

Robustness Analysis and Capacity

Management of the KPN (PS) Mobile

Core Network

R.M.A. Imamdi

(1535676)

Committee members:

Supervisor: Dr. Ir. F.A. Kuipers

Mentor: Ing. J. Kromjong (KPN)

Member: Prof. Dr. Ir. P.F.A. Van Mieghem

Dr. E. Onur

September 3, 2010

M.Sc. Thesis No: PVM 2010 – 065

Faculty of Electrical Engineering, Mathematics and Computer Science

Network Architectures and Services

i

Copyright ©2010 by R.M.A. Imamdi

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized

in any form or by any means, electronic or mechanical, including photocopying, recording or by any

information storage and retrieval system, without the permission from the author and Delft

University of Technology.

ii

Preface

In the 4th quarter of 2009, KPN (”Koninklijke PTT Nederland NV”) launched a project, to boost up the

capacity management of its packet switched (PS) mobile core network. The fastest growing PS

services are already running on a core network and most new services should be accommodated as

well. KPN’s capacity management project consists of both research and development aspects. The

M.Sc. graduation project of the author is part of the research aspects. This thesis primarily focuses on

robustness analysis and capacity management, where the PS mobile core network is treated as a

case study. A more elaborate report, called the KPN deliverable, which also focuses on the details of

the network has been delivered to KPN. The boundaries of this thesis were based on the available

network-specific information at KPN (during the time of the graduation project) and the time limit for

the M.Sc. project set by TU Delft.

I am grateful to many people, who provided me with information, documentation and support during

the course of the project. In the first place I would like to thank my university Professor Piet Van

Mieghem, my supervisor at TU Delft Fernando Kuipers and my company supervisor Johan Kromjong. I

am also thankful to Jeroen van Huessen, who always shared his knowledge and experience regarding

the PS mobile core. Furthermore, I would like to thank the managers (Will Boesveld, Marco de

Nooijer, and Ben Perk), who gave me the opportunity to participate in the capacity management

group at KPN. Last but not least I would like to thank the whole Care Customer Department for their

kind cooperation and for the fun times at KPN.

Note 1: This thesis is accompanied by a CD containing programming work, network drawings, tables with

network specific information, network related matrices, the KPN deliverable, and this thesis.

Note 2: As this version of the thesis is meant to be publicly available, the author has deliberately removed

some classified information in order to protect KPN’s investments. Complete or partial information has

been removed from figure 2.6, table 4.2, figure B1, figure E1, table E3 and table E4.

 iii

Summary

This thesis treats robustness analysis and capacity management, such that the techniques and tools

used (and devised) for research are applicable to any network, while KPN’s near future PS mobile

core network is used as a case study. As a necessary step, this core network has been made insightful

in the form of network and graph theoretical drawings on the subnet level, but also on the level of

the complete core.

Most of the academic work focuses on robustness analysis, where edge, vertex and algebraic-

connectivity are treated as robustness measures. A survey is made based on these three connectivity

types. For designed networks, consisting of several node types, the best way of increasing robustness

is by solving either the edge-connectivity-augmentation or the vertex-connectivity-augmentation

problem. These augmentation problems are to find a minimum set of new edges to be added to a

graph, such that the resilience to link and node failures increases. The author has made use of

existing algorithms for solving these respective problems. Both algorithms provide optimal solutions

in the case of an unweighted graph. There is some freedom of choosing vertex pairs for adding new

edges to increase a network’s robustness, when increasing the edge and/or vertex-connectivity.

Increasing the algebraic-connectivity is an NP-complete problem for the general case. The heuristic

approaches submitted to the core network and its subnets gave less efficient solutions for increasing

the algebraic connectivity. Some calculations have been done to see how the algebraic-connectivity

of the core network changes as the edge as well as the vertex-connectivity is increased by edge

addition.

The algorithm for increasing the edge-connectivity is quite abstract. The most difficult and time

consuming part is to construct a cactus representation, which is a compact graph representation of

all the minimum cuts of the network. An existing abstract cactus construction algorithm is analyzed

and extended with 5 subroutines, such that it can be implemented. In general there are various

cactus representations that can be used to represent the minimum cuts of a single network.

Finally, we address the capacity management issues from a research perspective, since no

measurements were possible on the case study network, at the time of writing. Therefore, this part

focuses on bandwidth management and vertex criticality of nodes. A first tool, called the CTA-edge-

Betweenness program, has been programmed to compute what percentage of each edge will be

loaded with traffic and to find out which edges are prone to congestion. This tool can be used as an

indicator for dimensioning the bandwidth of the edges in the case where no measurements are

available. A second tool, named the vertex-criticality program, computes how important each

element is with respect to the network it belongs to. Both tools were tested with the PS mobile core

network as the test network.

The tools discussed in the previous paragraph are useful in the process of performing proactive

capacity management, especially when a network is still in its design phase. To use them effectively,

complete network information and traffic routing schemes are necessary.

 iv

List of figures

Figure 1.1: Domains of the KPN network 3

Figure 2.1: Interconnections between KPN’s PS networks *2+. 5

Figure 2.2: Physical connectivity 10G IP BB and Intelligent Edge [2]. 5

Figure 2.3: The Mobile 10G IP BB [58] 6

Figure 2.4: Traffic flow across the network during normal operation. 7

Figure 2.5: Physical model of an IE core PoP subnet [2]. 8

Figure 2.6: Physical connectivity of IE to IP BB [2]. 9

Figure 3.1: Current situation regarding core PoP ASD/RT and corresponding BB routers. 18

Figure 3.2: Comparison of suboptimal strategies for ASD/RT. 18

Figure 3.3: Parent algorithm for constructing the cactus representation. 21

Figure 3.4: Child algorithm for constructing the cactus representation. 21

Figure 3.5: Resulting parent algorithm for constructing cactus representations. 23

Figure 3.6: Resulting child algorithm for constructing cactus representations. 23

Figure 3.7: An algorithm for choosing an edge {s,t}. 24

Figure 3.8: Examples of choosing s and t where the min cut value is 4. 25

Figure 3.9: Example of st-MC-partition 26

Figure 3.10: Examples to explain algorithm 3.6. 27

Figure 3.11: Algorithm st-MC- partition 28

Figure 3.12: Example step 4 of algorithm 3.6. 29

Figure 3.13: Algorithm for updating st-MC-partition. 30

Figure 3.14: Example of a graph that requires algorithm 3.6 and 3.7 to find all cuts. 31

Figure 3.15: Algorithm update Cut_list. 33

Figure 3.16: Example of the process of updating the Cut_list (1). 34

Figure 3.17: Example of the process of updating the Cut_list (2). 34

Figure 3.18: Example of the process of updating the Cut_list (3). 34

Figure 3.19: Example of contracted graph according to st-MC-partition. 35

Figure 3.20: Chains and cycles of running examples. 36

Figure 3.21: Example of constructing st-cactus-representation out of chains and cycles. 37

Figure 3.22: Algorithm for constructing st-cactus-representation (part 1). 37

Figure 3.23: Algorithm for constructing st-cactus-representation (part 2). 38

Figure 3.24: Algorithm for constructing st-cactus-representation (part 3). 39

Figure 3.25: Merging cacti to form the cactus representation. 40

Figure 3.26: Examples of cacti to be merged with st-cactus-representation. 41

Figure 3.27: Example of merging cacti. 41

Figure 3.28: Algorithm for converting to CNC representation. 42

Figure 3.29: Example of 3-cycle insertion. 43

Figure 3.30: Example of constructing a CNC representation. 43

Figure 3.31: Example of EST construction. 45

Figure 3.32: Constructing the cactus representation of core PoP ASD/RT. 47

Figure 3.33: The Extreme Sets Tree of core PoP ASD/RT. 47

Figure 3.34: The 2-edge connected core PoP ASD/RT. 48

 v

Figure 3.35: Cactus representation of the 1-augmented core PoP ASD/RT. 49

Figure 3.36: Constructing the cactus representation of the entire graph. 50

Figure 3.37: Cactus representation of the entire graph. 50

Figure 3.38: Calculating b(G), t(G) and the lower bound. 52

Figure 3.39: From a k-connected to a (k+1)-connected graph. 52

Figure 3.40: Core PoP ASD and RT edge augmentation procedure. 53

Figure 3.41: Vertex-augmentation possibilities of core PoP ASD/RT. 55

Figure 4.1: Usage of the CTA-edge-betweenness program. 57

Figure 4.2: Functioning of the queue in algorithm 4.2. 58

Figure 4.3: The algorithm for CTA-edge-betweenness [80]. 59

Figure 4.4: Difference of linear and logarithmic rule. 61

Figure 4.5: The output CTA-edge-betweenness using the 1st TM type. 62

Figure 4.6: Output CTA edge-betweenness using the 2nd TM type. 63

Figure 4.7: Algorithm and functioning of the vertex-betweenness-centrality program. 66

Figure 4.8: Functioning of the queue and stack of algorithm 4.3. 67

Figure 4.9: Histogram for vertex criticality. 68

Figure B1: The PS mobile core network of KPN 77

Figure B2: Graph of the PS mobile core network of KPN. 78

Figure B3: Relaxed graph of the PS mobile core network of KPN with edge capacities. 79

Figure B4: Graph of ASD/RT after applying strategy 1. 80

Figure B5: Graph of ASD/RT after applying strategy 2. 80

Figure B6: Graph of ASD/RT after applying strategy 3. 81

Figure B7: The complete graph after applying Algorithm 3.12. 82

Figure B8: Applying Algorithm 3.13 for augmenting the vertex-connectivity. 83

Figure B9: The complete graph after applying Algorithm 3.13. 84

Figure C1: Flow of actions when running code of strategy 1 for calculating a(G). 85

Figure C2: Flow of actions when running code of strategy 2 for calculating a(G). 86

Figure C3: Flow of actions when running code of strategy 3 for calculating a(G). 86

Figure C4: Code structure for CTA-edge-Betweenness program. 87

Figure C5: Hierarchy of the programs for computing st-MC-partition. 87

Figure C6: Hierarchy of the programs for updating st-MC-partition. 87

Figure C7: Hierarchy of the programs for constructing st-cactus-representation. 88

Figure D1: Increasing the Algebraic-connectivity of the entire graph. 90

Figure E1: Capacity forecast until 2010. 91

 vi

List of tables

Table 3.1: Vertex degree and edge demand of core PoP ASD/RT 48

Table 3.2: A set of edges for 2-augmenting core PoP ASD/RT. 49

Table 3.3: The new edges for augmenting the entire graph. 53

Table 3.4: Edge-connectivity compared with algebraic-connectivity of core PoP ASD/RT. 54

Table 3.5: Vertex-connectivity compared with algebraic-connectivity ASD/RT. 54

Table 4.1: Effect of tuning parameter on linear and log rules. 60

Table 4.2: Most important services and their peak values. 63

Table 4.3: The edges which exceed the safety margin. 63

Table 4.4: The relative importance factor list. 67

Table 4.5: The size of cloud factor list. 68

Table D1: Increase algebraic-connectivity of core PoP ASD/RT. 89

Table E1: Parameters for capacity management. 91

Table E2: Output CTAedgeBetweenness according to uniform distributed TM. 92

Table E3: Sample result for vertex criticality (part 1). 93

Table E4: Sample result for vertex criticality (part 2). 94

1

Table of Contents

Preface ..ii

Summary ... iii

List of figures ... iv

List of tables .. vi

1 Introduction .. 3

1.1 Background information.. 3

1.2 Problem statement .. 3

1.3 Focus of the thesis ... 3

1.4 Methodology and thesis outline ... 4

2 Network Architecture of the PS mobile core network ... 5

2.1 The mobile IP backbone .. 6

2.2 Background of the Intelligent Edge Network ... 8

2.3 The network model of Intelligent Edge with IP Backbone .. 10

3 Robustness Analysis and Connectivity .. 11

3.1 A survey for connectivity as a measure for robustness .. 12

3.2 Increasing the algebraic-connectivity .. 16

3.2.1 Strategies for increasing the algebraic-connectivity ... 16

3.2.2 Results of increasing the algebraic-connectivity ... 17

3.3 A programmable algorithm for cactus construction ... 20

3.3.1 An algorithm for choosing an edge when constructing a cactus 23

3.3.2 Constructing the st-MC-partition .. 26

3.3.3 Constructing the st-cactus-representation ... 35

3.3.4 Merging multiple cacti ... 40

3.3.5 Converting a cactus representation to a CNC cactus representation 42

3.4 Increasing the edge-connectivity .. 44

 2

3.5 Vertex-connectivity augmentation.. 51

3.6 Relationship between augmentation and algebraic-connectivity .. 54

4 Capacity Management in the PS domain ... 56

4.1 Bandwidth management of edges .. 56

4.2 Vertex criticality... 64

5 Conclusions ... 69

Bibliography ... 70

Appendix A: List of abbreviations and Symbols ... 75

Appendix B: Network drawings and additional information ... 76

B1 Drawings of the PS mobile core network .. 76

B2 Results regarding the increase of the algebraic-connectivity ... 80

B3 Drawing results regarding edge and vertex-augmentation analysis 81

Appendix C: The structure of MATLAB programs .. 85

C1 Structure of code for strategy 1 – 3 for increasing a(G) .. 85

C2 Code structure for CTA-edge-betweenness program ... 87

C3 Matlab code structure for cactus construction sub algorithms .. 87

Appendix D: Algebraic-connectivity results in table format .. 89

Appendix E: Detailed results capacity management ... 91

3

1 Introduction

1.1 Background information

Within the Netherlands, KPN is the largest service provider for both fixed and mobile Telephony, and

a big competitor for Television and Internet provisioning. In order to provide adequate service to its

customers, KPN has to manage, maintain and expand a large network consisting of a large variety of

components. The KPN mobile network is a complex network, which can be divided into several

domains as shown in figure 1.1.

Circuit switched domain

Packet switched domain

Radio access domain Transport domain

Figure 1.1: Domains of the KPN network

Currently, network and traffic information is gathered in an un-automated fashion from different

tools. As a consequence the layout of the network architecture is not known in detail. Furthermore,

partial management mechanisms are implemented for small parts of the core network. These

“islands” are not interconnected and not completely structured yet. The data is only used when

there is a problem or bottleneck somewhere in the network. This means that performance

management (and capacity management) is done in a reactive way. To improve this situation, KPN

has launched a capacity management project with the purpose of managing the capacity of the

Packet Switched (PS) and the transmission domain [57], which form KPN’s PS mobile core network.

1.2 Problem statement

The main problem that KPN wants to deal with is improving the manner in which the data traffic in

the core network is currently managed. There is a danger that parts of the PS core network may get

overloaded especially in busy periods. From a research perspective, the main problem is analyzing

how the robustness of the network can be increased as efficient as possible.

1.3 Focus of the thesis

The focus of this M.Sc. thesis will be on robustness analysis and capacity management of the PS –

and Transmission domain, which will often be referred to as the PS or Intelligent Edge mobile core.

1. Introduction

 4

Because the network architecture and topology were not known, an extra task was to make these

two domains more insightful.

Within the scope of KPN’s capacity management project the main purpose of the M.Sc. thesis is

twofold. Firstly, it is important to deliver general methods and tools for increasing the robustness of

a network. Secondly, general techniques and tools are required that provide initial insights in where

capacity shortages and congestion are most likely to occur. For both topics, the packet switched (PS)

mobile core network is treated as a case study.

1.4 Methodology and thesis outline

Methodology:

1. Literature study regarding: - The PS mobile core network (case study).

- Graph theory.

- Robustness of networks.

- Connectivity and related algorithms.

- Capacity management.

2. Defining the M.Sc. thesis proposal.

3. Applying /formulating algorithms for increasing connectivity (and robustness).

4. Simulations regarding robustness analysis.

5. Modifying and applying algorithms for capacity management.

6. Simulations regarding capacity management.

7. Writing the thesis.

Thesis outline:

Chapter 2 describes the network architecture and topology of the PS mobile core network, which is

expected to be operational in the near future. The most important results are network drawings

based on the Intelligent Edge design.

Chapter 3 focuses on robustness analysis, where edge, vertex and algebraic-connectivity are treated

as measures. Research is also done regarding the relationship between the different connectivity

types. Furthermore, an existing abstract algorithm is analyzed and extended, such that it can be used

for writing a program that generates a representation of all min cuts (called cactus representation).

This chapter contains most of the academic work.

Chapter 4 finally addresses the capacity management issues from a research perspective, where it is

important to bear in mind that no measurements were possible on the target network, at the time of

writing. Therefore the research is limited to bandwidth management on the network connections

and a new term called vertex-criticality that indicates the importance of each network element.

5

2 Network Architecture of the PS mobile core network

KPN’s PS mobile core network consists of several subnets, each with specific functionalities with

respect to the services running on the network. The subnets are primarily responsible for processing

and/or transmission of data.

Figure 2.1 shows a high level logical overview of how several networks are interconnected. The aqua-

blue clouds on the right and below represent external networks from KPN’s point of view. The

Mobidata network is used for Operation and Maintenance purposes, while the Radio access network

represents the combined GSM (2G)/UMTS (3G) cellular network of KPN in the Netherlands. The

Mobile IP Backbone and the Intelligent Edge network, together form the PS mobile core network,

which is the case study in this thesis.

Mobile IP Backbone

Mobidata

(Network Management)

Intelligent Edge

Other Local Operators

Radio Access Network

MMS Domestic

Exchange

(MDX)

Internet

GPRS Roaming

Exchange

(GRX)

Figure 2.1: Interconnections between KPN’s PS networks [2].

The physical connectivity between the IP BB and the Intelligent Edge network is quite different from

the logical overview shown in figure 2.1. The Intelligent Edge network consists of 4 core PoP (Point of

Presence) and 5 VRF (Virtual Routing Function) Lite locations, located in several Dutch cities, and are

physically connected via the 10G mobile IP Backbone. As the name already reveals, this backbone is

based on elements (routers) and connections that have a capacity of 10 Gbps. Figure 2.2 gives a high

level view of the physical connectivity between the IP BB and Intelligent Edge network. The following

sections describe the IP backbone and the Intelligent Edge network in more detail.

Mobile 10G IP Backbone

Intelligent Edge

Core PoP

The Hague

Intelligent Edge

Core PoP AmsterdamIntelligent Edge

Core PoP

Rotterdam

Intelligent Edge

Core PoP

Arnhem

Intelligent Edge

VRF-Lite

Bussum

Intelligent Edge

VRF-Lite

Eindhoven

Intelligent Edge

VRF-Lite

Groningen

Intelligent Edge

VRF-Lite

Telfort ASD-Hemweg

Intelligent Edge

VRF-Lite

ASD-Nikhoff

High level (physical) view of PS domain

Figure 2.2: Physical connectivity 10G IP BB and Intelligent Edge [2].

2. Network Architecture of the PS mobile core network

 6

2.1 The mobile IP backbone

At the time of writing, there are 2 IP Backbones, namely the currently active 1G Mobile IP Backbone

and the new Mobile 10G IP Backbone1. In 2011, the traffic of PS services will migrate from the 1G to

the new 10G backbone. The reason is that the older counterpart is getting saturated with both types

of traffic (CS and PS), especially due to the exponential growth of the PS traffic. As a response on

traffic growth, KPN has decided to separate these traffic types, each on its own backbone. This

means that at the backbone level, the installed capacity for PS traffic increases from a shared 1 Gbps

network to a dedicated 10 Gbps network, while CS traffic remains on the 1 Gbps network. As

described in [37,2], the 10G IP BB provides Location redundancy, MPLS IPv4 VPNs, backbone

redundancy, fast rerouting and interconnections to external networks.

The 10G IP BB will have a similar topology and functionality as its 1G counterpart, with the exception

that only 4 (instead of 5) core PoP locations will constitute the new backbone. Figure 2.3 shows the

10G IP BB [58].

GV2

(A-node)

AH

(A-node)

RT2

(A-node)

ASD2

(A-node)

GV2

(B-node)

AH

(B-node)

RT2

B-node

ASD2

(B-node)

Subnet A

Subnet B

Figure 2.3: The Mobile 10G IP BB [58]

The 10G IP BB consists of 2 subnets, where the A and B collocated core routers are connected at each

of the 4 core locations. The fully meshed A and B subnets, will provide the required redundancy, such

that no single node (link) failure will affect the performance. All edge devices will be connected to

both the A as well as the B subnet. Each of the two subnets should be able to support a maximum

nominal load of 40% with respect to the entire backbone capacity.

Routing

A nice property of the 10G IP BB is that it supports load sharing between its two subnets. So in this

configuration there is no primary and hot-standby subnet. Routing via transit locations is supported

1
 Note that in the future, when KPN steps over to an all IP network, there will be another migration from the

Mobile 10G IP BB to the Generic IP Network (GIPN). This network is out of the scope of this thesis.

2. Network Architecture of the PS mobile core network

 7

to prevent network disconnection in the case that multiple failures occur. When single failures occur,

transit locations are avoided, which in turn avoids competition between single hop and multi-hop

traffic paths. In order to be able to control traffic flows across the backbone and avoid unexpected

behavior, all (OSPF) links are always assigned explicit link costs. There are no OSPF-enabled links on

the backbone with default metrics. Furthermore, all links have the same metrics configured in both

directions such that symmetry is preserved. Figure 2.4 (a) exemplifies how traffic is routed under

normal conditions. Throughout the backbone the links connecting the A and B routers are assigned a

weight of 100, while the cross links are configured to have a weight of 40 (to prevent routing via

transit locations). Figure 2.4 (b) shows how the traffic flows in case of a link failure in the network. In

case of a single backbone link failure, the cost of the best path between the two locations is 180.

Therefore, paths passing through a transit location (like The Hague in the figure above) are prevented

due to the higher required cost of 200. Due to a double failure in the Mobile IP Backbone, two

locations may happen to have a best path via a third (transit) location.

ZR2A

ZR2A
ZR2A

ZR2B

ZR2B
ZR2B

Amsterdam

Amsterdam

Rotterdam

Rotterdam

The Hague

The Hague

100

100

100

100
100

100

40

Standard path for traffic from

The Hague to Amsterdam

Standard path for traffic from

Rotterdam to Amsterdam

Routing under normal conditions

40
40

ZR2A

ZR2A
ZR2A

ZR2B

ZR2B
ZR2B

Amsterdam

Amsterdam

Rotterdam

Rotterdam

The Hague

The Hague

100
100

100
100

100

4040

40

Standard path for traffic from The

Hague to Amsterdam

Failed link

X

Rerouted path for traffic from Rotterdam to Amsterdam

Total path cost: 180

Routing when a link failure occurs

(a) (b)

Figure 2.4: Traffic flow across the network during normal operation.

Link redundancy in the 10G IP BB

Between any combination of 2 core PoP locations two 10 Gbps connections are installed if they

belong to the same subnet. If the primary link fails, the backup link will take over. With this

configuration the probability of a 2 or 3 hop connection decreases.

Edge Devices

The (PS based) device types to be connected to the new Backbone are: Intelligent Edge routers,

SGSNs, GGSNs, RNCs (at a later stage), MSTP signalling systems, DNS system, Li (Legal Intercept) and

a CG (Charging Gateway). Clearly the voice related devices are left out in this device list, which

emphasises the fact that only data traffic will be transmitted on the new IP Backbone. More detailed

information about the new IP Backbone can be found in [37] and [58].

2. Network Architecture of the PS mobile core network

 8

2.2 Background of the Intelligent Edge Network

The Intelligent Edge (IE) network is used to provide mobile users with (1) secure access to the

Internet, (2) access to international roaming (via the GPRS Roaming Exchange) and (3) access to

multimedia services. The redundancy implementation is generic for these connections. There are 2

core routers at each location, providing connectivity to an external network. When one router fails

the other is able to carry the complete traffic load. There is also a notion of location redundancy,

such that if one location would fail, another one would be able to take over the load. At the time of

writing, Amsterdam and Rotterdam core PoP locations provide such redundancy, while the Arnhem

core PoP is being upgraded, such that it can become the 3rd redundant location [2].

Intelligent Edge consists of the larger 4 core PoP subnets and the smaller 5 VRF Lite subnets (figure

2.2), where the latter serve as an extension for providing specific functionality to the core locations.

