<]
TUDelft

Delft University of Technology

Nimbus
Towards Latency-Energy Efficient Task Offloading for AR Services

Cozzolino, Vittorio; Tonetto, Leonardo; Mohan, Nitinder; Ding, Aaron Yi; Ott, Jorg

DOI
10.1109/TCC.2022.3146615

Publication date
2022

Document Version
Final published version

Published in
IEEE Transactions on Cloud Computing

Citation (APA)

Cozzolino, V., Tonetto, L., Mohan, N., Ding, A. Y., & Ott, J. (2022). Nimbus: Towards Latency-Energy
Efficient Task Offloading for AR Services. IEEE Transactions on Cloud Computing, 11 (2023)(2), 1530-
1545. https://doi.org/10.1109/TCC.2022.3146615

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/TCC.2022.3146615
https://doi.org/10.1109/TCC.2022.3146615

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



1530

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Nimbus: Towards Latency-Energy Efficient
Task Offloading for AR Services

Vittorio Cozzolino

, Leonardo Tonetto, Nitinder Mohan

, Aaron Yi Ding", and Jorg Ott

Abstract—Widespread adoption of mobile augmented reality (AR) and virtual reality (VR) applications depends on their smoothness and
immersiveness. Modern AR applications applying computationally intensive computer vision algorithms can burden today’s mobile
devices, and cause high energy consumption and/or poor performance. To tackle this challenge, it is possible to offload part of the
computation to nearby devices at the edge. However, this calls for smart task placement strategies in order to efficiently use the resources
of the edge infrastructure. In this paper, we introduce Nimbus — a task placement and offloading solution for a multi-tier, edge-cloud
infrastructure where deep learning tasks are extracted from the AR application pipeline and offloaded to nearby GPU-powered edge
devices. Our aim is to minimize the latency experienced by end-users and the energy costs on mobile devices. Our multifaceted evaluation,
based on benchmarked performance of AR tasks, shows the efficacy of our solution. Overall, Nimbus reduces the task latency by ~ 4x
and the energy consumption by ~77% for real-time object detection in AR applications. We also benchmark three variants of our offloading
algorithm, disclosing the trade-off of centralized versus distributed execution.

Index Terms—Edge computing, augmented reality, optimization, resource management, cloud computing

1 INTRODUCTION

INCE the advent of consumer mobile devices equipped

with multiple sensors and powerful chipsets, multime-
dia applications have garnered increasing interest amongst
smartphone users. A recent study reports that the mobile
AR adoption currently stands at 32%, where 54% of the
respondents use mobile AR at least once per week and 36%
percent several times per week [7]. Despite the increasing
popularity of the technology, most current mobile AR appli-
cations often offer poor user perceived performance. The
reason for this is two-fold. First, object recognition and
detection algorithms are a bottleneck for AR [97] as the
front-end devices are often insufficiently equipped to exe-
cute them with acceptable latencies for the end user [1],
[23]. Second, extended usage of such applications results in
high power consumption, which leads to significant battery
drain and overheating [35], [77].

Edge computing allows applications developers to accel-
erate their services’ performance by offloading computation-
ally intensive tasks to nearby powerful machines instead of
the distant cloud datacenter. Latency critical applications
operating on mobile devices, such as AR/VR, benefit most
from the availability of the edge as they can utilize more
powerful hardware, in addition to on-board processors,
without traversing long paths to the cloud [88], [91]. As
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shown in previous research, such approaches not only allow
smartphones to run multimedia applications and games
with better visual quality [17], [21], [30], [34], [41], [80], [81],
[93], but also enable older mobile devices (provided they are
equipped with the required spatial sensors) to support such
applications in the first place.

Unlike other driving applications for edge computing (e.g.,
smart homes), real-time multimedia applications impose
much stricter constraints on offloading computations at edge
devices. Since such applications need to incorporate tightly-
coupled user interactions, they operate under strict delay
thresholds imposed by the human vestibular system —border-
ing between 75ms for online gaming and 250ms for telemetry
[66]. In practice, requirements for seamless interaction
between the physical world and the virtual overlay are esti-
mated to be much lower, ~7ms [10], [25]. Currently, a modern
smartphone can run object detection in ~200ms per frame
using an optimized model [78], which is some orders of mag-
nitude off from the strict requirements of AR applications.
Preserving loss of smoothness and excessive delays in appli-
cations relying on virtual environment is paramount to pre-
vent phenomena such as motion sickness [66].

Additionally, AR/ VR applications are power-hungry and
can quickly drain the phone’s battery [9]. The growing
demand for higher precision deep learning models and
increased immersiveness of the augmented experience can
cost even more battery power. Chen et al. [28] show that a
smartphone can spend significant portion of its battery capac-
ity while running a mobile-optimized object recognition ser-
vice. Pairing this workload with client-side rendering,
network communications, and running specific AR applica-
tion logic can reduce the expected battery life even further.

Considering the complexities levied by deep learning
based real-time applications, it is challenging to exploit a
nearby edge infrastructure in a scalable manner. Moreover,
while the cloud has potentially unlimited resources, the same
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Fig. 1. Mobile applications requiring deep learning steps.

cannot be assumed for the edge computing paradigm. In
fact, the latter is by definition distributed across multiple
edge networks and hence associated with considerable
heterogeneity in bandwidth and compute resources [61].
On the other hand, recent large-scale measurement studies
have shown that despite the significant growth in cloud
infrastructure, the network latencies from users to nearest
cloud datacenters exceed the strict operational boundaries
of AR applications almost globally [31], [32], [36]. As a
result, we see edge-cloud interplay as key to extend cloud
computing reach outside of datacenters, and enhance its
services by leveraging an infrastructure closer to the end-
users [66], [87]. We believe that effective application off-
loading is a crucial problem for edge-cloud computing
that must be addressed when thinking at scale. For that,
selecting an appropriate offloading candidate must be at
the core of maximizing user satisfaction, as allocating mul-
tiple users to an already overloaded edge node can nega-
tively impact an AR application’s performance [28].

To summarize, the motivation behind our work is boost-
ing the performance of mobile applications that use
DNNs (as shown in Fig. 1) by offloading part of their
execution pipeline to the edge-cloud infrastructure. The
ultimate goal is to improve the quality of experience
and enable potentially new classes of applications which
have strict latency constraints (such as real-time mobile
VR). We approach the problem from a system design
perspective and proceed by using an algorithm for
resource provisioning to measure the effectiveness of
our architecture.

Contributions. In this paper, we present Nimbus, a real-time
task offloading system designed to determine an optimal
task placement strategy. We aim at reducing the latency gap
afflicting the execution of real-time deep learning models
required by AR and similar applications by making use of
resources offered at the network edge, at scale. We select and
support the execution of mobile-optimized, object detection
convolutional neural network (CNN) for AR applications, as
shown in Fig. 1. This shows also the pipeline for live video
analytic applications which programmatically share core
components of AR/VR applications and are becoming the
solution to many safety and management tasks [95]. The
design principles of Nimbus are devised to address three
crucial constraints of target applications:

1)  latency as a primary measure of the application QoS,

______________________________________________________________

2)  battery consumption which defines the extent of the

user’s QoE, and

3) task coordination as the role of the infrastructure in

orchestrating, load balancing and distributing com-
putation based on the users’ demands.

