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Background. Accurate prediction of ischemic lesion volume (ILV) in the subacute phase is essential
to estimate functional outcome, as the two are positively associated. Ischemic lesions can continue to
evolve between 24 hours and 1 week after stroke onset, even after successful treatment. Radiomics offers
a promising approach for ILV prediction using non-contrast computed tomography (NCCT), the first-line
imaging modality in AIS. However, applying CT radiomics in AIS remains challenging, as ischemic lesion
segmentation is time consuming and challenging, due to its low contrast. Objective. This study aims to
investigate whether radiomic features extracted from post-treatment NCCT scans, acquired at 24 hours after
stroke onset, can be used to predict the subacute ischemic lesion volume at 1 week. In addition, it explores
whether simplified annotations are feasible for radiomic feature extraction. As a secondary analysis, this
study explores whether incorporating clinical data has an added value for this prediction task. Methods.
Patients from the MR CLEAN-NOIV trial, with 24-hour and 1-week follow-up NCCT scans available,
were included. The included patients were randomly divided into a pre-training set (80%) and a test set
(20%). Radiomic features were extracted from the 24-hour NCCT scan using three annotation types: (1) the
original segmentation, (2) a bounding box annotation, and (3) a circle annotation. Feature selection included
reproducibility filtering, low-variance filtering, correlation-based clustering, and Least Absolute Shrinkage
and Selection Operator (LASSO) regression. Three XGBoost radiomics regression models were trained,
using five-fold cross-validation. Additionally, three combined models, using a combination of clinical and
radiomic features, and two clinical models, using only clinical features, were constructed. The performance of
the models was evaluated on the test set using the coefficient of determination (R?), concordance correlation
coefficient (CCC), mean absolute error (MAE), and root mean squared error (RMSE). Feature importance
was assessed using SHapley Additive exPlanations (SHAP). Results. The radiomics model based on the
original segmentation achieved a high predictive performance (R?> = 0.89, CCC = 0.95, MAE = 24 mL,
RMSE = 31 mL). The radiomics model based on the bounding box achieved comparable performance, and
the model based on the circle annotation yielded significantly lower performance. Incorporating clinical
features did not significantly improve the predictive performance of the radiomics models. Across all well-
performing models including radiomic features, the Run Length Non-Uniformity radiomic feature was a
strong predictor of the 1-week ILV. Conclusion. Radiomic features extracted from 24-hour NCCT scans
can accurately predict the subacute ILV at 1-week. A simplified bounding box annotation is a simpler
and effective alternative to the detailed lesion segmentation, whereas the circle annotation showed poor
performance and is not a good alternative for radiomic feature extraction in this context. These findings
demonstrate the potential of radiomics and the use of simplified annotations for feature extraction to predict
patient prognosis and guide personalized stroke care. However, further research is required before these
models can be considered for clinical use.

Keywords: acute ischemic stroke, radiomics, non-contrast computed tomography, ischemic lesion volume,
simplified annotation, prediction model, machine learning, regression, XGBoost

1 Introduction [1]. Acute ischemic stroke (AIS), caused by the occlu-
sion of an intracranial artery, accounts for the major-
ity of these cases [1]. This occlusion severely reduces
cerebral blood flow, resulting in brain tissue that ei-
ther infarcts and becomes irreversibly damaged (is-

Stroke is a major global health challenge, ranking as
the second-leading cause of death worldwide, with ap-
proximately 12 million new cases reported annually



chemic core), or becomes functionally impaired but
remains salvageable (ischemic penumbra) [2, 3, 4].
Brain cells within the penumbra can potentially be
saved with timely treatment due to residual perfusion
and the presence of collaterals [2]. Collateral vessels
act as alternative pathways that provide just enough
oxygen and nutrients to delay permanent tissue dam-
age [5]. In some cases, AIS may also lead to the devel-
opment of cerebral edema, a secondary injury that oc-
curs as a response to the initial infarct and can emerge
hours to days after stroke onset. Edema progression is
typically developed in three phases. Cytotoxic edema
occurs within minutes after stroke onset and is charac-
terized by swelling of brain cells due to energy failure
[6]. This is followed by ionic edema, which arises in
the early hours as a result of disrupted ion gradients
caused by cytotoxic edema [6]. Vasogenic edema de-
velops later and results from the blood-brain barrier
(BBB) breakdown, allowing fluid to accumulate in the
extracellular space, which causes tissue swelling [6].

Non-contrast computed tomography (NCCT) is
the first-line imaging modality for stroke assessment
due to its rapid acquisition, low cost, and wide avail-
ability [7]. It is primarily used to differentiate between
ischemic and hemorrhagic stroke [7, 8]. Ischemic tis-
sue appears hypodense on NCCT due to water uptake
in the affected region, while hemorrhagic lesions ap-
pear hyperdense as a result of blood accumulation [9].
The ischemic lesion assessed on NCCT scans consists
of both infarcted and edematous volume [9].

AIS is primarily treated with intravenous throm-
bolysis (IVT) and/or endovascular thrombectomy
(EVT), with the choice of treatment depending on
the time since symptom onset, the location of the
occlusion, and the size of the ischemic core [10, 11,
12, 13]. IVT involves the administration of a throm-
bolytic agent, such as alteplase, to chemically dissolve
the occluding thrombus and is limited by a therapeu-
tic time window of up to 9 hours after stroke onset
[14]. EVT is a minimally invasive procedure in which
the thrombus is mechanically removed and can be per-
formed within an extended time window of up to 24
hours after stroke onset [11]. Both treatments aim to
rapidly restore blood flow to the ischemic brain tissue
and prevent further lesion expansion [15, 16]. Early
treatment is crucial for both IVT and EVT, as the
ischemic core expands over time if blood flow is not
restored [7].

Despite these treatments, not all patients achieve
favorable outcomes. Treatment effectiveness depends
on multiple factors, such as time from stroke onset to
treatment and the initial ischemic core volume [11,
13]. In recent years, numerous studies have used
prediction models to estimate the outcome after AIS
treatment, with the primary aim of identifying pa-
tients most likely to benefit from treatment [17, 18,
19]. While some studies aim to estimate tissue out-

come [17], which refers to predicting, at voxel level,
which brain tissue will eventually infarct, the majority
focuses on functional outcome prediction [18, 19], as
this directly reflects a patient’s post-stroke quality of
life and independence. Extensive research has shown
a significant positive association between follow-up
ischemic lesion volume (ILV) and 90-day functional
outcome [20, 21, 22]. This relationship has increased
the interest in predicting final ILV, as it, unlike func-
tional outcome, directly quantifies the extent of brain
tissue damage, making it informative for understand-
ing treatment effect and underlying physiological pro-
cesses.

These prediction models typically define the fi-
nal ILV as the volume measured at 24 hours post
stroke onset. However, research has shown that the
ischemic lesion can continue to evolve during the sub-
acute phase (24 hours to 1 week after stroke onset),
even after successful reperfusion treatment [21, 22].
This continued lesion evolution suggests that the vol-
ume assessed on the 24-hour NCCT may underesti-
mate the final ILV. Subacute lesion growth is thought
to result from reperfusion injury, a process in which
the sudden restoration of blood flow causes the tis-
sue to be further damaged through physiological pro-
cesses like excitotoxicity, oxidative stress, inflamma-
tion, microvascular injury, and BBB breakdown [22,
23]. These mechanisms can lead to delayed infarction
and vasogenic edema. As the ILV continues to evolve
in the days following treatment, the 1-week ILV pro-
vides a more accurate representation of the final ILV,
and therefore long-term functional outcome and pa-
tient prognosis. This is supported by Krongold et
al., who reported that final infarct volume can be ap-
proximated as early as 7 days post-stroke onset [24].
Since the lesion progression is thought to result from
post-treatment physiological responses and treatment
related variables, such as type of treatment and com-
pleteness of reperfusion, accurate prediction of the 1-
week ILV likely requires treatment information and
information from post-treatment imaging. Predict-
ing the 1-week volume from the 24-hour NCCT scan
allows for early estimation of the patient’s progno-
sis, which is valuable when informing the patient and
their relatives about the expected functional outcome,
and for personalizing the rehabilitation plan. In ad-
dition, the continued growth of the lesion beyond 24
hours suggests that some patients may benefit from
secondary treatments, such as neuroprotective agents,
even after the acute phase. Although no such thera-
pies have yet proven effective, ongoing research is in-
vestigating various neuroprotective therapies [7, 25].
In this context, accurate prediction of the 1-week ILV
could serve as a useful reference for evaluating treat-
ment response in clinical trials. By comparing the
predicted ILV to the actual volume after secondary
treatment, it can be used to determined whether the



additional treatment is effective.

Prediction models for ILV mainly rely on magnetic
resonance imaging (MRI) and perfusion CT (CTP),
as these modalities offer high sensitivity for detect-
ing ischemic regions and provide detailed information
about tissue perfusion, respectively. However, the
clinical utility of MRI is often limited by factors such
as high cost, restricted availability, longer acquisition
times, and contraindications like metallic implants [8,
26, 27]. Given its broader availability and rapid acqui-
sition, computed tomography (CT) is more commonly
used in clinical practice, making it a more feasible
imaging modality for developing prediction models.
Since CTP requires multiple time-resolved scans, it is
highly sensitive to motion artifacts, which can com-
promise image quality and limit its use for prediction.
As an alternative to CTP-based models, some studies
have investigated prediction based on CT angiography
(CTA) [28, 29], and despite NCCT being the first-line
imaging modality in AIS, only one study has explored
prediction based solely on NCCT images [30]. This
study indicates that radiomics, an advanced imaging
analysis technique, can extract quantitative features
from NCCT scans that enhace their utility for predic-
tion in AIS research. Radiomics has been widely ap-
plied in various fields such as oncology, neuroscience,
and cardiology, demonstrating promising results [31,
32]. It enables the extraction of quantitative features,
such as shape, intensity, and texture, that are mostly
not visible to the human eye. These features can be
used independently or combined with clinical data, to
develop prediction models for diagnosis, treatment re-
sponse and prognosis [33, 34, 35]. However, radiomics
requires a detailed delineation of the volume of in-
terest (VOI) from which features are extracted. On
NCCT, ischemic lesion segmentations are particularly
challenging due to its low contrast, making it difficult
to distinguish ischemic tissue from normal brain tis-
sue. In radiomics, this poses a major limitation, as
the low contrast of NCCT makes accurate lesion de-
lineation in AIS time consuming and subject to inter-
observer variability.

