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“Blind” Shape Reconstruction
from Experimental Data

Peter M. van den Berg, Marc G. Coté, Member, IEEE, and Ralph E. Kleinman, Fellow, IEEE

Abstract—A method for reconstructing the shape of a bounded
impenetrable object from measured scattered field data is pre-
sented. The reconstruction algorithm is, in principle, the same
as that used before for recomstructing the conductivity of a
penetrable object and uses the fact that for high conductivity
the skin depth of the scatterer is small, in which case the
only meaningful information produced by the algorithm is the
boundary of the scatterer. A striking increase in efficiency is
achieved by incorporating into the algorithm the fact that for
large conductivity, the contrast is dominated by a large positive
imaginary part. This fact together with the knowledge that the
scatterer is constrained in some test domain constitute the only
a priori information about the scatterer that is used. There are
no other implicit assumptions about the location, connectivity,
convexity, -or boundary conditions.. The method is shown to
successfully reconstruct the shape of an ebject from experimental
scattered field data in a “blind” test.

1. INTRODUCTION

HE present paper describes a successful example of the

reconstruction of the shape of a scattering object from
experimentally determined scattering data. In contrast with
other inversion methods, the reconstruction is accomplished
from real rather than synthetic data, so there is no chance of
even inadvertently committing the “inverse crime” of using
the same numerical method in the inversion algorithm as is
used for solving the forward or direct problem to produce
the synthetic “measured” data. The possibility of favorably
prejudicing the outcome of the inversion algorithm was elim-
inated by a “blind” use of the measured data in the inversion
algorithm; that is, knowledge of the geometry of the object
from which the scattered field was measured was not supplied
to those running the algorithm until after the reconstruction
was completed.

The reconstruction algorithm is that described by Kleinman
and Van den Berg [1] in which an iterative algorithm for the
reconstruction of complex contrast profiles [2], [3] is adapted
to reconstruct the shape and location of a perfectly conducting
scatterer by making the assumption that the unknown contrast
is essentially nonnegative imaginary. The experimental data
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were obtained on the Ipswich Test Range of Rome Labora-
tories [4].

II. DESCRIPTION OF THE METHOD

A two-dimensional conducting obstacle located entirely
within a test domain D is irradiated successively by J known
incident fields with the electric-field vector parallel to the
cylindrical object (TM-polarization). For each incident field,
the nonvanishing component of the electric field is denoted
by ui"®, j =1,---,J and the corresponding total field by ;.
The scattering object need not completely coincide with D nor
is any information about the shape or location of the scatterer
required other than that it lies in D. The contrast is given by

L) )

e(p)
£ WEQ

x(p)=—--
0

where £¢ is the permittivity of the surrounding nonconducting
medium and e(p) and o(p) are, respectively, the permittivity
and conductivity within the scatterer and may vary with
position vector p. The contrast vanishes outside the scatterer
and therefore is zero not only outside of D but also at those
points in D exterior to the scatterer. The assumption that the
scatterer is highly conducting is made manifest by ignoring
the real part of the contrast and letting

x(p) = i¢*(p) )

for real ¢, which guarantees that the contrast is positive
imaginary. For each ué“c, the scattered field is measured on a
surface S which encloses the test domain D, and the measured
values are denoted by f;(p), p € S. In principle, D may be
any domain enclosing the scatterer and S any surface exterior
to D, but in the present case D was taken to be a square and
S was a circle of radius sufficiently large not only so that S
contained D, but also to justify the far-field approximation for
the scattered field.

The conductivity reconstruction problem is that of finding
¢(p) for known u?w and measured f;. If ¢ is very large, the
boundary of the scatterer is the only meaningful information
that may be obtained from the reconstruction. The method
employed here to achieve this reconstruction problem utilizes
both the integral equations
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Fig. 1. Schematic diagram of the automated swept-angle bistatic measure-
ment system.

and the integral representations
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Here, k is the wavenumber, and p and ¢ are two-dimensional
position vectors. With the scattered fields u}‘?d replaced by
the measured data f;, sequences of functions {u;,}._, and
{¢u}_, are constructed iteratively to successively reduce the
error in satisfying the two sets of integral relations, (3) and
(4). Actually, these equations are discretized by subdividing
D into subsquares and choosing both u; and ¢ to be constant
on each subsquare. The details of the starting values u; o and
(o and construction of the sequences are given in [1].

