity and  is the degree of . 
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[73] states that if  is -extreme,  is -extreme and , then either  or  and  are 

disjoint. This can be represented by the EST, where every leaf corresponds to a vertex , and the 

root to the entire set . Every other node in the tree corresponds to an extreme set. The 

construction of the EST is not trivial. Figure 3.31 is used to exemplify the EST construction. For any 

node  other than the root r of the Extreme Sets Tree, the edge demand of node x is:  

  (3.3) 

The edge demand of the root r is: 

  (3.4) 

The edge demand of the extreme set (ES) is equal to that of the root of the EST ( ). 

Theorem 4.4 in [73] shows that the algorithm given above is optimal. The point of this theorem is 

that only  new edges are needed for increasing the edge-connectivity by δ. Remember 

that this was the minimum number of edges required for the augmentation. 
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Figure 3.31: Example of EST construction. 

Algorithm 3.12 consists of the following steps: 

1. Construct  (see section 3.3) of a -connected graph, representing all its -cuts. 

2. Traverse  using a modified Depth First Search (DFS) algorithm and label the leaves 

(  ) of the cactus in the order of the traversal. 

3. Form the pairs ({ }: ), where  is the set of vertices from  that is 

mapped to the leaf  of . 

4. For each pair ( , ), arbitrarily pick 1 vertex from  and 1 from  and connect 

this pair of vertices with a single edge. If k is odd the process is completed by connecting the 

vertex  to an arbitrarily chosen different leaf . If  the algorithm stops here. For 

augmenting the graph, such that , continue to step 5. 
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5. Construct the Extreme Sets Tree (EST) corresponding to graph . For every leaf  in  

find the node  in the tree , which corresponds to the set . Because is a ( )-

extreme set in  the node  should exist. The idea is to find a node  of the  in the 

subtree of  (possibly  itself), which satisfies the following properties, concerning the 

demand function  for each node  : 

a.  > 0  

b.  = 0 for every child vertex z of its parent . (If  is a leaf in the  

then = .) 

6. Now the graph  can be constructed from  by adding edges to the latter. For any pair 

( , ) of leaves from the cactus  formed in step 1 till 3 two arbitrary vertices from G 

should be chosen, where the 1st corresponds to a leaf in the sub-tree of  and the 2nd to a 

leaf in the sub-tree ,  in . Connect the chosen vertices by a new edge. 

7. Compute the Extreme Sets Tree  for the graph  by updating . If the number 

of leaves in  is odd at some phase other than the latest one ( ), then at the end of 

step 3, there will be a leaf  that participates in two different pairs. Note that  ≥ 2 

since this is not the very last stage of the algorithm. For this particular leaf two nodes,  

and , need to be selected from the subtree of  and each one should be associated to a 

different pair. After that step 6 can be done as before. The following procedure explains how 

 and  can be selected: 

A node  should be found in the sub-tree of  such that (a)  > 2 and (b)  

for every child  of . If  is a leaf then define  =  and  = . Otherwise, let 

and  be two children of , such that they have the largest edge demand among all the 

child nodes of . Find a node  (for j =1,2) in the subtree of  (possibly  itself) such that 

(a)  > 0 and (b)  = 0 for every child  of . There are only 3 cases possible, 

namely: (1) = =0, (2) = 1 and = 0 and (3) = 1 and =1. 

Now that the edge-augmentation algorithm is explained, it will be applied on the graph of subnet 

ASD/RT as well as the entire graph representing KPN’s PS mobile core network18. There are two 

important issues that have to be dealt with. The 1st point is that in reality the cost for adding new 

edges varies, depending on several factors like distance, edge-type, indoor or outdoor etc. The 2nd 

issue is that physically it may not be possible to add a new edge between any arbitrary pair of 

vertices. To deal with this, the above algorithm is modified, such that edge-augmentation is done in 

two stages. In the first stage the edge-connectivity is increased from 1 to 2, and the DFS procedure is 

done in such a way, that the output of the algorithm produces edges to be added that can also be 

implemented in reality. In the second stage, applied on the subnet only (and not on the entire 

graph), the edge-connectivity is increased to 3. 

 Increasing edge-connectivity of core PoP ASD/RT 

Now algorithm 3.12 will be applied to  (the graph of core PoP ASD/RT), shown in figure 3.1. 

From  a cactus representation is constructed, according to the explanation of subsection 3.3, 

                                                           

18
 The application of the algorithm on other subnets is in the KPN deliverable. 
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which is shown in figure 3.3219. For the case that the target would be a 2 edge-connected network, a 

nice way of applying the modified DFS algorithm and related labeling would yield the 7 dashed links. 

As these new links (in the cactus) correspond to edges (in the target graph) that connect routers, 

which fulfill the same function, it is surely an implementable solution. Because the router pairs are 

collocated, this is a good solution for the 2-edge-connectivity target.   

However, if the target would be ≥ 3-edge-connectivity, this solution is not necessarily the optimum 

one. Further analysis is required as described in algorithm 3.12. First the Extreme Sets Tree is 

constructed, as shown in figure 3.33.  is actually a tree, where the root corresponds to 

set  and child nodes correspond to the leaves20. The edge demand  of each element of the EST 

is calculated and denoted in table 3.1.  

H(G) of core PoP ASD and RT

u4 u5 u6 u7

# links to be added = 14/2 = 7
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Figure 3.32: Constructing the cactus representation of core PoP ASD/RT. 
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Figure 3.33: The Extreme Sets Tree of core PoP ASD/RT. 

 

                                                           

19
 Strictly taken, the dashed links are not part of the cactus. 

20
 This is in agreement with lemma 4.2 of [73]. 
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Node Degree Ф(.) Node Degree Ф(.) Node Degree Ф(.) Node Degree Ф(.) 

1 X19 7 0 10 X28 17 0 19 X17 2 1 28 X11 1 2 

2 X20 7 0 11 X1 1 2 20 X18 2 1 29 X12 1 2 

3 X21 7 0 12 X2 1 2 21 X29 4 0 30 X13 1 2 

4 X22 7 0 13 X3 1 2 22 X30 4 0 31 X14 1 2 

5 X23 4 0 14 X4 1 2 23 X31 6 0     

6 X24 4 0 15 X5 1 2 24 X15 2 1     

7 X25 4 0 16 X6 1 2 25 X16 2 1     

8 X26 4 0 17 X7 1 2 26 X9 1 2     

9 X27 17 0 18 X8 1 2 27 X10 1 2     

Table 3.1: Vertex degree and edge demand of core PoP ASD/RT  

For the calculations of the edge demand in the case of the above table, the following reduced 

equation is used: . Using these results, the minimum number of edges 

to obtain a 3 edge-connected graph is calculated. 

 and = 16. 

The minimum number of edges to be added to obtain 3-edge-connectivity from graph  , 

which was 1-edge-connected is therefore 16. First the 7 previously found edges are added to obtain 

the 2-edge connected graph  as shown in the next figure. 
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 Figure 3.34: The 2-edge connected core PoP ASD/RT. 

The next interesting step is to determine whether an improvement from the above graph to a 3-

edge-connected graph can be achieved using   additional edges, with respect to .  

The cactus representation of this graph is shown in figure 3.35. It seems that this is indeed possible 

by augmenting  with the 9 edges indicated in the next table21.  

  

                                                           

21
 Note that there are more possibilities to achieve this target. 
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Labeled based 

edge names 

Vertex-number based 

edge names 

Labeled based edge 

names 

Vertex-number based 

edge names 

{U1,U10} {24,25} {U6,U15} {13,14} 

{U2,U11} {11,12} {U7,U16} {17,18} 

{U3,U12} {15,16} {U8,U17} {30,19} 

{U4,U13} {26,28} {U9,U18} {31,20} 

{U5,U14} {27,29}   

Table 3.2: A set of edges for 2-augmenting core PoP ASD/RT. 

But even though an optimal solution is found using the 2 stage approach, there is still a problem, 

because not all of these edges are compatible with the subnet’s functionality. A realistic approach is 

to replace the edges {30,19} and {31,20} by the following 4 edges {9,20}, {10,19}, {30,3} and {31,4}.  
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Figure 3.35: Cactus representation of the 1-augmented core PoP ASD/RT. 

Increasing edge-connectivity of the entire graph 

For KPN it is interesting to see how the augmentation process can be done, such that the costs are 

minimal. It is this constraint that makes only the increase to 2-connectivity interesting for KPN. In this 

subsection the edge-augmentation is considered where . Therefore the cactus of the entire 

graph, , is constructed. The red line in figure 3.36 distinguishes the green 1-edge-

connected vertices form the stronger connected ones. This means that all vertices, not green, can be 

condensed into a single node22.  

Figure 3.37 shows the cactus of the entire graph along with the labels obtained after a “smartly” 

chosen modified DFS algorithm. This “smart” choice refers to the fact that the corresponding solution 

is both possible to be physically implemented and also cost efficient. It conforms in such a way with 

the analysis of the subnets, that exactly the same edges are added here as were added to the core 

PoP subnets23. Thus, with the addition of the minimum amount of 22 edges, the edge-connectivity-

augmentation problem is solved for the special case of  (for the PS mobile core network). 