Prior research in oncology has attempted to over-
come the challenges of segmentations required for ra-
diomics by using an alternative annotation, the small-
est bounding box enclosing the lesion. These studies
showed that bounding boxes could perform as well as,
or even outperform, detailed tumor segmentation in
classification prediction tasks, where the goal was to
predict binary outcomes such as whether early tumor
growth would occur or whether cancer has reached
a particular stage [36, 37, 38]. Similarly, a recent
study in AIS demonstrated that radiomic features
extracted from a fixed 1 cm diameter spherical vol-
ume were able to predict hemorrhagic transformation
[39]. These findings suggest that for certain predic-
tion tasks, radiomic features extracted from simplified

annotations can provide comparable or even superior
predictive performance while reducing annotation ef-
fort and inter-observer variability.

This study aims to investigate whether radiomics
features extracted from post-treatment NCCT scans
acquired at 24 hours after stroke onset can be used to
predict the subacute ischemic lesion volume at 1 week.
Additionally, it explores whether simplified annota-
tions could serve as feasible alternatives to detailed
segmentations for radiomic feature extraction in this
context. As a secondary analysis, this study explores
whether there is an added value in using clinical data
in combination with radiomics for predicting ILV at
1 week.

2 Materials and Methods

2.1 Patients and Imaging Acquisition

This study used data from patients enrolled in the
Multicenter Randomized Clinical Trial of Endovascu-
lar Treatment of Acute Ischemic Stroke in the Nether-
lands - No Intravenous Thrombolysis (MR CLEAN-
NOIV) trial [40]. The trial included adults (> 18
years) with an AIS due to an intracranial proximal
occlusion of the anterior circulation, eligible for EVT
and IVT with alteplase within 4.5 hours. Patients
were randomized to receive either EVT alone or IVT
followed by EVT. Depending on the specific center
capabilities and patient contraindications, follow-up
imaging was performed with either MRI at 24 hours
(£12 hours) after reperfusion or NCCT after both 24
hours (£12 hours) and 1 week (5-7 days). More details
on the inclusion and exclusion criteria of the trial are
described in the study protocol [41]. For this study,
a pre-selected subset of 116 patients was used. This
subset was defined in a previous study by Konduri et
al. [42] that included only patients with NCCT imag-
ing available at baseline, and at both 24-hour and 1-
week follow-up. Their exclusion criteria were clear ev-
idence of extensive contrast extravasation, poor qual-
ity scans that were incomplete or included movement
artifacts, beam-hardening effects, and other techni-
cal errors [42]. For this study, patients with an ILV
smaller than 5 mL on the 24-hour NCCT scan were
also excluded, as lesions this small were not compati-
ble with the annotation protocol (described in detail
in section 2.2 Segmentations). The eligible patients
were randomly split into a pre-training set (80%) and
a test set (20%), while ensuring that each patient was
included in only one of the two groups. This split
was fixed and maintained throughout all subsequent
analyses.

The NCCT scans used in this study were acquired
at multiple participating centers. However, the MR
CLEAN-NOIV study did not report specific scanner
models or acquisition protocols. The known acquisi-



tion parameters were a matrix size of 512 x 512 and a
slice thickness of 5mm. The scans covered the entire
head, ranging from the base of the skull to the vertex.

2.2 Segmentations

Ischemic Lesion Segmentation. Ischemic lesions
were semi-automatically segmented on baseline, 24-
hour, and 1-week NCCT scans using a deep-learning
based software developed by Nico.lab [43]. Two
trained observers (a trained neurologist with >5 years
of experience and an experienced neuroradiologist
with >15 years of experience) manually corrected
the segmentations using a fixed window width of 40
Hounsfield Units (HU) and a center level of 40 HU
when needed [42]. The observers were blinded to
all clinical information, except the occlusion location
[42]. The ischemic lesion on NCCT was defined as
the intra-axial hypodense areas in the affected hemi-
sphere, and included brain and edema swelling ex-
tending into the contralateral hemisphere or result-
ing in sulcal or ventricular effacement [42]. Hemor-
rhages, defined as hyperdense regions, were excluded
from the ischemic lesion segmentation. The ILVs were
calculated by multiplying the number of voxels in the
segmentation with the voxel size.

Simplified Annotations. In addition to the orig-
inal segmentation, two simplified annotations were
manually drawn on the 24-hour NCCT scan using 3D
Slicer [44]. These annotations were based on the orig-
inal 24-hour ischemic lesion segmentation and using a
fixed window width of 40 HU and a center level of 40
HU. The first annotation, referred to as the bounding
box, includes both the ischemic lesion and adjacent
healthy brain tissue. In each axial slice the smallest
possible rectangle was drawn that fully encloses the
original lesion segmentation. Although the bounding
box may initially include components other than brain
tissue (e.g., cerebrospinal fluid (CSF), hemorrhage, or
regions outside the brain), these were later excluded
during pre-processing steps by intensity threshold-
ing, described in section 2.3 Pre-processing and Ra-
diomic Feature Extraction. The second annotation,
referred to as the circle, aimed to capture only the
most severely affected tissue. A circle with a diame-
ter of 1 cm was placed in the most hypodense location
of the ischemic lesion, as this region is assumed to rep-
resent the most extensive tissue damage.

2.3 Pre-processing and Radiomic Fea-
ture Extraction

Prior to radiomic feature extraction, all NCCT
images underwent skull stripping using a custom
Python script (Python version 3.8.0). Additional

pre-processing steps were performed using the PyRa-
diomics Python package (version 3.1.0) [45]. These
steps included resampling of both the NCCT scans
and corresponding segmentations to an isotropic voxel
space of 1 x 1 x 1 mm (using the default interpola-
tors: linear interpolation for the image and nearest
neighbor interpolation for the segmentation), inten-
sity thresholding to exclude voxels with intensities
outside the range of 20 to 80 HU as these represent
components other than brain tissue (e.g., CSF, hem-
orrhage, or regions outside the brain) [46], and gray-
evel discretization using a fixed bin width of 1 HU.
For all other PyRadiomics settings, the default op-
tion was used. A complete overview of these settings
is provided in Supplementary Table S1.

PyRadiomics [45] was used to extract radiomic
features separately from three different VOI shapes
(the original segmentation, bounding box, and circle)
per patient. For the original segmentation VOIs, all
default features from the following feature classes were
extracted (n = 107): shape, first-order, gray level co-
occurrence matrix (GLCM), gray level run length ma-
trix (GLRLM), gray level size zone matrix (GLSZM),
gray level dependence matrix (GLDM), and neighbor-
hood gray tone difference matrix (NGTDM). For the
bounding box and circle VOIs, shape features were
excluded. These simplified annotations do not follow
the actual boundaries of the ischemic lesion, mean-
ing that the resulting VOIs do not represent the true
shape of the infarct. As a result, shape features that
describe the geometric properties of the VOI, are not
meaningful for these annotation types. The radiomic
features were extracted only from the original, unfil-
tered NCCT images. A description of each radiomic
feature class is provided in Supplementary Note S2,
and a full list of all the extracted radiomic features is
included in Supplementary Table S3.

2.4 Clinical Features

In addition to radiomic features, the added value of
clinical features, when combined with radiomic fea-
tures, was also investigated. Clinical features consid-
ered as candidate predictors were limited to baseline
characteristics and follow-up data collected within 24
hours after stroke onset. ILVs at baseline and 24 hours
were also included as part of the clinical feature set.
However, the 24-hour volume was calculated only for
the original segmentation, as it depends on the voxel
count within the segmentation. This voxel count is
then multiplied by the voxel size to compute the ILV.
Since, the bounding box and circle annotations do
not represent the actual ischemic lesion shape, it is
not possible to derive the 24-hour ILV from these an-
notations. Accordingly, this volume feature was not
computed for the bounding box and circle annotation,
reflecting the clinical scenario where simplified anno-



tation would not yield the ILV.

Missing values in the clinical dataset were im-
puted using Multiple Imputation by Chained Equa-
tions (MICE) [47] in R version 4.5.0 [48]. MICE impu-
tation was performed separately for the pre-training
and test sets. All available clinical data from the MR
CLEAN-NOIV study was used for the MICE imputa-
tion. In addition, the ILVs at the three time points,
were also included in the imputation model. Variables
were excluded from the imputation model if they were
random and independent of other variables, binary
versions of more informative variables, or categorical
variables with only one observed class and missing val-
ues. The details of the MICE imputation are provided
in Supplementary Note S4.

An overview and description of all clinical vari-
ables, is provided in Supplementary Table S5. The
table indicates which variables were excluded from the
MICE imputation and which variables were excluded
from the clinical features used in this study.

2.5 Feature Selection

Radiomic feature selection was performed to reduce
the risk of overfitting and consisted of four steps: (1)
reproducibility filtering based on the intraclass cor-
relation coefficient (ICC), (2) low-variance filtering,
(3) correlation-based clustering, and (4) feature selec-
tion using LASSO regression. Feature selection was
performed on the pre-training set to prevent informa-
tion from the test set influencing the feature selection.
To address the small yet commonly occurring inter-
observer variability introduced by manual or semi-
automatic segmentations [49], ICC filtering was ap-
plied first. Since all segmentations were generated
by a single observer, simulated segmentations were
created for a randomly selected subset of 50% of the
pre-training set. Radiomic features were extracted
from the simulated and original segmentations, and
the ICC was calculated for each feature using the
Pingouin Python package (version 0.5.5) [50]. Ra-
diomic features with an ICC > 0.80 were retained, as
these features are robust to small segmentation varia-
tions. Details on generating the simulated segmenta-
tions are provided in Supplementary Note S6. In the
second step, retained features were excluded if their
variance between patients was lower than 0.0001, as
such low-variance features are unlikely to contribute
to meaningful predictions. Third, to remove redun-
dant features, pairwise Spearman correlation coeffi-
cients were calculated between all remaining features.
Features with a correlation coefficient p > 0.9 were
grouped into clusters. From each cluster, one repre-
sentative feature was retained. This feature was se-
lected based on having the highest average correlation
with the other features in the same cluster, as it best
represents the shared information. The final subset of

features was selected using Least Absolute Shrinkage
and Selection Operator (LASSO) regression, imple-
mented with the scikit-learn Python package (version
1.3.2) [51]. The remaining features were standardized
using Z-score normalization before LASSO regression
to ensure comparability of scale. Normalization was
applied at this stage, as ICC, variance, and corre-
lation calculations are scale-invariant and would not
benefit from standardization. LASSO was applied to
the standardized feature set to identify the most rel-
evant features for the prediction task. The regular-
ization parameter () was tuned to ensure that the
number of selected features was in accordance with
the commonly used guideline of maintaining at least
10 outcome events per predictor variable [52, 53]. If
the number of features after correlation filtering was
already within this limit, LASSO regression was not
applied. Details of the LASSO regression are provided
in Supplementary Note S7.

