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“Blind” Shape Reconstruction 
from Experimental Data 

Peter M. van den Berg, Marc G. Cote, Member, IEEE, and Ralph E. Kleinman, Fellow, IEEE 

Abstract-A method for reconstructing the shape of a bounded 
impenetrable object from measured scattered field data is pre- 
sented. The reconstruction algorithm is, in principle, the same 
as that used before for reconstructing the conductivity of a 
penetrable object and uses the fact that for high conductivity 
the skin depth of the scatterer is small, in which case the 
only meaningful information produced by the algorithm is the 
boundary of the scatterer. A striking increase in efficiency is 
achieved by incorporating into the algorithm the fact that for 
large conductivity, the contrast is dominated by a large positive 
imaginary part. This fact together with the knowledge that the 
scatterer is constrained in some test domain constitute the only 
a priori information about the scatterer that is used. There are 
no other implicit assumptions about the location, connectivity, 
convexity, or boundary conditions. The method is shown to 
successfully reconstruct the shape of an object from experimental 
scattered field data in a “blind” test. 

I. INTRODUCTION 

HE present paper describes a successful example of the T reconstruction of the shape of a scattering object from 
experimentally determined scattering data. In contrast with 
other inversion methods, the reconstruction is accomplished 
from real rather than synthetic data, so there is no chance of 
even inadvertently committing the “inverse crime” of using 
the same numerical method in the inversion algorithm as is 
used for solving the forward or direct problem to produce 
the synthetic “measured” data. The possibility of favorably 
prejudicing the outcome of the inversion algorithm was elim- 
inated by a “blind’ use of the measured data in the inversion 
algorithm; that is, knowledge of the geometry of the object 
from which the scattered field was measured was not supplied 
to those running the algorithm until after the reconstruction 
was completed. 

The reconstruction algorithm is that described by Kleinman 
and Van den Berg [l] in which an iterative algorithm for the 
reconstruction of complex contrast profiles [2], [3] is adapted 
to reconstruct the shape and location of a perfectly conducting 
scatterer by making the assumption that the unknown contrast 
is essentially nonnegative imaginary. The experimental data 
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were obtained on the Ipswich Test Range of Rome Labora- 
tories [4]. 

11. DESCRIPTION OF THE METHOD 
A two-dimensional conducting obstacle located entirely 

within a test domain D is irradiated successively by J known 
incident fields with the electric-field vector parallel to the 
cylindrical object (TM-polarization). For each incident field, 
the nonvanishing component of the electric field is denoted 
by U?‘, j = 1, . . . , J and the corresponding total field by uj. 
The scattering object need not completely coincide with D nor 
is any information about the shape or location of the scatterer 
required other than that it lies in D. The contrast is given by 

where EO is the permittivity of the surrounding nonconducting 
medium and ~ ( p )  and ~ ( p )  are, respectively, the permittivity 
and conductivity within the scatterer and may vary with 
position vector p .  The contrast vanishes outside the scatterer 
and therefore is zero not only outside of D but also at those 
points in D exterior to the scatterer. The assumption that the 
scatterer is highly conducting is made manifest by ignoring 
the real part of the contrast and letting 

for real C, which guarantees that the contrast is positive 
imaginary. For each U:‘, the scattered field is measured on a 
surface S which encloses the test domain D,  and the measured 
values are denoted by f , ( p ) ,  p E S. In principle, D may be 
any domain enclosing the scatterer and S any surface exterior 
to D ,  but in the present case D was taken to be a square and 
S was a circle of radius sufficiently large not only so that S 
contained D, but also to justify the far-field approximation for 
the scattered field. 

The conductivity reconstruction problem is that of finding 
C(p) for known U?‘ and measured f,. If C is very large, the 
boundary of the scatterer is the only meaningful information 
that may be obtained from the reconstruction. The method 
employed here to achieve this reconstruction problem utilizes 
both the integral equations 
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Fig. 1. 
ment system. 

Schematic diagram of the automated swept-angle bistatic measure- 

Here, k is the wavenumber, and p and q are two-dimensional 
position vectors. With the scattered fields u3SCt replaced by 
the measured data fJ, sequences of functions { u ~ , ~ } , " ~  and 
{ (n}F=o are constructed iteratively to successively reduce the 
error in satisfying the two sets of integral relations, (3) and 
(4). Actually, these equations are discretized by subdividing 
D into subsquares and choosing both u3 and < to be constant 
on each subsquare. The details of the starting values uJ>o and 

and construction of the sequences are given in [l]. 