                                                           

22
 Note that only the first 4 steps of algorithm 3.12 need to be applied, as . 

23
 See the KPN deliverable for the analysis of the subnets other than core PoP ASD/RT. 
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Figure 3.36: Constructing the cactus representation of the entire graph. 
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Figure 3.37: Cactus representation of the entire graph. 
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3.5 Vertex-connectivity augmentation 
 

The reliability of a network will increase even more when the vertex–connectivity (connectivity in 

short) increases. This may be beneficial if the traffic load increases with time, in terms of improved 

performance. According to the results of both edge and vertex-connectivity-augmentation, KPN can 

make a more appropriate decision whether or not to implement new edges in the core network. The 

vertex-connectivity of the PS mobile core network is 1 (figure B3). This means that there is at least 1 

vertex whose removal disconnects the graph. If this vertex-connectivity were to be increased to 2, 

any kind of single failure would never lead to the network getting disconnected, which is why a 

target of 2-vertex-connectivity is worth examining. Achieving a vertex-connectivity of 3 would 

already be too expensive.  

The vertex-connectivity-augmentation problem is defined as to find an edge set of minimum size to 

upgrade a -connected graph to a -connected graph. Section 3.1 explains which algorithms 

are available to solve this problem.  Due to the fact that the augmentation, where , would be 

too expensive,  an algorithm is used that gives an optimal solution for obtaining a -connected 

graph. Algorithm 3.13 is used for the purpose of increasing the connectivity by 1 and is based on 

Jordan’s algorithm [10, 46], which finds an optimal solution for achieving 1 and 2 connected 

networks [10]. Algorithm 3.13 is presented next. Because an attempt is made to increase the vertex-

connectivity form 1 to 2, the situation is somewhat simpler and the following steps are sufficient24: 

1. Find the maximum number of pair-wise disjoint tight sets, , where a tight set of a k-

connected graph  is a vertex set , such that the number of neighbors of  is equal to k 

(denoted as ) and that . In other words  is the maximum 

integer , such that  are all the tight sets in G and . 

2. Find all the k-separators of the k-connected graph G and then find the maximum number of 

clusters of , denoted as , where  is the most critical k-separator25. The most critical 

k-separator is that subset S, consisting of k vertices, which maximizes the number of clusters if it 

is removed from . A separator  of a connected graph G is defined as an (inclusion wise) 

minimal subset , such that  consists of at least 2 clusters.  In mathematical form: 

}, where  if G has no k-separators. 

3. Find the lower bound of newly to be added edges to graph G for increasing the connectivity by 1, 

using the following equation: .  

4. Construct a -connected graph  from the original k-connected graph, by 

adding a new vertex s and 1 edge between s and each . 

5. For each   remove each edge {s,v} from  if the -connectivity criterion is not 

jeopardized. The edges between vertex s and the tight sets will remain after applying this step. 

                                                           

24
 It is advised to refer to [10] for the complete algorithm. 

25
   is defined as graph  without a subset of vertices  and all edges incident to the vertices of S. 
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6. For the remaining edges apply the splitting-off theorem26 in such a way that no more than 

 new edges need to be added with respect to G, such that a 2 

connected graph  can be constructed. 

Figure 3.38 illustrates how the minimum number of edges for the augmentation is obtained. The 

example graph is clearly 1-connected and there are 4 tight sets, according to step 1 of the algorithm. 

Step 2 is to find  and it can be seen that there are two 1-seperators in , namely vertex 1 and 3. 

Removal of either one results in three clusters, which means that . According to step 3, the 

minimum number of edges to be added is: . 

87

5

1

4

9

2

3

6
D2D1 D3 D4

87

5

1

4

9

2

3

6
D2D1 D3 D4

Q2Q1
Q3 Q4

b(G) = 3

t(G) = 4

Max{2,2} = 2

Graph G Determining t(G) and b(G)

 
Figure 3.38: Calculating b(G), t(G) and the lower bound. 

Step 4 results in the addition of the dashed edges as shown in the left graph of figure 3.39. The 

center graph shows the remaining edges after step 5 is applied. In this example it is clear that only 

the edges between vertex  and the vertices representing the tight sets remain. Finally the removal 

of s and the addition of 2 edges according to the splitting-off theorem results in a 2-connected graph 
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Figure 3.39: From a k-connected to a (k+1)-connected graph. 

Algorithm 3.13 is applied to  (to represent the result on subnet level) and the entire graph27. 

It is assumed that the algorithm is explained well enough and therefore the results are directly given. 

An important factor to cope with is that the new edges should be possible to be implemented in 

                                                           

26
 The splitting-off theorem for vertex-connectivity says that splitting-off the edges (s, v) and (s, w) incident to 

node s means to remove these edges and add a new edge between node v and node w.  

27
 The analysis of the other subnets can be found in the KPN deliverable. 
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reality. With these constraints in mind an attempt is made to increase the connectivity of the PS 

mobile core network.  

Vertex-connectivity augmentation of core PoP ASD/RT 

Figure 3.40 almost gives the answer of the edges to be added to achieve 2-connectivity. According to 

the algorithm a minimum of 7 new edges does the trick and the newly to be added edges are chosen 

conform figure 3.34. In this particular case figure 3.34 also applies to the result obtained here. 
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Figure 3.40: Core PoP ASD and RT edge augmentation procedure. 

Vertex-connectivity augmentation of entire graph 

Now that it is clear how the subnets should be augmented, algorithm 3.13 is also applied on the 

entire graph. In general it is not true that augmenting the subnets of a larger network ultimately 

leads to higher connected larger network. However, in the case of the PS mobile core network, with 

a target connectivity of 2, this phenomenon does occur and the result is shown in the next table.  

Edge # New edge Subnet Edge # New edge Subnet Edge # New edge Subnet 

1 (40,44) RT 10 (65,69) AH 19 (97,100) GV 

2 (41,45) RT 11 (66,70) AH 20 (98,99) GV 

3 (42,46) RT 12 (86,90) GV 21 (17,21) ASD 

4 (43,47) RT 13 (87,91) GV 22 (18,22) ASD 

5 (136,137) RT 14 (88,92) GV 23 (19,23) ASD 

6 (138,139) RT 15 (89,93) GV 24 (20,24) ASD 

7 (140,141) RT 16 (94,103) GV 25 (130,131) ASD 

8 (63,67) AH 17 (95,102) GV 26 (132,133) ASD 

9 (64,68) AH 18 (96,101) GV 27 (134,135) ASD 

Table 3.3: The new edges for augmenting the entire graph. 

Figures B8 and B9 (in appendix B) show the results regarding the analysis of the entire graph. The 

edges to be added according to table 3.3 are the same as the edges found according to the analysis 

on subnet level (shown in the KPN deliverable).  
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3.6 Relationship between augmentation and algebraic-connectivity 
 

This section discusses how  evolves when algorithm 3.12 and algorithm 3.13 are applied to a 

graph and discusses a problem discovered in the process. To illustrate this  is chosen, but the 

analysis of other subnets and  is similar. The goal is to verify how the output of both 

algorithms relate to . In this thesis this kind of analysis is referred to as connectivity relations.  

Remember that the connectivity target was defined to be 2 and that anything beyond would be 

financially infeasible for KPN. Therefore the comparison between  and  is done for 1 and 

2-connectivity. On the other hand the comparison between  and  is done for 1, 2 and 3-

edge-connectivity.  

Connectivity relations for core PoP ASD and RT 

The following 2 tables give an overview of  versus  and  versus 

 respectively. The 1st column of the respective tables show the number of new edges 

required to increase  and  by 1, for each step. The reference graph for -edge-

connectivity ( -connectivity) is the graph, which is -edge-connected ( -connected), 

corresponding to the previous row in each table. A comparison is made with , according to the 

chosen combinations (in section 3.4 and 3.5), but also with the maximum and minimum  that 

could have been achieved by respectively choosing a maximizing and minimizing combination of 

newly to be added edges. To find the maximizing and minimizing combination, each possibility to add 

the minimum edge set should be tried out. We have used a brute force method to compute  for 

all combinations (see Matlab code in CD). In order to simplify the problem for the vertex-connectivity 

of , subsets 1 and 3 as well as subsets 2 and 4 (shown in figure 3.41) are merged together 

into 2 sets, each consisting of 7 nodes. In the case when edges need to be added between 2 subsets 

there are   ways of adding  new edges. The case of 2 subsets was used to compute the 

maximum and minimum  for all subnets (see KPN deliverable). 

