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Abstract
Bearing vibration data are often contaminatedwith noise, which is detrimental to equipment fault
diagnosis and predictivemaintenance.Denoising bearing vibration data is crucial. Traditional
denoisingmethods have certain limitations. For instance, when employingwavelet denoising, fixed
basis functionsmay fail to perfectlymatch all signal structures, potentially compromising denoising
accuracy. Similarly, whenutilizing data-driven tight frame (DDTF) denoising, the learned basis, due
to the lack of noise constraints,may incur a risk of overfitting. To optimize denoising performance in
both scenarios, this paper proposes amethod that combineswavelet transform andDDTFdictionary
learning to extract noise based on a doubly sparse dictionary. The specific approach involvesmutually
cascading thewavelet transform andDDTF.After applying thewavelet transform to the noisy signal,
multi-layerwavelet sparse coefficients are obtained.DDTFprocessing is then applied to each layer of
wavelet sparse coefficients. Subsequent inverse transformation achieves noise suppression. This
method integrates the structural constraint capability of wavelet decompositionwith the learning
capability ofDDTF, therebymitigating their respective limitations to some extent. The denoised data
are fed into a residual networkmodel, and training results confirm that the proposedmethod
achieves the best classification performance. Experimental results fromboth data denoising and deep
learning classification demonstrate that the proposedmethod exhibits superior denoising
performance. Although the algorithm structure of thismethod ismore complex compared to other
approaches, it ismeaningful in scenarios where high-precision denoising is required.

1. Introduction

The analysis of bearing signals can provide crucial insights into the bearing’s condition. Through an in-depth
analysis of these signals, we can detect potential faults or issues in the bearing and take timelymeasures for
maintenance to prevent equipment damage.However, the actual collected bearing data is often affected by
various interference noises,making effective denoising of the signals significant for bearing fault detection.

Over the decades, researchers have proposed numerousmethods to optimize the denoising of bearing data.
Mathematical decomposition is one of the commonly used denoisingmethods in bearing denoising, such as
EmpiricalModeDecomposition (EMD) [1, 2]. In thismethod, high-frequency amplitudemodulation signal
components generated by localized damage in rolling bearings are decomposed by EMDas IntrinsicMode
Functions (IMFs), then theHilbert Transform [3] is used to obtain their envelope signals, and the envelope
spectrum is calculated to extract the fault characteristic frequencies of the rolling bearing. Thismethod has
been applied to analyze the vibration signals of rolling bearingswith inner ring damage and outer ring damage
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collected on test benches. Due to the adaptive characteristics of the EMDmethod, it is suitable for the decom-
position of non-stationary signals and has been applied to the analysis of fault vibration signals in rolling bear-
ings.However, EMDhas the problemofmodemixing, leading to poor denoising performance. To address the
modemixing problem inEMD [4], scholars have improved EMD, such as combining Singular ValueDecom-
position (SVD) [5]with improved EmpiricalModeDecomposition andVariationalModeDecomposition
(VMD) [6, 7]. Thismethodfirst uses SVD to denoise the fault signal to eliminate random interference, then
adds high-frequency harmonic signals according to the signal characteristics and decomposes themusing
EMD, effectively reducing the phenomenon ofmodemixing. ForVMD, it does not add noise to the IMFs but
strictly requires IMFs to be amplitude-modulated and frequency-modulated time series with finite bandwidth
based on theWiener filtering perspective. The number of decomposition layers inVMDcan bemanually set,
and reasonable decomposition layers can be set with the help of theHilbert Transform envelope of the signal to
solve themodemixing problem.However, VMD is difficult to handle strong human interference, and it is
challenging to present reasonablemodes [8], reducing the denoising effect.

Apart from the application ofmathematical decompositionmethods in bearing data processing for denois-
ing, sparse representation is alsowidely used in this field. For example, Fourier Transformmethods [9] are a
global transformationmethod that performs spectral analysis on signals, but lacks the ability to process local
detail informationwhenhandling signal-noise separation, leading to the loss of a large amount of effective
signals. To solve this problem, the Short-Time Fourier Transformdenoisingmethod [10]was developed, which
has better local description capabilities and canmore effectively retain important information in the signal.
Although the Short-Time Fourier Transform can achieve local description purposes through timewindows,
the size of the timewindow is difficult to adapt [11].Wavelet Transform [12] can solve this problemwell, as its
main advantage lies in its good localization properties in both time (space) and frequency domains. In the early
stages of its application in the field of bearing signal processing, it gained certain advantages.However, when
usingWavelet Transform to processmore complex signals, it cannot effectively remove noise, leading to the
development ofmany superwavelet transforms, such asContourlet Transform [13], which is amulti-scale
decompositionmethod based on superwavelets, particularly suitable for signals with strong directionality and
smooth boundaries. Shearlet Transform [14] is amulti-scale transform similar to superwavelet transformbut
adds a shearing operation to the signal during decomposition, better capturing local features of the signal.
Bandlet Transform [15] is amulti-scale transformmethodused for feature extraction, which decomposes the
signal in different directions and processes each sub-band using banding techniques. Thesemethods have all
achieved certain effects in denoising processing of signals. Due to the poor adaptability of fixed-base transfor-
mations, resulting in poormatching between themother base and the signal, residual noise is generated, redu-
cing the denoising effect. Single fixed-base transformation is challenging to adaptively represent sparse signals
[16]. Therefore,many people have proposed learning-based denoisingmethods. Learning-based transforma-
tions, also known as dictionary learning, are sparse representationmethods that construct sparse bases by
directly extracting signal features from samples using some optimization algorithm, addressing the drawback
that fixed bases cannot change their structure during sparse representation.One typical example is K-Singular
ValueDecomposition (KSVD), first proposed byAharon in 2006 [17], which uses SVD [18] formultiple
updates to form a sparse base that can adaptively represent sparse signals and achieve better denoising effects.
However, thismethod takes too long for denoising. To solve this problem,many adaptive denoisingmethods
have been proposed, such asDDTF [19, 20], which, compared toKSVD, adds only an orthogonal constraint to
the dictionary, allowingDDTF to complete dictionary updates with just one SVD, significantly improving
operation speed, and its sparse representation ability is notweaker thanKSVD.Of course, deep learningmeth-
ods also play an indispensable role in bearing fault diagnosis, such as the research byWangM et al onMarkov
transition field and support vectormachine for bearing fault diagnosis [21, 22], andUNet [23] regression for
data denoising, among others. Since this study primarily focuses on non-deep learning approaches, thesewill
not be elaborated further here.