Nimbus aims at minimizing the overall mobile-to-edge
latency while avoiding increasing battery consumption.
Additionally, Nimbus’s offloading policy ensures a balanced
load distribution across the edge nodes participating in the
infrastructure. Our contributions in this paper are as follows:

e We benchmark the performance of different classes
of edge devices to understand their support towards
real-time object detection for mobile AR.

e We devise a multi-tier edge-cloud infrastructure and
propose a best-effort resource provisioning algo-
rithm addressing the problem of serving multiple
users competing for heterogeneous resources. Over-
all, our approach reduces task latency by ~ 4x and
the energy consumption by ~77% for real-time object
detection.

e We develop an edge infrastructure simulator' to
evaluate the performance of Nimbus against other
related solutions. From an empirical analysis based
on extensive measurements in real testbeds, we
extract the parameters of the simulator to closely
mimic the realistic operations of edge devices and
core network latencies.

e We develop and evaluate several variants of Nimbus
reflecting both centralized and distributed execution
of the task placement algorithm.

2 RELATED WORK

The intuition of offloading computationally intensive tasks
from mobile devices towards powerful servers has been
explored vastly in the past decade. Originally, the offload-
ing procedure targeted powerful datacenters in the cloud
[39], [42].

With the rise of edge computing, the status quo changed
drastically with new possibilities to mitigate the most promi-
nent drawback of cloud offloading: latency. In fact, the intro-
duction of cloudlets and edge envisioned a collaborative
computational infrastructure where intensive tasks could be
offloaded to nearby edge microservers, thus saving on access
latency [20], [79]. Moreover, edge computing can also help in

1.Code and dataset are available here https://github.com/
vitcozzolino/nimbus
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reducing energy consumption of mobile devices. For exam-
ple, with Voltaire [27] it is proposed to perform code offload-
ing to enables resource-constrained devices to leverage idle
computing power of remote resources.

Nevertheless, edge nodes have limited computational
resources, limiting the number of clients that can be served at
the same time. Approaches based on offloading to the nearest
edge-cloud can lead to situations where too many clients are
allocated to the same node, competing for limited resources.
Multiple works have focused on solving a similar problem by
using either hierarchical edge-cloud architectures or load bal-
ancing among edge-cloud [24], [29], [47], [58], [62], [63], [90],
[92]. In particular, MCDNN [45] developed a compiler
together with a runtime scheduler to balance between accu-
racy and resource consumption by reasoning about on-
device/cloud execution tradeoffs, while Markov decision
processes [46] were used for VMs load management to reduce
energy consumption in datacenters. A similar approach was
proposed by Tan ef al. [84] to minimize the expected response
time, where tasks uploaded from mobile device are sent to an
edge-cloud infrastructure and scheduled by an online job dis-
patching algorithm. While their method is limited — assuming
a server can only process one job at a time — we instead con-
sider parallel execution of multiple jobs. Other approaches
have focused on reconfiguration of edge-clouds [51], specifi-
cally on how to optimize the placement of cloudlets in a given
network. The approach of using a hierarchical edge-cloud
infrastructure has been proposed already by Tong et al. [85] to
efficiently handle the peak load and satisfy the requirements
of remote program execution. Recent work from Braud et al.
[26] introduces a task allocation algorithm based on a latency
model leveraging multipath computation to offer multiple
resources in parallel. The key difference from the these
approaches is that our system tackles the problem of parallel
tasks execution offloaded to the same edge device while they
focus on sequentially placed workloads. Additionally, previ-
ous solutions focused only on latency (computational and/or
communication) without factoring in mobile energy con-
sumption in the offloading decision. Finally, many scheduling
algorithms translate task complexity in the number of CPU
cycles required for its execution eventually combined with
other parameters such RAM, disk, and bandwidth [38], [53],
[98]. We instead focus on GPU workloads and their perfor-
mance variance with overlapping tasks — a parameter which
is seldomly explored.

While most of the previous work aimed to minimize
mobile task execution time, we focus specifically on AR
application offloading [57], [89]. By doing so, we gain a clear
understanding of how and where a task should be offloaded
since we are aware of the inherent requirements of such
applications. Our scheduling algorithm focuses primarily
on improving the perceived performance for the mobile
user. Similar work has been done for visual applications off-
loading in the past. LAVEA [96] is a system built on top of
an edge computing platform, which offloads computation
between clients and edge nodes, to provide low-latency
video analytics at places closer to the users. The work clos-
est to ours is [72] — a framework that ties together front-end
devices with more powerful backend servers to support
complex deep learning tasks. However, unlike our work,
the authors do not consider a multi-tier edge infrastructure
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Fig. 2. Multi-tier edge-cloud infrastructure.

and scenario where multiple users are competing for the
resources offered by the infrastructure.

For mobile-cloud offloading, some work has been con-
ducted in the past for optimizing DNNs. Kang et al. [52] and
Xia et al. [94] identified how to optimally slice a model to off-
load only a part of it to the cloud in order to minimize either
latency or energy consumption. DynO [16] is a distributed
inference framework addressing several challenges, such as
device heterogeneity, varying bandwidth and multi-objec-
tive requirements. Key components that enable this are its
novel CNN-specific data packing method, which exploits
the variability of precision needs in different parts of the
CNN when onloading computation, and its novel scheduler
that jointly tunes the partition point and transferred data pre-
cision at run time to adapt inference to its execution environ-
ment. Our work is inspired by those studies and strives to
characterize the problem in a multi-tenant environment
where resource contention is the primary issue.

Recapping, Nimbus differentiates from the aforemen-
tioned research works in many ways. It tackles the problem
of parallel task execution instead of makespan optimization
(sequential). Our offloading solution revolves around a joint
latency and mobile battery optimization procedure with a
focus on GPU workloads and their scaling properties.
Finally, Nimbus performance is rooted in a set of real meas-
urements gathered from devices which are part of our envi-
sioned edge-cloud infrastructure.

3 SYSTEM OVERVIEW

Fig. 2 shows the entities in our system — mobile devices (MD)
and edge nodes (EN) interacting over the network. While the
former interact with the infrastructure as users of AR applica-
tions, the latter are responsible for handling tasks offloaded
by the MD. In our case, an MD is a battery-powered mobile
device that can offload part of its computation to the edge-
cloud infrastructure. We assume a hierarchical edge architec-
ture where compute and caching capabilities of EN increase
with increasing distance from the MD. Nodes in different
(logical) layers of the edge network can be accessed via ad-
hoc connections or gateways [33], [56], [60], [65], [67], [83].

Authorized licensed use limited to: TU Delft Library. Downloaded on August 21,2024 at 11:23:04 UTC from IEEE Xplore. Restrictions apply.
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The design of our edge computing infrastructure is
inspired by networks like Eduroam?. The deployment of
Eduroam is widespread as it can be found outside academic
facilities, e.g., libraries and study centers. While such a net-
work (currently) only offers Internet access to clients, we
acknowledge its capabilities to support an edge computing
infrastructure due to the presence of multiple connected net-
worked resources capable of running computations on behalf
of the connected users. We logically divide the network into
three layers — each one offering different capabilities and, as
we approach the core of the infrastructure, latency and
computational capacity of the resources increases. Conceptu-
ally, the architecture proposed by Tong et al. [85] and Mohan
and Kangasharju [64] come closest to ours and we use them
as point of reference in our system design.

Tier One Edge Nodes (T1-EN). The outer-most layer
(denoted by blue circles in Fig. 2) is a set of augmented
access points (AP) or base stations with minimal compute
capabilities. We assume these APs to be either equipped
with (or directly connected to) an embedded device with
low-end GPUs, e.g., NVIDIA Jetson Nano or Intel NCS2.
Resources in this layer act as entry points to the network,
offering limited computation in addition to standard rout-
ing and connectivity functionalities.