The 7 previously chosen edges for 2-edge-connectivity/2-connectivity are shown as dashed lines in 

figure 3.34. The 9 previously chosen edges, whose addition results in 3-edge-connectivity, are 

presented in table 3.2. There are more combinations resulting in the minimum (maximum)  

shown in the tables below. 

k-edge-connectivity Algebraic-connectivity 

# of new edges  : chosen : maximized  : minimized 

0 1 0,4087 Not applicable Not applicable 

7 2 0,4087 0,6482 0,4087 

9 (w.r.t previous) 3 0,5201 0,9709 0,5101 

Table 3.4: Edge-connectivity compared with algebraic-connectivity of core PoP ASD/RT. 

k-connectivity Algebraic-connectivity 

# of new edges  : chosen : maximized  : minimized 

0 1 0,4087 Not applicable Not applicable 

7 2 0,4087 0,6482 0,4087 

Table 3.5: Vertex-connectivity compared with algebraic-connectivity ASD/RT. 
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New problem: finding all combinations between 3 or more subsets 

From figure 3.40 in the previous section it can be seen that there are exactly 4 separators, namely 

the singletons 3, 4, 9 and 10. Each separator has a subset of nodes, consisting of nodes of degree 1. 

Figure 3.41 shows 3 examples of connecting the subsets, such that 2-connectivity is achieved 

optimally and 1 example (d) of doing this with more than 7 edges. It is quite a task to sort out all the 

possibilities of adding 7 edges28 between 4 subsets and upgrading the vertex-connectivity by 1. 

In the author’s opinion the general combinatorial problem of finding all possibilities of adding  

new edges across  subsets, each consisting of an arbitrary amount of vertices, is an interesting 

open problem. A solution for this particular problem has the advantage that one is able to solve the 

edge-augmentation (vertex-augmentation) problem in such a way that a minimum set of edges is 

chosen to increase the edge-connectivity (vertex-connectivity), while a particular combination can be 

used that produces the highest  (of all possible combinations) at the same time. 

Core PoP ASD and RT have 4 subsets
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Figure 3.41: Vertex-augmentation possibilities of core PoP ASD/RT. 

 

 

 

                                                           

28
  Remember that new edges may only be added across different subsets and only one new link may be 

additionally incident to each vertex. 
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4 Capacity Management in the PS domain 
 

Capacity management is a huge topic and just like robustness it has received a lot of attention in the 

academic world. Another commonality between the two is that both have impact on the 

performance of a network. Despite the importance, capacity management is still in a “baby”-phase 

(regarding the PS mobile core) and issues like bottlenecks and congestion are treated reactively. But 

solving these problems afterwards sometimes leads to serious performance degradation. Currently, 

capacity management has been given a top priority at KPN [57] and the company’s target is to 

achieve an automated and proactive capacity management system, which includes forecasting 

capabilities for preventing performance degradation due to capacity shortages.  

The academic world has done much research regarding efficient use of resources [63, 3, 16] and in 

general it seems that improving the routing mechanism, such that underutilized elements and edges 

are used more efficiently, reduces stress on the “popular” paths. These “popular” paths may suffer 

from heavy loads when less efficient algorithms (based only on shortest path routing) are used.  

Table E1 (in appendix E) indicates the most important parameters, with respect to capacity 

management, that KPN should take into consideration. The contribution of the author’s work to 

KPN’s capacity management plan [57] is based on perhaps the most crucial capacity-parameter, 

namely the bandwidth. The main reason to choose only this parameter is the fact that the core 

network is not yet operational, making it impossible to do measurements on it. Nevertheless, a 

technique is found to do some bandwidth management. On the other hand, it seems difficult (and 

perhaps impossible) to do analysis on other parameters due to this constraint. Secondly, dealing with 

just one of these parameters already requires a lot of time, which means that surely it is not possible 

to cover all of them in the available time. The most important results are the following: 

1. A program that calculates the relative amount of bandwidth usage of each network connection. 

This program is the called the CTA-edge-betweenness program.  

2. A program that calculates the vertex-betweenness centrality for a weighted graph, while taking 

the effect of the edge vertices into account. The output generated by these programs is then 

used (along with 2 other criteria) to estimate how critical each vertex in the network is. 

 

4.1 Bandwidth management of edges 
 

Using only topology information in the form of a bandwidth matrix, say  , and traffic 

information in the form of a traffic matrix, say  , it is possible to estimate the percentage of 

usage of each connection in a network. The CTA-edge-betweenness algorithm, computes the amount 

of bandwidth usage for all network edges [80]. Figure 4.1, gives a high level overview of how the 

technique works. In the box located at the right lower corner, the colour scheme presents the 

colours used to indicate how crucial the edge usage is. If the edge usage exceeds the 60% threshold, 

then caution is required, because nowadays data traffic increases at an exponential rate (see the 
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forecast in figure E1 in appendix E). In this case the solution is to upgrade the edge(s) (or add (a) 

parallel edge(s)), whose usage exceeds the threshold. 

Routing schemes of 

services

Traffic Matrix compatible 

with topology

Bandwidth Matrix 

(weighted Adjacency 

matrix)

CTAedgeBetweenness 

program

Output:

- % usage of every edge

- Bottleneck edges (if any)

 
Figure 4.1: Usage of the CTA-edge-betweenness program. 

The algorithm used for the CTA-edge-betweenness program is based on a modified version of 

calculating the edge-betweenness centrality in the network. Betweenness centrality is a graph 

theoretical concept that measures the degree to which a vertex or edge acts as an intermediary in 

the communication between every source-destination pair in a graph. The following equation is used 

to calculate the edge-betweenness centrality: 

   (4.1) 

 denotes the number of shortest paths between source  and destination , while  

indicates the number of shortest paths between  and  passing through a given edge . In the 

original conception of betweenness centrality, “shortest path” is defined in terms of the number of 

hops. This permits a regular Breadth First Search (BFS) algorithm [6] to identify the shortest paths. 

However, taking a bandwidth-weighted graph makes it interesting to consider routing traffic over 

less congested paths that also have the property of being relatively short in terms of the number of 

hops. The CTA-edge-betweenness algorithm balances the traffic distribution using both the edge 

capacities and the hopcount information. It is shown to be more accurate (with respect to the real 

situation) than simple algorithms based on the basic definition of betweenness centrality [80]. Of 

course there are other more complicated algorithms that can produce perhaps even better results 

(e.g. SAMCRA [82]), but here it is preferred to keep things as simple as possible. 

There are 2 important modifications [80] to be applied to the basic edge-betweenness centrality29 to 

achieve the CTA version: 

                                                           

29
 The basic algorithm for both vertex and edge-betweenness centrality can be found in [6]. 
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1. Should more paths of equal hopcount exist, the one having higher bandwidth is preferred. To 

achieve this, the Widest Shortest Path (WSP) [31] algorithm is chosen to replace the BFS 

algorithm. 

2. Whenever a given edge  appears in a path between end-vertices  and , an increment 

proportional to the contribution of the vertex pair  to the total traffic is to be considered in 

the calculation of the edge-betweenness. This is an improvement because the basic edge-

betweenness centrality formula (4.1), uses an increment of 1 for every vertex pair  .   

Algorithm 4.2 in figure 4.3 is considered to be a subroutine, which is invoked for every source  

(actually every vertex ) by algorithm 4.1, which is the main routine. For each  the 

subroutine computes a vector  that contains the parent vertex of every vertex 

 towards . In fact, this vector is used as a tree rooted at , where a parent is closer to the root 

than its child vertices. For the construction of this vector, algorithm 4.2 uses a hopcount vector , a 

largest minimum capacity vector  and a priority queue . Initially the queue is loaded with , that 

has priority 0. A smaller priority value  corresponds to a higher priority to be removed out of  as 

shown in figure 4.2.  

Smaller value = Higher 

priority to leave Q

u0u1

p0p1p2

un

pn

Functioning of Q

u2

Queue Q with keys 

according to priority rule

pn > … > p3 > p2>p1 > p0

 
Figure 4.2: Functioning of the queue in algorithm 4.2. 

In line 15 of algorithm 4.2 it is shown that the construction of  stops only when  is empty. Line 16-

17 are assumed to be clear and in line 18 it is shown how the variable , which is used to find the 

edge of largest min capacity, is updated. Line 19 is a condition which is satisfied if (1) a 1st parent 

vertex or (2) a parent vertex reachable through a higher capacity edge towards  is found. If this 

condition is indeed satisfied, then all 3 vectors (lines 20-21) are updated. Line 23 shows the rule 

according to which the priority queue is updated to be a function of the hopcount and the edge 

capacity. When the queue is empty, the vector  is returned to algorithm 4.3 (line 7). 

In the main routine (algorithm 4.1),   is used as a map to find the shortest-widest path for each 

, towards the source . For each source such a tree map is constructed. Lines 1-9 of the main 

routine are assumed to be clear, but line 10-14 may require some explanation to understand the 

algorithm.  First an edge between a parent and child vertex is chosen (line 11). Then  (number of 

shortest-widest paths through ) is updated by using input information stored in the traffic matrix 

 (line 12). After that the parent vertex is made the child vertex (line 13) for the next iteration of 

the while loop (lines 10-14). When the while loop is finished, the values found for  are stored in the 

betweenness centrality vector  for each . More information about the Matlab code for the CTA-

edge-betweenness can be found in appendix C.  
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 Algorithm 4.1 CTAedgeBetweenness 

1: Input: Graph G(V,E), and traffic matrix . 

2: Output: Normalized edge betweenness centrality . 

