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Summary

Predictions of the morphology of coastal areas are used to make decisions on coastal defence and nature
conservation. To predict this morphology, simulations made by morphological models are used. To base de-
cisions on this morphology predictions, we want the uncertainties in these predictions to be small. The goal
of this research is to get a better insight in the uncertainties in a morphological model. By having a better
understanding of these uncertainties, the decisions made using modelled predictions are stronger substan-
tiated. The specific area focused on in this research is the Frisian Inlet, which is located between Ameland
and Schiermonnikoog in the Wadden Sea. To achieve the goal of this research, data assimilation is used.
Data assimilation combines data with prior knowledge of a model to find the distribution of probabilities of
estimates of a true state. In this research, the used data are bed level measurements and the estimates are
simulations for the bed level height made by Delft3D.
Data assimilation methods make use of a distribution of model outcomes which should cover all possible
outcomes. So, to set up data assimilation successfully, we want to use a parameter that induces a significant
change in the bathymetry outcomes of Delft3D. Therefore, a sensitivity study is performed which considers
the following six parameters: current related roughness, wave related roughness, wave-related suspended
load sediment transport factor, wave-related bedload sediment transport factor, the transverse bed slope and
the tidal amplitude. For each parameter, ten values are chosen to simulate. Which of the parameters induces
the most change in bathymetry is assessed, using the difference between simulation result and the observa-
tion and the mean squared error skill score. The transverse bedload slope (αbn) shows the most variation
and is further used in the data assimilation method, which is a particle filter. Hundred uniformly distributed
values of αbn , between 0.5-100, are used to create different Delft3D simulations that give a bed level predic-
tion. This initial distribution is used for three different periods: 1970-1975, 1975-1979 and 1979-1982. These
epochs are defined by the availability of bed level measurements. After one iteration of the particle filter, a
new distribution of the parameter values is found. This is used in the next iteration in the same epoch. In
each epoch, three iterations are made.
The methodology as described in this thesis leads to a convergence of the initial distribution. In epoch 1 and
3, the distribution focuses on values of αbn in the high range of the initial distribution. The resulting distri-
bution of epoch 2 focuses on values around αbn of 70.
This study shows that it is possible to get a better understanding of the distribution of αbn values that leads
to probable bedlevel predictions by applying a particle filter. The application of this method brings the sim-
ulations closer to each other, but the simulations did not get closer to the observations. The contribution to
our understanding of data assimilation for morphodynamic models is that it can be used as a calibration tool
for a specific parameter.
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1
Introduction

Morphological models simulate the transport of sediment and the locations where erosion and sedimenta-
tion take place. In this way, it is possible to predict what the bathymetry will look like in the future. The
prediction of future morphology The input parameters for morphological models have uncertainties, which
influence the uncertainty of the model prediction. To use the model predictions for management decisions
for coastal areas, it is necessary to know how well the predictions represent the observations. The quantifi-
cation of the uncertainties in model predictions helps to define the quality of the bed level predictions. Data
assimilation is a process to combine observations with dynamic numerical models and is used to quantify
the uncertainties in the input and output of a model. The quantification of uncertainties is a first step to-
wards more reliable model predictions. The monitoring and predicting of coastal changes are considered in
this research by performing a case study on a tidal inlet in the Dutch Wadden Sea. The Wadden Sea contains
the largest tidal flat area in the world [Wang et al., 2018] and is recognized as a UNESCO world heritage area
[Wang et al., 2012]. One of the reasons why it is a UNESCO world heritage area is its unique ecology, needed
by certain species as living habitat. The unique ecology is vulnerable to external changes in sea level rise [Kir-
wan and Megonigal, 2013]. Besides its ecological value, the area is of economical importance due to tourism,
recreation and salt and gas extraction. The gas extraction causes subsidence and this affects the dynamics
of the Wadden Sea region [Fokker et al., 2018]. Since the area is vulnerable to external changes, this could
influence the characterizing occurrence of tidal flats.

Research objective
The objective of this research is to find the probabilities of possible outcomes of the morphological model
given the model uncertainties, bed level data and data uncertainties. Knowing the probabilities of possible
outcomes leads to a view of what model outcomes bear the largest uncertainties and in what outcomes the
uncertainty is lower. When the distribution of uncertainties in the model outcomes is better known, possi-
ble decisions based on these predictions are better substantiated. The forecast horizon might increase by
applying data assimilation (DA), because a prediction further in time is more valuable with uncertainty in-
formation. For a user of the morphological model, the model outcome will bear more information. It does
not only show the modeller what bed level is predicted, but also if this is a bed level prediction that is in an
uncertain range of the possible model outcomes. Data assimilation is used to combine the model with data,
given uncertainties in both model and data. By making multiple simulations with different model input, a
DA method can steer towards the outcome with a higher probability, relative to the other outcomes, given the
model and measurement uncertainties. In this way, the model will be calibrated to find the most probable
outcome for the varied setting.
When the objective of this research is achieved, there is a probable outcome of the morphological model and
area of interest considered in this report and a method to fine-tune the results in other situations in morpho-
logical models as well. In section 1 the research question and sub-questions are defined and these will be
used to decide what is the best way to apply data assimilation on the model and data.

1



2 1. Introduction

Figure 1.1: Satellite image of the Wadden Sea from www.waddensea-worldheritage.org . In the white square is the area of interest of this
research.

Case study
Delft3D, an open-source morphological model developed by Deltares, is used to simulate the Frisian inlet
in the Wadden Sea. This area is very well studied [Elias et al., 2012, Oost and de Haas, 1996, Van Prooijen
and Wang, 2013, Vermeersen et al., 2018, Wang et al., 2018] and there is data available on the bed level in a
suitable temporal resolution, which varies from three to five years between measurements. Although the area
of the case study is limited to a tidal inlet in the Wadden Sea, the methods used in this area can be applied to
other areas and other morphological models as well. The Frisian Inlet is the tidal inlet between the islands of
Ameland and Schiermonnikoog. In the South of this basin, there is the Lauwers Lake. The Lauwers Lake used
to be the Lauwers Sea, before its closure in 1969. As a result of this closure, the tidal basin became smaller.
This perturbed the morphological equilibrium, providing a clear sediment signal. It is expected that this
signal continues to evolve until a new morphological equilibrium is reached. Following the rearrangement
of the morphology to account for the perturbation makes the period after the closure of the Lauwers Lake an
interesting case-study. That is why this tidal inlet is chosen and it will be modelled during the period just after
the closure of the Lauwers Sea.

Figure 1.2: Satellite image of the Frisian inlet

Relevant previous research
Data assimilation is used in different fields such as oceanography [Bertino et al., 2007, van Velzen et al.,
2016, Vossepoel and van Leeuwen, 2007], geophysics [Van Leeuwen, 2010, 2009] and meteorology [Ghil and
Malanotte-Rizzoli, 1991]. These researches will be discussed in a bit more detail in Chapter 2.4.
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A very relevant previous research is performed by Garcia et al. [2013]. In this research four dimensional vari-
ational data assimilation (4D-Var) is the DA method that is applied on the morphological model Delft3D. The
applicability of 4D-Var is assessed, by focusing on the parameters of wave direction, significant wave height
and wave peak period. These parameters characterize the nearshore bathymetry of the area of interest of the
research, which is Palm Beach located in the Northern area of Sydney.
In the research presented in this report, the Wadden Sea is considered in a case study. The Wadden Sea acts
as a buffer between the North Sea and mainland. The fact that the East Frisian part of the Wadden sea plays
an important role in this exchange between coastal and open-ocean environment, makes it an interesting
research area. In Wang et al. [1995] a first set-up of a dynamic model for morphological development in the
Frisian Inlet is made. Since that research, many studies have contributed to an extensive understanding of
the morphodynamic behaviour of the Frisian Inlet [Dissanayake et al., 2009, Oost and de Haas, 1996, Stanev
et al., 2003, Wang et al., 2018]. However, there are still some knowledge gaps. For example, there is still uncer-
tainty in the future development of sediment volumes and nourishment strategies and a better understand-
ing of sediment fluxes is needed. This can be achieved by performing a morphodynamic analysis of relevant
processes and mechanisms in the Wadden Sea. Besides, the monitoring of the morphological and sedimen-
tological development needs further research, which is challenging because sea-level rise and morphological
developments both concern slow, long-term processes [Wang et al., 2018].

Research question
The main question of this research is to find the most probable outcome of a morphological model. To find
this a distribution of probability for many model outcomes is needed and the methodology to do so is de-
scribed in this research.

What is the most probable outcome of a morphological model given the model uncertainties, bed level
data and data uncertainties?

To find a distribution of the probability of the model outcomes, two subquestions need to be answered.
In subquestion 1 the goal is to find a parameter that influences the simulated bathymetry. A parameter that
induces a significant change in the bathymetry of a morphological model is needed for the DA. More vari-
ation in the model outcomes gives a better set of possible outcomes to work within DA. To answer the first
subquestion, a sensitivity study is performed.
Data assimilation is a broad concept and in the answer to the second subquestion it needs to be specified.
Which method is applied and how is the parameter of sub-question 1 implemented in this method. Another
thing that needs to be answered is in what time frame and in what area the data assimilation will be applied.

1. Which parameters induce a significant change in the bathymetry of a morphological model?

2. How can data assimilation be implemented to optimize a morphological model output based on bed
level measurements?

Thesis outline
To answer the questions stated above, bedlevel data is used. This data is measured in the Frisian inlet in 1970,
1975, 1979 and 1982. During this period the case study is performed, using Delft3D simulations. The DA
method used in this research is the particle filter and to apply this one parameter will be varied. This param-
eter is found by performing a sensitivity study, which answers subquestion 1.
This thesis contains six chapters, which will all contain a part focused on subquestion 1 and a part focused
on subquestion 2. Following this introduction, background information that is relevant for this research is
given in Chapter 2. In the part dedicated to subquestion 1, the Wadden Sea area and in this region the Frisian
inlet are introduced, together with important morphodynamic processes. This information combined with
background on morphological models, will help to find possible parameters to use in the sensitivity study.
Also, methods to quantify the uncertainties in model predictions are discussed. This is used to determine
how the sensitivity study results are assessed. To know how data assimilation can be implemented, the aim of
data assimilation is explained in the subquestion 2 part of the Chapter. The process that leads to the results
of data assimilation is also discussed.
In Chapter 3 the methodology to get the answers on the subquestions is described. This methodology con-
tains an explanation on the model set-up, the contribution parameters, the quantification methods, DA
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methods and how they are applied specifically on the area for this research.
In Chapter 4 the results are presented. These results are further discussed in Chapter 5 and conclusions are
drawn and presented in Chapter 6. The conclusion is followed by recommendations, given in Chapter 6 as
well.



2
Theory

Subquestion 1

Which parameters induce a significant change in the bathymetry of a morphological model?

An important factor to answer the research question of this thesis is the parameter used in the data as-
similation. This parameter should have a significant influence on the evolution of the bathymetry. So, in this
chapter an analysis of the sensitivity of the simulation of bathymetry to model parameters is described. The
chapter starts with background information on the area of interest and relevant morphological processes.

2.1. The Dutch Wadden Sea

The Wadden Sea is the region of the North Sea at the North Coast of the Netherlands and Germany and
the West coast of Denmark, as shown before in Figure 1.1. The Dutch part of the Wadden Sea consists of five
islands, which are the barrier islands that separate the Wadden Sea from the North Sea. The barrier islands are
part of a bigger coastal system that consists of six different environments: the mainland, back-barrier lagoon,
inlet and inlet deltas, barrier island, barrier platform and the shoreface [Oertel, 1985]. In Figure 2.1 this coastal
system is shown, where the mainland is named coast and the back-barrier lagoon is the basin. The barrier
islands have a protective function for the basin and the mainland. The islands provide protection against
storm destruction of the mainland and they protect ecological habitats of the basin and form a protection for
the coast of the mainland [Otvos, 2012].

5
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Figure 2.1: Schematic sketch of a tidal inlet system, with different morphological elements and dominant physical processes and phe-
nomena (Source:De Swart and Zimmermann,2009).

Morphological features that are part of the tidal barrier system are the tidal watersheds, tidal channels,
tidal flats and salt marshes. A tidal watershed is a topographic high that limits, but does not exclude, the
exchange of water between two sub-basins [van de Kreeke et al., 2008]. Sediment can flow between the basin
and the sea through the tidal channel. Tidal flats can be defined as a sandy to muddy or marshy flat that
emerges during low tide and submerges during high tide [Amos, 1995]. Tidal channels are defined to be be-
low the low tide water level, so this is a part of the basin that is always submerged.
Since the definition of a tidal flat and a tidal channel take the water level into account, a sea-level change
influences the distribution of tidal flats and tidal channels. Whether this results in a drowning system or not,
depends on the sea-level change and the sediment supply from the sea to the basin. When the sediment
supply increases in balance with an increase in sea level, the tidal system will be in equilibrium. When the
sea level rise reaches a certain limit where the sediment supply can not increase at the same rate, the system
is not in equilibrium anymore. This will lead to the drowning of a tidal inlet system [Van Goor et al., 2003].
The sediment supply to the Wadden Sea comes from the flow from the North Sea through the tidal inlets. The
only freshwater influence is from the Ems Estuary and Lake Ijssel at the Texel Inlet, which is the inlet between
the mainland and Texel [Wang et al., 2012].
In Wang et al. [2018] it is stated that in a sub-system of a sedimentary system it is desired to reach a dynamic
equilibrium between its morphology and the forcing conditions. A distortion of an equilibrium can be natu-
ral or man-made and will induce a sediment transport that restores the equilibrium state. Factors that play a
part in the equilibrium are accommodation space and sediment supply. Accommodation space is the space
that is available for sediment to be deposited. Sediment supply is all the sediment that is delivered to the
accommodation space.
A dynamic equilibrium exists when the sediment flux in the basin is balanced by a source or sink term [Zhou
et al., 2017]. For example, a net import of sediment in a back-barrier basin can be balanced by subsidence
of the bed. Thus, there is an equilibrium between an increase in the accommodation space and an increase
in the sediment supply. The time scale on which an equilibrium is restored depends on the spatial scale of a
morphological element. An individual channel may find its equilibrium in days to decades, whereas the total
Wadden Sea may need centuries to millennia to reach an equilibrium [Wang et al., 2018].
In the Frisian inlet, a dynamic equilibrium between its morphology and the forcing conditions has been dis-
turbed by the closure of the Lauwers Sea. This closure was finished in 1969 and 30% of the former basin area
was dammed off, which reduces the volume of the tidal prism from 306 million m3 to 200 million m3 [Oost
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and de Haas, 1996]. The closure of the Lauwers Sea in 1969 results in changes in sediment transport. These
changes will result in a clear sediment signal when simulated in morphological models.