Tier Two Edge Nodes (T2-EN). T2-EN (denoted with squares
Fig. 2) form the second layer of our multi-tier edge cloud
infrastructure. Logically these devices can be viewed as back-
bone routers co-located close to T1-EN. However, unlike T1-
ENs, T2-ENs posses more computational power and network
bandwidth that allows them to serve multiple users in paral-
lel. An example of T2-EN resources in the real world is a mid-
range micro-server equipped with a discrete GPU.

Tier Three Edge Nodes (T3-EN). The core of our architecture
comprises of T3-EN (shown as orange hexagons) that are
powerful servers equipped with multiple GPUs, offering the
most significant computational power of all layers. The capa-
bilities of T3-EN are analogous to traditional cloud datacen-
ters, both in terms of the number of users that can be served
in parallel and network bandwidth connecting servers
within the layer. However, due to their proximity to the net-
work core, the network latency incurred to access the resour-
ces in this layer is the highest amongst edge infrastructure.

We consider a system where a mobile device hosting an
AR application can offload component tasks in the pipeline
(e.g., those requiring deep learning) to the edge infrastruc-
ture. Considering the inherent heterogeneity that exists in
the infrastructure — different hardware capabilities, net-
work latency to server, task requirements etc. — an effective
task offloading strategy is required ensuring that the appli-
cation performance meets the required expectations. Addi-
tionally, we assume that ENs in our system are managed
resources and can communicate/exchange details regard-
ing their current processing load with other ENs. This
assumption roughly resembles the current state of resource
management in cloud datacenters and it allows our task off-
loading algorithm (presented in the following section) to
have fresh information regarding the edge network state.

2. https:/ /www.eduroam.or.
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4 TASK OFFLOADING AT THE EDGE

We consider a system where a controller estimates the feasi-
bility of offloading a task proposed by a mobile device to
the edge infrastructure. Since our objective is to showcase
the effectiveness of our offloading solution, we start by con-
sidering a centralized controller located in the cloud. Later in
the paper (§6), we design a distributed and hybrid variant of
our offloading mechanism and compare the operational dif-
ferences of all approaches. Fig. 3 shows a high-level concise
workflow representing the MD-Controller interaction. The
infrastructure is composed of N interconnected and hetero-
geneous ENs, which, based on their computing capacity, can
serve several concurrent tasks. An MD can offload its task
via T1-EN, which act as gateways to the infrastructure.

Before entering the handshake phase, the MD performs a
one-time procedure called benchmark lookup. Normally,
games and other multimedia applications run benchmarks
to estimate their runtime performance in order to tune and
set configuration parameters. Similarly, there are tools to
profile deep learning models on mobile devices [50]. In our
model, we assume that benchmarked results for each MD
are uploaded to a repository that is looked-up by the system
to identify MD’s capabilities. Afterwards, the handshake pro-
cedure begins and the MD exchanges with the infrastructure
controller its requirements in terms of deliverable perfor-
mance (in FPS and battery consumption). In the offloading
phase, the MD connects to the network to offload and it
receives a list of offloading candidates from the controller
obtained by running Nimbus (details about the algorithm
logic will be provided in §5). Then, the MD will interact with
the selected EN until required by the underlying application.
Finally, in the release phase, the resources booked for the MD
on the EN are released, and the controller is notified. The
Nimbus offloading decision is based on minimizing deep
learning based task latency (i.e.,, maximizing FPS) as it
directly affects the QoE for mobile AR applications.
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Offloaded Tasks. As shown previously in Fig. 1, AR/VR
applications (especially games) can be decomposed into
subroutines executed at each rendering step [97]. Some of
these steps are not tied to the application logic and are per-
fect offloading candidates. Let us take the example of track-
ing-by-detection principle [19], [55], [71] for object tracking.
The principle requires that the object is detected in the first
and all subsequent frames. The object is tracked simply by
associating detection results to form target trajectories. This
is a necessary component in all AR applications where
smooth integration with real world is paramount. While
tracking requires sophisticated application logic to interpo-
late objects positions across frames, detection is oblivious to
past executions and depends only on the latest frame.
Therefore, object detection is a prime candidate for offload-
ing to the edge. In practice, a stream of pictures can be sent
by the MD towards the target EN for processing. Even if the
EN becomes unresponsive, the MD can switch to executing
the task locally so that the underlying offloading process is
transparent to the end-user who would experience no inter-
ruptions in the service. We consider each task submittable
to the infrastructure as atomic (i.e., indivisible and uninter-
ruptible). In this work, we focus on stateless tasks that are
resilient to the loss of connectivity due to their indepen-
dence from past transactions. However, our solutions pro-
posed in this paper can be extended to stateful tasks as well
with proper synchronization mechanisms. That, we leave
them for future work as hereby we concentrate our efforts
on the offloading strategy and algorithm formulation.

Our problem formulation assumes that MDs offload
tasks to the system in bulks, which translates into a con-
stant, worst-case arrival rate. This allows us to devise a solu-
tion that does not assume any prior knowledge about the
offloaded task makespan nor use it to optimize the decision
making process. It is not realistic for an MD to know in
advance for how long the user will run the application (e.g.,
minutes to hours). The only information available are infer-
ence time of the DNN task and its energy cost (estimated
during the benchmarking phase shown in Fig. 3). Therefore,
we optimize the resources allocation in a maximum concur-
rency scenario — where all the MD are concurrently using the
infrastructure and all resources, from network bandwidth
to compute, must be shared.

In a practical scenario, tasks can have different complexity
and requirements. For simplicity, we select a class of tasks for
which we provide execution time distributions for the device
executing them. We used the NVIDIA Triton [14] suite to
benchmark MobileNetv2, a common CNN-model central to
image classification tasks, with an increasing number of cli-
ents. We run benchmarks on three device types, each repre-
sentative of the different tiers of our multi-tier edge
infrastructure. Fig. 4 shows the results we gathered in our
experiments and specifically the inference and queue time
for different EN tiers. More details will be discussed in §6.

Objective 1: Minimize Latency. The total task latency consists
of transmission time Lt;; between the ith mobile device and
the jth edge node, plus the execution time Le;; of the required
tasks at the jth node. Transmission time depends on the net-
work bandwidth BW;; and on the amount of data d; sent by a
mobile device. Furthermore, this communication delay can be
negatively affected by multiple clients interacting with an EN

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023
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if they share the same access medium (e.g., WiFi). Hence, a
fair queuing best-effort communication model is assumed
where each client connecting to an EN perceives a connection
bandwidth equal to R/N, where R is the total offered data
rate and N the number of active users.

Execution time represents the amount of time an MD has
to wait in the processing queue before its request can be
served, i.e the time to execute a task (T'ET}) plus the GPU
queuing time (g;) on the jth EN. Queue time can grow sub-
stantially depending on the EN’s capabilities and the num-
ber of concurrently served clients. Fig. 4 shows inference and
queue time for each edge device tier and the number of users
concurrently using the device. As expected for T1-EN, the
queue time increases with the number of served clients due
to the limited hardware capabilities of devices in this tier. On
the other hand, powerful discrete GPUs found in expensive
workstations can handle many more clients with a minimal
queue time penalty. Another key insight from Fig. 4 is that
unlike inference time, queue time is heavily influenced by
the number of parallel users and is a primary variable to
model highly concurrent scenarios. Moreover, ENs
equipped with powerful GPUs incur a queuing penalty only
after concurrently serving many MDs, as shown for the T3-
EN in Fig. 4. Eventually, this leads to a point where even a
powerful EN can not meet the QoE requirements of the MDs.

