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Abstract

Background: Disruptions in freight transportation—such as service delays, infrastructure
failures, and labor strikes—pose significant challenges to the reliability and efficiency of
intermodal networks. To address these challenges, this study introduces Adaptive Inter-
modal Transportation (AIT), a resilient and flexible planning framework that enhances
Synchromodal Freight Transport (SFT) by integrating real-time disruption management.
Methods: Building on recent advances, we propose two novel strategies: (1) Reassign with
Delay Buffer, which enables dynamic rerouting of shipments within a user-defined de-
lay tolerance, and (2) (De)Consolidation, which allows splitting or merging of shipments
across services depending on available capacity. These strategies are incorporated into a
re-planning module that complements a baseline optimization model and a continuous
disruption-monitoring system. Numerical experiments conducted on a Great Lakes-based
case study evaluate the performance of the proposed strategies against a benchmark
approach. Results: Results show that under moderate and high-disruption conditions,
the proposed strategies reduce delay and disruption-incurred costs while increasing the
percentage of matched shipments. The Reassign with Delay Buffer strategy offers con-
trolled flexibility, while (De)Consolidation improves resource utilization in constrained
environments. Conclusions: Overall, the AIT framework demonstrates strong potential
for improving operational resilience in intermodal freight systems by enabling adaptive,
disruption-aware planning decisions.

Keywords: adaptive intermodal transportation; freight resilience; disruption management;
(De)Consolidation strategy; delay buffer; optimization modeling; great lakes region;
multimodal network

1. Introduction
The transportation industry is the backbone of the economy, heavily relying on road

transportation due to its flexibility, versatility, and accessibility. However, this unimodal
dominance has significant drawbacks, including air pollution, congestion, and greenhouse
gas (GHG) emissions, which are rising without any sign of reduction [1]. Freight transporta-
tion faces similar externalities, demanding efforts toward sustainability [2]. As a result, four
main strategies for “Green Freight Transportation” have been introduced to alleviate these
externalities: (1) reducing demand; (2) improving vehicle efficiency and transportation
systems; (3) reducing carbon content in fuel; and (4) shifting freight to low-carbon modes
such as rail and inland waterways [3]. Among these, modal shift approaches, particularly
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Synchromodal Freight Transport (SFT), have gained significant attention for their promise
of combining sustainability with real-time, multi-modal flexibility [4].

SFT represents a dynamic and integrated network perspective, wherein multiple trans-
portation modes such as road, rail, and waterways are used flexibly in response to changing
conditions, fostering economic efficiency and environmental benefits [5]. By integrating
real-time information sharing among stakeholders, SFT aims to synchronize transport
modes dynamically, adapting to both supply and demand in an efficient manner [6]. De-
spite its potential, SFT remains vulnerable to disruptions. These may include service delays,
infrastructure failures, labor strikes, cyber attacks, and demand fluctuations [7,8]. Although
SFT is promising for integrated, flexible operations, this paper emphasizes resiliency un-
der disruption. We therefore adopt the concept of Adaptive Intermodal Transportation
(AIT) as an evolution of synchromodality, focused on dynamic re-planning and robust
handling of real-world uncertainties and disruptions. More precisely, AIT builds upon the
core principles of SFT by retaining its multimodal flexibility while explicitly incorporating
real-time disruption management. Unlike traditional SFT, which focuses on dynamic mode
coordination under nominal conditions, AIT introduces proactive re-planning strategies to
enhance network resilience under uncertainty.

Disruptions in freight transportation introduce significant uncertainty into operational
planning. These disruptions can lead to increased costs, delays, and even infeasible plans if
not addressed promptly [9]. Such disruptions can jeopardize the reliability and effectiveness
of transportation plans, highlighting the critical need for robust disruption-management
mechanisms within the SFT framework. While traditional transportation models may rely
on static plans, AIT’s real-time flexibility allows it to dynamically adjust plans, reroute
shipments, and select alternative modes in response to real-time disruptions. This capa-
bility is vital to ensure that SFT remains resilient and reliable in the face of operational
uncertainties [7].

Therefore, addressing these disruptions within AIT networks requires a decision-
making framework that can handle unexpected disruptions. In order to effectively address
transportation disruptions, it is crucial to detect unforeseen events that could cause disrup-
tions and evaluate their potential impact on the logistics network. Recent developments on
re-planning strategy for AIT transportation [10,11] swiftly provide alternative solutions,
which is essential in minimizing disruption-related consequences. Efficient re-planning of
SFT in response to disruptions requires seamless integration of planning, execution, and
continuous monitoring of transportation activities to ensure optimal results [12]. The study
presented here is built upon the framework by [8,10,11] to adapt and advance their current
state of disruption handling. This study contributes to the growing body of SFT literature
by introducing new disruption-handling strategies:

• Introduction of a novel “Reassign with Delay Buffer” strategy that facilitates a more
dynamic response to service delays. This approach allows the decision-makers to ad-
just the conservativeness level of the disruption response based on specific operational
needs. By incorporating flexibility into the delay buffer, the model accommodates
various scenarios, giving stakeholders the ability to tailor the response strategy in line
with their risk tolerance and urgency requirements.

• The formulation of a unique (De)Consolidation re-planning approach specifically
designed for disrupted shipments. To the best of our knowledge, this is the first time
a consolidation and deconsolidation mechanism has been explicitly integrated into
a disruption-response framework. This approach enables the model to determine
the optimal course of action for each affected shipment request, considering whether
to consolidate shipments into fewer services or deconsolidate them across multiple
services based on the available capacity and service constraints.
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The adapted framework in this study consists of three key modules: an offline (base-
line) planning module, a disruption-monitoring module, and an online (re-planning)
module with the new strategies.

The offline (baseline) planning module, based on the previous work of the
authors [8,13], is responsible for generating plans to serve the demand, under the assump-
tion of a deterministic environment where no disruptions are anticipated. This baseline plan
establishes an optimal transportation strategy based solely on static conditions, enabling
the system to function efficiently in the absence of unforeseen events.

The disruption-monitoring module, an extension to the current framework developed
in [10,11], operates continuously to track potential disruptions in service and demand,
considering expanded disruption and delay types that are introduced and used in this
paper. When a disruption occurs, this module assesses its impact by updating information
across the service, demand, and infrastructure dimensions. By assessing the impact of
disruptions, this module ensures that the system remains aware of changes that may affect
the transportation plan.

The online (re-planning) module advances the current work in [10,11] by employing
two new strategies of “Reassign with Delay Buffer”, and “(De)Consolidation” in addition
to the benchmark strategy of “Always Wait”. Each strategy offers a unique approach to
handling disruptions: the benchmark “Always Wait” strategy maintains the existing sched-
ule, allowing for delays as services wait for disruptions to clear, the new “Reassign with
Delay Buffer” strategy reallocates shipments to alternative routes or schedules, allowing for
flexible adjustments within a predefined delay tolerance, and the new “(De)Consolidation”
strategy enables the system to split or combine shipments, optimizing capacity and ensur-
ing continuity despite disruptions.

These three modules are interconnected, allowing the methodology to deliver a coordi-
nated, reactive response to disruptions to ensure that transportation plans remain resilient
and adaptable in the face of dynamic operational challenges.

In summary, this study proposes a modular adaptive intermodal transportation frame-
work that incorporates two new disruption-handling strategies, namely Reassign with
Delay Buffer and (De)Consolidation. The framework advances the literature by explicitly
addressing disruption management and offers practical value by enhancing the resilience
and flexibility of freight transportation networks under uncertainty.

The remainder of this paper is structured as follows: Section 2 reviews the related
literature on AIT transport and disruption management. Section 3 outlines the problem
description, followed by the methodology in Section 4. Section 5 presents the results of the
numerical experiments, providing insights into disruption-management strategies. Finally,
Section 6 concludes with potential future research directions.

2. Literature Review
The concept of SFT and AIT freight transportation has been extensively explored in

the literature from various angles, including service network design, shipment matching,
and the physical internet—a next-generation extension of synchromodal networks. From a
technical standpoint, synchromodal transportation has been modeled and analyzed using
a variety of approaches. Optimization models have been commonly employed to address
challenges in service scheduling, resource allocation, and cost minimization [8,14–18].
Additionally, reinforcement learning models have been applied to enhance decision-making
processes in dynamic and uncertain environments, where adaptive learning can improve
the efficiency of transportation networks [10,19,20]. Simulation models have also been used
to capture the complexities of SFT and AIT systems, providing a virtual testing environment
to evaluate different operational strategies [21–25].
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Comprehensive reviews of these topics have been conducted by [4,26,27], which cover
the advancements and the remaining gaps in AIT transportation research. Despite these
studies, the role of disruption management within operational AIT planning remains an
underexplored area. This gap is critical, as disruptions can significantly impact the robust-
ness and reliability of AIT systems. The following section reviews the existing literature
on disruption-management strategies that have been integrated into SFT frameworks,
highlighting research gaps and the need for further exploration in this domain.

Most studies on disruption management in SFT focus on re-planning and dy-
namically adjusting baseline plans to accommodate disruptions. The primary dis-
tinctions among these studies arise from the specific strategies they implement to re-
spond to disruptions and the types and range of disruptions that they can handle. For
example, Van Riessen et al. [28] examined the effects of disruptions on rail and barge net-
works, proposing a framework to assess whether a service should be canceled based on
the evaluated impact. In a similar vein, Qu et al. [29] developed a Mixed-Integer Lin-
ear Programming (MILP) model to re-plan hinterland SFT by leveraging detour options,
shipment splitting (deconsolidation), and transshipment strategies as adaptive responses
to disruptions.