To overcome the limitations of single denoisingmethods, this paper proposes a cascaded denoising frame-
work combiningwavelet transform andDDTFdictionary learning. Thismethodfirst utilizes wavelet transform
to performmultiscale sparse decomposition on the noisy signal, obtaining hierarchical wavelet coefficients.
Subsequently, at each level, theDDTF algorithm is applied to these sparse wavelet coefficients for further dic-
tionary learning and sparse coding. The processed coefficients are then reconstructed through the inverse
wavelet transform to achieve denoising. This dual-sparse dictionary (wavelet+DDTF) design synergistically
leverages the structural regularization capability of wavelets and the data-driven learning capability ofDDTF,
significantlymitigating their respective inherent limitations. The data denoising process using the dual-sparse
dictionary is as follows: (1)Determine the number of wavelet decomposition layers K and performwavelet
transformon the input noisy data. (2)Apply a slidingwindow selection to all obtained high- and low-frequency
coefficients, yielding one low-frequencymatrix andKhigh-frequencymatrices. (3)PerformDDTFdictionary
learning on all high- and low-frequencymatrices, where sparse coefficient updating employs theOrthogonal
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Matching Pursuit (OMP) algorithm [24], and dictionary updating uses Singular ValueDecomposition (SVD).
(4)Perform inverse transform andmatrix rearrangement on the updated coefficients and dictionaries to
extract the noise, followed by an inversewavelet transform to restore the original data structure. This paper
conducts simulated data experiments, real-data experiments, and comparative experiments. The comparative
experiments select wavelet denoising, VMDdenoising,DDTFdenoising, andDDTF-VMDcascaded denoising
(applyingDDTFprocessing selectively to the sub-frequencies obtained after VMD) for comparisonwith the
proposedmethod. Corresponding spectral analysis [25, 26], time-frequency analysis [27, 28], and deep learn-
ing-based residual networkmodel evaluations are performed. Through visual result analysis, we verify that the
proposedmethodnot only effectively eliminates noise in the data but also outperforms these traditional
denoisingmethods in terms of denoising performance.

2. Principle

In the context of bearing vibration signal processing, pertinent signals typicallymanifest as low-frequency
signals or relatively steady-state signals, whereas noise signals commonly exhibit high-frequency character-
istics. The principle steps for dual sparse denoising of data signals are as follows:

(1) In the context where a one-dimensional time series ( )f t is square-integrable, the definitions of the wavelet
transform and its inverse transformare established as follows [29]:

( ) ( ) ( )=Wf a b f t
a

t b

a
dt,

1
1

( ) ( ) ( )=f t
C

t b

a
W a b

dadb

a

1
, 2f 2

| ˆ ( )|
| |

( )= <C d 3
2

In equations (1)–(3), ˆ ( ) ( )= t e dti t a, and b are real numbers. Parameter a represents the scale

parameter, determining the frequency of the decomposed signal, while b stands for the location parameter,
determining the temporal position of the signal. Function is referred to as themotherwavelet, and ( )ta b, as
thewavelet, both constructed by scaling and shifting themotherwavelet.Within the theoretical framework of
thewavelet transform, the admissibility constant C plays a dual central role. Physically, it serves as an
indispensable normalization factor in the inverse transform formula. Its function is to compensate for the
energy distribution characteristics of themotherwavelet itself, ensuring that the signal remains energy-
conserved and can be perfectly reconstructed after undergoing the complete process of wavelet decomposition
and reconstruction. From the perspective ofmathematical rigor, the admissibility condition <C is itself
the fundamental prerequisite for the validity of the inverse transform formula and a guarantee of its
convergence. The entire derivation of the inverse transform strictly relies on this integral being finite. Therefore,
before employing any function as awavelet, the primary and essential step is to compute and verify that its C is
finite. This is the cornerstone of wavelet theory, ensuring themathematical correctness and physical authenticity
of subsequent analysis and signal reconstruction.Once the decomposition level K of thewavelet is determined,
the data signal is processed usingwavelet transformation, yieldingK sets of data in different frequency bands.

(2) All obtained high and low-frequency data will be sequentially subjected to a 1 × 256 sliding window
selection, with eachmovement step set to 1× 1. This process yields a series of data sets, which are then
arranged into data blocks, resulting in amatrixwith 256 rows. Similarly, the data obtained fromStep①
undergoes identical treatment. Consequently, one low-frequencymatrix andKhigh- frequencymatrices
are obtained. This procedure constitutes the process ofmatrix reordering.

(3) For all high and low-frequency matrices, we employ DDTF dictionary learning, with sparse coefficient
updates conducted viaOMP, and dictionary updates performed. The principle behind dictionary learning
is as follows: it is amethod capable of adaptively representing sparse texture features of signals. The
optimization process withinDDTF:

( )=

=
F D A s t

a T i P

D D
arg min , . .

, 1, 2, ...,
4

D A

i

,
F
2 0 0

In equation (4), F denotes the overcomplete sample library of signals with a total of p samples. D, A, andT0
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respectively represent the dictionary, sparse coefficients, and upper bound of non-zero elements [30]. I denotes
the identitymatrix. The sparse encoding ofDDTF is formulated as follows:

˜ ¯ ( )= =a f D a s t a T i Parg min , . . , 1, 2, .., 5i
a

i i i2
2

0 0

i

Let A denote the sparse coefficients obtained during iterative computation. In equation (5), fi and ai

respectively represent the ith column and ith rowof F and .The process of usingOMPoptimization to
optimize equation (5) is as follows [30].