Combined feature sets, included the radiomic fea-
tures that were retained after the ICC selection step,
and all clinical features. The combined feature sets
were then subjected to the remaining selection steps:
low-variance filtering, correlation-based filtering, Z-
score normalization, and LASSO regression. For the
feature sets only containing clinical features, only
the final three selection steps (low-variance filter-
ing, correlation-based filtering, and LASSO regres-
sion) were applied, as ICC filtering was not applicable
for the clinical variables.

2.6 Model Development

A total of eight gradient boosting regression models
were developed to predict the ILV at 1-week follow-up.
The ground truth for the prediction task was defined
as the volume derived from the ischemic lesion seg-
mentation on the 1-week follow-up NCCT scan. The
models were implemented using the eXtreme Gra-
dient Boosting (XGBoost) algorithm in Python via
the xgboost package (version 2.1.4) [54]. XGBoost
was selected for its suitability for tabular data, and
strong performance in regression task [55]. It uses an
ensemble of decision trees that sequentially reduces
the prediction error, enabling the model to capture
non-linear relationships and achieve high predictive
accuracy [55]. Additionally, XGBoost is computa-
tional efficient and supports feature importance anal-
ysis, which enhances the interpretability of the model
[56, 55].

Three models were developed using only radiomic
features (R models), extracted from the different VOI
annotations (original ischemic lesion segmentation,
bounding box, and circle annotation), three other
models used a combination of radiomic and clinical
features (RC models) for each annotation type, and
the last two models used only clinical features (C mod-



els), one including the 24-hour ILV (C-ILV model) and
the other not including it (C-noILV model). As such,
each model was trained on a distinct set of features.

In this study, a standardized pipeline was used for
all models to ensure consistency and reproducibility.
This pipeline consisted of feature selection, hyperpa-
rameter tuning, model training with cross-validation,
and final evaluation on an independent test set.

Hyperparameter tuning was performed using the
RandomizedSearchCV function from the scikit-learn
library (version 1.3.2) [51], applying 5 fold cross-
validation on the pre-training set. Fifty parameter
combinations were randomly sampled, and the best
configuration was selected based on the lowest mean
squared error (MSE) in the validation set. The set-
tings for the hyperparameter tuning are listed in Sup-
plementary Table S8. Following parameter optimiza-
tion, each model was trained across 5 folds using the
optimal parameter configuration. Within each fold,
80% of the pre-training set was used for training and
20% for validation. Within each fold, the root mean
squared error (RMSE) of the validation set was mon-
itored. To prevent overfitting, early stopping was
used to stop the training if the validation RMSE did
not improve for 10 boosting rounds. All models were
implemented using the XGBoost Regressor with the
squared error as loss function. A schematic overview
of the pipeline used for the development of the ra-
diomics models is shown in Figure 1.

2.7 Model Performance and Feature
Importance

Model performance was evaluated on an independent
test set, which was not used during feature selection,
hyperparameter tuning, or model training. Each of
the five models trained during cross-validation was
used to predict on the test set, and the resulting pre-
dictions were averaged to obtain the final prediction.
Performance metrics included the coefficient of de-
termination (R?), concordance correlation coefficient
(CCCQC), mean absolute error (MAE), and RMSE. The
95% confidence intervals (CIs) of the performance
metrics were estimated using bootstrapping with 1000
resamples [57]. To assess agreement between pre-
dicted and reference values, Bland—Altman plots were
constructed. These plots visualize the mean difference
(bias) and the +95% limits of agreement between pre-
dicted and true volumes.

To gain insight into the contribution of individual
features to the model prediction, feature importance
was evaluated with a SHapley Additive exPlanations
(SHAP) analysis using the SHAP Python package
(version 0.44.1) [58]. For each model, SHAP val-

ues were computed across the five training folds with
TreeExplainer, and the average values were used to
estimate global feature importance. This procedure
was conducted separately for each of the eight mod-
els.

) { N\ { N\
Image acquisition Feature extraction Feature selection
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Correlation clusters
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Figure 1: Systematic overview of the pipeline used for the development of the radiomics models.



2.8 Statistical Analysis

To assess whether the differences in prediction errors
were statistically significant, the absolute and squared
errors were compared between models. Pairwise com-
parisons were performed across models for each test
subject. The radiomics models based on the bounding
box and circle annotation were each compared sepa-
rately to the radiomics model using the original seg-
mentation. Additionally, for each annotation type,
the radiomics model and the clinical model were indi-
vidually compared to the combined model. The nor-
mality of the paired differences in errors was evaluated
using the Shapiro-Wilk test. If the differences were
normally distributed, a paired t-test was used to test
for significance. Otherwise, the Wilcoxon signed-rank
test was applied. All hypothesis tests were two-sided,
and a p-value < 0.05 was considered statistically sig-
nificant. All statistical analyses were conducted in
Python using the statistical functions from the SciPy
package (version 1.10.1) [59].

3 Results

3.1 Patient Characteristics

From the 116 patients in the MR CLEAN-NOIV sub-
set defined by Konduri et al. [42], 16 were excluded
due to missing imaging data (n=1) or an ILV below
5 mL at 24-hour follow-up (n=15). As a result, 100
patients were included in this study (median age, 71
years; interquartile range (IQR), 59-76 years; 37 fe-
male). The pre-training set included 80 patients and
the test set included 20 patients. The clinical char-
acteristics of the patients included in this study are
provided in Table 1.

3.2 Lesion Characteristics

An example of the original segmentation and simpli-
fied annotations is shown in Figure 2. Among the
100 included patients, the median ILV was 13 (IQR:
4.7 — 34) mL at baseline, 28 (IQR: 16 — 87) mL at
24-hour follow-up, and 45 (IQR: 20 — 125) mL at 1-
week follow-up. Subacute lesion growth, defined as
an increase in ILV between the 24-hour and 1-week
follow-up scans, was observed in 71 (71%) patients.
The median ILV difference over this interval was 9.3
(IQR: -0.51 — 30) mL.

3.3 Feature Selection

For the radiomic features sets, 107 features were ex-
tracted from the original segmentation, and 93 fea-
tures were extracted from both the bounding box and
the circle annotation. After applying the ICC se-
lection step, 101 features remained for the original
segmentation, 92 for the bounding box annotation,
and 26 for the circle annotation. Variance filtering
excluded 4 features for the original lesion segmenta-
tion and 8 for the bounding box annotation, while
no features were excluded for the circle annotation.
After correlation-based selection, the number of fea-
tures was further reduced to 27, 22, and 7 features for
the original lesion segmentation, bounding box an-
notation, and circle annotation, respectively. Finally,
LASSO regression was used to select the 10 most rele-
vant features for the original segmentation and bound-
ing box annotation. For the circle annotation, LASSO
regression was not applied, as the number of features
was already below the selection threshold following
correlation filtering.

Prior to feature selection, the combined feature
sets, consisted of 134 features for the original segmen-
tation, 124 features for the bounding box annotation,
and 58 features for the circle annotation. The clinical
feature sets contained 33 for the C-ILV model and

Figure 2: Example of a 24-hour NCCT scan (a) with the three segmentation approaches: (b) the original ischemic lesion
segmentation, (c) the bounding box annotation, and (d) the circle annotation.



Table 1. Clinical characteristics

Included patients (n=100)

Age (years) 71 (59 — 76)
Sex (female) 37 (37%)
Medical history
Ischemic stroke 12 (12%)
Atrial fibrillation 16 (16%)
Diabetes mellitus 17 (17%)
Hypertension 42 (42%)
Pre-stroke mRS > 2 3 (3%)
Clinical parameters
Systolic blood pressure (mmHg) 151.0 (132.5 — 170.0)
Blood glucose (mmol/L) 6.7 (5.9 —8.3)
Left affected hemisphere side 51 (51%)
Baseline NIHSS 16 (11 — 19)
Radiological parameters
ASPECTS score 9 (8 —10)
Occlusion location
Intracranial ICA 0 (0%)
Terminal ICA 19 (19%)
M1 64 (64%)
Proximal M2 15 (15%)
None 2 (2%)
Tandem lesion 20 (20%)
Collateral score
0 6 (6%)
1 29 (29%)
2 45 (45%)
3 18 (18%)
Treatment parameters
IVT administered 58 (58%)
Type of treatment (randomization)
IVT followed by EVT 54 (54%)
EVT alone 46 (46%)
Median duration (min)
From stroke onset to randomization 93.5 (70.0 — 144.3)
From stroke onset to needle 92.0 (78.0 — 141.0)
From stroke onset to reperfusion 180.0 (149.0 — 247.8)
From stroke onset to groin puncture 147.5 (112.5 — 210.5)
From door to needle 32.0 (25.0 — 40.0)
From door to groin puncture 69.0 (53.5 —92.3)
Post treatment parameters (24 hours)
Successful reperfusion 78 (78%)
Hemorrhage 32 (32%)
mAOL score 3(3-3)
NIHSS 8 (4 15)
Sich 4 (4%)

Values are represented as a number (%) or median (interquartile range).
Abbreviations: ASPECTS: Alberta Stroke Program Early Computed Tomography Score, EVT: endovascular thrombectomy, ICA:
intracranial cartoid artery, IVT: intravenous thrombolysis, mAOL: modified Arterial Occlusion Lesion, mRS: modified Rankin

scale, NIHSS: National Institutes of Health Stroke Scale, sich: symptomatic intracranial hemorrhage.



32 features for the C-nolLLV model. After variance
filtering, correlation-based selection, and LASSO re-
gression, 10 features were retained for each feature
set.