In the context of port-hinterland container logistics, Hrušovskỳ et al. [7] proposed
a real-time decision-support system for intermodal transportation networks. This sys-
tem combines optimization and simulation techniques to assess disruption impacts and
incorporates multiple strategies for re-planning, including “Always Wait”, “Transship-
ment”, and “Detour”. Additionally, Gao and Liu [30] introduced a bi-level programming
model aimed at enhancing resiliency. The model’s upper level focuses on governmental
decision-making for immediate recovery actions, while the lower level enables trucking
carriers to make optimized decisions regarding routes and freight volumes. Furthermore,
Karam and Reinau [31] presented a model integrating simulation, optimization, and cost-
effectiveness analysis specifically for road freight, with applications in urban distribution
systems. Their work emphasizes the importance of coordinated logistics in response to
disruption events. Durán-Micco et al. [32] expanded on these concepts by employing
an agent-based simulation model to evaluate the resiliency of freight networks under
disruption. Their model re-plans routes and dynamically reroutes affected shipments,
demonstrating the potential of simulation approaches to provide robust responses to unan-
ticipated events. Dewantara [10] utilizes a hybrid discrete-event simulation-optimization
modeling approach to assess the impact of disruptions and generate optimal response
strategies. Additionally, a reinforcement learning agent is trained to select the most suitable
strategy for each disruption, choosing between two primary options: Always Wait and
Always Reassign.

Studies on disruption management in transportation and supply chains can also be
categorized based on how they approach the analysis of disruption impacts. A significant
portion of existing literature focuses predominantly on how disruptions affect service-
related attributes, such as service time and service capacity reduction [10,14,32–40]. While
these aspects are crucial, they only capture a part of the disruption’s influence on trans-
portation networks. However, it is equally important to address the broader implications
of disruptions on infrastructure, particularly on critical nodes such as container terminals
and other intermodal facilities. Disruptions impacting such infrastructure can have cas-
cading effects on the overall network by altering operational features essential for efficient
transport, such as loading and unloading times, container-handling efficiency, and berth
availability. When these operational capabilities are compromised due to a disruption, the
affected node cannot function at its regular capacity, which directly impacts the flow of
cargo. Despite the importance of studying these infrastructure-related impacts, relatively
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few studies have thoroughly examined them. Most research tends to overlook the effect of
disruptions on the physical infrastructure and the subsequent operational and demand-
related consequences [7,29,41–43]. Addressing this gap in future research could provide
a more comprehensive understanding of disruption impacts and inform more resilient
disruption-management strategies.

To the best of our knowledge, the research most closely related to the current study is
the work of [10] and Hrušovskỳ et al. [7]. In the first study, Dewantara [10] developed a
novel simulation-optimization model for synchromodal transportation as an environment
to train a reinforcement learning agent, which aids in selecting the appropriate response to
disruptions. Their approach incorporated two main disruption-handling strategies within
the optimization model: “Always Wait” and “Always Reassign.” However, while effective
as a baseline, these two strategies are limited in their adaptability. The “Always Wait”
strategy results in costly delays when the disruption persists, while the “Always Reassign”
policy lacks flexibility to consider varying levels of service delays. Our study extends this
work by introducing additional strategies—namely, the delay buffer and (De)Consolidation
strategies—which provide more granular control over the disruption response and enable
better optimization of time and cost within synchromodal networks.

In the second study, Hrušovskỳ et al. [7] proposed a disruption-management frame-
work that focused on re-planning strategies, specifically “Always Wait”, “Transshipment”,
and “Reassign”. While their approach effectively demonstrates the importance of re-
planning within a synchromodal context, it primarily leverages the inherent flexibility of
the synchromodal system where transshipment is a readily available option for rerouting
freight. In contrast, our study introduces a delay buffer policy that prepares for delays by
allocating extra time in the planning phase, thus enhancing the resilience of the network
against unforeseen disruptions. Additionally, the (De)Consolidation strategy in our model
allows for adjusting the shipment load dynamically, which is particularly valuable in
high-disruption scenarios, as it facilitates more efficient resource allocation across services
without solely relying on transshipment.

In contrast, the current research introduces the “Reassign with Delay Buffer” strat-
egy, which enhances disruption management by allowing for more dynamic and flexible
decision-making. This delay buffer integrates a temporal margin into the reassignment
process, offering decision-makers the ability to handle disruptions with a clearer under-
standing of potential delays. By incorporating this buffer, the framework becomes more
adaptable to real-time uncertainties and provides more transparency and explanation
behind the decisions made during disruption recovery. Moreover, this study introduces
the new concept of Adaptive Intermodal Transportation (AIT), which is solely focused
on enhancing the resiliency of synchromodal networks by prioritizing robust and flexible
disruption management.

The other key contribution of this research is the introduction of the (De)Consolidation
disruption-handling strategy. To the best of our knowledge, this is the first study in
the field to implement such a strategy within the context of freight transportation. The
(De)Consolidation strategy enables the model to either combine multiple shipment requests
(consolidation) when service limitations exist or split a shipment into multiple services
(deconsolidation) when no single service has sufficient capacity to accommodate the entire
request. This approach is particularly useful when services face varying capacity constraints,
allowing for a more efficient allocation of resources. By offering a structured methodology
for both consolidation and deconsolidation, this research contributes to filling a critical gap
in the literature on freight transportation disruption management.
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3. Problem Description
To implement the AIT concept, this study employs a mode-free booking approach,

based on the prior work of the authors [8,13,44]. The mode-free booking is managed by a
centralized AIT operator, whereby cargo owners delegate the decision-making regarding
transportation mode(s) to the operator based on its comprehensive network preferences.
The platform receives shipment request details from cargo owners on the demand side,
while service information is supplied by service providers on the supply side. Specifically,
shipment request data includes the origin, destination, volume, due time, and release time,
while the service data encompasses the origin, destination, capacity, departure time, arrival
time, transportation mode, and service cost. As illustrated in Figure 1, the platform inte-
grates supply, demand, and infrastructure elements to minimize the overall transportation
utility while considering disruptions.

Upon receiving a shipment request, the platform first assesses available capacity
within the network. If sufficient capacity exists, the platform selects the path that offers the
lowest transportation utility. In cases where capacity is lacking, the shipment request cannot
be met and therefore is rejected. This sequence of operations, which we refer to as baseline
planning, forms the core operational framework of the platform, and the underlying
components and assumptions are summarized below. Parallel to these operations, the
disruption module continuously monitors the network for potential disruptions. When
a disruption is detected, the module promptly updates the affected service, demand,
and infrastructure parameters according to the disruption’s characteristics. Based on
these updates, the platform re-evaluates and adjusts the baseline plan to accommodate
the disrupted items, utilizing designated disruption-handling strategies. The notations
employed in this study are provided in Table 2 for reference.

Figure 1. General overview of the AIT global platform.

3.1. Infrastructure

The platform operates within a network of intermodal terminals, which serve as the
primary infrastructure for freight transport. Let I denote the set of intermodal terminals,
where each terminal i ∈ I is characterized by performance and cost metrics specific to



Logistics 2025, 9, 107 7 of 33

various transportation modes. These metrics include the loading/unloading cost per
container, cL

i , loading/unloading time per container, f L
i , transshipment cost per container,

cT
i , and transshipment time per container, f T

i . Additionally, each terminal is defined by its
storage cost per hour per container, cS

i , transshipment capacity, IT
i , and storage capacity, IS

i .

3.2. Demand

The demand side consists of a set of shipment requests, which are continuously
announced to the platform over time. Each shipment request r ∈ R is identified by key
attributes, including the origin terminal or, destination terminal dr, container volume vr,
announcement time ar (the time at which the platform receives the request), pickup time pr

(when the shipment is ready for pickup at or), due time ur, and penalty per unit time for
delays, cd

r . The platform processes these shipment requests on an hourly basis according to
the announce time, ar, reflecting the operational nature of AIT [45]. Although demand is
inherently uncertain, influenced by factors such as market fluctuations, seasonal demand
variations, and trade patterns, this study assumes the probability distribution of future
shipment requests is known in advance.The set of demand information for each shipment
request r ∈ R is therefore expressed as {or, dr, vr, ar, pr, ur, cd

r }.

3.3. Service

The service side encompasses a set of transportation services, S, each operating on
a specific transportation mode m ∈ M, including marine, rail, and road (truck) services,
represented by s ∈ Smarine ∪ Srail ∪ Struck. Each service s is defined by its origin terminal
os, destination terminal ds, available capacity Ut

s at the decision epoch t, departure time
Ds, transit time ts, arrival time As, cost per container cs, and emissions per container es.
We assume that all travel times are known beforehand. Therefore, for a service s ∈ S, the
service information is specified as {os, ds, Ut

s, Ds, As, ts, cs, es}.

3.4. Disruption

The final element in the problem under consideration is the occurrence of disruptions.
Disruptions can arise from predictable events, such as scheduled rail maintenance, or from
unexpected incidents, including extreme weather conditions or cyberattacks. Each disrup-
tion is characterized by a comprehensive profile, based on the study in [10], detailing its
various properties, including modality, probability, severity, impact location, impact scope,
and the specific network parameters it affects. Additionally, the profile provides informa-
tion on the disruption’s expected duration—specified with lower and upper bounds—and
its annual occurrence probability.

Table 1 presents detailed information on each disruption profile, which is adapted from
the comprehensive framework developed in [10]. However, since the study is conducted in
European ports, there are slight differences when compared to this research. In contrast
to the previously mentioned study, the current research incorporates Cyber attacks and
port congestion as disruption profiles. Cyber attacks are increasingly prevalent security
concerns, and port congestion is particularly relevant given that North American ports are
generally smaller compared to those in Europe. Conversely, the previous study included
disruptions such as high/low water levels and delays in mother vessel arrivals, which are
not considered in our study. The exclusion of high/low water levels is due to regional
meteorological differences, which make these disruptions less relevant. Additionally, delays
in mother vessel arrivals were omitted, as this study does not encompass inland navigation
as part of the transportation network, making this disruption profile less applicable. This
table outlines various disruption scenarios, their characteristics, and anticipated impacts
on freight networks, as analyzed in the cited study. The profiles cover a range of disruption
types, including service delays, infrastructure failures, and capacity constraints, offering a
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detailed basis for assessing the resilience and responsiveness of transportation networks
under stress. By leveraging these disruption profiles, our study builds on established
disruption characteristics to test the effectiveness of adaptive strategies, such as reassigning
with delay buffers and (De)Consolidation, across different levels of disruption severity.