The selection of the sparsity thresholdT0 is crucial for balancing the denoising effect and signal fidelity. In
this study,T0 is not a fixed value but is adaptively determined based on the noise level. Specifically, we adopt the
universal threshold criterion: ( )=T N2 ln0 , whereN= 256 is the length of the slidingwindow, and is the
standard deviation of the noise. The noise level is estimated by calculating themedian absolute deviation of
the highest-frequency detail coefficients from the first-level wavelet decomposition of the noisy signal [31]. An
example of determining this parameter through simulation experiments is provided (6), (7), (8):

(| ( ) |) ( )= =MAD median cD median cD 2.86 61 1

ˆ (| ( ) |) ( )= =
median cD median cD

0.6745
4.24 71 1

( ) ( )= =T 2 ln N 14.12 80

First of all, in the initial stage, parameter initialization operations need to be carried out.Denote the initial
residual as =r fi0 , set the initial indication parameter as 0, and set the initial dictionary subset as an empty set,
represented by D0. At the same time, set the iteration number l as 0.Next, enter the calculation link. It is
necessary to calculate the position parameter | |= argmax r d,l

i
l i1

l 1

of themaximum inner product of the

residual r and each columnof the dictionaryD.Here, di represents the i dictionary atom. Then, update the
indication parameter { }=l l 1 1 according to the obtained position parameter, and expand the
dictionary atom d 1

at the position corresponding to 1 into the dictionary subset =D D dl l 1 1
. After that,

perform least squares solution on =f D ai l l to obtain ( )= D D D fl l l l i
1 . Here, the superscript T represents

matrix transpose. Then, update the residual. The updated residual is represented by
( )= =r f D f D D D D fl i l l i l l l l i

1 . Subsequently, update the iteration number = +l l 1and continue to
cycle through the steps. Continue until the condition of >l T ismet, that is, when the non-zero element
constraint is exceeded, the iteration is stopped. Finally, output R to complete the sparse coding.

For the dictionary update inDDTF, the solution approach differs due to the addition of an orthogonality
constraint on the dictionary. The expression for the dictionary update based onDDTF is as follows:

¯ ( )= =D arg F D A s t D Dmin , . . 9F
2

Let r represent the trace of thematrix, without influencing the optimization outcome. Therefore,
optimizing equation (9) can be equivalently expressed as optimizing the following equation:

˜ ( ˜ ¯ ) ( )= =D r DAF s t D Darg max , . . 10
D

In a two-dimensional space, let there be twomatrices with identical dimensions, denoted as 1 and 1, where
the rank ofmatrix 1 is r1. Considering the constraint problemwithin a compact frame:

˜ (( ) ) ( ) ( )= =r s targ max , . . 11r1 1 1 1 1

1

1

If the singular value decomposition (SVD) of 1 yields ( )= U V1 1 1 1 , then ( )= U V1 1 1 holds.

Therefore, equation (10) is solvable, with the SVDof ( )=AF U V . By solving the SVD,we can obtain

( )=D U V and ( )=D V U , thus completing the dictionary update. After implementing the sparse
representation based onDDTF, applying the inverse transformon the sparse coefficients and the inverse
operation ofmatrix rearrangement yields one low-frequency andKhigh-frequency data, resulting in denoised
data. Finally, performing the inverse wavelet transform accomplishes denoising [32]. This cascaded approach
enables the structural information from thewavelet transform to complement theDDTF, as thewavelet
transformprovidesmulti-scale and time-frequency localization capabilities through fixed basis functions,
allowing a coarse-grained decomposition of the signal while preserving its primary structural features. In
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contrast, theDDTF learns data-driven adaptive basis functions to represent fine signal details, yet it lacks global
structural constraints and is prone to overfitting to noise. By employing thewavelet transform as a preprocessing
step, themain structural components of the signal can be extracted in advance, thereby reducing noise
interference during the learning process of theDDTF. Simultaneously, theDDTFperforms adaptive sparse
reconstruction of thewavelet coefficients, which can further eliminate residual noise while preserving detailed
information. This combination effectively leverages the structured representation capacity of thewavelet
transform and the adaptive learning ability of theDDTF, thus achieving a balance between global structure and
local details in the denoising process.

(4) After denoising the experimental data, the residual networkmodel is employed, and the denoising effect is
evaluated through visualization, The flowchart as shown in figure 1.

The present study employs signal-to-noise ratio and Pearson correlation coefficient. analyses to evaluate
the denoising efficacy of bearing data.

( )=
S

N

Y

Y Y
10 log 12F

F
10

2

2

In the equation (12), Y represents raw data.
The Pearson correlation coefficient (PCC) quantifies the linear relationship between two variables by com-

puting their covariance and standard deviations. Its value ranges from−1 to 1, where 1 indicates perfect posi-
tive correlation,−1 indicates perfect negative correlation, and 0 indicates no linear relationship. The formula is
as follows:

( )( )
( ) ( )

( )=r
X X Y Y

X X Y Y
13i i

i i
2 2

Themeanings of the parameters in equation (13) are as follows: Xi represents the i-th data point of variable
X .Yi represents the i-th data point of variable Y . X represents themean of variable X .Y represents themean
of variable Y .

3. Interpretation of experiments

3.1.Data interpretation
3.1.1.HUSTdataset
Since the simulation datawas obtained under conditionswith high noise levels, a residual impact processing
methodwas applied to the denoising results. The effectiveness of denoisingwas then evaluated based on this
impact. To highlight the comprehensiveness of the experiment, datawith lower noise components were
selected fromHuazhongUniversity of Science andTechnology (HUST). This datawas used to assess the

Figure 1.The flowchart.
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performance of the proposedmethod in handling details. Subsequently, high-noise data fromXi’an Jiao tong
University (XJTU)was chosen to emphasize the applicability of the results presented in this paper.

To further illustrate the advantages of the proposed denoisingmethod, each algorithmwas executed on the
publicly available data fromHUST [33]. The experiments involved bearingswith spherical defects, and the
bearing parameters are detailed in table 1, while the test setup is shown in figure 2.

TheHUSTbearing dataset encompasses vibration signals of bearings under various operational conditions.
The health states of the bearings include normal,moderate, and severe faults in the inner race, outer race,
rolling element, as well as combined faults. Each state was tested under different operating frequencies, with a
sampling frequency of 25.6 kHz.

For the fault classification experiments, the data files were stored in Excel format, with filenames containing
fault type and operating frequency information for easy identification andusage.We selected six fault types for
classification experiments: inner race, outer race, rolling element, inner and outer race, inner race and rolling
element, and outer race and rolling element. The corresponding data are presented in table 2. Additionally, the
time-domainwaveforms of these six fault types are displayed in figure 3.

3.1.2. XJTUdataset
This study utilizes bearing data fromXJTU [34], specifically selecting data pertaining to outer race faults. The
experimental bearings used are LDKUER204 rolling bearings, with relevant parameters detailed in table 3.

The rolling bearing test rig used for the experiments in this study is depicted in figure 4. The test rig com-
prises an alternating current inductionmotor, amotor speed controller, a support shaft, two support bearings
(heavy-duty roller bearings), and a hydraulic loading system. Thewear and fracture patterns of the bearing
outer race are shown in figures 5(a) and (b).