111. EXPERIMENTAL SETUP 

Here we describe how the field scattered by the mystery 
object was measured and calibrated for the reconstruction. The 
measurement frequency was 10.0 GHz, thus the wavelength 
(A) was 3 cm. Bistatic scattering measurements were made 
in a plane perpendicular to the axis of the cylindrical object 
30 cm (lox) in length, and the measurement plane intersected 
at mid length. For convenience, a Cartesian coordinate system 
was oriented with z along the cylinder axis, and measurements 
were made in the (x, y) plane. The measurement configuration 
is shown in Fig. 1. The scattered fields were collected for 
incident angles of @ ={ 0,5,10,15,20,45,60,90} degrees, 
over the observation sector 0 5 4' 5 359.5 degrees with a 
sample spacing, A$' = 0.5 degrees. At present, only data for 
these nonuniformly spaced incident angles are available. 

The object and transmit antenna were fixed for each @, and 
the receive antenna was rotated on a semi-circular arc about 
the object from back scatter to forward scatter recording the 
total field coincident with the receive antenna polarization. A 
second measurement was made with the object removed. This 
background field measurement was subtracted from each of the 
total-field measurements to obtain measured data proportional 
to the scattered field. The range from the transmit antenna 
to the object was 3.7 m, and the range from the object to 
the receive antenna aperture was 2.8 m. Both the source 
and the probe antennas had circular apertures 15.24 cm in 
diameter. With these measurement ranges and antennas, the 
object illumination was uniform in magnitude to within 0.2 
dB along the 2-direction and 1 dB along the z-direction. The 
illumination phase taper over the object was approximately 10 

degrees and 50 degrees in the x- and z-directions, respectively. 
We note that both the end sides ( z  = k15 cm) of the 
finite cylindrical object were illuminated quite strongly, and 
therefore one might expect the measured scattered field would 
contain an undesirable diffraction from the edges of the end 
sides. In this experiment, however, the planes of incidence and 
observation were always normal to the z-axis which ensured 
that the scattered field was dominated by the specular response, 
and the diffraction from the two truncating sides, being much 
less, was not observable. Thus, the measured scattering from 
the finite cylindrical object was very close to that from an 
infinite cylindrical object. 

The measurement system used can only scan over a 190- 
degree bistatic angular sector. This means that to get scattering 
data over a complete 360-degree bistatic observation sector, 
two measurement runs had to be made for each incident 
direction, one measurement run to cover the observation 
sector, @ - 5 degrees 5 4' 56 + 185 degrees and the 
other to cover qY + 175 degrees < 4' <iV + 365 degrees. 
The data from each measurement run must be independently 
calibrated and then spliced together to make a complete data 
set. In this experiment, coverage of the first observation 
sector for every incident angle of interest (except $' = 0), 
was accomplished by measurements made in March of 1990. 
The second observation sector was obtained for all incident 
angles of interest (except qY = 90 degrees), by measurements 
made in October of 1991. The instrumentation radar used 
in the October 1991 measurements was more sensitive than 
the radar used in the March 1990 measurements so that the 
March portion of each complete data set had an uncertainty 
significantly greater than the October portion. In addition 
to a variable uncertainty, each data set contained a sector 
of completely erroneous scattering centered about the back- 
scattering direction (@ -5 degrees < #' < 4' + 5 degrees) 
caused by the interruption of the object illumination when 
the receive antenna passed between the transmit antenna and 
object. For each measurement run we filled in the erroneous 
back-scattering region by extrapolating the complex data on 
@ +5 degrees< 4' 5 qY + 185 degrees, using a least squares 
linear prediction algorithm [5]. 

The raw scattering data, resulting from the phasor subtrac- 
tion of the total-field and background measurements, has a 
magnitude proportional to the object scattering cross section 
per unit length and a phase proportional to the phase of the 
scattered electric field referenced to the center of rotation of 
the bistatic positioner. Aligning the object so that its symmetry 
axis coincides with this rotation axis is practically impossible. 
Our calibration procedure must compensate for the phase error 
caused by this misalignment in addition to calibrating the 
magnitude. We calibrated the scattering from the object by the 
following procedure. We computed a point calibration phasor 

(5) 

In (5), Perp(ds)  is the measured scattered pattern of the object 
for a particular measurement run and Pcomp(@) is the far-field 
scattering pattern computed for an infinitely long cylinder that 
approximates the present object but with its symmetry axis at 
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Im[x] = 1 

-___.  Exact boundary 

(b) 

Fig. 2. 
one (synthetic data, n = 32). 

(a) The reconstructed imaginary values of the contrast from synthetic data. (b) Comparison between the reconstructed boundary and the exact 

the z-axis. From the calibration phasor we compute an average 
calibration factor, q o ,  and three constants, a, b, and c. The 
average calibration factor is defined as 

where N is the number of data points in the given mea- 
surement run excluding the erroneous data in the 10-degree 
back-scattering sector. The three constants are determined such 
that they produce the best fit (in the least square sense) to the 
expression l N  

qo = - 1 (Q(nAf + f + 5degrees)l (6) 
n=l  arg [S(4”)] = a + bcos(4” + e )  . (7) N 
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h[X] = 1 

- - _ _ _  Exact boundary 

Fig. 3. 
exact one (experimental data, n = 32) .  