It is important to note that the focus of this research is on reactive strategies for
disruption handling, rather than on the detailed modeling of the disruptions themselves.
Consequently, random scenarios are generated based on the disruption profiles, which
serve as inputs for the disruption module. This approach allows for a robust examination
of how the SFT platform can adapt and maintain operational stability in the presence of
various disruptive events, thereby contributing to improved resilience and reliability across
the transportation network.

Thus, the disruption information for each q ∈ Q is represented as {qm, qp, qs, qi, qc, qst,
qen, qo}, where qm denotes the modality of the disruption, qp represents the probability of
the disruption, qs indicates the severity level, qi specifies the impact location within the
network, qc defines the scope of the impact, qst and qen mark the start and end times of the
disruption, respectively, and qo denotes the annual occurrence probability of the disruption.
The disruption duration, calculated as (qen − qst), is uniformly sampled from the range
[qlb, qub].

Overall, disruptions can impact all the elements previously discussed, namely infras-
tructure, service, and demand. When a disruption affects the infrastructure, specifically a
port, it leads to increased operational efficiency metrics such as loading/unloading times
and transshipment durations, which are delayed until the disruption is resolved. From the
service perspective, disruptions can impact both transportation links and network nodes.
When disruptions affect transportation links, they typically alter travel times across the
network, causing delays in the movement of freight. Conversely, disruptions impacting
network nodes, such as ports or terminals, can lead to increased loading and unloading
times and extended transshipment durations due to operational slowdowns or resource
limitations. On the demand side, disruptions can also significantly influence shipment
scheduling. For example, if port operations are temporarily halted due to a disruption, such
as a labor strike or cyber-attack, the release time of demand may be delayed. This delay in
demand release results from the suspension or reduction of port activities, thereby affecting
the availability of shipments for transport. These combined effects on both the service
and demand sides underscore the critical need for a resilient system that can adapt to
fluctuating conditions and maintain service continuity in the face of disruptions. Potential
disruption impacts are illustrated in Figure 2.
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Table 1. Disruption profiles and related information, adapted based on [10].

Description Modality Probability Severity Impact Location Impact Scope Impacted Parameter LB Duration UB Duration Occurrence
per Year

Labor Strike All Medium High Port Port
Loading/Unloading

Time–Transshipment Time–Request
Release Time

24 96 30%

Port Basin
Congestion Marine High Low Port Route Marine Travel Time 3 12 35%

Terminal Congestion All Low High Port Port
Loading/Unloading

Time–Transshipment Time–Request
Release Time

6 18 45%

Weather Conditions Road High Low Port Port
Loading/Unloading

Time–Transshipment Time–Request
Release Time

6 24 50%

Weather Conditions Rail High Low Road, Marine, Rail Route All Modes Travel Time 6 24 50%

Road Closure Road Low High Road Routes Route Road Travel Time 2 8 35%

Rail Maintenance Rail High Low Rail Routes Route Rail Travel Time 6 18 70%

Road Accident Road High Low Road Routes Route Road Travel Time 1 3 60%

Custom Issues All Low High Transborder Routes Port Request Release Time 4 12 15%

Cyber Attack All Low High Port Port
Loading/Unloading

Time–Transshipment Time-Request
Release Time

12 84 5%

Canal Congestion Marine High Low Marine Canal Routes Route Marine Travel Time 3 24 40%
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Figure 2. Examples of potential impacts of a disruption on the network: (a) Impact on Infrastructure:
The disruption affects the transshipment terminal (Port B), leading to extended transshipment
times, which prevents the transshipment from being completed before the departure of service S2.
(b) Impact on Service: The disruption delays the arrival of service S1 at the transshipment terminal,
thereby hindering the transshipment process before service S2 departs. (c) Impact on Demand: The
disruption impacts the origin port, resulting in an extended demand release time. Consequently, the
demand cannot be released in time to connect with the departure of service S1.

4. Methodology
The methodology proposed in this research is structured and designed to advance

the frameworks by [8,10,11,13] under the three primary modules: the offline planning
module, the disruption module, and the re-planning module. An overview of the proposed
methodology is depicted in Figure 3. Initially, the offline planning module formulates trans-
portation plans, based on the previous work of the authors [8,13], without accounting for
potential disruptions. This phase develops a baseline plan based on the order information,
infrastructure details, and service data, using the AIT freight-optimization model.

Subsequently, the disruption module, an extension to the current disruption module
developed in [10,11], operates as a continuous monitoring system that detects disruptions
across the network, including those affecting network links (e.g., rail or road segments)
or critical nodes (e.g., ports and terminals). Upon identifying a disruption, this module
updates key variables impacted by the event, such as service times, loading and unloading
duration, transshipment times, storage capacity, and release times for shipment requests.
The disruption module is thus responsible for identifying disruptions and assessing their
effects on the network environment.
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Figure 3. Proposed methodology [10,40].

Finally, the re-planning module determines appropriate responses to identified dis-
ruptions by utilizing one of the contributed strategies of this study “Reassign with Delay
Buffer” or “(De)Consolidate” the shipment requests or the benchmark strategy of “Always
Wait”. Each of these strategies provides a different approach to handling disruptions,
ranging from waiting until the network is cleared to adjusting schedules and consolidating
or deconsolidating shipments to maximize resource utilization and minimize delays. In the
sections that follow, each of these modules and their respective components are detailed.

4.1. Baseline (Offline) Planning

A summary of the developed deterministic formulation of the AIT freight transporta-
tion model in [8,13] is presented in this section to facilitate a better understanding of its
integration for matching decisions in the proposed framework. Subsequently, the asso-
ciated heuristic algorithm for feasible path generation is also briefly presented as it will
be used to enhance computational efficiency and reduce solution time in both offline and
online planning modules.

4.1.1. Deterministic AIT Model Formulation

As mentioned in Section 3, we consider a global shipment matching platform under the
AIT concept. According to the described problem (Figure 1), the deterministic mathematical
formulation of the problem is presented as follows (See Table 2 for notations).

min
xt ,yt

(
∑
r∈R

vr(1− yt) + ∑
r∈R

∑
s∈S

csxt
rsur + ∑

r∈R
∑
s∈S

cT
rix

t
rsur + ∑

r∈R
∑
i∈I

cS
i xt

rsS̃s
riur

+ ∑
r∈R

cD
r d̃r

ri + ∑
s∈S

cC
P xt

rscc + ∑
r∈R

cL
riur + ∑

r∈R
∑
s∈S

cEϵk
s xt

rsur

) (1)

Subject to:
yt

r ≤ ∑
s∈S+

or

xt
rs, ∀r ∈ Rt, (2)

yt
r ≤ ∑

s∈S−dr

xt
rs, ∀r ∈ Rt (3)
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∑
s∈S+

or

xt
rs ≤ 1, ∀r ∈ Rt (4)

∑
s∈S−dr

xt
rs ≤ 1, ∀r ∈ Rt (5)

∑
s∈S−or

xt
rs ≤ 0, ∀r ∈ Rt (6)

∑
s∈S+

dr

xt
rs ≤ 0, ∀r ∈ Rt (7)

∑
s∈S+

i

xt
r,s ≤ 1, ∀r ∈ Rt, i ∈ I \ {or, dr} (8)

∑
s∈S−i

xt
r,s ≤ 1, ∀r ∈ Rt, i ∈ I \ {or, dr} (9)

∑
s∈S+

i

xt
r,s = ∑

s∈S−i

xt
r,s, ∀r ∈ Rt, i ∈ I \ {or, dr} (10)

∑
r∈Rt

xt
r,sur ≤ Ut

s, ∀s ∈ S (11)

Ds + B(1− xt
rs) ≥ ar + f L

i ur, ∀r ∈ Rt, s ∈ S (12)

zt
rsp ≤ xt

rs ∀r ∈ Rt, s ∈ S, p ∈ S (13)

zt
rsp ≤ xt

rp ∀r ∈ Rt, s ∈ S, p ∈ S (14)

zt
rsp ≥ xt

rp + xt
rs − 1 ∀r ∈ Rt, s ∈ S, p ∈ S (15)

Ds + ts + 2 f L
i ≤ Dp + B(1− zt

rsp), ∀r ∈ Rt, s ∈ S, p ∈ S, i ∈ I \ {or, dr} (16)

cL
ri = ∑

s∈S+
i

cL
i xt

r,s, ∀r ∈ Rt, i = or (17)

cL
ri = ∑

s∈S−i

cL
i xt

r,s, ∀r ∈ Rt, i = dr (18)

cT
ri = ∑

s∈S+
i

∑
p∈S−i

cT
i zt

rsp, ∀r ∈ Rt, i ∈ I \ {or, dr} (19)

S̃s
ri = max(0, xt

rs(Ds − ar − f L
i ur)) ∀r ∈ Rt, s ∈ S, i = or (20)

S̃p
ri = max(0, zt

rsp(Drp − Drs − ts − 2 f L
i )) ∀r ∈ Rt, s ∈ S, p ∈ S, i ∈ I \ {or, dr} (21)

S̃s
ri = max(0, xt

rs(er − Ds − ts − f L
i )) ∀r ∈ Rt, s ∈ S, i = dr (22)

d̃s
ri = max(0, xt

rs(As + f L
i − er)) ∀r ∈ Rt, s ∈ S, i = dr (23)

∑
r∈R

xt
rsSt

ri ≤ IS
i , ∀i ∈ I (24)

∑
r∈R

∑
s∈S

∑
p∈S

zt
rspUrs ≤ IT

i , ∀i ∈ I (25)

The objective function (1) attempts to maximize the number of matches and mini-
mize the total transportation cost which includes seven terms: the first term enforces the
model to match shipment requests as many as possible. The second term determines the
transportation cost, the third term denotes transshipment cost, the fourth term accounts
for storage cost, the fifth term shows the delay penalty costs, the sixth term computes
canal-crossing cost (cC

P is euqal to one for the routes and services that containts one or
more marine service(s) that passes through a canal), the seventh term represents the load-
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ing/unloading cost, and the final term is the monetary value of emission based on service
emissions and carbon tax.