Figure 2.HUST experimental platform.

Table 2.HUST6-class bearing dataset.

No. Data name Fault type

1 I804.mat Inner race fault

2 O804.mat Outer race fault

3 B804.mat Rolling element fault

4 IB804.mat Inner race and rolling element faults

5 IO804.mat Inner race and outer race faults

6 OB804.mat Outer race and rolling element faults

Table 1. Structural parameters of bearing.

Inside

diameter

Outside

diameter Ball diameter Ball number

20 (mm) 47 (mm) 7.6 (mm) 8

6
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3.2.Model introduction
As shown in the figure 6, this paper employs a residual network for classification validation experiments. The
34-layer ResidualNetwork (ResNet-34) is a classical deep convolutional neural networkwhose core
architecture addresses the vanishing gradient problem in deep networks through the introduction of residual
blocks. The network beginswith an initial 7× 7 convolution and amax pooling layer, followed by fourmain
stages in series—comprising 3, 4, 6, and 3 residual blocks, respectively. Each stage consists ofmultiple stacked
residual blocks, with each block containing two 3× 3 convolutional layers and a cross-layer identity shortcut
connection that facilitates direct backpropagation of gradients. Finally, classification results are produced via a
global average pooling layer and a fully connected layer. In this paper, a 34-layer residual network is employed

Figure 3.The noise signals.

Table 3. Structural parameters of bearing.

Inside diameter Outside diameter Ball diameter Ball number Middle diameter Contact angle

29.30 (mm) 39.80 (mm) 7.92 (mm) 8 34.55 (mm) 0°

Figure 4.The rolling bearing test rig at XJTU.

7
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to classify one-dimensional data, aiming to validate the impact of several data preprocessingmethods on
experimental results.

3.3.Denoising process
The denoising process in this paper is divided intomain steps: First, the bearing data signal undergoes K-layer
wavelet transformdecomposition to obtain signals of different frequencies. Next, these signals are selected via a
slidingwindow and rearranged intomatrices, yieldingKhigh-frequencymatrices and one low-frequency
matrix. Finally, thesematrices are processed usingDDTF to obtain corresponding dictionaries and sparse
coefficients. By applying the inverse transform, the denoised signal segments of different frequencies are
reconstructed. Subsequently, an inversewavelet transform is performed to restore the bearing data to its
original form. Through these steps, the noise in the bearing signal is effectively removed. The denoising
performance is then evaluated using spectral analysis, time-frequency analysis, Pearson correlation coefficient,
signal-to-noise ratio, confusionmatrix, and t-SNE visualization.

4. Experimentations

In figure 7, in practical data processing, it is often difficult to quantitatively evaluate strong andweak noise
based on the signal-to-noise ratio due to the unavailability of clean reference signals. To address this issue, this
paper employs a fault impact visualizationmethod based on threshold setting to distinguish and intuitively
analyze noise intensity. Specifically, an absolute threshold is applied to the actual data, whereby values below
the threshold are set to zero, thereby highlighting the periodic characteristics of fault impacts. Underweak
noise conditions, thismethod clearly reveals the fault frequency, indicating that the influence of weak noise on
fault localization is negligible. Denoising analysis and evaluation underweak noise contribute to exploring the
potential effect of noise on signal details in low-intensity scenarios. In contrast, under strong noise interference,
evenwith threshold processing, accurately identifying fault features remains challenging, reflecting the higher
robustness requirements for such noise. Evaluating denoising performance under strong noise conditions
effectively validates the performance of denoisingmodels in extreme environments. For the assessment of
denoising, this paper comprehensively adoptsmethods such as frequency spectrumanalysis and time-
frequency analysis to systematically evaluate the denoised results.

Figure 5. (a)Wear of the bearing outer ring. (b)The outer ring of the bearing is broken.

Figure 6.ResNet 34.
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4.1. Analog data experimentation
All data preprocessing in this study:DDTF,DDTF-VMDand the proposedmethod utilize a 1× 256 time
window for sampling noisy data. The specific rationale is as follows: the simulated experimental signal has a
length of 4096 (14 cycles), with approximately 290 data points per cycle; theHUST signal has a length of 10000,
approximately 22 cycles, with about 454 data points per cycle; the XJTUdata has a selected length of 4096, with
about 20 cycles and roughly 204 data points per cycle. It is noteworthy that if eachwindow is chosen to be larger
than the total data amount of a single cycle, the computational expense would significantly increase.We
observe that bearing fault characteristics are similar to those of the clean data in the simulated experiment, with
the actual fault-related data points occupying only about one-quarter of each cycle. Therefore, selecting a
window size of 256 is reasonable, as it is determinedwith reference to both the bearing fault characteristics and
the fault period. This window size can fully encompass a complete fault signaturewhile considering
experimental costs. The experimental environment is:Windows 11, 64-bit operating system, 16GBRAM,
Intel® Core™11thGen i5 processor,NVIDIAGeForce RTX3050GPU,MATLAB2023a, and Python 3.9.0.

The simulated clean bearing signal is shown in figure 8, with the vertical axis representing amplitude (Amp)
and the horizontal axis indicating the sample number. It demonstrates that the simulated bearing consistently
generates approximately the same vibration amplitude at the fault location. The number of sampling points is
set to 4096, covering 14 cycles. The following simulation experiments are conductedwith a signal-to-noise ratio
of−10 dB after noise addition. The noise-added signal is displayed as the ‘Noise Signal’ in figure 7.We per-
formed amulti-level wavelet decomposition on this signal and recorded the decomposition results. As
observed in figure 6, whenK= 1, comparing the simulated clean signal and the noise-added signal, significant
noise residue remains at this decomposition level. ForK= 3 andK= 4, excessive denoising occurs, resulting in

Figure 7.Evaluation based on actual data.

Figure 8.The simulated clean signal, –10 dBnoise, and the decomposition at K= 1, 2, 3, and 4 levels.
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the loss of substantial useful information.Overall, K= 2 provides relatively better denoising performancewhile
effectively preserving useful signals. Therefore, we ultimately determined to employ a two-level wavelet decom-
position, obtaining two sets of high-frequency coefficients and one set of low-frequency coefficients. It can be
observed that the decomposed coefficients contain useful fault impact components, indicating that the sub-
sequent input toDDTFutilizes a reasonable decomposition level. The decomposition results are illustrated in
figure 9.