2.2. Morphodynamic processes
Morphology refers to the study on the shape, which in this case is the shape of the bedlevel. Morphodynamics
describes how this shape changes over time as a result of sediment transport. Sediment transport is caused
by the movement of water which can take sand or mud grains with its stream. The transport can take place
as bedload transport or suspended load transport. In a high turbulent flow, there is sufficient upward motion
to keep small particles in the moving fluid. This results in transport that takes place in suspension [Nichols,
2009a].
Bedload is larger sediment that is transported in the water by rolling and saltation. When the velocities in
water are low, only fine particles and low-density particles can be in suspension [Nichols, 2009a]. This leads
to a dominant role for bedload transport when the flow velocities are low and the grain size of the particle is
large [Fiechter et al., 2006]. When there are high flow velocities and small grain sizes, the suspended trans-
port becomes more important. When the flow velocity gets too low, the particles will fall out of suspension
and settle on the bed [Fiechter et al., 2006]. Bedload that is transported will also settle when the flow velocity
decreases. When and where the settling of sediment occurs determines the morphology of the bed.
For sediment to be deposited, it first needs to be eroded from a different location. Erosion is the removal of
the loose deposits covering solid rock. The loose material can be moved by gravity when it is at a slope, it can
be washed by water, blown away by wind or scoured by ice [Nichols, 2009b]. Multiple processes can influence
the sediment transport in rivers, estuaries and tidal inlets. The processes and mechanisms that are dominant
in the sediment-sharing system of the Wadden Sea are residual flow, tidal asymmetry and dispersion [Wang
et al., 2018]. The explanations about these terms are based on the descriptions given in Wang et al. [2018].
Residual flow is a process where the sediment transport is in the same direction as the tidal flow. So, the
sediment transport is strengthened by the tidal waves. It can be caused by meteorological effects, freshwater
input and compensation flow caused by Stokes drift. A meteorological effect is caused by wind, which influ-
ences hydrodynamics in the Wadden Sea. Freshwater input causes a residual flow towards the sea. Stokes
drift causes a landward water flux in the Wadden Sea, which is compensated by a seaward-directed residual
flow.
When a tidal wave propagates in shallow water, it can deform. This deformation results in tidal asymmetry,
which can form a flood-dominant system or an ebb-dominant system. In a flood-dominant system, the time
it takes to reach the maximum flood level is short, whereas it takes relatively long to get to the minimum ebb

Figure 2.2: The water level and flow velocity in the Frisian inlet and the influence
of the closure of the Lauwers Sea, from [Wang et al., 2018]

water level. Therefore the period of flood
is longer with a smaller peak velocity
than the period and peak velocity of the
ebb period. It is the other way around for
an ebb-dominant system. The closure of
the Lauwers Sea changed the situation in
the tidal asymmetry. As seen in Figure
2.2 the flow velocity is decreased after the
closure. Furthermore, the velocity during
ebb is smaller than the velocity during
flood. This change from a symmetric sys-
tem to an ebb-dominant system causes
a sediment import into the basin [Wang
et al., 2018].
Two other forms of asymmetry are jet-
flow asymmetry and spatial asymmetry.
The jet-flow asymmetry is caused by a
high velocity of the incoming flow jet,
which causes erosion of the inlet. The
eroded material is deposited in the far re-
gion of the jet. When the tide turns, water
is flowing out of the basin through the in-
let again. The velocity is more evenly distributed, which means the maximum velocity is smaller. For these
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smaller velocities, it is not possible to transport all the far deposited sediments back to the inlet. So there is
more sediment coming into the basin than is transported out again. Spatial asymmetry means that within
one basin there can be a part ebb-dominated and a part flood-dominated. As a result, a net flux from one
side to the other side of a basin occurs. In the Wadden Sea, this happens in the Texel Inlet, where a net flux
emerges from the Southern shore. This is a result of flood current dominating the southern part of the inlet
while the northern part of the inlet is ebb-dominant.
Dispersion takes place when the tidal flow acts as a mixing agent for dissolved and suspended matters. The
result is a residual transport in the opposite direction of the concentration gradient. The decrease in flow
velocity after the closure of the Lauwers Sea influences the dispersion. It results in an import of sediment in
the tidal basin [Wang et al., 2018].
The timescale on which morphodynamic processes take place depends on the process and the spatial scale
of the morphological element. The timescale of a morphodynamic process increases when the size of the
morphological element is larger. Some morphodynamic processes occur on timescales of individual storm
events. Examples of such processes are waves, currents, sediment transport, and morphological change.
Whereas processes like the migration of bars or the evolution of the profile cross-shore can occur on larger
timescales [Aagaard et al., 2004].

2.3. Morphological modelling
To get a better understanding of the situation in the Wadden Sea and how the current situation will evolve, a
model to simulate the situation have been built. Models can be empirical or process-based and to describe
the specific features for both options, an example of an empirical model and an example of a process-based
model will be discussed. An empirical model is based on experimental results and observations, whereas a
process-based model uses a mathematical representation of physical processes to describe a certain system.
An example of an empirical model is ASMITA, which is based on the idea that a tidal basin can be sub-divided
into several geomorphologic elements [Townend et al., 2016b]. The state of each element is described by its
volume and surface area and empirical relationships define the morphological equilibrium for the elements
[Townend et al., 2016b]. ASMITA is limited in the level of detail that it simulates.
For more detailed simulations, Delft3D is suitable. Therefore, the process-based model Delft3D is used in this
research to make a representation of the morphodynamic system in the Frisian Inlet. Delft3D uses physical
processes to describe hydrodynamics, sediment transport and morphology and water quality for fluvial, estu-
arine and coastal environments [Deltares, 2018]. The sediment transport can not be modelled grain-to-grain.
Thus the sediment transport equations used in the model are derived with a level of empirical modelling. The
result is a representation of the morphodynamics which should resemble the reality. It is focused on fast-scale
processes and aims to capture the details of the bedlevel change [Townend et al., 2016a]. This research aims
to capture details in a restricted area, so Delft3D is suitable.
For the formulation of the exchange between the bottom sediment and the water column, a bottom boundary
condition is used in Delft3D. This is derived from an asymptotic solution of the advection-diffusion equation
[Townend et al., 2016b]. Information about sediment composition, wave conditions, tidal forcing, time scales
and transport models is used as model input. Numerical parameters as input are for example the morpho-
logical acceleration factor (MF) or the simulation time. The MF is a scaling factor between the hydraulic and
morphological simulation. Hydraulic processes usually take place on a smaller timescale than morphologi-
cal processes. The MF is used to accelerate the morphological simulation to see changes without having to
simulate a very long timescale. When a MF of 10 is used and 1 tidal cycle is simulated, then the morphology
at the end of the run is the result of 10 tidal cycles. The MF needs to be as high as possible for the simulation,
but still give a model result within an acceptable level of accuracy. So, this critical value of MF needs to be
found.
Physical parameters as input need to represent the relevant physical processes well. Physical parameters
that are always needed are constants like gravity, temperature, air density, salinity and water density. Fur-
thermore, the bed and wall roughness, the horizontal and vertical eddy viscosity and diffusivity are always
needed as input. Other physical parameters that can be added are concerning the temperature process, sed-
iment process, wind process or tidal forces [Deltares, 2018]. In section 3.2.1 a description will be given on
what parameters need to be added to perform this research.
Previous studies show that Delft3D can make robust and accurate predictions for hydrodynamic results [Elias
et al., 2000, Hsu et al., 2006, 2008]. The ability to do the same with predictions for morphological results is not
evaluated or validated yet.
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Parameters
From previous sensitivity studies, it is seen that the initial bathymetry, frictional parameterization, sediment
transport and bed slope terms influence the determination of the morphodynamic evolution [Zhou et al.,
2014]. There are significant effects of slope parameterization on the resulting simulated morphology. When
physically correct slope effects are used, it is seen that models show a deep incision and steep morphol-
ogy. This results in different channel networks than are typically observed in nature. The modelled channel
networks have deep and narrow channels and a larger number of channels and shorter bars compared to
observations in nature. In nature, channels form when minor perturbations on a flat bed grow. Whether or
not these small perturbations grow or decay, depends on the width-to-depth ratio. In Delft3D the slope effect
is represented by a parameter that determines the magnitude of the transverse slope effect [Baar et al., 2019].
Besides, the roughness of the bed influences the flow of water in different ways for different areas. For exam-
ple, in an open-channel flow, an increase in bed roughness leads to the formation of an internal boundary
layer [Chen et al., 2003]. In high-gradient streams clasts that are large compared to the stream depth, can
act as obstacles to the flow [Wiberg and Smith, 1991]. The flow velocity in rills is seen to be highly slope-
dependent [Giménez and Govers, 2001]. In Delft3D there is a parameter that represents wave-induced bed
roughness and a parameter that represents current-induced bed roughness.

Mean squared error skill score
Previous studies on morphodynamics use the mean squared skill score as a way to characterize uncertainties
when quantifying bathymetry changes [Henderson and Allen, 2004, Ruessink and Kuriyama, 2008, Sutherland
et al., 2004, Van Der Wegen et al., 2011, van Rijn et al., 2003]. This skill score uses the mean squared error to
measure the relative accuracy of a prediction over a prediction of zero change [Bosboom et al., 2014]. In this
study, a prediction is a model simulation and a prediction of zero change would be the observation that is
used as an initial bathymetry. E.g. in a simulation that runs from 1970-1975, the prediction of zero change
is the 1970 observation. To apply the skill score, first the accuracy measure mean squared error (MSE) is
calculated using equation 2.1. For each model grid cell, a weight is determined, using the size of the grid cell.
The larger the grid cell, the larger the assigned weight. In each grid cell, the difference between the prediction
and the observation is determined, which is the error. In the simulation that runs from 1970 to 1975, the
observation is the 1975 observation. The error of each grid cell is squared and multiplied with the weight of
that grid cell and divided by the total number of grid points, to obtain the mean squared error. The mean
squared error can also be calculated using anomalies, showed as p’ and o’ in equation 2.1. The anomalies are
the differences between the prediction or observation concerning the reference. The mean squared error is
calculated for the reference prediction as well, as shown in equation 2.2. The angular brackets indicate the
spatial average. The reference prediction used in the calculation of skill score is a zero-change prediction.
The skill score is then calculated as the relative accuracy over the reference prediction, as shown in equation
2.3. The value of the skill score can range from -∞ to 1. A score of 0 means that the prediction is as good as
the reference. When there is no difference between a prediction and observation the skill score is 1. A skill
score between 0 and 1 shows the proportion of improvement over the reference prediction. Negative values
are found for predictions that perform worse than the reference prediction. One value for the skill score is
found for a prediction.

MSE = 1

n

n∑
i

wi (pi −oi )2 = 〈(p ′−o′)2〉 (2.1)

where:

MSE = mean squared error

n = number of points in the spatial domain

i = ith grid point

wi = weighting factor by ith grid cell size

pi = predicted field for the ith grid cell

oi = observed field for the ith grid cell

p ′ = difference of prediction with respect to the reference

o′ = difference of observation with respect to the reference
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MSEr e f = 〈(r −o)2〉 = 〈o′2〉 (2.2)

where:

MSEr e f = mean squared error of the reference prediction

r = reference prediction

o = observation

o′ = difference of observation with respect to the reference

MSESS = 1− MSE

MSEr e f
(2.3)

where:

MSESS = mean squared error skill score

MSEr e f = mean squared error of the reference prediction

MSE = mean squared error

Subquestion 2

How can data assimilation be implemented to optimize a morphological model output based on
bedlevel measurements?

2.4. Data assimilation
In Wikle and Berliner [2007] multiple definitions of DA are combined to the working definition: "DA is an
approach for fusing data with prior knowledge to obtain an estimate of the distribution of the true state of a
process". The goal of DA is to make a more accurate representation of a process. In this research, this pro-
cess is the evolution of bathymetry and therefore bedlevel data is used. The data is fused with prior knowl-
edge, which is the knowledge about the probability distribution of the model. The combination of the prior
knowledge and the bedlevel data should result in an estimate of the bathymetry. Data assimilation is used in
oceanography [Bertino et al., 2007, Dobricic and Pinardi, 2008, Tuan Pham et al., 1998, van Velzen et al., 2016,
Vossepoel and van Leeuwen, 2007], geophysics [Nakano et al., 2007] and meteorology [Ghil and Malanotte-
Rizzoli, 1991]. In Scott and Mason [2007] an optimal interpolation method is applied on a morphological
model with success. In this research waterline, movement data is used and the advice is to use data assimila-
tion in other coastal and morphological models as well. Also, in van Dongeren et al. [2008] data assimilation is
successfully applied. In this case to make accurate predictions on subtidal bathymetry. The techniques used
in these studies are different than the data assimilation technique used in this research, which is the particle
filter. In van Dongeren et al. [2008] an optimal least squares estimator approach is used to predict nearshore
subtidal bathymetry. In Vossepoel and van Leeuwen [2007] the particle filter is used, but is applied on a global
ocean general circulation model. The difficulty in the application on a morphological model is that the mor-
phodynamic changes are cumulative [Cowell and Thom, 1994]. In Bertino et al. [2007] an extension of the
Ensemble Kalman filter is presented and applied in a simplified ecological model. In Nakano et al. [2007] a
merging particle filter is presented and its application for predicting geophysical processes is demonstrated
experimentally. In the papers by Van Leeuwen [2010, 2009] the methodology of the particle filter is discussed,
but not so much its applications.
The theory that is used to combine data and prior model knowledge is explained in this section.
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Bayes’ theorem
Bayes’ theorem is used to determine the probability of certain events happening. The explanation of the
Bayes’ theorem in this section, is based on the explanation of Dekking et al. [2005]. A simple example is used
to show how the theorem works. A probability can be in the range of 0-1. When the probability is 0 or 1 this
is absolutely certain, uncertainties are any number in between. In Figure 2.3 an illustration is shown of two
fundamental rules that are used in the Bayes’ theorem. In part a of Figure 2.3 a cube is shown which contains
two circles. One circle is blue and the other circle is white. When one of the figures is taken out of the cube,
there are two possible events. Event A is that the draw is the blue circle and event B is that the draw is the
white circle. Both events have a probability of 0.5. And the probability that the first event happens or the
second event equals the sum of the two probabilities. This first rule is the sum rule and is shown in Equation
2.4.