Constraints (2) and (3) guarantee the platform accepts requests only if there are avail-
able services departing from the request’s origin and arriving at the request’s destination,
respectively. Constraints (4) and (5) check that at most one service matches with request
r ∈ Rt with the same origin and destination, respectively. Constraints (6) to (9) are re-
sponsible for eliminating subtours from the solution in which constraints (7) and (8) are
designed to remove the subtours from shipment request origin and destination, respectively.
Moreover, constraints (9) and (10) are designed so that each itinerary must have one origin
and destination. Constraint (10) ensures flow conservation at transshipment terminals.
Constraint (11) ensures that the total amount of containers matched with service s ∈ S
does not surpass the service available capacity at the decision epoch t ∈ T. Constraint (12)
guarantees that the departure time of service minus loading time (based on container
volumes) should be earlier than the request release time, for matched requests and ser-
vices. B is a large number to make the constraint valid when a request is matched with a
service (i.e., xt

rs = 1). Constraints (13)–(15) maintain the logic of the transshipment problem
through binary variables xt

rp and zt
rsp. The first one denotes the potential service p ∈ S that

could be matched with service s ∈ S at ds where the destination of the transshipment ser-
vice is similar to the request destination (i.e., dp = dr). The binary variable zt

rsp equals 1 if
and only if xt

rs = 1 and xt
rp = 1 indicating that the transshipment occurred between service

s and p. Constraint (16) ensures the temporal feasibility of transshipment at the interme-
diate terminal. Constraints (17) and (18) calculate the loading and unloading cost at the
origin and destination of the request, respectively. Constraint (19) determines the trans-
shipment cost including both loading and unloading costs at the transshipment terminal.
Constraints (20)–(22) are designed to calculate storage cost. Constraint (20) determines
the storage cost at the origin terminal. Constraint (21) computes the storage cost at the
transshipment terminal, and constraint (22) determines the storage cost at the destination
terminal. Constraint (23) determines the delay time at the destination intermodal terminal
of the request. The final two constraints focus on managing the available infrastructure
resources. Constraint (24) ensures that the total amount of storage used at any terminal
does not exceed the terminal’s storage capacity. Constraint (25) ensures that the total
transshipment operations at any transshipment terminal do not exceed the terminal’s
transshipment capacity.

Table 2. Notation used throughout the paper.

Notation Description

Sets:
I Intermodal terminals
R Shipment requests
Q Disruptions
Rt Requests received during time interval (t− 1, t], t > 0
R̂ Updated requests after disruption
Ŝ Updated services after disruption
M Transportation modes: {marine, rail, truck}
V Vehicles: V = Vmarine ∪Vrail ∪Vtruck
S Services: S = Smarine ∪ Srail ∪ Struck
Sm Services using mode m ∈ M
S+

i Services departing from terminal i ∈ I
S−i Services arriving at terminal i ∈ I
S+t

i Services departing from terminal i in time (t− 1, t]
S−t

i Services arriving at terminal i in time (t− 1, t]
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Table 2. Cont.

Notation Description

Parameters:
∆ Duration of each time interval
T Length of the planning horizon
H Confidence level
ξ Uncertainty level
γ Coverage level (conservatism)
H Prediction horizon length
or, dr Origin and destination terminals of request r ∈ R
vr Penalty for unmatched request r
ur Volume of request r (in containers)
ar, pr, er Announce, pick-up, and due times of request r
cd

r Delay cost per container-hour overdue
os, ds Origin and destination terminals of service s
ts Travel time of service s
ms Mode of service s, ms ∈ M
Ut

s Free capacity of service s at time t
cs Travel cost per container of service s
cS

i Storage cost per container at terminal i
cC Canal crossing cost (marine only)
es Emissions per container for service s
mv Mode of vehicle v
iv, tv Itinerary of vehicle v, sequence of services tv ⊆ S
Ds, As Scheduled departure and arrival times of service s
cL

i , f L
i Loading cost and time per container at terminal i

cT
i , IT

i Transshipment cost and capacity at terminal i
IS
i Storage capacity at terminal i

qm, qp, qs Modality, probability, severity of disruption q ∈ Q
qi, qe Impact location and scope of disruption q
qlb, qub Lower/upper bound of disruption duration
qo Annual occurrence of disruption
f c
i , f d

i Consolidation/deconsolidation time per container
cc

ci, cd
di Consolidation/deconsolidation cost per container

cmax
di Max number of deconsolidation services

δ Delay buffer threshold
Random Variables:
qst, qen Start and end time of disruption q
Decision Variables:
yr

t 1 if request r is accepted at time t, 0 otherwise
xrs

t 1 if request r is matched with service s at time t
xrp

t 1 if r is matched with transshipment p at time t
PR

r Path assigned to request r
zt

rsp 1 if r uses both s and transshipment p at t
cC

P 1 if path PR
r includes canal crossing

cT
ri Transshipment cost at terminal i for request r

S̃s
ri Storage time at terminal i for request r using service s

d̃s
ri Delay at terminal i for request r using service s

ac
r , ad

r , ncr Binary indicators for consolidation, deconsolidation, or no action
Auxiliary Variables:
nrs Intermediate variable for ncr · xrs
kc

rs, kd
rs Intermediate variables for consolidation/deconsolidation

wrs Weighted storage time for non-consolidated flow
vc

rs, vd
rs Weighted delay for consolidated/deconsolidated flow
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The formulation of our model draws inspiration from the methodologies presented
in [8,15], but it introduces distinctions. The study by [15] assumes unlimited truck availabil-
ity and models road travel time using a normal distribution, framing the problem within a
stochastic programming context. This approach simplifies certain operational elements,
as it omits infrastructure constraints such as terminal storage and transshipment capacity.
Additionally, ref. [15] does not account for canal crossing cost in the objective function, an
important factor in freight transportation networks where such transshipment points can
incur substantial fees.

The study in [8] takes a different approach by treating road travel time as an uncertain
factor modelled by a machine learning-based prediction model, formulating the problem
through a robust optimization framework to mitigate the impact of variability in travel
durations. Uncertain travel times can shift delivery windows and disrupt planned trans-
shipments, thus affecting both route feasibility and service reliability. This deterministic
approach allows for a clearer assessment of the disruption-handling strategies without
the added complexity of uncertain travel times, enabling a more focused analysis of delay
buffers and (De)Consolidation policies within a controlled environment.

Overall, while both previous studies offer valuable insights into synchromodal op-
timization under different assumptions, our model is uniquely positioned to explore the
effects of deterministic travel times and operational constraints on disruption-management
policies, providing a more grounded understanding of how these factors interact in a struc-
tured transportation network. This mathematical model applies optimization, specifically
tailored for an AIT shipment matching problem. The objective function has been enhanced
with a “canal crossing” cost component, reflecting the specific requirements of our case
study. Furthermore, the formulation includes constraints related to infrastructure resource
limitations, specifically terminal storage capacity and terminal transshipment capacity
(Constraints (24) and (25)), ensuring the model’s applicability to real-world scenarios where
such limitations are critical.

4.1.2. Feasible Path Generation Preprocessing-Based Heuristic Algorithm

Constraints (12)–(16) and (20)–(22) serve to verify the creation of paths (combinations
of services), ensure the temporal feasibility of these paths, and compute the transshipment
and storage costs at the transshipment terminals. These constraints considerably expand
the solution search space, thus increasing the model’s computational complexity. To
mitigate this complexity, a preprocessing algorithm is designed to evaluate the feasibility
of path creation.

The preprocessing algorithm for feasible paths is described as follows: A path p is
defined as a sequence of services. A path p is deemed viable if the services within the
path meet time-spatial compatibility requirements. For two consecutive services si and
si+1 within path p, the destination of service si must coincide with the origin of service
si+1 (i.e., dsi = osi+1). Additionally, the arrival time of service si plus the unloading time
at dsi must be earlier than the departure time of service si+1 minus the loading time at the
transshipment terminal. The term Npath refers to the maximum number of services in a
path. Let P denote the set of feasible paths, and Pl

ij represent the set of feasible paths with l
services departing from terminal i and arriving at terminal j.

The pseudocode for preprocessing feasible paths is illustrated in Algorithm 1. The
algorithm begins by identifying the feasible paths for each origin-destination pair with
just one service, and then iteratively combines these paths with additional single ser-
vices to generate feasible paths with two services, three services, and so forth, until the
number of services reaches Npath. To verify whether a new path Ω = [s1, . . . , si, sj] ∈ Pl

ij,

consisting of a feasible path p = [s1, . . . , si−1, si] ∈ Pl−1
ij and a service sj ∈ Sj, is feasi-
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ble, the algorithm checks the transshipment feasibility between services si and sj using
constraints (16) and (17), assuming xrs = 1, xrq = 1, which implies zrsp = 1 (satisfying
constraints (13)–(15)). Subsequently, the algorithm checks for the presence of sub-tours
within the feasible path p ∈ P and eliminates paths containing sub-tours. Finally, the
transshipment cost is calculated using constraint (19).