3: for all  do 

4:   ← 0 

5: end for 

6: for all  do 

7:   ← FindPathsCTA(s) 

8:  for all  do 

9:    

10:   while  do 

11:     

12:     

13:     

14:   end while 

15:  end for 

16:   normalized 

17: end for 

18: return  

 

 Algorithm 4.2 FindPathsCTA 

1: Input: Source node , and links’ capacity C. 

2: Objective: Find the shortest paths from  to all other  

nodes. Take into account both hop count  

and largest minimum link capacity. 

3: Output: , the parent node towards . 

4:  new priority queue 

5:  new map (vertex  parent vertex) 

6:  new map (vertex  hop count) 

7:  new map (vertex  largest min capacity) 

8: for all  do 

9:   

10:   

11:   

12: end for 

13:  

14: insert  into  with priority 0 

15: while  do 

16:   removeMin( ) 

17:  for all  do 

18:    

19:   if  or 

    and  then 

20:     

21:     

22:     

23:     

24:   end if 

25:  end for 

26: end while 

27: return  

Invoke 

subroutine

Algorithm 4.1 => Main routine, that computes 

betweenness centrality for all edges.

Algorithm 4.2 => subroutine, for constructing a map 

of shortest widest paths for each source s.

 
Figure 4.3: The algorithm for CTA-edge-betweenness [80]. 

On top of the explanation of algorithm 4.1 and 4.2, it seems that a minor modification in the latter 

gives an interesting result (e.g. for weighted ring graphs). In line 23 of algorithm 4.2, the priorities in 

constructing the widest-shortest paths are computed by the equation . The author has 

generalized this equation to , such that the variable  can be used as a 

tuning parameter to control the amount of influence of both the hopcount  and the capacity  

in the determination of the priorities (e.g. Increasing , puts more weight on the capacity). The latter 

equation will be referred to as the linear rule in this report. A logarithmic rule 

30 can also be applied. Both rules will be tested with three different values for , 

after the different types of traffic matrices are discussed.  

As the PS mobile core is treated as the case study, the bandwidth matrix  and traffic matrix  of 

its complete graph are the input entities in the analysis31. However, the construction of  is a 

problem, because there is incomplete information about the routing schemes of services and for 

constructing , it is necessary to have all source-destination pairs in the network. In January 2010 

KPN made a start in documenting the schemes of the most important service types, but until August 

                                                           

30
 This type of log function is chosen in the rule to ease the computation, because most links in the PS mobile 

core network have a bandwidth of 10 Gbps, 1 Gbps or 100 Mbps. Of course it is possible to use other 

logarithmic functions as well (e.g. ). 

31
 The sparse form of  is shown in figure c14 of the KPN deliverable. 
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2010 a relatively small part of the complete picture was finished. Due to this disadvantage it is not 

possible to run a simulation based on data complying with reality. Therefore, 2 alternative scenarios, 

each using its own type of traffic matrix, are simulated to test the program. The following matrix 

types are used: 

1. TM based on uniform packet size and transmission probability . 

2. TM based on the partial (available) data.  

For all the traffic matrices it is assumed that routers and switches are routing vertices and are 

therefore not treated as sources or destinations of packets, but as intermediaries on source-

destinations paths. A short sample of the output produced by the CTA-edge-betweenness program is 

placed as table E2 in appendix E32. Furthermore, histograms are generated that show how the 

percentage of remaining bandwidth of the edges is distributed. The relative amount of remaining 

bandwidth is quantified in bins, each (except 1) having a width of 10%. For example, the 90% bin 

represents edges with a remaining bandwidth of 85%-95%. The 100% bin is the only one, with a 

smaller interval, namely 95%-100%. It should be clear that there are negative bins, which are 

physically impossible, but should be interpreted as the amount of relative bandwidth shortage. The 

negative bins arise, because algorithm 4.1 gives negative values of remaining bandwidth (see table 

E2) for edges if the traffic load exceeds the available bandwidth.  Histograms of the lists are used to 

analyze: 

1. What happens when  is varied using a fixed packet size. 

2. The output produced using different TM types discussed earlier. 

The effect of varying  (on the 2 rules) 

In figure 4.4, the comparison between the linear and logarithmic rule is done for , using 

a packet size of 100 Mb. The figure shows that the differences between the results of the 2 rules are 

small.  They get even smaller (and even negligible) when  increases. This can be explained using the 

results in the table 4.1, which show that as   increases, the differences between the priorities get 

bigger between edges of different capacities, which are noticeable when comparing for example 

column 6 with column 4. The effect of increasing  on the priorities (to place the vertices in queue  

of algorithm 4.1) is such that there is less difference in the queue order when comparing both rules. 

    

 

(Gbps) 

Linear priority Logarithmic 

priority 

Linear priority Logarithmic 

priority 

Linear priority Logarithmic 

priority 

0.1       

1       

10       

Table 4.1: Effect of tuning parameter on linear and log rules. 

Figure 4.4 shows that different values for  do not yield significant differences. However,  is a 

reasonable choice if one wants to put more weight on the capacity, rather than the hopcount, in the 

                                                           

32
 Due to the large size of both the input traffic matrices (also the sparse representations consisting of almost 

7000 rows) and the generated output lists, they are not presented in this report. Instead they are stored on the 

CD. 
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priority determination. This choice also gives an opportunity to verify, which rule performs (a little 

bit) better. 

Summary:

1) As beta increases, the difference between 

the rules become less.

2) At low load, the differences are smaller. 

Therefore a relatively large packet size of 

100 Mb is used.

 
Figure 4.4: Difference of linear and logarithmic rule. 

The result using different TM’s  

As the differences between the results of the 2 rules are not significant, the focus will be more on the 

results of the algorithm from now on (rather than on these differences). In the remainder of this 

subsection,  is the tuning parameter of choice and the linear rule is (arbitrarily) chosen for the 

next set of simulations33.  

For the 1st TM type it is assumed that each non-routing source vertex sends a packet of uniform size 

towards each possible destination (non-routing) vertex. The simulations are done for different packet 

sizes (0.1 Mb, 1 Mb, 10 Mb and 100 Mb). For each packet size a simulation is done for different 

transmission probabilities , as shown in figure 4.5.  indicates the chance with 

which a packet is sent by a source vertex and this chance holds for all source vertices. The histograms 

                                                           

33 From the KPN deliverable it can be verified that the logarithmic rule produces the same histograms for the 

case study network. 
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show that the remaining bandwidth of many edges become less, as the packet size increases, no 

matter the value of  . For a uniform packet size of 0.1 Mb, many edges are in the 100 % bin and are 

therefore (relatively) unused. As the packet size increases the bins to the left get higher values, 

meaning that the remaining bandwidth of the edges becomes less, indicating that the network load 

increases. At a packet size of 100 Mb, the -20% bin has the highest peak. This negative bin should be 

interpreted as the number of congested edges. A uniform packet size of 10 Mb will cause congestion 

even for a low transmission probability of . The histograms also show that the remaining 

capacity decreases with increasing  (e.g. compare the results of the 1st and the 4th histogram). 

 
Figure 4.5: The output CTA-edge-betweenness using the 1st TM type. 

For the relatively large packet size of 100 Mb, the results show that there are many edges that 

remain relatively unused. The amount is the same for different probabilities. This can be explained by 

the fact that (1) the cross edges of the network are not used under normal conditions (no failures) 

and (2) that the traffic matrix is not a representation of the real situation. Cross edges connect the A 

and B elements in figure B1 and should only be used for transmitting data under failure conditions. 

The 2nd TM type is constructed using the (incomplete) routing information, which was available at 

KPN at the time of writing. For this simulation a non-uniform packet size is considered, because each 

service type has its own peak value (based on the busiest hour), as shown in the next table. Because 

the service routing schemes are strictly classified, they are not available in this report34. 

                                                           

34
 For those who it may concern, this data is available at the capacity management group of KPN Care 

Customer. The constructed TM can be found on the CD. 
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 Service Highest peak 2010   Service Highest peak 2010  

1 (Fast) Internet Classified 5 APN Telfort Classified 

2 Portal mm Classified 6 MOO (aggregated) Classified 

3 Blackberry Classified 7 Roaming Classified 

4 Machine to machine Classified 8 Billing Classified 

Table 4.2: Most important services and their peak values. 

The result is shown in figure 4.6 and it shows that the network does not have any bottleneck edges. 

There is no heavy load to be carried by the network and the histograms confirm this as many edges 

(in the 100% bin) are (relatively) unused. This can be explained by the fact that: 

1. Cross edges are unused, under normal conditions. 

2. Only 8 services are used to model the TM of the 2nd type, while in reality there are more. 

3. Many edges having a capacity of 10 Gbps (figure B3) in the design, should also carry the load of 

the Radio Network Controllers in the future. Therefore a relatively small portion of these edges 

is used now. 

On the other hand, some edges correspond with just 19% of remaining bandwidth (RBW). A closer 

examination (table 4.3 combined with figure B3) reveals that these are the edges that connect the IP 

BB to the GGSN. As these are very important connections for the functioning of the core network, it 

is advised that they should be monitored and upgraded if necessary.  