III. EXPERIMENTAL SETUP

Here we describe how the field scattered by the mystery
object was measured and calibrated for the reconstruction. The
measurement frequency was 10.0 GHz, thus the wavelength
(M) was 3 cm. Bistatic scattering measurements were made
in a plane perpendicular to the axis of the cylindrical object
30 cm (10X) in length, and the measurement plane intersected
at mid length. For convenience, a Cartesian coordinate system
was oriented with z along the cylinder axis, and measurements
were made in the (z, y) plane. The measurement configuration
is shown in Fig. 1. The scattered fields were collected for
incident angles of ¢* ={0,5,10,15,20,45,60,90} degrees,
over the observation sector 0 < ¢° < 359.5 degrees with a
sample spacing, A¢® = 0.5 degrees. At present, only data for
these nonuniformly spaced incident angles are available.

The object and transmit antenna were fixed for each ¢*, and
the receive antenna was rotated on a semi-circular arc about
the object from back scatter to forward scatter recording the
total field coincident with the receive antenna polarization. A
second measurement was made with the object removed. This
background field measurement was subtracted from each of the
total-field measurements to obtain measured data proportional
to the scattered field. The range from the transmit antenna
to the object was 3.7 m, and the range from the object to
the receive antenna aperture was 2.8 m. Both the source
and the probe antennas had circular apertures 15.24 cm in
diameter. With these measurement ranges and antennas, the
object illumination was uniform in magnitude to within 0.2
dB along the z-direction and 1 dB along the z-direction. The
illumination phase taper over the object was approximately 10
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degrees and 50 degrees in the z- and z-directions, respectively.
We note that both the end sides (2 = =£15 cm) of the
finite cylindrical object were illuminated quite strongly, and
therefore one might expect the measured scattered field would
contain an undesirable diffraction from the edges of the end
sides. In this experiment, however, the planes of incidence and
observation were always normal to the z-axis which ensured
that the scattered field was dominated by the specular response,
and the diffraction from the two truncating sides, being much
less, was not observable. Thus, the measured scattering from
the finite cylindrical object was very close to that from an
infinite cylindrical object.

The measurement system used can only scan over a 190-
degree bistatic angular sector. This means that to get scattering
data over a complete 360-degree bistatic observation sector,
two measurement runs had to be made for each incident
direction, one measurement run to cover the observation
sector, ¢* — 5 degrees < ¢° <¢* + 185 degrees and the
other to cover ¢* + 175 degrees < ¢° <¢* + 365 degrees.
The data from each measurement run must be independently
calibrated and then spliced together to make a complete data
set. In this experiment, coverage of the first observation
sector for every incident angle of interest (except ¢* = 0),
was accomplished by measurements. made in March of 1990.
The second observation sector was obtained for all incident
angles of interest (except ¢* = 90 degrees), by measurements
made in October of 1991. The instrumentation radar used
in the October 1991 measurements was more sensitive than
the radar used in the March 1990 measurements so that the
March portion of each complete data set had an uncertainty
significantly greater than the October portion. In addition
to a variable uncertainty, each data set contained a sector
of completely erroneous scattering centered about the back-
scattering direction (¢* -5 degrees < ¢° < ¢* + 5 degrees)
caused by the interruption of the object illumination when
the receive antenna passed between the transmit antenna and
object. For each measurement run we filled in the erroneous
back-scattering region by extrapolating the complex data on
#* +5 degrees< ¢° < ¢' + 185 degrees, using a least squares
linear prediction algorithm [5]. i

The raw scattering data, resulting from the phasor subtrac-
tion of the total-field and background measurements, has a
magnitude proportional to the object scattering cross section
per unit length and a phase proportional to the phase of the
scattered electric field referenced to the center of rotation of
the bistatic positioner. Aligning the object so that its symmetry
axis coincides with this rotation axis is practically impossible.
Our calibration procedure must compensate for the phase error
caused by this misalignment in addition to calibrating the
magnitude. We calibrated the scattering from the object by the
following procedure. We computed a point calibration phasor

x Pcomp ( ¢s )
Y(P°) = o ——F7 . 5
In (5), PP (¢*®) is the measured scaitered pattern of the object
for a particular measurement run and P¢°™P(¢®) is the far-field
scattering pattern computed for an infinitely long cylinder that
approximates the present object but with its symmetry axis at
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Fig. 2. (a) The reconstructed imaginary values of the contrast from synthetic data. (b) Comparison between the reconstructed boundary and the exact
one (synthetic data, n = 32).

the z-axis. From the calibration phasor we compute an average where [N is the number of data points in the given mea-
calibration factor, W, and three constants, a, b, and c. The surement run excluding the erroneous data in the 10-degree

average calibration factor is defined as back-scattering sector. The three constants are determined such
that they produce the best fit (in the least square sense) to the
N expression
Uy = £ T(nAd® + ¢ + 5degrees) (6)
N —_

n=1 arg [¥(¢°)] = a + beos(¢® +¢) . @)
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Fig. 3.
exact one (experimental data, n

= 32).