(a) The reconstructed imaginary values of the contrast from experimental data. (b) Comparison between the reconstructed boundary and the 

This curve fitting step is needed to correct for the misalignment 
phase error (see 141 for a more thorough discussion). With 
those four constants computed for each measurement run, the 
calibrated scattering cross section per unit length, aca2(@),  
was calculated from the relation 

In this way we have arrived at experimental data that belongs 
to the object with the symmetry axis coinciding with the 
z-axis. We note that this procedure was necessary because 
we have only angles of incidence in a quarter plane, and 
using the symmetry, we can obtain scattered data from angles 
of incidence in the full plane. These experimental data are 
recalibrated for use in the inversion algorithm as described in 
the next section. aca2(@) = QoPexp($s) exp {-i[u + bcos (4’ + e ) ] }  . (8) 
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Fig. 4. The reconstructed imaginary values of the contrast of the mystery object (dimension of test domain = 0.126 x 0.126 m’). 

IV. RECONSTRUCTION 
The measurement surface S is chosen to be a circle contain- 

ing the test domain. We assume that the radius of this circle 
is large enough so that the far-field approximation of (4) may 
be employed, and the far-field coefficient is the quantity of 
interest so that the dependence on the radius is removed. In 
that case the data may be written as 

and (4) may be replaced by 

f,”(P) = 2 J’ eXP(-Zki,. !lK2(!lM7)dvq 7 i, E s (10) 
D 

where p is the unit vector in the direction of observation 
and S now denotes the space of these unit vectors, the unit 
circle. Further, fJm($) are the measured far-field data. In 
the examples, we take from the measured far-field data the 
values at 36 angles equally spaced around the object (the 
domain S consists of 36 discrete points i,i). In the experiments 
only eight excitations are carried out. The incident fields 
are approximated as plane waves incident at an angle of 
0, 5 ,  10, 15, 20, 45, 60 and 90 degrees with the x-axis, 
respectively. To obtain scattered-field data from incident waves 

distributed around the object, we take advantage of the a 
priori information that the mystery object is symmetric with 
respect to the planes z = 0 and y = 0. Doing so, we obtain 
scattered-field data from 28 excitations ( J  = 28). 

Further, we have a priori information that the mystery object 
lies inside a circle with a radius of 0.060 m, and the frequency 
of operation is 10 GHz. We therefore will assume that the 
object is located inside a test square divided into 63 x 63 
subsquares of 0.002 x 0.002 m2. The discretized version of 
the algorithm is discussed in [l]. 

Calibration 
To test the computer code, we first run the algorithm 

for synthetic data obtained in the well-known problem of 
scattering of a plane wave by a perfectly conducting circular 
cylinder with origin at the center of the test square. We employ 
the same angles of incidence and data points as used in the 
experimental case. The analytic solution in terms of Bessel 
functions has been employed. The data are denoted as 

f;“‘(&) := f,Oo(jii), j = 1,.*.,28, 2 = 1,*..,36. (11) 

The radius, a, of this circular cylinder is 0.0159 m. The 
wavelength is X = 0.030 m, so that ka  = X. We have seen that 
our scheme indeed reconstructs the location and the shape of a 
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Fig. 5. The reconstructed imaginary values of the contrast of the mystery object (dimension of test domain = 0.252 x 0.252 m2). 

perfectly conducting cylinder by reconstructing the imaginary 
contrast at the boundary [l]. The reconstructed contrast at the 
boundary becomes highly oscillatory, however, after a couple 
of iterations. The peaks appear to increase with the number 
of iterations and it becomes difficult to choose the level value 
of the contour that estimates the boundary of the object. The 
visualization of the boundary of the object is improved when 
we impose an upper bound to the reconstructed contrast. If 
at some point in the iteration the reconstructed Cn is larger 
than Cmaz,  the contrast is replaced by In our example 
we take Cmaz = 1. Some surface plots of the reconstructed 
profiles (the imaginary part of the contrast, Im[x] = C2)  from 
the synthetic data of the circular cylinder are presented in 
Fig. 2(a). The result at 32 iterations has also been presented 
in Fig. 2(b) where we have plotted the boundaries of the test 
domain and the contour lines C = 1. The exact location of the 
boundary of the object is indicated by the dashed circle. The 
asymmetry of the choice of the incident angles of excitations 
is clearly visible in the reconstructed boundary. We observe 
that the boundary is located with an error of the sample 
width. 