 
Figure 4.6: Output CTA edge-betweenness using the 2nd TM type. 

Edge_# Vertex_i vertex_j %RBW Edge_# Vertex_i vertex_j %RBW 

47 2 29 19 87 5 52 19 

48 6 29 19 125 3 75 19 

86 1 52 19 126 7 75 19 

Table 4.3: The edges which exceed the safety margin. 
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4.2 Vertex criticality 
 

It is possible to estimate the relative importance of each vertex within its network. The vertex 

criticality ( ), gives the network operator a “rough” idea how much the loss of each vertex 

affects the network as a whole, and therefore it indicates how important it is relative to its network. 

The higher the criticality of a vertex is, the more negative the impact is on the network if it were to 

be perturbed. The vertex criticality  is defined by the author as follows: 

  (4.3) 

The equation states that the vertex criticality  of vertex  is the sum of its vertex-betweenness 

centrality , its relative importance in the network  and the size of an external network 

(cloud)  connected to it, if any. All the three components of   are explained next. 

Vertex-betweenness centrality 

In [80] it is shown how the CTA-edge-betweenness algorithm computes the edge criticality for every 

network connection, using a notion of edge-betweenness centrality.  Analogous to this, vertex 

criticality is defined based on vertex-betweenness centrality [6] and two other factors. Vertex-

betweenness centrality is usually computed using the following equation: 

   (4.2) 

In this case  indicates the number of shortest paths between  and  passing through a given 

vertex , while  is defined similarly as in equation (4.1). In [6] there are several variants for 

computing the vertex-betweenness centrality, namely: 

1. The basic algorithm, based on the hopcount. 

2. A variant which takes vertices at the periphery of the network into account. 

3. A variant that takes the effect of edge weights into account. 

4. A combination of 2 and 3 (our own contribution). 

It is necessary to understand the efficient procedure used to compute  in the basic algorithm. 

Efficient computation is based on the fact that the cubic number of pair-wise dependencies 

 can be aggregated, without computing all of them explicitly. If one sided 

dependencies35 are defined as  for all , the following can be exploited 

[5]: 

   (4.4) 

This relation is recursive and asserts that the dependency of a vertex  on some vertex  can be 

derived from dependencies on vertices one hop further away. The basic algorithm uses this, since 

, by iterating over all vertices  , each time computing   for all  

in two steps. The 1st step is a breadth first search used to find distances and shortest-path counts 

                                                           

35
 One sided dependency refers to the fact that the ratio  becomes only dependent 

on the source side if a summation as  is done over all possible destination vertices 

. 
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relative to . In the 2nd step all vertices are visited in reverse order of their discovery (so those 

farthest from   first). The 2nd variant for computing  has one difference with the former, in that 

 in the case that . This has the effect that vertices at the edge of the network 

also contribute to the betweenness score of each . The 3rd variant works with a weight matrix 

such that the shortest-path is actually a minimum weight path, instead of a minimum hop path. This 

is certainly a feature that is also implemented in the routing strategy of the intelligent edge core 

network.  

The last variant is the one used for calculating  and is obtained by combining the algorithms for 

the 2nd and the 3rd variant, where the latter two are explained in [6].  Including the contribution of 

vertices at the edge (periphery) is not really a necessity, but it does ensure that . 

This in turn ensures that  if for some vertex  would hold. On 

the other hand, including the weighted scenario conforming to variant 3 is required as it is closer to 

the real situation.  

Figure 4.7 shows both the algorithm and the functioning of variant 4. Notice that a Weight (or Cost) 

matrix is the input of this algorithm36. The priority keys of , used for  are dependent on the 

distance (or hopcount) relative to source . The most intriguing part is the while loop (that runs as 

long  is not empty), in line 9-22. The loop runs for each vertex , because each vertex becomes 

the source exactly once (line 4). In line 10,  is extracted from  and pushed into the stack  as 

shown in figure 4.8. Each time  is chosen, such that it has the smallest distance towards . For each 

neighbour of , the path discovery and path counting procedures are done. The distances are 

updated by addition of the edge weights , which are taken from the weight matrix. After 

, ,  and the predecessor list  are processed properly in the Path discovery 

procedure,  the path counting procedure is invoked to construct the predecessor list. Note that a 

vertex can have multiple predecessors/parents. This means that the algorithm considers all possible 

shortest paths and not just one in the case that there are more options. The predecessor list and the 

stack are used in the accumulation procedure to compute the betweenness centrality. The effect of 

vertices at the edge of the network is counted in the accumulation as shown in line 23 and 28. Line 

23 counts the number of times that  is a source (end-vertex) for every other vertex in the graph, 

while line 28 counts each destination end-vertex  once for every source . Equation 

4.4 is used in line 27 to update the ratio . For an elaborate explanation 

of this it is advised to read [5]. Finally line 28 shows how the vertex-betweenness centrality is 

updated, using the result of the previous line. 

                                                           

36
 The weight matrix used for the Intelligent Edge core can be found in the KPN deliverable. 
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Weight Matrix

Algorithm for 

computing 

VBC

Output:

VBC of each 

vertex

 Algorithm 4.3 Betweenness in valued networks 

1: Input: directed graph  with edge weights . 

2: Data: priority queue  with keys and stack  (both initially  

empty) for all . 

: distance from source. 

: list of predecessors on shortest paths from source. 

: number of shortest paths from source to . 

: dependency of source on . 

3: Output: betweenness  for all  (initialized to 0). 

4: for s  do 

  Single-source shortest path problem 

  Initialization 

5:  for  do  

6:  for  do  

7:   

8:  enqueue  

9:  while  do 

10:   extract  with minimum ; push  

11:   foreach  do 

    Path discovery (% shortest path to w) 

12:    if  then 

13:      

14:     insert/update  with new key; ; 

15:      

16:    end 

    Path counting 

17:    if  then 

18:      

19:     append  

20:    end 

21:   end 

22:  end 

  Accumulation 

23:   + (|S|-1) (% number of times s is a source) 

24:  for  do  end 

25:  while  do 

26:    

27:   for  do  end 

28:   if  then  end (% w is target of s once) 

29:  end 

30: end 
 

Figure 4.7: Algorithm and functioning of the vertex-betweenness-centrality program. 

 



4. Capacity Management in the PS domain 

 67 

v1

Higher priority to leave Q = smaller distance to s

v2v3

d1d2d3

vn

dn

d0 ≤ d1 ≤ d2 ≤ d3≤ … ≤ dn

Functioning of Q and S

v0

v4

Queue Q with dist[.] keys Stack S (First in last out)

 
Figure 4.8: Functioning of the queue and stack of algorithm 4.3. 

The relative importance function  

In equation (4.3)  stands for relative importance of vertex  and as the name already says, it is 

defined as a function that indicates the relative importance of each network element. This definition 

gives the network operator some freedom to use it as a tuning value. 

For the mobile core network, consisting of different types of both routing and functional elements, 

this function does make sense. In accordance with some members of the capacity management 

group, a list is produced (table 4.4) with relative importance factor  for each vertex type, which 

is based on logical reasoning and the work experience of this group37. To make this factor have any 

significant meaning in the vertex criticality estimation the relative importance is computed as 

follows: 

  (4.5) 

Element type  Element type  Element type  

SGSN 1 MDX 0.5 ZR2 0.5 

GGSN 1.5 ZR1 0.5 ASW 0 

TR 4 0.5 VRFLR 0.5 SRLB  0 

MOO SW 0.5 CSW  0.5 SRIPS  0 

ITR 0.5 ZR3 0.5 FR 0 

CR 0.5 BOG 0.5 STAR  0 

Table 4.4: The relative importance factor list. 

The size of the connected cloud function 

 is a function of the size and type of one or more external networks (clouds), if any, connected 

to vertex . It is obvious that vertices (such as a border gateway, an Internet access router, etc.) that 

connect the own network to external networks are very important. If these elements were to fail the 

own network gets isolated, which can be catastrophic for an operator. The next table contains a size 

of cloud factor, , for all types of network elements that serve as a gateway to an external 

network, from the perspective of the PS mobile core network. The clouds can be seen in figure B2 in 

                                                           

37
 The meaning of the abbreviations used in this table (and table 4.5) can be found in appendix A.  
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appendix B. Similarly as with the previous component, the function of the 3rd component of the 

vertex criticality is derived as: 

   (4.6) 

Name  Name  

SGSN 1 BOG 0.5 

TR 4 1 MDX 0.5 

MOO SW 1 ASW 0.5 

ITR 1   

Table 4.5: The size of cloud factor list. 