Figure 2.5 shows an example of the basic physical model of a core PoP subnet. An important

implementation issue is that value added service related equipment are connected via an access

switch to the core switch. When the access switch’s maximum capacity is reached, another access

switch is connected to the core switch [37, 56]. This basic model does not show the connection of

Mobile Office Online (MOO) switches, because they are not implemented in every core location. The

model is used as a building block for making the drawing of the PS mobile core network shown in

figure B1 in appendix B. (See appendix A for the abbreviations).

ASWxA ASWxB

Core layer

Access layer

CSW1A CSW1B

SRLBxA
FRxA STARxA ZRxA

SRIPSxA

Load Balancer

Intrusion Prevention

System

SRLBxB
FRxBSTARxBZRxB

SRIPSxB

Load Balancer

Intrusion Prevention

System

DNS Authentication

server
SMSC MMSC

Device types for value added

services
Figure 2.5: Physical model of an IE core PoP subnet [2].

Each IE core PoP consists of 3 security zones, which are logically separated by redundant firewalls.

The separation into three zones is based on the level of security required to protect the network and

thus leads to [37, 2]:

1) A trusted zone, which is the most secure environment and contains systems managed by KPN.

2) A semi-trusted zone, providing access to other networks/customers, based on Service Level

Agreements (SLA’s).

3) An untrusted zone, providing connectivity to “untrusted” networks (and customers), which are

not based on SLA’s. The best known examples are the connections with the Internet.

2. Network Architecture of the PS mobile core network

 9

Each zone is equipped with 2 zone routers, which are connected to the IP backbone (figure 2.6). Only

the zone routers of the untrusted zone in the core PoP of Amsterdam and Rotterdam provide a

connection to the Internet and the GPRS Roaming Exchange (GRX) network [37,56]. There are only 2

VRF Lite routers per Lite subnet for all three zones. Each Lite router is configured to be aware of one,

two or three security zones, depending on the tasks of its subnet. An important implementation

issue is that information cannot be forwarded between different zones at a VRF Lite location itself.

Instead such information, destined for a different zone, needs to be routed via the nearest PoP

location. In the PS Mobile core network, each zone router is connected to a backbone core router, via

a 1 Gbps or 10 Gbps link. VRF Lite subnets have their own physical connections with these backbone

routers. Figure 2.6 exemplifies this.

Mobile IP Backbone

VLAN-based

Pseudo-wires

ZR1A

ZR1B

ZR2A

ZR2B

ZR3A

ZR3B

ZR1BZR1A ZR2BZR2A ZR3BZR3A

ZR1BZR1A ZR2BZR2A ZR3BZR3A

Mobile

Services

(local

switching

domain)

Mobile

Services

(local

switching

domain)

Mobile

Services

(local

switching

domain)

Mobile Services

(local switching

domain)

Mobile Services

(local switching

domain)

Mobile Services

(local switching

domain)

Mobile Services

(local switching

domain)

Mobile Services

(local switching

domain)

Mobile Services

(local switching

domain)

VRFL1A

VRFL1B

Mobile

Services

(local

switching

domain)

Figure 2.6: Physical connectivity of IE to IP BB [2].

2. Network Architecture of the PS mobile core network

 10

2.3 The network model of Intelligent Edge with IP Backbone

An additional but necessary part of the M.Sc. project is to make a network drawing of the complete

PS mobile core network according to the intelligent edge design discussed earlier in this chapter.

From this network a graph should be derived as well, such that it can be submitted to

robustness and capacity management analysis.

The first suggestion was to install topology-mapping software (e.g. LanTopolog combined with LAN

Surveyer) on a server and to run this server on the PS mobile core network. However this approach

was cancelled, because of two issues:

1. The current network still consists of the older 1G IP BB and MIPnet2 architecture, while the goal

is to make the PS domain insightful according to the near future situation.

2. A second major issue is that running topology-mapping software may be risky.

Our approach was to use all the information in this chapter and discuss the situation with the design

team of KPN. Figure B1 in appendix B shows the result and gives a good indication of how the new PS

mobile core network will look like. The appendix contains a complete graph of the network as shown

in figure B2. Finally figure B3 shows a relaxed graph of the core network where the clouds and

(square) nodes are left out compared to figure B2. They are treated as external networks and specific

functional nodes respectively. It is this relaxed graph which is treated as a case study for doing the

analysis in the succeeding chapters.

The PS mobile core network can be viewed as to consist of an A and B network, which provide

mutual redundancy. The load is shared between these networks. For each device (connection) in the

A network, there is a similar device (connection) in the B network.

2
 MIPnet is the predecessor of the Intelligent Edge network discussed in section 2.2.

11

3 Robustness Analysis and Connectivity

This chapter focuses on the robustness analysis of the core network. The methods and tools are

generic and can be applied to any network.

In this thesis connectivity is a term used to determine how well devices in a network are connected

to each other in order to transfer data back and forth. Two network elements are said to be

connected when there exist at least one (single hop or multi hop) path between them. A network is

said to be connected when there exists a path between any pair of arbitrarily chosen nodes of that

network. Good connectivity is achieved, when multiple paths exists between devices, especially

those in the core of the network. The higher the number of disjoint paths between any node pair, the

better the corresponding network will be connected.

Throughout this chapter Graph theory is used for describing and analyzing the KPN mobile core

network. A graph is represented by , which consists of a set of vertices and a set of

 edges. All robustness and connectivity related simulations are done using MATLAB. All the

matrices that are used as input can be found in the KPN deliverable. Before starting with the analysis,

section 3.1 surveys the research already done with respect to algebraic, edge and vertex-

connectivity.

3. Robustness Analysis and Connectivity

 12

3.1 A survey for connectivity as a measure for robustness

Edge and vertex-connectivity are important for the robustness due to the fact that they quantify the

extent to which a graph (and the network it represents) can accommodate to edge and

vertex failures. Recent research [84, 41, 42] shows that the algebraic-connectivity is always non-

decreasing (and usually increasing), with increasing edge – and/or vertex-connectivity. This implies

that the algebraic-connectivity can be treated as a measure for the robustness. This survey focuses

on all three connectivity types and its goal is to give a short description about the research already

done by the scientific community. Furthermore, it briefly highlights a few potential topics that are

still open to science.

Algebraic-connectivity:

Already in 1972 Miroslav Fiedler explained that the eigenvalues of the Laplacian matrix of a (simple)

graph provide valuable information about the connectivity of the graph [15]. Fiedler explained that

the number of eigenvalues equal to zero represents the number of connected components and that

the 2nd smallest eigenvalue of a connected graph G is its algebraic-connectivity .

In [41, 42] the relationship between and the robustness for complex networks is studied for

E.R. random graphs, W.S. small world graphs and B.A. scale free graphs. It is shown that the speed

with which increases, by edge addition, is topology dependent and that in some cases the

speed of increasing is lower than increasing the vertex-connectivity by adding edges

[41]. For other (complex) networks (such as (lognormal) geometric random graphs, regular lattice

graphs and power law graphs) similar research is not yet conducted (to the knowledge of the

author). Reference [4] also shows that is a lower bound for if is not a complete graph

and that otherwise. Recently a study has been done, where the

importance of a vertex (or edge) is quantified by the algebraic-connectivity of the remaining network

after the removal of the vertex (or edge) [61]. Another different method to look at robustness is to

increase of a complex regular network, without adding vertices or edges, but by a technique

called “random-rewiring” as described in [75].

The maximum algebraic-connectivity augmentation problem is proven to be NP-complete [69].

Therefore heuristic approaches have been devised to solve this problem [84].

An important point (not explicitly mentioned in the literature) is that even though can be

computed for weighted graphs [13, 54 and 51], it is usually the unweighted case that is treated when

using as a robustness measure. However, it is surely interesting to investigate the weighted

 in relation to the robustness. In particular for the case that an edge weight represents the cost

to remove the corresponding edge relative to the graph. In general the mean path length decreases

as new edges are added to a graph, to increase . Another interesting open problem is to find an

optimization that maximizes robustness and minimizes the delay time in a network as efficient as

possible, when cost constraints limiting the number of vertices/edges are considered important [7].

There is a wealth of literature describing properties of the algebraic-connectivity in general, but also

for special cases and/or topologies. There are already several surveys [68, 67, 66, 64 and 1] related

to the algebraic-connectivity that have been published over the years, that discuss interesting topics

3. Robustness Analysis and Connectivity

 13

like the Laplacian spectrum, applications of Laplace eigenvalues, Congruence and Equivalence,

weighted graphs and max-cuts, Optimal numberings, Classifications of bounds to as a function

of other graph invariants, applications of Fiedler vectors, etc. A lot of research has also been

conducted on a special type of graph, namely the tree [28, 65, 14, 29, 54, and 53]. It is interesting to

see if similar research can be applied on other topologies (e.g. directed and undirected cycle (or ring)

graphs, hierarchical graphs etc.). It is also interesting to know that the properties of Fiedler’s

definition remain valid for digraphs [90]. Another important topic regarding that has received

attention is its upper and lower bound, which are summarized neatly in [1].

Edge-connectivity:

Research regarding connectivity already started in the 70s when Eswaran and Tarjan introduced the

terms bridge-connectivity and bi-connectivity for undirected graphs [12]. They also showed how to

make a digraph strongly connected. Furthermore, they proved that solving these problems optimally

for weighted directed and weighted undirected graphs is NP-complete. With this the foundation was

put in place for edge-connectivity (and vertex-connectivity).

Most research has been done on unweighted undirected -edge-connected graphs resulting in

different approaches and many efficient algorithms are considered for special cases [12, 19] as well

as the general case (for any augmentation value) [73, 88, 87, 17, 8, 25 and 72]. One of the

most interesting findings is the one of Frank [17], who gave an algorithm which also extends

to the more general augmentation problem. Then Nagamochi and Ibaraki [72] used maximum

adjacency ordering in their approach and by combining their minimum cut algorithm with the

approach of Frank [17], they produced a (faster) time algorithm for

augmenting a graph to achieve -edge-connectivity. They also showed how to extend the

problem for the situation where the connectivity target is a real value. Cai and Sun [8] also found an

interesting algorithm that works for any multi-graph. In [44] it is indicated that the -edge-

augmentation problem, without introducing parallel new edges is NP-complete, but if the target

connectivity is a predefined integer, this problem is solvable in polynomial time. In the author’s

opinion, understanding the construction of a cactus representation of a graph [71, 73] is important to

understand the edge-augmentation problem. An algorithm for constructing a cactus that

corresponds to the explanation in [73] can be found in [71]. However, this algorithm is not detailed

enough to be used for programming purposes. In fact this algorithm is extended in section 3.3 to

make it useful for programming purposes.

For unweighted directed graphs Gabow [24] found an time algorithm that

finds the edge-connectivity, which runs slightly faster for an undirected graph. However this is not an

algorithm that augments a digraph. On the other hand for unweighted directed trees (or digraphs

whose underlying graph is a tree) there exists a polynomial time solution for increasing the edge-

connectivity [47]. In [9] it is also shown that the successive augmentation property also holds for

digraphs. Apart from the special cases (including strong connectivity), Frank [17] and Gabow [25]

have found algorithms for the general digraph case with respective time complexities of and

.

The weighted edge-augmentation problem is NP-complete for both undirected graphs and digraphs.

However, several approximation algorithms have been devised [22, 50] for special cases. The special

weighted cases for bi -, bridge – and strong connectivity have been studied by Frederickson and Já’Já’

3. Robustness Analysis and Connectivity

 14

[22] and they have found approximation algorithms with reasonable time bounds. Benczur [4] also

found an algorithm that runs in time. For the special weighted case, where

edge costs arise from node costs, Frank [17] found a polynomial-time solution. For another special

case where is a spanning sub-graph of a 2-edge-connected weighted graph, it is possible to

achieve 2-edge-connectivity in polynomial time [26]. Other special cases are treated in [89].

For weighted digraphs in general Jensen, Frank and Jackson [43] proved that the edge-augmentation

is NP-complete. For mixed graphs (containing directed and undirected edges) they have obtained

interesting results for 2 extreme cases (This includes the case of adding only directed edges or the

other case of adding only undirected edges). It would be odd if no heuristic approaches would have

been proposed for the weighted case. Based on maximum weight matching algorithms, Taoka and

Watanabe [81] have obtained heuristic algorithms. Apart from [22, 43] not much attention has been

paid to weighted digraphs. It is interesting to do research to see if there are polynomial-time or

approximation algorithms for special topologies and the case of specific weight functions.

Vertex-connectivity:

Vertex-connectivity-augmentation has also received much attention by the scientific world. Again

most of the literature focuses on unweighted undirected graphs. The specific case to make a graph

2-connected is treated by Eswaran and Tarjan [12], Rosenthal and Goldner [79] and Hun and

Ramachandran [38]. Watanabe and Nakamura [86] and Jordan [46] independently solved the case

for achieving 3-connectivity, while Hsu [34] produced an algorithm to upgrade a 3-connected graph

to a 4-connected one. Increasing the connectivity of a -connected graph (where can be any

integer) by 1 has received most of the attention [46, 45, 56, 60, 55 and 10], which is no surprise as

this is a case that is often targeted in practice. For this case Jordan [45, 46] gave an algorithm that

finds an edge set larger than the optimum size by a value no more than . This result was

extended by Jackson and Jordan [39] for the general connectivity augmentation to a set at most

 more than the optimum (where η is an integer augmentation value). With

the general connectivity is meant that the target connectivity is , with indicating the

connectivity of the original graph and being any integer augmentation value. For this general

augmentation, the known optimal result is an polynomial time algorithm by

Jackson and Jordan [40], where is an exponential function of k. For some special cases they

prove even stronger results, such as the case where . On the negative side the

complexity of the vertex-connectivity augmentation problem is a longstanding open question [83, 39

and 40]. In [86] it is also mentioned that augmenting a graph , with zero edges to become k-

connected, where , is NP-complete. Vegh [83] has produced a polynomial time algorithm for

finding an optimal solution to increase the connectivity of any -connected unweighted undirected

graph by . As it is important to understand the concept of -shredders (-separators) when

discussing vertex-connectivity, an interesting result produced by Cheriyan [10] is not unimportant. In

[10] a deterministic algorithm is treated, which finds all k-shredders in time.

The concept of shredders (and separators) is important for solving the vertex-connectivity-

augmentation problem.

The vertex-connectivity for digraphs has been treated by Frank and Jordan [20]. They found a min-

max formula that finds the minimum number of required new edges to make an unweighted digraph

-connected. Frank and Vegh [21] came up with an optimal polynomial time algorithm to

3. Robustness Analysis and Connectivity

 15

make a -connected digraph -connected. For the specific case of rooted directed trees

Masuzuwa, Hagihara and Tokura [62] have devised an optimal sequential algorithm to achieve k’-

connectivity, where k’ is the target connectivity.

As the weighted vertex-connectivity-augmentation problem for graphs is NP-complete [83, 74 and

76], alternative approaches are required to deal with the problem. The 1st way is to consider

algorithms for special cases, as discussed in [18, 34, 38, 35, 36, 46, 83 and 85]. Most of these

references discuss specific connectivity targets (and/or are specific values) and the tree topology

has also received much attention. Despite the NP-completeness, it remains interesting to find and

solve more special cases (e.g. special topologies and special weight functions) for which an optimal

polynomial-time solution does exist. To exemplify, such a solution is found for the special case if each

edge weight is characterized by a node induced cost function [83]. A 2nd way is to develop heuristic

algorithms and for this it is recommended to read [30] (for a review). Finally approximation

algorithms can be designed [76, 48, 49, 50, 78 and 23] that still produce an acceptable outcome in

polynomial time. To mention a good example, Khuller and Thurimella [50] have found an

 approximation algorithm, which augments any k-edge-connected

weighted graph to achieve a or even a -connected graph. They also show that

techniques can be used that run in time, provided that is odd.

3. Robustness Analysis and Connectivity

 16

3.2 Increasing the algebraic-connectivity

This section focuses on increasing (and therefore increasing the robustness) of the PS mobile

core network by adding as few new edges as possible. As proposed by Fiedler is the 2nd smallest

eigenvalue of the Laplacian matrix () of the graph [41], which is considered as a measure for

the robustness of the graph.

Before discussing the algebraic-connectivity, the notations to be used are presented. The topology of

a network is represented by a graph . The most important matrices are the Degree matrix ,

the Adjacency matrix and the Laplacian matrix . is a diagonal matrix where each entry

(on the diagonal) represents the nodal degree. is an unweighted representation of all the edges in

a network. This matrix consists of 0’s and 1’s, where a 1 (0) at position indicates the existence

(non-existence) of a link from node to node .

The set of all eigenvalues3 of is called the Laplacian spectrum of and is represented as:

. Two important pieces of information that can be obtained from this

spectrum are:

1. If , the graph is disconnected.

2. The number of eigenvalues equal to 0 is equal to the number of components or clusters of .

Because multigraphs cannot be submitted to the analysis of the , the PS mobile core network is

treated as a simple graph in this subsection. Another important point is that all the graphs to be

analyzed consist of bidirectional links, which has the advantage that and are symmetric.

3.2.1 Strategies for increasing the algebraic-connectivity

Increasing with the fewest links is proven to be NP-complete [69]. This is the reason that

heuristic strategies are applied in the analysis of increasing , where the target graph is

converted to a simple graph. The first strategy is an idea of the author, while the other two were

obtained from chapter 5 of [84]. The strategies differ in the way that a “new” edge to be added is

chosen.

Strategy 1:

This strategy starts out with computing and the corresponding . After the 1st edge is added,

the new and corresponding are computed. This procedure is done times, namely for all

the possibilities to add a new edge. However, only that edge which

gives the maximum is stored along with its corresponding . If there is a tie the first edge with

the maximum is chosen. If the “maximum ” edge is found, then for the next iteration, the

corresponding becomes the starting situation for adding the 2nd new edge. The 2nd, 3rd till the last

3
 Eigenvalues are calculated using the following equation: det(L- I), where I is an identity matrix with the same

dimensions as the Laplacian matrix. More information regarding eigenvalues can be found in chapter 4 of [77].

3. Robustness Analysis and Connectivity

 17

new edge to be added are chosen the same way as the 1st one. The robustness is non-decreasing,

because cannot decrease by adding edges.

Strategy 2:

This strategy is based on increasing by sequentially adding a link between a node of minimum

degree and any other node. The first node found in with minimum degree is chosen and the new

link connecting this node and another node which yields maximum increase of , is added. and

 conforming to this addition are stored and the next iteration can start, using these matrices as its

starting point. Note that this strategy attempts to increase the minimum degree of the overall graph

and therefore it increases .

Strategy 3 (Fiedler vector strategy):

This strategy makes use of the Fiedler vector , which is the vector corresponding to

the 2nd smallest eigenvalue. The 2 vertices, to which the next new edge should be added to increase

, is derived from this vector. The vector-indices, say and , of the 2 values and in ,

whose absolute difference is the maximum (compared to every other possible

combination), correspond to the indices of these vertices (and) and are used to find them. The

edge is added between these vertices, is computed and and are modified accordingly. The

next iteration (where the 2nd new edge is added) can start using the modified matrices as its input.

Every next iteration proceeds in a similar way, until the predefined number of iterations is achieved.

The next subsection discusses the results obtained from simulations done in Matlab, according to the

above strategies. The structure of the MATLAB source codes are presented in appendix C.

3.2.2 Results of increasing the algebraic-connectivity

This subsection presents the most important results obtained regarding the simulations for

increasing . The results (regarding the 3 strategies) of subnet core PoP ASD/RT4 and those of

the complete network are presented. The reason for also doing the simulations on subnet level is

because it yields results that are relatively cheap, as only indoor edges are to be added. The figures

corresponding to the results of core PoP ASD/RT are shown in appendix B. For each figure

representing a strategy, there is a summary of how many links are required to achieve and

of course itself. A value just higher than 1, means that the graph is at least 2-connected, as

 is a lower bound of the (vertex) connectivity. Note that for a graph (which is not complete) the

following holds:

 (3.1)

The target of at least 2-connectedness has physical meaning for the network, because any single link

or node failure is not enough to disconnect the network.

4
 Results of the other IE subnets are similar and do not add anything extra from an academic perspective. They

can be found in the KPN deliverable.

3. Robustness Analysis and Connectivity

 18

Increase of algebraic-connectivity of core PoP ASD/RT

Figure 3.1 represents the graph for the identical subnets in Amsterdam and Rotterdam. Figure 3.2

shows the increase in as “new” edges are added according to the 3 strategies. The figure clearly

indicates that for subnet ASD/ RT, strategy 3 (strategy 1) is the most (least) efficient in increasing

5. For few “new” edges (less than 6) this is not always true, but even then the differences are

minor.

1

2

3

4

5

6

7

8

9

10

4 x

2 x

2 x

2 x

2 x

2 x

2 x

11 12 13 14

15 16 17 18

19

20

23

24

25

21

2 x

22

2 x

26 27 28 29 30 31 Graph of core PoP ASD and RT

Figure 3.1: Current situation regarding core PoP ASD/RT and corresponding BB routers.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Robustness core PoP ASD and RT

Robustness core PoP ASD and RT strategy 1

Robustness core PoP ASD and RT strategy 2

Robustness core PoP ASD and RT strategy 3

a(G)

of added links

Figure 3.2: Comparison of suboptimal strategies for ASD/RT.

5
 This holds for all the other Intelligent Edge subnets.

3. Robustness Analysis and Connectivity

 19

Algebraic-connectivity of the IP BB

From figure 2.4 it is clear that of the mobile 10G IP BB exceeds the target (). It is

therefore pointless in running the experiments for the backbone. What is interesting is the fact that

, because this subnet is 4-connected. This corresponds with the leftmost inequality of

equation 3.1.

Increase of the algebraic-connectivity of the entire graph

In reality it is not possible to add an edge between any two arbitrary vertices, due to the fact that not

all network nodes perform the same functions or process the same traffic streams. Using any of the 3

strategies, the results (appendix D) are such that many “new” edges are incompatible with the way

the network works and/or too expensive to be implemented. This is not unexpected, because firstly

the strategies do not distinguish between different node types and secondly these strategies will

most likely choose some expensive edges that connect vertices belonging to different subnets as

they tend to increase the most.

3. Robustness Analysis and Connectivity

 20

3.3 A programmable algorithm for cactus construction

Before it is explained how the edge-connectivity can be increased, it is important to understand how

a cactus representation, , is constructed. represents every minimum cut of the original

graph , in a compact form, where is the cactus graph consisting of node-set

and link-set and is a mapping of the vertices of to the nodes of 6.

Cactus construction is quite difficult and often a time consuming task, especially if

represents a large network. This section focuses on extending and explaining Nagamochi’s algorithm

[70] that can be used for the construction of . In the knowledge of the author, and via contact

with Nagamochi it is believed that no implementation presently exists.

Nagamochi’s algorithm (figure 3.3 and 3.4) does not indicate how to perform a couple of essential

steps or how to obtain some information. The main contribution here is to develop and test

programmable algorithms to help perform these key steps, which are then integrated into

Nagamochi’s algorithm, such that the latter can be used for programming purposes. The

contributions are the following:

1. An algorithm for choosing an edge for performing line 3 in algorithm 3.2.

2. An algorithm for the construction of an st-MC-partition (a partition of the graph as a result of

all the min cuts separating s and t), required in line 11.

3. An algorithm for the construction of an st-Cactus representation , required in

line 4.

4. An algorithm for merging multiple cacti and joining their mappings to construct an integral

cactus representation , as indicated in line 16.

5. An algorithm for converting a cactus representation into a cycle-type normal cactus (CNC)

representation.

It is relevant to understand the parent and child algorithm (figures 3.3 and 3.4, respectively) that

constitute Nagamochi’s algorithm, such that it becomes clear to the reader how the contributed

algorithms fit in the former to finally produce algorithms 3.3 and 3.4 (figure 3.5 and 3.6,

respectively). Algorithms 3.1 and 3.2 are explained next, while the 5 new algorithms (which are

considered to be subroutines of algorithm 3.2) are explained in subsection 3.3.1 to 3.3.5.

Algorithm 3.1 is used to compute the minimum cut value of the target graph (line 1) and to

initialize a list (line 2) that should keep track of already found minimum cuts, such that they can

be identified as old. Once identified they will be prevented from being used more than once in

algorithm 3.2, which is the child of algorithm 3.1 and called in line 3 of the latter. The parent-child

approach is used, because algorithm 3.2 is recursive as it may call itself as shown in lines 8 and 14.

