
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

PIDR(s):

IDR(s) as a Projection Method

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

Science Education and Communication

by

Marijn Bartel Schreuders

Delft, the Netherlands
June 24, 2014

Copyright © 2014 by Marijn Bartel Schreuders. All rights reserved.

MSc Thesis Science Education and Communication

“PIDR(s): IDR(s) as a Projection Method”

Marijn Bartel Schreuders

Delft University of Technology

Daily supervisor Responsible professor

Dr. ir. M.B. van Gijzen Prof. dr. ir. C. Vuik

Other thesis committee members

Dr. J.G. Spandaw R.A. Astudillo, MSc

June 24, 2014 Delft, the Netherlands

Summary

The Induced Dimension Reduction(s) method (or the IDR(s) method) is an example of an
iterative method used for solving systems of linear equations. Projection methods are a
special type of iterative method. They find an approximate solution in a subspace K ∈ Cn
(the right subspace) by requiring that the residual is orthogonal to another subspace L ∈ Cn
(the left subspace). In this thesis we investigate how we can implement IDR(s) as a projection
method. We call this method PIDR(s), which stands for Projected IDR(s). We present an
implementation of PIDR(s) for solving systems of linear equations and for solving eigenvalue
problems. These implementations are not meant to be optimal, but they are used to show
that IDR(s) can indeed be seen as a projection method.

In chapter 3 we explore the theory of projection methods and Krylov subspace methods:
projection methods for which the vectors in the right subspace can be written as a linear
combination of the vectors Ajr0 with j = 0, 1, 2, We derive a general algorithm for
projection methods, which we will use as a basis for the PIDR(s) method in chapter 6. In
chapter 4 we investigate a selection of Krylov subspace methods and we show how they fit in
the framework of projection methods. For each method we give the corresponding left and
right subspace.

In chapter 5 we show how we can derive the IDR(s) method from a general Krylov-type
solver. In addition, we analyse its performance and we present four numerical experiments
that show that for certain problems IDR(s) is a good choice to consider. In chapter 6 we
derive the definitions of the left and right subspace of PIDR(s) using information from existing
literature. Using the general algorithm for projection methods in chapter 3 and the newly
acquired definitions of the left and right subspace, we present two algorithms for PIDR(s):
one for solving eigenvalue problems and one for solving systems of linear equations.

The numerical experiments in chapter 7 show that we have a working algorithm for the
PIDR(s) method for systems of linear equations and for eigenvalue problems. The algorithm
of PIDR(s) for eigenvalue problems is particularly important, since not much is known about
IDR(s) as an eigenvalue method. By investigating this problem, we can develop a thor-
ough theoretical framework for IDR(s) as an eigenvalue method, which will give us a better
understanding of IDR(s) itself.

i

Preface

Monday the 6th of September 2004 now lies almost ten years in the past. It was the day
I started studying at the Delft University of Technology. In 2005 I switched to studying
mathematics. I will not bother you what happened between 2004 and this moment, but right
now I’m on the brink of graduating and I must say that I can look back on ten satisfying
years. Moreover, I can look forward to what I like most about mathematics, which is teaching
it to the generation of tomorrow.

I want to thank a few people for supporting me throughout my graduation project. First of
all I would like to thank my thesis committee members (Kees Vuik, Martin van Gijzen, Jeroen
Spandaw and Reinaldo Astudillo) for the time they spent reading my literature research and
this thesis. Secondly, I want to thank Martin van Gijzen and Reinaldo Astudillo in particular
for their support and numerous comments and suggestions.

Marijn Schreuders,
Rotterdam, June 2014

iii

List of Figures

3.1 Interpretation of the orthogonality condition 9

4.1 Krylov subspace methods . 13

5.1 Solving
(
P T∆Rm

)
c = P T rm . 31

5.2 Convergence behaviour of the convection diffusion matrix with β = 100 . . . 35
5.3 Convergence behaviour of the convection-diffusion matrix with β = 200 . . . 35
5.4 Convergence behaviour of the Sherman4 matrix 36
5.5 Convergence behaviour of the add20 matrix 38
5.6 Zoomed in convergence behaviour of the add20 matrix 38
5.7 Convergence behaviour of the jpwh 991 matrix 39