Supplementary Figures S9 and S10 show the cor-
relation matrices and LASSO regression plots for each
feature set, respectively. An overview of the number
of features retained after each selection step is pro-
vided in Supplementary Figure S11, and Supplemen-
tary Table S12 lists the selected features per model.

3.4 Model Performance and Feature
Importance

Following hyperparameter tuning, the optimized pa-
rameters for each XGBoost regression model are pro-
vided in Supplementary Table S13.

Radiomics Models. The predictive performance
of the three radiomics models is summarized in Ta-
ble 2. The model based on radiomic features ex-
tracted from the original segmentation achieved an
R2 of 0.89 (95% CI: 0.74 — 0.96), CCC of 0.95 (95%
CI: 0.89—-0.98), MAE of 24 mL (95% CI: 16—33), and
RMSE of 31 mL (95% CI: 19 — 42). The model based
on the bounding box annotation yielded a higher R?
and CCC, and lower MAE and RMSE, compared to
the original segmentation model. The differences in
absolute errors (p = 0.29) and squared errors (p =
0.43) were not statistically significant. The model
based on the circle annotation showed a lower R? and
CCC, and higher error values compared to the model
based on the original segmentation. The absolute er-
rors (p < 0.01) and squared errors (p < 0.01) were
significantly higher than those of the original segmen-
tation model. Scatter plots comparing the predicted
versus actual ILVs at 1-week follow-up for each ra-
diomics model are shown in Figure 3a-c, with a com-
bined overview in Figure 3d. Bland—Altman plots for

each radiomics model are presented in Figure 4. The
mean differences between predicted and actual ILVs
were 16 mL, 3 mL, and —9 mL for the original seg-
mentation, bounding box, and circle, respectively.

SHAP analysis was used to assess the contribu-
tion of each feature to the model outcome. For the
model based on the original segmentation, the three
features with the largest impact on the model output
were the Run Length Non-Uniformity, a texture fea-
ture derived from the GLRLM, the Minor Axis Length
shape feature, and the Mazimum 2D Diameter Col-
umn shape feature. For the bounding box model these
were the Run Length Non-Uniformity, the Mazimum,
a first-order feature, and the Busyness derived from
the NTGDM. For the circle model they were theSmall
Area Low Gray Level Emphasis and Large Area Em-
phasis derived from the GLSZM, and the Contrast
feature derived from the GLCM. The SHAP summary
plots, visualizing the impact of all included features
on the model output, are shown in Figure 5.

Combined and Clinical Models. The predictive
performance of the combined (RC) and clinical (C)
models for each annotation type is summarized in Ta-
ble 3, alongside the previous reported results of the
radiomics (R) models for comparison. For the orig-
inal segmentation, the RC model achieved the high-
est R? (0.91; 95% CI: 0.79 — 0.95) and CCC (0.95;
95% CI: 0.89 — 0.97), and lowest error values (MAE:
24 mL; 95% CI: 17 — 31, and RMSE: 29 mL; 95%
CIL: 22 — 34). Compared to the clinical model, the
RC model showed statistically significantly lower ab-
solute errors (p = 0.02) and squared errors (p = 0.03).
Among the bounding box based models, the R model
yielded the highest R? (0.92; 95% CI: 0.81—0.97) and
CCC (0.95; 95% CI: 0.89 —0.98), and lowest error val-
ues (MAE: 20 mL; 95% CIL: 13 — 28 and RMSE: 27
mL; 95% CI: 17—36). Additionally, the bounding box
RC model demonstrated significantly lower absolute

Table 2. Comparing the predictive performance metrics of the radiomics regression models on the test set

R-Original R-BB p-value R-Circle p-value
R? 0.89 (0.74 — 0.96) 0.92 (0.81 — 0.97) — 0.06 (-0.25 — 0.12) —
cccC 0.95 (0.89 — 0.98) 0.95 (0.89 — 0.98) — 0.07 (-0.01 — 0.14) —
MAE (mL) 24 (16 — 33) 20 (13 — 28) 0.29 82 (66 — 103) <0.01*
RMSE (mL) 31 (19 — 42) 27 (17 — 36) 0.43 92 (67 — 118) < 0.01*

*: p-value < 0.05

Values are presented as the mean (95%CIs). Two-sided paired t-test or two-sided Wilcoxon signed-rank test was performed to

compare the prediction errors between the radiomics models based on the simplified annotations with the radiomics model based

on the original segmentation.

Abbreviations: CCC: concordance correlation coefficient, MAE: mean absolute error, R?: coefficient of determination, R-BB: model

based on radiomic features extracted from the bounding box annotation, R-Circle: model based on radiomic features extracted

from the circle annotation, RMSE: root mean squared error, R-Original: model based on radiomic features extracted from the

original segmentation.
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Figure 3: Scatter plots showing the agreement between the ground-truth and predicted values and the 95% confidence
intervals of the radiomics models based on (a) the original segmentation, (b) the bounding box annotation, and (c) the
circle annotation. Plot (d) compares the predictions of all three models in a single plot.
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Figure 5: The feature importance of the radiomics models based on (a) the original segmentation and (b) the bounding
box annotation, using the SHapley Additive exPlanations (SHAP) analysis.

errors (p < 0.01) and squared errors (p < 0.01) com-
pared to the C model. For the circle annotation, the
RC model showed the highest R? (0.31; 95% CI: -
0.18—0.51) and CCC (0.41; 95% CI: 0.15—0.60), and
lowest error values (MAE: 69 mL; 95% CI: 53—86, and
RMSE: 79 mL; 95% CI: 61 — 95). No statistically sig-
nificant differences in absolute errors or squared errors
were observed between the RC model and either the R,
or C models. Scatter plots comparing the radiomics,
combined, and clinical models per annotation type
are shown in Figure 6. Both the individual scatter
plots and Bland-Altman plots for the combined mod-

els and clinical models are shown in Supplementary
Figure S14.

SHAP analysis showed that in both the RC model
based on the original segmentation and the RC model
based on the bounding box, the Run Length Non-
Uniformity feature derived from the GLRLM was the
feature with the largest impact on the model output.
In the C-ILV model, the 24-hour ILV had the largest
impact on the model output. The SHAP summary
plots of these models are provided in Figure 7, and
the SHAP summary plots of the other models are pro-
vided in Supplementary Figure S15.

Table 3. Comparing the predictive performance measures of the radiomics (R) and clinical (C) models with the

combined (RC) models on the test set

RC R p-value C p-value
Original R? 0.91 (0.79 — 0.95) 0.89 (0.74 — 0.96) — 0.84 (0.69 — 0.91) —
CcCcC 0.95 (0.89 — 0.97) 0.95 (0.89 — 0.98) - 0.91 (0.82 — 0.94) —
MAE (mL) 24 (17— 31) 24 (16 — 33) 0.99 32 (23 — 40) 0.02*
RMSE (mL) 29 (22 — 34) 31 (19 — 42) 0.73 37 (28 — 44) 0.03*
BB R? 0.86 (0.75 — 0.94) 0.92 (0.81 — 0.97) — 0.19 (-0.27 - 0.38) —
CcCcC 0.91 (0.83 — 0.96) 0.95 (0.89 — 0.98) — 0.31 (0.07 — 0.50) —
MAE (mL) 25 (15— 37) 20 (13 —28) 0.30 75 (58 — 94) < 0.01"
RMSE (mL) 35 (22 — 49) 27 (17 — 36) 0.67 85 (66 — 104) < 0.01*
Circle R? 0.31 (-0.18 = 0.51)  0.06 (-0.25 — 0.12) — 0.19 (-0.27 - 0.38) —
CCC 0.41 (0.15 — 0.60) 0.07 (-0.01 —0.14) — 0.31 (0.07 — 0.50) —
MAE (mL) 69 (53 — 86) 82 (66 — 103) 0.16 75 (58 — 94) 0.29
RMSE (mL) 79 (61 — 95) 92 (67 — 118) 0.20 85 (66 — 104) 0.26

*: p-value < 0.05

Values are presented as the mean (95%CIs). Two-sided paired t-test or two-sided Wilcoxon signed-rank test was performed to

compare the prediction errors between the radiomics model and the combined model, and the clinical model and the combined

model, for each annotation type.

Abbreviations: BB: bounding box, C: model based on clinical features, CCC: concordance correlation coefficient, MAE: mean

absolute error, R2: coefficient of determination, R: model based on radiomic features, RC: model based on both radiomic and

clinical features, RMSE: root mean squared error.
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Figure 6: Scatter plots comparing the predictions of three models: radiomic features only (R), radiomics combined with
clinical features (RC), and clinical features only (C). The models are based on (a) the original segmentation, (b) the
bounding box annotation, and (c) the circle annotation. Each subfigure shows the predicted versus ground-truth 1-week
ischemic lesion volumes, illustrating the performance of the three models for each segmentation strategy.
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Figure 7: The feature importance of the combined models based on (a) the original segmentation and (b) the bounding
box annotation, and of (c) the clinical model including the 24-hour ischemic lesion volume. The feature importance is
assessed using the SHapley Additive exPlanations (SHAP) analysis.

4 Discussion

This study aimed to investigate whether radiomic fea-
tures extracted from post-treatment NCCT scans ac-
quired at 24 hours after stroke onset can be used
to predict the subacute ischemic lesion volume at
1-week follow-up in patients with AIS, and whether
simplified annotations could serve as feasible alterna-
tives to detailed segmentations for radiomic feature
extraction. To address this, three regression models
were developed, each trained on radiomics features
extracted from another VOI annotation (original seg-
mentation, bounding box annotation, and circle an-
notation). The radiomics model based on the orig-
inal segmentation demonstrated high predictive per-
formance, indicating that radiomic features extracted
from the 24-hour NCCT scan can be used to accu-
rately predict ILV at 1-week follow-up. The model
based on the bounding box annotation showed com-
parable predictive performance. Utilizing this bound-
ing box annotation can significantly reduce the time
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needed for defining the VOI without compromising
the predictive performance of the model, offering a
feasible alternative to detailed segmentations. In con-
trast, the model based on the circle annotation re-
sulted in significantly lower predictive performance
compared to the model based on the original seg-
mentation, indicating that this simplified annotation
method is not a suitable alternative for radiomic fea-
ture extraction in this context.