The result for vertex criticality is summarized in tables E3 and E4 in appendix E, from which it can be 

seen that . The vertex-criticality results are now being used as 

a (rough) guideline in prioritizing the network elements and it therefore helps the capacity 

management group (at KPN) to start setting up the proactive capacity management system. The next 

figure38 shows the histogram corresponding to this table and it is clear that no vertex has a 

betweenness centrality of 0, while  and  is zero for many elements. The former 

corresponds to the fact that the effect of edge vertices was taken into account when computing the 

vertex-betweenness-centrality. Most vertices have a betweenness centrality of 280 (corresponding 

to the 500 bin).  Those with high value are mostly the core routers in the IP BB and the core switches 

in the PoP locations. The highest peak for  (corresponding to 0) is logic, because not many 

network elements are connected to a cloud as shown in figure B2. On the other hand, most elements 

have , which explains (in combination with equation 4.5) the peak of this component at 

the bin of 2500. Figure 4.9 also shows that many vertices have the minimum vertex criticality (mostly 

the access switches), while few have a high value. It is obvious that the elements in the rightmost 

bins are crucial to be monitored.  

 
Figure 4.9: Histogram for vertex criticality. 

 

                                                           

38
 Each bin has a width of 500 (e.g. bin 500 goes from 250 to 750). 



 

69 

 

5 Conclusions 
 

1. The network drawings (as a result of this thesis) of the PS mobile core network and its subnets 

are based on the description of several documents [2, 56, 58, 59, 37, 33] and explanations given 

by several architects and designers. Because these drawings are considered to be designs, there 

is a small chance that certain changes may be applied to the network and that the results 

regarding robustness and capacity management may not be applicable anymore. Therefore the 

methods and tools used are generic and can be used for any network. 

 

2. Three sub-optimal strategies have been used to increase the algebraic-connectivity of a graph 

. In the case of the PS mobile core network (and its subnets), the most effective one is the 

Fiedler vector strategy39, which uses the Fiedler vector for finding the new edges to be added to 

the network in an iterative process.  

 

3. For designed networks it is better (in general) to increase robustness by applying edge-

connectivity or vertex-connectivity augmentation, instead of increasing the algebraic-

connectivity. The reason is that the former 2 methods produce optimal solutions, while 

increasing  optimally is NP-complete. The former 2 directly focus on the weak spots, by 

optimally increasing the number of edge or vertex disjoint paths and this is a more efficient way 

to increase the network’s resilience to edge and vertex failures.  

 

4. An algorithm that can be used to write a program that generates a cactus  out of a 

graph  is a major step forward in the analysis of increasing the edge-connectivity and 

therefore increasing the network’s robustness. With respect to this a quite abstract algorithm 

has been extended, that can be used for this purpose. By integrating 5 new sub-algorithms into 

the former, a less abstract algorithm is achieved, that can be used for writing a tool that 

automatically generates a cactus representation. 

 

5. As there are no means of performing measurements on the PS mobile core network (because it 

is not in place yet), the accuracy of the CTA-edge-betweenness tool cannot be verified. 

However, the tool should be used to estimate where potential bottlenecks/congestion may 

occur, when no measurements are available. The vertex-criticality tool should be used to 

prioritize the network elements. This tool is useful in the beginning phase of setting up a 

capacity management environment, as it indicates which elements to start with.  

 

 

 

                                                           

39
 In this thesis this strategy is also referred to as strategy 3. 
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Appendix A: List of abbreviations and Symbols 
 

Abbreviations Symbols 

ASW Access Switch  A graph (of a network) 
BB Backbone  Vertex set of a graph 
BOG Border Gateway  Edge set of a graph 
CNC Cycle-type Normal Cactus  Number of vertices 
CR Core Router  Number of edges 
CS Circuit Switched  Laplacian eigenvalue 
CSW Core Switch  Number of nodes in cactus 
CTA Capacity and Traffic Aware  Number of links in cactus 
DFS Depth First Search  Cactus graph 
ES Extreme Sets partition  Vertex set of a cactus 
EST Extreme Sets Tree  Edge set of a cactus 
FR Function Router  Mapping of vertices to nodes 
GGSN Gateway GPRS Support Node  (edge) connectivity 
GRX GPRS Roaming Exchange  Min cut value 
GSM Global System for Mobile Communications  Edge augmentation value 
IE Intelligent Edge  Vertex augmentation value 
IP Internet Protocol  Algebraic-connectivity 
ITR Internet Traffic Router  Edge-connectivity 
MDX MMS Domestic Exchange  Vertex-connectivity 
MIPnet Mobile IP Network  Fiedler vector 
MOO Mobile Office Online  Degree of set  (  can be a singleton) 
OSPF Open Shortest Path First  Neighbor set of  
PoP Point of Presence  Circular minimum cut partition for segment  
PS Packet Switched  Minimum cut partition for segment  

SGSN Serving GPRS Support Node  Edge demand function 
SLA Service Level Agreement  Number of tight sets 
SMS Short Message Service  Number of clusters after removing separator S 
SRIPS Service Router Intrusion Prevention System  Betweenness Centrality 
SRLB Service Router Load Balancer  Number of shortest paths 
STAR STAR Router  Parent list towards source 
TR Traffic Router  Hopcount towards source 
UMTS Universal Mobile Telecommunications System  Largest minimum capacity 
VRF Virtual Routing Function  Priority queue 
VRFLR VRF Lite Router  Stack 
ZR Zone Router  Tuning parameter  
   Transmission probability 
   Vertex criticality of vertex  
   Cubic number of pairwise dependencies 
   Weight of edge{u,v} 
   Distance vector of  
   Predecessor list of  towards source 
   Relative importance of  
   Relative importance factor of  
   Size of cloud connected to  
   Size of cloud factor of  
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Appendix B: Network drawings and additional information 
 

B1 Drawings of the PS mobile core network 
 

Figure B1 shows what the PS mobile network looks like according to the near future design, 

consisting of the Intelligent Edge network and the Mobile 10G IP BB. Each element is labeled with its 

own network name, according to the terminology by KPN personnel in their documentation. The core 

PoPs of ASD and RT are the largest subnets, containing most of the functionality and access to 

external networks. Core PoP AH is not in place yet, but is being implemented at the time of writing, 

while core PoP GV is most likely going to be phased out in the future. The network can be divided 

into the following subnets: 

1. The mobile 10G IP BB 

2. 4 core PoP locations 

3. 4 larger VRF lite locations 

4. 1 smaller VRF lite location, which is used to establish an interconnection with Telfort. 

Figure B2 displays the network as a graph, where the circular vertices are routers and switches, while 

the rectangular vertices are elements performing specialized functions. Figure B3 is the graph 

derived out of figure B2, where the clouds and the specialized vertices are relaxed. It shows the 

capacity of the edges in terms of Gbps. This so called relaxed graph is used as the case study and 

therefore every vertex is labeled with a number. The mapping can be verified by comparing figure B3 

with figure B1. 
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Figure B1: The PS mobile core network of KPN 

  

 

 

 

 

 

 

 

 

 

This figure has been removed out of this public version of the thesis by the author, because it is part of 

the classified information of KPN. 
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Figure B2: Graph of the PS mobile core network of KPN.  
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Figure B3: Relaxed graph of the PS mobile core network of KPN with edge capacities.  
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B2 Results regarding the increase of the algebraic-connectivity 
 

After applying any of the 3 suboptimal strategies explained in section 3.2, additional edges will be 

added to the original graph of core PoP ASD/RT to increase the algebraic-connectivity and therefore 

the robustness. It is interesting to see how many edges are required for each strategy in increasing 

 such that the graph is at least 1-connected. Figure B4 till figure B6 show these results 
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Figure B4: Graph of ASD/RT after applying strategy 1. 

1

2

3

4

5

6

7

8

9

10

4 x

2 x

2 x

2 x

2 x

2 x

2 x

11 12 13 14

15 16 17 18

19

20

23

24

25

21

2 x

22

2 x

26 27 28 29 30 31

With addition of 11 links:

- Graph is 2-connected.

- Algebraic connectivity 0,8227

Graph of ASD and RT after applying 

strategy 2

 
Figure B5: Graph of ASD/RT after applying strategy 2. 
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Figure B6: Graph of ASD/RT after applying strategy 3. 

 

B3 Drawing results regarding edge and vertex-augmentation analysis 
 

This section contains figure B7, which is the resulting 2-edge-connected complete graph after 

algorithm 3.12 (see section 3.3) is applied to the original complete graph. It also contains figures B8 

and B9, which are the process of applying and the result of algorithm 3.13 respectively (see section 

3.4). The analysis is based on the graph of the mobile core network shown in figure B3.  
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 Figure B7: The complete graph after applying Algorithm 3.12. 
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Figure B8: Applying Algorithm 3.13 for augmenting the vertex-connectivity. 
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Figure B9: The complete graph after applying Algorithm 3.13. 
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Appendix C: The structure of MATLAB programs 
 

All the programming work can be found in the KPN deliverable. Due to space limitations, only the 

structure of the programs consisting of multiple m files is treated in this appendix. 

C1 Structure of code for strategy 1 – 3 for increasing a(G) 
 

Figure C1 indicates how the source code for strategy 1 for calculating  works. A main routine is 

used to call 4 subroutines for a predefined number of iterations. The main routine also has the part 

of the code used for storage of the results. The 1st subroutine calculates  and its 2nd smallest 

eigenvalue.  After that the same is done for each added edge and these results are stored in an 

eigenvalue matrix (The E matrix). This matrix stores  for all possible edges to be added. The 2nd 

subroutine (optional) displays and stores the E matrix in a figure. The 3rd one is used to find the new 

edge that increases  the most. Finally, the 4th is used to modify  and , accordingly. 