P (A∪B) = P (A)+P (B) (2.4)

where:

P = probability

A = Event A

B = Event B

P (A∪B) = probability of event A or event B occurring

P (B) = probability that event B occurs

P (A) = probability that event A occurs

The second rule that is fundamental for the Bayes’ theorem is the product rule, an example is shown in part
b of Figure 2.3. In the cube, there is not only the blue and white circle, but there is a blue square as well.
Assume the goal of a random draw from this cube is to get the blue circle. To draw a blue circle two events
need to happen: event A is that the shape is a circle and event B is that the colour is blue. These two events
are independent, the colour and shape do not influence each other. The probability that event 1 occurs, draw
a blue item, is 0.5. The probability that event 2 occurs, draw a circle, is also 0.5. The product rule gives their
joint probability, so it gives the probability of both events occurring. The product rule is shown in Equation
2.5 and in this case, it would give 0.5*0.5, so a joint probability of 0.25.

P (A∩B) = P (A) ·P (B) (2.5)

where:

P (A∩B) = joint probability of event A and event B occurring

P (B) = probability that event B occurs

P (A) = probability that event A occurs

Figure 2.3: Illustration of a) the sum rule and b) the product rule
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In the example shown to explain the product rule, the considered events were independent. The joint
probability of two events is said to be conditional, when the two events are dependent. The joint probability
of two conditional events can be used to find the probability of event A by knowing the probability of event B.
In the example that is discussed above, this could be that a person that draws a shape from the cube can feel
the shape. The probability that an item from the cube is blue and a circle, can be determined using the joint
probability, shown in Equation 2.6. The joint probability of two events is given by the conditional probability
of both multiplied with the probability of one of the events.

P (A∩B) = P (A | B) ·P (B) = P (B | A) ·P (A) (2.6)

where:

P (A∩B) = joint probability of event A and event B occurring

P (A | B) = conditional probability that event A occurs given that event B occurs

P (B) = probability that event B occurs

P (A) = probability that event A occurs

Equation 2.6 can be rewritten to form the Bayes’ theorem, which is shown in equation 2.7.

P (A | B) = P (B | A) ·P (A)

P (B)
(2.7)

Assume that event A is that the item is a circle, event B is that the item is blue and event C is that the item is
a square. The probability that the item is a circle, not taking into account any other information, is 0.5. So,
P(A)=0.5. The probability that the item is blue, is 0.5 as well. So, P(B)=0.5. P(B| A) is the probability that the
item is blue, given that it is a circle. This probability is 0.5. P(B| C) is the probability that the item is blue,
given that it is a square. This probability is 1. P(C) is the probability that the item is a square, which is 0.5. The
probability that the item is blue, not given any information is P(B). This can be found using the product and
sum rule: P(B)=P(B| A)P(A)+P(B| C)P(C). This gives P(B)=0.5*0.5+1*0.5=0.75.

Applying Bayes’ theorem
The Bayes’ theorem as explained before, was applied on probabilities. It can also be applied on probabil-
ity density functions, which are functions of a continuous random variable. Assume that one sample in the
set of possible values of the random variable is chosen. Using the PDF, it can be determined how likely the
random variable would equal this sample compared to another sample. This sample is a certain variable in
the model, which is referred to as state variable and in this research, these variables are estimated using data
assimilation.
The solution to nonlinear data-assimilation problems is based on the Bayes’ theorem, which is presented in
equation 2.8. The equation shows that the multiplication of the PDF of the observations given the model,
with the PDF of the model before the observations, divided by the PDF of the observations, gives the PDF of
the model given the new observations. The PDF of the observations given the model is also called the likeli-
hood. In this research the model, represented by m in this theorem, is the morphological model Delft3D and
the observations, represented by d, are the bedlevel measurements. A visualization of the theorem is given in
Figure 2.4, which shows that the multiplication of the likelihood and the prior PDF gives the posterior PDF.
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Pm(ψ | d) = Pd (d |ψ) ·Pm(ψ)

Pd (d)
(2.8)

where:

d = observations

m = model

ψ= state variable of the model

Pm(ψ | d) = probability density of the model given the new observations

Pd (d |ψ) = probability density of the observations given the model, also called the likelihood

Pm(ψ) = probability density of the model prior to the observations being taken into account

Pd (d) = probability density of the observations

The goal of the data assimilation is to find the posterior model PDF, given the observations. To find this,
the model PDF and the observation PDF are needed. First the prior model PDF and observation PDF are
described. Then the connection between the distributions gives the model PDF, given the observation. This
is called the posterior PDF and is explained using Figure 2.4.
The prior PDF is given by Pm(ψ) in equation 2.8 and is shown in part b of Figure 2.4. The prior PDF represents
the relative likelihood of possible state variables, without taking any observations into account. The modelled
state variable is the simulated bedlevel and the observations are the bedlevel data. So, the prior PDF shows
the possibilities of each state variable in the total set of state variables.
The PDF of the observations is given as Pd (d) in equation 2.8 and is in part a of Figure 2.4. This shows the
probability of different values for the state variable for the observation. This also has a spread, because when
a measurement is repeated in the same location at the same time, this might not give the same bedlevel.
The model PDF shows the probability of one model outcome occurring, compared to the other model out-
comes, while taking into account the observations. This model PDF is also called the posterior distribution
and is shown in part c of Figure 2.4.
The posterior distribution, Pm(ψ|d), is the update of the a priori understanding with observations. This up-
date is shown in Figure 2.4. In the prior model PDF shown in part b of the figure, the probability of model
outcomes is high for high values values of bedlevel. However, in the observation PDF, which is the likelihood,
shown in part a of the figure, there are no observations in that range of bedlevels. By taking the observations
into account to obtain the posterior distribution, the right side of the posterior PDF becomes smaller than
in the original prior model PDF. Taking the observations into account, means that the observation PDF and
prior model PDF are multiplied to obtain the posterior PDF, see denominator of equation 2.8.
The distribution of the observations given, the state variable, Pd (d|ψ), quantifies the distribution of measure-
ment errors given a simulation of the state variable [Wikle and Berliner, 2007]. This distribution is called the
likelihood. Multiplication of the likelihood and the prior PDF gives the posterior PDF.
The difficulty of the Bayes’ theorem is in the prior model PDF, because this often depends on a model with
many dimensions. This leads to a large number of possible model states that define the PDF. It is impossible
to know all the state variables and to know exactly what the prior PDF really looks like.
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Figure 2.4: The combination of a prior model PDF and an observation PDF to form the posterior PDF.

Particle filter

The concept of a particle filter (PF) as discussed in this section, uses the explanation given by Van Leeuwen
[2009] as a guideline.
Since it is impossible to represent the full prior PDF, the particle filter uses a set of model states to represent
the prior distribution. In Figure 2.5 an example of a PDF is shown with the model states that represent the
PDF. The model states in the set are called particles, which in this case are model set-ups created by changing
one parameter between different runs. Because of the varying parameter, typically the model results end up
at a different location in the PDF. The target PDF shown in 2.5 is the prior model PDF that is represented by
the particles. In this research, the probability of the modelled bedlevels as a result of all different parameter
values forms the target PDF. To represent the PDF by the particles a Dirac delta function is used, which is
given in equation 2.9. The state variable in the vector is the simulated bedlevel. At each location to evaluate,
the difference between the state vector of the observation and the state vector of the particle is calculated. By
taking the sum of the differences of all locations, and dividing this by the number of particles, the probability
density of the model prior is found and is one number.

pm(ψ) = 1

N

N∑
i=1

δ(ψ−ψi ) (2.9)

where:

Pm(ψ) = probability density of the model prior to the observations being taken into account

N = number of particles from density Pm(ψ)

ψ= the state vector

ψi = the state for the ith particle
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Figure 2.5: A representation of a PDF using particles. Adjusted figure from [Ansari, 2014]

The evolution of the prior PDF is represented by running several simulations. In these simulations, the
particles, which form the prior PDF representation, are propagated forward in time. So, from the initial sit-
uation, the simulation makes a prediction of the state variable, the bedlevel. The likelihood represents the
distribution of the observations, given the model simulations. In this research, the likelihood is the distribu-
tion of errors in observing the bedlevel, while taking into account the simulated bedlevels. The likelihood is
represented by a chosen distribution function, which can be for example a Gaussian or Lorentz function. It
often can be assumed that measurement errors are Gaussian distributed. The representation of the likelihood
using a Gaussian distribution is shown in equation 2.10. The equation takes the difference between a simula-
tion of one of the particles and the observation. The standard deviation of the observation, σ, gives the width
of the likelihood. The ratio between the difference and the standard deviation determines the value of this
expression. This effectively applies a weight to the particles, which results in different probabilities. The stan-
dard deviation σ should represent the uncertainty in the data. There are multiple options possible to use as
standard deviation and the choice of representation is somewhat subjective. Possibilities are spatial standard
deviation and temporal standard deviation. The spatial standard deviation is the standard deviation within
one observation in the area. The temporal standard deviation is the standard deviation of observations at
different moments in the same area. The consequence of a large value of σ is that the exponent is a smaller
negative number. A smaller negative power of e results in a larger value. So, when the standard deviation is
larger, the result of equation 2.10 will be larger. This results in a wider spread of the likelihood, Pd (d |ψ). In
this research it is not possible to choose the temporal standard deviation, since there is only one observation
available for each period.
The particle filter is then applied multiple times and therefore it is expected that the difference between sim-
ulation and observation decreases. The iteration is performed, because in one update there might not be a
good estimate. When iterating the process, more different simulations are started and therefore the chance
that a probable bedlevel estimate is found is larger. The coefficient, a, is used, because one observation is
used multiple times in these iterations. The standard deviation of this one observation remains the same
and might be relatively large when used in the last iteration. Therefore the coefficient can be used to divide
the quadratic standard deviation [Emerick and Reynolds, 2013]. It is often chosen equal to the number of
iterations.

P (d |ψ) = e
−0.5

(d−mi )2

σ2
a (2.10)

where:

P (d |ψ) = probability density of the observations given the model state

d = observation, in this study: bedlevel measurements

mi = simulation result of the ith particle, in this study: bedlevel simulation by Delft3D

σ= standard deviation of the observation

a = coefficient

The principle of a standard particle filter is visualized in Figure 2.7. In part 1 of the figure, the blue bars
represent ten particles that form a representation of the prior PDF shown in light blue. The bars have equal
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lengths to show that the particles have equal weights.
The propagation of the particles forward in time is visualized by the brown arrows towards part 2 of the figure.
In this research, this means running the simulation in Delft3D to predict the bedlevel. In part 2, it is shown
where the particles end up, together with the observation PDF which is shown in green. In this research, this
is the bedlevel observation and the Gaussian distribution around it. When the prior PDF is close to the ob-
servation PDF the likelihood is larger. For the bedlevel values with a high likelihood, the assigned weight is
high. These weights are used in equation 2.11 to find the particles with their assigned weights, shown as red
bars in part 3 of the figure. The concept of assigning weights to particles is called importance sampling. By
assigning the weights to the particles, they are not modified, only their relative importance changes. An ad-
vantage is that the dynamical balances remain the same, so the solution is consistent with physics. However,
the particles are not pulled back when they move away from the observations. Another difficulty in impor-
tance sampling is that filter degeneracy occurs. This means that after a few analysis steps, one particle gets all
the weight, while the other particles get zero weight. Filter degeneracy means that the statistical information
in the particles becomes too low to be meaningful.

In Figure 2.6 the concept of importance sampling for a particle filter is visualized. A bullet represents the par-
ticles and the size of the bullet represents the particle weight. A larger bullet is a particle with a larger weight.
The vertical axis is the model variable and the x-axis is time. At each tenth time unit, a new observation is
available, represented by a vertical line. The particles start at t=0 with an equal weight. At t=10, four particles
receive a weight t=10 and at the last time step of the figure, t=20, there are three particles with weight left. This
is filter degeneracy, which is seen in part 3 of Figure 2.7. This shows only three particles with a relevant weight.

Figure 2.6: Particle Filter, importance sampling, from
[Van Leeuwen, 2009]

A possible solution for filter degeneracy is resampling, which
reduces the variance in the particle weights. This is done
between parts 3 and 4 of the figure, where three particles
are copied to get ten particles again. When applying resam-
pling, first of all, the particles with a low weight are aban-
doned. The particles with a high weight are copied until
the total number of particles is restored. A particle with a
larger weight will be copied more. Multiple identical parti-
cles can result in different outcomes when propagating for-
ward in time, when the system is stochastic. However, in a
deterministic model, the identical particles will always give
identical outcomes. Therefore, in this application, the parti-
cles should not be copied, but new particles need to be cho-
sen.

Different methods exist on how to choose these new particles
(Gaussian resampling, localization, merging [Van Leeuwen,
2009]) and the method used in this research is Kernel dressing.
Kernel dressing means that for each particle a continuous PDF
will be made. The PDF for each particle is made with the same width and height, until it is updated with the
weight of the particle. A kernel dress around a particle with a high weight will be larger. This results in more
samples drawn from the high weight particle dresses. Often, a Gaussian PDF is chosen, because in that case
only two parameters need to be estimated. To set up the Gaussian distributions, a mean and a covariance are
needed. As a mean, the particle state is used and as a covariance, a factor smaller than the covariance of the
full particle set is used. From the Gaussian distribution that is drawn around each particle, new particles are
chosen. The number of particles that are chosen from each particle dress, is determined by the weight of that
specific particle.
The particles that are obtained can be used to propagate forward in time and see the evolution of the model
PDF. When there are multiple observations available at the first analysis time, the particles can also be used
to propagate again from the start time to be analysed when another observation comes in.
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Figure 2.7: The standard particle filter, as visualized in Van Leeuwen [2010]

P (ψ | d) =
N∑

i=1
wiδ(ψ−ψi ) (2.11)

where:

P (ψ | d) = probability density of the model given the new observations

N = number of particles from density Pm(ψ)

wi = the weight of the ith particle

ψ= the state vector

wi = P (d |ψi )∑N
j=1 P (d |ψ j )

(2.12)

where:

wi = the weight of the ith particle

P (d |ψi ) = probability density of the observations given the model state of the ith particle

P (d |ψ j ) = probability density of the observations given the model state of the jth particle

The weights, wi , are determined using equation 2.12. This equation shows that the assigned weight is
high, when the probability that the observations are true given the model state is high. The weights are
needed to determine the relative importance of the particle, which is shown in equation 2.11. The larger
the weight, the more this particle contributes to the estimate.