6
 From now on the entities of a cactus are referred to as nodes and links, while those of a target graph are

referred to as vertices and edges. When vertices are contracted together, the element containing these

vertices is also referred to as a node. This may prevent confusion and ambiguity from the reader’s perspective.

3. Robustness Analysis and Connectivity

 21

If the graph, of which a cactus representation should be constructed, consists of only 1 vertex, the

cactus will be trivial (), meaning that it consists of 1 node and no edges. In this case the 1st

line of algorithm 3.2 does the job. It is more interesting to see what happens if consists of multiple

vertices connected by edges. In this case an edge is chosen between vertices and (line 3).

 Algorithm 3.1 Construct

Input: An edge weighted graph .

Output: The Cycle-type Normal Cactus (CNC) representation for .

1. Compute ; (% is the minimum cut value of)

2. ; (% initialize an empty list)

3. (% make a call to the subroutine named Cactus)

Figure 3.3: Parent algorithm for constructing the cactus representation.

 Algorithm 3.2 Cactus

Input: A graph , a subset , and a real number .

Output: A cactus representation for a set of minimum cuts.

1. if |V(G)| = 1 then return the trivial cactus .

2. else

3. Choose an edge , with capacity .

4. if or the -cactus representation represents no minimum cut other than

those . (% represents an already found minimum cut)

5. then

6. ;

7. ;

8. (% recursive call)

9. return

10. else

11. for each in the -MC-partition do

12. , denoting by the vertex obtained by contracting ;

13. if then end.

14. (% recursive call)

15. end

16. ;

17. Convert into CNC representation.

18. return

19. end

20. end

Figure 3.4: Child algorithm for constructing the cactus representation.

Line 4 it tests if the chosen edge is critical or if the st-cactus-representation (explained

in section 3.3.3) contains only old cuts (of). If the edge is not critical or if all the cuts are

elements of , the algorithm executes lines 6-9. Line 6 actually shows that a contraction7 of s and

t should take place, which has the result that the target graph changes. Therefore, the list

should be updated as such, that is removed from it as shown in line 7. With this modification a

7
 Contraction: A subset of vertices is merged together into a single new node and all self loops are removed. All

the edges that were previously connecting the contracted vertices with other vertices are connecting these

other vertices with the new node, after the contraction. This type of contraction is sometimes called edge-

contraction.

3. Robustness Analysis and Connectivity

 22

new minimum cut can be detected or the number of vertices (of) decreases after each recursive

call. In line 8 such a recursive call is made and line 9 returns the cactus representation.

If none of the conditions in line 4 are satisfied, the algorithm continues from line 11. The st-MC-

partition () is necessary for executing the for-loop from lines 11-15. This is a

partitioning of the graph based on all the min cuts separating s and t and is explained in more detail

in section 3.3.2. The loop is required to find the indivisible cuts , which are not compatible with

. These cuts are called indivisible because they do not separate s and t. The

compatible cuts are the ones separating s and t. They are compatible with

 and are represented by the st-cactus-representation .

Contraction is used again in line 12, with respect to all vertices, except the ones in (for

each). The contracted node is referred to as . In line 13 it is shown

that a new list is created if the degree of , denoted as , is equal to the min cut value .

Notice that if is empty. It is important to understand this, especially due to the fact

that a recursive call is made in line 14 to obtain a cactus representation of graph . If the old

cuts were not managed in this way, the algorithm would result in an infinite number of recursions

and never terminate, because a contracted graph (the child of the originating graph) would always

give an old cut, even if it were already detected in its parent graph. For a more elaborate explanation

the author refers to section 5.3.2 of [71].

Line 16 indicates that the st-Cactus representation representing the set of compatible

cuts should be merged together with each cacti for each , to obtain a

complete cactus representation . All the cuts taken together from each of the aforementioned

cacti represent the set of indivisible cuts . From lemma 5.21 of [71] the union of and

represent all minimum cuts of graph (). This means that represents all

minimum cuts of .

However, the aforementioned cactus representation is not necessarily a unique representation of

 for . This means that there are more possible cactus representations, which adequately

represent all the min cuts of the same graph. In line 17 is converted to a cycle-type normal

cactus (CNC) representation. The latter is simplified and still represents each and every min cut of .

There may also be multiple possible CNC representations for the same graph. Think of the case when

a different s and/or a different t is chosen.

Figures 3.5 and 3.6 show the modified Construct and Cactus algorithms, respectively, where the

contributions of the author are written in blue en explained in the succeeding subsections. By

combining these explanations with those of algorithm 3.1 and 3.2, it should be possible to

understand algorithm 3.3 and 3.4 and to write a program accordingly.

Time complexity of algorithm 3.3 and 3.4

Line 6 of algorithm 3.4 calls subroutine “Update st-MC-partition”, which has a complexity of ,

as computed in section 3.3.2. This is the part with the highest complexity of algorithm 3.4. Let

be the number of times that algorithm 3.4 is invoked due to its recursive nature. Lemma 5.27 of [71]

shows that . The complexity of algorithm 3.4 is therefore .

This results in the fact that the complexity of algorithm 3.3 is also .

3. Robustness Analysis and Connectivity

 23

 Algorithm 3.3 Construct

Input: An edge weighted graph .

Output: The CNC representation for .

1. Compute ;

2. ;

3.

4. set special-recursive-call = false;

Figure 3.5: Resulting parent algorithm for constructing cactus representations.

 Algorithm 3.4 Cactus

Input: A graph , a subset , and a real number .

Output: A cactus representation for a set of minimum cuts.

1. if |V(G)| = 1 then return the trivial cactus .

2. else

3. Choose vertex pair {s,t}, such that ; (% usually s (t) has the smallest (largest) label)

4. call → subroutine choose s and t;

5. call → subroutine Construct st-MC- partition;

6. call → subroutine Update st-MC- partition;

7. call → subroutine Constructing st-cactus-representation;

8. if or the -cactus representation represents no minimum cut other than

those .

9. then

10. ;

11. ;

12. set special-recursive-call = false;

13. (% recursive call)

14. return

15. else

16. for each in the -MC-partition do

17. , denoting by the vertex obtained by contracting ;

18. if then end.

19. set special-recursive-call = true;

20. (% recursive call)

21. end

22. call → subroutine Merger of cacti;

23. call → subroutine Construct CNC representation;

24. return

25. end

26. end

Figure 3.6: Resulting child algorithm for constructing cactus representations.

3.3.1 An algorithm for choosing an edge when constructing a cactus

This subsection focuses on the 1st sub-algorithm, called algorithm 3.5 (figure 3.7). In line 3 of

algorithm 3.2 it is shown that an edge with a capacity should be chosen.

According to this line any two vertices s and t may be arbitrarily chosen, as long as they are

3. Robustness Analysis and Connectivity

 24

connected by an edge8. One way to do this is to simply call the first and the last vertex s and t,

respectively. However, one could use a strategy, such that the choice is made in a “smart” way, as is

done by algorithm 3.5. This “smart” way of choosing has the advantage that the minimum cuts are

found in less recursive calls and therefore makes the algorithm faster.

 Algorithm 3.5: Choose s and t

Input: special-recursive-call (%true or false)

 and (% maps the vertices of the original graph to those of)

 Node s and node t

Output: s and t, such that {s,t} is an edge

1. if special-recursive-call = false

2. return s and t;

3. else

4. for each

5. if degree() =

6. add to mdn; (% mdn is a vector of minimum degree nodes)

7. end

8. end

9. if 2

10. for each

11. if there is an edge , such that

12. ; ;

13. elseif there is an edge , such that .

14. ; ;

15. else

16. ; ;

(% is the neighbor list of vertex)

17. end

18. end

19. elseif 1

20. ; ;

21. else

22. Choose an arbitrary node as s; ;

23. end
24. end

Figure 3.7: An algorithm for choosing an edge {s,t}.

Algorithm 3.5 verifies if it is invoked during a recursive call in line 14 (not the one in line 8) or by the

parent algorithm for the first time. If it is the latter, it just takes the s and t that is treated as input by

algorithm 3.5. When algorithm 3.5 is invoked during a recursive call (line 14), the algorithm makes a

8
 Algorithm 3.2 says that an edge should be chosen, but actually it is the vertices connected by the edge that

are important, because the st-MC-partition and st-cactus-representation use s and t as input.

3. Robustness Analysis and Connectivity

 25

proper choice according to the network’s topology, such that the new cuts can be found in less

recursive calls. It first examines and stores all the vertices of degree equal to the minimum cut value

(lines 4-8). After that it verifies if there is more than 1 (or just 1) of such vertices, by examining how

many elements are contained in the minimum degree nodes (mdn) vector. If there are at least 2

vertices in the mdn vector (line 9-18), and there exists an edge between them, one of them is chosen

as s and the other as t. Notice that there is a preference not to choose . This is due to the fact that

 is an old cut and by choosing a different vertex (if possible), there is a bigger chance of finding a

new cut. Figure 3.8 (a) and (b) show examples when (not) to choose . Notice that the colored

vertices belong to the mdn vector. The third case (as exemplified by figure 3.8 (c)) occurs when there

exists no edge between the vertices in the mdn vector (line 16). Preferably, a vertex of the

mdn vector is chosen and a neighbor is chosen as t. If there is only one vertex in the mdn vector, it is

chosen as s and a neighbor as t as shown in (line 20 and figure 3.8 (d)). Finally, if there are no vertices

in the mdn vector, an arbitrary connected vertex pair may be chosen (line 22 and figure 3.8 (e)).

s t

s

t

s

t

s
t

s

t

(a) (b) (c)

(d) (e)

Figure 3.8: Examples of choosing s and t where the min cut value is 4.

Time complexity of algorithm 3.5

The time complexity of algorithm 3.5 (and those in the succeeding 4 subsections) will be derived by

analyzing the lines of the pseudo code that have a significantly high complexity order. Therefore they

can be used to determine the worst case time performance, for high values of the variable .

Lines with relatively low complexity order have no significant impact in the determination of the

complexity order and are not discussed in detail. (E.g. lines 1-3 of algorithm 3.5 do not contribute a

significant amount of time to determine the worst case time bound). Lines 4-8 has a worst case

running-time function of , where the constant is chosen sufficiently large9. To

determine , the following lines (line 10, 16, 20 and 22), with significantly high order of

computation time are analyzed. The result is: , , and

. Notice that the power of n depends on the amount of iterations that the respective

9
 Every constant or is chosen sufficiently large in its respective worst case function, whenever the

complexity of an algorithm is analyzed.

3. Robustness Analysis and Connectivity

 26

line of code undergoes. For these 4 lines, the number of loops (nested in each other) determines the

number of iterations. We find if lines 10-17 are executed or

otherwise. The worst case running-time function of algorithm 3.5 is found to be , by

adding with . This means that the complexity is . (For information

regarding complexity analysis, it is advised to read [11]).

3.3.2 Constructing the st-MC-partition

This section describes two algorithms that when used together are able to compute the st-MC-

partition of an arbitrary connected graph. An st-MC-partition is a partitioning of the target graph

into smaller subsets of vertices -MC-partition, where . This partitioning is based

on the compatible minimum cuts. Because they separate from they are said to be

compatible with the st-MC-partition. The next figure gives an example of such a partition on a graph

consisting of 9 vertices. There are 4 min cuts that are compatible with the st-MC-partition

.

5

2

64

91

7

3 8

5

2

64

91

7

3 8

s t

Figure 3.9: Example of st-MC-partition

It is tricky to formulate an algorithm that works for every connected graph. The author did not find

any algorithm that was able to do the job10, and thus started with the formulation of algorithm 3.6.

Later it would seem that not all partitions would be found by this algorithm for some graphs and

algorithm 3.7 was added as an extension to solve this problem as well. Both these algorithms11,

shown in figure 3.11 and 3.13 respectively, are explained next.

Algorithm 3.6 starts with creating the contraction-list, containing all the vertices of the target graph

and copying its contents to a list called original-list (lines 1-4). The former list is used to keep track of

how the vertices will be contracted in the succeeding parts of the algorithm, while the latter is used

in step 4. The algorithm tries to find all the compatible minimum cuts, by using a min-cut subroutine

that outputs the flow value (or minimum cut value), but also 1 cut, namely the one closest to the

10
 Professor Nagamochi was contacted and according to his opinion it is quite difficult to write a program that

generates such an st-MC-partition. He advised to read [71] to obtain some insight, but also indicated that there

was no algorithm in his work for achieving this.

11
 Due to the lack of time, the author was not able to proof that these algorithms are exact.

3. Robustness Analysis and Connectivity

 27

source s. For this subroutine various algorithms can be used, such as a maxflow-mincut algorithm

(e.g. based on Goldberg’s push-relable algorithm) or Nagamochi’s min-cut algorithm [71] (based on

maximum adjacency ordering).

In step 2, subroutine-min-cut outputs the first cut, which is stored in the Cut_list (line 5). After that

all the vertices in Cut_list are contracted into a single node and the target graph and contraction-list

are updated (lines 6-7).

Step 3 is a while loop that runs until the number of vertices in is equal to 2, because at that stage

the last compatible cut (the one closest to t) is already found. This step consists of two major parts,

which are both illustrated with examples in figure 3.10. In the first part (lines 9-20) the algorithm

searches the node containing vertex s, called Snode and generates a neighbor list of this node,

denoted as . Then it contracts each element of separately with the Snode (line

13) and tries to find the next cut (using subroutine-min-cut) closest to Snode (and therefore closest

to s). Figure 3.10 (b) and (c) show this for each neighbor. Notice that after each contraction the

graph is restored and the cut is only stored if it satisfies the conditions of line 17. When it has

finished doing this for each neighbor, it starts with the second part of step 3. In this part the

algorithm starts using the same reference graph as was the case for each neighbor in the first part

(from figure 3.10 (a) producing 3.11 (d)). Basically the second part is identical to the first part except

that the contraction is based on the entire neighbor list and that the contracted graph and

contraction-list are now stored to be used for the next iteration of the while loop.

5

2

64

91

7

3 8

5

64

9
1,2,3

7

8

5

64

9
1,2

7

3 8

5

64

9

7

8

1,3

2

G G (used for next iteration of while loop)

G’1 G’2

Snode
Snode

Snode

Tnode

Tnode

Tnode

s
t

(a)

(b) (c)

(d)

Figure 3.10: Examples to explain algorithm 3.6.

In the last step Cut_list and original-list are used to construct the st-MC-partition. First they are

added in the st-MC-partition as shown in line 21 (see the above partition of figure 3.12, which

corresponds to the running example). Then all elements of , already stored in its predecessors

, should be removed from . And finally all empty , if any, should be removed from

the st-MC-partition (see the resulting partition at the bottom of figure 3.12).

3. Robustness Analysis and Connectivity

 28

 Algorithm 3.6: Construct -MC-partition

Input: Graph % Adjacency matrix, Adjacency list or some other representation of G.

Source node
Destination node

Output: -MC-partition
Cut_list between and

Initialization: MC-partition ← empty list
 ←
 Contraction-list ← empty list
(% Step 1: Construction of a contraction-list)
1. for i = 1 to
2. add i as a singleton set {i} to the Contraction-list;
3. end
4. Original-list ← Contraction-list;
(% Step 2: Find the first cut and contract all the nodes on the source side)
5. (, Cut_list) := Subroutine-min-cut() (%Cut_list contains vertices on the s-side of G)
6. G := ; (% Apply contraction)
7. update Contraction-list ;
(% Step 3: Constructing the Cut_list)
8. while
9. find Snode in Contraction-list; (% find the node containing vertex s in the Contraction-list)
10. Construct a neighbor set of Snode;
11. foreach and ()
12, Temp-list := Contraction-list;
13. := ;
14. update Temp-list;
15. find Snode and Tnode in Temp-list;

(% find the nodes containing vertices s and t (respectively) in the contraction-list)
16. (flowvalue, Cut) := Subroutine-min-cut();
17. if and
18. add Cut to Cut_list;
19. end
20. end
21. find Snode in Contraction-list;
22. Construct a neighbor list of Snode, where ;
23. := ;
24. update Contraction-list;
25. find Snode and Tnode in Contraction-list;

(% find the nodes containing vertices s and t (respectively) in the contraction-list.)
26. (flowvalue, Cut) := Subroutine-min-cut()
27. if and
28. add Cut to Cut_list;
29. end
30. end
(% Step 4: Construct -MC-partition out of Cut_list)
31. -MC--partition = (Cut_list ∪ Original-list);
32. for -MC-partition,

33. remove all elements common to both and from ;

34. end
35. for -MC-partition
36. if
37. remove ;
38. end
39. end

Figure 3.11: Algorithm st-MC- partition

3. Robustness Analysis and Connectivity

 29

 St-MC-partition =

 St-MC-partition =

Figure 3.12: Example step 4 of algorithm 3.6.

However, algorithm 3.6 has a serious flaw in that it misses certain partitions in the case that merging

the neighbor list (2nd part of step 3) does not produce a new cut, while merging with at

least one of the neighbors (1st part of step 3) of the same list does produce such a cut. To rectify this

flaw algorithm 3.7 (figure 3.13) serves as an extension.

Time complexity of algorithm 3.6

The time complexity of the 4 steps of algorithm 3.6 are first analyzed/derived and then used to

obtain the overall complexity of the algorithm. The worst case running-time function for step 1 is

. In step 2, line 5 makes a call to Subroutine-min-cut, where it is chosen to use the

minimum cut algorithm derived by Nagamochi12 [71] that has complexity . If

, then . The contraction in line 6 requires a modification of a

representation (usually an adjacency matrix) of . Because such a representation is 2-dimensional,

which requires 2 loops for programming, . The contraction list can be modeled as a 2-

level nested list, which also requires a 2-level nested loop. Because each level has at most

elements (in the worst case), . Combining gives

 for step 2. By looking at lines 8-30 in step 3, one can see that lines 12-19 will

require relatively large running time, because it runs in the for loop (line 11) that in turn runs in the

outer while loop (line 8). Line 16 has the largest order running time, as it calls subroutine-min-cut .

For the worst case it is assumed that the contraction in line 23 is such, that in each successive

iteration the target graph is smaller by 1 vertex. This yields:

 and and is an integer (where the while and for

loop correspond to in). Further manipulation and rewriting results in:

 .

This means that the complexity of step 3 is represented by

, where is chosen large enough. Finally, the complexity of step 4 can be represented by

, because lines 32-34 can be programmed by a 2-level nested for loop. Adding

the worst case running-time functions (of the 4 steps) and choosing a large enough constant results

in , which means that algorithm 3.6 has complexity

.

Algorithm 3.7 uses the output st-MC-partition and the Cut_list of algorithm 3.6 as its most important

input parameters. It zooms into each partition -MC-partition and tries to find compatible cuts

that might have been missed. Because partitions consisting of a single vertex cannot produce such a

12
 This minimum cut algorithm is one of the faster algorithms that can be used to obtain the minimum cut value

 between source s and a destination t, as well as the minimum cut closest to the source.

3. Robustness Analysis and Connectivity

 30

cut, they are filtered out by line 2. As an example the graph of figure 3.14 is perfect, because when

applying algorithm 3.6 it produces the following incomplete st-MC-partition:

. The 3rd partition should actually be split up

into three partitions as shown in figure 3.14. In this subsection we now jump from our running

example to this example and we return to the former again in the next subsection.

 Algorithm 3.7: Update (s,t)-MC-partition

Input: -MC-partition = (% as computed by algorithm 3.6)

 Cut_list (% as computed by algorithm 3.6)

 Graph and

 Node s and node t (% from algorithm 3.6)

Output: -MC-partition (% updated)

 Cut_list (% updated)

1. for each -MC_partition

2. if do

3. Merge all elements before into a single node: ; (% skip if)

4. Merge all elements after into a single node: ; (% skip if)

5. if do

6. ;

7. elseif do

8. ;

9. else

10. ;

11. ;

12. end

13. Create a mapping of vertices of into nodes: map;

14. ← node that contains s in map;

15. ← node that contains t in map;

16. Create a neighbor list of in , excluding from it: ;

17. (Cut_list) := Procedure update Cut_list (Cut_list, , map, ,)

 (% Procedure update Cut_list is a subroutine of this algorithm)

18. end

19. end

(% Now the -MC-partition is created out of Cut_list)

20. Create a list of all the vertices in : Original-list;

21. Clear -MC--partition

22. -MC--partition = (Cut_list ∪ Original-list);
23. for -MC-partition,

24. remove all elements common to both and from ;

25. end
26. for -MC-partition
27. if
28. remove ;
29. end
30. end

Figure 3.13: Algorithm for updating st-MC-partition.

Lines 3–12 indicate that the input graph is submitted to a contraction that contracts all the vertices

before and after partition . Partition is now interesting to use as an example for this discussion

3. Robustness Analysis and Connectivity

 31

and for this partition the upper left graph of figure 3.16 can demonstrate the result of this code. Note

that . The map created in line 13 maps the vertices of the input

graph to the nodes of this graph in figure 3.16. Using this map , and can

be derived. When this is done, algorithm 3.7 calls upon its subroutine in line 17, which is shown as

algorithm 3.8 in figure 3.15. This subroutine produces an updated Cut_list, which now includes each

and every compatible cut with respect to s and t. This complete list is now used to construct a new

updated st-MC-partition as indicated by lines 20–30. These lines will not be explained here, because

it is similar to the code corresponding to step 4 of algorithm 3.6 and therefore the explanation of the

latter suffices here as well.

2

3

4

5

7

86 9 1412 16

1

10

11 13

19

15 17

18

V1

V2
V3 V4 V5 V6

V7

V8V9

Figure 3.14: Example of a graph that requires algorithm 3.6 and 3.7 to find all cuts.

Steps 1 and 2 of algorithm 3.8 are very similar to step 3 of algorithm 3.6. In both cases is first

merged with each element of the neighbor list and then merged with the whole list. In the

case of algorithm 3.8 there is a minor difference in the fact that the contracted graphs are stored at a

later stage (step 3 of algorithm 3.8), if a min cut is found. In this case (line 29) or (line

36. This means that the contracted graph is the new target graph in the next recursion. Figure 3.16–

3.18 illustrates how the contraction in step 1 and 2 takes place. The mapping is also done similarly to

that of algorithm 3.7. The main goal of step 3 of algorithm 3.8 is to stop the recursive process if no

new cut is found in or to store the correct contracted graph and update if at least one new cut is

found. In the latter case, the subroutine makes a recursive call to itself, such that it can compute

other new cuts, if any (or stop if none). In the example of figure 3.16 a new cut is found when vertex

6 is merged with . Therefore the lower left graph is the starting graph in the next recursive call.

The algorithm continues working in this recursive fashion, until no more new cuts are detected in

partition . Figures 3.17 and 3.18 show the results of the 1st and 2nd recursive call for of the

example. When algorithm 3.8 has finished running for each it returns the updated

Cut_list to algorithm 3.7, which processes it as explained before. Information about the structure of

the source code of this subsection can be found in figure C5 and C6 of appendix C.

Time complexity of algorithm 3.8

First the complexity of algorithm 3.8 is derived and after that this result is used to do the same for

algorithm 3.7. In a similar (but less involved) way as the function was derived for step 3 of

algorithm 3.6, the following is obtained for step 1 of algorithm 3.8:

. This time there is a for loop (line 2), which is considered to be upperbounded by and

therefore the latter is multiplied with something in the order of the complexity of subroutine-min-cut

3. Robustness Analysis and Connectivity

 32

to obtain . Because the order of is higher than that of any line in step 2,

, if is chosen large enough. In step 3 it is shown

that the algorithm is recursive, which means that recurrent equation is required, in which something

of the order of appears in each recursive call. The worst

case would be if during each recursive call, the target graph would become smaller by one vertex

(after contraction by line 29 or 36) and the obtained result would be the input for the next recursion.

So the number of vertices would decrease as follows: . (The recursion would

surely stop if , because a trivial graph cannot produce a min cut (lines 23-25)). By combining

the results (and neglecting subscripts) of the three steps, the following equation is achieved:

. To simplify this equation, is

integrated in the above and after some simplification (for a large number of vertices),

the following is obtained: .

Substitution gives the following:

.

.

.

 , because no minimum cut can be found in a trivial graph. Therefore no recursive call

can be invoked anymore (lines 23-25) and the recursion stops. By applying some math to the above,

the recursive equation can be written as: .

From this we find that is upperbounded as follows: . This

means that algorithm 3.8 has complexity .