Load the A and D matrices in Matlab’s 

workspace.

(only at the start)

Run the eigenvalue calculator to calculate the 

E matrix and maximum achievable robustness.

(evcalc.m)

Visualize the result in 3D plot.

(visualizeEmatrix.m)

{This is optional, just for verification}

Find the robustness maximizing links for the 

next iteration and store them in the Edge 

matrix.

(findlinks2.m)

Modify the A and D matrices for starting the 

next iteration.

(modifymatriceAD.m)

Subroutine 1

Subroutine 2

Subroutine 3

Subroutine 4

M
a

in
 r

o
u

ti
n

e

Flow of action in running  code 

for strategy 1 in calculating a(G)

 
Figure C1: Flow of actions when running code of strategy 1 for calculating a(G). 

Figure C2 shows the code structure of strategy 2. The main routine calls the three subroutines 

according to a predefined number of iterations and stores the results for each iteration.  The 1st 

subroutine sequentially adds a new edge between a vertex of minimum degree and every other 

vertex, not having an edge already. All possibilities are tried out and the edge resulting in maximum 
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robustness gain is stored by the 2nd subroutine. If a tie occurs the first edge is chosen. The 3rd 

subroutine modifies  and , according to this new edge, before the next iteration starts.  

Load the A and D matrices in Matlab’s 

workspace.

(only at the start)

Run the eigenvalue calculator to calculate the 

E matrix and maximum achievable robustness.

(evcalcexp3.m)

Find the robustness maximizing links for the 

next iteration and store them in the Edge 

matrix.

(findunidirlinksinsymmatrixexp3.m)

Modify the A and D matrices for starting the 

next iteration.

(modifymatricesADonelinkexp3.m)

Subroutine 1

Subroutine 2

Subroutine 3

M
a

in
 r

o
u

ti
n

e

Flow of action in running code for 

strategy 2 in calculating a(G)

 
Figure C2: Flow of actions when running code of strategy 2 for calculating a(G). 

The flowchart of strategy 3 is presented in figure C3. This strategy uses the Fiedler vector to find 

vertices  and , between which the new edge should be added. At the end of each iteration  is 

modified so that the next iteration can start based on the new network, consisting of the original 

network plus all the edges added in the previous iterations.  

Load the A and D matrices in Matlab’s workspace.

(only at the start)

Calculate the fiedler vector.

Find the node i with the smallest value in the vector.

Find the node j with the largest value in the vector.

Modify the Laplacian for the next iteration according to 

the link addition between I and j.

(experiment4.m)

M
a

in
 r

o
u

ti
n

e

Flow of action in running code for 

strategy 3 in calculating a(G)

 
Figure C3: Flow of actions when running code of strategy 3 for calculating a(G). 
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C2 Code structure for CTA-edge-betweenness program 
 

The code for the CTA-edge-betweenness program consists of a main  and a subroutine as shown in 

figure C4. The subroutine calculates a predecessor list from each source vertex  to every other 

vertex. The main routine calculates the edge-betweenness centrality .  

Main routine: CTAedgeBetweenness_bidirectional.m

Sub routine: FindpathsCTA.m
 

Figure C4: Code structure for CTA-edge-Betweenness program. 

 

C3 Matlab code structure for cactus construction sub algorithms 
 

The structures of the”st-MC-partition”, “Update st-MC-partition” and ”Construct st-cactus-

representation” algorithms are shown in figures C5, C6 and C7 respectively. The m files of each 

algorithm can be found on the CD handed in along with this thesis. On this disk the same hierarchy as 

in the figure is used for storing the code. 

 st_MC_partition.m 
 Procedure0_merge_nodes_on_source_side_of_cut.m 
  max_flow.m 
 Procedure1.m 
  FindPathsCTA_Procedure1.m 
  Contraction_Algorithm_for_each_neighbour.m 
  max_flow.m 
 Procedure2.m 
  FindPathsCTA_Procedure2.m 
  Contraction_Algorithm_for_neighbour_list.m 
  max_flow.m 
  

Figure C5: Hierarchy of the programs for computing st-MC-partition. 

 Update_st_MC_partition.m 
 Procedure_contract_yertices_to_obtain_G_hat .m 

Procedure_update_Cut_list.m 
Contract_vertices_to_obtain_G_prime_j.m 

  Procedure_find_Cut.m 
   max_flow.m 
  

Figure C6: Hierarchy of the programs for updating st-MC-partition. 
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 CONSTRUCT_st_CACTUS_representation.m 
Procedure_Contract_Vertices_to_obtain_A_pie_st.m 
Procedure_SEGMENT.m 
Procedure_CONSTRUCT_CHAINS.m 
Procedure_CONSTRUCT_CYCLES.m 
Procedure_construct_st_CACTUS_REPRESENTATION.m 
Procedure_construct_cycle_type_normal_cactus_representation.m 

  
Figure C7: Hierarchy of the programs for constructing st-cactus-representation. 
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Appendix D: Algebraic-connectivity results in table format 
 

The edge column of each strategy (in table D1) represents the edge to be added, before the 

corresponding  is achieved. The labels used for the edges correspond to the vertex labels of 

figure B3. Adding the edges of the table to this figure (for each strategy) would provide a graphical 

view of the results.  

  Strategy 1 Strategy 2 Strategy 3 

# of edges a(G) Edge a(G) Edges a(G) Edge 

0 0.4087468 none 0.408747 none 0.4087468 none 

1 0.4524422 {3,19} 0.448401 {26,19} 0.4368959 {31,11} 

2 0.5096773 {4,12} 0.534336 {31,22} 0.5201419 {30,18} 

3 0.5284789 {10,26} 0.550922 {28,5} 0.5512031 {14,28} 

4 0.6115688 {9,29} 0.587513 {12,4} 0.6180828 {16,27} 

5 0.6359319 {7,27} 0.622456 {16,2} 0.6478366 {26,29} 

6 0.6399762 {4,21} 0.631358 {27,5} 0.6691836 {29,17} 

7 0.6477021 {2,19} 0.701756 {17,26} 0.7460621 {27,13} 

8 0.6508744 {4,6} 0.70871 {11,15} 0.7616127 {26,12} 

9 0.6524729 {6,16} 0.73472 {14,30} 0.7803458 {28,15} 

10 0.6644186 {3,11} 0.779633 {29,9} 0.8070166 {31,25} 

11 0.7087881 {28,31} 0.822694 {13,18} 0.8978325 {24,30} 

12 0.7164941 {4,15} 0.83054 {24,9} 0.9120071 {20,25} 

13 0.7549945 {3,13} 0.886547 {14,15} 0.9135502 {28,27} 

14 0.7735963 {4,30} 0.935896 {25,19} 0.9537357 {21,26} 

15 0.8011487 {14,31} 0.936076 {18,26} 1.0127242 {24,13} 

16 0.8570022 {18,30} 0.999269 {30,22} 1.0299458 {11,15} 

17 0.8587648 {15,19} 1.03886 {12,26} 1.0794431 {19,17} 

18 0.8662657 {30,31} 1.079436 {11,1} 1.1190373 {12,18} 

19 0.8877258 {14,27} 1.164342 {31,18} 1.2233203 {21,14} 

20 0.9189137 (2,9} 1.223385 {13,28} 1.2339375 {20,18} 

21 0.9325968 (4,12) 1.243819 {21,7} 1.2665997 {17,16} 

22 1.0835473 {1,31} 1.247766 {16,27} 1.3407325 {29,7} 

23 1.2246554 {7,14} 1.324291 {20,15} 1.3942492 {15,30} 

24 1.2943092 {25,28} 1.338533 {17,2} 1.4648112 {31,14} 

25 1.3736695 {1,16} 1.39737 {29,14} 1.4888425 {28,6} 

26 1.3783159 {5,14} 1.427592 {13,10} 1.5649382 {11,17} 

27 1.4048595 {16,24} 1.516332 {16,14} 1.6490803 {12,13} 

28 1.4116257 {3,15} 1.582306 {28,1} 1.7355115 {16,5} 

29 1.4205709 {15,23} 1.593227 {20,16} 1.8038378 {21,19} 

30 1.4259212 {14,24} 1.62774 {30,7} 1.8215658 {22,24} 

Table D1: Increase algebraic-connectivity of core PoP ASD/RT. 
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Figure D1 shows how the algebraic connectivity increases, when adding edges to the entire graph, for 

the 3 strategies. 
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Figure D1: Increasing the Algebraic-connectivity of the entire graph. 
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Appendix E: Detailed results capacity management 
 

Table E1 shows the most important parameters to be management within KPN’s capacity 

management project. 

Capacity parameters for elements (vertices) Capacity parameters for connections (edges) 

1 Processing power (CPU) => processing delay 1 Available bandwidth (Installed capacity per 

edge) 

2 Memory usage (Ram) 2 Delay (propagation and transmission delay) 

3 Buffering space => buffering delay 3 Jitter 

4 Disk space   

5 Simultaneously attached users (SAUs)   

Table E1: Parameters for capacity management. 