Bedlevel data
The data used in this research gives information on the bedlevel in the Wadden Sea and is measured by the
Meet- en Informatiedienst Noord-Nederland. Elias and Vermaas [2019] give information on the data avail-
ability and the measuring and processing procedures. A summary of this information is presented here.
The measurements are digitally saved by Rijkswaterstaat since 1985. The saved data can be found in the Lan-
delijk Opslagsysteem Lodingen (LOL) database. The depth of the seabed is measured using sonar soundings
on a ship that travels in lines which are parallel to each other. The distance between these lines can vary
between 200 meters in the Wadden Sea to 1000 meters along stable island coasts. The distance between mea-
surement locations can differ, but is approximately 30 cm. At tidal flats, it is possible to measure with laser
altimetry. Each year one of the basins is completely measured, which means that once in the six years there
is a complete overview of the bed of the entire Wadden Sea.
The data is delivered at a 20x20 meter grid and this is converted to the model grid. In section 3.1 it is explained
how the conversion to model grid is made.
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Method

3.1. Model set up

A case study is performed using Delft3D on the Frisian Inlet in the Wadden Sea. To be able to do so, the
model needs to be set up in this specific area. The set-up for this research is based on the model set-up as
used by de Boer [2002]. Model input that is discussed is initial bedlevel, wave conditions, tidal forcing and
morphology.

Data conversion

Figure 3.1: The bed level data on the 20x20 meter grid

One of the inputs for the model is an
initial bed level. The initial bed level
for each period is based on the observed
bathymetry in the starting year of that
period. As explained in section 2.4 the
available bed level data is available on a
20x20 meter grid. The data on the 20x20
meter grid is shown in Figure 3.1. It needs
to be converted to the grid as it is used in
this research. This model grid is shown
in Figure 3.2a and consists of 105x82 grid
cells. The cells are irregularly spaced, be-
cause the area of interest of this study is
mostly at the tidal inlet and less at the outer part of the North Sea. Most channels in the bathymetry are lo-
cated in the Frisian inlet, in the middle of the basin and a small part North and South to the inlet. The time
scale for bathymetry change in a tidal channel is smaller than for the more equal bathymetry in the North Sea.
To accurately monitor these relative fast changes, the grid is finer at this location. In the grid there are two
blanks. The left blank is Ameland and the right blank is Schiermonnikoog. The blank part below Schiermon-
nikoog is excluded from the modelled area, because in this way the boundary of the area is at the location of
the tidal watershed. As explained, there is negligible transport of water and sediment through a watershed.
When the complete area at the Eastern boundary is used, this leads to an unrealistic flow of water east from
Schiermonnikoog.
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(a) The morphologic grid
(b) The initial bathymetry from 1970 bed level data

Figure 3.2: Delft3D initial settings Frisian Inlet

The conversion from the 20x20 meter grid to the 105x82 grid is made in the program QuickIn. This is
exported to use in Delft3D and the result is shown in Figure 3.2b.
In the model, the boundaries must be defined as either closed or open. An open boundary makes transport
of water and sediment through the boundary possible. For a closed boundary, this is not possible. The outer
boundaries of the Wadden Sea area are closed because there is negligible transport of water and transport via
the Western and Eastern boundaries to the other basins. The south side of the Wadden Sea is the mainland, so
this is a closed boundary as well. The islands are confined by closed boundaries and the North Sea boundaries
are open.

Subquestion 1

Which parameters induce a significant change in the bathymetry of a morphological model?

Delft3D set-up
In the area given to Delft3D, an initial bathymetry and a model grid needs to be specified. For the area, the
boundaries need to be defined as either open or closed. An open boundary means that transport of water and
sediment is possible. Through a closed boundary, no transport is possible. An open boundary requires flow
and transport boundary conditions, that represent the influence of everything outside the modelled area. The
flow through an open boundary can have different boundary conditions. They can be forced by water levels,
currents, water level gradients, total discharges, discharges per grid cell, or a combination of water level and
current, which is called the Riemann invariant. The hydrodynamic forcing that defines the boundary con-
dition can be prescribed using harmonic components, astronomic components or time-series. When the
hydrodynamic forcing type is harmonic, then user-defined frequencies, amplitudes and phases will be used.
For the astronomic type, the flow conditions are specified by tidal constituents, amplitudes and phases.
In section 3.1 "Forcings", the processes used in this research are defined. Possible simulated processes in
Delft3D are salinity and temperature which influences the density of water and can cause density-driven
flows. Other processes are spreading of pollutants and traces, transport of sediment and influence of wind,
waves, secondary flows, tidal forces and dredging and dumping. When these processes are used in the model
set-up an initial condition for the process is needed.
To simulate the processes some physical parameters are needed. These parameters can be constants like
gravity or air density. Water density can also be given as a constant parameter, when a homogeneous sim-
ulation is performed. Bed roughness, wall roughness and viscosity are other physical parameters that are
defined for each model set-up. What other parameters are needed to set up the model depends on what pro-
cesses are needed. The possible processes that can be used to describe a situation in Delft3D are a heat flux
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model, sediment processes, morphological processes, wind, tidal forces and discharges. What processes are
needed to set up the model-specific for this research, is explained in the method.

Forcings
In the model set-up, processes that take place in the Wadden Sea need to be described as good as possible.
As described in section 2.2 some of the processes are residual flow, tidal asymmetry and dispersion. Another
important factor is the amount of suspended and bedload transport. These processes are influenced by tidal
forcing, meteorological effects, freshwater input, flow velocities and grain size. To capture these influences in
the model the tidal forces, wind, morphology and sediment processes will be used.

Tidal forcing
The open boundary type used is the water level type and it is forced using harmonic equations. So, the fre-
quency, amplitude and phase for the open boundaries are defined. The frequency is given in [deg/hour],
the amplitude in [m] and the phase in [deg]. The largest tidal influence is the moon, which is defined by
the lunar constituents M0, M2, M4 and M6. These tidal constituents have a period of 12.42 hours. The solar
constituents S2, S4 and S6 are of smaller influence on the tides. The solar constituents have a period of 12
hours. Since this period is easier to work with, a simplification of the tides will be applied [van de Kreeke
and Robaczewska, 1993]. The amplitude of the M-constituents and the frequency of the S-constituents are
used. To be able to do so, the phase of the M-constituents need to be recalculated using the frequency of S.
This is done using equation 3.1. The phase is given in deg, which is converted to hour using the M-frequency
[deg/hr]. Then this is converted to phase (deg/hr) again using the S-frequency (in deg).

Pt i de =
M f r eq

Mphase
S f r eq (3.1)

where:

Pt i de = Phase of the tide that will be used in the model [deg ]

M f r eq = Frequency of M-constituent [deg /hr ]

Mphase = Phase of M-constituent [deg ]

S f r eq = Frequency of S-constituent [deg /hr ]

Wave and wind

Figure 3.3: The initial bathymetry from 1970 with water level observation loca-
tions

Wave measurements are made at multi-
ple buoys in the Wadden Sea, of which
the locations are shown in Figure 3.3. The
data gathered with these measurements
is the wave height, wave direction and
wave period. The data can be averaged
over time to define twelve wave condi-
tions. For each wave condition, a frac-
tion of occurrence is given, which shows
how often that type of wave occurs. In
one simulated tidal cycle, all twelve wave
conditions will be applied in proportion
with their fraction of occurrence. The
twelve wave conditions are simulated in
a certain order, that is not necessarily
the order in which they occur in reality.
Therefore, the simulation results in be-
tween tidal cycles can not be used in data
processing. Only the result of a simula-
tion is considered, because a total tidal cycle is completed. The wind data is from statistical data as well,
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measured by the Koninklijk Nederlands Meteorologisch Instituut (KNMI) [de Boer, 2002].

Morphology
In the morphology input, there are a lot of parameters that influence the transport of sediment. For example
the gradient along and across a channel. This determines the ease for a sediment particle to travel through a
channel or to travel from the channel side to the channel centre. The bed roughness as a result of waves and
current is also given in the morphology input. As explained in chapter 2.3 the bed roughness influences the
water flow and this can result in changing sediment transport.
Furthermore, the connection between the MF and time is made in this input. The time frame is determined
by the availability of the bed level measurements in the inlet. The data that are used are measured in 1970,
1975, 1979, 1982 and 1987. These years will be used as the start time for the simulations that are run up til
the year that a new measurement is available. This results in different timeframes for the simulations. For
example, the simulation that starts at 1970 will run five years to end in 1975. Whereas, the simulation that
starts at 1975 will run four years to end in 1979.
As described in paragraph 2.3 a critical value for the MF is needed. To find this critical value test simula-
tions are performed. In these test simulations, the different simulation times are combined with multiple
MF values. The simulation time is varied between three, four and five years, because these are the time-
frames between the available bed level observations. The results for erosion/sedimentation and water level
are checked for unrealistic scenarios. The water level results of the MF study should be close to the average
tidal heights. The erosion/sedimentation results can form an indication that there is an extreme water flow
taking place. In comparable model set-ups a value of 200 is found to be the maximum acceptable value as a
MF [Baar et al., 2019]. In the multiple runs performed with the model set-up, it is found that an MF of 100
gives realistic simulations that run sufficiently fast.
The simulation time is divided into twelve equal time frames because there are twelve wave conditions. For
each of the wave condition, its occurrence is given by a fraction, P. The desired MF is 100, so the MFi given to
each time frame is given by equation 3.2. The last second of each timeframe is set MF to zero.

MFi = n ·Pi ·MF (3.2)

where:

MFi = the MF of one timeframe

i = number counting from 1 to n

n = number of wave conditions

Pi = fraction of occurrence of ith wave condition

MF = the total MF

Sediment
In the sediment input the specific density, median sediment diameter, dry bed density, initial sediment layer
thickness at the bed and the initial suspended sediment diameter is given a value. In this input it is defined if
the sediment type is sand, mud or bedload.

3.2. Sensitivity study
When the model is set up, it will be used to perform a sensitivity study. The results will show which parameters
have a significant influence on the morphological results. These parameters can be considered to use in the
data assimilation.

3.2.1. Parameters
The parameters that will be considered are shown in table 3.1. They are the current related bed roughness,
the wave related roughness, the tidal amplitude, the wave-related suspended load sediment transport factor,
the wave-related bedload sediment transport factor and the transverse bedload slope. The tidal amplitude.
wave-related roughness and current related bed roughness are in meters and the other parameters have no
units. Using the values as shown in the table a reference run is performed. This is used as a reference in the
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sensitivity study. For each parameter a certain range is known in which the values of the parameters are re-
alistic [Deltares, 2018]. Within these ranges, ten values are chosen for each parameter. For αbn twenty values
are used, since the possible range of values is large. These values are shown in appendix C.
The resulting bathymetries will be compared with the reference run and the observation, to see if one param-
eter has large variations in the outcomes of different input values. The range of the parameters are shown in
the last column of table 3.1.
From the results of the runs, shown in appendix A, it is determined if one of the parameters shows more
variation in the results than other parameters.

Table 3.1: Parameter names and their abbreviations

Name Abbreviation Reference run Range Units
Current related roughness RDC 0.01 0.005 - 1 m

Wave related roughness RDW 0.02 0.005 - 1 m
Tidal amplitude A 1.237 0.7 - 1.2999 m

Wave-related suspended load sediment transport factor SusW 0.3 0.1 - 1 -
Wave-related bedload sediment transport factor BedW 1 0.5 - 1.4 -

Transverse bed slope αbn 1.5 0.5 - 100 -

Figure 3.4: The water level at measuring point Zoutkamperlaag2. See Figure 3.3 for location of Zoutkamperlaag2.

The first comparison is performed using the mean squared error skill score (MSESS), which is determined
for each simulation. First, it is determined for the whole area. Then, the sub-area is selected and the MSESS
is determined using only the sub-area. Next, the sub-area will be divided into tidal flats and tidal channels,
which is done using a threshold. In chapter 2.1 the definition for tidal channel is given as the bed that is al-
ways submerged. A tidal flat was defined as the bed that is below water level during low tide and above water
during high tide. Figure 3.4 shows the water level for a part of the period between 1970-1975 as simulated by
Delft3D. The low tide is -0.7 meter and the high tide is 1.1 meter. So, the threshold for tidal channels is set
to -0.7 meter. As a threshold for tidal flats, the average of the extreme tides is chosen. So, this is set to 0.2
meter. An example of these thresholds is shown in Figure 3.6. The bed level in each grid cell is compared with
the channel threshold to decide which grid cells are tidal channels. The same is done for all grid cells with
the tidal flat threshold. The distribution of tidal channels and tidal flats according to these criteria is shown
in Figure 3.5. The shown area is a sub-area of the total modelled area. The sub-area is selected, because the
North Sea is also defined as a tidal channel. In the sub-area, a large part of the North Sea is discarded, since it
is not wanted to take the North Sea into account when evaluating the tidal channel part.
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Figure 3.5: The tidal flats and tidal channels in the total area

For each grid cell that is defined as a tidal channel, the volume is calculated. For the grid cells that are
defined as a tidal flat, the height from 0.2 to the surface of the flat is calculated. This action is performed for
the simulations, the observation and the reference. The MSESS is determined using only the grid cells that
are a tidal channel to see the correspondence between observation and prediction, optimized on channel
volume. The same is done optimized on the tidal flat grid cells.

Figure 3.6: Divide tidal channel and tidal flats

To determine the MSESS for each simulation a reference and an observation are needed. As a reference
a zero-change model is used, which is the observation made at the start year of the simulation. So, for the
period 1970-1975, the reference is the 1970 observation and the observation is the 1975 observation.
Another comparison is performed using the differences between simulations and observation. The difference
between simulation and the 1975 observation is determined for the plate height and the channel volume. The
mean and median plate height will be determined. For the channel volume, this is the total channel volume
and the median channel volume. This difference is in m3 for channel volume and in m for plate height.
To make a comparison between the different simulation easier, the difference is converted to percentages.
The results for the MSESS is discussed below. The results of the percentage differences can be found in Ap-
pendix A.
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Subquestion 2

How can data assimilation be implemented to optimize a morphological model output based on bed
level measurements?

3.3. Data assimilation

In this section, the method to apply the particle filter on the specific case study for this research is discussed.