Time complexity of algorithm 3.7

The recursive subroutine Update_Cut_list in line 17 of algorithm 3.7 has the highest complexity of all

the other lines of its pseudo code. Because this subroutine is called times (is the number of

partitions in st-MC-partition) and because , the complexity of algorithm 3.7 is .

3. Robustness Analysis and Connectivity

 33

 Algorithm 3.8: Update Cut_list

Input: Graph and map

 Cut_list

 Node s and node t

 and

Output: Graph and map (% updated)

(%Step1: Contract each neighbor of Snode and store all new min cuts)

 Cut_list (% updated)

 and (% updated)

1. Create j_list and Cut_list_1; (% These are empty lists)

2. for each do

3. ;

4. Create ; (%mapping the vertices of to the nodes of)

5. ← location of s in ;

6. ← location of t in ;

7. (flowvalue, Cut) := subroutine-min-cut()

8. if (flowvalue =) and ()

9. add Cut to Cut_list_1; add j to j_list;

10. end

11. Create a neighbor list of , excluding : ;

12. end

(%Step2: Contract the whole neighbor list of Snode and store a new min cut, if any)

13. ;

14. Create ; (%mapping the vertices of to the nodes of)

15. ← location of s in ;

16. ← location of t in ;

17. (flowvalue, Cut) := subroutine-min-cut()

18. Create Cut_list_2;

19. if (flowvalue =) and ()

20. add Cut to Cut_list_2;

21. end

22. Create a neighbor list of , excluding : ;
(% Step 3: Add cuts to Cut_list and start recursive call if required)
23. if (Cut_list_1 = empty) and (Cut_list_2 = empty)
24. return Cut_list
25. end
27. if (Cut_list_1 ≠) and (Cut_list_2 =)
28. for each do

29. ; ;
30. ; ;
31. Move k

th
 element from Cut_list_1 to Cut_list;

32. (Cut_list, , map, ,)) := Procedure update Cut_list (Cut_list, , map, ,)
 (%This is a recursive call)
33. end
34. end
35. if Cut_list_2 ≠)

36. ; ;

37. ; ;
38. Move all elements from Cut_list_1 (if any) and the element of Cut_list_2 to Cut_list;

39. (Cut_list, , map, ,)) := Procedure update Cut_list (Cut_list, , map, ,)
 (%This is a recursive call)
40. end

Figure 3.15: Algorithm update Cut_list.

3. Robustness Analysis and Connectivity

 34

6

8

7

9 12

10
11

13,…,19

1,…,5

8

7

9 12

10
11

6

8

7

9 12

11
13,…,19

1,…,5

13,…,19
1,…,5,6

8

7

9 12

11
13,…,19

1,…,5,6,10

Graph before execution of

Procedure Update Cut_list Contract neighbour

list of Snode

Snode
Tnode

Snode’

Snode’

Snode”

Contract each neighbour lof

Snode individually

G1’ G2’

G”

A new

cut
An old

cut

An old

cut

Figure 3.16: Example of the process of updating the Cut_list (1).

8

7

9 12

10
11

13,…,19
1,…,6

Snode

Graph submitted to 1
st
 recursion of

Procedure Update Cut_list

8

9 12

10
11

13,…,19
1,…,6,7

Snode’

7

9 12

10
11

13,…,19
1,…,6,8

Snode’

A new

cut

An old

cut

A new

cut

9 12

10
11

13,…,19
1,…,6,7,8

Snode”

A new

cut

G1' G2' 8

7

9 12

11
13,…,19

1,…,6

Snode’

G3'

Contract neighbour

list of Snode

Contract each neighbour lof

Snode individually

G”

Figure 3.17: Example of the process of updating the Cut_list (2).

12

10

11
13,…,19

1,…,8,9

Snode’

An old

cut

9 12

11
13,…,19

1,…,8,10

Snode’

An old

cut

9 12

10
11

13,…,19
1,…,8

Snode

Graph submitted to 2
nd

 recursion of

Procedure Update Cut_list
12

11
13,…,19

1,…,8,9,

10

Snode’

An old

cut

Contract each neighbour lof

Snode individually

G1'
G2'

G”

Figure 3.18: Example of the process of updating the Cut_list (3).

3. Robustness Analysis and Connectivity

 35

3.3.3 Constructing the st-cactus-representation

One of the most crucial parts of constructing a cactus representation, is the construction of an st-

cactus-representation , which represents all compatible cuts separating s and t.

Algorithm 3.9 (in figure 3.22, 3.23 and 3.24) is able to construct such a representation in 5 steps.

Steps 2 and 5 were already algorithmically available in [71]. The other steps and the integration of all

5 steps are new. The explanation will be done with the aid of the example, which was called the

running example in the previous subsection.

Step 1 creates a contracted graph out of the original graph , where all the vertices in the

same partition -MC-partition are contracted into a single node and this is done for each and

every partition. If the graph in figure 3.9 were to be treated as , then , with and

, would become the graph shown in the next figure.

B1

B0

1,2

3

4,5,6

7,8

9

1,2

3

4,5,6

7,8

9

A1

A2

Figure 3.19: Example of contracted graph according to st-MC-partition.

Steps 2 to 5 are only invoked if the target graph consists of more than 2 vertices. Notice that this is

an interesting situation, because if the target graph consists of only 1 or 2 vertices the st-cactus-

representation is a trivial cactus or two nodes connected by 2 edges, respectively. In the case of 1

vertex, Nagamochi’s algorithm will never invoke algorithm 3.9, due to the if statement in line 1 of

algorithm 3.4. In the case of 2 vertices, consists of only 2 nodes connected by 2 links. Notice

that -MC-partition. Now the explanation of the more interesting case, steps 2-5, will be

done with the help of the running example.

Step 2 creates segments of the vertices of that will later on be used to construct circular-

minimum-cut partitions 13 and minimum-cut partitions . These partitions are then used

to create cycles and chains, respectively, which are the building blocks of . But as step 2

is only concerned with the segmentation it is now relevant to explain how the segments are derived

and which segments generate the chains (cycles). Chain segments are derived from partitions that

are included in , while cycle segments are derived form

the partitions included in . Each element of can be treated as a

chain segment. Out of the elements of the cycle segments can be constructed as follows:

 if and holds [71]. is equal to the first

13
 A circular-minimum-cut partition is a partition that results in a cycle graph, as will be shown later in this

section. For detailed information it is recommended to read section 5.1 of [71].

3. Robustness Analysis and Connectivity

 36

and is equal to the last in a segment . The right graph of figure 3.19 shows the segments of

the running example. Step 2 stores the chain and cycle segments in -list and -list, respectively.

Lines 6-15 are concerned with constructing the cycle segments, while the remaining lines in step 2 of

the algorithm are devoted for constructing the chain segments.

Step 3 is concerned with constructing the chains out of the segments. But before such a chain

graph can be constructed, it is first necessary to construct for each segment (lines 27-61).

This is done by storing all the vertices of all the appearing before (after) the partition

corresponding to , say , into a single sub-list and placing it in front of (behind) in . If there

is no before (after) , no sub-list is placed before (after) . After constructing , this

minimum cut partition is used to construct the chains (lines 62-68). If is the first or last element of

, then a chain consisting of 2 nodes is constructed. Otherwise, a chain consisting of 3 nodes is

constructed. In all cases the serves as a mapping for the respective chains and each node is

connected with 2 links to each neighbor in the chain. This means that a chain representation

 is constructed for each . The chains on the right in figure 3.20 demonstrate

this for the running example.

Figure 3.20: Chains and cycles of running examples.

Step 4 first constructs the circular-minimum-cut partitions (lines 68-85). In this phase the

values and are also computed and stored in two separate vectors (lines 74-76). A segment

does never include or and is therefore always between other partitions of st-MC-partition. The

vertices of each before (after) each cycle segment are stored into a sub list and placed as the

first (last) element in for each . From each , a cycle is constructed where each node

is connected by one link to each of its two neighbors (lines 86-89). Step 4 generates a cycle

representation for each as step 3 did for the situation regarding the chains.

The cycles on the left in figure 3.20 demonstrate the result of step 4 for the running example.

Step 5 finaly merges the chains and cycles together in the correct order to construct .

The chain corresponding to is the one that the construction was started with (lines 91 and 92), as

it contains vertex s. This chain is initially stored as . Then lines 95 and 96 are used for

merging/unifying the first cycle representation with the last stored

and the result in turn is stored as . Then comes the tricky part where during the same

iteration a chain will be combined with the last if the condition in line 97 is satisfied. If

not, the next iteration of the for loop starts without the addition of a chain in the current iteration.

Figure 3.21 exemplifies how the chains and cycles are combined to construct the st-cactus-

representation. The Matlab code structure is shown in figure C7 of appendix C.

3. Robustness Analysis and Connectivity

 37

Merging proces to form (s,t)-

cactus representation

Step 1

Step 2

Step 3

Figure 3.21: Example of constructing st-cactus-representation out of chains and cycles.

 Algorithm 3.9: Constructing -cactus-representation

Input: Graph (% Adjacency matrix, Adjacency list or some other representation of G)

-MC-partition (% of size r)
Output:

(% Step 1: Merge all the vertices of into nodes according to the -MC-partition)
1.

2. for each -MC-partition do
3. ;

4. end

5. if

(% Step 2: Segment the obtained graph, such that it can be converted into chains or cycles later on)
6. (%initialization values)
7. create -list and -list
8. while do

9. while do end

10. if then
11. ; ; ;

12. add to -list;
13. end
14. ;
15. end
16. ;
17. add to -list;
18. ;
19. while
20. if
21. ; ; add to -list;

22. end
23.
24. end
25. := ;

26. add to -list; (% -list =)

(% Step 3: Construct the chains corresponding to the segments in -list)
27. create Chain-partitions and chain-cacti;
28. for each -list do

Figure 3.22: Algorithm for constructing st-cactus-representation (part 1).

3. Robustness Analysis and Connectivity

 38

 29. create ; (% an empty list)

30. create before-list, between-list and after list;
31. if

32. for each -MC-partition do
33. if
34. add all elements of to before-list;
35. else
36. add all elements of to after-list;
37. end
38. add before-list to ; add after-list to ;

39. end
40. elseif

41. for each -MC-partition do
42. if

43. add all elements of to after-list;
44. else
45. add all elements of to before-list;
46. end
47. add before-list to ; add after-list to ;

48. end
49. else
50. for each -MC-partition do
51 if appears before

52. add all elements of to before-list;
53. elseif =

54. add all elements of to between-list;
55. else
56. add all elements of to after-list;
57. end
58. add before-list to ; add between-list to ; add after-list to ;

59. end
60. end
61. add to chain-partitions

 (% now we construct the graphs of the chain-partitions)
62. If

63. Construct consisting of 2 nodes, each one connected by 2 links to its neighbor;

64. else

65. Construct consisting of 3 nodes, each one connected by 2 links to its neighbor(s);

66. end

67. add to chain-graphs;

68. end
(% Step 4: Construct the cycles corresponding to the segments in -list)
69. create Cycle-partitions and cycle-cacti; (% empty at initialization)
70. create and ; (% empty at initialization)
71. for each -list do
72. create ; (% an empty list)

73. index-small ; index-large ;
74. if index-small then index-small:= ; end
75. if index-large then index-large:= ; end
76. index-small; index-large;
77. create before-list and after list; (% empty at initialization)
78. for each -MC-partition do
79. if appears before
80. add all elements of to before-list;

Figure 3.23: Algorithm for constructing st-cactus-representation (part 2).

3. Robustness Analysis and Connectivity

 39

 81. elseif appears after
82. add all elements of to after-list;
83. end
84. end
85. add before-list, and after-list in ordered fashion to ;

 (% now we construct the graphs of the chain-partitions)

86. Construct consisting of size() nodes, each one connected by 1 link to each neighbor;

87. add to cycle-cacti;

88. add to cycle-partitions

89. end

(% Step 5: Construct and)

 (% Initialization)

90. create a list of all the vertices of : vertex-list;

91. ; (% from chain-graphs)

92. ; (% from chain-partitions)

93. ; ;

94. for each -list (% is the index of)

95. ;

96. ;

97. if

98. ;

99. ;

100.

101. end

102. end

103. elseif

104. is a chain consisting of 2 nodes, each one connected by 2 links to its neighbor;

105. -MC-partition;

106. end

Figure 3.24: Algorithm for constructing st-cactus-representation (part 3).

Time complexity of algorithm 3.9

Only the lines of the pseudo code of algorithm 3.9, which require the largest processing time (for

significantly large) are considered. The running-time function is again derived for each step and

then the corresponding results are added to compute the overall complexity order. For step 1,

, because the contraction in line 3 requires a 2-level nested for loop, which

should run for all partitions in st-MC-partition. For line 8 (step 2) , while

 applies for line 9. The last factor in the latter is due to the fact that an

-segment cannot be larger than . This leads to

 for line 6-18. Similarly . Adding

the upperbounds of and results in for step 2. Line 8 in step 3,

has running-time function , because there can be no more than

segments. This yields , which results in for

step 3. To obtain the function for step 4, we first state that ,

 and . (It takes a 2-level nested for loop to construct (line 86)). This

results in for step 4. In step 5, the construction of both and

(lines 94-95) require 2-level nested for loops, each of size at most. When taking the for loop of line

94 into account, this results in . For the remainder of the algorithm,

 holds. Because this last part is insignificant, the worst case

3. Robustness Analysis and Connectivity

 40

complexity is derived by adding the complexities of step 1 to 5. When using as an upperbound

the worst case running-time function of algorithm 3.9 becomes , This mean that

the complexity is .

3.3.4 Merging multiple cacti

Algorithm 3.10 shows all the steps that are required for merging , representing all the

compatible cuts , with the cacti (where) that together represent all the

indivisible cuts .

 Algorithm 3.10: Merger of cacti

Input: and

 and , (% is the number of elements of)

 A complete list of the vertices of : vertex-list.

Output: and

1. ; (% Initialization)

2. ; (% Initialization)

3. for do

4. if or (and the cut separating the last 2 nodes is not old)

5. for each do

6. for each do

7. union-list := ;

8. if union-list = vertex-list

9. ; ; (% these are the nodes to be joined together)

10. end

11. end

12. end

13. Update , such that and that the mapping of the

nodes is added appropriately to the map ;

14. , such that is removed and that its incident links are

connected directly to ;

15. end

16. end

17. ;

18. ;

Figure 3.25: Merging cacti to form the cactus representation.

Figure 3.26 exemplifies the contracted graphs on the left, produced by line 12 of algorithm 3.4.

The graphs on the right in this figure illustrate the cacti , produced by line 14. It is also shown

that and are trivial cacti. Remember that they are trivial because the final cut

separating the last two nodes in is already marked old.

Algorithm 3.10 starts with the merging process by copying to , as is done by

lines 1 and 2. The latter is used further in the algorithm as a starting representation to which all the

non-trivial cacti corresponding to indivisible cuts are added. Lines 3 and 4 together are used to select

3. Robustness Analysis and Connectivity

 41

all the non-trivial cacti for this merger. Lines 5-12 find the two nodes and

that need to be contracted as a new node in the merged graph. By repeatedly trying out the

unification of one element of and one of , one particular combination will be the same as the

vertex-list, which is a list containing all the vertices of the target graph . When these two so called

junction nodes are found, the vertex to node map is updated as described in line 13. In line 14 it is

shown how the cactus graph is merged.

G1:=G/{V(G)-V1} (R1,φ1)

2

1

2

1

V-{1,2}

s

t

G2:=G/{V(G)-V2} 3
t

s 3 V-{3}(R2,φ2) (Trivial)

G3:=G/{V(G)-V3}

G4:=G/{V(G)-V4}

G5:=G/{V(G)-V5}

4

6

5

s

t

(R3,φ3) 4 V-{4}

(R4,φ4)
8

7

8

7

V-{7,8}

s

t

9
t

s 9 V-{9}(R5,φ5) (Trivial)

Figure 3.26: Examples of cacti to be merged with st-cactus-representation.

Figure 3.27 illustrates how the merging process, described in algorithm 3.10 takes place for the

running example. Notice that the graph in the center of 3.27 (a) is the final graph of figure 3.21.

{1,2}

{3} {4,5,6} {7,8}

{9}

V-{1,2}

{1}

{2}

V-{4}
{4}

8

7

V-{7,8}

{7}

{8}

{3}
{5,6}

{9}
{1}

{2}

{4}

8

7
{7}

{8}

(a) (b)

Figure 3.27: Example of merging cacti.

Time complexity of algorithm 3.10

The following functions are derived similarly as for the previous algorithms. The order is again

determined by the amount of loops required to write a program according to the pseudo code of

algorithm 3.10:

1. .

2. , because the number of nodes in is .

3. , because the number of nodes in is .

3. Robustness Analysis and Connectivity

 42

4. , because the number of vertices mapped to node is .

5. . It requires a 2-level nested for loop, each of size to perform

line 14.

Adding these equations and choosing a large enough constant results in .

Because , the resulting complexity for algorithm 3.10 is .

3.3.5 Converting a cactus representation to a CNC cactus representation

For converting a cactus representation into a CNC representation algorithm 3.11 (figure 3.61) should

be invoked. A CNC representation does not contain empty 3-junction nodes nor does it contain an

empty 2-junction node belonging to a 2-cycle. By applying algorithm 3.11, just after algorithm 3.10 all

the empty 3-junction nodes are first removed. Afterwards the empty 2-junction nodes of the 2-

cycles are removed and the CNC representation is achieved.

 Algorithm 3.11: Construct CNC representation

Input: and

 A complete list of the vertices of : vertex-list.

Output: and

1. for each do

2. if is an empty node (% if n does not map to any vertex)

3. add to empty-list;

4. end

5. end

6. for each empty-list

7. if is an empty 3-junction node

8. modify and according to 3-cycle insertion;

9. end

10. end

11. for each do

12. if is an empty node (% if n does not map to any vertex)

13. add to empty-list;

14. end

15. end

16. for each empty-list

17. if is a 2-junction node and at least one of the cycles containing is a 2-cycle

18. 2-cycle-neighbour(k) ;

19. move the contents of the 2-cycle neighbor of to ;

20. remove the 2-cycle neighbor of ;

21. end

22. end

Figure 3.28: Algorithm for converting to CNC representation.

3. Robustness Analysis and Connectivity

 43

Algorithm 3.11 initially starts to construct a list with all the empty nodes (lines 1-5). Then it looks if an

element of this list is an empty 3-junction node. If so it applies a 3-cycle insertion and updates

 accordingly (lines 6-10). A 3-cycle insertion14 is a process where an empty 3-junction node is

replaced by a 3-cycle of empty nodes as illustrated in the next figure.

3-cycle insertion

Figure 3.29: Example of 3-cycle insertion.

Because the graph is modified, the empty nodes in the new are stored in a new list (lines 11-

15). In the remainder of the algorithm, all empty 2-junction nodes in a 2-cycle are removed to obtain

the CNC representation. Figure 3.30 illustrates how this algorithm works for our running example.

Conversion to CNC

representation

{3}
{5,6}

{9}{1}

{2}

{4}

8

7
{7}

{8}

(a)

{3}
{5,6}

{9}
{1}

{2}

{4}

8

7
{7}

{8}

(b)

Figure 3.30: Example of constructing a CNC representation.

Time complexity of algorithm 3.11

For the first 5 lines of algorithm 3.11, , because the number of nodes in the cactus

 is . In [71] it is shown that the number of empty nodes is also , which results in

. If there is a 3-junction node in , it should satisfy the following properties:

1. The degree of the node should be 6.

2. It should have at least 3 neighbors.

3. Each neighbor should be connected by 1 or 2 links to the 3-junction node.

To identify the 3-junction node (line 7), a for loop of is required. By doing this for all 3-junction

nodes and using the loop of line 6 to iterate through all these nodes, the worst case running-time

function for line 7 becomes . Once identified, a 3-cycle insertion should take place (line

8). The modification of both and requires a 2-level nested for loop. This results in

that can be extended to , because line 8 has the highest order in the range 6-

10. (similarly as the first 5 lines). Because both line 19 and 20 require a 2-

level nested loop for the programming (excluding the for loop of line 16), the highest complexity

order of line 16-22 is . This leads to . Adding , ,

 and results in . Thus, the complexity of the algorithm is

.

14
 3-cycle insertion in line 8 is actually a big step that can be programmed in various ways, depending in what

format is represented and submitted to the code.

3. Robustness Analysis and Connectivity

 44

3.4 Increasing the edge-connectivity

This section introduces a technique to increase a graph’s robustness, which focuses more on the

weakly connected parts of the network, rather than on the complete topology of the network15. In

this section an edge-augmentation algorithm is treated that focuses on optimally augmenting the

edge-connectivity of the PS mobile core network. For increasing the edge-connectivity of a graph, it is

required to solve the edge-augmentation problem for a graph . The edge-augmentation

problem is defined as to find the smallest set of edges to be added to , such that its edge-

connectivity can be increased by an integer value δ [73]. Thus, will become -edge-

connected after applying the edge-augmentation procedure.

Algorithm 3.12 (devised by D. Naor, D. Gusfield and C. Martel [73]) is used for augmenting core PoP

ASD/RT and the PS mobile core network16. To understand this algorithm it is relevant to understand

some processes which can be seen as subroutines of the algorithm. These processes are explained

next and afterwards the algorithm is treated. For an elaborate description it is recommended to

resort to the literature [8, 12 and 73].

The first process to be clarified is the modified DFS algorithm, consisting of two stages. The 1st stage

defines different colors for the different cycles of . The 2nd stage is characterized by a DFS traversal,

which starts at an arbitrary node and obeys the following rule: If a node is visited for the first time via

a link, which is part of a cycle (colored for example with red), then all other links incident to this node

should be traversed, before traversing the other (red) link incident to that node. If the cactus is

acyclic, the modified DFS procedure reduces to the standard DFS algorithm.

Furthermore, it is necessary to say something about the edge demand function , where P may

be any partition of the set V of vertices into disjoint subsets . This function is used to

compute how many edges are required to achieve -connectivity and is defined as:

 (3.2)

Equation (3.2)17 takes the sum of the number of edges to be added to each . If for subset ,

, then at least edges need to be added between and another

subset (that also requires at least 1 edge, because). Since the subsets are disjoint,

each edge satisfies at most 2 requirements. This means that over all partitions P, at least

 edges need to be added to a graph to make it ()-connected [73].

Finally it is important to know how the Extreme Sets Tree (EST) is constructed. The definition of EST

states that a set is -extreme if and only if is strictly smaller than each of its proper

subsets. This definition states for any that , given that . Lemma 4.2 in

15
 When increasing to increase the robustness, the focus is on the whole graph.

16
 Results involving other subnets are in the KPN deliverable.

17
 In equation 3.2 k is the edge-connectivity before edge augmentation, is the amount to increase the edge-

connectivity and is the degree of .

3. Robustness Analysis and Connectivity

 45

[73] states that if is -extreme, is -extreme and , then either or and are

disjoint. This can be represented by the EST, where every leaf corresponds to a vertex , and the

root to the entire set . Every other node in the tree corresponds to an extreme set. The

construction of the EST is not trivial. Figure 3.31 is used to exemplify the EST construction. For any

node other than the root r of the Extreme Sets Tree, the edge demand of node x is:

 (3.3)

The edge demand of the root r is:

 (3.4)

The edge demand of the extreme set (ES) is equal to that of the root of the EST ().

Theorem 4.4 in [73] shows that the algorithm given above is optimal. The point of this theorem is

that only new edges are needed for increasing the edge-connectivity by δ. Remember

that this was the minimum number of edges required for the augmentation.

1

3

2

4

5

6

11

9

12

10

7

8

1

3

2

4

5

6

11

9

12

10

7

8

1-cut
2-cut

2-cut

2-cut

2-cut

These vertices are more than 2-edge-connected.

The subnets defined by the dashed circles have

degree less than the vertices within.
r

21

43 5 6

11 12

9 1087

x1

x2 x3 x4

x9

x10 x11 x12

x5 x6 x7 x8 x13 x14 x15 x16

Graph G

EST(G)

Example of constructing EST

Figure 3.31: Example of EST construction.

Algorithm 3.12 consists of the following steps:

1. Construct (see section 3.3) of a -connected graph, representing all its -cuts.

2. Traverse using a modified Depth First Search (DFS) algorithm and label the leaves

() of the cactus in the order of the traversal.

3. Form the pairs ({ }:), where is the set of vertices from that is

mapped to the leaf of .