Algorithm 1 Feasible path generation algorithm

Input: Intermodal Terminals I, Services S, Npath, index l ∈ {1, 2, . . . , Npath}, Storage
Cost , Transshipment Cost
Output: Feasible paths {Pl

ij} where i, j ∈ I, l ∈ {1, . . . , Npath}.
Initialize: Let P← ∅, l ← 1.
Checking Spatial Feasibility:

1: for i ∈ I and j ∈ I do
2: for service s ∈ S do
3: if os ̸= i and ds = j then
4: Pl

ij ← Pl
ij ∪ {s}

5: l ← l + 1
Checking temporal Feasibility (constraints (16) and (25)) and Storage feasibility at
transshipment terminal (Constraint (24)):

6: while l ≤ Npath do
7: for i ∈ I and j ∈ I do
8: for service s ∈ S do
9: if os ̸= i and ds = j then

10: for p ∈ Pl−1
ij do

11: if transshipment between services sl−1 and s is possible then
12: Pl

ij ← Pl
ij ∪ (p ∪ {sl , ..., sl−1, s})

13: l ← l + 1
Removing subtours:

14: for intermodal terminal i ∈ I, intermodal terminal j ∈ I, index l ∈ {1, . . . , Npath} do
15: for path p ∈ Pl

ij do
16: for service s ∈ p do
17: if ds = i or os = j then
18: Pl

ij ← Pl
ij \ {p}

19: for service s ∈ p, q ∈ p do
20: if os = oq then
21: Pl

ij ← Pl
ij \ {p}

Calculating transshipment cost (constraint (19)):
22: while k ≤ m = len(Pij) do
23: for k ∈ m do
24: transshipment cost Pk

ij = (len(Pl
ij)− 1)*cT

i

4.2. Disruption Module

The disruption module, which is an extension to the current disruption module devel-
oped in [10,11], plays a pivotal role in the real-time monitoring and adaptive management
of disruptions within the transportation network. Upon detecting a disruption, the module
evaluates its impact by referencing detailed disruption profiles outlined in Table 1. This
evaluation process involves identifying the specific services and network nodes affected,
based on the disruption’s characteristics, including modality, impact scope, and duration.
When a disruption impacts a transportation service, the module updates both the departure
and arrival times for the affected service, adjusting for delays and ensuring that these ad-
justments are consistent with the disruption’s timeline. Conversely, if the disruption affects
a network node, such as a port or terminal, the module updates the node’s operational
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parameters. Specifically, it modifies loading/unloading times and transshipment durations
to align with the disruption’s severity and duration. This ensures that all operational
adjustments accurately reflect the disruption’s impact on the network.

One of the key distinctions of the disruption module in this study, compared to
that of the previous work [10,11] is that the disruption modulel triggers the feasible path
generation algorithm to ensure that routing decisions remain accurate and account for all
relevant constraints. The feasible path generation algorithm was designed to construct
paths by combining available services and verifying capacity and temporal feasibility for
transshipment. Whenever there are updates to service schedules or node parameters, this
algorithm dynamically reassesses path feasibility , by recalculating paths based on the
latest service and infrastructure information. This process of re-evaluation and adaptation
supports the AIT system’s ability to respond dynamically to disruptions, thereby enhancing
the network’s resilience and robustness in maintaining service continuity. The psudocode
of the disruption module is presented in Algorithm 2.

The disruption impact-assessment algorithm systematically categorizes disruptions
based on whether they affect services or nodes. For service disruptions, it checks the
relationship between the disruption period and the service’s departure and arrival times.
If the service departs within the disruption period but arrives afterward, the algorithm
adjusts the departure time to the disruption’s end and recalculates the arrival accordingly.
If the service arrives within the disruption period but departs earlier, only the arrival time is
adjusted. In cases where both departure and arrival fall within the disruption duration, the
algorithm sets the departure to the disruption’s end and recalculates the arrival based on
the revised schedule. For node disruptions, the algorithm increases loading/unloading and
transshipment times for the affected node by the duration of the disruption. Additionally, it
identifies shipment requests originating from the disrupted node and adjusts their release
times to align with the end of the disruption, thereby ensuring that shipments are only
released once normal operations have resumed.

To further assess the impact of disruptions, the module evaluates the entire trans-
portation network under adjusted conditions, providing a comprehensive view of how
delays and operational adjustments propagate throughout the system. This evaluation
involves re-examining the viability of transport paths by re-running the path generation
process specifically for paths that include disrupted services and matched shipment re-
quests impacted by delays. In the “Always Wait” strategy, the path generation algorithm
checks the feasibility of each path for updated shipment requests and delayed services.
This involves adjusting path attributes based on newly available information, such as
altered service schedules and extended delivery times, ensuring that paths remain feasible
given the current network conditions. For the “Reassign with Delay Buffer” strategy, the
path generation algorithm takes a more proactive approach by first filtering out services
experiencing delays that exceed the defined delay buffer threshold. By excluding exces-
sively delayed services, the algorithm ensures that only reliable and timely services are
considered in the re-planning process. Once these adjustments are made, the algorithm
proceeds to generate feasible paths that prioritize resilience and efficiency. This selective
path generation approach not only reduces the risk of further delays but also optimizes
resource utilization by preventing the assignment of disrupted services to time-sensitive
shipments. This approach enables decision-makers to visualize potential bottlenecks and
identify areas where resilience strategies are most needed. The insights gained from this anal-
ysis not only facilitate immediate responses to the current disruption but also help to inform
longer-term strategies for improving the network’s overall resilience to future disruptions.
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Algorithm 2 Disruption module algorithm

Input: Set of Services S, Set of Shipment Requests R, Set of Disruptions Q
Output: Updated Services S, Updated Shipment Requests R, Feasible Paths P

1: Initialize: S← S, R← R, P ← ∅
2: for disruption q ∈ Q do
3: Check Disruption Type:
4: if qc indicates a service impact then
5: for service s ∈ S do
6: if s is affected by q then
7: if the departure time of s lies within [qst, qen] and the arrival time is after

qen then
8: Update the departure time of s: Ds ← qen
9: Update the arrival time of s: As ← Ds + ts

10: else if the departure time of s lies before qst and the arrival time lies
within [qst, qen] then

11: Update the arrival time of s: As ← qen
12: else if both the departure time and arrival time of s lie within [qst, qen]

then
13: Update the departure time of s: Ds ← qen
14: Update the arrival time of s: As ← qen + ts
15: else
16: Update the departure time of s: Ds ← Ds + (qen − qst)
17: Update the arrival time of s: As ← As + (qen − qst)

18: Mark service s as impacted and associate it with disruption characteristics
of q in S

19: else if qc indicates a port impact then
20: for node n (e.g., port or terminal) do
21: if n is impacted by q then
22: Update loading/unloading time: f L

n ← f L
n + (qen − qst)

23: Update transshipment time: f T
n ← f T

n + (qen − qst)
24: for shipment request r ∈ R where or = n do
25: if the release time pr of r lies within [qst, qen] then
26: Adjust the release time of r: pr ← qen
27: Mark shipment request r as impacted in R and associate it with

disruption characteristics of q
Path Generation for Impacted items:

28: for each origin-destination pair (o, d) in N do
29: Generate feasible paths Pod by combining available services in S
30: for each transshipment within Pod do
31: Check capacity and temporal feasibility under the updated service and node

conditions
32: if path Pod is feasible with the updated information then
33: Add Pod to the set of feasible paths P
34: Return: Updated Services S, Updated Shipment Requests R, Feasible Paths P
35: Finalize decisions for intact shipment requests and services
36: Book capacity for matched items that are not impacted by disruptions

4.3. Re-Planning (Online Planning) for Disruption

The re-planning, or online planning, module serves as the core component of the
methodology, by employing two new strategies of “Reassign with Delay Buffer”, and
“(De)Consolidation”. The overall conceptual framework of the re-planning module is built
upon the work in [10,11] and advancing them by introducing and evaluating the new
strategies of “Reassign with Delay Buffer”, and “(De)Consolidation” in addition to the
benchmark strategy of “Always Wait”. Each strategy offers a unique approach to mitigating
the effects of disruptions, catering to different operational needs and resilience strategies.
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The following sections provide a detailed explanation of each strategy, highlighting their
respective mechanisms and decision-making processes for handling disruptions in the
freight transportation network.

4.3.1. Reassign with Delay Buffer

The “Reassign with Delay Buffer” strategy provides a balanced approach to handling
disruptions by allowing affected services to be delayed up to a specified threshold before
rerouting is considered [Algorithm 3]. This strategy starts by assessing each service’s
route against any active disruptions. If a disruption affects a service, the delay incurred
by the disruption is calculated, and the service’s departure and arrival times are adjusted
accordingly. The delay is then compared to a predefined threshold, representing the
maximum allowable delay. If the delay falls within this buffer, the service is retained as
available, ensuring continuity with a minor tolerance for delay. However, if the delay
exceeds the threshold, the service is marked as unavailable, signaling that rerouting is
necessary to avoid unacceptable delays.

Following the delay evaluation, the algorithm filters out unavailable services and
reconstructs feasible paths using only the remaining available services. By generating paths
based on this updated set, the platform effectively adapts to disruption impacts while
maintaining service reliability within the constraints of the delay buffer. Shipment requests
are then matched to feasible paths through an optimization model that aims to minimize
costs or maximize efficiency, considering updated service capacities and timelines. This
approach enhances the resilience of the transportation network, allowing for a measured
tolerance of delays without sacrificing overall service performance. By incorporating a
delay buffer, the strategy provides flexibility in responding to disruptions while ensuring
that the service network remains robust and capable of meeting delivery requirements.

To evaluate the flexibility of the Reassign with Delay Buffer strategy, we tested
three delay-tolerance thresholds: 2, 4, and 6 h. These values represent varying levels
of operational conservatism, with lower thresholds triggering faster reassignment and
higher thresholds allowing more delay absorption. The selected range reflects typical time
intervals observed in intermodal freight operations and enables a structured sensitivity
analysis of the strategy’s responsiveness. These threshold values are not intended to be
prescriptive and should be adapted based on the specific characteristics and requirements
of the application setting.