We applied seven denoisingmethods to the signal respectively and retained the processed impulse compo-
nents. By comparing figures 10(a) and (b)with figures 10(c)–(i), it can be observed that traditional wavelet
denoising andVMDdenoising are less effective in noise removal, as they still retain some of the added impul-
sive noise in non-fault regions. Compared to the clean data, this portion is clearly attributable to noise. DDTF
demonstrates improved denoising performance over the former twomethods; however, it fails to highlight the
impulse features of the original clean signal and still exhibits considerable noise interference in non-fault areas,
indicating certain limitations in its denoising effect. Figure 10(f) shows that a significant amount of noise resi-
due remains after processingwith thismethod. The proposedmethod, shown in figure 10(g), exhibits superior
denoising performance compared to the other threemethods. The periodicity of the fault signal is clearly visi-
ble, withwell-preserved impulse effects in each cycle, and the influence of noise is largely eliminated.
Figure 10(h) presents a relatively new signal decompositionmethod, which also shows good denoising results,
nearlymatching the performance of the proposedmethod.However, it is noted that the fault location is shifted,
whichmay be related to its inherent algorithm and is not further investigated here. Figure 10(i)uses a self-
supervised deep learning denoisingmethod,UNet. From the denoised result, it appears to be themost effective,
with the highest signal fidelity. Nevertheless, deep learningmethods often suffer from low computational effi-
ciency,making them less suitable for real-time applications. Therefore, the proposedmethod remains of
research interest. A detailed computational efficiency analysis will be provided at the end of this section.Over-
all, the proposedmethod offers the best cost-effectiveness.

To further illustrate the superiority of the denoising effect of themethod in this paper, we have drawn a
signal spectrumdiagram for further explanation. As shown in the figure 11(a) represents the clean spectrum
diagramof the simulated signal.We can see that its high amplitude ismainly concentrated near 2000Hz and
gradually decreases to both sides. It basically decreases to zero at 5000Hz. It can be clearly seen fromfigure 11(b)
the spectrumchanges after adding noise. Through figures 11(c)–(g), we can see that the differences in the
denoising effect after denoising aremainly reflected in the low-amplitude region and the regionwithin 5000Hz
of low frequency. Therefore, we discuss the effects in these two types of regions. After wavelet denoising is used
for signal denoising, the denoising effect is obviouswhen the signal frequency is greater than 5000Hz, but the
denoising effect within 5000 Hz and in the low-amplitude part is very poor. The influence of noise in the low-
amplitude part is still large, and 5000 Hz retains the possible fault frequency. ForVMDdenoising, it can be
clearly seen that the denoising effect of thismethod after the frequency is 5000 Hz is very poor, and even an
abrupt change in amplitude occurs. The denoising effect near the low amplitudewithin 5000 Hz is slightly
better, but it is also very poor. ForDDTFdenoising, we can see that the effect in the low-amplitude region
within 5000 Hz is better than the first twomethods.However, comparedwith figure 11(a), there is still an
amplitude protrusion in the low-amplitude part, and the denoising effect in the low-amplitude region in the

Figure 9.Two-layer decomposition of the simulated signal.
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whole domain is not ideal. For theDDTF-VMDmethod, it can be seen that the spectrum isweakenedmore
seriously.We can clearly see that the denoising effect of themethod in this paper in thewhole frequency
domain is the best. Finally, I performed a local amplification of 0 Hz to 5000 Hz. As shown in figures 11(a1)–
(e1), and (g1), it can be seen that the spectrum in this paper is the closest to the simulated clean signal and the
detail processing is also relatively the best.Wavelet denoising andVMDdenoising are not ideal in denoising in
this frequency band. The detail processing ofDDTF is not verymeticulous. TheDDTF-VMDmethod elim-
inates a lot of useful signals. Figures 11(h) and (h1) present the spectrumafter FMD [35] decomposition and its
magnified view, respectively. It can be observed that thismethod demonstrates effective denoising performance
for low-amplitude noise. Figures 11(i) and (i1) display the spectrumdenoised using the deep learningmethod
UNet and its enlarged section. The results indicate that this approach achieves excellent denoising, with the
restored spectrum closely resembling that of the clean signal.However, despite its effectiveness, the computa-
tional efficiency remains an issue that has yet to be fully addressed. In conclusion, themethod in this paper is
relatively the best.

Figure 10.Denoising comparison graph. (a) Simulated clean signal. (b) Simulated noisy signal. (c)Wavelet. (d)VMD. (e)DDTF. (f)
DDTF-VMD. (g)OurMethod. (h) FMD. (i)UNet.
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Figure 11.Comparison of denoising spectra graph. (a) Spectra of simulated clean signal. (b) Spectra of simulated noisy signal. (c)
Wavelet denoising spectrum. (d)VMDdenoising spectrum. (e)DDTFdenoising spectrum. (f)DDTF-VMDdenoising spectrum. (g)
Denoising spectrumof themethod proposed in this paper. (h) FMD. (i)UNet. (a1) Simulate a locally amplified plot of the clean
signal spectrum. (b1) Simulate an amplified local spectrumof a noisy signal. (c1)Wavelet denoising spectrum local amplification
diagram. (d1)VMDdenoising spectrum local amplification diagram. (e1)DDTFdenoising spectrum local amplification diagram.
(f1)DDTF-VMDdenoising spectrum local amplification diagram. (g1)Ourmethoddenoising spectrum local amplification
diagram. (h1) FMD. (i1)UNet.
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Since the spectrumdiagram can only summarize the effects of thesemethods in the frequency domain, we
have also performed time-domain analysis on the data involved in this paper. Time-domain analysis, as a basic
and intuitivemethod, can provide detailed information of the signal in the time dimension. It complements
methods such as frequency-domain analysis and provides a comprehensive systemunderstanding and optim-
ization approach. As shown in figure 12(a), by comparingwith the spectrumdiagram, it can be known that the
fault point is probably near 2000 Hz. And in the power time-frequency diagram, the fault location ismanifested
as relatively high power and is also concentrated near 2000 Hz and decreases to both ends. This is also in line
with the signal characteristics. After adding noise, as shown in figure 12(b), the power in thewhole domain
increases, and the overall power difference is not significant, indicating that the simulated noise is dispersed
and has obvious influence. As shown in figure 12(c), the time-frequency diagramobtained after wavelet denois-
ing processing. Combinedwith the spectrumdiagram, it basically shows high power characteristics in the range
of 0–5000 Hz.However, the fault frequency of 2000 Hz of the clean signal and the characteristic of decreasing to
both ends are notmanifested. There is no decreasing effect, indicating that the denoising effect of thismethod is
not good. In figure 12(d), we can clearly see that basically thewhole domain has produced high power