4. For each pair (,), arbitrarily pick 1 vertex from and 1 from and connect

this pair of vertices with a single edge. If k is odd the process is completed by connecting the

vertex to an arbitrarily chosen different leaf . If the algorithm stops here. For

augmenting the graph, such that , continue to step 5.

3. Robustness Analysis and Connectivity

 46

5. Construct the Extreme Sets Tree (EST) corresponding to graph . For every leaf in

find the node in the tree , which corresponds to the set . Because is a ()-

extreme set in the node should exist. The idea is to find a node of the in the

subtree of (possibly itself), which satisfies the following properties, concerning the

demand function for each node :

a. > 0

b. = 0 for every child vertex z of its parent . (If is a leaf in the

then = .)

6. Now the graph can be constructed from by adding edges to the latter. For any pair

(,) of leaves from the cactus formed in step 1 till 3 two arbitrary vertices from G

should be chosen, where the 1st corresponds to a leaf in the sub-tree of and the 2nd to a

leaf in the sub-tree , in . Connect the chosen vertices by a new edge.

7. Compute the Extreme Sets Tree for the graph by updating . If the number

of leaves in is odd at some phase other than the latest one (), then at the end of

step 3, there will be a leaf that participates in two different pairs. Note that ≥ 2

since this is not the very last stage of the algorithm. For this particular leaf two nodes,

and , need to be selected from the subtree of and each one should be associated to a

different pair. After that step 6 can be done as before. The following procedure explains how

 and can be selected:

A node should be found in the sub-tree of such that (a) > 2 and (b)

for every child of . If is a leaf then define = and = . Otherwise, let

and be two children of , such that they have the largest edge demand among all the

child nodes of . Find a node (for j =1,2) in the subtree of (possibly itself) such that

(a) > 0 and (b) = 0 for every child of . There are only 3 cases possible,

namely: (1) = =0, (2) = 1 and = 0 and (3) = 1 and =1.

Now that the edge-augmentation algorithm is explained, it will be applied on the graph of subnet

ASD/RT as well as the entire graph representing KPN’s PS mobile core network18. There are two

important issues that have to be dealt with. The 1st point is that in reality the cost for adding new

edges varies, depending on several factors like distance, edge-type, indoor or outdoor etc. The 2nd

issue is that physically it may not be possible to add a new edge between any arbitrary pair of

vertices. To deal with this, the above algorithm is modified, such that edge-augmentation is done in

two stages. In the first stage the edge-connectivity is increased from 1 to 2, and the DFS procedure is

done in such a way, that the output of the algorithm produces edges to be added that can also be

implemented in reality. In the second stage, applied on the subnet only (and not on the entire

graph), the edge-connectivity is increased to 3.

 Increasing edge-connectivity of core PoP ASD/RT

Now algorithm 3.12 will be applied to (the graph of core PoP ASD/RT), shown in figure 3.1.

From a cactus representation is constructed, according to the explanation of subsection 3.3,

18
 The application of the algorithm on other subnets is in the KPN deliverable.

3. Robustness Analysis and Connectivity

 47

which is shown in figure 3.3219. For the case that the target would be a 2 edge-connected network, a

nice way of applying the modified DFS algorithm and related labeling would yield the 7 dashed links.

As these new links (in the cactus) correspond to edges (in the target graph) that connect routers,

which fulfill the same function, it is surely an implementable solution. Because the router pairs are

collocated, this is a good solution for the 2-edge-connectivity target.

However, if the target would be ≥ 3-edge-connectivity, this solution is not necessarily the optimum

one. Further analysis is required as described in algorithm 3.12. First the Extreme Sets Tree is

constructed, as shown in figure 3.33. is actually a tree, where the root corresponds to

set and child nodes correspond to the leaves20. The edge demand of each element of the EST

is calculated and denoted in table 3.1.

H(G) of core PoP ASD and RT

u4 u5 u6 u7

links to be added = 14/2 = 7

(These are the dashed lines)

3

4

9

10

11 12 13 14

15 16 17 18

26

27

28

29

30

31

Vertices

1-10 and 19-25
DFS-algorithm

u1 u2 u3

u11 u12 u13 u14u8 u9 u10

Figure 3.32: Constructing the cactus representation of core PoP ASD/RT.

14 15

r

1611 12 13

25 19 20

17 18

24

x15 x16 x17 x18

x19 x20 x21 x22 x23 x24 x25

x1 x2 x3 x4 x5 x6 x7 x8

Extreme Sets Tree (EST)

Degree(green nodes) = 1

Degree(blue nodes) = 2

Degree(white nodes) > 2

27 28 2926 30 31

x9 x10 x11 x12 x13 x14

4 5 61 2 3 7 8 22 239 10 21

x26 x27 x28 x29 x30 x31

Figure 3.33: The Extreme Sets Tree of core PoP ASD/RT.

19
 Strictly taken, the dashed links are not part of the cactus.

20
 This is in agreement with lemma 4.2 of [73].

3. Robustness Analysis and Connectivity

 48

Node Degree Ф(.) Node Degree Ф(.) Node Degree Ф(.) Node Degree Ф(.)

1 X19 7 0 10 X28 17 0 19 X17 2 1 28 X11 1 2

2 X20 7 0 11 X1 1 2 20 X18 2 1 29 X12 1 2

3 X21 7 0 12 X2 1 2 21 X29 4 0 30 X13 1 2

4 X22 7 0 13 X3 1 2 22 X30 4 0 31 X14 1 2

5 X23 4 0 14 X4 1 2 23 X31 6 0

6 X24 4 0 15 X5 1 2 24 X15 2 1

7 X25 4 0 16 X6 1 2 25 X16 2 1

8 X26 4 0 17 X7 1 2 26 X9 1 2

9 X27 17 0 18 X8 1 2 27 X10 1 2

Table 3.1: Vertex degree and edge demand of core PoP ASD/RT

For the calculations of the edge demand in the case of the above table, the following reduced

equation is used: . Using these results, the minimum number of edges

to obtain a 3 edge-connected graph is calculated.

 and = 16.

The minimum number of edges to be added to obtain 3-edge-connectivity from graph ,

which was 1-edge-connected is therefore 16. First the 7 previously found edges are added to obtain

the 2-edge connected graph as shown in the next figure.

1

2

5

6

3

4

7

8

9

10

4 x

2 x

2 x

2 x

2 x

2 x

2 x

11 12 13 14

15 16 17 18

19

20

23

24

25

21 2 x
22 2 x

Core PoP ASD/RT after increasing edge connectivity by 1

(This graph is 2-edge connected)

26 28 30

27 29 31

 Figure 3.34: The 2-edge connected core PoP ASD/RT.

The next interesting step is to determine whether an improvement from the above graph to a 3-

edge-connected graph can be achieved using additional edges, with respect to .

The cactus representation of this graph is shown in figure 3.35. It seems that this is indeed possible

by augmenting with the 9 edges indicated in the next table21.

21
 Note that there are more possibilities to achieve this target.

3. Robustness Analysis and Connectivity

 49

Labeled based

edge names

Vertex-number based

edge names

Labeled based edge

names

Vertex-number based

edge names

{U1,U10} {24,25} {U6,U15} {13,14}

{U2,U11} {11,12} {U7,U16} {17,18}

{U3,U12} {15,16} {U8,U17} {30,19}

{U4,U13} {26,28} {U9,U18} {31,20}

{U5,U14} {27,29}

Table 3.2: A set of edges for 2-augmenting core PoP ASD/RT.

But even though an optimal solution is found using the 2 stage approach, there is still a problem,

because not all of these edges are compatible with the subnet’s functionality. A realistic approach is

to replace the edges {30,19} and {31,20} by the following 4 edges {9,20}, {10,19}, {30,3} and {31,4}.

u2 u11 u6 u15

u3 u12 u7 u16

11 12 13 14

15 16 17 18

H(G¹) after applying

DFS-algorithm

1-10

and

21-23

19

20

24

25

2 x

2 x

u1

u10

u17

u18

u4 u13 u8

u5 u14 u9

26 28 30

27 29 31

Figure 3.35: Cactus representation of the 1-augmented core PoP ASD/RT.

Increasing edge-connectivity of the entire graph

For KPN it is interesting to see how the augmentation process can be done, such that the costs are

minimal. It is this constraint that makes only the increase to 2-connectivity interesting for KPN. In this

subsection the edge-augmentation is considered where . Therefore the cactus of the entire

graph, , is constructed. The red line in figure 3.36 distinguishes the green 1-edge-

connected vertices form the stronger connected ones. This means that all vertices, not green, can be

condensed into a single node22.

Figure 3.37 shows the cactus of the entire graph along with the labels obtained after a “smartly”

chosen modified DFS algorithm. This “smart” choice refers to the fact that the corresponding solution

is both possible to be physically implemented and also cost efficient. It conforms in such a way with

the analysis of the subnets, that exactly the same edges are added here as were added to the core

PoP subnets23. Thus, with the addition of the minimum amount of 22 edges, the edge-connectivity-

augmentation problem is solved for the special case of (for the PS mobile core network).

22
 Note that only the first 4 steps of algorithm 3.12 need to be applied, as .

23
 See the KPN deliverable for the analysis of the subnets other than core PoP ASD/RT.

3. Robustness Analysis and Connectivity

 50

1 2

3 42 x

2 x

2 x

5 6

7

2 x2 x 2 x

2 x

2 x

2 x2 x

2 x

2 x

4 x

2 x

2 x

2 x

2 x

2 x

2 x
2 x

2 x

4 x

2 x 2 x

4 x

2 x

2 x

2 x

2 x

2 x

2 x2 x

2 x

4 x

2 x

2 x

2 x

2 x

2 x

2 x

4 x

2 x

2 x

4 x

2 x 2 x

2 x
2 x

2 x

2 x

2 x

2 x

2 x

2 x

2 x
2 x

4 x

2 x

2 x

2 x

2 x

2 x

2 x

2 x

2 x

4 x

2 x 2 x

8

9

10

11

12

13

14

15

16

17 18 19 20

21 22 23 24

25

26

27
28

29

30

31

32

33

34

35

36

37

40 41 42 43

38

39

44 45 46 47

48

49

50 51

52

53

54

55

56

57

58

59

60

61

62

63 64 65 66

67 68 69 70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86 87 88 89

90 91 92 93

94

95

96

97

98

99

100

101

102

103

105104

106

108 109

107

111

110

113

112

115

114

116 117

118 119

120 121

122 123

124 125

126 127

129

128

130

131

132

133

134

135

136

137

138

139

140

141

Figure 3.36: Constructing the cactus representation of the entire graph.

40

41

42

43

136

137

138

139

140

141

44

45

46

47

63 64 65 66

67 68 69 70

86 87 88 89

90 91 92 93

17

18

19

20

21

22

23

24

130

131

132

133

134

135

U1

U2

U3

U4

U5

U6

U7
U8 U9 U10 U11 U12 U13 U14 U15

U16

U17

U18

U19

U20

U21

U22

U23

U24

U25

U26

U27

U28

U29

U30 U31 U32 U33 U34 U35 U36 U37
U38

U39

U40

U41

U42

U43

U44

All other nodes

Cactus representation with newly added links

Figure 3.37: Cactus representation of the entire graph.

3. Robustness Analysis and Connectivity

 51

3.5 Vertex-connectivity augmentation

The reliability of a network will increase even more when the vertex–connectivity (connectivity in

short) increases. This may be beneficial if the traffic load increases with time, in terms of improved

performance. According to the results of both edge and vertex-connectivity-augmentation, KPN can

make a more appropriate decision whether or not to implement new edges in the core network. The

vertex-connectivity of the PS mobile core network is 1 (figure B3). This means that there is at least 1

vertex whose removal disconnects the graph. If this vertex-connectivity were to be increased to 2,

any kind of single failure would never lead to the network getting disconnected, which is why a

target of 2-vertex-connectivity is worth examining. Achieving a vertex-connectivity of 3 would

already be too expensive.

The vertex-connectivity-augmentation problem is defined as to find an edge set of minimum size to

upgrade a -connected graph to a -connected graph. Section 3.1 explains which algorithms

are available to solve this problem. Due to the fact that the augmentation, where , would be

too expensive, an algorithm is used that gives an optimal solution for obtaining a -connected

graph. Algorithm 3.13 is used for the purpose of increasing the connectivity by 1 and is based on

Jordan’s algorithm [10, 46], which finds an optimal solution for achieving 1 and 2 connected

networks [10]. Algorithm 3.13 is presented next. Because an attempt is made to increase the vertex-

connectivity form 1 to 2, the situation is somewhat simpler and the following steps are sufficient24:

1. Find the maximum number of pair-wise disjoint tight sets, , where a tight set of a k-

connected graph is a vertex set , such that the number of neighbors of is equal to k

(denoted as) and that . In other words is the maximum

integer , such that are all the tight sets in G and .

2. Find all the k-separators of the k-connected graph G and then find the maximum number of

clusters of , denoted as , where is the most critical k-separator25. The most critical

k-separator is that subset S, consisting of k vertices, which maximizes the number of clusters if it

is removed from . A separator of a connected graph G is defined as an (inclusion wise)

minimal subset , such that consists of at least 2 clusters. In mathematical form:

}, where if G has no k-separators.

3. Find the lower bound of newly to be added edges to graph G for increasing the connectivity by 1,

using the following equation: .

4. Construct a -connected graph from the original k-connected graph, by

adding a new vertex s and 1 edge between s and each .

5. For each remove each edge {s,v} from if the -connectivity criterion is not

jeopardized. The edges between vertex s and the tight sets will remain after applying this step.

24
 It is advised to refer to [10] for the complete algorithm.

25
 is defined as graph without a subset of vertices and all edges incident to the vertices of S.

3. Robustness Analysis and Connectivity

 52

6. For the remaining edges apply the splitting-off theorem26 in such a way that no more than

 new edges need to be added with respect to G, such that a 2

connected graph can be constructed.

Figure 3.38 illustrates how the minimum number of edges for the augmentation is obtained. The

example graph is clearly 1-connected and there are 4 tight sets, according to step 1 of the algorithm.

Step 2 is to find and it can be seen that there are two 1-seperators in , namely vertex 1 and 3.

Removal of either one results in three clusters, which means that . According to step 3, the

minimum number of edges to be added is: .

87

5

1

4

9

2

3

6
D2D1 D3 D4

87

5

1

4

9

2

3

6
D2D1 D3 D4

Q2Q1
Q3 Q4

b(G) = 3

t(G) = 4

Max{2,2} = 2

Graph G Determining t(G) and b(G)

Figure 3.38: Calculating b(G), t(G) and the lower bound.

Step 4 results in the addition of the dashed edges as shown in the left graph of figure 3.39. The

center graph shows the remaining edges after step 5 is applied. In this example it is clear that only

the edges between vertex and the vertices representing the tight sets remain. Finally the removal

of s and the addition of 2 edges according to the splitting-off theorem results in a 2-connected graph

.

87

5

1

4

9

2

3

6
D2D1 D3 D4

Q2Q1 Q3 Q4

s

87

5

1

4

9

2

3

6
D2D1 D3 D4

Q2Q1 Q3 Q4

s

87

5

1

4

9

2

3

6

s

Graph G* Graph G* Graph G¹

Figure 3.39: From a k-connected to a (k+1)-connected graph.

Algorithm 3.13 is applied to (to represent the result on subnet level) and the entire graph27.

It is assumed that the algorithm is explained well enough and therefore the results are directly given.

An important factor to cope with is that the new edges should be possible to be implemented in

26
 The splitting-off theorem for vertex-connectivity says that splitting-off the edges (s, v) and (s, w) incident to

node s means to remove these edges and add a new edge between node v and node w.

27
 The analysis of the other subnets can be found in the KPN deliverable.

3. Robustness Analysis and Connectivity

 53

reality. With these constraints in mind an attempt is made to increase the connectivity of the PS

mobile core network.

Vertex-connectivity augmentation of core PoP ASD/RT

Figure 3.40 almost gives the answer of the edges to be added to achieve 2-connectivity. According to

the algorithm a minimum of 7 new edges does the trick and the newly to be added edges are chosen

conform figure 3.34. In this particular case figure 3.34 also applies to the result obtained here.

1

2

3

4

5

6

7

8

9

10

4 x

2 x

2 x

2 x

2 x

2 x

2 x

11 12 13 14

15 16 17 18

19

20

23

24

25

21 2 x22 2 x

26

27

28

29

30

31

s

b(G) = 5

t(G) = 14

Max{5-1, 14/2} = 7

Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

Q9 Q10 Q11

Q12 Q13 Q14

Figure 3.40: Core PoP ASD and RT edge augmentation procedure.

Vertex-connectivity augmentation of entire graph

Now that it is clear how the subnets should be augmented, algorithm 3.13 is also applied on the

entire graph. In general it is not true that augmenting the subnets of a larger network ultimately

leads to higher connected larger network. However, in the case of the PS mobile core network, with

a target connectivity of 2, this phenomenon does occur and the result is shown in the next table.

Edge # New edge Subnet Edge # New edge Subnet Edge # New edge Subnet

1 (40,44) RT 10 (65,69) AH 19 (97,100) GV

2 (41,45) RT 11 (66,70) AH 20 (98,99) GV

3 (42,46) RT 12 (86,90) GV 21 (17,21) ASD

4 (43,47) RT 13 (87,91) GV 22 (18,22) ASD

5 (136,137) RT 14 (88,92) GV 23 (19,23) ASD

6 (138,139) RT 15 (89,93) GV 24 (20,24) ASD

7 (140,141) RT 16 (94,103) GV 25 (130,131) ASD

8 (63,67) AH 17 (95,102) GV 26 (132,133) ASD

9 (64,68) AH 18 (96,101) GV 27 (134,135) ASD

Table 3.3: The new edges for augmenting the entire graph.

Figures B8 and B9 (in appendix B) show the results regarding the analysis of the entire graph. The

edges to be added according to table 3.3 are the same as the edges found according to the analysis

on subnet level (shown in the KPN deliverable).

3. Robustness Analysis and Connectivity

 54

3.6 Relationship between augmentation and algebraic-connectivity

This section discusses how evolves when algorithm 3.12 and algorithm 3.13 are applied to a

graph and discusses a problem discovered in the process. To illustrate this is chosen, but the

analysis of other subnets and is similar. The goal is to verify how the output of both

algorithms relate to . In this thesis this kind of analysis is referred to as connectivity relations.

Remember that the connectivity target was defined to be 2 and that anything beyond would be

financially infeasible for KPN. Therefore the comparison between and is done for 1 and

2-connectivity. On the other hand the comparison between and is done for 1, 2 and 3-

edge-connectivity.

Connectivity relations for core PoP ASD and RT

The following 2 tables give an overview of versus and versus

 respectively. The 1st column of the respective tables show the number of new edges

required to increase and by 1, for each step. The reference graph for -edge-

connectivity (-connectivity) is the graph, which is -edge-connected (-connected),

corresponding to the previous row in each table. A comparison is made with , according to the

chosen combinations (in section 3.4 and 3.5), but also with the maximum and minimum that

could have been achieved by respectively choosing a maximizing and minimizing combination of

newly to be added edges. To find the maximizing and minimizing combination, each possibility to add

the minimum edge set should be tried out. We have used a brute force method to compute for

all combinations (see Matlab code in CD). In order to simplify the problem for the vertex-connectivity

of , subsets 1 and 3 as well as subsets 2 and 4 (shown in figure 3.41) are merged together

into 2 sets, each consisting of 7 nodes. In the case when edges need to be added between 2 subsets

there are ways of adding new edges. The case of 2 subsets was used to compute the

maximum and minimum for all subnets (see KPN deliverable).

The 7 previously chosen edges for 2-edge-connectivity/2-connectivity are shown as dashed lines in

figure 3.34. The 9 previously chosen edges, whose addition results in 3-edge-connectivity, are

presented in table 3.2. There are more combinations resulting in the minimum (maximum)

shown in the tables below.

k-edge-connectivity Algebraic-connectivity

of new edges : chosen : maximized : minimized

0 1 0,4087 Not applicable Not applicable

7 2 0,4087 0,6482 0,4087

9 (w.r.t previous) 3 0,5201 0,9709 0,5101

Table 3.4: Edge-connectivity compared with algebraic-connectivity of core PoP ASD/RT.

k-connectivity Algebraic-connectivity

of new edges : chosen : maximized : minimized

0 1 0,4087 Not applicable Not applicable

7 2 0,4087 0,6482 0,4087

Table 3.5: Vertex-connectivity compared with algebraic-connectivity ASD/RT.

3. Robustness Analysis and Connectivity

 55

New problem: finding all combinations between 3 or more subsets

From figure 3.40 in the previous section it can be seen that there are exactly 4 separators, namely

the singletons 3, 4, 9 and 10. Each separator has a subset of nodes, consisting of nodes of degree 1.

Figure 3.41 shows 3 examples of connecting the subsets, such that 2-connectivity is achieved

optimally and 1 example (d) of doing this with more than 7 edges. It is quite a task to sort out all the

possibilities of adding 7 edges28 between 4 subsets and upgrading the vertex-connectivity by 1.

In the author’s opinion the general combinatorial problem of finding all possibilities of adding

new edges across subsets, each consisting of an arbitrary amount of vertices, is an interesting

open problem. A solution for this particular problem has the advantage that one is able to solve the

edge-augmentation (vertex-augmentation) problem in such a way that a minimum set of edges is

chosen to increase the edge-connectivity (vertex-connectivity), while a particular combination can be

used that produces the highest (of all possible combinations) at the same time.

Core PoP ASD and RT have 4 subsets

11

12

13

14

15

16

17

18

26

28

30

27

29

31

In (a),(b) and (c) each node is augmented by exactly 1 link.

This is not the case for example (d).

11

12

13

14

15

16

17

18

26

28

30

27

29

31

(a) (b)

Subset 1 Subset 2

Subset 3 Subset 4

Subset 1 Subset 2 Subset 3Subset 4

11

12

13

14

15

16

17

18

26

28

30

27

29

31

(c)

Subset 1 Subset 2Subset 3 Subset 4

11

12

13

14

15

16

17

18

26

28

30

27

29

31

(d)

Subset 1 Subset 2

Subset 3 Subset 4

Figure 3.41: Vertex-augmentation possibilities of core PoP ASD/RT.

28
 Remember that new edges may only be added across different subsets and only one new link may be

additionally incident to each vertex.

56

4 Capacity Management in the PS domain

Capacity management is a huge topic and just like robustness it has received a lot of attention in the

academic world. Another commonality between the two is that both have impact on the

performance of a network. Despite the importance, capacity management is still in a “baby”-phase

(regarding the PS mobile core) and issues like bottlenecks and congestion are treated reactively. But

solving these problems afterwards sometimes leads to serious performance degradation. Currently,

capacity management has been given a top priority at KPN [57] and the company’s target is to

achieve an automated and proactive capacity management system, which includes forecasting

capabilities for preventing performance degradation due to capacity shortages.

The academic world has done much research regarding efficient use of resources [63, 3, 16] and in

general it seems that improving the routing mechanism, such that underutilized elements and edges

are used more efficiently, reduces stress on the “popular” paths. These “popular” paths may suffer

from heavy loads when less efficient algorithms (based only on shortest path routing) are used.

Table E1 (in appendix E) indicates the most important parameters, with respect to capacity

management, that KPN should take into consideration. The contribution of the author’s work to

KPN’s capacity management plan [57] is based on perhaps the most crucial capacity-parameter,

namely the bandwidth. The main reason to choose only this parameter is the fact that the core

network is not yet operational, making it impossible to do measurements on it. Nevertheless, a

technique is found to do some bandwidth management. On the other hand, it seems difficult (and

perhaps impossible) to do analysis on other parameters due to this constraint. Secondly, dealing with

just one of these parameters already requires a lot of time, which means that surely it is not possible

to cover all of them in the available time. The most important results are the following:

1. A program that calculates the relative amount of bandwidth usage of each network connection.

This program is the called the CTA-edge-betweenness program.

2. A program that calculates the vertex-betweenness centrality for a weighted graph, while taking

the effect of the edge vertices into account. The output generated by these programs is then

used (along with 2 other criteria) to estimate how critical each vertex in the network is.