Next we measure experimentally the scattering from a 
circular cylinder with the same dimensions. These data are 
denoted as f3e"p($z), j = 1,. . . ,28, I = 1,. . . ,36.  To calibrate 
an overall phase shift between the definition of the phase of 
the measurement data and the one defined in the reconstruction 

scheme (and to some extent the amplitudes), we assume 
that the measured signal is a correct part of a multiplicative 
complex factor and enforce the data to be 

f,""'&) := Cf,e"p(@l), j = 1,...,28, 1 = 1,...,36 . 

The constant C is determined from the analytical data pertain- 
ing to this object by minimizing the deviation 

(12) 

resulting in 

J 36 28 

=y-Jf;nz($)> f,""(ms x f;nz(Pz)m 
3=11=1 - - j=1 

J 36 28 C =  

If,"""~~z,12 
3=1 z=1 

rIf,"""(@>II: 
J=1 

(14) 
where the overbar denotes a complex conjugate. After substi- 
tution of the resulting numerical value of C into the deviation 
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of (13), we found that 

1395 

that is, a mean square deviation of about 8%. Using these 
recalibrated data, we ran the inversion algorithm. Some surface 
plots of the reconstructed profiles (the imaginary part of the 
contrast, Im[x] = c2) from these calibrated experimental data 
of the circular cylinder are presented in Fig. 3. The result at 
32 iterations has also been presented in Fig. 3(b) where we 
have plotted the boundaries of the test domain and the contour 
lines C = 1. The reconstruction from our experimental data is 
not very different from the reconstruction using the synthetic 
data. Furthermore, it is noted that increasing the number of 
iterations does not eliminate the artifacts in the center of the 
reconstructed contrast. 

Mystery object 

Observing that our reconstruction of the circular cylinder 
was successful, we now continue to reconstruct a mystery 
object from experimental data. The experimental data from this 
mystery object were first multiplied with the complex constant 
C, computed by minimizing the global deviation between 
analytical and experimental data from the circular-cylinder 
case. This ensures that an overall phase shift between the one 
defined in the measurements and the one in the reconstruction 
scheme is corrected. We then run the inversion algorithm and 
the results of the reconstruction are shown in Fig. 4. It clearly 
shows that the mystery object is probably a strip of about a 
width of 12 cm and a thickness of less than or equal to 4 mm. 

Finally, we show in Fig. 5, the reconstruction in a larger 
test domain divided into 63 x 63 subsquares of 0.004 x 0.004 
m2. The result of the reconstruction, using this coarser grid, 
is consistent with the previous result. 

After this reconstruction, the mystery was revealed to those 
running the reconstruction algorithm: the object is a 10 X long 
(30 cm), 4 X (12 cm) wide, and 0.106 X (0.32 cm) thick 
aluminum plate. Obviously, the cross-sectional dimensions of 
the mystery object that are obtained from the reconstruction 
results are very close to the real ones. 

To show the quality of the measurements, we have computed 
the far-field data of the infinitely long and infinitely thin strip 
using the eigenfunction expansions described by Asvestas and 
Kleinman [6]. In Fig. 6 we compare the computed results 
of the strip with the measured results of the plate for one 
incidence direction (@ =10 degrees). Notice that the measured 
scattering from about 5 degrees off back scatter (4‘ = 
15 degrees) to about 4‘ =190 degrees is noisier than the 
remainder of the curve. The noisy sector corresponds to the 
measurements made in March of 1990. In addition, notice that 
the measured curve near 4’ = @ =10 degrees is flat and does 
not match the exact curve. This is the back-scattering region 
that contains the extrapolated data. 

0 30 60 90 120 150 180 210 240 270 300 330 360 
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Fig. 6.  Bistatic scattering from the 4X strip illuminated 10 degrees off 
grazing (TE-polarization). 

V. CONCLUSIONS 
This paper presents definitive evidence of the effectiveness 

of the modified gradient inverse scattering algorithm in recon- 
structing the shape of a perfectly conducting cylindrical object 
of arbitrary cross section from scattered field data. In earlier 
papers it was shown that the algorithm was effective in recon- 
structing the contrast of penetrable objects, the boundary of 
impenetrable circular cylinders, and was stable with respect to 
white noise. All previous tests were performed with synthetic, 
i.e., computer simulated, scattering experiments and thus were 
not free from the possibility that they were tainted by an 
“inverse crime” of somehow using knowledge of the scatterer 
to favorably influence the reconstruction. The present results 
show conclusively that the algorithm will yield a successful 
reconstruction when the data are obtained experimentally and 
the shape of the object was not known before the recon- 
struction was completed, thus removing any question that an 
“inverse crime,” however inadvertent, was committed. These 
results describe only one scattering experiment and additional 
experiments are needed, not only to reconfirm the present 
results, but also to test the effectiveness of the reconstruction 
algorithm for penetrable scatterers. 
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