Figure 12.Time-frequency diagram. (a)Clean signal. (b) Simulated noisy Signal. (c)Wavelet denoising. (d)VMDdenoising. (e)
DDTFdenoising. (f)DDTF-VMDdenoising. (g)Ourmethod. (h) FMD. (i)UNet.
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performance. Similar results are also obtained from spectrumanalysis. The denoising effect is not good. For the
DDTFdenoisingmethod, although it is very close to the clean signal in thewhole domain, the high-power
range at its fault location is relatively small. This is also in linewith the spectrumanalysis results. However, the
overall power is relatively high. There are still some high-power lines in other regions, indicating that the detail
processing effect of thismethod is not ideal. This is similar to the results obtained from spectrumanalysis.
Figure 12(e) obviously hasmany obvious high-power points, which further illustrates that VMDand its exten-
dedmethods are prone tomodal aliasing. Looking at themethod in this paper again, the power distribution
near 2000 Hz is closest to the clean signal, and the effect in thewhole domain is also relatively the best.
Figure 12(h) displays the time-frequency representation obtained using the FMDdecomposition, fromwhich
it can be observed that the performance of thismethod ismoderate. Figure 12(i) presents the time-frequency
result after denoisingwith the deep learning-basedUNet approach, demonstrating that thismethod achieves
excellent performance and that the reconstructed time-frequency representation closely approximates that of
the clean signal. These observations are consistent with the conclusions drawn from the earlier spectral and
temporal analyses. Therefore, themethod in this paper has the relatively best effect in both time domain and
frequency domain.

As shown in figure 13, whenwe performdenoisingwith theDDTFmethod and themethod in this paper,
we need to set thresholds for theDDTFmethod, theDDTF-VMDmethod, and themethod in this paper. In
figure 13(a), the all-black graphwithwhite dots indicates that when dictionary learning is performed, the
threshold is set too large, and some invalid signal features are learned. The striped dictionary graph in
figure 13(b) indicates that the threshold is set too small and the signal features cannot be fully learned.
Obviously, such threshold selection is unreasonable. The dictionary learnedwith a reasonable threshold has
texture features like those in figurea 13(c)–(e), which also indicates that the thresholds selected in this paper are
all relatively optimal.

Furthermore, we recorded the SNR, PCCand computational time for the seven denoisingmethods applied
to the simulated data, as summarized in table 4. As previouslymentioned, the initial SNRof the simulationwas
set to -10 dB. According to equation (13), the corresponding PCC is approximately 0.30. From table 4, it can be
observed that thewavelet denoisingmethod achieved a final SNRof−3.68 dB, VMDdenoising reached
−8.18 dB,DDTF attained−0.91 dB,DDTF-VMDreached−1.41 dB,while the proposedmethod achieved
4.19 dB. FMDandUNet yielded 1.21 dB and 6.08 dB, respectively. The corresponding PCCvalueswere 0.50,
0.37, 0.45, 0.67, 0.05, and 0.75.However, in terms of computational time, theUNetmethod required up to
389 s, which is approximately 65 times longer than the proposedmethod. The proposedmethod, alongwith
other non-deep learning approaches, required relatively short processing times. This highlights a limitation of
deep learningmethods, including the time-consuming processes of data processing and training, whichmake

Figure 13.Dictionary. (a)The threshold is too high dictionary. (b)The threshold is too lowdictionary. (c)DDTF’s best dictionary.
(d)DDTF-VMD’s best dictionary. (e)Textmethod’s best dictionary.
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them less suitable for real-time applications. Therefore, the research on the proposedmethod remainsmean-
ingful, as we explore non-deep learning approaches to improve denoising quality. Integrating SNR, PCC, and
computational time, we constructed a bar chart figure 14: (a) compares SNR, (b) compares PCC, (c) compares
computational time, and (d)presents an overall cost-effectiveness analysis. Specifically, a higher bar indicates
better overall cost-effectiveness. SNR andPCCwere normalized to the range [0, 1], where higher values indicate
better performance. For the timemetric, since lower values are preferable, we used 1minus the normalized
value for evaluation. Thus, the timemetric forUNet is nearly zero, indicating excessively long computational
time. From this figure, the proposedmethod demonstrates the best cost-effectiveness performance.

Furthermore, we computed the Pearson correlation coefficients for eight sets of datawith initial SNR ran-
ging from−10 to−2 after adding noise. The results are presented in table 5.We also visualized the Pearson
correlation coefficients of differentmethods across various initial SNRs, as illustrated in the line chart in
figure 15. It can be observed that the proposedmethod demonstrates pronounced efficacywhen the initial
Pearson correlation is low, indicating its robust performance under significant noise influence.When the

Figure 14.Histograms of (a) SNR, (b)PCC, (c)Time, and (d) comprehensive evaluation (higher values indicate better performance).

Table 4. Simulated data on SNR, PCC and time.

Methods SNR(dB) PCC Time(s)

Wavelet −3.68 0.50 2.51

VMD −8.18 0.37 4.43

DDTF −0.91 0.45 6.38

DDTF-VMD −1.41 0.57 9.76

Ourmethod 4.19 0.67 6.21

FMD 1.21 0.05 1.39

UNet 6.08 0.75 389.18
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Pearson correlation reaches around 0.65, the final correlation values of the proposedmethod, thewavelet
denoisingmethod, and theDDTFmethod show little difference, while theUNet approach nearly achieves
perfection. This observation is consistent with the earlier experimental conclusions, highlighting the powerful
learning capability of deep learningmethods.However, considering overall time efficiency, deep learning
methods also exhibit temporal limitations.Wenote that the Pearson correlation of the FMDmethod remains
consistently low. This is because the calculation of the Pearson correlation coefficient requires consideration of
positional information in the data, whereas SNRonly accounts for power information. As observed earlier in
figure 15, the FMDmethod causes a shift in fault location, thoughwe do not delve into the specific reasons here.
The proposedmethod demonstrates excellent performance both in terms of computational time and effective-
ness, indicating that this study also possesses certain practical significance.