This appears to be the first study to predict the
1-week ILV using radiomic features extracted from
24-hour post-treatment NCCT scans in patients with
AIS. The high predictive performance observed in the
radiomics model based on the original segmentation is
confirmed by prior work by Wang et al. [30], who also
demonstrated the utility of NCCT-based radiomics
for the prediction of ILV. However, their study focused
on predicting ILV at 24-hour follow-up from base-
line NCCT and stratified patients by treatment type,
whereas the current study predicts ILV at 1 week and
the model was developed for all including patients.



Furthermore, their approach relied on deep learning-
based lesion segmentation, while this study evaluated
both semi-automatic segmentation and simplified an-
notation approaches. The finding that a bounding
box-based model achieved comparable performance to
the model based on the detailed segmentation is in line
with studies in oncology, where bounding box anno-
tations have been shown to yield equal or even better
performance than detailed segmentations [36, 37, 38].
Although prior work has examined variations in box
size and dimensionality, these studies were limited to
classification tasks in oncology. This study extends
these findings by demonstrating that bounding box
annotations are also feasible alternatives for continu-
ous outcome prediction in AIS. Conversely, the poor
performance of the model based on the circle anno-
tation is in contrast with a study by Heo et al. [39],
who reported accurate classification of hemorrhagic
transformation using a circle annotation. While both
studies employed the same annotation strategy, their
research focused on a classification task, whereas this
study predicted a continuous outcome. The small size
of the circle VOI may not provide enough spatial or
contextual information for accurate regression based
prediction. Overall, these results confirm existing ob-
servations on the value of radiomics in NCCT, and
introduce a novel approach by demonstrating that
bounding box annotations offer a practical, repro-
ducible alternative to detailed segmentation for vol-
umetric outcome prediction in AIS.

SHAP analysis of the two best performing ra-
diomics models revealed that the feature with the
greatest impact in both the original segmentation
and bounding box models was Run Length Non-
Uniformity (RLNU), a texture feature derived from
the GLRLM. This feature quantifies the variability
in the lengths of consecutive voxels with the same
gray level, where higher values indicate more het-
erogeneity among these run lengths. In both mod-
els, high RLNU values were associated with higher
SHAP values, meaning they pushed the prediction
toward a larger predicted ILV, while low RLNU val-
ues were linked to negative SHAP values, reducing
the predicted ILV. This observed heterogeneity may
reflect underlying tissue damage caused by reperfu-
sion injury, which is thought to contribute to suba-
cute ischemic lesion growth [22]. Reperfusion injury
encompasses a range of processes that further dam-
age brain tissue, including microvascular injury, BBB
breakdown, and inflammation [23]. While these pro-
cesses are not directly visible on NCCT, they could
potentially influence voxel intensities and spatial pat-
terns, leading to increased textural heterogeneity in
the ischemic lesion. The specific impact of these pro-
cesses on NCCT voxel intensities is unknown. How-
ever, the positive association between higher RLNU
and larger predicted volumes across all high perform-
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ing models including radiomic features suggests that
it has an effect on the heterogeneity of the ischemic
lesion. As such, it is possible that RLNU is a marker
for ongoing secondary injury.

There are several factors that may explain why
the model based on the bounding box annotation per-
forms comparable to the model based on the orig-
inal segmentation, despite not including shape fea-
tures and encompassing adjacent normal brain tissue.
Firstly, although the bounding box includes adjacent
normal brain tissue, the ischemic lesion still domi-
nates in terms of voxel count and intensity distribu-
tion. As a result, it seems possible that first-order and
texture features extracted from the bounding box are
still mainly influenced by the ischemic lesion. There-
fore, these features could possibly remain represen-
tative of the underlying tissue characteristics of the
ischemic lesion, although some adjacent normal brain
tissue is included. Secondly, the ICC feature selec-
tion step in this study was performed using simulated
second-observer segmentations that involved geomet-
ric transformations (e.g., translations, dilation, and
erosion). These operations preserve the overall shape
of the VOI and therefore do not completely reflect the
actual variability introduced by inter-observer delin-
eations. As a result, certain non-reproducible features
may not have been excluded during feature selection.
Since the bounding box annotation has a more robust
shape, this may have contributed to the strong predic-
tive performance observed for the model based on this
annotation compared to the model based on the orig-
inal segmentation. Thirdly, segmentation of ischemic
lesions on NCCT is difficult due to low contrast, which
can lead to under segmentation. The bounding box,
includes a broader region and may therefore be more
likely to capture the entire ischemic lesion, especially
in cases where the boundaries are unclear. Lastly, in
oncology it has been suggested that bounding boxes
perform well despite missing shape features because
they include the microscopic peritumor environment,
which is clinically relevant for tumor growth but not
directly visible on imaging [36, 37, 38]. While spec-
ulative, a similar phenomenon may occur in ischemic
stroke, where adjacent tissue could contain early or
subtle changes, such as microvascular damage, cyto-
toxic edema, or BBB breakdown, which are not visible
on images, but could be detected through radiomic
analysis. This could provide additional prognostic in-
formation to predict ILV at 1 week.

Due to the poor predictive performance of the cir-
cle based model, this simplified annotation cannot be
considered a good alternative. One likely factor con-
tributing to the poor predictive performance of the
model based on the circle annotation is the result
of the ICC filtering step. Due to the small size of
the VOI (1 cm circle), even minor variations in the
placement of the circle led to substantial differences



in the voxels included in the VOI. This placement
variability resulted in low reproducibility for many of
the extracted features, which were excluded during
the ICC selection step. As a result, a considerable
number of potentially informative radiomic features
were excluded from the feature set used in predic-
tion. Automating the circle annotation step could
reduce the variability of the placement and preserve
a greater number of potentially informative features,
which may improve predictive performance. Another
possible explanation of the model’s poor performance
is the voxel intensity thresholding applied during pre-
processing. As described in the methods section
(2.3 Pre-processing and Radiomics Feature Extrac-
tion), only voxels with HU values between 20 and 80
were retained to exclude non-brain tissue components.
To ensure a fair comparison, the same pre-processing
pipeline was applied for each annotation type. How-
ever, since the circle was specifically placed in the
most hypodense region of the ischemic lesion, it often
contained voxels with HU values below 20. Although
this threshold was applied to exclude CSF and ensure
consistency across VOIs, it may have unintentionally
excluded severely infarcted tissue, which in the sub-
acute phase can present with HU values below this
threshold [60]. This thresholding step further reduced
the size of the VOI and may have removed relevant
image information. It is plausible that these effects, in
combination with the already limited spatial context
of the circle annotation, reduced the predictive value
of the extracted features for this regression-based pre-
diction task. This study also explored whether the
incorporation of clinical data can improve the pre-
dictive performance of the radiomics models. To in-
vestigate this, three combined models were trained
using both radiomic and clinical features, and addi-
tionally two clinical models were trained using only
clinical features. The combined models did not out-
perform any of the radiomics models, although they
significantly outperformed the clinical models for the
original segmentation and bounding box annotation.
This suggests that, for predicting the subacute ILV at
1 week from 24-hour NCCT scans, clinical variables
do not provide additional prognostic value beyond
what is already captured by radiomic features. Con-
versely, adding radiomic features to clinical models
significantly improved predictive performance. That
combined models perform better than clinical models
is in line with previous studies [61, 62]. However, the
findings that combined models do not outperform ra-
diomics models differ from these studies. Zhou et al.
and Zhang et al. used radiomic features derived from
baseline imaging (MRI and NCCT, respectively) to
predict functional outcomes and reported that clinical
variables significantly improved the predictions [61,
62]. A key difference is that the current study used
NCCT scans acquired at 24 hours, instead of at base-
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line. These post-treatment images may contain in-
formation about reperfusion injury, which is believed
to contribute to subacute ischemic lesion growth [22].
These findings could suggest that, at this stage, clini-
cal variables may no longer add significant predictive
value, since radiomic features already capture critical
prognostic information.

Notable is the high predictive performance of the
C-ILV model. Although this model was significantly
improved by adding radiomic features from the origi-
nal segmentation, the high predictive performance of
the model still makes it interesting to look at its fea-
ture importance. SHAP analysis indicated that 24-
hour ILV was the feature with the highest impact on
its predictions. Given the wide range of ILVs in the
dataset, from 5 to 400 mL, the 24-hour ILV may serve
as a useful starting point. The model then uses the
other features to estimate the likelihood and extent
of further lesion progression. However, the radiomics
models achieved even higher predictive performance
without explicitly including the 24-hour ILV as input
feature. A study by Volpe et al. reported that cer-
tain radiomic features, particularly texture features,
are strongly correlated with the volume of the VOI
[63]. This suggests that radiomics models may in-
directly incorporate information about the ischemic
lesion size through these features. The significant im-
provement observed when adding radiomic features to
the C-ILV model indicates that radiomic features cap-
ture additional information about the subacute evo-
lution of ischemic lesions.

4.1 Limitations

This study has several limitations. Firstly, the dataset
was relatively small, as inclusion required the avail-
ability of NCCT scans at both 24 hours and 1 week
after stroke onset. This requirement excluded a sub-
stantial number of patients from the MR CLEAN-
NOIV trial. A larger training set may improve the
accuracy and robustness of the predictive models.
Secondly, the generalizability of the model is lim-
ited by both the composition of the study cohort and
the absence of external validation. All patients in-
cluded in this study received EVT and were eligible
for IVT, meaning they were treated within 4.5 hours
after symptom onset. As a result, the model was
trained exclusively on early presenters, who typically
have smaller baseline ILVs and potentially less com-
plex EVT procedures. This narrow treatment profile
may limit the applicability of the model to patients
treated at later time points, received only IVT, or
received no treatment. While 5 fold cross-validation
was used and the final predictions were obtained by
averaging the outputs of five models trained on dif-
ferent patient splits, it cannot compensate for the low
diversity in the dataset. Also, the data used in this



study was acquired across multiple centers, but all
patients came from a single clinical trial. Testing the
model on an external dataset is necessary to assess its
robustness before it can be applied in clinical prac-
tice. Thirdly, the subacute ILV at 1 week was as-
sessed on NCCT, which is less sensitive than MRI
for detecting ischemic tissue. While NCCT was used
because MRI scans at 1-week follow-up were not avail-
able in the MR CLEAN-NOIV trial, MRI can provide
a more accurate representation of the true ILV and
could serve as a more reliable ground truth. Another
limitation is that the high-performing models consis-
tently overestimated small ILVs at 1 week, as observed
in the Bland-Altman plots (Figure 4 and Supplemen-
tary Figure S14. This indicates a systematic positive
bias for lower volume predictions. A possible expla-
nation could be the choice of the RMSE as the loss
function during model training. RMSE is sensitive to
large errors because it squares the difference between
predicted and actual values before averaging. This
means that the model places greater emphasis on min-
imizing larger errors, often at the expense of smaller
ones. As a result, it may slightly overestimate smaller
ILVs to balance overall error, leading to a systematic
positive bias for small values, particularly in datasets
with a wide range of target values, as in this study.
Finally, EVT is a technically complex procedure that
varies between patients and can cause treatment com-
plications like vessel rupture [64]. Treatment specific
variables, such as the number of attempts or proce-
dure duration, could be associated with ischemic le-
sion evolution after treatment, however these were not
considered in this study. This is also supported by a
study from Wang et al. [30], which reported a lower
prediction accuracy for ILV in patients who received
EVT. Their findings suggest that the complexity of
the procedure may have an influence on the ischemic
lesion development, and when unaccounted for, can
limit the predictive performance of a model.