Algorithm 3 Reassign with delay buffer strategy

Input: Updated Set of Impacted Shipment Requests R̂, Updated Set of Impacted Services Ŝ, Set of Disruptions
Q, Delay Threshold δ, Planning Horizon T
Output: Acceptance decision {yt

r}r∈R̂, Matching decision {xt
rs}r∈R̂,s∈Ŝ, Objective function (minimized cost)

1: Initialize Supdated ← Ŝ ▷ Start with the updated services set
2: for each decision epoch t ∈ T do
3: Apply updates to service and node parameters (see Algorithm 2) for all affected services in Ŝ and shipment

requests in R̂
4: for each service s ∈ Ŝ do
5: if sdelay > δ then
6: Supdated ← Supdated \ {s} ▷ Remove service if delay exceeds threshold
7: else
8: continue ▷ Keep service if delay is within threshold
9: Generate feasible paths based on updated information for impacted services Ŝ (see Algorithm 1)

10: Solve the optimization model for updated shipment requests R̂ to minimize the cost (see Section 4.1.1)
11: Acquire acceptance and matching decisions by solving the optimization model, resulting in {yt

r}r∈R̂ and
{xt

rs}r∈R̂,s∈Ŝ
12: Update free capacity of services in Ŝ based on the matching decision {xt

rs}
13: Calculate the total cost for decision epoch t of the planning horizon T
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4.3.2. (De)Consolidation

This disruption-handling strategy centers on two primary strategies: consolidation
and deconsolidation. In the case of consolidation, the model attempts to combine multiple
shipment requests onto a single or limited number of services. This approach is particularly
effective when there are constraints on service availability, allowing the model to optimize
resource utilization by grouping shipments. Consolidation can streamline operations,
reduce overall transportation costs, and alleviate service shortages by maximizing the use
of available capacity on fewer services. Conversely, the deconsolidation strategy involves
splitting a single shipment request across multiple services. This option becomes essential
when no individual service has sufficient capacity to accommodate the entire shipment
request. The model addresses service capacity limitations by splitting large shipments
across multiple services. This approach ensures timely delivery even when no single service
can accommodate the entire request. Deconsolidation thus enables greater flexibility in
service selection, allowing the model to leverage the cumulative capacity of multiple
services rather than depending on a single service.

Together, these strategies provide a robust framework for managing disruptions within
a freight network. Consolidation addresses scenarios where service availability is restricted,
while deconsolidation facilitates efficient shipment handling when the network offers
multiple services, none of which independently meet the shipment’s capacity needs. This
dual approach enhances the model’s ability to adapt to changing operational conditions
and makes the transportation system more resilient to disruptions. To operationalize this
strategy, an optimization model has been formulated to derive the necessary decisions
for handling disruptions. This model systematically evaluates consolidation and decon-
solidation options by analyzing service capacity, shipment requirements, and network
conditions. By incorporating constraints and objective functions tailored to the specific
needs of consolidation and deconsolidation, the model ensures that each decision aligns
with overall operational goals.

The objective function presented in Equation (26) builds upon the deterministic ob-
jective function outlined in Equation (1), sharing the first eight terms. These initial terms
encompass the primary costs associated with the AIT shipment matching process, including
the penalties for unmatched requests, transportation costs across services, transshipment
costs, storage costs, delay penalties, canal-crossing costs, loading/unloading costs, and
emission costs. In addition to these fundamental terms, two additional components are in-
troduced to explicitly account for the operational costs of consolidation and deconsolidation.
These latter terms model the handling costs incurred when shipments are consolidated or
deconsolidated at terminals, capturing the expenses tied to the time and labor required for
these processes. The consolidation cost term represents the additional costs for combining
smaller shipments into larger ones at specific points in the network, while the deconsoli-
dation cost term reflects the disaggregation of shipments upon reaching transshipment or
final destinations.

min
xt ,yt

(
∑
r∈R̂

vr(1− yt) + ∑
r∈R̂

∑
s∈S

csxt
rsur + ∑

r∈R̂
∑
s∈S

cT
rix

t
rsur + ∑

r∈R̂
∑
i∈I

cS
i xt

rsS̃s
riur

+ ∑
r∈R̂

cD
r d̃r

ri + ∑
s∈S

cC
P xt

rscc + ∑
r∈R̂

cL
riur + ∑

r∈R̂
∑
s∈S

cEϵk
s xt

rsur

+ ∑
r∈R̂

ac
rurcc

ci + ∑
r∈R̂

ad
r urcd

di

) (26)

Subject to:
ac

r + ad
r + ncr = 1, ∀r ∈ R̂ (27)
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∑
r∈R̂

xrs · ur ≤ Us, ∀s ∈ S (28)

nrs ≤ ncr, ∀r ∈ R̂, s ∈ S (29)

nrs ≤ xrs, ∀r ∈ R̂, s ∈ S (30)

nrs ≥ ncr + xrs − 1, ∀r ∈ R̂, s ∈ S (31)

kc
rs ≤ ac

r , ∀r ∈ R̂, s ∈ S (32)

kc
rs ≤ xrs, ∀r ∈ R̂, s ∈ S (33)

kc
rs ≥ ac

r + xrs − 1, ∀r ∈ R̂, s ∈ S (34)

kd
rs ≤ ad

r , ∀r ∈ R̂, s ∈ S (35)

kd
rs ≤ xrs, ∀r ∈ R̂, s ∈ S (36)

kd
rs ≥ ad

r + xrs − 1, ∀r ∈ R̂, s ∈ S (37)

d̃s
ri = max(0, xt

rs(As + f L
i − er)), ∀r ∈ R̂, s ∈ S, i = dr (38)

wrs ≤ S̃s
ri, ∀r ∈ R̂, s ∈ S (39)

wrs ≤ B · nrs, ∀r ∈ R̂, s ∈ S (40)

wrs ≥ S̃s
ri − B · nrs, ∀r ∈ R̂, s ∈ S (41)

wrs ≥ 0, ∀r ∈ R̂, s ∈ S (42)

vc
rs ≤ d̃s

ri, ∀r ∈ R̂, s ∈ S (43)

vc
rs ≤ B · kc

rs, ∀r ∈ R̂, s ∈ S (44)

vc
rs ≥ d̃s

ri − B · (1− kc
rs), ∀r ∈ R̂, s ∈ S (45)

vc
rs ≥ 0, ∀r ∈ R̂, s ∈ S (46)

vd
rs ≤ d̃s

ri, ∀r ∈ R̂, s ∈ S (47)

vd
rs ≤ B · kd

rs, ∀r ∈ R̂, s ∈ S (48)

vd
rs ≥ d̃s

ri − B · (1− kd
rs), ∀r ∈ R̂, s ∈ S (49)

vd
rs ≥ 0, ∀r ∈ R̂, s ∈ S (50)

d̃r = ∑
s∈S

(
nrs · d̃s

ri + vc
rs + kc

rs · f c
i · ur + vd

rs + yd
rs · f d

i · ur

)
, ∀r ∈ R̂ (51)

∑
s∈S

xrs ≤ cmax
di ad

r , ∀r ∈ R̂ (52)

kc
rs( f c

i · ur) ≤ Ds − pr − f L
i · ur, ∀r ∈ R̂ (53)

kd
rs( f d

i · ur) ≤ Ds − pr − f L
i · ur, ∀r ∈ R̂ (54)

Constraint (27) enforces that each shipment must select exactly one of three possible
actions: consolidation, deconsolidation, or no change. This exclusivity ensures that each
shipment follows a single operational pathway, which is critical for maintaining both clarity
and feasibility within the AIT network. By limiting each shipment to one action, the model
avoids conflicting assignments and simplifies decision-making processes. Constraint (28)
upholds the capacity limitations of each service by ensuring that the cumulative volume
of all shipments assigned to a given service does not exceed its maximum capacity. This
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constraint is essential for respecting the physical limitations of transportation assets and
prevents overloading, which would otherwise compromise operational efficiency and
service reliability. Calculating the storage and delay times for different scenarios—namely,
no change, consolidation, and deconsolidation—involves the multiplication of decision
variables, such as xrs · ac

r . This multiplication leads to nonlinearity in the model, rendering it
unsuitable for standard optimization solvers. To address this, constraints (29) through (37),
along with (42) through (50), are designed to linearize the product of binary variables. This
linearization technique facilitates the application of linear programming solvers, enhancing
the model’s computational tractability.

Additionally, constraints (38) through (41) are specifically structured to compute the
storage time for each shipment under the different operational scenarios. By accurately
calculating the storage time, these constraints contribute to a more precise estimation of
storage costs in the objective function. Constraint (51) calculates the delay time for ship-
ments that do not meet their scheduled delivery times, which is subsequently used to
impose delay penalties within the objective function. To limit the operational complexity of
deconsolidation, constraint (52) restricts the maximum number of services that a shipment
can use for deconsolidation. This ensures that the system remains manageable and that
deconsolidation activities do not exceed predefined operational thresholds. Finally, con-
straints (53) and (54) enforce the temporal feasibility of consolidation and deconsolidation
activities, respectively, ensuring that these operations can be executed within the available
time windows.

4.3.3. Always Wait

The “Always Wait” strategy is a conservative and intuitive strategy used to handle
disruptions by waiting for affected shipment requests, ports, and services to resume rather
than seeking alternative routes [7,10]. This approach is based on the premise that shipments
should maintain their originally planned connections even if delays occur, thereby preserving
continuity within the transportation network. Under this strategy, whenever a disruption
impacts a terminal, the affected services simply wait until the terminal operations return
to normal. This ensures that the transshipment connections are maintained, although the
shipment may experience delays. Such a strategy is particularly suitable when the emphasis
is on maintaining established service routes, or when re-routing would be costly or logistically
impractical. However, this strategy might lead to infeasible plans, for instance, consider a
disrupted port, and the re-planning under the Always Wait strategy updates the shipment
request release time to the end of the disruption. The service that is previously matched with
this service is gone and the shipment request is released after the service departure. The
pseudocode for the “Always Wait” strategy is presented in Algorithm 4.