Objective 2: Reduce Battery Consumption for the MD. When
mobile phones receive or transmit data, they consume energy
depending on the network bandwidth and the amount of
data to be transferred. Additionally, in real scenarios, wireless
mobile devices often experience high variances in link qual-
ity [36], [68], directly affecting the data transfer latency and
the final energy consumption. When offloading or accessing
cloud resources, it is important to take into account the addi-
tional delay introduced by the network load pattern as they
change throughout the day [59]. Therefore, network condi-
tions for mobile devices experience high variance, and nar-
rowing down to a single energy consumption model for all
kinds of mobile devices in all network conditions is very chal-
lenging. In this paper, we build on top of previous work from
Xia et al. [94] and Kang et al. [52] to express the energy cost of
transferring data B; as a function of the transmission module
power w and the overall transmission time L, as shown below

d
Ly = o+ RIT o)

Bt:LtXU) (2)

where d is the amount of transferred data, BW the upload
bandwidth and RTT the network round-trip time.
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We follow Xia et al. [94] and define three classes of mobile
devices, each one with different hardware resources and
power consumption profiles. We benchmark the perfor-
mance of all three device classes for executing MobileNetv2.
For Mobile_A and Mobile_B class, we use a single, CPU core
while for Mobile_C we use 8 CPU cores. The energy cost and
inference time achieved by all classes is shown in Table 2. In
all cases, no model partitioning was applied. Also, the
amount of energy spent to execute inference locally on the
mobile device allows us to compare the cost of offloading the
task against running it locally. While many contributions
model both network transfer and mobile inference energy
cost [43], we favor the approach described above due to its
comprehensiveness and precise results — especially for the
object detection task we focus on in our study.

Mathematical Formulation. Assume that the ith task is exe-
cuted by jth EN, the task latency and battery consumption
incurred by the device can be formalized as

d;
Lij = (Ltij + Leij) = [(

ij) + RTTL'J':| + (TET; + g5)

(3)
Bi]' = Btij = Lti]' X w (4)

We ignore the downlink cost for the energy consumption
calculations as we assume it to be negligible when com-
pared to the uplink, especially for object detection applica-
tions. While the input can be an image of arbitrary size, the
output are bounding boxes of comparatively smaller in size
for which the network transmission has a negligible energy
cost. Therefore, when a task is offloaded, both its latency
and mobile energy consumption are affected by the process
of communicating with the edge infrastructure. In other
cases, the task is running locally and its execution latency
and energy consumption are described in Table 2.

Based on the system described above, we define the task
assignment problem as selecting an EN for assigning a task to
minimize latency (L) and battery consumption (B) for the mobile
device. The problem translates into a multi-objective optimi-
zation problem with two objective functions in the form of
ming(L(Z), B(Z)) with £ € X and X the space of feasible
decision vectors. In our case, we focus on identifying a set
of Pareto optimal solutions which, by definition, cannot be
improved in any of the objectives without degrading at least
one of the others.

To solve for both latency and battery consumption, we
make use of an approach called scalarizing. Scalarizing is an
a priori method that allows us to formulate a single-objective
optimization problem such that optimal solutions to it are
Pareto optimal solutions to the original multi-objective opti-
mization problem [49]. In our case, it would lead to the fol-
lowing reformulation of the problem: ming(L(z), B(z), ¢)
with z € X, and X, set depending on the vector ¢. Of the
multiple scalarization techniques, we adopt the e-constraint
method [37] to reformulate the multi-objective optimization
problem by just keeping one of the objectives and restricting
the rest within user-specified values (which fits our sce-
nario). Based on the system described before, the offloading
problem demands us to identify the best EN to run a user
submitted task to minimize the experienced task latency
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TABLE 1
List of Parameters Used by the Algorithm
Term Description Unit
d; Amount of data transferred by the i-th MD KB
BW;; Bandwidth between i-th MD i and j-th EN Mbps
TET; Inference time on the j-th EN ms
TEC; Local energy execution cost for i-th MD m]J
qj Queuing time at j-th EN ms
w Transmission module power mJ/ms
€ Latency threshold ms
€ Energy budget J/s
RTT,, RTT matrix ms
K, o, B Additional coefficients (described in § 5) —

while not violating the stated constraints. Mathematically,
let z;; € {0,1} denote the case when the jth EN serves the
ith device. We express the e-constrained latency minimiza-
tion problem as follows:

N M
i=1 j=1
N
subject tOZCL’U =1,Vj€ M, (6)
i=1
Lij < €t7Vj S ]\47 7)
Bij <eg = TEC7,V] S ]\47 8)
T € {0,1},Vi e NVjeM )

where N and M are the set of mobile devices and EN, respec-
tively, and with p = < d;, BW;;, TET;, RTT;j,q; > vector
containing part of the parameters shown in Table 1. Equa-
tion (5) is our objective function. Equations (6) and (9) limit
each MD to offload its task to as single EN, at most. Equa-
tions (7) and (8) are formalization of the latency and energy
consumption constraints limiting the feasible solution space.

Constraints. The € represents a predefined latency thresh-
old after which offloading computation does not benefit the
mobile device. The value covers both the transmission time
and remote execution of the task. Depending on the mobile
devices’ requirements, ¢ can be a different value reflecting
the specific user or application needs. Therefore, the thresh-
old value depends on many factors, e.g., FPS requirements
of the offloaded task. ¢, represents the battery consumption
threshold, exceeding which offloading the task becomes too
expensive in terms of energy. Fundamentally, ¢, depends
solely on the cost of running the task locally (I'EC;) on the
ith device. This constraints are a function of the MD capabil-
ities. For example, a powerful MD will have a much lower
value for ¢ and, potentially, €, as it can complete locally its
task quickly and efficiently (in terms of energy cost).

5 ALGORITHM

Following the e-constrained approach in §4, we are able to
re-construct our optimization problem in convex form that
we solve using a meta-heuristic. The adopted search strat-
egy for our meta-heuristic is inspired by the hill climbing
algorithm [3] that is widely used due to its effectiveness and
simplicity in different convex optimization problems (e.g.,
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TABLE 2
Mobile Inference Time and Energy Cost for MobileNetv2

Device Name Inference

Energy Cost Time
OnePlus 5T Mobile_A 182 mJ 154 ms
OnePlus 3 Mobile B 318 mJ 116 ms
Redmi Note 4X Mobile C 268 m] 190 ms

artificial intelligence) for which it can provide the optimal
solution [74]. Algorithm 1 describes Nimbus task offloading
approach.

Algorithm 1. Nimbus Allocation Algorithm

Input: Refer to Table 1.
Output: Best offloading target for the i-th MD.
// Warmup
1: EN, < FilterAndMinimize(AP, RTT,,, ¢;)
2: EN « LookAheadLoad(EN,, k)
// Core

3: for EN; in EN do

4 Lijj= (Lt + Le;j) = [(#{,ﬁ) + RTTM} + (TET; + gq5)
5: B,/ = Bt,/ = (Lt,/ X w)

6: if L” > € Or B” > €p then

7: Drop(EN;, EN)

8: end

9: end

10: if EN # () then
11:  for EN;in EN do

. . . Lij loadj
12: return arg min[or x % + B % —mmmu]j}
13:  end
14: else

// Failover
15:  cloud — FindClosest(¢;)
16: lf L{A,](,r,,,] S € and Bdaud S €p then
17: return cloud
18: end
19: end
20: return )

Nimbus operation is divided into three phases: Warmup,
Core, and Failover. The Warmup phase identifies a list of ENs
that are accessible from the AP the device is connected to
and are the best candidates to offload computation. In the
Core phase, the algorithm calculates the latency and battery
cost for offloading to each EN in the list using the formula-
tion described in §4. Afterwards, it selects the best EN based
on the balance-ensuring allocator. In the Failover phase, if
the algorithm failed to find a suitable EN for offloading the
task, it looks for a cloud server that best satisfies the latency
and energy consumption constraints of the task.