4.2 Future research

Future research should aim to increase the size of the
dataset, include patients who receive EVT at later
time points, IVT alone, or no treatment at all, and
validate on an external test set, such as the Imag-
ing Repository of Ischemic Stroke (IRIS) cohort. The
IRIS cohort is particularly suitable for validation as
it includes NCCT scans acquired at both 24 hours
and 1 week after stroke onset, which is in line with
the imaging time points used in the current study.
Treatment-specific variables related to EVT, such as
the number of retrieval attempts, should also be con-
sidered, as they may influence lesion evolution. In
addition, future research should apply strategies to
mitigate volume-related bias. One approach is to ex-
plore custom loss functions that weight errors based
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on the magnitude of the target variable, thereby bal-
ancing the influence of small and large ILVs during
model training. An alternative solution could be to
stratify model development based on the 24-hour ILV,
training separate models for small and large lesions.
Although this does not narrow the prediction range,
it reduces the influence of large-volume cases on the
loss function. This may help prevent systematic over-
estimation of small lesions by allowing the model to
better minimize errors within each subgroup.

Future research could also further investigate the
simplified annotations. Assessing how the size of
bounding box and circle annotations influences pre-
dictive performance may help determine the best
alternative to detailed segmentations for radiomics
based modeling. This could offer insight into when
and how simplified annotations are most effective. In
addition, given the strong performance and reduced
annotation time shown by the bounding box approach
in this study, it could be explored as a alternative
for other radiomics based prediction tasks requiring a
time-consuming manual segmentation step.

Future research could also explore more specific
predictive objectives. Rather than predicting 1LV, it
may be valuable to predict infarct and edema volumes
separately. Previous research has shown that both
components continue to evolve after 24 hours and are
associated with functional outcome [9]. Separately
predicting infarct and edema volumes could clarify
which component dominates total ILV and inform fu-
ture treatment strategies if secondary therapies are
developed. Additionally, future research could also
focus on predicting ischemic lesion growth, such as
the absolute or relative increase in volume between
24 hours and 1 week, or by classifying patients with
or without lesion progression. Shifting the focus from
volume to growth could help identify radiomic fea-
tures that specifically associated with ongoing physio-
logical processes related to ischemic lesion progression
in the subacute phase. These features could provide
valuable biological insights and potentially support
future research into secondary treatment strategies.

5 Conclusion

This study showed that radiomic features extracted
from post-treatment NCCT scans acquired at 24
hours after stroke onset can accurately predict the
subacute ischemic lesion volume at 1 week. A bound-
ing box offers a feasible and faster alternative to the
detailed ischemic lesion segmentation for radiomic fea-
ture extraction, without compromising predictive per-
formance. Conversely, the circle annotation showed
poor performance and does not appear to be a suit-
able alternative for radiomic feature extraction in this
context. Adding clinical data to the radiomic fea-



tures did not improve model performance, suggest-
ing that clinical variables do not provide additional
prognostic value beyond what is already captured
by radiomic features at this point. Across all well-
performing models, the ischemic lesion heterogeneity
consistently emerged as a strong predictor of the 1-
week volume, possibly containing information about

ongoing secondary injury. Despite these promising
results, challenges still remain, particularly the sys-
tematic overestimation of small ILVs and the limited
generalizability due to the composition of the dataset.
Future research should address these limitations be-
fore such radiomics based prediction models can be
considered for clinical use.
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6 Supplement

Supplementary Table S1. Parameters used for PyRadiomics Feature Extraction

Feature Extractor Level

Feature Class Level

Image Normalization Label 1
normalize False Image discretization

normalizeScale 1 binWidth 1
removeQutliers None binCount None
Resampling the image/mask Forced 2D Extraction
resampledPixelSpacing [1, 1, 1] force2D False
interpolator 'sitkLinear’ force2Ddimension 0
padDistance 5 Texture matriz weighting

Pre-Cropping weightingNorm None
preCrop False Distance to neighbour

Resegmentation distances 1]
resegmentRange [20, 80]

resegmentMode "absolute’

resegmentShape False

Mask validation Feature Class Specific Settings
minimumROIDimensions 2 First Order

minimumROISize None voxel ArrayShift 0
geometryTolerance None GLCM

correctMask False symmetrical GLCM True
Miscellaneous GLDM

additionallnfo True gldm_a 0

Non default parameter settings are marked grey.

Supplementary Note S2: Description of Radiomics Feature Classes

e Shape-based features describe the geometric properties of the volume of interest (VOIs), such as volume

and maximum surface area. These features are derived from the 3D mesh representation of the VOI shape
and are independent of gray level values [1].

First-order features are derived from the gray level histogram of the image and characterise the distribution
of individual voxel grey level values within the VOI [1]. Each voxel is analysed independently of its
neighbors (single-voxel analysis), which defines these features as first-order. Examples include mean,
median, and standard deviation.

Second-order features, also referred to as ”texture” features, evaluate the spatial relationships between

voxel gray levels within the VOI [2]. PyRadiomics offers a set of matrix-based texture feature classes,
each capturing different spatial dependencies. These include:

Gray Level Co-occurrence Matrix (GLCM): Features that describe how often voxel pairs with specific
gray levels occur, at predefined distances and across 13 directions in 3D [2].

Gray Level Run Length Matrix (GLRLM): Features that measure the length and distribution of
consecutive voxels with the same gray level in specified directions [3].

Gray Level Size Zone Matrix (GLSZM): Features that quantify the size of homogeneous zones, which
are formed by connected voxels with the same gray level, regardless of direction [4].

Gray Level Dependence Matrix (GLDM): Features that describe the number of connected voxels
within a predefined distance that depend on the gray level of the center voxel [5].

Neighborhood Gray Tone Difference Matrix (NGTDM): Features that quantify the difference between
the gray level of a voxel and the average gray level of its neighboring voxels within a predefined
distance [6].
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e High-order features are extracted after applying filters or transformations to the original image, enabling
the detection of complex patterns that are not visible in the native gray level domain [7]. Commonly used
methods include Fourier transforms, Wavelet decomposition, and Gaussian filters. This approach signif-
icantly increases the number of extracted features, since features are computed from each transformed
image representation.

Supplementary Table S3. Extracted Radiomic Features

Class Features

Shape 3D* (n=14) Elongation, Flatness, Least Axis Length, Major Axis Length, Maximum 2D Diameter Col-
umn, Maximum 2D Diameter Row, Maximum 2D Diameter Slice, Maximum 3D Diameter,
Mesh Volume, Minor Axis Length, Sphericity, Surface Area, Surface Volume Ratio, Voxel
Volume

First-order (n=18) 10" Percentile, 90" Percentile, Energy, Entropy, Interquartile Range, Kurtosis, Maximum,
Mean Absolute Deviation, Mean, Median, Minimum, Range, Robust Mean Absolute Devia-
tion, Root Mean Squared, Skewness, Total Energy, Uniformity, Variance

GLCM (n=24) Autocorrelation, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast, Correla-
tion, Difference Average, Difference Entropy, Difference Variance, Inverse Difference, Inverse
Difference Moment, Inverse Difference Moment Normalized, Inverse Difference Normalized,
Informational Measure of Correlation 1, Informational Measure of Correlation 2, Inverse Vari-
ance, Joint Average, Joint Energy, Joint Entropy, Maximal Correlation Coefficient, Maximum
Probability, Sum Average, Sum Entropy, Sum of Squares

GLRLM (n=16) Gray Level Non-Uniformity, Gray Level Non-Uniformity Normalized, Gray Level Variance,
High Gray Level Run Emphasis, Long Run Emphasis, Long Run High Gray Level Emphasis,
Long Run Low Gray Level Emphasis, Low Gray Level Run Emphasis, Run Entropy, Run
Length Non-Uniformity, Run Length Non-Uniformity Normalized, Run Percentage, Run Vari-
ance, Short Run Emphasis, Short Run High Gray Level Emphasis, Short Run Low Gray Level
Emphasis

GLSZM (n=16) Gray Level Non-Uniformity, Gray Level Non-Uniformity Normalized, Gray Level Variance,
High Gray Level Zone Emphasis, Large Area Emphasis, Large Area High Gray Level Em-
phasis, Large Area Low Gray Level Emphasis, Low Gray Level Zone Emphasis, Size-Zone
Non-Uniformity, Size-Zone Non-Uniformity Normalized, Small Area Emphasis, Small Area
High Gray Level Emphasis, Small Area Low Gray Level Emphasis, Zone Entropy, Zone Per-
centage, Zone Variance

GLDM (n=14) Dependence Entropy, Dependence Non-Uniformity, Dependence Non-Uniformity Normalized,
Dependence Variance, Gray Level Non-Uniformity, Gray Level Variance, High Gray Level
Emphasis, Large Dependence Emphasis, Large Dependence High Gray Level Emphasis, Large
Dependence Low Gray Level Emphasis, Low Gray Level Emphasis, Small Dependence Em-
phasis, Small Dependence High Gray Level Emphasis, Small Dependence Low Gray Level
Emphasis

NGTDM (n=5) Busyness, Coarseness, Complexity, Contrast, Strength

* Shape features were only extracted for the original segmentation, and not for the bounding box or circle annotation.