Algorithm 4 Always Wait strategy disruption-handling algorithm

Input: Updated Set of Impacted Shipment Requests R̂, Updated Set of Impacted Services Ŝ, Set of Disruptions
Q, Planning Horizon T
Output: Acceptance decision {yt

r}r∈R̂, Matching decision {xt
rs}r∈R̂,s∈Ŝ, Objective function (minimized cost)

1: for each decision epoch t ∈ T do
2: Apply updates to service and node parameters (as per Algorithm 2) for all affected services in Ŝ and

shipment requests in R̂
3: Generate feasible paths based on updated information for impacted services Ŝ (Algorithm 1)
4: Solve the optimization model for updated shipment requests R̂ to minimize the cost (Section 4.1.1)
5: Acquire acceptance and matching decisions by solving the optimization model, resulting in {yt

r}r∈R̂ and
{xt

rs}r∈R̂,s∈Ŝ
6: Update free capacity of services in Ŝ based on the matching decision {xt

rs}
7: Calculate the total cost for decision epoch t of the planning horizon T
8: Return: Acceptance decision {yt

r}, Matching decision {xt
rs}, and Objective function (minimized total cost)
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5. Numerical Experiments
In this section, we present extensive numerical experiments conducted to evaluate

the performance and effectiveness of the proposed framework. The entire modeling
framework, including the optimization model, was implemented in Python, with the
commercial GUROBI solver employed to handle the mixed-integer linear programming
(MILP) formulations. The experiments were executed on a computational setup consisting
of an 11th Gen Intel(R) Core(TM) i7-11850H processor, running at 2.50 GHz, supported by
32GB of RAM.

5.1. Experimental Setup

The AIT model logistic and network parameters are set as follows: planning horizon
(unit: hours) T = 336 (Two weeks); decision epoch time interval t = 1; loading time
(unit: minutes/TEU) f Lmarine

i = 30, f Lrail
i = 20, f Ltruck

i = 15, for i ∈ I; loading cost (unit:
USD/TEU) cLmarine

i = 25, cLrail
i = 20, cLtruck

i = 15, for i ∈ I; storage cost (unit: USD/TEU-
h) cs

i = 8 for i ∈ I; delay cost (unit: USD/request-h) cD
r = 15 for r ∈ R; carbon tax

(unit: USD/kg) cE = 0.05; and canal crossing cost (unit: USD/TEU) cC = 2.5. Without
loss of generality in the framework, IT

i and IS
i were considered sufficiently large to always

satisfy infrastructure-related constraints (Constraints (24) and (25)).
The case study focuses on the Great Lakes region, where the Welland Canal plays a

critical role in connecting Lake Ontario to Lake Erie. This strategic waterway enables marine
services to bypass Niagara Falls, facilitating continuous freight movement between inland
ports and supporting multimodal transport integration across the region. The proposed
model was tested on an intermodal terminal network within the Great Lake region, as
depicted in Figure 4. To construct the demand side of the model, data was extracted
from the “STATSCAN transborder trade database,” which contains over 30 million records
at the commodity level, specifically detailing trade movements within the Great Lake
area [46]. For this study, a sample dataset of 300 shipment requests, amounting to a total
of 2500 TEU over two weeks, was selected. This sample aligns proportionally with port
throughput data from 2016 to 2020, ensuring that it reflects realistic trade flows within
the region. According to the “Transport Canada Annual Report 2022,” approximately
17% of the total port throughput in Canada consists of containerized cargo, as outlined
in the Transportation in Canada 2022 report. While this percentage may not precisely
apply to the Great Lake region, it serves as a valuable reference point. Based on this, we
assumed that 20% of the regional port throughput is comprised of containerized cargo, a
proportion that reflects both the Transport Canada report and recent investments by the
Canadian government in container infrastructure at these ports. This assumption guided
the generation of the demand dataset, providing a realistic representation of containerized
cargo flows for this analysis.

The service dataset was constructed using synthetic data specifically tailored for the
Great Lakes region. This dataset encompasses a diverse range of transportation services,
including two train services, one marine service, and two fleets of trucks for each origin-
destination pair within the intermodal terminal network. Each truck fleet consists of
20 trucks, providing flexibility and capacity to meet various demand requirements. By
incorporating multiple transportation modes—marine, rail, and truck—this dataset effec-
tively represents the logistics capabilities of the Great Lakes intermodal transportation
network. This synthetic dataset was designed to reflect realistic service options and ca-
pacities, capturing the unique operational dynamics within the region. By ensuring the
availability of different modes of transportation, the dataset supports robust operational
planning and enables comprehensive analysis of adaptive transport strategies. As a re-
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sult, it provides a valuable foundation for evaluating the effectiveness of the proposed
optimization model in handling complex, multimodal service networks.

Figure 4. Geographical scope of the case study (base map is adopted from Google Earth).

In addition, based on the disruption profiles detailed in Table 1, randomly generated
disruption scenarios were sampled to evaluate the robustness of the proposed model. These
scenarios represent a wide range of disruption events, with varying levels of intensity
and impact. The number of disruptions generated in each scenario differs, enabling a
comprehensive assessment of how the model performs under different stress conditions.
The disruption scenarios utilized in the numerical experiments are strategically designed
to challenge the model’s capabilities in handling disruptions across various layers of the
transportation network, such as services, nodes, and links. These scenarios provide insights
into the model’s ability to optimize performance when faced with operational uncertainties,
ensuring that the system remains resilient even in the presence of severe or unexpected
disruptions. The full details of these scenarios are presented in Table 3.

Table 3. Disruption scenarios and their impact.

Scenario Nodes
Affected Links Affected Services

Affected
Shipment

Requests Affected
Node

Delay Hours
Service

Delay Hours

High Disruption 274 181 41 72 574 98
Medium Disruption 128 135 29 48 348 64

Low Disruption 53 95 18 27 156 38

5.2. Results and Discussion

Extensive numerical experiments were conducted to assess the performance of differ-
ent disruption-handling strategies across three disruption scenarios: low, medium, and
high disruptions. Figure 7 illustrates the cost per container under various strategies, al-
lowing us to compare their effectiveness while normalizing the results by shipment size to
remove the impact of matching percentages.

We examined three main strategies in these experiments:

• Always Wait Strategy: A reactive strategy where shipments are delayed until the
service resumes.

• Reassign with Delay Buffer Strategy: A proactive strategy that reassigns shipments to
available services, with three delay buffer thresholds: 2, 4, and 6 h.
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• (De)Consolidation Strategy: A novel strategy designed to dynamically consolidate or
deconsolidate shipments, based on service availability and capacity.

The low-disruption scenario results (Figure 5a) indicate that the Always Wait Strat-
egy performs the worst, resulting in significantly higher costs per container. The Reas-
sign with Delay Buffer strategy demonstrates a substantial improvement in performance,
with very similar outcomes observed for the 4 h and 6 h delay buffers. In this scenario,
the (De)Consolidation strategy emerges as the most effective, delivering the lowest cost
per container, owing to the flexibility of consolidating shipments when needed. In the
medium-disruption scenario (Figure 5b), the Reassign with Delay Buffer strategy shows a
performance that is closer to the Always Wait strategy. This is likely due to the increased
number of disrupted services compared to the low-disruption scenario, limiting the ef-
fectiveness of reassigning shipments. The 6 h delay buffer slightly outperforms the other
delay thresholds, but the difference is marginal. The (De)Consolidation strategy continues
to outperform the other strategies, though the margin of improvement is smaller than in
the low-disruption scenario.

For the high-disruption scenario (Figure 5c), the results demonstrate a significant
increase in costs for the Always Wait strategy, as the number of disrupted services and
nodes is much higher. The Reassign with Delay Buffer strategy shows substantial improve-
ment over the Always Wait strategy, with the impact of the delay buffer becoming more
pronounced. The 6 h buffer results in notably lower costs compared to the 2 h and 4 h
buffers. In this severe disruption context, the (De)Consolidation strategy shows its greatest
advantage, providing the most cost-effective solution. The performance gap between
the (De)Consolidation strategy and the Reassign strategy becomes more visible in this
scenario, highlighting the robustness of the (De)Consolidation strategy in high-disruption
environments. Overall, the experimental results suggest that in low-disruption scenarios,
reassigning shipments and consolidating them results in significant cost savings. However,
as the disruption severity increases, the (De)Consolidation strategy consistently provides
superior results, especially when service availability becomes highly constrained.

The analysis of disruption-handling strategies based on Table 4 shows that in the
low-disruption scenario, the (De)Consolidation strategy outperforms other strategies in
terms of both cost and effectiveness. It achieves the highest matched percentage at 83%
and the lowest total cost per TEU at 694 while incurring only 3% in disruption costs. The
Always Wait strategy, on the other hand, performs poorly with a lower matched percentage
(69%) and higher disruption costs per TEU (23%). The Reassign strategies show gradual
improvement as the delay threshold increases, with the 6 h delay buffer providing a
significant reduction in total cost per TEU (718) and a lower percentage of lost shipments
(10%) compared to the 2 h and 4 h thresholds. This indicates that the flexibility offered by
higher delay thresholds allows for better operational adjustments and cost efficiency in
handling disruptions.

In the medium- and high-disruption scenarios, the performance gap between strategies
becomes more pronounced. In both cases, the (De)Consolidation strategy remains the most
effective in minimizing disruption costs and lost shipments, with the lowest cost per TEU
and lost shipment percentage. However, in the high-disruption scenario, the Always Wait
strategy results in a significant increase in costs, with a total cost per TEU of 1459 and a
high disruption-incurred cost per TEU of 116%, indicating that it is not suitable for more
severe disruptions. The Reassign strategies, especially with the 6 h delay threshold, show
improved performance, reducing total costs and disruption effects. This highlights the
advantage of more flexible, dynamic strategies like Reassign and (De)Consolidation in
handling larger-scale disruptions effectively, ensuring lower operational costs and better
shipment matching.
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(a) Low-disruption scenario

(b) Medium-disruption scenario

(c) High-disruption scenario

Figure 5. Cost per container under different disruption scenarios: (a) low disruption, (b) medium
disruption, and (c) high disruption.