Warmup Phase: To start off, Nimbus identifies a list of EN
candidates for offloading the task. The function FilterAnd-
Minimize extracts the set of ENs reachable from the AP to
which the mobile device is connected. For reducing the
search space, Nimbus filters out all ENs for which the net-
work latency or the queue time is already greater (or equal
to) the maximum threshold ¢; for the i-th mobile device.
Subsequently, LookAheadLoad removes those EN candidates
which are already close to their critical mass and servin
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another MD would violate the ¢; constraint. In fact, when-
ever we offload a task to an EN, the queue time increases
for all the other tasks. As we can quantify this domino effect
(discussed in §4), it is possible to use the MD experiencing
the highest network latency as a reference point. If, for such
device, we violate the task latency constraint, that EN is
excluded from the list of viable offloading targets. Algo-
rithm 2 describes the procedure in details. The parameter «
controls the search space by setting an upper bound to the
number of ENs we want to consider. In our evaluation, «
will be used as a tradeoff parameter between convergence
time and the solution’s goodness. The output of the Warmup
phase is a list of ENs that are passed to the next phase of the
algorithm.

Algorithm 2. LookAheadLoad Procedure

Input: EN, exploration coefficient «, e;.
Output: List of compatible EN.

1: compatgbleEN =0

2: for EN; in EN do

3:  if devicesList; # () then

4: mnl = arg maxdevice NetworkLatency;
5: if size(devicesList) < maxServableDevices;(e; — mnl)
then
6: compatible EN — EN;
7 end
8: else
9: compat?'bleEN «— EN;
10:  end
11: end

12: if kappa = 0 then

13:  return compat?bleEN

14: else

15:  return randomSet (i, compatible EN)
16: end

Core Phase. As the name suggests, this phase is the core of
the algorithm as it identifies the best offloading target by
solving the minimization problem defined in §4. For each of
the candidate ENs collected by the Warmup phase, Nimbus
calculates the execution latency and battery consumption for
offloading the task. We then use these estimates in the opti-
mization step to identify which ENs respect the latency and
battery constraints and avoid overloading the EN. This step
is necessary for an effective task offloading at the edge as any
new mobile device allocated to an EN impacts the QoS of all
the other device being served by that EN. We assume that
MDs do not change their requirements after being offloaded.
If, in case they do, the device needs to resubmit the updated
requirements triggering a new schedule by the algorithm.
The o and B coefficients strike a balance between minimizing
the latency for the MDs and avoiding infrastructure over-
load. If latency optimization is the only objective for the
infrastructure’s orchestrator, it can easily achieve it by set-
ting B to zero. In our evaluation, we set « to 0.7 and B to 0.3 to
strongly favor latency optimization rather than balancing
the infrastructure load. Other combinations can be used
depending on the specific optimization goals and on the
infrastructure capacity. Additionally, load; and maxload;
represent the current and maximum load in terms of devices
for the j-th EN, respectively. We calculate the latter using an
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Fig. 5. Latency distributions for selected datasets.

inverse formula of the queue time growth, which we omit for
brevity.

Failover Phase. The final phase of Nimbus is optional as it is
only reached if the algorithm is unable to find any suitable
candidate in the edge infrastructure that can meet the mobile
device requirements. In this phase, FindClosest identifies the
best datacenter (in terms of network RTT) for offloading the
task. We do not assume any prior knowledge of the compute
and hardware capabilities of the target datacenter. Instead,
we assume constant execution latency for the cloud, making
network RTT the main discriminating factor.

Finally, if the Failover step fails, the mobile device fall-
backs to local execution and exits the scheduling algorithm.

6 MEASUREMENT AND EVALUATION SETUP

To evaluate Nimbus’s performance in realistic settings, we
conduct several experiments and measurements to collect
data concerning multiple variables of the algorithm. In this
section, we explore and analyze all facets of our algorithm,
namely network latency, inference and queuing time, and specifi-
cations of MD and T1-EN. Note, however, that we do not simu-
late or model network flows. From the network perspective,
we elevate our point of view so that all the consequences of
routing queues, path selection, and network connection fluc-
tuations are reflected solely by the network RTT. We delve
deeper into the consequences of our choice in § 8.

Network Latency. As mentioned in § 3, we target an aca-
demic network infrastructure like Eduroam. At the time of
writing, no network latency datasets were available for such
a network. Nevertheless, to provide a meaningful distribu-
tion of the network latency across different layers of the
infrastructure, we followed two approaches. The first
approach focused on measuring network RTTs targeting
some of our devices connected to the Eduroam infrastruc-
ture. We performed measurements from three vantage loca-
tions: overseas (connecting USA to Europe), from a
different city (~20 miles away), and directly connected in
the same subnet. By analyzing these data, we generated
three probability distributions, one for each EN tier.

We utilized two publicly available RTT datasets from
two p2p-based networks: Seattle [11] and PlanetLab [8]. The
dataset is publicly available at [4]. In order to assign net-
work RTT to each EN, we identified three latency classes
through k-nn clustering and subsequently generated the
respective distributions, shown in Fig. 5. The distributions
were then used to generate relative RTT matrices (Table 3)
that we feed to our solver. The row and column of the
matrix represent an AP and EN in the network respectively.
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TABLE 3
RTT Matrix Structure

Dst T1-EN T2-EN T3-EN
Src ENy ... EN,., EN, ENy .. EN,_, EN, EN, .. EN,
T1 — EN, C e e
C ottt e e e e e e e e
T1— EN,_, C e
T1— EN, C e

The values of the matrix represent the network RTT to reach
any of the EN from an AP. As the probe’s data are anony-
mized, we do not have information about the relative dis-
tance of the nodes or their location.

Since our results from Seattle and PlanetLab datasets
were almost similar, we only estimate latencies within our
edge infrastructure using numbers from the Seattle dataset
in § 7. As described in the Failover phase, MDs are allowed
to connect to a cloud server if the performance offered by
the edge network is not satisfactory. To estimate user
latency to the cloud, we utilize our large-scale ping meas-
urements from 3200+ RIPE Atlas probes [82] to 101 datacen-
ters operated by seven major cloud providers globally. Our
measurements over five months resulted in ~3.2M data-
points spanning several GBs [31]. We make our dataset pub-
licly-available at [40].

Inference and Queuing Time. To measure the computational
cost of the task, we selected three different devices: an NVI-
DIA Jetson TX2, a laptop with an NVIDIA 1060 GTX, a
micro-server with 2x NVIDIA 2080 RTX. We used the NVI-
DIA Triton [14] suite to benchmark MobileNetv2 with an
increasing number of clients. Finally, as shown in Fig. 4, we
extracted the inference and queuing time. While the former
remains constant regardless of the number of users, the latter
instead, grows quasi-linearly with the number of clients.
Note that this also depends on the amount of model instan-
ces loaded into the memory, as GPUs with more available
VRAM can host more models in parallel, effectively boosting
the overall performance by being able to concurrently serve
more clients in parallel. T3-EN nodes have plenty of VRAM
but this is not the case for T1-EN which might only be able to
load concurrently a handful of models.

MD and T1-EN Setting. The MDs are assigned hardware
specs based on § 4. For simplicity, we uniformly distribute
the total mobile devices across the three available hardware
specs. The ratio of APs that are also T1-EN nodes is variable
and depends on the experiment we run. However, for each
AP, the maximum nominal Wi-Fi bandwidth is set to
300 Mbps. We assume that all devices connected to an AP
experience the same connection quality apart from the effec-
tive bandwidth. Additionally, we do not account for any
transmission-related issues that could negatively affect the
signal.