Abbreviations: GLCM:, Gray level Co-occurence Matrix, GLRLM: Gray Level Run Length Matrix, GLSZM: Gray Level Size Zone
Matrix, GLDM: Gray Level Dependence Matrix, NGTDM: Neighborhood Gray tone Difference Matrix.

Supplementary Note S4: Description of MICE Imputation

Missing values in the clinical dataset were imputed using Multiple Imputation by Chained Equations (MICE)
[8], in R version 4.5.0 [9]. MICE is an iterative method that uses prediction models to predict the missing values
as a function of the other variables in the dataset [8]. The imputation method used depends on the variable
class. For this imputation the default methods are used: predictive mean matching (PMM) for numerical vari-
ables, a proportional odds model (POLR) for ordinal variables, and logistic regression for categorical variables.
Supplementary Table S5 provides a list of all the clinical variables and their class. The quickpred() function
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was used to automatically identify the most relevant predictors for each variable with missing data. This func-
tion computes pairwise correlations between variables and selects the variables with a correlation above the
threshold [8]. The correlation threshold is set at 0.1 and a maximum of 7 predictors is set per variable that
requires imputation. Additional MICE settings include a maximum of 15 iterations and a generation of five
imputed datasets (m=>5). The convergence was visually assessed using trace plots, and only the first imputed
dataset was used as the final imputed dataset.

Supplementary Table S5. Overview and Description of Clinical Variables

Feature Class Description

volume_bl numeric Ischemic lesion volume at baseline.

volume_24h numeric Ischemic lesion volume at 24 hours after stroke onset.
volume_lwk* numeric Ischemic lesion volume at 1 week after stroke onset.
hem_24h category Hemorrhage present on 24-hour NCCT scan.
r_treatmentall’ category Allocated type of treatment.

r.age numeric Age of the patient.

r_sex category Sex of the patient.

r_sidestroke category Side of the stroke (left or right hemisphere).
bl_nihss_sum ordinal NIHSS® score at baseline.

bl_hist_is category History of ischemic stroke.

bl _hist_af category History of atrial fibrillation.

bl_hist_dm category History of diabetes mellitus.

bl_hist_ht category History of hypertension.

bl_hist_premrs* ordinal The mRS? score before stroke.
bl_hist_premrs_over2’* category mRS? before stroke is higher than 2.

bl_phy_rrsyst numeric Systolic blood pressure at baseline (mmHg).
bl_lab_glucose* numeric Blood glucose at baseline (mmol/L).

bl_aspects ordinal ASPECTS score at baseline. The ASPECTS quantifies early ischemic

changes in the brain on CT. A score of 10 indicates no changes, and 1
point is subtracted for each affected brain region.

bl_occloc category Location of the occlusion at baseline assessed on CTA.

bl_cgsc ordinal Collateral score at baseline. This score quantifies the extent of collateral
flow visible on CTA. The score ranges from 0, indicating no collaterals,
to 3, indicating collateral flow to 100% of the affected territory.

post_eticit ordinal The eTICI® score assessed after reperfusion treatment.
tici2b3t¥ category eTICI® score after reperfusion treatment is 2B or 3.
fu24h_maol* ordinal mAOL? score based on 24-hour follow-up CTA (default) or MRI.
fu24h_recan? category mAOL? score is 3 at 24-hour follow-up.

otorep? numeric Time from stroke onset to reperfusion.

otr numeric Time from stroke onset to randomization.

otn* numeric Time from stroke onset to needle.

otg? numeric Time from stroke onset to groin puncture.

dtgt numeric Time from arriving at the hospital to groin puncture.

dtn? numeric Time from arriving at the hospital to needle injection.
mrs_def” ordinal mRS® at 90 days after stroke onset.

mrs_rev* | ordinal mRS® at 90 days after stroke onset with score levels reversed.
fu24h_nihss_sum? ordinal NIHSS® score at 24 hours after stroke onset.
fulwk_nihss_sum** ordinal NIHSS“ score at 1 week after stroke onset.

(Continued)
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Supplementary Table S5. Continued

sich category Symptomatic intracranial hemorrhage according to Heidelberg criteria.
ivt_given*t? category IVT given prior to EVT regardless of randomization.
tandemlesion? category Ipsilateral extracranial carotid tandem lesion. Tandem lesion was

defined as an intracranial target occlusion with ipsilateral extracra-
nial carotid dissection, clinically significant atherosclerotic stenosis, or
atherosclerotic occlusion.

ivt_admin category Any type of IVT admistered (this includes escape IVT when given).

* Excluded as candidate predictor (input for feature selection).

T Excluded from MICE imputation.

¥ Contains missing values.

@ Scores on the NIHSS range from 0 to 42, with higher scores indicating a more severe neurological deficit.

b Scores on the mRS range from 0 (no functional limitations) to 6 (death), with higher scores indicating more severe functional
disability. A score of 2 or less indicates functional independence.

¢ Scores on the eTICI scale range from 0 (no perfusion) to 3 (complete perfusion), with higher scores indicating more successful
reperfusion. A score of 2B or higher is generally considered successful recanalization.

@ Scores on the mAOL scale range from 0 (no recanalization) to 3 (complete recanalization), with higher scores indicating better
arterial recanalization. A score of 3 reflects complete recanalization.

Abbreviations: ASPECTS: Alberta Stroke Program Early Computed Tomography Score, CTA: computed tomography angiography,

eTICI: expanded treatment in cerebral infarction, EVT: endovascular thrombectomy, IVT: intravenous thrombolysis, mAOL:

modified Arterial Occlusive Lesion, NCCT: non-contrast computed tomography, NIHSS: National Institutes of Health Stroke

Scale, MRI: magnetic resonance imaging, mRS: modified Rankin scale .

Supplementary Note S6: Simulated Segmentation Generation and ICC Calculation

Manual and semi-automatic segmentations of the ischemic lesion on a follow-up NCCT scan introduce inter-
observer variability [10]. Research has shown that radiomics features can be sensitive to these differences, as
variability in lesion delineation can affect the stability and reproducibility of extracted features [11]. To re-
tain only features that are robust to segmentation variation, an ICC-based filtering step was applied. In the
absence of segmentations from multiple observers, one simulated segmentation was generated per annotation
type (original, bounding box, and circle) for a randomly selected 50% subset of the pre-training set. These
simulations aimed to reflect realistic differences between observers in segmenting the ischemic lesion on NCCT.

For the original and bounding box segmentations, the simulated masks were generated by randomly applying
a in-plane spatial shifts of up to 11 voxels, a binary dilation of up to 10 voxels, or a binary erosion of up to 6
voxels. These transformation parameters were derived from a study that assessed the inter-observer variability
of ischemic lesion segmentations on NCCT [10]. This study reported a mean Dice Similarity Coefficient (DSC)
of 72.8 £ 23.0%. Given a median ischemic lesion volume of 28 mL at 24 hours and an average voxel spacing of
0.4 x 0.4 x 5 mm (voxel volume = 0.8 mm?), the transformation parameters that produce a segmentation that
results in the DSC reported in the study of Cimflova et al. [10] were estimated. The full derivation of these
values is provided below (Calculation of Simulated Mask Transformations). In addition, for simulated masks
of the original segmentation, voxels outside the 20-80 HU range were excluded to remove non-brain tissue and
ensure that the simulated segmentation contained only brain tissue.

For the circle annotation, a different approach was used because this annotation type is artificially defined
and geometrically constrained. Unlike manual or bounding box segmentations, the circle does not reflect
observer-drawn lesion boundaries. Inter-observer variability can only be caused by the placement of the circle.
As a result, the inter-observer Dice Similarity Coefficient (DSC) values reported by Cimflova et al. [10] is not
applicable. The simulated mask of the circle annotation was created by applying a random shift of up to 12
voxels in the x- and y-directions and 1 slice in the z-direction. To maintain anatomical plausibility, the shifted
circle was always constrained to remain entirely within the original ischemic lesion segmentation.

Radiomic features were extracted from all simulated segmentations. The ICC(2,1) was then calculated for
each feature using the Pingouin Python package (version 0.5.5) [12]. This model (two-way random effects,
absolute agreement, single measurement) assumes that both patients and raters (in this case, segmentation
conditions) are random samples. ICC was calculated over 40 patients (i.e., k = 80 observations per feature).
Features with an ICC value > 0.80 were considered reproducible and retained for further selection steps.

24



Calculation of Simulated Mask Transformations
Dice Similarity Coefficient (DSC)

The Dice Similarity Coefficient (DSC) is used to quantify the spatial overlap between two segmentations. It is
defined as:

214N B|

Where:
e A and B are the voxel sets of the original and simulated segmentations,
e |A] and |B| are the number of voxels in each set,
e |AN B is the number of overlapping voxels.

Given parameters:

e Average voxel size: 0.4 x 0.4 X 5 mm,
e Average voxel volume: 0.8 mm?® = 0.0008 mL,

e Average DSC [10]: 72.8%.

Bounding Box and Segmentation Characteristics
Based on the dataset:
e Median 24-hour ischemic lesion volume: 28 mL,
e Average bounding box dimensions for a 28 mL lesion volume: 9 x 50 X 75 mm.

The number of voxels corresponding to a 28 mL lesion is calculated as:

28
0.0008

= 35,000 voxels

Assumption

To estimate the effects of spatial transformations, all calculations are performed using the bounding box dimen-
sions. It is assumed that when a given transformation (e.g., shift, dilation, erosion) is applied to the bounding
box and results in a specific DSC, the same transformation applied to the actual lesion segmentation yields an
identical DSC. This assumption is based on the bounding box fully enclosing the lesion and undergoing the
same spatial transformation.

Shift-Based Analysis

When only a spatial shift is applied, the shape and volume of the segmentation remain unchanged. Therefore,
the number of voxels in both the original and simulated masks are the same:

|A| = |B| = 35,000 voxels

Substituting in Eq. (1):

2x

R P S
0-728 = 55 000 + 35,000

r = 25,480 voxels

This implies that approximately 25,480 voxels overlap between the original and shifted mask. Assuming the
overlapping region results from a symmetric shift in both the z- and y-dimensions within the bounding box
(depth = 9mm):

25,480 =9- (50 —a) - (75 — a) = a ~ 11 voxels
This corresponds to a maximum shift of approximately 11 voxels in both spatial directions.
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Dilation-Based Analysis
For dilation, the shape is enlarged. Eq. (1) is used to calculate the number of voxels in the dilated mask B:

2 - 35,000
728 = ———— = B ~61,154 1
0.728 35,000—|—B;$ 61,154 voxels

Assuming the dilated segmentation has the same shape:

61,154 =9 - (50 + 2a) - (75 + 2a) = a =~ 10 voxels

Thus, the dilation corresponds to an expansion of approximately 10 voxels in each in-plane direction.