This curve fitting step is needed to correct for the misalignment
phase error (see [4] for a more thorough discussion). With
those four constants computed for each measurement run, the
calibrated scattering cross section per unit length, o°*(¢°),
was calculated from the relation

o ($°) = o PoP(¢°) exp {—i[a + bcos (¢° + )]} . (8)

®

(a) The reconstructed imaginary values of the contrast from experimental data. (b) Comparison between the reconstructed boundary and the

In this way we have arrived at experimental data that belongs
to the object with the symmetry axis coinciding with the
z-axis. We note that this procedure was necessary - because
we have only angles of incidence in a quarter plane, and
using the symmetry, we can obtain scattered data from angles
of incidence in the full plane. These experimental data are
recalibrated for use in the inversion algorithm as described in
the next section. :
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n =16

Fig. 4. The reconstructed imagjnary values of the contrast of the mystery object (dimension of test domain = 0.126 x 0.126 m?).

IV. RECONSTRUCTION

The measurement surface .S is chosen to be a circle contain-
ing the test domain. We assume that the radius of this circle
is large enough so that the far-field approximation of (4) may
be employed, and the far-field coefficient is the guantity of
interest so that the dependence on the radius is removed. In
that case the data may be written as

1
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and (4) may be replaced by
£ =i [ ew(-ikp- 0 @ui@dvg, pES (10)

where p is the unit vector in the direction of observation
and S now denotes the space of these unit vectors, the unit
circle. Further, f7°(p) are the measured far-field data. In
the examples, we take from the measured far-field data the
values at 36 angles equally spaced around the object (the
domain S consists of 36 discrete points ;). In the experiments
only eight excitations are carried out. The incident fields
are approximated as plane waves incident at an angle of
0, 5, 10, 15, 20, 45, 60 and 90 degrees with the z-axis,
respectively. To obtain scattered-field data from incident waves

distributed around the object, we take advantage of the a
priori information that the mystery object is symmetric with
respect to the planes £ = 0 and y = 0. Doing so, we obtain
scattered-field data from 28 excitations (J = 28).

Further, we have a priori information that the mystery object
lies inside a circle with a radius of 0.060 m, and the frequency
of operation is 10 GHz. We therefore will assume that the
object is located inside a test square divided into 63 x 63
subsquares of 0.002 x 0.002 m2. The discretized version of
the algorithm is discussed in [1].

Calibration

To test the computer code, we first run the algorithm
for synthetic data obtained in the well-known problem of
scattering of a plane wave by a perfectly conducting circular
cylinder with origin at the center of the test square. We employ
the same angles of incidence and data points as used in the
experimental case. The analytic solution in terms of Bessel
functions has been employed. The data are denoted as

£y = 2y, j=1,---,28, 1=1,---,36. (11)

The radius, a, of this circular cylinder is 0.0159 m. The
wavelength is A = 0.030 m, so that ka = w. We have seen that
our scheme indeed reconstructs the location and the shape of a
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Fig. 5. The reconstructed imaginary values of the contrast of the mystery object (dimension of test domain = 0.252 x 0.252 m?).

perfectly conducting cylinder by reconstructing the imaginary
contrast at the boundary [1]. The reconstructed contrast at the
boundary becomes highly oscillatory, however, after a couple
of iterations. The peaks appear to increase with the number
of iterations and it becomes difficult to choose the level value
of the contour that estimates the boundary of the object. The
visualization of the boundary of the object is improved when
we impose an upper bound to the reconstructed contrast. If
at some point in the iteration the reconstructed (, is larger
than (aq, the contrast is replaced by (mnee. In our example
we take (nae = 1. Some surface plots of the reconstructed
profiles (the imaginary part of the contrast, Im[x] = ¢2) from
the synthetic data of the circular cylinder are presented in
Fig. 2(a). The result at 32 iterations has also been presented
in Fig. 2(b) where we have plotted the boundaries of the test
domain and the contour lines ¢ = 1. The exact location of the
boundary of the object is indicated by the dashed circle. The
asymmetry of the choice of the incident angles of excitations
is clearly visible in the reconstructed boundary. We observe
that the boundary is located with an error of the sample
width.