4.1 Bandwidth management of edges

Using only topology information in the form of a bandwidth matrix, say , and traffic

information in the form of a traffic matrix, say , it is possible to estimate the percentage of

usage of each connection in a network. The CTA-edge-betweenness algorithm, computes the amount

of bandwidth usage for all network edges [80]. Figure 4.1, gives a high level overview of how the

technique works. In the box located at the right lower corner, the colour scheme presents the

colours used to indicate how crucial the edge usage is. If the edge usage exceeds the 60% threshold,

then caution is required, because nowadays data traffic increases at an exponential rate (see the

4. Capacity Management in the PS domain

 57

forecast in figure E1 in appendix E). In this case the solution is to upgrade the edge(s) (or add (a)

parallel edge(s)), whose usage exceeds the threshold.

Routing schemes of

services

Traffic Matrix compatible

with topology

Bandwidth Matrix

(weighted Adjacency

matrix)

CTAedgeBetweenness

program

Output:

- % usage of every edge

- Bottleneck edges (if any)

Figure 4.1: Usage of the CTA-edge-betweenness program.

The algorithm used for the CTA-edge-betweenness program is based on a modified version of

calculating the edge-betweenness centrality in the network. Betweenness centrality is a graph

theoretical concept that measures the degree to which a vertex or edge acts as an intermediary in

the communication between every source-destination pair in a graph. The following equation is used

to calculate the edge-betweenness centrality:

 (4.1)

 denotes the number of shortest paths between source and destination , while

indicates the number of shortest paths between and passing through a given edge . In the

original conception of betweenness centrality, “shortest path” is defined in terms of the number of

hops. This permits a regular Breadth First Search (BFS) algorithm [6] to identify the shortest paths.

However, taking a bandwidth-weighted graph makes it interesting to consider routing traffic over

less congested paths that also have the property of being relatively short in terms of the number of

hops. The CTA-edge-betweenness algorithm balances the traffic distribution using both the edge

capacities and the hopcount information. It is shown to be more accurate (with respect to the real

situation) than simple algorithms based on the basic definition of betweenness centrality [80]. Of

course there are other more complicated algorithms that can produce perhaps even better results

(e.g. SAMCRA [82]), but here it is preferred to keep things as simple as possible.

There are 2 important modifications [80] to be applied to the basic edge-betweenness centrality29 to

achieve the CTA version:

29
 The basic algorithm for both vertex and edge-betweenness centrality can be found in [6].

4. Capacity Management in the PS domain

 58

1. Should more paths of equal hopcount exist, the one having higher bandwidth is preferred. To

achieve this, the Widest Shortest Path (WSP) [31] algorithm is chosen to replace the BFS

algorithm.

2. Whenever a given edge appears in a path between end-vertices and , an increment

proportional to the contribution of the vertex pair to the total traffic is to be considered in

the calculation of the edge-betweenness. This is an improvement because the basic edge-

betweenness centrality formula (4.1), uses an increment of 1 for every vertex pair .

Algorithm 4.2 in figure 4.3 is considered to be a subroutine, which is invoked for every source

(actually every vertex) by algorithm 4.1, which is the main routine. For each the

subroutine computes a vector that contains the parent vertex of every vertex

 towards . In fact, this vector is used as a tree rooted at , where a parent is closer to the root

than its child vertices. For the construction of this vector, algorithm 4.2 uses a hopcount vector , a

largest minimum capacity vector and a priority queue . Initially the queue is loaded with , that

has priority 0. A smaller priority value corresponds to a higher priority to be removed out of as

shown in figure 4.2.

Smaller value = Higher

priority to leave Q

u0u1

p0p1p2

un

pn

Functioning of Q

u2

Queue Q with keys

according to priority rule

pn > … > p3 > p2>p1 > p0

Figure 4.2: Functioning of the queue in algorithm 4.2.

In line 15 of algorithm 4.2 it is shown that the construction of stops only when is empty. Line 16-

17 are assumed to be clear and in line 18 it is shown how the variable , which is used to find the

edge of largest min capacity, is updated. Line 19 is a condition which is satisfied if (1) a 1st parent

vertex or (2) a parent vertex reachable through a higher capacity edge towards is found. If this

condition is indeed satisfied, then all 3 vectors (lines 20-21) are updated. Line 23 shows the rule

according to which the priority queue is updated to be a function of the hopcount and the edge

capacity. When the queue is empty, the vector is returned to algorithm 4.3 (line 7).

In the main routine (algorithm 4.1), is used as a map to find the shortest-widest path for each

, towards the source . For each source such a tree map is constructed. Lines 1-9 of the main

routine are assumed to be clear, but line 10-14 may require some explanation to understand the

algorithm. First an edge between a parent and child vertex is chosen (line 11). Then (number of

shortest-widest paths through) is updated by using input information stored in the traffic matrix

 (line 12). After that the parent vertex is made the child vertex (line 13) for the next iteration of

the while loop (lines 10-14). When the while loop is finished, the values found for are stored in the

betweenness centrality vector for each . More information about the Matlab code for the CTA-

edge-betweenness can be found in appendix C.

4. Capacity Management in the PS domain

 59

 Algorithm 4.1 CTAedgeBetweenness

1: Input: Graph G(V,E), and traffic matrix .

2: Output: Normalized edge betweenness centrality .

3: for all do

4: ← 0

5: end for

6: for all do

7: ← FindPathsCTA(s)

8: for all do

9:

10: while do

11:

12:

13:

14: end while

15: end for

16: normalized

17: end for

18: return

 Algorithm 4.2 FindPathsCTA

1: Input: Source node , and links’ capacity C.

2: Objective: Find the shortest paths from to all other

nodes. Take into account both hop count

and largest minimum link capacity.

3: Output: , the parent node towards .

4: new priority queue

5: new map (vertex parent vertex)

6: new map (vertex hop count)

7: new map (vertex largest min capacity)

8: for all do

9:

10:

11:

12: end for

13:

14: insert into with priority 0

15: while do

16: removeMin()

17: for all do

18:

19: if or

 and then

20:

21:

22:

23:

24: end if

25: end for

26: end while

27: return

Invoke

subroutine

Algorithm 4.1 => Main routine, that computes

betweenness centrality for all edges.

Algorithm 4.2 => subroutine, for constructing a map

of shortest widest paths for each source s.

Figure 4.3: The algorithm for CTA-edge-betweenness [80].

On top of the explanation of algorithm 4.1 and 4.2, it seems that a minor modification in the latter

gives an interesting result (e.g. for weighted ring graphs). In line 23 of algorithm 4.2, the priorities in

constructing the widest-shortest paths are computed by the equation . The author has

generalized this equation to , such that the variable can be used as a

tuning parameter to control the amount of influence of both the hopcount and the capacity

in the determination of the priorities (e.g. Increasing , puts more weight on the capacity). The latter

equation will be referred to as the linear rule in this report. A logarithmic rule

30 can also be applied. Both rules will be tested with three different values for ,

after the different types of traffic matrices are discussed.

As the PS mobile core is treated as the case study, the bandwidth matrix and traffic matrix of

its complete graph are the input entities in the analysis31. However, the construction of is a

problem, because there is incomplete information about the routing schemes of services and for

constructing , it is necessary to have all source-destination pairs in the network. In January 2010

KPN made a start in documenting the schemes of the most important service types, but until August

30
 This type of log function is chosen in the rule to ease the computation, because most links in the PS mobile

core network have a bandwidth of 10 Gbps, 1 Gbps or 100 Mbps. Of course it is possible to use other

logarithmic functions as well (e.g.).

31
 The sparse form of is shown in figure c14 of the KPN deliverable.

4. Capacity Management in the PS domain

 60

2010 a relatively small part of the complete picture was finished. Due to this disadvantage it is not

possible to run a simulation based on data complying with reality. Therefore, 2 alternative scenarios,

each using its own type of traffic matrix, are simulated to test the program. The following matrix

types are used:

1. TM based on uniform packet size and transmission probability .

2. TM based on the partial (available) data.

For all the traffic matrices it is assumed that routers and switches are routing vertices and are

therefore not treated as sources or destinations of packets, but as intermediaries on source-

destinations paths. A short sample of the output produced by the CTA-edge-betweenness program is

placed as table E2 in appendix E32. Furthermore, histograms are generated that show how the

percentage of remaining bandwidth of the edges is distributed. The relative amount of remaining

bandwidth is quantified in bins, each (except 1) having a width of 10%. For example, the 90% bin

represents edges with a remaining bandwidth of 85%-95%. The 100% bin is the only one, with a

smaller interval, namely 95%-100%. It should be clear that there are negative bins, which are

physically impossible, but should be interpreted as the amount of relative bandwidth shortage. The

negative bins arise, because algorithm 4.1 gives negative values of remaining bandwidth (see table

E2) for edges if the traffic load exceeds the available bandwidth. Histograms of the lists are used to

analyze:

1. What happens when is varied using a fixed packet size.

2. The output produced using different TM types discussed earlier.

The effect of varying (on the 2 rules)

In figure 4.4, the comparison between the linear and logarithmic rule is done for , using

a packet size of 100 Mb. The figure shows that the differences between the results of the 2 rules are

small. They get even smaller (and even negligible) when increases. This can be explained using the

results in the table 4.1, which show that as increases, the differences between the priorities get

bigger between edges of different capacities, which are noticeable when comparing for example

column 6 with column 4. The effect of increasing on the priorities (to place the vertices in queue

of algorithm 4.1) is such that there is less difference in the queue order when comparing both rules.

(Gbps)

Linear priority Logarithmic

priority

Linear priority Logarithmic

priority

Linear priority Logarithmic

priority

0.1

1

10

Table 4.1: Effect of tuning parameter on linear and log rules.

Figure 4.4 shows that different values for do not yield significant differences. However, is a

reasonable choice if one wants to put more weight on the capacity, rather than the hopcount, in the

32
 Due to the large size of both the input traffic matrices (also the sparse representations consisting of almost

7000 rows) and the generated output lists, they are not presented in this report. Instead they are stored on the

CD.

4. Capacity Management in the PS domain

 61

priority determination. This choice also gives an opportunity to verify, which rule performs (a little

bit) better.

Summary:

1) As beta increases, the difference between

the rules become less.

2) At low load, the differences are smaller.

Therefore a relatively large packet size of

100 Mb is used.

Figure 4.4: Difference of linear and logarithmic rule.

The result using different TM’s

As the differences between the results of the 2 rules are not significant, the focus will be more on the

results of the algorithm from now on (rather than on these differences). In the remainder of this

subsection, is the tuning parameter of choice and the linear rule is (arbitrarily) chosen for the

next set of simulations33.

For the 1st TM type it is assumed that each non-routing source vertex sends a packet of uniform size

towards each possible destination (non-routing) vertex. The simulations are done for different packet

sizes (0.1 Mb, 1 Mb, 10 Mb and 100 Mb). For each packet size a simulation is done for different

transmission probabilities , as shown in figure 4.5. indicates the chance with

which a packet is sent by a source vertex and this chance holds for all source vertices. The histograms

33 From the KPN deliverable it can be verified that the logarithmic rule produces the same histograms for the

case study network.

4. Capacity Management in the PS domain

 62

show that the remaining bandwidth of many edges become less, as the packet size increases, no

matter the value of . For a uniform packet size of 0.1 Mb, many edges are in the 100 % bin and are

therefore (relatively) unused. As the packet size increases the bins to the left get higher values,

meaning that the remaining bandwidth of the edges becomes less, indicating that the network load

increases. At a packet size of 100 Mb, the -20% bin has the highest peak. This negative bin should be

interpreted as the number of congested edges. A uniform packet size of 10 Mb will cause congestion

even for a low transmission probability of . The histograms also show that the remaining

capacity decreases with increasing (e.g. compare the results of the 1st and the 4th histogram).

Figure 4.5: The output CTA-edge-betweenness using the 1st TM type.

For the relatively large packet size of 100 Mb, the results show that there are many edges that

remain relatively unused. The amount is the same for different probabilities. This can be explained by

the fact that (1) the cross edges of the network are not used under normal conditions (no failures)

and (2) that the traffic matrix is not a representation of the real situation. Cross edges connect the A

and B elements in figure B1 and should only be used for transmitting data under failure conditions.

The 2nd TM type is constructed using the (incomplete) routing information, which was available at

KPN at the time of writing. For this simulation a non-uniform packet size is considered, because each

service type has its own peak value (based on the busiest hour), as shown in the next table. Because

the service routing schemes are strictly classified, they are not available in this report34.

34
 For those who it may concern, this data is available at the capacity management group of KPN Care

Customer. The constructed TM can be found on the CD.

4. Capacity Management in the PS domain

 63

 Service Highest peak 2010 Service Highest peak 2010

1 (Fast) Internet Classified 5 APN Telfort Classified

2 Portal mm Classified 6 MOO (aggregated) Classified

3 Blackberry Classified 7 Roaming Classified

4 Machine to machine Classified 8 Billing Classified

Table 4.2: Most important services and their peak values.

The result is shown in figure 4.6 and it shows that the network does not have any bottleneck edges.

There is no heavy load to be carried by the network and the histograms confirm this as many edges

(in the 100% bin) are (relatively) unused. This can be explained by the fact that:

1. Cross edges are unused, under normal conditions.

2. Only 8 services are used to model the TM of the 2nd type, while in reality there are more.

3. Many edges having a capacity of 10 Gbps (figure B3) in the design, should also carry the load of

the Radio Network Controllers in the future. Therefore a relatively small portion of these edges

is used now.

On the other hand, some edges correspond with just 19% of remaining bandwidth (RBW). A closer

examination (table 4.3 combined with figure B3) reveals that these are the edges that connect the IP

BB to the GGSN. As these are very important connections for the functioning of the core network, it

is advised that they should be monitored and upgraded if necessary.

Figure 4.6: Output CTA edge-betweenness using the 2nd TM type.

Edge_# Vertex_i vertex_j %RBW Edge_# Vertex_i vertex_j %RBW

47 2 29 19 87 5 52 19

48 6 29 19 125 3 75 19

86 1 52 19 126 7 75 19

Table 4.3: The edges which exceed the safety margin.

4. Capacity Management in the PS domain

 64

4.2 Vertex criticality

It is possible to estimate the relative importance of each vertex within its network. The vertex

criticality (), gives the network operator a “rough” idea how much the loss of each vertex

affects the network as a whole, and therefore it indicates how important it is relative to its network.

The higher the criticality of a vertex is, the more negative the impact is on the network if it were to

be perturbed. The vertex criticality is defined by the author as follows:

 (4.3)

The equation states that the vertex criticality of vertex is the sum of its vertex-betweenness

centrality , its relative importance in the network and the size of an external network

(cloud) connected to it, if any. All the three components of are explained next.

Vertex-betweenness centrality

In [80] it is shown how the CTA-edge-betweenness algorithm computes the edge criticality for every

network connection, using a notion of edge-betweenness centrality. Analogous to this, vertex

criticality is defined based on vertex-betweenness centrality [6] and two other factors. Vertex-

betweenness centrality is usually computed using the following equation:

 (4.2)

In this case indicates the number of shortest paths between and passing through a given

vertex , while is defined similarly as in equation (4.1). In [6] there are several variants for

computing the vertex-betweenness centrality, namely:

1. The basic algorithm, based on the hopcount.

2. A variant which takes vertices at the periphery of the network into account.

3. A variant that takes the effect of edge weights into account.

4. A combination of 2 and 3 (our own contribution).

It is necessary to understand the efficient procedure used to compute in the basic algorithm.

Efficient computation is based on the fact that the cubic number of pair-wise dependencies

 can be aggregated, without computing all of them explicitly. If one sided

dependencies35 are defined as for all , the following can be exploited

[5]:

 (4.4)

This relation is recursive and asserts that the dependency of a vertex on some vertex can be

derived from dependencies on vertices one hop further away. The basic algorithm uses this, since

, by iterating over all vertices , each time computing for all

in two steps. The 1st step is a breadth first search used to find distances and shortest-path counts

35
 One sided dependency refers to the fact that the ratio becomes only dependent

on the source side if a summation as is done over all possible destination vertices

.

4. Capacity Management in the PS domain

 65

relative to . In the 2nd step all vertices are visited in reverse order of their discovery (so those

farthest from first). The 2nd variant for computing has one difference with the former, in that

 in the case that . This has the effect that vertices at the edge of the network

also contribute to the betweenness score of each . The 3rd variant works with a weight matrix

such that the shortest-path is actually a minimum weight path, instead of a minimum hop path. This

is certainly a feature that is also implemented in the routing strategy of the intelligent edge core

network.

The last variant is the one used for calculating and is obtained by combining the algorithms for

the 2nd and the 3rd variant, where the latter two are explained in [6]. Including the contribution of

vertices at the edge (periphery) is not really a necessity, but it does ensure that .

This in turn ensures that if for some vertex would hold. On

the other hand, including the weighted scenario conforming to variant 3 is required as it is closer to

the real situation.

Figure 4.7 shows both the algorithm and the functioning of variant 4. Notice that a Weight (or Cost)

matrix is the input of this algorithm36. The priority keys of , used for are dependent on the

distance (or hopcount) relative to source . The most intriguing part is the while loop (that runs as

long is not empty), in line 9-22. The loop runs for each vertex , because each vertex becomes

the source exactly once (line 4). In line 10, is extracted from and pushed into the stack as

shown in figure 4.8. Each time is chosen, such that it has the smallest distance towards . For each

neighbour of , the path discovery and path counting procedures are done. The distances are

updated by addition of the edge weights , which are taken from the weight matrix. After

, , and the predecessor list are processed properly in the Path discovery

procedure, the path counting procedure is invoked to construct the predecessor list. Note that a

vertex can have multiple predecessors/parents. This means that the algorithm considers all possible

shortest paths and not just one in the case that there are more options. The predecessor list and the

stack are used in the accumulation procedure to compute the betweenness centrality. The effect of

vertices at the edge of the network is counted in the accumulation as shown in line 23 and 28. Line

23 counts the number of times that is a source (end-vertex) for every other vertex in the graph,

while line 28 counts each destination end-vertex once for every source . Equation

4.4 is used in line 27 to update the ratio . For an elaborate explanation

of this it is advised to read [5]. Finally line 28 shows how the vertex-betweenness centrality is

updated, using the result of the previous line.

36
 The weight matrix used for the Intelligent Edge core can be found in the KPN deliverable.

4. Capacity Management in the PS domain

 66

Weight Matrix

Algorithm for

computing

VBC

Output:

VBC of each

vertex

 Algorithm 4.3 Betweenness in valued networks

1: Input: directed graph with edge weights .

2: Data: priority queue with keys and stack (both initially

empty) for all .

: distance from source.

: list of predecessors on shortest paths from source.

: number of shortest paths from source to .

: dependency of source on .

3: Output: betweenness for all (initialized to 0).

4: for s do

 Single-source shortest path problem

 Initialization

5: for do

6: for do

7:

8: enqueue

9: while do

10: extract with minimum ; push

11: foreach do

 Path discovery (% shortest path to w)

12: if then

13:

14: insert/update with new key; ;

15:

16: end

 Path counting

17: if then

18:

19: append

20: end

21: end

22: end

 Accumulation

23: + (|S|-1) (% number of times s is a source)

24: for do end

25: while do

26:

27: for do end

28: if then end (% w is target of s once)

29: end

30: end

Figure 4.7: Algorithm and functioning of the vertex-betweenness-centrality program.

4. Capacity Management in the PS domain

 67

v1

Higher priority to leave Q = smaller distance to s

v2v3

d1d2d3

vn

dn

d0 ≤ d1 ≤ d2 ≤ d3≤ … ≤ dn

Functioning of Q and S

v0

v4

Queue Q with dist[.] keys Stack S (First in last out)

Figure 4.8: Functioning of the queue and stack of algorithm 4.3.

The relative importance function

In equation (4.3) stands for relative importance of vertex and as the name already says, it is

defined as a function that indicates the relative importance of each network element. This definition

gives the network operator some freedom to use it as a tuning value.

For the mobile core network, consisting of different types of both routing and functional elements,

this function does make sense. In accordance with some members of the capacity management

group, a list is produced (table 4.4) with relative importance factor for each vertex type, which

is based on logical reasoning and the work experience of this group37. To make this factor have any

significant meaning in the vertex criticality estimation the relative importance is computed as

follows:

 (4.5)

Element type Element type Element type

SGSN 1 MDX 0.5 ZR2 0.5

GGSN 1.5 ZR1 0.5 ASW 0

TR 4 0.5 VRFLR 0.5 SRLB 0

MOO SW 0.5 CSW 0.5 SRIPS 0

ITR 0.5 ZR3 0.5 FR 0

CR 0.5 BOG 0.5 STAR 0

Table 4.4: The relative importance factor list.

The size of the connected cloud function

 is a function of the size and type of one or more external networks (clouds), if any, connected

to vertex . It is obvious that vertices (such as a border gateway, an Internet access router, etc.) that

connect the own network to external networks are very important. If these elements were to fail the

own network gets isolated, which can be catastrophic for an operator. The next table contains a size

of cloud factor, , for all types of network elements that serve as a gateway to an external

network, from the perspective of the PS mobile core network. The clouds can be seen in figure B2 in

37
 The meaning of the abbreviations used in this table (and table 4.5) can be found in appendix A.

4. Capacity Management in the PS domain

 68

appendix B. Similarly as with the previous component, the function of the 3rd component of the

vertex criticality is derived as:

 (4.6)

Name Name

SGSN 1 BOG 0.5

TR 4 1 MDX 0.5

MOO SW 1 ASW 0.5

ITR 1

Table 4.5: The size of cloud factor list.

The result for vertex criticality is summarized in tables E3 and E4 in appendix E, from which it can be

seen that . The vertex-criticality results are now being used as

a (rough) guideline in prioritizing the network elements and it therefore helps the capacity

management group (at KPN) to start setting up the proactive capacity management system. The next

figure38 shows the histogram corresponding to this table and it is clear that no vertex has a

betweenness centrality of 0, while and is zero for many elements. The former

corresponds to the fact that the effect of edge vertices was taken into account when computing the

vertex-betweenness-centrality. Most vertices have a betweenness centrality of 280 (corresponding

to the 500 bin). Those with high value are mostly the core routers in the IP BB and the core switches

in the PoP locations. The highest peak for (corresponding to 0) is logic, because not many

network elements are connected to a cloud as shown in figure B2. On the other hand, most elements

have , which explains (in combination with equation 4.5) the peak of this component at

the bin of 2500. Figure 4.9 also shows that many vertices have the minimum vertex criticality (mostly

the access switches), while few have a high value. It is obvious that the elements in the rightmost

bins are crucial to be monitored.

Figure 4.9: Histogram for vertex criticality.

38
 Each bin has a width of 500 (e.g. bin 500 goes from 250 to 750).

69

5 Conclusions

1. The network drawings (as a result of this thesis) of the PS mobile core network and its subnets

are based on the description of several documents [2, 56, 58, 59, 37, 33] and explanations given

by several architects and designers. Because these drawings are considered to be designs, there

is a small chance that certain changes may be applied to the network and that the results

regarding robustness and capacity management may not be applicable anymore. Therefore the

methods and tools used are generic and can be used for any network.

2. Three sub-optimal strategies have been used to increase the algebraic-connectivity of a graph

. In the case of the PS mobile core network (and its subnets), the most effective one is the

Fiedler vector strategy39, which uses the Fiedler vector for finding the new edges to be added to

the network in an iterative process.

3. For designed networks it is better (in general) to increase robustness by applying edge-

connectivity or vertex-connectivity augmentation, instead of increasing the algebraic-

connectivity. The reason is that the former 2 methods produce optimal solutions, while

increasing optimally is NP-complete. The former 2 directly focus on the weak spots, by

optimally increasing the number of edge or vertex disjoint paths and this is a more efficient way

to increase the network’s resilience to edge and vertex failures.

4. An algorithm that can be used to write a program that generates a cactus out of a

graph is a major step forward in the analysis of increasing the edge-connectivity and

therefore increasing the network’s robustness. With respect to this a quite abstract algorithm

has been extended, that can be used for this purpose. By integrating 5 new sub-algorithms into

the former, a less abstract algorithm is achieved, that can be used for writing a tool that

automatically generates a cactus representation.

5. As there are no means of performing measurements on the PS mobile core network (because it

is not in place yet), the accuracy of the CTA-edge-betweenness tool cannot be verified.

However, the tool should be used to estimate where potential bottlenecks/congestion may

occur, when no measurements are available. The vertex-criticality tool should be used to

prioritize the network elements. This tool is useful in the beginning phase of setting up a

capacity management environment, as it indicates which elements to start with.