Figure 6 compares the disruption-incurred cost per TEU across different strategies
under three disruption scenarios: low, medium, and high. Among all the strategies,
the (De)Consolidation strategy consistently shows the lowest disruption-incurred costs
across all scenarios, particularly excelling in the high-disruption scenario where the cost is
significantly lower than other strategies. The “Always Wait” strategy, on the other hand,
incurs the highest costs, with the disruption-incurred cost surpassing 100% in the high-
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disruption scenario. Reassigning strategies with varying delay thresholds (2, 4, and 6 h)
perform progressively better as the delay threshold increases, although none perform as
well as the (De)Consolidation strategy. The reassign with a 6 h delay performs better than
the 2 h and 4 h delays but still incurs higher costs than the (De)Consolidation approach.
This comparison highlights the effectiveness of (De)Consolidation in mitigating the costs
associated with disruptions and demonstrates its superiority over other adaptive strategies
in reducing disruption-related expenses.

Table 4. Strategy comparison with costs and disruption effects.

Disruption
Scenario Strategy

Total
Number

of Services

Total
Number
of Paths

Matched
Percentage

Total Cost
per TEU

Disruption-
Incurred

Cost per TEU

Percentage
of Lost

Shipments

Low
Disruption Baseline (Without Disruption) 233 8112 91% 675 – –

Always Wait 233 1369 69% 832 23% 22%
Reassign with 2 h Delay Threshold 233 1789 68% 804 19% 23%
Reassign with 4 h Delay Threshold 233 2355 73% 754 12% 18%
Reassign with 6 h Delay Threshold 233 2945 81% 718 6% 10%

(De)Consolidation 233 – 83% 694 3% 8%

Medium
Disruption Baseline (Without Disruption) 233 8112 91% 675 – –

Always Wait 233 702 65% 927 37% 26%
Reassign with 2 h Delay Threshold 233 943 64% 943 40% 27%
Reassign with 4 h Delay Threshold 233 1242 69% 871 29% 22%
Reassign with 6 h Delay Threshold 233 1451 75% 814 21% 16%

(De)Consolidation 233 – 80% 782 16% 11%

High
Disruption Baseline (Without Disruption) 233 8112 91% 675 – –

Always Wait 233 444 57% 1459 116% 34%
Reassign with 2 h Delay Threshold 233 662 60% 1344 99% 31%
Reassign with 4 h Delay Threshold 233 873 63% 1176 74% 28%
Reassign with 6 h Delay Threshold 233 1042 68% 1028 52% 23%

(De)Consolidation 233 – 74% 924 37% 17%

Figure 6. Disruption-incurred cost per TEU by strategy and disruption scenario compared to the
baseline scenario (without disruption).

The series of six figures presented in Figure 7 offers a comparative analysis of storage
hours and delay hours across low, medium, and high-disruption scenarios for various
strategies. In the low-disruption scenario, depicted in Figure 7a,b, the “Always Wait”
strategy leads to the highest storage and delay hours, as well as a significant drop in
match percentage. The reassign strategies with varying delay thresholds show gradual
improvements in both storage and delay hours, alongside an increase in match percentage.
The (De)Consolidation strategy performs the best in this scenario, minimizing storage and
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delay hours while maintaining a high match percentage. The medium-disruption scenario,
represented by Figure 7c,d, demonstrates a more pronounced impact of disruption. Storage
and delay hours increase across all strategies compared to the low-disruption scenario.
Similar to the previous scenario, the “Always Wait” strategy performs the worst, while the
reassign strategies progressively improve performance as the delay threshold increases. The
(De)Consolidation strategy remains the best-performing option, achieving the least storage
and delay hours, and the highest match percentage. Finally, the high-disruption scenario,
shown in Figure 7e,f, highlights the severe impact of disruptions. The “Always Wait”
strategy results in the highest delay hours and the lowest match percentage. The reassign
strategies again show improvements in performance as the delay threshold increases, but
the overall effect of disruption is much more significant in this scenario. Even though
the (De)Consolidation strategy still performs the best in terms of minimizing delays and
maximizing match percentage, its performance also declines in comparison to the less
severe disruption scenarios.

To clarify the impact of (De)Consolidation costs on the disruption module’s outcomes,
we conducted a sensitivity analysis on consolidation and deconsolidation cost (cc

c and cd
d)

parameters. Figure 8 visualizes how the use of the (De)Consolidation strategy varies with
increasing unit consolidation costs under three disruption scenarios. As expected, higher
consolidation costs lead to a consistent decline in the adoption of this strategy across all
scenarios. In the high-disruption setting, reliance on (De)Consolidation remains relatively
strong even at higher cost levels, highlighting its importance for maintaining flow continu-
ity during network stress. Conversely, in the low-disruption scenario, operators appear
more cost-averse and quickly reduce the use of this strategy as costs increase, indicating
greater flexibility when the network is otherwise functioning well. This analysis under-
scores the importance of tailoring disruption-response strategies to network conditions. In
highly disrupted environments, policy should support investment in scalable consolidation
infrastructure and perhaps offer subsidies or incentives to offset higher consolidation costs.
For operators, this also means preparing cost-contingent contingency plans that factor in
how cost tolerance affects strategic decisions. Furthermore, public agencies might consider
dynamic pricing models or risk-sharing mechanisms to encourage more consistent usage
of (De)Consolidation under stress, ensuring more resilient supply chain operations across
varying disruption levels.

(a) Low disruption—storage hours (b) Low disruption—delay hours

Figure 7. Cont.
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(c) Medium disruption—storage hours (d) Medium disruption—delay hours

(e) High disruption—storage hours (f) High disruption—delay hours

Figure 7. Comparison of storage hours and delay hours across disruption severity levels: (a,b) low
disruption, (c,d) medium disruption, and (e,f) high disruption.

Figure 8. Use of the (De)Consolidation strategy decreases as unit consolidation cost rises. The decline
is sharper under low disruption, while high-disruption scenarios maintain higher usage, reflecting
greater operational necessity.

6. Conclusions
Disruptions are an inherent aspect of transportation networks, often rendering parts

of pre-planned deliveries infeasible due to network constraints and unexpected events.
This study highlights the need to integrate effective disruption-management strategies
into freight transport processes. Our evaluation of the proposed strategies—Reassign
with Delay Buffers and (De)Consolidation—shows that these adaptive methods enhance
network resilience and responsiveness. Even under mild disruptions, some deliveries
may fail, reinforcing the need for disruption-aware models to ensure flexibility and
operational continuity.
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As disruptions increase, the value of consolidation strategies becomes more evident.
The (De)Consolidation strategy consistently outperformed others in medium- to high-
disruption scenarios by optimizing capacity use and reducing costs. However, its practical
implementation may face logistical challenges and capacity limitations at service nodes.
Moreover, consolidation costs can influence assignment decisions and overall effectiveness,
emphasizing the need for careful cost-benefit evaluation when choosing a disruption-
handling approach.

The problem studied in this paper offers several avenues for future research. First, as
the scale of transportation networks in real-world applications increases, there is a growing
need for more computationally efficient solutions. Developing heuristic or metaheuristic
methods that provide timely and high-quality solutions can help tackle the complexity of
large-scale transportation networks, allowing for faster decision-making under dynamic
conditions. Second, incorporating cargo prioritization into the model can enhance its practi-
cal applicability. By prioritizing cargo based on its value, urgency, or customer requirements,
the model can allocate resources more efficiently, ensuring that high-priority shipments are
handled with greater speed and care, particularly during disruption scenarios.

Third, while the current model adopts a reactive disruption-management ap-
proach—where re-planning is triggered only when a disruption is detected—there is
potential to explore proactive disruption-management strategies. Proactive methods aim to
anticipate potential disruptions using predictive analytics or simulation models, enabling
the system to prepare mitigation strategies in advance. This would improve the model’s
responsiveness and robustness in dealing with uncertainties. However, implementing
such approaches requires advanced disruption forecasting techniques, which could be
developed using historical data, real-time monitoring, or simulation-based models. Fourth,
although this study adopts a mid-sized experimental setup for clarity and computational
efficiency, the underlying framework is designed to scale to larger, more complex networks.
Future research will focus on validating the model under higher shipment volumes and
longer planning horizons to evaluate the broader applicability and resilience of the pro-
posed strategies. Fifth, given the multiple strategies available for handling disruptions,
a promising direction for future research is the integration of reinforcement learning. By
training an agent to select the optimal strategy based on the current state of the network,
service availability, demand conditions, and ongoing disruptions, the model could au-
tonomously adapt to varying scenarios, improving its decision-making capabilities over
time. This would offer a more dynamic and intelligent approach to disruption management,
enhancing the flexibility and resilience of the AIT transportation system.

As a final direction for future research and implementation, the integration of emerging
digital technologies such as the Internet of Things (IoT) and blockchain presents a promis-
ing opportunity to enhance the operationalization of the proposed disruption-handling
strategies [47]. While the current study focuses on the optimization and evaluation of
strategies like Reassign with Delay Buffer and (De)Consolidation, these mechanisms can
be further strengthened by embedding them within digitally enabled logistics systems.
IoT technologies provide real-time data on shipment locations, terminal processes, ser-
vice disruptions, and transit delays—enabling the dynamic activation of reassignment
or consolidation decisions as disruptions unfold. This increased visibility could improve
both responsiveness and reliability in time-sensitive freight operations. Blockchain, on
the other hand, offers a secure and decentralized ledger that can record and trace strategy
activations, rerouting decisions, and transshipment actions in a tamper-proof manner.
This is particularly valuable in multi-stakeholder environments where transparency, trust,
and verifiability are critical. Exploring the interoperability of these technologies with
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adaptive intermodal frameworks could enable more resilient, automated, and auditable
disruption-management systems in future freight networks.
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