Next we measure experimentally the scattering from a
circular cylinder with the same dimensions. These data are
denoted as f;**(p;), j = 1,---,28,1=1,---,36. To calibrate
an overall phase shift between the definition of the phase of
the measurement data and the one defined in the reconstruction

scheme (and to some extent the amplitudes), we assume
that the measured signal is a correct part of a multiplicative
complex factor and enforce the data to be

f;al(ﬁl) = ijewp(ﬁl)a Jj=1--,28, l= 1,---,36.
- (12)
The constant C' is determined from the analytical data pertain-
ing to this object by minimizing the deviation

J
Z lF™(®) — C £ (p)1%
” 36 28
=33 Ufem ) - C £ ()P (13)
j=11=1

resulting in

J 36 28
ST, BN Y. D FB) By
C = §=1 _ j=11=1
J 36 28 .
ST @) SN 1)
j=1 i=ti=1

(14)
where the overbar denotes a complex conjugate. After substi-
tution of the resulting numerical value of C' into the deviation
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of (13), we found that

[N

J
Z 5™ ®) — C £5° @)%
=t = 0.079

- (15)
Sl @)IE
j=1

that is, a mean square deviation of about 8%. Using these
recalibrated data, we ran the inversion algorithm. Some surface
plots of the reconstructed profiles (the imaginary part of the
contrast, Im[x] = ¢?) from these calibrated experimental data
of the circular cylinder are presented in Fig. 3. The result at
32 iterations has also been presented in Fig. 3(b) where we
have plotted the boundaries of the test domain and the contour
lines ¢ = 1. The reconstruction from our experimental data is
not very different from the reconstruction using the synthetic
data. Furthermore, it is noted that increasing the number of
iterations does not eliminate the artifacts in the center of the
reconstructed contrast. '

Moystery object

Observing that our reconstruction of the circular cylinder
was successful, we now continue to reconstruct a mystery
object from experimental data. The experimental data from this
mystery object were first multiplied with the complex constant
C, computed by minimizing the global deviation between
analytical and experimental data from the circular-cylinder
case. This ensures that an overall phase shift between the one
defined in the measurements and the one in the reconstruction
scheme is corrected. We then run the inversion algorithm and
the results of the reconstruction are shown in Fig. 4. It clearly
shows that the mystery object is probably a strip of about a
width of 12 cm and a thickness of less than or equal to 4 mm.

Finally, we show in Fig. 5, the reconstruction in a larger
test domain divided into 63 x 63 subsquares of 0.004 x 0.004
m?. The result of the reconstruction, using this coarser grid,
is consistent with the previous result.

After this reconstruction, the mystery was revealed to those
running the reconstruction algorithm: the object is a 10 A long
(30 cm), 4 X (12 cm) wide, and 0.106 A (0.32 cm) thick
aluminum plate. Obviously, the cross-sectional dimensions of
the mystery object that are obtained from the reconstruction
results are very close to the real ones.

To show the quality of the measurements, we have computed
the far-field data of the infinitely long and infinitely thin strip
using the eigenfunction expansions described by Asvestas and
Kleinman [6]. In Fig. 6 we compare the computed results
of the strip with the measured results of the plate for one
incidence direction (¢* =10 degrees). Notice that the measured
scattering from about 5 degrees off back scatter (¢° =
15 degrees) to about ¢° =190 degrees is noisier than the
remainder of the curve. The noisy sector corresponds to the
measurements made in March of 1990. In addition, notice that
the measured curve near ¢° = ¢* =10 degrees is flat and does
not match the exact curve. This is the back-scattering region
that contains the extrapolated data.
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Fig. 6. Bistatic scattering from the 4\ strip illuminated 10 degrees off
grazing (TE-polarization).

V. CONCLUSIONS

This paper presents definitive evidence of the effectiveness
of the modified gradient inverse scattering algorithm in recon-
structing the shape of a perfectly conducting cylindrical object
of arbitrary cross section from scattered field data. In earlier
papers it was shown that the algorithm was effective in recon-
structing the contrast of penetrable objects, the boundary of
impenetrable circular cylinders, and was stable with respect to
white noise. All previous tests were performed with synthetic,
i.e., computer simulated, scattering experiments and thus were
not free from the possibility that they were tainted by an
“inverse crime” of somehow using knowledge of the scatterer
to favorably influence the reconstruction. The present results
show conclusively that the algorithm will yield a successful
reconstruction when the data are obtained experimentally and
the shape of the object was not known before the recon-
struction was completed, thus removing any question that an
“inverse crime,” however inadvertent, was committed. These
results describe only one scattering experiment and additional
experiments are needed, not only to reconfirm the present
results, but also to test the effectiveness of the reconstruction
algorithm for penetrable scatterers.
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