4.2. Empirical data experimentation
4.2.1.Weak noise interference, processing real-world data from theHUST
The original signal effect diagram is shown in figure 16(a). Figure 16(a) contains noise. Due to the extremely
large data, we select the first 10,000 data for experiments and analyze the experimental results. The clean fault
signal should gradually decrease at the impact position. Figure 16(b) is the signal after wavelet denoising.We
can see that the denoising result of the low-amplitude part of its signal is not regular. In figure 16(c), in addition
to the fault impact, there is also a large amount of noise at the impact. Some impacts areweakened. In
figure 16(d), there is still some noise in its detail part. For example, there is still some low-amplitude noise
between impacts that has not been successfully removed, and there is also a certain degree of impactweakening
at some periodic positions. Andfigure 16(e) shows that thismethod has alsoweakened useful information to a
certain extent, and the detail processing is also not good. Themethod in this paper is shown in figure 16(f). The
fault is obvious, indicating that the denoising effect of themethod in this paper is relatively good.

Similarly, we have drawn the spectrumof the original noisy signal. By observing the spectrumof the origi-
nal noisy signal and comparing and analyzing figures 17(a)–(f), fromfigure 17(a), we can roughly see the loca-
tion of the fault frequency.However, there is a great influence of noise in its low-amplitude part. The denoising
effects of figures 17(b) and (c) are not obvious. In figures 17(d) and (e), it can be seen that the denoisingweaken-
ing effect is too strong and useful parts are alsoweakened. And there are stillmany noise components in the
detail part. the effect of figure 17(f) is relatively the best. Its detail part is relatively the cleanest, and the

Figure 15.The PCC curve.

Table 5. Initial PCC andfinally PCC.

InitialPCC 0.30 0.33 0.37 0.43 0.48 0.57 0.63 0.65

Wavelet 0.50 0.56 0.61 0.63 0.66 0.73 0.74 0.79

VMD 0.37 0.40 0.41 0.45 0.47 0.53 0.58 0.63

DDTF 0.45 0.48 0.67 0.72 0.78 0.84 0.89 0.90

DDTF-VMD 0.52 0.59 0.66 0.71 0.76 0.81 0.85 0.88

OurMethod 0.67 0.69 0.73 0.79 0.84 0.87 0.91 0.93

FMD 0.05 0.09 0.12 0.13 0.15 0.17 0.19 0.22

UNet 0.75 0.81 0.84 0.88 0.91 0.93 0.97 0.99
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Figure 16.Denoising comparison graph. (a)Noisy signal. (b)Wavelet denoising. (c)VMDdenoising. (d)DDTFdenoising. (e)
DDTF-VMDdenoising. (f)Ourmethod.

Figure 17.Compares the denoising spectra graph. (a)Noisy signal. (b)Wavelet denoising. (c)VMDdenoising. (d)DDTFdenoising.
(e)DDTF-VMDdenoising. (f)Ourmethod.
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amplitudeweakening effect is also the lowest. In conclusion, it also confirms that the effect of themethod in this
paper is relatively the best.

As shown in figure 18, we also perform time-frequency analysis on these data.We can find that for the
wavelet denoisingmethod and theVMDmethod, the power of the full-domain spectrum is not significantly
differentiated, showing very poor denoising performance.While theDDTFmethod and theDDTF-VMD
method have over-denoised, and the effect of the high-frequency part is slightly worse.However, themethod in
this paper clearly shows the high-power part. This also obtains the same result as the previous signal analysis
and spectrumanalysis.

4.2.2. Strong noise interference, processing real-world data fromXJTU
Weperformeddenoising analysis on data selected fromXJTU.Due to the high signal-to-noise ratio of the
chosen data, the impact of faults was almost entirely obscured by noise. Consequently, we employed impact
preservation techniques on the denoised data to validate the efficacy of our proposed denoisingmethod. For
signals with strong noise, we focused on analyzing the primary frequency denoising effect. The impact results of
the fivemethods obtained under identical conditions are depicted in figure 19. It is evident that the denoising
effect of ourmethod, shown in figure 19(f), demonstrates amore pronounced and cleaner impact pattern
compared to figures 19(a)–(e). The other fourmethods yielded impacts with less regularity and did not provide
a clear identification of fault points. Thus, ourmethod exhibits superior performance in this context.

We conducted a comparative analysis of the spectra of four denoisingmethods relative to the original sig-
nal, with the fault frequency corresponding to the fault location provided byXJTU. Besides the fundamental
rotational frequency component at 34.38Hz, the spectrumalso exhibited frequency components at 108.6Hz
and its harmonics. This frequency is close to the theoretical fault characteristic frequency of the outer race,
which is 107.91Hz. Figure 20(a) reveals that the original signal contains significant noise in addition to the fault
frequency and its harmonics, which is detrimental to fault detection. Figure 20(b) displays the result ofwavelet
denoising, which fails to effectively extract information in the high-frequency range. Figure 20(c) shows the
performance of theVMDdenoisingmethod. Although there is some improvement compared to the original
signal, the denoising effect remainsmarginal, with only aminor reduction in noise. Figure 20(d) illustrates a
method that performs better than the previous two, although itmay have filtered out someuseful signals, as the
fault frequency location can be preliminarily identified fromfigure 20(a). Figure 20(e) shows that some fre-
quency doublings of thismethod areweakened or even completely removed. In contrast, In figure 20(f), the

Figure 18.Time-frequency diagram. (a)Noisy signal. (b)Wavelet denoising. (c)VMDdenoising. (d)DDTFdenoising. (e)DDTF-
VMDdenoising. (f)Ourmethod.
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Figure 19.Denoising comparison graph. (a)Noisy signal fromXJTU. (b)Wavelet denoising. (c)VMDdenoising. (d)DDTF
denoising. (e)DDTF-VMDdenoising. (f)The denoisingmethod proposed in this paper.

Figure 20.Compares the denoising spectra graph. (a)Thenoisy signal spectrum. (b)Thewavelet denoising spectrum. (c)TheVMD
denoising spectrum. (d)TheDDTFdenoising spectrum. (e)TheDDTF-VMDdenoising spectrum. (f)The denoising spectrumusing
themethod proposed in this paper.
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parts circled in red indicate that comparedwith othermethods, the reference rotational frequency and its fre-
quency doublings of this data are obtainedmore clearly by themethod in this paper. In summary, the denoising
performance of the proposedmethod is significantly superior to the othermethods, further demonstrating its
efficacy in fault signal processing.