39
 In this thesis this strategy is also referred to as strategy 3.

70

Bibliography

[1] N.M.M. de Abreu, Old and new results on algebraic-connectivity of graphs, Linear Algebra and its

Applications 423: 53-73, 2007.

[2] S. Al, R. Kuiters and J. van Huessen, Intelligent Edge Design Guide, KPN intern, 2008.

[3] J. Allspaw, The Art of Capacity Planning, O'Reilly Media, first edition, 2008.

[4] A. Benczur, Augmenting undirected connectivity in RNC and in randomized time, Proc. of the

twenty-sixth annual ACM symposium on theory of computing: 658-667, 1994.

[5] U. Brandes, A faster algorithm for betweenness centrality, Journal of Mathematical Sociology 25 (2):

163-177, 2001.

[6] U. Brandes, On variants of shortest path betweenness centrality and their generic computation,

Elsevier, Social Networks Vol. 30 issue 2: 136-145, 2008.

[7] R. H. Byrne, J.T. Feddema and C.T. Abdullah, Algebraic-connectivity and Graph Robustness, Unlimited

Release SAND2009-4494, 2009.

[8] G. Cai and Y. Sun, The minimum augmentation of any graph to a K-Edge-Connected graph, NETWORKS,

Vol. 19, pp. 151-172, 1989.

[9] E. Cheng and T. Jordan, Successive edge-connectivity augmentation problems, Math Program 84: 577 –

593, Springer, 1999.

[10] J. Cheriyan and R. Thurimella, Fast Algorithms for k-Shredders and k-Node Connectivity Augmentation,

Journal of Algorithms 33: 15-50, Academic Press, 1998.

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C.Stein, Introduction to Algorithms, 2
nd

 edition, The MIT

Press, 2001.

[12] K.P. Eswaran and R.E. Tarjan, Augmentation problems, SIAM J. Comput., Volume 5 Issue 4: 653-665,

1976.

[13] S. Fallat and S. Kirkland, Extremizing Algebraic-connectivity Subject to Graph Theoretic Constraints, The

Electronic Journal of Linear Algebra, A publication of the International Linear Algebra Society, Volume

3: 48-74, 1998.

[14] M. Fiedler, Absolute Algebraic-connectivity of Trees, Linear and Multilinear Algebra, Vol. 26: 85–106,

1990.

[15] M. Fiedler, Algebraic connectivity of graph, Czechoslovak Math. J., 23:298-305, 1973.

[16] S. Floyd and V. Jacobson, Link-Sharing and Resource Management Models for Packet Networks,

IEEE/ACM Transactions on Networking, Vol. 3 No. 4, 1995.

[17] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM Journal on Discrete

Mathematics, Volume 5, Issue 1, pages 25-53, Society for Industrial and Applied Mathematics, 1990.

[18] A. Frank, Connectivity augmentation problems in network design, State of the art 1994, (J.R. Bridge and

K.G. Murty, Eds.), pages 34-36, 1994.

[19] H. Frank and Chou, Connectivity considerations in the design of survivable networks, IEEE Transactions

on Circuit Theory, Volume 17 Issue 4: 486–490, IEEE explore, 1970.

 71

[20] A. Frank and T. Jordan, Minimal edge-coverings of pairs of sets, J. Comb. Theory Ser. B 65(1):73-110,

1995.

[21] A. Frank and L. Vegh, An algorithm to increase the node-connectivity of a digraph by one, Discrete

Optimization, Vol. 5 Issue 4: 677-684, ScienceDirect, 2008.

[22] G. Frederickson and J. Já’Já’, Approximation algorithms for several graph augmentation problems,

SIAM J. Comput. 10: 270–283, 1981.

[23] G. Frederickson and J. Já’Já’, On the relationship between the biconnectivity augmentation and

traveling salesman problems, Theoretical Computer Science, Volume 19, Issue 2: 189-201,1982.

[24] H. Gabow, A matroid approach to finding edge-connectivity and packing arborescences, Journal of

Computer and System Sciences, Volume 50 Issue 2: 259-273, 1995.

[25] H. Gabow, Applications of a Poset Representation to Edge-connectivity and Graph Rigidity, 32nd

Annual Symposium of Foundations of Computer Science: 812-821, 1991.

[26] A. Galluccio and G. Prioetti, Polynomial Time Algorithms for 2-Edge-Connectivity Augmentation

Problems, Algorithmica (2003) 36: 361 – 374, New York, 2003.

[27] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, Journal of the ACM

35(4): 921-940, 1988.

[28] R. Grone and R. Merris, Algebraic-connectivity of trees, Czechoslovak Math. J. Vol. 37 No. 4: 660 -670,

1987.

[29] R. Grone and M. Morris, Ordering trees by algebraic-connectivity, Graphs and Combinatories Vol. 6 No.

3: 229 – 237, SpringerLink, 1990.

[30] M. Grötschel, C. Monma and M. Stoer, Design of survivable networks, Handbooks in Operations

Research and Management Science, Volume 7: 617-672, Elsevier Science B.V., 1995.

[31] R. Guerin, A. Orda and D. Williams, QoS routing mechanisms and OSPF extensions, IEEE/ACM

Transactions on Networking, Vol.7 Issue 3: 350 – 364, 1997.

[32] A. Gunnar, M. Johansson and T. Telkamp, Traffic Matrix Estimation on a large IP Backbone: A

Comparison on Real Data, Proc. of the 4th ACM SIGCOMM conference on Internet measurement: 149 -

160, ACM, 2004.

[33] W. Hesen, R. Nagtegaal, P. Kuyper, “Detail Ontwerp MIPnet”, version 0.14, KPN intern, 2009.

[34] T. Hsu, On Four-Connecting a Triconnected Graph, 33rd Annual Symposium on Foundations of

Computer Science: 70-79, 1992.

[35] T. Hsu and V. Ramachandran, Smallest triconnectivity augmentation Part 1: General graphs,

manuscript, 1994.

[36] T. Hsu and V. Ramachandran, Smallest triconnectivity augmentation Part 2: Biconnected graphs,

manuscript, 1994.

[37] J. Huessen, Vision and Roadmap 2009 IP networking, version 0.1, KPN intern, 2006.

[38] T. Hun and V. Ramachandran, On finding a Smallest Augmentation to Biconnect a graph, SIAM J. on

Computing, 1993.

[39] B. Jackson and T. Jordan, A near optimal algorithm for vertex-connectivity augmentation. In ISAAC ’00:

Proceedings of the 11
th

 International Conference on Algorithms and Computation: 312-325, 2000.

[40] B. Jackson and T. Jordan, Independence free graphs and vertex-connectivity augmentation, J. Comb.

Theory Ser. B 94(1): 31-77, 2005.

 72

[41] A. Jamakovic and S. Uhlig, On the relationship between the algebraic-connectivity and graph’s

robustness to node and link failures, 3rd Euro NGI Conference on Next Generation Internet Networks:

96-102, 2007.

[42] A. Jamakovic and P. Van Mieghem, On the Robustness of Complex Networks by using the Algebraic-

connectivity, Proc. of the 7th international IFIP-TC6 networking conference on AdHoc and sensor

networks, wireless networks, next generation internet, pages 183-194, Springer-Verslag, 2008.

[43] J. Jensen, A. Frank and B. Jackson, Preserving and increasing local edge-connectivity in mixed graphs,

SIAM J. Discrete Math, Vol. 8 No. 2: 155-178, 1995.

[44] J. Jensen and T. Jordan, Edge-Connectivity Augmentation Preserving Simplicity, Proc. of the ninth

annual ACM-SIAM symposium on Discrete algorithms: 306-315, Society for Industrial and Applied

Mathematics, 1997.

[45] T. Jordan, A note on the vertex-connectivity augmentation problem, J. Comb. Theory, Ser. B 71(2): 294–

301, Academic Press, 1997.

[46] T. Jordán, On the optimal vertex-connectivity augmentation, J. Comb. Theory Ser. B 63: 8-20, 1995.

[47] Y. Kajitani and S. Ueno, The Minimum Augmentation of a Directed Tree to a k-Edge-Connected Directed

Graph, Networks, Volume 16 Issue 2, pages 181-197, 1986.

[48] S. Khuller, Approximation Algorithms for finding Highly Connected Subgraphs, University of Maryland,

1995.

[49] S. Khuller and B. Raghavachari, Improved approximation algorithms for uniform connectivity problems,

Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pages 1-10,

1995.

[50] S. Khuller and R. Thurimella, Approximation algorithms for graph augmentation, Lecture Notes in

Computer Science, Volume 623, pages 330-341, 1992.

[51] Y. Kim and M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent graph

Laplacian, Proceedings of the 2005 American Control Conference, pages 99-205, 2005.

[52] S. Kirkland, A bound on the algebraic connectivity of a graph in terms of the number of cutpoints,

Linear and Multilinear Algebra, Volume 47 Issue 1, pages 93-103, 2000.

[53] S. Kirkland and M. Neumann, Algebraic connectivity of weighted trees under perturbation, Linear and

Multilinear Algebra, Volume 42 Issue 3, pages 187-203, 1997.

[54] S. Kirkland, M. Neumann and B. Shader, Characteristic vertices of weighted trees via perron values,

Linear and Multilinear Algebra, Volume 40 Issue 4, pages 311-325, 1996.

[55] G. Kortsarz and Z. Nutov, Approximating minimum cost connectivity problems, Handbook on

Approximation Algorithms and Metaheuristics, chapter 58, Chapman & Hall/CRC, 2007.

[56] B. Kranendonk, “Voorraad strategie Mobile IP Backbone”, version 1, KPN intern 2009.

[57] C.J. Kromjong, “Care Customer Capacity Management plan”, version c0.2, KPN intern, 2009.

[58] N. Kruijt, “Globale Analyse Mobile 10G IP Backbone”, version 1.1, KPN intern, 2009.

[59] N. Kruijt, Technical Service Description: Mobile IP Backbone, version 1.0, KPN intern, 2007.

[60] G. Liberman and Z. Nutov, On shredders and vertex connectivity augmentation, Journal of Discrete

Algorithms, Volume 5 Issue 1, pages 91-101, 2007.

[61] W. Liu, H. Sirisena, K. Pawlikowski and A. McInnes, Utility of Algebraic Connectivity Metric in

TopologyDesign of Survivable Networks, seventh International Workshop on the Design of Reliable

Communication Networks, pages 131-138, 2009.

http://www.sciencedirect.com/science/journal/15708667
http://www.sciencedirect.com/science/journal/15708667
http://www.sciencedirect.com/science/journal/15708667
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%2312928%232007%23999949998%23642876%23FLA%23&_cdi=12928&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=d818781c97eb5a5637509b200aec5359

 73

[62] T. Masuzawa, K. Hagihara and N. Tokura, An optimal time algorithm for the k-vertex-connectivity

unweighted augmentation problem for rooted directed trees, Discrete Applied Mathematics, Volume

17 Issues 1&2, pages 67-105, 1987.

[63] A. Medina, N.Taft, K. Salatian, S. Bhattacharya and C. Diot, Traffic matrix estimation: existing

techniques and new directions, Proceedings of the 2002 SIGCOMM conference, pages 161–174, 2002.

[64] R. Merris, A survey of graph laplacians, Linear and Multilinear Algebra, Volume 39 Issues 1&2, pages

19-31, 1995

[65] R. Merris, Characteristic vertices of trees, Linear and Multilinear Algebra, Volume 22 Issue 2, pages

115-131, 1987.

[66] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra and its Applications, Volumes 197&

198, pages 143-176, 1994.

[67] B. Mohar, Eigenvalues, diameter and mean distance in graphs, Graphs and Combinatorics 7, pages 53-

64, 1991.

[68] B. Mohar, Laplace eigenvalues of graphs – a survey, Discrete Mathematics, Volume 109 Issues 1-3,

pages 171-183, 1992.

[69] D. Mosk-Aoyama, Maximum algebraic connectivity augmentation is NP-hard, Operations Research

Letters, Volume 36 Issue 6, pages 677-679, 2008.

[70] H. Nagamochi, Graph algorithms for network connectivity problems, Journal of the Operations

Research Society of Japan, Volume 4 Issue 4, pages: 199-223, 2004.

[71] H. Nagamochi and T. Ibaraki, Algorithmic aspects of graph connectivity, Cambridge University Press,

USA, 2008.

[72] H. Nagamochi and T. Ibaraki, Graph connectivity and its augmentation: applications of MA orderings,

Discrete Applied Mathematics, Volume 123 Issues 1-3, pages 447-472, 2002.

[73] D. Naor, D. Gusfield and C. Martel, A fast algorithm for optimally increasing the edge-connectivity,

Siam J. Comput., Vol. 26 No. 4, pages 1139-1165, August 1997.

[74] Z. Nutov, Approximating connectivity augmentation problems, ACM Transactions on Algorithms,

Volume 6 Issue 1, article no. 5, 2009.

[75] R. Olfati-Saber, Ultrafast consensus in small-world networks, Proceedings of the 2005 American

Control Conference, pages 2371-2378, 2005.

[76] M. Penn and H. Krupnik, Improved Approximation Algorithms for Weighted 2- and 3-Vertex

Connectivity Augmentation Problems, Journal of Algorithms, Volume 22 Issue 1, pages 187-196, 1997.

[77] D. Poole, Linear algebra: a modern introduction, Thomas Brooks/Cole, second edition, Canada 2006.

[78] R. Ravi and D.P. Williamson, An approximation algorithm for minimum-cost vertex-connectivity

problems, Algorithmica, Volume 18 Issue 1, pages 21-43, 1997.

[79] A. Rosenthal and A. Goldner, Smallest augmentation to biconnect a graph, SIAM Journal on computing,

Volume 6, pages 55-66, 1977.

[80] J. Segovia, E.Calle and P. Vilà, An Improved Method for Discovering Link Criticality in Transport

Networks, Sixth international conference on Broadband Communications, Networks, and Systems,

pages 1-8, IEEE explore digital library, 2009.

[81] S. Taoka and T. Watanabe, Maximum weight matching-based algorithms for k-edge-connectivity

augmentation of a graph, IEEE International Symposium on Circuits and systems, pages 2231 – 2234,

2005.

http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235629%231987%23999829998%23292547%23FLP%23&_cdi=5629&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=89cf52fc7beafa1422849f0ed2e9c066
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235629%231987%23999829998%23292547%23FLP%23&_cdi=5629&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=89cf52fc7beafa1422849f0ed2e9c066
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235629%231987%23999829998%23292547%23FLP%23&_cdi=5629&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=89cf52fc7beafa1422849f0ed2e9c066
http://www.sciencedirect.com/science/journal/00243795
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235653%231994%23998029999%23321765%23FLP%23&_cdi=5653&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=3601f8f844cfed57c40b6413bef65493
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235653%231994%23998029999%23321765%23FLP%23&_cdi=5653&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=3601f8f844cfed57c40b6413bef65493
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235653%231994%23998029999%23321765%23FLP%23&_cdi=5653&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=3601f8f844cfed57c40b6413bef65493
http://www.sciencedirect.com/science/journal/0012365X
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235632%231992%23998909998%23294903%23FLP%23&_cdi=5632&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=e2a3c28ff10462f0a0e1361c7fd98383
http://www.sciencedirect.com/science/journal/01676377
http://www.sciencedirect.com/science/journal/01676377
http://www.sciencedirect.com/science/journal/01676377
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235874%232008%23999639993%23700411%23FLA%23&_cdi=5874&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=f6bc397b6338548ba5fdbcd27dd4b0ce
http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235629%232002%23998769998%23324724%23FLA%23&_cdi=5629&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=34dcbcfb1b73f63ce9f5ba80c94bfea9
http://www.sciencedirect.com/science/journal/01966774
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236839%231997%23999779998%23313172%23FLP%23&_cdi=6839&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=7486ec48db8f70d4d40a6a34d65e3d2a

 74

[82] P. Van Mieghem, Data Communications Networking, Amsterdam: Techne Press, Amsterdam, 2006.

[83] L. Végh, Augmenting undirected node-connectivity by one, Proceedings of the 42nd ACM symposium

on Theory of computing, pages 563-572, 2010.

[84] H. Wang, Robustness of Networks, PhD. thesis, Faculty of Electrical engineering, Mathematics and

Computer Science, Delft University of Technology, 2009.

[85] T. Watanabe and A. Nakamura, 3-connectivity augmentation problems, IEEE International Symposium

on Circuits and systems, pages 1847-1850, 1988.

[86] T. Watanabe and A. Nakamura, A minimum 3-connectivity augmentation of a graph, Journal of

Computer and System Sciences, Volume 46 Issue 1, pages 91-128, 1993.

[87] T. Watanabe, An efficient augmentation to k-edge connected graph, Tech. report C-23, Dept. of

Applied Math., Hiroshima University, 1988.

[88] T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, Journal of Computer and

System Sciences, Volume 35 Issue 1, pages 96-144, 1987.

[89] T. Watanabe and A. Nakamura, On a smallest augmentation to k-edge connect a graph, Technical

Report C-20, Department of Applied Math., Faculty of Engineering, Hiroshima University, Japan, 1984.

[90] C. Wu, Algebraic connectivity of directed graphs, Linear and Multilinear Algebra, Volume 53 Issue 3,

pages 203-223, 2005.

Websites:

[w1] D. Gleich, http://www.mathworks.com/matlabcentral/fileexchange/10922, 30 April 2006.

(Downloaded in March 2010)

http://www.sciencedirect.com/science/journal/00220000
http://www.sciencedirect.com/science/journal/00220000
http://www.sciencedirect.com/science/journal/00220000
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236864%231993%23999539998%23475656%23FLP%23&_cdi=6864&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=49c338e50e7565a1c337275822189332
http://www.sciencedirect.com/science/journal/00220000
http://www.sciencedirect.com/science/journal/00220000
http://www.sciencedirect.com/science/journal/00220000
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236864%231987%23999649998%23472947%23FLP%23&_cdi=6864&_pubType=J&view=c&_auth=y&_acct=C000024500&_version=1&_urlVersion=0&_userid=499885&md5=b25ab0be1217abc7f808b8e006ff76cd
http://www.mathworks.com/matlabcentral/fileexchange/10922

75

Appendix A: List of abbreviations and Symbols

Abbreviations Symbols

ASW Access Switch A graph (of a network)
BB Backbone Vertex set of a graph
BOG Border Gateway Edge set of a graph
CNC Cycle-type Normal Cactus Number of vertices
CR Core Router Number of edges
CS Circuit Switched Laplacian eigenvalue
CSW Core Switch Number of nodes in cactus
CTA Capacity and Traffic Aware Number of links in cactus
DFS Depth First Search Cactus graph
ES Extreme Sets partition Vertex set of a cactus
EST Extreme Sets Tree Edge set of a cactus
FR Function Router Mapping of vertices to nodes
GGSN Gateway GPRS Support Node (edge) connectivity
GRX GPRS Roaming Exchange Min cut value
GSM Global System for Mobile Communications Edge augmentation value
IE Intelligent Edge Vertex augmentation value
IP Internet Protocol Algebraic-connectivity
ITR Internet Traffic Router Edge-connectivity
MDX MMS Domestic Exchange Vertex-connectivity
MIPnet Mobile IP Network Fiedler vector
MOO Mobile Office Online Degree of set (can be a singleton)
OSPF Open Shortest Path First Neighbor set of
PoP Point of Presence Circular minimum cut partition for segment
PS Packet Switched Minimum cut partition for segment

SGSN Serving GPRS Support Node Edge demand function
SLA Service Level Agreement Number of tight sets
SMS Short Message Service Number of clusters after removing separator S
SRIPS Service Router Intrusion Prevention System Betweenness Centrality
SRLB Service Router Load Balancer Number of shortest paths
STAR STAR Router Parent list towards source
TR Traffic Router Hopcount towards source
UMTS Universal Mobile Telecommunications System Largest minimum capacity
VRF Virtual Routing Function Priority queue
VRFLR VRF Lite Router Stack
ZR Zone Router Tuning parameter
 Transmission probability
 Vertex criticality of vertex
 Cubic number of pairwise dependencies
 Weight of edge{u,v}
 Distance vector of
 Predecessor list of towards source
 Relative importance of
 Relative importance factor of
 Size of cloud connected to
 Size of cloud factor of

76

Appendix B: Network drawings and additional information

B1 Drawings of the PS mobile core network

Figure B1 shows what the PS mobile network looks like according to the near future design,

consisting of the Intelligent Edge network and the Mobile 10G IP BB. Each element is labeled with its

own network name, according to the terminology by KPN personnel in their documentation. The core

PoPs of ASD and RT are the largest subnets, containing most of the functionality and access to

external networks. Core PoP AH is not in place yet, but is being implemented at the time of writing,

while core PoP GV is most likely going to be phased out in the future. The network can be divided

into the following subnets:

1. The mobile 10G IP BB

2. 4 core PoP locations

3. 4 larger VRF lite locations

4. 1 smaller VRF lite location, which is used to establish an interconnection with Telfort.

Figure B2 displays the network as a graph, where the circular vertices are routers and switches, while

the rectangular vertices are elements performing specialized functions. Figure B3 is the graph

derived out of figure B2, where the clouds and the specialized vertices are relaxed. It shows the

capacity of the edges in terms of Gbps. This so called relaxed graph is used as the case study and

therefore every vertex is labeled with a number. The mapping can be verified by comparing figure B3

with figure B1.

Appendix B

 77

Figure B1: The PS mobile core network of KPN

This figure has been removed out of this public version of the thesis by the author, because it is part of

the classified information of KPN.

Appendix B

 78

2 x

2 x

2 x

2 x

2 x

2 x

2
 x

2
 x

2 x

2 x

2 x

2
 x

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

4 x

2 x

2 x

E
V

P
N

F
ra

m
e

 R
e

la
y

E
V

P
N

F
ra

m
e

 R
e

la
y

E
V

P
N

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

F
ra

m
e

 R
e

la
y

E
V

P
N

F
ra

m
e

 R
e

la
y

E
V

P
N

F
ra

m
e

 R
e

la
y

E
V

P
N

4 x

2 x 2 x2 x 2 x2 x 2 x

4 x

2 x 2 x

4 x

2 x

2 x

2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

F
ra

m
e

 R
e

la
y

E
V

P
N

F
ra

m
e

 R
e

la
y

E
V

P
N

F
ra

m
e

 R
e

la
y

E
V

P
N

4 x

2 x

2 x

IE
 a

n
d

 I
P

 B
B

V
ie

w
 b

a
s
e

d
 o

n
 n

o
d

e
s
 a

n
d

 l
in

k
s

Telfort Domain

S
A

T
U

R

N
U

S

M
2

C

W
W

W

K
P

N
 I
A

S

M
D

X

G
R

X

R
o

a
m

in
g

E
U

R
O

R
IN

G

S

R
IM

E
-P

lu
s

B
A

S
E

V
ia

 W
W

W

(I
P

-S
e

c
)

M O
O

C
u

s
to

m
e

r

N
e

tw
.

E
U

R
O

R
IN

G
S

R
IM

E
-P

lu
s

B
A

S
E

V
ia

 W
W

W

(I
P

-S
e

c
)

M
O O

C
u

s
to

m
e

r

N
e

tw
.

IS
P

 I
n

fr
a

F
ra

m
e

 R
e

la
y

K
P

N
.C

O
M

H
is

it
e

Figure B2: Graph of the PS mobile core network of KPN.

Appendix B

 79

1
2

3
4

10G

10G

10G

5
6

7

10G

10G

10G

1
0
G

10G

10G

10G

10G

1
0
G

10G

10G

10G

1
0

G

10G 10G 1G

40G

20G 20G20G
20G 2G

2G

10G

10G

10G

10G

10G

10G

10G

10G

1G

1G 1G

20G?

20G?

1G2G

2G

2G

100M

100M

100M

10G 10G 1G

40G

20G 20G20G 20G2G 2G

10G

10G

10G

10G

10G

10G

10G

10G

1G

1G
1G

20G?

20G?

1G 1G 1G

40G

2G 2G2G 2G2G 2G

1G

1G

1G

1G

1G

1G

1G

1G

1G

2G

2G 2G

100M

100M 100M

1G 2G

2G

100M

100M

100M2G

2G

2G

2G

2G
2G 2G

2G

2G

2G

2G

2G

1G 1G 10G

40G

2G 2G2G 2G20G 20G

10G

10G

10G

10G

10G

10G

10G

10G

1G

1G 1G

20G?

20G?