We extrapolate data from the publicly accessible Leibniz-
Rechenzentrum (LRZ) dataset [5], [6] to assign a location to
each AP in the edge-cloud network plus their respective
loads in terms of connected MDs. We extracted nine months’
worth of network association data of public buildings and
networks from the LRZ dataset. This contains over 4500
access points scattered across ~450 buildings. The data are
aggregated in 15 minutes slices, which we use as MD-batches
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TABLE 4
Evaluation Settings

Configuration Edge-cloud Infrastructure Mobile Devices FPS RTT Dataset

C# AP TI1-EN T2-EN T3-EN Density Low-End Mid High-End

C0 4371 350 200 10
(A) Scalability & Performance C1 4371 250 100 5 (500,1000,2000,4000)  33%  33%  33% 15 Seattle

C2 4371 150 50

C3 4371 100 25 0
(B) Full Dataset — 182 182 30 3 > 30 33% 33% 33% 15 Seattle
(C) Nimbus Baseline — 4371 100 50 2 1000 33% 33% 33% 10 Seattle
(D) Nimbus Variants — 4371 100 50 2 1000 33% 33% 33% 10 Seattle

in our system (see § 4). We partitioned the dataset in different
approaches, described further in the following section. We
also compare the performance of several variants of our algo-
rithm in the evaluation and discuss the tradeoff between con-
vergence speed and efficiency of Nimbus.

7 RESULTS

The results presented in this section cover two parts: (i) per-
formance gain on MD and (ii) algorithm capability. We ran
multiple experiments in different conditions (summarized
in Table 4), highlighting different characteristics of our algo-
rithm. Due to space constraints, we select a set of scenarios
to showcase out system capabilities.

(A) Scalability & Performance. We first analyze the effec-
tive task latency and energy benefits’ of Nimbus for proc-
essing tasks offloaded by MDs. We select four combinations
of edge infrastructure and MDs, plus we set the required
FPS threshold to 15 (frame interval ~66.6 ms). We select
four configurations where the number of connected MDs
are 500, 1000, 2000, and 4000. Fig. 6 depicts distributions of
total task execution time and saved energy (per 1 second, or
15 frames) for 100 simulation iterations.

Even in the worst case (left panel of Fig. 6), the expected
task latency achieved by Nimbus is ~2x lower than running
it locally on the fastest MD in our dataset (see Table 2 in § 4).
From a performance standpoint, this offloading strategy can
boost deep learning based applications and increase the qual-
ity of experience for its end-users. As the number of MDs
increases, the performance proportionally decreases. With
more congestion and tasks offloaded, the delivered perfor-
mance drops, as multiple MDs use the same EN and influence
each other’s execution time by increasing the overall queuing
time. This saturation behavior is mirrored by the MDs alloca-
tion ratio. Fig. 7 shows the percentage of mobile devices
served by the edge infrastructure, for four different configura-
tions of ENs shown in Table 4-(A). With an increasing number
of users, the edge resources tend to saturate more quickly,
forcing most of the mobile devices to run their computation
locally or utilize the cloud. We find that, with the largest infra-
structure used in our experiments (constituting 4000 MDs),
roughly 75% can offload to the edge. Conversely, only 25%
utilized the edge in our smallest infrastructure configuration.

3. We calculate energy benefits by comparing the energy cost for off-
loading the task to running it locally at the MD.

Task offloading also allows MDs to save energy (right
panel of Fig. 6), reducing the power consumption in all
cases. These results are significant as battery consumption
is hugely relevant for high user satisfaction and reten-
tion [99]. Offloading tasks from more modern phones will
lead to lesser energy savings due to their more efficient
hardware components, decreasing the battery cost for run-
ning deep learning tasks. However, our results show a non-
trivial margin of gain in offloading using Wi-Fi to the edge
infrastructure. Even if we consider the most power-hungry
smartphone in our dataset and the average energy saving in
the worst-case, Nimbus still consumes ~77% less battery.
Note that using a mobile connection (e.g., 4G) alongside
task offloading leads to different results, which we discuss
in the next experiment.

Takeaway 1. The offloading strategy of Nimbus can boost
deep learning based applications and increase the per-
ceived performance for its end-users. The expected task
latency achieved by Nimbus is ~2x lower compared to
the fastest MD in our dataset. Additionally, MDs consume
up to ~77% less battery when offloading with Nimbus.

(B) Full Dataset. For this test, we run our algorithm on the
entire nine-month LRZ dataset but limited to the top five
most-populated buildings. Additionally, we set a minimum
threshold of 30 MDs to simulate a reasonable load on the
infrastructure. We fix the other parameters to values shown
in Table 4. This experiment provides a broader view of the
algorithm performance over an extended period with a
fixed-sized edge infrastructure.

The time-series in Fig. 8 shows the task execution latency
(top) and MD density (bottom) for the entire nine-month
period. To obtain these results, we progressively feed our
algorithm with 15-minutes snapshots of MD densities from
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Fig. 7. Fraction of task offloaded to the edge (see Table 4).

the LRZ dataset for the selected set of buildings. We further
group the results by months for ease of readability. The
selected buildings are part of a university campus, therefore,
they exhibit a lower concentration of MDs during summer
holiday period (July-September). Consequently, between
October and January, the higher delivered task latency
grows with the concentration of users connected to the net-
work. However, due to the fairly low number of devices
(between 30 and 500) and the generous size of the edge infra-
structure, the median task latency is low. For example, the
fastest MD in our dataset has a local inference time of 116 ms,
which is almost 4x higher than the average task latency that
our edge infrastructure can deliver.

Fig. 9 shows the relationship between the amount of
saved energy for the MD and task latency, giving additional
insights compared to Fig. 6. For this plot, we calculated the
energy consumption when the algorithm allocates all the
MDs. The trend line demonstrates that with a higher task
latency, we tend to save less energy. The leading cause can
be a longer transmission time due to lower available uplink
bandwidth. As an additional observation, we note having a
static edge-cloud infrastructure might not always be the
best option as the MD density changes at different times of
the year. We hypothesize the possibility of a dynamic edge-
cloud infrastructure where EN can be added dynamically in
response to an increased density and demand of MDs. This
would be similar to cloud computing, where resources are
managed on-demand.

Finally, we analyzed the overall MD allocation ratio for
the slice of data extracted from the dataset. Notice how
28.3% and 51.6% of total the MDs are allocated to T1- and
T2-EN, respectively. The reasons for this can be manifold.
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Fig. 8. Mobile devices and task latency for the LRZ dataset [6].
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Fig. 9. Energy saving in relation to task execution time.

First, the number of T1-EN exceeds other tiers in our infra-
structure and offers the lowest network RTT which compen-
sates for the longer execution time. However, due to their
limited resources, they can only serve a handful of MDs. T2-
ENs, on the other hand, are more powerful and strike a
good balance between scalability and network latency. Only
18% of the MD were offloaded to T3-EN as they offer low
computation time but at the expense of longer network RTT.
We remind that the MD population is small for this experi-
ment. In fact, increasing the MD density pushes the algo-
rithm to allocate more on T3-EN, as it is the only class of
edge nodes capable of scaling efficiently without hindering
performance. Finally, 1.1% of the MD ran the task locally,
and the remaining 1.1% used the cloud. In the next section,
we investigate how infrastructure size and the amount of
MDs affect these ratios.