Capacity management is a hot issue, because mobile data traffic is growing at an exponential rate, as 

shown in figure E1. This exponential growth is expected to continue further as more customers make 

use of services like blackberry and machine to machine communication. 
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Figure E1: Capacity forecast until 2010. 
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  0.1 Mb 1 Mb 10 Mb 100 Mb 

# u v ABW Rel_RBW Bottleneck Rel_RBW Bottleneck Rel_RBW Bottleneck Rel_RBW Bottleneck 

1 1 2 10 0.99557 1 0.9557 1 0.557 1 -3.43 3 

2 1 3 10 0.9975 1 0.975 1 0.75 1 -1.5 3 

3 2 3 10 0.99725 1 0.9725 1 0.725 1 -1.75 3 

4 1 4 10 0.99549 1 0.9549 1 0.549 1 -3.51 3 

5 2 4 10 0.99505 1 0.9505 1 0.505 1 -3.95 3 

6 3 4 10 0.99725 1 0.9725 1 0.725 1 -1.75 3 

7 1 5 10 1 1 1 1 1 1 1 1 

8 2 6 10 0.9994 1 0.994 1 0.94 1 0.4 2 

9 5 6 10 0.99317 1 0.9317 1 0.317 2 -5.83 3 

10 3 7 10 1 1 1 1 1 1 1 1 

11 5 7 10 0.9956 1 0.956 1 0.56 1 -3.4 3 

12 6 7 10 0.99525 1 0.9525 1 0.525 1 -3.75 3 

13 4 8 10 1 1 1 1 1 1 1 1 

14 5 8 10 0.99439 1 0.9439 1 0.439 1 -4.61 3 

15 6 8 10 0.99395 1 0.9395 1 0.395 2 -5.05 3 

16 7 8 10 0.99615 1 0.9615 1 0.615 1 -2.85 3 

17 2 9 10 0.99025 1 0.9025 1 0.025 2 -8.75 3 

18 6 10 10 0.98821 1 0.8821 1 -0.179 3 -10.79 3 

19 9 10 10 0.99773 1 0.9773 1 0.773 1 -1.27 3 

20 2 11 1 1 1 1 1 1 1 1 1 

21 6 12 1 1 1 1 1 1 1 1 1 

22 11 12 1 1 1 1 1 1 1 1 1 

23 2 13 1 1 1 1 1 1 1 1 1 

24 6 14 1 1 1 1 1 1 1 1 1 

25 13 14 1 1 1 1 1 1 1 1 1 

26 9 15 20 0.99652 1 0.9652 1 0.652 1 -2.48 3 

27 11 15 2 1 1 1 1 1 1 1 1 

28 13 15 2 1 1 1 1 1 1 1 1 

29 10 16 20 0.99577 1 0.9577 1 0.577 1 -3.23 3 

30 12 16 2 1 1 1 1 1 1 1 1 

Table E2: Output CTAedgeBetweenness according to uniform distributed TM. 

This table presents an incomplete output of the CTA edge-betweenness program, according to the 

linear rule, where the input (in this case) is a traffic matrix, constructed using uniform packet sizes. 

The 2nd and 3rd column show the vertices connected by a bidirectional edge. Rel_RBW stands for 

relative remaining bandwidth. 
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Label Name Location BC ω(v) Ω(v) VC(v) Label Name Location BC ω(v) Ω(v) VC(v) 

30 
  

280 1 1 9736 133 
  

280 0.5 0.5 5008 

31 
  

280 1 1 9736 134 
  

280 0.5 0.5 5008 

53 
  

280 1 1 9736 135 
  

280 0.5 0.5 5008 

54 
  

280 1 1 9736 138 
  

280 0.5 0.5 5008 

76 
  

280 1 1 9736 139 
  

280 0.5 0.5 5008 

77 
  

280 1 1 9736 140 
  

280 0.5 0.5 5008 

75 
  

538 0 1.5 7630 141 
  

280 0.5 0.5 5008 

29 
  

532 0 1.5 7624 59 
  

2320 0 0.5 4684 

52 
  

532 0 1.5 7624 60 
  

2320 0 0.5 4684 

28 
  

304 1 0.5 7396 78 
  

1047 0 0.5 3411 

51 
  

304 1 0.5 7396 79 
  

1047 0 0.5 3411 

74 
  

298 1 0.5 7390 80 
  

1047 0 0.5 3411 

27 
  

282 1 0.5 7374 81 
  

1047 0 0.5 3411 

50 
  

282 1 0.5 7374 82 
  

1047 0 0.5 3411 

73 
  

282 1 0.5 7374 83 
  

1047 0 0.5 3411 

130 
  

280 1 0.5 7372 104 
  

820 0 0.5 3184 

131 
  

280 1 0.5 7372 105 
  

820 0 0.5 3184 

136 
  

280 1 0.5 7372 110 
  

820 0 0.5 3184 

137 
  

280 1 0.5 7372 111 
  

820 0 0.5 3184 

4 
  

4728 0 0.5 7092 116 
  

820 0 0.5 3184 

8 
  

4728 0 0.5 7092 117 
  

820 0 0.5 3184 

2 
  

4587 0 0.5 6951 122 
  

820 0 0.5 3184 

6 
  

4587 0 0.5 6951 123 
  

820 0 0.5 3184 

1 
  

4355 0 0.5 6719 106 
  

560 0 0.5 2924 

5 
  

4355 0 0.5 6719 107 
  

560 0 0.5 2924 

84 
  

3623 0 0.5 5987 112 
  

560 0 0.5 2924 

85 
  

3623 0 0.5 5987 113 
  

560 0 0.5 2924 

3 
  

3047 0 0.5 5411 118 
  

560 0 0.5 2924 

7 
  

3047 0 0.5 5411 119 
  

560 0 0.5 2924 

9 
  

3046 0 0.5 5410 124 
  

560 0 0.5 2924 

10 
  

3046 0 0.5 5410 125 
  

560 0 0.5 2924 

32 
  

3046 0 0.5 5410 11 
  

280 0 0.5 2644 

33 
  

3046 0 0.5 5410 12 
  

280 0 0.5 2644 

15 
  

2963 0 0.5 5327 13 
  

280 0 0.5 2644 

16 
  

2963 0 0.5 5327 14 
  

280 0 0.5 2644 

38 
  

2963 0 0.5 5327 34 
  

280 0 0.5 2644 

39 
  

2963 0 0.5 5327 35 
  

280 0 0.5 2644 

61 
  

2951 0 0.5 5315 36 
  

280 0 0.5 2644 

62 
  

2951 0 0.5 5315 37 
  

280 0 0.5 2644 

132 
  

280 0.5 0.5 5008 55 
  

280 0 0.5 2644 

Table E3: Sample result for vertex criticality (part 1). 
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Label Name Location BC ω(v) Ω(v) VC(v) Label Name Location BC ω(v) Ω(v) VC(v) 

56 
  

280 0 0.5 2644 67 
  

280 0 0 280 

57 
  

280 0 0.5 2644 68 
  

280 0 0 280 

58 
  

280 0 0.5 2644 69 
  

280 0 0 280 

120 
  

280 0.5 0 2644 70 
  

280 0 0 280 

121 
  

280 0.5 0 2644 71 
  

280 0 0 280 

128 
  

280 0 0.5 2644 72 
  

280 0 0 280 

129 
  

280 0 0.5 2644 86 
  

280 0 0 280 

17 
  

280 0 0 280 87 
  

280 0 0 280 

18 
  

280 0 0 280 88 
  

280 0 0 280 

19 
  

280 0 0 280 89 
  

280 0 0 280 

20 
  

280 0 0 280 90 
  

280 0 0 280 

21 
  

280 0 0 280 91 
  

280 0 0 280 

22 
  

280 0 0 280 92 
  

280 0 0 280 

23 
  

280 0 0 280 93 
  

280 0 0 280 

24 
  

280 0 0 280 94 
  

280 0 0 280 

25 
  

280 0 0 280 95 
  

280 0 0 280 

26 
  

280 0 0 280 96 
  

280 0 0 280 

40 
  

280 0 0 280 97 
  

280 0 0 280 

41 
  

280 0 0 280 98 
  

280 0 0 280 

42 
  

280 0 0 280 99 
  

280 0 0 280 

43 
  

280 0 0 280 100 
  

280 0 0 280 

44 
  

280 0 0 280 101 
  

280 0 0 280 

45 
  

280 0 0 280 102 
  

280 0 0 280 

46 
  

280 0 0 280 103 
  

280 0 0 280 

47 
  

280 0 0 280 108 
  

280 0 0 280 

48 
  

280 0 0 280 109 
  

280 0 0 280 

49 
  

280 0 0 280 114 
  

280 0 0 280 

63 
  

280 0 0 280 115 
  

280 0 0 280 

64 
  

280 0 0 280 126 
  

280 0 0 280 

65 
  

280 0 0 280 127 
  

280 0 0 280 

66 
  

280 0 0 280   
  

        

Table E4: Sample result for vertex criticality (part 2). 

 

 

 

 