Through time-frequency analysis of these data, it can be observed fromfigure 21(a) that, despite significant
noise contamination near these amplitudes, the processing results depicted in figures 21(b) and (c) are not
markedly improved. In contrast, theDDTFmethod shows amore pronounced effect around 1000Hz, though
it still includes considerable noise interference and filters out low-frequency fault components. TheDDTF-
VMDmethod reduces a large number of frequency doublings, which is similar to the results of spectrumanaly-
sis. Themethod proposed in this paper demonstrates the best performance, not onlymaking fault frequencies
and their harmonics clearly discernible but also effectively reducing the surrounding noise. This further corro-
borates the reliability of the conclusions.

5. Classification experiments based on data denoising

The primary objective of this section is to demonstrate the impact of the denoisingmethod on classification
accuracy. Therefore, excessive experiments onmodel parameter selection and analysis are not conducted.
During data segmentation, we process the data using awindow size of 256 and a step size of 4. Each dataset is
divided into 4,000 samples for the training set and 1,000 samples for the validation set, with no overlap between
the training and validation sets to ensure experimental rigor. A 34-layer residual network is adopted as the
model architecture, as illustrated in the figureNotably, in the selection of the activation function, as shown in
figure 22, bearing fault signals often contain periodic pulse impacts with both positive and negative values.
Hence, we employ the ELU activation function instead of the original ReLU tomaintain experimental rigor.
Through repeated experiments, the learning rate is determined to be 0.000005.Due to the simplicity of the data,
themodel typically converges after approximately 5 iterations. Thus, to reduce computational costs, setting the
epoch to 10 is reasonable.

The table 6 compares the denoising performance of differentmethods in terms of accuracy and loss, with all
values presented asmean± standard deviation. The original data (Origin) yields 79.15%± 0.3%accuracy and
0.35± 0.01 loss, serving as a baseline.Wavelet denoising performs poorly (61.36%± 0.3%accuracy,

Figure 21.Time-frequency diagram. (a)Noisy signal. (b)Wavelet denoising. (c)VMDdenoising. (d)DDTFdenoising. (e)DDTF-
VMDdenoising. (f)Ourmethod.
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Figure 22.Accuracy and loss.

Figure 23.Compares the confusionmatrix. (a)Without denoising processing. (b)Wavelet. (c)VMD. (d)DDTF. (e)DDTF-VMD. (f)
Ourmethod.

Table 6.Accuracy and loss rates after data processing
by different denoisingmethods.

Method Accuracy Loss

Origin 79.15%± 0.3% 0.35± 0.01

Wavelet 61.36%± 0.3% 1.31± 0.01

VMD 98.11%± 0.3% 0.08± 0.01

DDTF 95.33%± 0.3% 0.12± 0.01

DDTF-VMD 97.71%± 0.3% 0.07± 0.01

Ourmethod 98.53%± 0.3% 0.04± 0.01
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1.31± 0.01 loss), while VMDachieves high accuracy (98.11%± 0.3%) and low loss (0.08± 0.01). DDTF shows
competitive results (95.33%± 0.3%, 0.12± 0.01), and the hybridDDTF-VMD further improves performance
(97.71%± 0.3%, 0.07± 0.01). Ourmethod outperforms all others, attaining the highest accuracy
(98.53%± 0.3%) and lowest loss (0.04± 0.01), demonstrating its superior denoising capability.

As shown in figure 22(a), which presents the accuracy variation of the validation set when six denoising
methods fromour experimentwere input into the residual networkmodel for six-class classification, our
method evidently achieves the highest accuracy. Figure 22(b)demonstrates the loss variation of the sixmethods
during validation, where ourmethod exhibits the lowest loss rate. The trend of these variations clearly validates
the effectiveness of our approach.

Figure 23 presents the final confusionmatrices of the sixmethods during validation, demonstrating that
ourmethod achieves the best performance. Figure 24 presents a comparative analysis of six t-SNE visualization
results. As shown in figure 24(f), distinct boundaries between different data classes are clearly observed, while
othermethods exhibit varying degrees of overlapping phenomena. This demonstrates that the proposed
denoisingmethod achieves themost effective results for these datasets.

6. Conclusion

To address the issue of insufficient accuracy in existingmethods for denoising bearing vibration signals, the
multi-scale dictionary learningmethod based onwavelet transformproposed in this paper achieves favorable
results.We conducted simulation experiments using a self-constructed sample set and introduced real-world
datasets for practical validation, with comparative experiments demonstrating the superiority of the proposed
method in denoising bearing vibration signals. By comparingwavelet denoising, VMDdenoising, DDTF
denoising,DDTF-VMDdenoising, the proposedmethod, FMDdenoising, andUNet denoising, we conclude
that the proposed approach combines the advantages of traditional wavelet denoising andDDTFdenoising. It
not only reduces the impact of the inflexibility of fixed bases but alsomitigates the pseudo-noise artifacts often
associatedwith learned basis denoisingmethods, thereby preserving useful signalsmore effectively during
noise removal. Although the deep learningmethodUNet achieves better denoising performance, its high
computational time costmakes it unsuitable for real-time applications. The proposedmethod aims to improve
denoising quality without relying on deep learning, offering certain advantages in real-time applicability.
Although the computational time of the proposedmethod is slightly longer than that of wavelet denoising,
VMDdenoising, DDTFdenoising, DDTF-VMD, and FMDdenoising, all thesemethods completewithin ten
seconds,making the time difference negligible. In contrast, the deep learningmethod requires 389 seconds,
indicating that the proposed approach ismore efficient. Despite achieving the best denoising performance and
high efficiency, the proposedmethod involves significantlymore parameters to adjust during the tuning

Figure 24.Compares the t-SNE. (a)Without denoising processing. (b)Wavelet. (c)VMD. (d)DDTF. (e)DDTF-VMD. (f)Our
method.

22

Eng. Res. Express 7 (2025) 045232 J Xu et al



process compared towavelet denoising andDDTFdenoising, and its code complexity is also higher. In the
future, the computational redundancy of the proposed algorithm can be further reduced to improve overall
quality, whichwill be the focus of subsequent research.

The experimental code in this paper: https://github.com/YJHHHJ/daima.git.
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