Particle Filter

Figure 3.7: Uniform distribution for particles with differentαbn , used as a start for
all epochs

The parameter that is the result of the
sensitivity study is the transverse bed
slope, αbn , so this parameter is varied in
the particles. In this research, the particle
filter is started using an ensemble of 100
particles, which is a small amount for a
particle filter. However, the time to per-
form the simulations for this research is
limited, so simulation of more particles
is not feasible. With this number of par-
ticles, it is expected that the particle filter
gives results that optimize the bed level
simulations, while the simulation time is
manageable. Based on the opinion of ex-
perienced Delft3D users and literature,
it is chosen to search for αbn values in
However, wherein these range is the best
value for the particular situation is not
known. That is why the 100 particles are
chosen by using a uniform distribution. In Figure 3.7 the distribution is shown, which is not a perfectly uni-
form distribution. When the bins are chosen larger, or when more particles are made, the distribution is more
towards a perfect uniform distribution. The different values for the transverse bed slope is the only thing that
changes for each particle. The rest of the model settings remain as discussed in the method of subquestion
1. Using this distribution, simulations are started in 1970 and the results from the Delft3D simulations are
processed. First of all, an image of the simulated and observed bathymetry is made, which is shown in Figure
3.8a and 3.8b. Figure 3.8c shows a plot of the difference between the simulation bed level result and the 1975
observed bed level. In Figure 3.8d, a plot of the difference between the 1975 observed bed level and the 1970
observed bed level is shown. From these plots, it is decided to select a sub-area for evaluation, because there
is not much interest in the North Sea part. Moreover, not very detailed information is given to Delft3D about
the waves. So, the quality of the results towards the North Seaside is lower than in the inlet and basin part of
the area.
Areas where changes in the bed level take place, can lead to variation in model outcomes. An area where a
lot of sediment transport is taking place is expected to be more difficult to simulate than an area where not
much transport is happening. So, the sub-area contains the parts of the area where the bed level differences
in this period are large. This means that the simulation predicts a higher bed level than is observed in 1975. In
the difference plots between the observation in 1975 and in 1970 positive values at the channel location are
shown. This means that in the period 1970-1975 the bed level at that location is increased. There is sediment
transport taking place along or in the channel, so it is an interesting part of the area to use in this research. So,
two lines across the channel are chosen to evaluate the results on. The first line forms a cross-section through
the tidal inlet and the second line forms a cross-section through the channel in the Wadden Sea. The results
will also be evaluated on the tidal flat, which is marked as an area. The lines are shown in the bathymetry and
difference plots in Figure 3.9.
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(a) Bathymetry simulation 1975 (b) Bathymetry observation 1975

(c) Difference observation and simulation 1975. Positive
values show that the simulation predicts a deeper bedlevel
than is observed. Negative values show that the simulation
predicts a shallower bedlevel than is observed.

(d) Difference observations 1975 and 1970. Positive val-
ues show that in 1970 a deeper bed level is observed than
in 1975. Negative values show that in 1970 a shallower
bedlevel is observed than in 1975.

Figure 3.8: Example of results: Bathymetry and difference plots in the Frisian inlet - total area

The two channel locations together are used to optimize the model results for channels. A separate opti-
mization is made for the tidal flat area. Using equations 2.10 and 2.12 the weights for the channel optimiza-
tion and the weights for the flat optimization are calculated. In equation 2.10 the observed bed level in 1975
is used as observation d. One of the 100 simulations is used as mi . The standard deviation of the observed
bed level in 1975, σ, is divided by the factor a as explained in section 2.4. The particle set is expected to reach
its optimized values of αbn in three iterations. So the number of iterations and the factor a are set to three.
When the period 1970-1975 is simulated three times, the results will be discussed. When the steering by the
particle filter is not significant anymore, it is decided to decrease the number of iterations. When the spread
of the 100 particles is less than 1 and the particle filter makes it converge more, it is considered not significant.
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(a) Bathymetry simulation 1975 (b) Bathymetry observation 1975

(c) Difference observation and simulation 1975. Positive
values show that the simulation predicts a deeper bedlevel
than is observed. Negative values show that the simulation
predicts a shallower bedlevel than is observed.

(d) Difference observations 1975 and 1970. Positive val-
ues show that in 1970 a deeper bed level is observed than
in 1975. Negative values show that in 1970 a shallower
bedlevel is observed than in 1975.

Figure 3.9: Example of results: Bathymetry and difference plots in the Frisian inlet with tidal channel cross-section lines and tidal flat
area - sub area

Using equation 2.12 a weight is assigned to each simulation, based on the ratio between the probability
density of the observations given the model state of one particle and the sum of this probability density of
all particles. The two channels are converted to one array, so the processing of the results gives two arrays
with weight. One processed on the data of the tidal flat area and one processed on the data of the channel
cross-sections. For these weights, it is decided which weights are effective. The effective weight is defined
as the ratio between the weight of a simulation and the maximum weight, as shown in equation 3.3. When
the effective weight is above 0.5, the considered particle remains in the particle set. When it is below 0.5, the
particle is not used again. To be able to start the new simulation with 100 particles again, resampling will be
performed on the particles that are above the 0.5 threshold. The number of particles that are discarded, is the
number of resamples that need to be produced.

we f f =
wi

wmax
(3.3)

where:

we f f = effective weight

wi = the weight of the ith simulation

wmax = the maximum weight of all simulations
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The resampling is done using Kernel dressing. Around each remaining particle, a Gaussian distribution will
be set up. This distribution uses the particle αbn value as a mean. The standard deviation of the distribution
needs to be smaller than the standard deviation of the total particle set. It is chosen to set the standard
deviation of one Kernel dress to 0.01 times the standard deviation of the total particle set.
Although it is possible to make an optimization for the channels and the tidal flat, it is decided to proceed
further with the channel optimization only. In this project, there is not sufficient time to perform the total
optimization for both. So, the resulting particles from the channel optimization are started again in 1970.
The results will be processed in the same way.
When three iterations are made in the period 1970-1975, a new set of αbn is found. Then the next epoch
will be started, which is the period from 1975 to 1979. The distribution and initial bathymetry for this epoch
depends on the outcome of the first epoch. When the αbn distribution still shows significant spread, epoch 2
is started using that distribution to set up the particles. In that case, the initial bathymetry is the weighted bed
level average of the last iteration of epoch 1. The weighted average bed level is determined using equation
3.4. The simulated bed level of a grid cell is multiplied with the weight of that simulation. This is done for
each simulation and each grid cell. In this way, a combination is made of the 100 simulations. The weights
used are the weights optimized on the channels, so one bed level average is found. All the data is processed
on the sub-area and not on the total modelled area. The weighted average bed level is also determined for the
sub-area only. To make it suitable to use as an initial bathymetry in Delft3D, the weighted average is opened
in Quickin, an interpolation tool. In Quickin an interpolation is made, to make the data cover the total model
grid again.
When the αbn distribution that results from epoch 1 does not show significant spread, epoch 2 will be started
using the same uniform distribution of αbn as was used in epoch 1. As initial bathymetry, the interpolated
1975 observation will be used.

N∑
i=1

BLi ∗wi (3.4)

where:

N = number of simulations

BLi = the bed level of a gridcell in the ith simulation

wi = weight of the ith simulation
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Results

Subquestion 1

Which parameters induce a significant change in the bathymetry of a morphological model?

4.1. Sensitivity study
The MSESS results are shown in Figures 4.1 to 4.4. As explained in section 2.3, the value of the skill score
ranges from -∞ to 1. A score of 0 means that the prediction is as good as the reference. When there is no
difference between a prediction and observation the skill score is 1. A skill score between 0 and 1 shows
the proportion of improvement over the reference prediction. Negative values are found for predictions that
perform worse than the reference prediction. The skill score for αbn and wave-related bedload sediment
transport factor (BedW) are shown in a separate subfigure, because their values are far from the values of the
other parameters. Note that the scaling on the y-axis differs in the figures and subfigures. The αbn and BedW
results for the skill score are just below 0, when the total area is processed (Figure 4.1a and 4.1b). However,
the optimizations for the sub-area, tidal channel and tidal flat show a further decrease of the negative skill
score values. In Figure 4.4a and 4.4b for the tidal flat height optimization the skill score is around -300 for αbn

and BedW. It seems that the simulations with varying αbn and BedW perform well over the whole area, but
do not perform well when zooming in to specific parts, like the tidal channels and the tidal flats.
The skill score of the other parameters, current related roughness (RDC), wave related roughness (RDW),
wave-related suspended load sediment transport factor (SusW) and tidal amplitude (A), is much larger when
the total area and sub-area are taken into account, than when it is focused on the tidal flat heights or tidal
channel volumes. The order of magnitude of skill score for these parameters andαbn and BedW is equal when
optimized on the tidal flat height and channel volume. In Figure 4.1c to 4.4c, the tidal amplitude results are
deviated from the other parameter skill score results. The SusW, RDC and RDW only show small variations
in the skill score outcomes for the different simulations, whereas the skill score for the tidal amplitude shows
more variation. The variation in skill score for tidal amplitude is smallest for the tidal flat height. One of the
values of the tidal amplitude is 0.7, which is the minimal tidal amplitude. In the total area, sub-area and tidal
channel volume optimization the minimum amplitude scores the best skill score of all tidal amplitude values.
For the tidal flat height optimization, this is the other way around. The minimal value for tidal amplitude
induces the least changes in water and sediment transport of all used amplitude values. Since the skill score
makes use of a zero-change reference the minimal value for amplitude receives a larger skill score than the
other tidal amplitude simulations. For the tidal flat height, the situation is different. In the model, there
is always sedimentation taking place at the island borders, although this is not the case in reality. In the
division between a tidal channel and tidal flat, these parts along the island borders are said to be tidal flats.
Since the minimal tidal amplitude does not predict as much sedimentation at the island borders as the other
values, this gets a smaller skill score than the other tidal amplitude simulations. It is concluded that the tidal
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amplitude does show a lot of variation. However, there is already much knowledge on the tidal amplitude
in the area. This makes it a bit obvious that the tidal amplitude that does not occur frequently gives worse
values for the skill score. Since it is known which tidal amplitudes are less frequent, it is also known that
these amplitudes have larger uncertainty in the bedlevel prediction. Therefore, it is not very useful to use this
parameter in the data assimilation. The other parameters considered in the c-part of the figures are RDC,
RDW and SusW. SusW and RDC do not show enough variation in their performance to be interesting in DA.
Furthermore, the suspended load transport factor, SusW, influences the suspended load which is only a small
amount of the total sediment used in the model. So, it only influences the model results locally. The RDW,
the wave-induced bed roughness, does show some variation.So, now αbn , BedW and RDW need to be further
compared to make a decision.

(a) (b) (c)

Figure 4.1: MSESS total area

(a) (b) (c)

Figure 4.2: MSESS sub-area

(a) (b) (c)

Figure 4.3: MSESS channel volume
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(a) (b) (c)

Figure 4.4: MSESS tidal flat height

In Table 4.1 the variances in the skill score are shown for each processing method for RDW, BedW and
αbn . For each processing method, the parameter with the largest variance is shown in bold text. Although the
RDW shows variations in the skill score results, in Table 4.1 it is seen that its variation is the largest only for
the total area, when compared to the variance in skill score BedW and αbn . The RDW influences parts of the
bed that are changed because of waves. However, in the model set-up, a simplified wave scheme is used. So,
it might be that this parameter mostly influences the North sea area of the model, where the uncertain wave
conditions determine the bed changes. BedW andαbn seem to be better options and since the RDW is mostly
concerned with the influence of waves, RDW is not considered any further. As seen from the bold numbers,
the BedW has the largest variance when optimized on the flat height and the channel volume. The αbn has
the largest variance only when optimized on the sub-area. From these results the BedW would be the most
logical choice to work with, when proceeding in DA. However, the choice between αbn and BedW is made
using the advice of Delft3D users. The advice is to work further with αbn , because this influences the ease
of sediment to travel from the upside of a channel to the centre. In this way, it is an important factor in the
bathymetry of the bed everywhere. Whereas, the influence of BedW is limited to areas where bedload plays
an important role.

Table 4.1: The variance in the skill score results of the various parameters

Variance Total Sub-area Flat height Channel volume
BedW 4.5678e-08 3.5798e-05 4.4715e+03 1.8198e-05
RDW 4.8718e-08 6.4182e-05 16.1798 3.9067e-06
αbn 2.9556e-09 1.4469e-05 76.2348 4.0232e-07

Subquestion 2

How can data assimilation be implemented to optimize a morphological model output based on bed
level measurements?

4.2. Data assimilation
4.2.1. Epoch 1
The results shown in this part of the report are from the simulations performed from 1970 to 1975, started
from the uniform distribution of αbn values. In Figure 4.5 the observed and simulated bathymetries of epoch
1 are shown.
In Figure 4.5c the result of the simulation usingαbn=12.457 is shown. All simulations show an increase in bed
level around the Northern island borders. This is an effect found in each simulation, although it is not seen
in any observation. Trouw et al. [2012] show that this effect found in the model can be avoided by setting
bedload and suspended load factors to zero. Since the simulations are started with an observation of the bed
level as an initial bathymetry, the simulations make a good representation of the bed level. In the simulation,
there are two small channels at the Ameland side of the tidal inlet. In the observations, these are seen as
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well, but they look not so sharp as in the simulation. The same is seen, when comparing the main channel
in the inlet. It seems that the channels in the observation are wider and not as deep as the channels in the
simulation.
In Figure 4.5f the differences between the simulated bed level in 1975 and the observed bed level in 1975
are shown in a plot. This plot would show zero differences when the simulation perfectly predicts the 1975
bed level as it was observed. When there are positive values in the difference plot, shown in orange, this
means that the observed bed level in 1975 is larger than the simulated bed level in 1975. Figure 4.5f shows
positive values at the channel location, which means the bed level of the channel is predicted deeper than it
was observed. In Figure 4.5d the evolution of the bed level according to the observations is shown. Positive
values in this figure indicate sedimentation at that location in the period 1970-1975, whereas negative values
indicate erosion. At the location of the channel, a line of erosion and a line of sedimentation is seen. This
could indicate lateral movement of the channel. A channel moving towards the East, results in a deeper bed
level at the East side of the original channel location. The West side of the new channel will be larger than
before the channel movement, because it is now the side of the channel. So in this area, it could be that the
channel was located at the location shown in orange in Subfigure 4.5d and moved to the location shown in
blue in Subfigre 4.5d.
Figure 4.5e shows the difference between the 1975 simulation result and the 1970 observation. So, this is the
evolution of the bed level in the period 1970-1975 according to the model. This figure would be the same as
Figure 4.5d when the simulation perfectly predicts the 1975 bed level as it was observed.
To see the difference in bed level and their locations better, the cross-sections marked as A-A’ and B-B’ in the
figures are made. The cross-sections for the prior iteration in epoch 1 are shown in Figure 4.7.

(a) 1970 observation (b) 1975 observation (c) 1975 simulation

(d) Difference 1975 and 1970 observa-
tions.
Positives: deeper bedlevel observed in
1970 than observed in 1975.
Negative: shalsmaller bedlevel in 1970
than in 1975.

(e) Difference 1975 simulation and 1970
observation.
Positive: deeper bedlevel in simulation
than observed in 1970.
Negative: shalsmaller bedlevel in simu-
lation than observed in 1970.

(f) Difference 1975 observation and
simulation.
Positive: deeper bedlevel in simulation
than observed in 1975.
Negative: shalsmaller bedlevel in simu-
lation than observed in 1975.