1G 2G

2G

100M

100M

100M2G

10G 10G
1G

10G

10G

10G

1G 1G 1G 1G 1G 1G

1G

1G

10G
1G 1G

10G
10G 10G 1G

10G

10G

1G

1G

1G

1G

 1G

1G 1G

1G

1G

1G?1G?

10G

10G

10G

10G

10G

10G

10G
10G

10G

10G
10G

10G

10G
10G

10G 10G 10G10G

IE
 a

n
d

 I
P

 B
B

 (
R

e
la

x
e

d
)

G
ra

p
h

 v
ie

w

T
ra

n
s
m

is
s
io

n
 n

o
d

e
s
 a

n
d

 l
in

k
s

10G

10G
10G10G

10G

10G

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
42

5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

4
0

4
1

4
2

4
3

3
8

3
9

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0

0

1
0

1

1
0

2

1
0

3

1
0

5
1

0
4

1
0

6

1
0

8
1

0
9

1
0

7

1
1

1

1
1

0

1
1

3

1
1

2

1
1

5

1
1

4

1
1

6
1

1
7

1
1

8
1

1
9

1
2

0
1

2
1

1
2

2
1

2
3

1
2

4
1

2
5

1
2

6
1

2
7

1
2

9

1
2

8

1
3

0

1
3

1

1
3

2

1
3

3

1
3

4

1
3

5

1
3

6

1
3

7

1
3

8

1
3

9

1
4

0

1
4

1

10G
10G

1G 1G 10G? 10G?

10G
1G 10G?

10G
1G 10G?

10G?

10G?

10G?

10G?

10G?

10G?

Figure B3: Relaxed graph of the PS mobile core network of KPN with edge capacities.

Appendix B

 80

B2 Results regarding the increase of the algebraic-connectivity

After applying any of the 3 suboptimal strategies explained in section 3.2, additional edges will be

added to the original graph of core PoP ASD/RT to increase the algebraic-connectivity and therefore

the robustness. It is interesting to see how many edges are required for each strategy in increasing

 such that the graph is at least 1-connected. Figure B4 till figure B6 show these results

1

2

3

4

5

6

7

8

9

10

4 x

2 x

2 x

2 x

2 x

2 x

2 x

11 12 13 14

15 16 17 18

19

20

23

24

25

21

2 x

22

2 x

26 27 28 29 30 31

With addition of 21 links:

- Graph is 2-connected.

- Algebraic connectivity 0,932597

Graph of ASD and RT after applying

strategy 1

Figure B4: Graph of ASD/RT after applying strategy 1.

1

2

3

4

5

6

7

8

9

10

4 x

2 x

2 x

2 x

2 x

2 x

2 x

11 12 13 14

15 16 17 18

19

20

23

24

25

21

2 x

22

2 x

26 27 28 29 30 31

With addition of 11 links:

- Graph is 2-connected.

- Algebraic connectivity 0,8227

Graph of ASD and RT after applying

strategy 2

Figure B5: Graph of ASD/RT after applying strategy 2.

Appendix B

 81

1

2

3

4

5

6

7

8

9

10

4 x

2 x

2 x

2 x

2 x

2 x

2 x

11 12 13 14

15 16 17 18

19

20

23

24

25

21

2 x

22

2 x

26 27 28 29 30 31

With addition of 9 links:

- Graph is 2-connected.

- Algebraic connectivity 0,7803

Graph of ASD and RT after applying

strategy 3

Figure B6: Graph of ASD/RT after applying strategy 3.

B3 Drawing results regarding edge and vertex-augmentation analysis

This section contains figure B7, which is the resulting 2-edge-connected complete graph after

algorithm 3.12 (see section 3.3) is applied to the original complete graph. It also contains figures B8

and B9, which are the process of applying and the result of algorithm 3.13 respectively (see section

3.4). The analysis is based on the graph of the mobile core network shown in figure B3.

Appendix B

 82

1
2

3
4

2 x

2 x

2 x

5
6

7

2 x

2 x

2 x

2
 x

2
 x

2 x

2 x

2 x

2
 x

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

4 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x

4 x

2 x 2 x

4 x

2 x

2 x

2 x

2 x

2 x

2 x
2 x 2 x

2 x

2 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x
2 x

2 x

4 x

2 x

2 x

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

4
0

4
1

4
2

4
3

3
8

3
9

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0

0

1
0

1

1
0

2

1
0

3

1
0

5
1

0
4

1
0

6

1
0

8
1

0
9

1
0

7

1
1

1

1
1

0

1
1

3

1
1

2

1
1

5

1
1

4

1
1

6
1

1
7

1
1

8
1

1
9

1
2

0
1

2
1

1
2

2
1

2
3

1
2

4
1

2
5

1
2

6
1

2
7

1
2

9

1
2

8

1
3

0

1
3

1

1
3

2

1
3

3

1
3

4

1
3

5

1
3

6

1
3

7

1
3

8

1
3

9

1
4

0

1
4

1

 Figure B7: The complete graph after applying Algorithm 3.12.

Appendix B

 83

1
2

3
4

2 x

2 x

2 x

5
6

7

2 x

2 x

2 x

2
 x

2
 x

2 x

2 x

2 x

2
 x

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

4 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x

4 x

2 x 2 x

4 x

2 x

2 x

2 x

2 x

2 x

2 x
2 x 2 x

2 x

2 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x
2 x

2 x

4 x

2 x

2 x

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
42

5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

4
0

4
1

4
2

4
3

3
8

3
9

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0

0

1
0

1

1
0

2

1
0

3

1
0

5
1

0
4

1
0

6

1
0

8
1

0
9

1
0

7

1
1

1

1
1

0

1
1

3

1
1

2

1
1

5

1
1

4

1
1

6
1

1
7

1
1

8
1

1
9

1
2

0
1

2
1

1
2

2
1

2
3

1
2

4
1

2
5

1
2

6
1

2
7

1
2

9

1
2

8

1
3

0

1
3

1

1
3

2

1
3

3

1
3

4

1
3

5

1
3

6

1
3

7

1
3

8

1
3

9

1
4

0

1
4

1

S

Figure B8: Applying Algorithm 3.13 for augmenting the vertex-connectivity.

Appendix B

 84

1
2

3
4

2 x

2 x

2 x

5
6

7

2 x

2 x

2 x

2
 x

2
 x

2 x

2 x

2 x

2
 x

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

4 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x

4 x

2 x 2 x

4 x

2 x

2 x

2 x

2 x

2 x

2 x
2 x 2 x

2 x

2 x

2 x

2 x

4 x

2 x 2 x2 x 2 x2 x 2 x
2 x

2 x

4 x

2 x

2 x

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
42

5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

4
0

4
1

4
2

4
3

3
8

3
9

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0

0

1
0

1

1
0

2

1
0

3

1
0

5
1

0
4

1
0

6

1
0

8
1

0
9

1
0

7

1
1

1

1
1

0

1
1

3

1
1

2

1
1

5

1
1

4

1
1

6
1

1
7

1
1

8
1

1
9

1
2

0
1

2
1

1
2

2
1

2
3

1
2

4
1

2
5

1
2

6
1

2
7

1
2

9

1
2

8

1
3

0

1
3

1

1
3

2

1
3

3

1
3

4

1
3

5

1
3

6

1
3

7

1
3

8

1
3

9

1
4

0

1
4

1

Figure B9: The complete graph after applying Algorithm 3.13.

85

Appendix C: The structure of MATLAB programs

All the programming work can be found in the KPN deliverable. Due to space limitations, only the

structure of the programs consisting of multiple m files is treated in this appendix.

C1 Structure of code for strategy 1 – 3 for increasing a(G)

Figure C1 indicates how the source code for strategy 1 for calculating works. A main routine is

used to call 4 subroutines for a predefined number of iterations. The main routine also has the part

of the code used for storage of the results. The 1st subroutine calculates and its 2nd smallest

eigenvalue. After that the same is done for each added edge and these results are stored in an

eigenvalue matrix (The E matrix). This matrix stores for all possible edges to be added. The 2nd

subroutine (optional) displays and stores the E matrix in a figure. The 3rd one is used to find the new

edge that increases the most. Finally, the 4th is used to modify and , accordingly.

Load the A and D matrices in Matlab’s

workspace.

(only at the start)

Run the eigenvalue calculator to calculate the

E matrix and maximum achievable robustness.

(evcalc.m)

Visualize the result in 3D plot.

(visualizeEmatrix.m)

{This is optional, just for verification}

Find the robustness maximizing links for the

next iteration and store them in the Edge

matrix.

(findlinks2.m)

Modify the A and D matrices for starting the

next iteration.

(modifymatriceAD.m)

Subroutine 1

Subroutine 2

Subroutine 3

Subroutine 4

M
a

in
 r

o
u

ti
n

e

Flow of action in running code

for strategy 1 in calculating a(G)

Figure C1: Flow of actions when running code of strategy 1 for calculating a(G).

Figure C2 shows the code structure of strategy 2. The main routine calls the three subroutines

according to a predefined number of iterations and stores the results for each iteration. The 1st

subroutine sequentially adds a new edge between a vertex of minimum degree and every other

vertex, not having an edge already. All possibilities are tried out and the edge resulting in maximum

Appendix C

 86

robustness gain is stored by the 2nd subroutine. If a tie occurs the first edge is chosen. The 3rd

subroutine modifies and , according to this new edge, before the next iteration starts.

Load the A and D matrices in Matlab’s

workspace.

(only at the start)

Run the eigenvalue calculator to calculate the

E matrix and maximum achievable robustness.

(evcalcexp3.m)

Find the robustness maximizing links for the

next iteration and store them in the Edge

matrix.

(findunidirlinksinsymmatrixexp3.m)

Modify the A and D matrices for starting the

next iteration.

(modifymatricesADonelinkexp3.m)

Subroutine 1

Subroutine 2

Subroutine 3

M
a

in
 r

o
u

ti
n

e

Flow of action in running code for

strategy 2 in calculating a(G)

Figure C2: Flow of actions when running code of strategy 2 for calculating a(G).

The flowchart of strategy 3 is presented in figure C3. This strategy uses the Fiedler vector to find

vertices and , between which the new edge should be added. At the end of each iteration is

modified so that the next iteration can start based on the new network, consisting of the original

network plus all the edges added in the previous iterations.

Load the A and D matrices in Matlab’s workspace.

(only at the start)

Calculate the fiedler vector.

Find the node i with the smallest value in the vector.

Find the node j with the largest value in the vector.

Modify the Laplacian for the next iteration according to

the link addition between I and j.

(experiment4.m)

M
a

in
 r

o
u

ti
n

e

Flow of action in running code for

strategy 3 in calculating a(G)

Figure C3: Flow of actions when running code of strategy 3 for calculating a(G).

Appendix C

 87

C2 Code structure for CTA-edge-betweenness program

The code for the CTA-edge-betweenness program consists of a main and a subroutine as shown in

figure C4. The subroutine calculates a predecessor list from each source vertex to every other

vertex. The main routine calculates the edge-betweenness centrality .

Main routine: CTAedgeBetweenness_bidirectional.m

Sub routine: FindpathsCTA.m

Figure C4: Code structure for CTA-edge-Betweenness program.

C3 Matlab code structure for cactus construction sub algorithms

The structures of the”st-MC-partition”, “Update st-MC-partition” and ”Construct st-cactus-

representation” algorithms are shown in figures C5, C6 and C7 respectively. The m files of each

algorithm can be found on the CD handed in along with this thesis. On this disk the same hierarchy as

in the figure is used for storing the code.

 st_MC_partition.m
 Procedure0_merge_nodes_on_source_side_of_cut.m
 max_flow.m
 Procedure1.m
 FindPathsCTA_Procedure1.m
 Contraction_Algorithm_for_each_neighbour.m
 max_flow.m
 Procedure2.m
 FindPathsCTA_Procedure2.m
 Contraction_Algorithm_for_neighbour_list.m
 max_flow.m

Figure C5: Hierarchy of the programs for computing st-MC-partition.

 Update_st_MC_partition.m
 Procedure_contract_yertices_to_obtain_G_hat .m

Procedure_update_Cut_list.m
Contract_vertices_to_obtain_G_prime_j.m

 Procedure_find_Cut.m
 max_flow.m

Figure C6: Hierarchy of the programs for updating st-MC-partition.

Appendix C

 88

 CONSTRUCT_st_CACTUS_representation.m
Procedure_Contract_Vertices_to_obtain_A_pie_st.m
Procedure_SEGMENT.m
Procedure_CONSTRUCT_CHAINS.m
Procedure_CONSTRUCT_CYCLES.m
Procedure_construct_st_CACTUS_REPRESENTATION.m
Procedure_construct_cycle_type_normal_cactus_representation.m

Figure C7: Hierarchy of the programs for constructing st-cactus-representation.

89

Appendix D: Algebraic-connectivity results in table format

The edge column of each strategy (in table D1) represents the edge to be added, before the

corresponding is achieved. The labels used for the edges correspond to the vertex labels of

figure B3. Adding the edges of the table to this figure (for each strategy) would provide a graphical

view of the results.

 Strategy 1 Strategy 2 Strategy 3

of edges a(G) Edge a(G) Edges a(G) Edge

0 0.4087468 none 0.408747 none 0.4087468 none

1 0.4524422 {3,19} 0.448401 {26,19} 0.4368959 {31,11}

2 0.5096773 {4,12} 0.534336 {31,22} 0.5201419 {30,18}

3 0.5284789 {10,26} 0.550922 {28,5} 0.5512031 {14,28}

4 0.6115688 {9,29} 0.587513 {12,4} 0.6180828 {16,27}

5 0.6359319 {7,27} 0.622456 {16,2} 0.6478366 {26,29}

6 0.6399762 {4,21} 0.631358 {27,5} 0.6691836 {29,17}

7 0.6477021 {2,19} 0.701756 {17,26} 0.7460621 {27,13}

8 0.6508744 {4,6} 0.70871 {11,15} 0.7616127 {26,12}

9 0.6524729 {6,16} 0.73472 {14,30} 0.7803458 {28,15}

10 0.6644186 {3,11} 0.779633 {29,9} 0.8070166 {31,25}

11 0.7087881 {28,31} 0.822694 {13,18} 0.8978325 {24,30}

12 0.7164941 {4,15} 0.83054 {24,9} 0.9120071 {20,25}

13 0.7549945 {3,13} 0.886547 {14,15} 0.9135502 {28,27}

14 0.7735963 {4,30} 0.935896 {25,19} 0.9537357 {21,26}

15 0.8011487 {14,31} 0.936076 {18,26} 1.0127242 {24,13}

16 0.8570022 {18,30} 0.999269 {30,22} 1.0299458 {11,15}

17 0.8587648 {15,19} 1.03886 {12,26} 1.0794431 {19,17}

18 0.8662657 {30,31} 1.079436 {11,1} 1.1190373 {12,18}

19 0.8877258 {14,27} 1.164342 {31,18} 1.2233203 {21,14}

20 0.9189137 (2,9} 1.223385 {13,28} 1.2339375 {20,18}

21 0.9325968 (4,12) 1.243819 {21,7} 1.2665997 {17,16}

22 1.0835473 {1,31} 1.247766 {16,27} 1.3407325 {29,7}

23 1.2246554 {7,14} 1.324291 {20,15} 1.3942492 {15,30}

24 1.2943092 {25,28} 1.338533 {17,2} 1.4648112 {31,14}

25 1.3736695 {1,16} 1.39737 {29,14} 1.4888425 {28,6}

26 1.3783159 {5,14} 1.427592 {13,10} 1.5649382 {11,17}

27 1.4048595 {16,24} 1.516332 {16,14} 1.6490803 {12,13}

28 1.4116257 {3,15} 1.582306 {28,1} 1.7355115 {16,5}

29 1.4205709 {15,23} 1.593227 {20,16} 1.8038378 {21,19}

30 1.4259212 {14,24} 1.62774 {30,7} 1.8215658 {22,24}

Table D1: Increase algebraic-connectivity of core PoP ASD/RT.

Appendix D

 90

Figure D1 shows how the algebraic connectivity increases, when adding edges to the entire graph, for

the 3 strategies.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Robustness entire graph

strategy 1

strategy 2

strategy 3

Number of added edges

A
lg

e
b

ra
ic

 c
o

n
n

e
ct

iv
it

y

Figure D1: Increasing the Algebraic-connectivity of the entire graph.

91

Appendix E: Detailed results capacity management

Table E1 shows the most important parameters to be management within KPN’s capacity

management project.

Capacity parameters for elements (vertices) Capacity parameters for connections (edges)

1 Processing power (CPU) => processing delay 1 Available bandwidth (Installed capacity per

edge)

2 Memory usage (Ram) 2 Delay (propagation and transmission delay)

3 Buffering space => buffering delay 3 Jitter

4 Disk space

5 Simultaneously attached users (SAUs)

Table E1: Parameters for capacity management.

Capacity management is a hot issue, because mobile data traffic is growing at an exponential rate, as

shown in figure E1. This exponential growth is expected to continue further as more customers make

use of services like blackberry and machine to machine communication.

Year

G
b

p
s

Data traffic forecast

Scenario: Mobile unlimited

Figure E1: Capacity forecast until 2010.

Appendix E

 92

 0.1 Mb 1 Mb 10 Mb 100 Mb

u v ABW Rel_RBW Bottleneck Rel_RBW Bottleneck Rel_RBW Bottleneck Rel_RBW Bottleneck

1 1 2 10 0.99557 1 0.9557 1 0.557 1 -3.43 3

2 1 3 10 0.9975 1 0.975 1 0.75 1 -1.5 3

3 2 3 10 0.99725 1 0.9725 1 0.725 1 -1.75 3

4 1 4 10 0.99549 1 0.9549 1 0.549 1 -3.51 3

5 2 4 10 0.99505 1 0.9505 1 0.505 1 -3.95 3

6 3 4 10 0.99725 1 0.9725 1 0.725 1 -1.75 3

7 1 5 10 1 1 1 1 1 1 1 1

8 2 6 10 0.9994 1 0.994 1 0.94 1 0.4 2

9 5 6 10 0.99317 1 0.9317 1 0.317 2 -5.83 3

10 3 7 10 1 1 1 1 1 1 1 1

11 5 7 10 0.9956 1 0.956 1 0.56 1 -3.4 3

12 6 7 10 0.99525 1 0.9525 1 0.525 1 -3.75 3

13 4 8 10 1 1 1 1 1 1 1 1

14 5 8 10 0.99439 1 0.9439 1 0.439 1 -4.61 3

15 6 8 10 0.99395 1 0.9395 1 0.395 2 -5.05 3

16 7 8 10 0.99615 1 0.9615 1 0.615 1 -2.85 3

17 2 9 10 0.99025 1 0.9025 1 0.025 2 -8.75 3

18 6 10 10 0.98821 1 0.8821 1 -0.179 3 -10.79 3

19 9 10 10 0.99773 1 0.9773 1 0.773 1 -1.27 3

20 2 11 1 1 1 1 1 1 1 1 1

21 6 12 1 1 1 1 1 1 1 1 1

22 11 12 1 1 1 1 1 1 1 1 1

23 2 13 1 1 1 1 1 1 1 1 1

24 6 14 1 1 1 1 1 1 1 1 1

25 13 14 1 1 1 1 1 1 1 1 1

26 9 15 20 0.99652 1 0.9652 1 0.652 1 -2.48 3

27 11 15 2 1 1 1 1 1 1 1 1

28 13 15 2 1 1 1 1 1 1 1 1

29 10 16 20 0.99577 1 0.9577 1 0.577 1 -3.23 3

30 12 16 2 1 1 1 1 1 1 1 1

Table E2: Output CTAedgeBetweenness according to uniform distributed TM.

This table presents an incomplete output of the CTA edge-betweenness program, according to the

linear rule, where the input (in this case) is a traffic matrix, constructed using uniform packet sizes.

The 2nd and 3rd column show the vertices connected by a bidirectional edge. Rel_RBW stands for

relative remaining bandwidth.

Appendix E

 93

Label Name Location BC ω(v) Ω(v) VC(v) Label Name Location BC ω(v) Ω(v) VC(v)

30

280 1 1 9736 133

280 0.5 0.5 5008

31

280 1 1 9736 134

280 0.5 0.5 5008

53

280 1 1 9736 135

280 0.5 0.5 5008

54

280 1 1 9736 138

280 0.5 0.5 5008

76

280 1 1 9736 139

280 0.5 0.5 5008

77

280 1 1 9736 140

280 0.5 0.5 5008

75

538 0 1.5 7630 141

280 0.5 0.5 5008

29

532 0 1.5 7624 59

2320 0 0.5 4684

52

532 0 1.5 7624 60

2320 0 0.5 4684

28

304 1 0.5 7396 78

1047 0 0.5 3411

51

304 1 0.5 7396 79

1047 0 0.5 3411

74

298 1 0.5 7390 80

1047 0 0.5 3411

27

282 1 0.5 7374 81

1047 0 0.5 3411

50

282 1 0.5 7374 82

1047 0 0.5 3411

73

282 1 0.5 7374 83

1047 0 0.5 3411

130

280 1 0.5 7372 104

820 0 0.5 3184

131

280 1 0.5 7372 105

820 0 0.5 3184

136

280 1 0.5 7372 110

820 0 0.5 3184

137

280 1 0.5 7372 111

820 0 0.5 3184

4

4728 0 0.5 7092 116

820 0 0.5 3184

8

4728 0 0.5 7092 117

820 0 0.5 3184

2

4587 0 0.5 6951 122

820 0 0.5 3184

6

4587 0 0.5 6951 123

820 0 0.5 3184

1

4355 0 0.5 6719 106

560 0 0.5 2924

5

4355 0 0.5 6719 107

560 0 0.5 2924

84

3623 0 0.5 5987 112

560 0 0.5 2924

85

3623 0 0.5 5987 113

560 0 0.5 2924

3

3047 0 0.5 5411 118

560 0 0.5 2924

7

3047 0 0.5 5411 119

560 0 0.5 2924

9

3046 0 0.5 5410 124

560 0 0.5 2924

10

3046 0 0.5 5410 125

560 0 0.5 2924

32

3046 0 0.5 5410 11

280 0 0.5 2644

33

3046 0 0.5 5410 12

280 0 0.5 2644

15

2963 0 0.5 5327 13

280 0 0.5 2644

16

2963 0 0.5 5327 14

280 0 0.5 2644

38

2963 0 0.5 5327 34

280 0 0.5 2644

39

2963 0 0.5 5327 35

280 0 0.5 2644

61

2951 0 0.5 5315 36

280 0 0.5 2644

62

2951 0 0.5 5315 37

280 0 0.5 2644

132

280 0.5 0.5 5008 55

280 0 0.5 2644

Table E3: Sample result for vertex criticality (part 1).

Appendix E

 94

Label Name Location BC ω(v) Ω(v) VC(v) Label Name Location BC ω(v) Ω(v) VC(v)

56

280 0 0.5 2644 67

280 0 0 280

57

280 0 0.5 2644 68

280 0 0 280

58

280 0 0.5 2644 69

280 0 0 280

120

280 0.5 0 2644 70

280 0 0 280

121

280 0.5 0 2644 71

280 0 0 280

128

280 0 0.5 2644 72

280 0 0 280

129

280 0 0.5 2644 86

280 0 0 280

17

280 0 0 280 87

280 0 0 280

18

280 0 0 280 88

280 0 0 280

19

280 0 0 280 89

280 0 0 280

20

280 0 0 280 90

280 0 0 280

21

280 0 0 280 91

280 0 0 280

22

280 0 0 280 92

280 0 0 280

23

280 0 0 280 93

280 0 0 280

24

280 0 0 280 94

280 0 0 280

25

280 0 0 280 95

280 0 0 280

26

280 0 0 280 96

280 0 0 280

40

280 0 0 280 97

280 0 0 280

41

280 0 0 280 98

280 0 0 280

42

280 0 0 280 99

280 0 0 280

43

280 0 0 280 100

280 0 0 280

44

280 0 0 280 101

280 0 0 280

45

280 0 0 280 102

280 0 0 280

46

280 0 0 280 103

280 0 0 280

47

280 0 0 280 108

280 0 0 280

48

280 0 0 280 109

280 0 0 280

49

280 0 0 280 114

280 0 0 280

63

280 0 0 280 115

280 0 0 280

64

280 0 0 280 126

280 0 0 280

65

280 0 0 280 127

280 0 0 280

66

280 0 0 280

Table E4: Sample result for vertex criticality (part 2).