(C) Nimbus Baseline. For the baseline comparison, we
evaluate our algorithm against a greedy version for 100 rep-
etitions. Additionally, we also compare against a scenario
where only cloud datacenters are available as offloading
candidates, and MDs access them via either WiFi or 4G. We
do not compare directly against other related algorithms
(discussed in § 2) as our task allocation is fundamentally dif-
ferent from these approaches. Unlike related approaches,
we do not rearrange and serialize the tasks to minimize the
makespan but allow them to execute in parallel. For a fair
comparison, we set side by side our approach with variants
of Nimbus, which closely mimic the core ideology of related
task offloading algorithms.

The greedy variant of Nimbus is fundamentally selfish: it
selects the most profitable offloading candidate regardless
of the possible performance degradation for the other MDs.
While the standard version of the algorithm will use an
unlimited search space, the greedy one will instead favor a
quicker, local solution that minimizes network latency. This
approach is typical of greedy algorithms that make the
locally optimal choice at each stage [22]. We exploit the
exploration parameter («) to limit greedy Nimbus’s search
space. The parameter also allows us to force the algorithm
to produce the best offloading target from the network
latency perspective and ignore the current load on edge
nodes. Additionally, in the greedy version, the LookAhead-
Load procedure is deactivated, and the weights o and g are
set to 1 and 0, respectively.

Fig. 10 illustrates the results of our multifaceted analysis.
From a latency standpoint, the greedy algorithm is able to
find good offloading candidates for mobile devices. As a
matter of fact, the difference in terms of median latency
achieved by greedy compared to the standard version of
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Fig. 10. Baseline comparison.

Nimbus is minimal. However, the standard deviation is
much more noticeable due to the increasing number of non-
offloaded MDs. Nimbus offloads ~30% more MDs than the
greedy version and, specifically, minimizes MDs that resort
to using local resources for task execution. Note that these
results are drawn over a largely homogeneous edge infra-
structure, with only three classes of participating ENs. In a
highly heterogeneous environment, the limited search scope
used in the greedy configuration could lead to unstable
results, since there is an increased chance of missing good
offloading targets in the search procedure. We extract the
cloud network RTTs from the RIPE Atlas dataset discussed
in § 6). We obtained the network RTTs using probes pinging
datacenters co-located in the same region. Additionally, we
set the inference latency in the cloud to 5 ms (comparable to
a T3-EN) regardless of the served devices (e.g., no queue
time). The cloud-only approach (labeled Cloud in Fig. 10) pro-
duces acceptable results, but at the cost of slight higher
median task latency and greater variance compared to Nim-
bus. Additionally, the approach is unable to offload tasks
from many MDs, forcing them to run locally. Finally, the
cloud-only variant with mobile access network (labeled
Cloud4G) delivers the worst performance — with close to
100% MDs unable to offload their computation. The pri-
mary reasons are significantly expensive transmission and
energy costs, and higher network RTT to the processing
server. Our result is in line with previous research, which
shows that mobile connections require significantly more
energy per bit in transmission compared to Wi-Fi [43].

Fig. 11 shows the relationship between percentage of
edge-offloaded MD, convergence time of the algorithm, and
value of « for an edge-cloud infrastructure of 152 ENs and
1000 MDs. Regarding the algorithm convergence time, the
greedy version performs one order of magnitude faster com-
pared to the standard one (inset plot in Fig. 10). It should be
noted that the Nimbus cloud-only variants converge much
faster due to their simplified solver logic. When in need to
allocate high densities of MDs, properly tuning the explora-
tion parameter « allows us to find a convenient tradeoff
between offloaded MDs ratio and algorithm convergence
time. Selecting a value of 10 for « allows to already offload
~91% of the MD while keeping a sub-second convergence
time. During our experiments with different infrastructure
and ENs configurations, we noticed that setting « between
10-20% of the total EN in the network strikes a good balance
between MDs allocation percentage and convergence time.
However, this cutoff point might also be affected by the
rather strong homogeneity of our infrastructure, since we
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Fig. 11. Exploration Tradeoff (152 ENs, ~1000 MDs).

only consider three classes of ENs. We hypothesize that with
a more heterogeneous network, the cutoff point would be
higher which translates into a greater range of exploration
and an increased cost in terms of convergence time.

Note that the convergence time in Fig. 11 represents the
time required to allocate all the MDs in the batch. The allo-
cation operation does not run for every offloaded frame, but
only once when the mobile devices initiate an offload
request to the infrastructure. Additionally, the system is
designed in such a way that, while the MD waits be off-
loaded, the end-user will not experience any service inter-
ruptions as the task will keep running locally until the
allocation on the edge-cloud infrastructure is completed. In
this case, we assume that the MD is capable of executing the
task locally. Finally, it is valid to assume that the amount of
time the user will spend using the infrastructure offsets
greatly the allocation waiting time similarly to start-up
latency in video streaming.

Takeaway 2. The greedy algorithm is able to find good off-
loading candidates for MDs faster than Nimbus at the
cost of sub-optimal utilization of the edge-cloud resour-
ces (e.g., skipping good offloading targets in the search
procedure). The cloud-only variant is effective but pro-
vides higher median task latency, increased energy con-
sumption for the MD, and greater variance compared to
Nimbus.

(D) Nimbus Variants. We developed three versions of our
solver. The one used in the previous benchmarks was single-
threaded (ST), meaning that the decision process was han-
dled by a single controller node which had complete knowl-
edge of the edge infrastructure. From a practical viewpoint,
such a solver offers limited scalability, especially when both
the size of the edge infrastructure and density of participat-
ing MDs increases. For such cases, the convergence time of
the single-threaded variant becomes prohibitive. Therefore,
we developed a multi-threaded (MT) variant of Nimbus,
termed MT Nimbus, that makes it deployable in a distributed
fashion. We applied a partitioning procedure to the edge-
cloud infrastructure. For a simple-yet-effective solution, we
adopted a naive approach where we created non-overlap-
ping sets of ENs so that every thread (or, equivalently, the
entity managing a network slice) is independent of the
others. We are aware that the procedure followed to split the
edge-cloud network resources is not optimal, but, in this con-
text, it suffices the evaluation purpose. Transforming an
algorithm from centralized to distributed entails additional
costs as synchronizing different entities increases communi-
cation overheads. Our goal is to demonstrate the possibility
of transforming our algorithm into a distributed form and
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characterize its performance. In this work, we do not delve
into communication and cross-node synchronization chal-
lenges of a distributed system and leave it for future work.

As the number of ENs for each tier can be non-propor-
tional to the number of threads, the network slices created
can be unbalanced. For example, with ten solver threads
and three T3-EN, the first three threads would have in their
network slice at most one T3-EN. While the principal benefit
for our distributed algorithm is decreased convergence
time, we sacrifice in quality of the solution as the algorithm
is now less capable of fully exploiting the available edge-
cloud infrastructure resources. Fig. 12 shows the conver-
gence time and task execution latency with an increasing
number of threads. It can be observed that the more we
slice the network, the fewer MDs are offloaded because
each slice becomes shallower, thus reducing the degrees of
exploration for the algorithm. However, the convergence
time per-thread reduces by up to ~15x when Nimbus uses
four threads instead of one.

To mitigate the inefficient use of the edge-cloud infra-
structure, we developed a two-stage solver version of Nim-
bus. In this variant, all the MDs not offloaded in the first
distributed stage are scheduled for a second allocation pass.
The second stage executes centrally and is modified so that
it attempts to allocate the remaining MDs on the entire
edge-cloud infrastructure (updated with the current load).
This final variant is called 2PMT Nimbus and the results
obtained are shown in Fig. 13.