Figure 4.5: Bathymetry and difference plots for epoch 1 - subarea
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Prior

Figure 4.6: Weight as a function of the αbn value for each parti-
cle. Each blue dot represents a particle. The red line represents the
threshold between particles considered relevant (above the line) and
particles that are discarded (below the line).

In figure 4.7a and 4.7b the 1970 and 1975 observa-
tions are shown in purple and green dots, respec-
tively. The lines represent the 100 simulations. The
simulations are close to the observations and the
variation between the simulations is limited to a
few locations. In the tidal inlet cross-section, the
variation between simulations is found between x-
location 15 and 28. At x-location 42 a channel is
found in both, the simulations and in the observa-
tions. However, the predicted bed level of this chan-
nel is almost -35 meter, whereas the observed bed
level is -16 meter at its deepest point. In Figure 4.7b
the variation between the simulation is seen at y-
location 48 to 53 and y-location 62 to 67. The depth
of the predicted and observed channel in cross-
section B is closer to the observation than is shown
in cross-section A. The 1970 and 1975 observed bathymetry in Figure 4.5a and 4.5b show that the channel is
smaller and deeper in the tidal inlet than in the Wadden area. So, the steepness of the channel in the tidal
inlet, might make the bedlevel prediction more difficult. The location that shows variation in the simulations
will influence the weight distribution. In Figure 4.6 the weights that are assigned to the particles are shown.
The red line represents a threshold: all particles above the line are considered relevant and all particles below
the line are discarded. In other words, the effective weight of the particles above the line is above 0.5. By dis-
carding these particles, new particles are needed which are created by resampling. In the figure, the particle
with the maximum weight is shown in yellow and the particle with the minimum weight is shown in purple.
The particle that is shown in red, is a particle with αbn value 63.826. In Figure 4.7c and 4.7d only these three
particles are shown in the cross-section. This shows that the simulation with the maximum weight is closer
to the observations than the simulation which received the minimum weight. The simulation in yellow was
simulated using an αbn of 97.9678 and was assigned the maximum weight. The difference in the simulation
results between these two is found between x-location 16 and 23 in cross-section A and between y-location
60 and 68 in cross-section B. These are only small variations between the red and yellow simulations, which
lead to a significant difference in their assigned weight. A weight is larger when the probability that the obser-
vation is true given the model state is large. So, apparently the small difference in prediction of the bedlevel
results in a change in the probability of the observation being true. A larger weight means that this particle
contributes more to the estimate. The yellow particle is the maximum weight, while the red particle is below
the threshold of relevant particles. In this prior iteration, the maximum weight is assigned to the maximum
αbn value in the distribution and the minimum weight is assigned to the minimum αbn value in the distri-
bution. So, the purple line in Figure 4.7c and 4.7d is the minimum weight and minimum αbn value and the
yellow line is the maximum weight and maximum αbn value.
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(a) Cross-section through the tidal inlet for all simulations
and the observations in 1970 and 1975.

(b) Cross-section of three simulations and the observations
in 1970 and 1975.

(c) Cross-section through the tidal inlet for three simula-
tions and the observations in 1970 and 1975.

(d) Cross-section through the Wadden channel for three
simulations and the observations in 1970 and 1975.

Figure 4.7: Cross-section Wadden channel 1970-1975

Figure 4.8: Weight as a function of the αbn value for each parti-
cle. Each blue dot represents a particle. The red line represents the
threshold between particles considered relevant (above the line) and
particles that are discarded (below the line). After processing prior
simulations of epoch 1.

In Figure 4.9 the resulting distribution of αbn af-
ter resampling is shown. In Figure 4.9a and 4.9c
the result optimized on the channel cross-sections
is shown. In Figure 4.9a the original uniform distri-
bution is shown in blue and the new found distri-
bution in pink. However, the new distribution is in
only a small range so it is not clearly visible. There-
fore, it is also shown separately in Figure 4.9c. In this
figure, the largest frequency is around an αbn of 98.
But some smaller values are found between 84 and
91. And one αbn just below 78 and one of approx-
imately 93. So, the particle filter clearly steers the
model towards larger values of αbn , all values below
78 are not considered anymore in the next iteration.
Note, that the maximum αbn value for the next iter-
ation is larger than the maximumαbn in the original
uniform distribution. By shifting the upper bound-
ary up, it is possible for resamples to have a larger value for αbn . This means that the value of αbn that leads
to a probable bedlevel estimate might be out of the original chosen range for αbn . In Figures 4.9b and 4.9d
the resulting distribution for the tidal flat is shown. It was stated before that it is expected that this area will
not steer the distribution, because no changes take place in the tidal flat area. Apparently, the selected area
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does have some sediment transport taking place, which could be a small amount or on a limited location.
This change in bed level does steer the distribution even more extreme towards values an αbn of around 98.
The weight distribution that leads to this distribution of αbn is shown in Figure 4.8. The distribution of αbn

values as a result of the channel optimization, as shown in Figure 4.9c, is used in the next iteration in epoch
1.

(a) (b)

(c) (d)

Figure 4.9: The frequency of αbn values in the prior distribution (blue) and the distribution used in first iteration (pink). In a) for
optimization on tidal channels and in b) for optimization on tidal flats. Only the distribution for iteration 1 is shown in c) optimized on
tidal channels and d) optimized on tidal flats.
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Iteration 1

Figure 4.10: Weight as a function of the αbn value for each parti-
cle. Each blue dot represents a particle. The red line represents the
threshold between particles considered relevant (above the line) and
particles that are discarded (below the line). After processing first it-
eration simulations of epoch 1.

In Figure 4.11 the cross-sections after the first iter-
ation are shown. A result of the iteration is that the
hundred simulations are now closer to each other.
It seems that by the resampling the worst perform-
ing simulations are filtered out. However, when con-
sidering the deep channel in cross-section A, the
simulations did not get any closer to the observa-
tions. Again in Subfigures 4.11c and 4.11d the cross-
sections for the particles with the minimum weight,
maximum weight and the particle with anαbn value
close to that of the maximum weight particle are
shown. From Figure 4.10 it is seen that the parti-
cle shown in red has an αbn value very close to the
particle with the maximum weight, shown in yellow.
The big difference in their assigned weights is a re-
sult of the small variation in the predicted bed level
as seen in Figures 4.11c and 4.11d. In the assigning
of weights, the difference between simulation and observation is taken into account. So, a simulation can
predict the bedlevel well, but shifted it a bit towards the right. This then results in a small weight and a small
relative importance for that simulation. So, a simulation that is subjectively seen as a good prediction of the
bedlevel, can be seen as a poor prediction by the particle filter. In the prior iteration, it was seen that the
maximum weight was assigned to the particle with the maximum αbn value. In this iteration, this is not the
case.
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(a) Cross-section through the tidal inlet for all simulations
and the observations in 1970 and 1975.

(b) Cross-section through the Wadden channel for all sim-
ulations and the observations in 1970 and 1975.

(c) Cross-section through the tidal channel for three simu-
lations and the observations in 1970 and 1975.

(d) Cross-section through the Wadden channel for three
simulations and the observations in 1970 and 1975.

Figure 4.11: Cross-section Wadden channel 1970-1975

(a) (b)

Figure 4.12: The frequency of αbn values in the first distribution (blue) and the distribution used in the second iteration (pink) for
optimization on tidal channels. In a) both distributions, in b) only the distribution for iteration 2.
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Iteration 2

Figure 4.13: Weight as a function of the αbn value for each parti-
cle. Each blue dot represents a particle. The red line represents the
threshold between particles considered relevant (above the line) and
particles that are discarded (below the line). After processing second
iteration simulations of epoch 1.

In iteration 2 the maximum weight is assigned to the
particle with αbn 98.3111. In iteration 1 the particle
that is assigned the maximum weight has αbn value
97.9145. In previous iterations, the particle with the
minimum αbn value got the minimum weight. This
is different in this second iteration, where the min-
imum weight is assigned to the particle with αbn

98.1383. This is a value that is very close to the
value of the relevant particles that have an effective
weight above 0.5. When considering the maximum
and minimum weight particles in Figure 4.14c and
4.14d, it is seen that the minimum weight particle
simulates two peaks. One peak is located in the A
cross-section at x-location 17 and the other peak is
located in the B cross-section at y-location 67. Since
this simulated peak is not seen in the observed bed
level, this particle receives a small weight. In general
the spread of the weights is decreased in the iterations, which can be seen in the weight distribution shown in
Figures 4.6, 4.10 and 4.13. This is a result of the 100 simulation results that are closer together. This evolution
can be seen when comparing the cross-sections showing all simulations.
In Figure 4.15 the previous and new distribution of αbn values over the particles is shown. This shows that
there is only a small evolution of the distribution of weights in this iteration. One particle moves to a larger
αbn range. This distribution will not be simulated anymore, because the number of iterations for the pro-
cessing of simulations is set to three times within one epoch. The processing to obtain this new distribution
was the third iteration. The number of iterations can not be exceeded, since the factor a, as used in equation
2.10, to process the results was set to 3.
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(a) Cross-section through the tidal inlet for all simulations
and the observations in 1970 and 1975.

(b) Cross-section through the Wadden inlet for all simula-
tions and the observations in 1970 and 1975.

(c) Cross-section through the tidal inlet for three simula-
tions and the observations in 1970 and 1975.

(d) Cross-section through the Wadden inlet for three simu-
lations and the observations in 1970 and 1975.

Figure 4.14: Cross-section channels 1970-1975

(a) (b)

Figure 4.15: The frequency of αbn values in the second iteration distribution (blue) and the distribution used in the third iteration (pink)
for optimization on tidal channels. In a) both distributions, in b) only the distribution for iteration 3.
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End epoch 1

In epoch 1 the results show a convergence of the distribution for αbn values, which is shown in Figure 4.16.
From the distribution in a range between 0.6647 and 97.9678, it converges in three iterations to a distribution
between 83.9910 and 98.5992. So, by applying the particle filter the distribution converges towards the large
values of the initial distribution. The smaller boundary of the distribution moves up considerably in one
iteration, whereas the upper boundary does not change a lot throughout the iterations. In the cross-sections
of the prior simulation, (Figure 4.7), the simulations are far off from the observations at locations of tidal
channels. The combination of the grid resolution with the steep slope, could be a cause of the difficulty
to predict the bed level at these locations. Though, a finer grid is not ideal, because this will increase the
computational cost significantly.

Figure 4.16: The distribution of particles (light blue start) over αbn values (on the vertical axis) for the iterations in epoch 1 (horizontal
axis). The blue dots are the mean of particles.

Table 4.2: Values for αbn in epoch 1

Minimum αbn Maximum αbn Mean αbn

Iteration 0 0.6647 97.9678 49.7111
Iteration 1 77.7216 98.5538 96.2933
Iteration 2 83.9910 98.5877 96.8567
Iteration 3 83.9910 98.5992 96.8610

At the end of the epoch, a weighted average bed level is visualized, which is shown in Figure 4.17a. The
difference between the weighted average bed level and the 1970 observation is shown in Figure 4.17b. This
represents the evolution of the bed level between 1970 and 1975 according to the weighted average bed level
of the simulations at the end of epoch 1.
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(a) 1975 weighted average bed level (b) Difference 1975 weighted average
simulation and 1970 observation. Posi-
tive values indicate a deeper bedlevel in
the 1970 observation.

Figure 4.17: Bathymetry and difference plots for epoch 1.

4.2.2. Epoch 2
The second epoch is started using the same initial uniform distribution of αbn values as is used in epoch
1. By doing so, a comparison between the different epochs is possible. The initial bathymetry given to the
simulation is the 1975 bed level measurements.

Prior

Figure 4.18: Weight as a function of the αbn value for each parti-
cle. Each blue dot represents a particle. The red line represents the
threshold between particles considered relevant (above the line) and
particles that are discarded (below the line). After processing prior
simulations of epoch 2.

In Figure 4.20 cross-section A and B are shown for
the prior simulation in epoch 2. The prediction of
the deep channel in cross-section A is closer to the
observation than was seen in the prior simulation
of epoch 1. The difference between the simulations
and observations is around 2 to 6 meter at the lo-
cation of the deep channel in cross-section A. The
simulations predicted the depth of the deep chan-
nel quite close to the observed depth in both cross-
sections, A and B. In the observed bathymetry of
1979 (Figure 4.19) the width and depth of the chan-
nel are similar in the tidal inlet (cross-section A) and
in the Wadden Sea (cross-section B). This might re-
sult in the predictions performing well for the deep
channel in both cross-sections. The channel is in
both cross-sections not extremely narrow or deep,
as seen in the tidal inlet in the first epoch. The vari-
ation in the simulations is largest at the locations with the smaller channels, which was seen in epoch 1 as
well. In cross-section A the simulations are much closer to the observations at x-location 50 and A’ than in
the prior of epoch 1. The same is the case for y-location B to 48 in cross-section B. At these locations all
simulations predict the observed bed level very well. The cross-sections do not show one simulation that is
performing much better than others, which is also seen in the weight distribution shown in Figure 4.18. This
figure shows that the weights assigned over the particles are quite evenly spread. The weights being more
evenly spread than was the case in the prior iteration of epoch 1 could be a result of less variation in bedlevel
prediction of the simulation. Another cause can be the fact that the simulations are closer to the observations
at the location of the deep channel. Since, the difference between simulation and observation is small, the
probability density of the observations given the model state is large (see equation 2.10). And the difference of
a simulation with the observation will be close to the difference of another simulation with the observation,
because the simulation results are close to each other. This leads to a probability density of observation given
the model state to be close to the probability density for other simulations. In the calculation of the weights
(equation 2.12) this leads to evenly spread weights over the particles. In almost the whole range of the initial
distribution, particles are relevant, except for the values larger thanαbn 70. The larger values are all discarded
in the new distribution. This is an unexpected result, after seeing that in epoch 1 the probability distribution
for αbn was focused around the largest values in the initial distribution.
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Figure 4.19: 1979 observation

(a) Cross-section through the tidal inlet for all simulations
and the observations in 1975 and 1979.

(b) Cross-section through the Wadden inlet for all simula-
tions and the observations in 1975 and 1979.

(c) Cross-section through the tidal inlet for three simula-
tions and the observations in 1975 and 1979.

(d) Cross-section through the Wadden inlet for three simu-
lations and the observations in 1975 and 1979.

Figure 4.20: Cross-section channels 1975-1979
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(a) (b)

Figure 4.21: The frequency of αbn values in the prior distribution (blue) and the distribution used in the first iteration (pink) for opti-
mization on tidal channels. In a) both distributions, in b) only the distribution for iteration 1.
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Iteration 1

Figure 4.22: Weight as a function of the αbn value for each parti-
cle. Each blue dot represents a particle. The red line represents the
threshold between particles considered relevant (above the line) and
particles that are discarded (below the line). After processing the
first iteration simulations of epoch 2.