Erosion-Based Analysis

For erosion, the simulated segmentation is a smaller subset of the original. Eq. (1) is used to calculate the
number of voxel in the eroded segmentation B:

2.B
0.728 = — = 2 — B~ 20,031 voxel
35,000 + B POT VOXES

Assuming the eroded segmentation has the same shape:

20,031 =9 (50 — 2a) - (75 — 2a) = a ~ 6 voxels

This corresponds to a contraction of approximately 6 voxels in each in-plane direction.

Supplementary Note S7: Description of LASSO Regression Selection Step

To select the most relevant features for the prediction task, a Least Absolute Shrinkage ans Selection Operator
(LASSO) regression selection step was implemented. LassoCV from the scikit-learn package (version 1.3.2) [13]
was used to perform a 5-fold cross-validation on the pre-training set and identify the optimal regularization
parameter («) that minimized the mean squared error (MSE). After determining the cross-validated «, the
regularization strength was iteratively increased or decreased with a step size, which was reduced by 10% after
each iteration. The loop was terminated once the number of features with non-zero coefficients met the prede-
fined feature limit, or if () left the valid range (o < 107%ora > 100). The LASSO regression step was skipped
if the previous selection steps had already reduced the number of features to the allowed maximum or fewer.

Implementation parameters:
e Cross-validation: 5-fold,
e Maximum iterations: 10,000,
e Random state: 42,

e Initial stepsize: 1.1.
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Supplementary Table S8. Parameter Ranges for Hyperparameter Tuning

Parameter Range
n_estimators [50, 250]
learning_rate [0.01, 0.20]
gamma [0, 0.2]
max_depth [4, 6]
min_child_weight 1, 4]
subsample [0.6, 1.0]
colsample_bytree [0.6, 1.0]
reg-lambda [0, 2]
reg_alpha [0, 2]

Speaman Caeston Chstemap. Speaman Camston Chstas

Speamn Carbton hstamap, SpaamanCaoton hstamap,
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Supplementary Figure S9. Correlation Matrices for the (a) Original Segmentation Ra-
diomic Feature Set, (b) Bounding Box Radiomic Feature Set, (c¢) Circle Radiomic Feature Set,
(d) Original Segmentation Combined Feature set, (¢) Bounding Box Combined Feature Set,
(f) Circle Combined Feature Set, (g) Clinical Feature Set including 24-hour Ischemic Lesion
Volume, and (h) Clinical Feature Set not including 24-hour Ischemic Lesion Volume.
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Supplementary Figure S10. Least Absolute Shrinkage and Selection Operator (LASSO)
Regression Plots for the (a) Original Segmentation Radiomic Feature Set, (b) Bounding Box
Radiomic Feature Set, (c¢) Original Segmentation Combined Feature set, (d) Bounding Box
Combined Feature Set, (e) Circle Combined Feature Set, (g) Clinical Feature Set including
24-hour Ischemic Lesion Volume, and (h) Clinical Feature Set not including 24-hour Ischemic
Lesion Volume.
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Radiomics feature sets
R-Original (n=107)
R-BB (n=93)
R-Circle (n=93)

Clinical feature sets
C-ILV (n=33)
C-noLV (n=32)

ICC selection
R-Original (n=107)
R-BB (n=93)
R-Circle (n=93)

Features excluded
R-Original (n=6)
R-BB (n=1)
R-Circle (n=67)

Combined feature sets

RC-Original (n=134)

RC-BB (n=124)
RC-Circle (n=>58)

Variance selection
R-Original (n=101)
R-BB (n=92)
R-Circle (n=26)

RC-Original (n=134)
RC-BB (n=124)
RC-Circle (n=58)

C-ILV (n=33)
C-nolLV (n=32)

Features excluded
R-Original (n=4)
R-BB (n=8)
R-Circle (n=0)
RC-Original (n=4)
RC-BB (n=8)
RC-Circle (n=0)
C-ILV (n=0)
C-noLV (n=0)

Correlation filtering
R-Original (n=97)
R-BB (n==84)
R-Circle (n=26)

RC-Original (n=130)
RC-BB (n=116)
RC-Circle (n=>58)

C-ILV (n=33)
C-nolLV (n=32)

Features excluded
R-Original (n=70)
R-BB (n=62)
R-Circle (n=19)
RC-Original (n="73)
RC-BB (n=64)
RC-Circle (n=21)
C-ILV (n=2)
C-noLV (n=2)

LASSO regression
R-Original (n=27)
R-BB (n=22)
R-Circle (n=7)

RC-Original (n=>57)
RC-BB (n=52)
RC-Circle (n=37)

C-ILV (n=31)
C-noILV (n=30)

Features excluded
R-Original (n=17)
R-BB (n=12)
R-Circle (n=0)
RC-Original (n=47)
RC-BB (n=42)
RC-Circle (n=27)
C-ILV (n=21)
C-noLV (n=20)

Selected features
R-Original (n=10)
R-BB (n=10)
R-Circle (n=7)

RC-Original (n=10)
RC-BB (n=10)
RC-Circle (n=10)

C-ILV (n=10)
C-nolLV (n=10)

Supplementary Figure S11. Features Excluded and Retained for each Model after each
Feature Selection Step.
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Supplementary Table S12. Features Selected per Model

Model

Selected features

R-Original (n=10)

R-BB (n=10)

R-Circle(n=7)

RC-Original (n=10)

RC-BB (n=16)

RC-Circle (n=10)

C-ILV (n=10)

C-nolLV (n=10)

original_shape_Flatness, original_glrlm_RunLengthNonUniformity, original shape_Maximum-
2DDiameterColumn, original_shape_MinorAxisLength, original_shape_SurfaceVolumeRatio,
original_gldm_HighGrayLevelEmphasis, original_glrlm_RunLengthNonUniformityNormalized,
original_glszm_LargeAreaHighGrayLevelEmphasis, original_glszm_LargeAreaLowGrayLevel-
Emphasis, original_ngtdm_Busyness

original_glrlm_RunLengthNonUniformity, original_firstorder_Kurtosis, original_firstorder_-
Maximum, original_glem_ClusterShade, original_glrlm_RunPercentage, original _glszm_Large-
AreaHighGrayLevelEmphasis, original_glszm_LargeAreal.owGrayLevelEmphasis, original -
ngtdm_Busyness, original ngtdm_Contrast, original ngtdm_Strength

original_gldm_HighGrayLevelEmphasis, original_firstorder_Energy, original_glem_Contrast,
original_glrlm_GrayLevelNonUniformity, original glszm_LargeAreaEmphasis, original _glszm _-
SmallAreaLowGrayLevelEmphasis, original ngtdm_Contrast

original_glrlm_RunLengthNonUniformity, original_shape_Maximum2DDiameterColumn, ori-
ginal_shape_MinorAxisLength, original_glszm_LargeArealLowGrayLevelEmphasis, original -
ngtdm_Busyness, bl _hist_premrs, bl_cgsc, post_etici, fu24h_maol, fu24h_nihss_sum

original_glrlm_RunLengthNonUniformity, original_firstorder_Maximum, original_glszm_Lar-
geArealowGrayLevelEmphasis, original ngtdm_Busyness, bl_nihss_sum, bl_hist_premrs, bl_-
cgsc, post_etici, fu24h_maol, fu24h_nihss_sum

volume_bl, original_firstorder_Energy, original_glrlm_GrayLevelNonUniformity, original _gls-
zm_SmallAreal.owGrayLevelEmphasis, bl_nihss_sum, bl_hist_premrs, bl_cgsc, fu24h_maol,
fu24h_nihss_sum, r_sex

volume_24h, otr, otg, blnihss_sum, bl hist_premrs, bl.cgsc, post_etici, fu24h_maol,
fu24h_nihss_sum, bl_hist_ht

volume_bl, bl phy_rrsyst, otorep, bl nihss.sum, bl hist_premrs, bl cgsc, fu24h_maol,
fu24h_nihss_sum, r_sex, r_sidestroke

Abbreviations: BB: bounding box, C: clinical model, C-ILV: clinical model including the ischemic lesion volume at 24 hours after

stroke onset, C-nolLV: clinical model not including the ischemic lesion volume at 24 hours after stroke onset, R: radiomics model,

RC: combined model.

Supplementary Table S13. Optimal Parameters after Hyperparameter Tuning for each

Model

Radiomics models Combined models Clinical models
Parameter Original BB Circle Original BB Circle ILV nolLV
n_estimators 200 196 57 90 196 157 130 186
learning_rate 0.11 0.19 0.14 0.06 0.19 0.03 0.07 0.19
gamma 0.06 0.03 0.05 0.07 0.03 0.05 0.08 0.01
max_depth 5 5 5 5 5 5 4 4
min_child_weight 1 2 1 1 2 3 3 3
subsample 0.68 0.78 0.70 0.61 0.78 0.84 0.97
colsample_bytree 0.85 0.66 0.69 0.93 0.66 0.99 0.77 0.63
reg_lambda 1.08 0.54 1.82 0.33 0.54 0.62 1.58 0.12
reg-alpha 1.21 1.59 0.07 0.59 1.59 1.18 1.42 1.38

Abbreviations: BB: bounding box, ILV: including 24-hour ischemic lesion volume, nolLV: not including 24-hour ischemic lesion

volume.
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Supplementary Figure S14. Scatter Plots and Bland-Altman Plots of the Combined Mod-
els based on (a,b) the Original Segmentation, (c,d) the Bounding Box Annotation, and (e,f)
the Circle Annotation, and the Clinical Models (g,h) with the 24-hour Ischemic Lesion Volume,

and (i,j) without.
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Supplementary Figure S15. The Feature Importance of (a) the Combined Model based on
the Circle Annotation, and (b) the Clinical Model without the 24-hour Ischemic Lesion Volume.
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