While there is an additional cost in terms of convergence
time due to the presence of a final aggregation step, the
amount of non-offloaded MDs reduces drastically, especially
with an increasing number of threads. The effective ratio of
offloaded users also increases compared to MT-Nimbus as
2PMT-Nimbus tends to fit more MDs into the edge-cloud
infrastructure. Overall, 2PMT-Nimbus does not violate any
of the inherent constraints and is able to deliver the required
quality of experience (e.g., FPS) to all the offloaded users.
With only two threads, 2PMT-Nimbus achieves similar MD
allocation ratios as the single-threaded version while almost
halving the convergence time. With eight threads, 2PMT-
Nimbus converges almost 3x faster than two-threads and
offloads the majority of the users. While the convergence
time achieved by 2PMT-Nimbus is much slower than MT-
Nimbus, the former is able to allocate many more MDs at the
edge-cloud infrastructure.

Note the anomaly in convergence time trend of 2PMT-
Nimbus — where the convergence time increases despite an

increased degree of parallelism. We exglain the exception
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as follows. By assigning more threads, the generated net-
work slices become shallower and fewer EN candidates are
available to allocate MDs. The fewer users are allocated, the
more effort is required by the centralized solver to complete
the final reallocation step. This entails that the law of dimin-
ishing returns applies to the threads parallelism. In fact,
with ten threads, the multi-threaded convergence time
decreases, but the single-threaded increases. However, the
overall performance in terms of allocation ratio looks better
with increasing thread count. Consequently, if we would
progressively increase the assigned threads boundlessly,
we would circle back to the single-threaded performance,
both for allocation and convergence time.

Takeaway 3. The ST version of Nimbus scales poorly as
the size of the edge infrastructure and density of partici-
pating MDs increases. The MT variant is much faster but
cannot fully makes use of the edge-cloud infrastructure.
Finally, 2PMT-Nimbus provides the best performance in
terms of ratio of offloaded MDs.

8 LIMITATIONS AND OUTLOOK

Edge computing will play a significant role in reshaping the
future of cloud networks infrastructure. New applications
and services will leverage information and processing capa-
bilities offered at the network edge for varying purposes —
including but not limited to data aggregation and analysis,
multimedia content delivery, machine learning and AL In
this section, we explore orthogonal problems affecting edge
computing putting our findings into a broader perspective.

Application & Network. Immersive applications, such as
AR/VR, necessitate the deployment of edge servers in the
network due to the strict latency constraints they impose.
Such applications are guided by the human vestibular sys-
tem which requires sensory inputs and interactions to be in
complete sync; failure of which results in motion sickness
and dizziness. As QoS of network communication technolo-
gies (e.g., 5G and millimeter waves) improve (i.e., shorter
network delay and higher throughput [73], [76], [86]), opti-
mizations in compute capabilities and task allocation mech-
anisms at edge become paramount to support multimedia
QoE requirements.

However, end-to-end application latency still accounts
for the most significant fraction of the perceived user experi-
ence, as discussed in § 7. Therefore, in this work, we focused
on task execution time and network latency while ignoring
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the non-marginal overhead introduced by other compo-
nents. These additional delays may have multiple sources,
including the operating system, bloated network queues,
network fluctuations (retransmissions, packet loss), to name
a few. We ignore these variables in this work to keep the
problem tractable since added delay caused by some of the
above is predictable only to a certain extent. Consequently,
our results should be considered as an optimistic estimate
on top of which application logic and context overhead
must be added. The Nimbus system presented in this paper
manages the interaction between edge infrastructure and
MDs and offers a device-independent framework to offload
tasks to the edge. In our future work, we plan to extend the
platform to calculate the additional application overheads,
as discussed above.

Smartphone Evolution. The symbiosis between edge com-
puting and mobile-based applications is complicated. Factors
like ever-increasing computational capacities of smart-
phones [12], [13], and more general-purpose utility of edge
computing begs re-thinking the applicability of edge for
mobile clients. For example, high-end smartphones equipped
with powerful mobile GPUs benefit more from running com-
putations locally than offloading, due to higher efficiency (in
energy consumption and inference time) offered by their pro-
cessor architectures and algorithms [15]. On the other hand,
essential operations utilizing local GPU may become throt-
tled as number of applications competing for the shared GPU
cycles increases. We feel that edge resources can be used to
further enhance (or enable) what can be achieved by a smart-
phone. An example could be executing more sophisticated
and accurate neural networks — which are often prohibitive
for smartphones as they require considerably more RAM and
computational power. Until mobile devices are battery-pow-
ered, there will always be a trade-off in performance versus
battery consumption. One can also envision smartphones
becoming part of the edge infrastructure [48], which poses
new and exciting challenges for managing transient, mobility
capable compute nodes.

Security Implications. We purposefully avoid delving into
possible security vulnerabilities of Nimbus since we consider
it out-of-scope. Here, we explore possible security holes in
our system and provide hints on how to mitigate them. In
our approach, we do not restrict an MD to the maximum
time for which they can utilize the edge-cloud infrastructure.
This can lead to numerous problems: a malicious MD might
decide to offload tasks forever and to multiple servers to
leech resources from the infrastructure, which may lead to
starvation. One solution could be to use a credit or reputation
system [54], where an MD can only utilize services offered by
the edge-cloud by spending some virtual currency. Other
possible approaches could be introducing a fixed time limit
after which the MD is forcefully rescheduled. However, all
these solutions require MD to be registered so that system
can keep track of their credit or the amount of time spent
using the service. Distributed ledgers and blockchain might
be useful in this scenario to help keep track of the user credit
and enable point-to-point payments [44], [70].

In § 7, we discussed the possibility of an elastic infrastruc-
ture composed of consumer ENs offering compute resources
similarly to [18] to respond to network overloads. There
are several issues associated with such an infrastructure,
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including reduced control over ENs, intermittent resource
availability, reliability, inconsistent execution and queue
time predictions, and security and privacy concerns. Addi-
tionally, trust can be a problem for such an infrastructure as
malicious ENs might extract sensitive information while
computing a task or deliberately modify the outcome to dis-
rupt the service. Possible resolutions could be employing
Trust Execution Environments (TEE) [69], [75] to secure the
compute steps at the cost of operational complexity.

Deployment Challenges. When discussing changes advo-
cated by edge computing, it is essential to keep in mind its
adoption cost. Depending on the type of deployed ENs, the
Capital Expenditures (CapEx) [2] and Operational Expendi-
tures (OpEx) cost demand careful planning of the infra-
structure as function of the QoS to be delivered over a
period of time. Similar to cloud and ISP services, edge-cloud
could employ a subscription-based operation model. End-
users could choose from different subscription plans that
best cater to desired QoE of targeted applications, e.g., gam-
ing, healthcare, video analytics, etc.

9 CONCLUSION

In this paper we presented Nimbus, a multi-objective task
allocation solution that can minimize the latency of mobile
real-time object detection models by offloading them to an
edge-cloud infrastructure. Based on an extensive set of real
data and measurements, our multifaceted evaluation bench-
marks three ever-improving variants of Nimbus addressing,
especially, the problem of scalability from the infrastructure
and end-users point of view. We verify the effectiveness of
Nimbus through trace-driven simulations. Based on an exten-
sive set of real data and measurements, we show the potential
of Nimbus in boosting the performance of AR applications
when offloaded from mobile devices to an edge-cloud infra-
structure. Additionally, our multifaceted evaluation presents
three ever-improving variants of Nimbus addressing, espe-
cially, scalability issues of edge-cloud infrastructure. Finally,
in light of our algorithm and approach, we discuss several
crucial open questions concerning edge computing and high-
lights future research directions.
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