In the cross-sections shown in Figure 4.23 there is
less variation in the simulation shown at the loca-
tion of the deep channel, when compared to the
simulations shown in Figure 4.20. There is also a
difference between the prior and iteration 1 of this
second epoch, when comparing the locations with
the smaller channel, which is x-location A to 20 and
y-location 65 to B’. In this first iteration, there is a
gap between simulations that predict very shalsmall
channels and simulations that predict very deep
channels. This is best seen between y-location 67
and B’. So, the large values ofαbn that are thrown out
in the previous iteration, were responsible for simu-
lating that bed levels. In Figure 4.22 it is seen that
most particles with an effective weight above 0.5 are
found in the values for αbn above 60. The old and
new distribution for αbn are shown in Figure 4.24.

(a) Cross-section through the tidal inlet for all simulations
and the observations in 1975 and 1979.

(b) Cross-section through the Wadden channel for all sim-
ulations and the observations in 1975 and 1979.

(c) Cross-section through the tidal inlet for three simula-
tions and the observations in 1975 and 1979.

(d) Cross-section through the Wadden channel for three
simulations and the observations in 1975 and 1979.

Figure 4.23: Cross-section channels 1975-1979
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(a) (b)

Figure 4.24: The frequency of αbn values in the first iteration distribution (blue) and the distribution used in the second iteration (pink)
for optimization on tidal channels. In a) both distributions, in b) only the distribution for iteration 2.

Iteration 2
In the cross-sections in Figure 4.26 the simulations that predicted shalsmall channels at the location of the
small channels are not seen anymore. Besides, there is negligible variation in the prediction of the depth of
the deep channel. The shift towards the larger values in the αbn distribution is continued in this iteration. In
Figure 4.25 it is shown that the resulting distribution only contains the αbn values of around 69. This results
in the distribution shown in Figure 4.27, which is spread between 68.9670 and 69.9083.

Figure 4.25: Weight as a function of the αbn value for each particle. Each blue dot represents a particle. The red line represents the
threshold between particles considered relevant (above the line) and particles that are discarded (below the line). After processing the
second iteration simulations of epoch 2.



46 4. Results

(a) Cross-section through the tidal inlet for all simulations
and the observations in 1975 and 1979.

(b) Cross-section through the Wadden inlet for all simula-
tions and the observations in 1975 and 1979.

(c) Cross-section through the tidal inlet for three simula-
tions and the observations in 1975 and 1979.

(d) Cross-section through the Wadden inlet for three simu-
lations and the observations in 1975 and 1979.

Figure 4.26: Cross-section channels 1975-1979

(a) (b)

Figure 4.27: The frequency of αbn values in the second iteration distribution (blue) and the distribution used in the third iteration (pink)
for optimization on tidal channels. In a) both distributions, in b) only the distribution for iteration 3.
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End epoch 2

To have a closer look on the evaluation of the distribution during epoch 2, the αbn distributions of each
iteration is shown in Figure 4.28. This figure and Table 4.3 show that the smallestαbn value of the distribution
remains the same until the last iteration. Whereas the largest αbn value in the first iteration jumps towards
69.5563 and in the next iterations the change of this largest value is negligible.
Epoch 2 shows a convergence of the distribution for αbn values as well. However, it converges to different
αbn values than was seen in epoch 1. The main difference between the first and second epoch is found at
the location of the deep channel in cross-section A. The difference between the simulations and observation
at this location is smaller in epoch 2 than in epoch 1. From the distribution in a range between 0.6647 and
97.9678 it converges in three iterations to a distribution between 68.9670 and 69.9083. The smaller boundary
of the distribution did not move until the last iteration. Whereas the upper boundary moved towards 69 in the
first iteration and did not change a lot after that. The evolution of the boundaries of the distribution in epoch
1 was very different. The upper boundary was large and even ended above the original upper boundary of
the initial uniform distribution. The smaller boundary made a big shift to larger values in the first iteration in
epoch 1. The cause of this difference might be less variation in simulation and a smaller difference between
simulations and observation in epoch 2.

Figure 4.28: The distribution of particles (light blue start) over αbn values (on the vertical axis) for the iterations in epoch 2 (horizontal
axis). The blue dots are the mean of particles.

Table 4.3: Values for αbn in epoch 2

Minimum αbn Maximum αbn Mean αbn

Iteration 0 0.6647 97.9678 49.7111
Iteration 1 0.6647 69.5563 59.4988
Iteration 2 0.6647 69.6624 65.7250
Iteration 3 68.9670 69.9083 69.5622
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(a) 1979 weighted average bed level (b) Difference 1979 weighted average
simulation and 1975 observation

Figure 4.29: Bathymetry and difference plots for epoch 2

4.2.3. Epoch 3
Only two iterations are performed in the third epoch, due to limited time. Note, that factor a in the likelihood
equation 2.10, which equals the number of iterations, is still set to 3. This is done, because the goal was to
perform this epoch also with three iterations. And in this way, though only two iterations are performed, the
results of these first two iterations can be compared with the first two iterations of the previous epoch.

Prior

Figure 4.30: Weight distribution after prior

The locations that were predicted very well in the
prior of epoch 2, are predicted worse in this itera-
tion. These locations are x-location 50 to A’ in Fig-
ure 4.32a and y-location B to 48 in Figure 4.32b. The
prediction of the deep channel in both cross-section
is similar to the prediction made in epoch 2. Again
in Figure 4.31 the bedlevel observation made in 1982
is shown. This shows that the main channel is a bit
smaller in the tidal inlet than in the Wadden Sea.
However, the channel in the tidal inlet is not as nar-
row and deep as seen in the 1970 and 1975 observa-
tion for epoch 1. In the simulations of this iteration,
again there is not one particle that clearly performs
better than the others. However, there is a distribu-
tion of weights found, where larger weights are assigned to the large values of αbn . The weight distribution
shown in Figure 4.30 is very similar to the distribution found in the prior of epoch 1. The difference is that
the weights in this distribution are smaller than the weights found in the prior of epoch 1. In epoch 1 the
maximum weight was close to 0.05, whereas in this distribution the maximum weight is close to 0.03. In Fig-
ure 4.33 the old and new distribution of αbn are shown. This shows that the frequency of the largest peak
decreases from 59 to 49 and the smallest αbn value is discarded. The distribution of values changes a bit, but
in general the distribution for the next iteration does not change a lot.
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Figure 4.31: 1982 observation

(a) Cross-section through the tidal inlet for all simulations
and the observations in 1979 and 1982.

(b) Cross-section through the Wadden inlet for all simula-
tions and the observations in 1979 and 1982.

(c) Cross-section through the tidal inlet for three simula-
tions and the observations in 1979 and 1982.

(d) Cross-section through the Wadden inlet for three simu-
lations and the observations in 1979 and 1982.

Figure 4.32: Cross-section channels 1979-1982
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(a) (b)

Figure 4.33: Distribution of αbn values over new set of particles - prior

Iteration 1

Figure 4.34: Weight distribution after iteration 1

In this iteration, it is seen that using the new distri-
bution the predicted bed levels are closer together.
However, the simulations did not move towards the
observations. The weight distribution in Figure 4.34
shows that all particles below 95 are relevant, except
for the particle with the smallestαbn value. A part of
the particles with the largestαbn values is discarded.
The resulting distribution is still focused on the par-
ticles with a αbn value close to 100. Nevertheless,
there are also smaller value particles left. The largest
weight was assigned to the particle using aαbn value
of 77.1714. So, in the new distribution, there are val-
ues found around 77 as well.
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(a) Cross-section through the tidal inlet for all simulations
and the observations in 1979 and 1982.

(b) Cross-section through the Wadden inlet for all simula-
tions and the observations in 1979 and 1982.

(c) Cross-section through the tidal inlet for three simula-
tions and the observations in 1979 and 1982.

(d) Cross-section through the Wadden inlet for three simu-
lations and the observations in 1979 and 1982.

Figure 4.35: Cross-section channels 1979-1982

(a) (b)

Figure 4.36: Distribution of αbn values over new set of particles - iteration 1
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End epoch 3
The convergence shown in the results of epoch 3, resembles the convergence seen in epoch 1. The evolution
of the distribution of theαbn values is shown in Figure 4.37. The smaller boundary of this distribution makes a
big jump towards 70. The upper boundary of the distribution moves a bit up, but does not make a big change.
The evolution looks like the evolution seen in epoch 1. There it was observed that the smaller boundary
moved up immediately and the upper boundary increased a bit in the first iteration and remained steady in
further iterations. The mean of epoch 3 is approximately 93.5 and in epoch 1 this was approximately 96.8.
The evolution of the distribution seen in epoch 2, was very different.

Figure 4.37: Distribution of αbn for iterations in epoch 3

Table 4.4: Values for αbn in epoch 3

Minimum αbn Maximum αbn Mean αbn

Iteration 0 0.6647 97.9678 49.7111
Iteration 1 70.0343 98.6184 93.529
Iteration 2 70.0343 98.5311 93.5462
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Discussion

In this chapter, the main findings for both subquestions are discussed, together with possible explanations
for these findings. Furthermore, some limitations in the method to answer the questions are mentioned.
In subquestion 1 the main finding is that the considered parameters RDW, BedW, αbn and tidal amplitude
induce a change in the simulated bedlevel.
In subquestion 2 the difference in the resulting αbn distribution in epoch 2 with respect to epoch 1 and 3 is
discussed. The fact that the simulations never perfectly predict the bedlevel is also discussed.

Subquestion 1

Which parameters induce a significant change in the bathymetry of a morphological model?

Findings
The sensitivity study shows that RDW, BedW, αbn and tidal amplitude induce a change in the simulated
bedlevel. The αbn and BedW simulations perform well over the whole area of interest, but the performance
decreases when zooming in to a specific part, like tidal channel volume or tidal flat height. This result can be
used to find similar parameters in other models, which might be an important influence on bedlevel results in
other morphological models as well. The transverse bed slope, αbn , influences the ease for a sediment parti-
cle to travel from the upside of a channel towards the lower centre of a channel. So, this parameter influences
the locations where a slope is present. These locations are the tidal flats and tidal channel locations. This
could be a reason why the skill score gives a worse value for the processing of the plate height and channel
volume. In those areas, changes are taking place in the bed slope, so when the αbn is not the ideal value this
induces wrong predictions at these locations.
Limitations
In the performance of the sensitivity study there were some limitations, that should be considered when
drawing conclusions from the results. So, these limitations are discussed here. To make it possible to perform
sensitivity studies and apply data assimilation within the time limit of the project, the model set-up repre-
sents a simplified version of the Frisian inlet. An increase in detail in the model, for example by using a higher
grid resolution, can lead to more details in the prediction of the bed level. This can make an important dif-
ference on locations where slopes are steep in bedlevel results. However, this will increase the run time and
the data generated as well. So, a trade-off between an investment in time and data storage on the one hand
and more detailed results on the other hand, should be considered before implementing any extra detailed
information in the model.
Examples to make the model more realistic is by giving real data of oceanic conditions, like ERA5, as input to
the model. ERA5 is the latest version of the ECMWF (European Centre for Medium-Range Weather Forecasts)
ReAnalysis by Hersbach [2016], which can be used for wave boundary conditions, wind speeds and atmo-
spheric pressure. Another possibility is to make the bed roughness and sediment composition vary through
the area instead of giving one constant initial value for the total area.
The mean squared skill score was the best suitable option for this research, although there are some dis-
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advantages to using the MSESS on morphological results. Some important disadvantages of the MSESS are
discussed in Bosboom et al. [2014] and Bosboom and Reniers [2018]. In this report, a description is given of
the disadvantages in Appendix A. The first disadvantage of MSESS is the "double penalty". This occurs when
a morphological feature is present in the measurements and is also predicted in the simulation result but at
the wrong location. A second pitfall is the fact that it uses a zero change model as a reference, which results in
better scores for simulations that predict no or small amounts of change. Lastly, the skill score tends to give
higher skill scores with time, which is a result of small spatial scale process that are dominant at the start of a
simulation.
For each of the parameters, ten values within a realistic range are simulated to investigate. The realistic ranges
are known from previous testing or by knowledge about physical processes. The best insight in the sensitivity
of the model is gained, when a lot of simulations with different values within the realistic range are performed.
The ten values that are chosen in this research, is a low number of simulations.
Whether the ten values are enough to capture the sensitivity of the model to the parameter, depends on the
range of possible values. For example, the range for αbn in which the ten values are chosen, is large. There-
fore, sensitivity to the parameter can be missed, because of the gap between two chosen values.
The channel volumes and plate heights were calculated for ten simulations of αbn . The results in appendix
A show a significant difference between the simulation with αbn=10 and αbn=20. For the calculation of the
MSESS extra simulations are performed in this area. The same would be useful in other parameters. For ex-
ample, the suspended load shows a big difference between the 0.2 and 0.3 simulation and between the 0.6
and 0.7 simulation. Although the values for the suspended load is chosen in a smaller range, extra simulations
in these sensitive ranges might give new and more information on the sensitivity. The quality of this study
would benefit from a more thorough sensitivity study to build on, because this gives variable simulation re-
sults to the particle filter. When there are 100 simulations given to the particle filter, but they only cover two
possible outcomes the filter can only use those two outcomes as information. When there are also possible
outcomes between the two options that were considered before, this results in a more nuanced view.

Subquestion 2

How can data assimilation be implemented to optimize a morphological model output based on bed
level measurements?

Findings
This study shows that it is possible to get a better understanding of the distribution of αbn values that leads
to probable bedlevel predictions by applying a particle filter. The application of this method brings the sim-
ulations closer to each other, but the simulations did not get closer to the observations. The finding that the
distribution of αbn values over the 100 simulations changed over multiple iterations, shows that the applica-
tion of the particle filter on a morphological model has an effect. In this research, this was used to calibrate
on the αbn parameter and to draw conclusions on a most probable simulation from a set of bedlevel simula-
tions. As long as the parameter to calibrate influences the state variable that it is optimized on, I expect it is
possible to use a particle filter as a calibration tool.
The three epochs showed different results for the bedlevel prediction and for the resulting distribution of
αbn . A striking difference is the value of αbn in epoch 2 that the distribution converges to. The large values
for αbn are discarded in epoch 2 after the first evaluation. In epoch 1 and 3 these large values are the main
focus of the found αbn distribution. So, there should be a difference in the cross-sections of epoch 1 and 3
compared to epoch 2 that could explain this difference in the αbn distribution. One thing that is different in
the bedlevel predictions made in epoch 2, is the bedlevel at location 50-A’ in cross-section A and at location
B-45 in cross-section B. In epoch 2 the bedlevel at these locations is predicted perfectly, whereas this is not
the case in epoch 1 and 3. Since this is the one thing that is different in epoch 2 when compared to epoch
1 and 3, this might be a cause of the different αbn distribution in epoch 2. This possibility can be tested, by
making the evaluation more detailed on location. An evaluation on sub-parts of the cross-sections will also
give more insight into why the simulations never make a perfect prediction.
Although it was not the purpose of the research to make a perfect bedlevel prediction, a closer look in this
matter can increase the understanding of the parameterαbn and its influence on the performance of the par-
ticle filter. The fact that the simulations never predict the observed bedlevel exactly, might be caused by a
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different αbn value being suitable for different locations at the cross-section. To find out if this is the case,
the division of the area can be made more detailed. For example, the optimization on the tidal channels can
be divided in an optimization on the small channels and an optimization on the main channel. The two op-
timizations might lead to a different distribution of αbn and this can explain why it is difficult to perfectly
predict the bedlevel over a larger area with more different morphological elements.
In epoch 1 and 3 of this research, the difference between observations is larger than in epoch 2, mainly at
the location of the small channels. So, another explanation for the difference in αbn distribution can be that
for periods with more change between the end and initial bed level will lead to larger values of αbn in the re-
sulting distribution. To test this, the method as used in this research can be performed, using synthetic data.
A number of synthetic data can be produced with different bedlevels. Using these data, experiments can be
performed for periods that are exactly the same, except for the initial and end bathymetry. The results can
show if the period with a large difference between initial and end bedlevels lead to high αbn values and the
period with a small difference between initial and end bedlevels lead to lower αbn values.
The method applied in this study calibrated the model mostly towards the higher αbn values of the initial
distribution. It should be taken into account that this can be influenced by the number of particles, which
is 100 in this research. However, the distribution is not perfectly uniform (Figure 3.7), which leads to under-
represented ranges of αbn . For example, around αbn=28, αbn=80 and αbn=94 there are no particles. When
an αbn value in these ranges would lead to a highly probable bed level outcome, it might not be found by the
particle filter. When more particles are used, the distribution is more towards a perfect uniform distribution,
which leads to coverage of all values in the range between 0.5 and 100. This gives a more evenly distributed
particle set to the particle filter to start with. So, by increasing the number of the particles, the chances of
missing a probable parameter value decreases.
Furthermore, the results suggest that a wide and shallow channel is easier to predict than a narrow deep
channel. The simulations in epoch 1 for the deep channel in cross-section A were not predicting the channel
bedlevel well. The observed channel was deep and small. Whereas, in all other cross-sections, this bedlevel
prediction was better and the channel to be predicted was wider and shallower. However, to be certain of this
more experiments should be performed. To test this, again synthetic data could be used. Simulating equal
situations and only varying the width or depth of the channel to be simulated will show what channels are
best predicted by the morphological model.
Limitations
In the particle filter, the difference between the simulated and observed bed level is used to determine the
weights (Section 2.4). In this research, the location where this difference is calculated is not necessarily the
location where the observation is performed. The bed level was interpolated first to use as initial bathymetry.
However, the interpolated values are also used in the observations of the particle filter. So, by using this
interpolated value in the calculation of the likelihood (Equation 2.10), this uncertainty is introduced in the
process. When the exact location of the observation is used, this uncertainty is not introduced. Therefore,
the only uncertainty in the process is that of the simulations and the deviations in the Gaussian uncertainties
of the observation. This makes the added value of the bedlevel observation to the resulting distribution more
valuable.
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Conclusions and recommendations

In this chapter first for both subquestions, the conclusions are presented. These conclusions are followed by
recommendations to further expand or improve this research.

Subquestion 1

Which parameters induce a significant change in the bathymetry of a morphological model?

It can be concluded that the tidal amplitude, RDW, BedW and αbn induce a change in the bathymetry
simulated by Delft3D. The change observed for different values of RDC and SusW is too small to be sig-
nificant. The parameters that are used in model set-ups in other models than Delft3D might be different.
Though, comparable parameters, that influence bed roughness, tidal amplitude, bedload or bed slope, can
be searched for to set up a sensitivity study. This research is not sufficient to draw conclusions if changes are
induced in other morphological models as well.

Subquestion 2

How can data assimilation be implemented to optimize a morphological model output based on bed
level measurements?

This study tells that it is possible to make a finer selection of αbn from a distribution for the modelling of
morphodynamics using a particle filter. The range of αbn of the finer selection depends on the period that is
simulated. By applying this method, the simulations are brought closer to each other, but the simulations did
not get closer to the observations.
The contribution to our understanding of data assimilation for morphodynamic models is that it can be used
as a calibration tool for a specific parameter. This study shows that by applying a particle filter, it is possible
to find a bedlevel outcome with a high probability relative to other bedlevel outcomes, given the model and
observation uncertainties. So, it is possible to calibrate the model in a certain period and area to find the most
probable outcome for the varied setting. The study presents a method that possibly can be used to fine-tune
the bedlevel results in other situations in morphological models as well.
Furthermore, the use of data assimilation in morphodynamic studies can be extended to focus more on the
uncertainties and the evolution of uncertainties in the predictions of bedlevel.
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6.1. Recommendations
1. Delft3D is a model that uses many input parameters to start a simulation and each parameter influ-

ences the end result of the simulation. The fact that only six of the parameters are considered in the
sensitivity study of this research, is a simplification to keep the estimation problem tractable. The sen-
sitivity study as performed in this research can be expanded, to have a better insight into the morpho-
logical model that is considered. For example, more parameters can be taken into account and more
values for these parameters can be used to simulate the bed level. Furthermore, it might be possible to
replace the MSESS by the root mean squared transport error (RMSTE). The RMSTE deals with some of
the disadvantages found using the MSESS. So, making use of this, the quality of the assessment of the
sensitivity results will be better. The RMSTE was not used in this research, because it is just introduced
[Bosboom, 2020].

2. Considering the data assimilation, it would be very useful to conduct research on this topic using a
synthetic experiment as the truth instead of using the observations. Synthetic data is produced by
running simulations. Since it is known what settings are used to produce the synthetic data, it is known
what distribution should be the result of the particle filter. In this way, a better understanding of the
particle filter is obtained, before applying it on actual observations for which it is not known what model
settings would give the result. By first testing the method using synthetic experiments, the conclusions
that are drawn from the process with actual observations will be better understood.

3. The bed level measurement used as the initial bed level is interpolated from a 20x20 meter grid. How-
ever, the measurements are not performed on this 20x20 grid, so these are already an interpolation of
the original measurement location. In each interpolation, uncertainties come in. When the measure-
ments used in data assimilation have lower uncertainties, the posterior uncertainty in the data assim-
ilation results are lower as well. The contribution of the measurements is most reliable and valuable
when they are used at the location where they are measured

4. Baar et al. [2019] show that the high values forαbn , as found in my study, do result in a better prediction
of the bedlevel, but are not realistic. To improve the predictions in these areas using more realistic
values for αbn , a recommendation is to change multiple parameters or to change both the parameter,
αbn , and the state variable, the bed level. In this way, it is easier to bring model predictions and data
closer, because there will be more variation in the simulations. This will result in a distribution of
possible bed levels and their probability of occurrence. However, it will be difficult to detect which
model settings led to each model outcome in this distribution because the αbn and bed level are both
varied.

5. This research has used a particle filter as a data assimilation method, because it is suitable for non-
linear systems and it is relatively easy to implement. To achieve the objective of this research, other
data assimilation methods can be used as well. It can lead to better insights when the same research
is performed using multiple data assimilation methods. For example, a particle filter and an Ensem-
ble Kalman filter can be applied to this model. When the prior densities are assumed to be Gaussian
distributed, the Ensemble Kalman filter can be used to solve the general Bayesian problem as well
[Evensen and van Leeuwen, 2002]. Two different methods might indicate different probabilities for
the possible model outcomes. By understanding the differences between the used data assimilation
methods, a better insight in the probability distribution of the predicted bed levels can be obtained.

6. In this study, it seems that the tidal flats are also able to give information to the particle filter to steer
towards certain simulations. So, it could be interesting to process both, the optimization on tidal chan-
nels and the optimization on tidal flats. In that way, the understanding of the influence of αbn can be
expanded.

7. In this research Kernel dressing is chosen as a resampling method to resample the αbn particles be-
tween consecutive iterations. However, this is not the only possible resampling method. Examples of
other resampling methods are a guided particle filter, a merging particle filter, Gaussian resampling,
localization and a maximum entropy particle filter [Van Leeuwen, 2009]. A study can be performed to
see if there are significant differences in resulting particles when using Kernel dressing compared to
other methods.
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8. The last recommendation is to execute the study on other coast types as well. It might be that αbn in
another range works better at coastal areas that do not have a barrier island setting. The way that the
particle filter will steer in areas with other coast types will give an insight into the connection of αbn

with the bedlevel morphology.

The application of the particle filter in this research, presented some interesting results in the ability of
Delft3D to model tidal channels and on the ability of a particle filter to find simulations with a high probabil-
ity. This research is a valuable step towards more research on the possibility to use data assimilation to find
morphological simulations with low uncertainties. Further research can give more insight in these possibili-
ties by applying other data assimilation methods and by using other morphological models.
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A
Theory
A reason for the popularity of MSESS as a quality measure is the ease to apply it. However, there are also some
disadvantages to using the MSESS on morphological results. Some important disadvantages of the MSESS as
mentioned in Bosboom et al. [2014] and Bosboom and Reniers [2018] will be discussed.
The first disadvantage of MSESS is the "double penalty". This occurs when a morphological feature is present
in the measurements and is also predicted in the simulation result but at the wrong location. In the left
column in Figure A.1 three model predictions are shown: p1, p2 and p3. In the middle column, the observation
is shown. The colours in the figure indicate the bed level. In the observation, it is seen that there is one hill
in the upper right corner of 1 meter. In the first prediction, nothing but a flat surface is predicted. The right
column shows that one error of -1 meter is found. In the second and third predictions there is a hill predicted,
but in the wrong location. In the right column of the second and third predictions, it is seen that this leads to
a double error.
The first error is at the location where the feature is simulated, but should not be. The second error is at the
location where the feature is not simulated, but should have been. This double penalty occurs as soon as the
predicted bar and the observed bar do not overlap. A consequence of this double penalty is a higher value for
the MSESS for the simulation that did not predict the feature. However, a morphologist might judge that the
simulation that predicted the feature at the wrong location is better [Bosboom et al., 2014]. The result is that
the MSESS rewards a simulation that underpredicts the variance in bed level.

Figure A.1: Counter intuitive behaviour of the (R)MSE: double penalty effect and location errors, from [Mol, 2015]

A second pitfall in the use of the MSESS is the fact that it uses a zero change model as a reference. The bed
level change from the start of a simulation to the evaluation time must represent the difficulty of predictions.
For example, take a bar migrating over the sea bed from location A to location B. In the first simulation it mi-
grates from A to B, whereas in the second simulation it migrates from A, via location C, to B. The cumulative
bed changes do not take into account what processes take place during the simulation time. However, the
detour via location C makes it more difficult for a model to make a correct prediction and this should be taken
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in to account in the MSESS.
Furthermore, a combination of larger, persistent scales and smaller, intermittent scales in the cumulative
bed changes can result in an increase of skill with time. At the start of a simulation, the small spatial scale
processes are often dominant. On small spatial scales, the skill scores are often bad. Over time the relative
contribution of these small scales to the cumulative change decreases. This results in higher skill scores when
the simulation time is longer, even though the predictions on these scales are not getting more skilful with
time.

In Bosboom [2020] another error metric is suggested, the RMSTE. In previous researches, this is not yet
used, since it is just introduced. The RMSTE is a measure that takes into account the distance that the sed-
iment needs to travel to be in the correct place. A result is that using the RMSTE makes it possible to dis-
criminate between simulations that predicted a morphological feature at different distances from where it
was observed. The reward of underestimates is also avoided by using the RMSTE [Bosboom, 2020]. When the
sediment needs to be moved over large distances, the RMSTE will be larger than when it has to move over a
smaller distance to end up in the observed location. So, in Figure A.1 the prediction p2 will receive a smaller
penalty than prediction p3.

Results

(a) MSE αbn - total area (b) MSE BedW - total area (c) MSE parameters - total area

(a) MSESS αbn - total area (b) MSESS BedW - total area (c) MSESS parameters - total area

(a) MSE αbn - sub-area (b) MSE BedW - sub-area (c) MSE parameters - sub-area
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(a) MSESS αbn - sub-area (b) MSESS BedW - sub-area (c) MSESS parameters - sub-area

(a) MSE αbn - channel volume (b) MSE BedW - channel volume
(c) MSE parameters - channel vol-
ume

(a) MSESS αbn - channel volume (b) MSESS BedW - channel volume
(c) MSESS parameters - channel vol-
ume

(a) MSE αbn - plate height (b) MSE BedW - plate height (c) MSE parameters - plate height
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(a) MSESS αbn - plate height (b) MSESS BedW - plate height (c) MSESS parameters - plate height

(a) Difference multiple parameters - total channel volume (b) Difference αbn - total channel volume

(a) Difference multiple parameters - median channel vol-
ume

(b) Difference αbn - median channel volume
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(a) Difference multiple parameters - mean plate height (b) Difference αbn - mean plate height

(a) Difference multiple parameters - median plate height (b) Difference αbn - median plate height





B

(a) MF=1, total area (b) MF=1, sub-area

(a) MF=10, total area (b) MF=10, sub-area
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(a) MF=200, total area (b) MF=200, sub-area



C
Name Abbreviation Reference run Range

Current related roughness RDC 0.01 0.005
0.008
0.01
0.02
0.05
0.08
0.1
0.2
0.5
1

Wave related roughness RDW 0.02 0.005
0.008
0.01
0.02
0.05
0.08
0.1
0.2
0.5
1

Tidal amplitude A 1.237 m 0.7 m
1.0999 m
1.125 m
1.15 m
1.175 m
1.2 m
1.225 m
1.25 m
1.275 m
1.2999 m

Table C.1: Parameter names and their abbreviations (1/2)
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Name Abbreviation Reference run Range
Wave-related suspended load sediment transport factor SusW 0.3 0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Wave-related bedload sediment transport factor BedW 1 0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4

Transverse bedload slope αbn 1.5 0.5
1
2.5
5
7.5
10
12.5
15
17.5
20
30
40
50
60
70
80
90
100

Table C.2: Parameter names and their abbreviations (2/2)
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