7.1 Convergence behaviour of the convection-diffusion matrix, β = 100 and s = 35 51
7.2 Convergence behaviour of the convection-diffusion matrix, β = 200 and s = 40 51
7.3 Convergence behaviour of the convection-diffusion matrix, β = 100 and s = 40 52
7.4 Convergence behaviour of the convection-diffusion matrix, β = 200 and s = 95 52
7.5 Convergence behaviour of the sherman1 matrix with s = 200 54
7.6 Zoomed in convergence behaviour of the sherman1 matrix with s = 200 . . . 54
7.7 Convergence behaviour of the jpwh 991 matrix with s = 35 56
7.8 Zoomed in convergence behaviour of the jpwh 991 matrix with s = 35 56
7.9 Eigenvalues (black) and Ritz values (red) of the Poisson(10) matrix with s = 4 58
7.10 Eigenvalues (black) and Ritz values (red) of the Poisson(10) matrix with s = 8 58
7.11 Eigenvalues (black) and Ritz values (red) of the Poisson(25) matrix with s = 8 59
7.12 Eigenvalues (black) and Ritz values (red) of the Poisson(25) matrix with s = 32 59
7.13 Eigenvalues (black) and Ritz values (red) of the rand(100) matrix with s = 2 60
7.14 Eigenvalues (black) and Ritz values (red) of the rand(100) matrix with s = 4 61
7.15 Eigenvalues (black) and Ritz values (red) of the rand(500) matrix with s = 4 61
7.16 Eigenvalues (black) and Ritz values (red) of the rand(500) matrix with s = 8 62
7.17 Eigenvalues (black) and Ritz values (red) of the Kahan(500) matrix with s = 2 63
7.18 Eigenvalues (black) and Ritz values (red) of the Kahan(500) matrix with s = 4 64
7.19 Eigenvalues (black) and Ritz values (red) of the Kahan(1000) matrix with s = 4 64

v

List of Tables

5.1 Example 5.3.1 with β = 100 . 34
5.2 Example 5.3.1 with β = 200 . 34
5.3 Convergence behaviour of the Sherman4 matrix 36
5.4 Convergence behaviour of the add20 matrix 37
5.5 Convergence behaviour of the jpwh 991 matrix 39

7.1 Example 7.1 with β = 100, s = 35 . 50
7.2 Example 7.1 with β = 200, s = 40 . 50
7.3 Example 7.1 with β = 100, s = 40 . 50
7.4 Example 7.1 with β = 200, s = 95 . 50
7.5 sherman1 matrix with s = 200 . 53
7.6 jpwh 991 matrix with s = 35 . 55

vii

Table of Contents

Summary i

Preface iii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Krylov subspace methods . 1

1.2 Research goals . 2

1.3 Structure of this thesis . 2

2 Definitions 5

3 Projection methods 7

3.1 General projection methods . 7

3.2 Matrix-vector representation of a projection process 8

3.3 The projector of a projection process . 10

3.4 Projection methods for eigenvalue problems 11

3.5 Definition of the Krylov subspace . 12

4 Krylov subspace methods 13

4.1 Krylov subspace methods for eigenvalue problems 13

4.1.1 The Arnoldi method . 14

4.1.2 The Lanczos method . 17

4.1.3 The Lanczos Biorthogonalisation method 18

4.2 Krylov subspace methods for solving systems of linear equations 20

4.2.1 The Full Orthogonalisation Method (FOM) 21

4.2.2 The Generalised Minimal RESidual (GMRES) method 22

4.2.3 The Conjugate Gradient (CG) method 23

4.2.4 The Conjugate Residual (CR) method) 24

4.2.5 The Biconjugate Gradient (Bi-CG) method 25

4.2.6 The Biconjugate Residual (Bi-CR) method 26

ix

5 IDR(s): Induced Dimension Reduction(s) 29

5.1 Derivation of the IDR(s) algorithm . 29
5.2 Performance of the IDR(s) method . 33
5.3 Numerical experiments with IDR(s) . 33

5.3.1 Example 5.3.1 - the convection-diffusion equation 34
5.3.2 Example 5.3.2 - the Sherman4 matrix 34
5.3.3 Example 5.3.3 - the add20 matrix . 37
5.3.4 Example 5.3.4 - the jpwh 991 matrix 37

6 PIDR(s): Projected Induced Dimension Reduction(s) 41

6.1 Analysis of the right subspace . 41
6.2 Analysis of the left subspace . 43
6.3 Definition of the approximate solution . 44
6.4 The PIDR(s) algorithm . 46
6.5 PIDR(s) as an eigenvalue method . 47

7 Numerical examples PIDR(s) 49

7.1 PIDR(s) for solving systems of linear equations 49
7.1.1 Example 1: the convection-diffusion equation 50
7.1.2 Example 2: the sherman1 matrix . 53
7.1.3 Example 3: the jpwh 991 matrix . 55

7.2 PIDR(s) for solving eigenvalue problems . 57
7.2.1 Example 1: the Poisson matrix . 57
7.2.2 Example 2: the rand(n) matrix . 60
7.2.3 Example 3: the Kahan(n,θ,ε) matrix 62

8 Conclusions 65

8.1 Summary of the results . 65
8.2 Recommendations for future research . 66

A Implentations for solving eigenvalue problems 69

A.1 Arnoldi.m . 70
A.2 Lanczos.m . 71
A.3 Bi Lanczos.m . 72

B Implementations for solving systems of linear equations 73

B.1 FOM.m . 74
B.2 GMRES.m . 75
B.3 CG.m . 76
B.4 CR.m . 77
B.5 Bi CG.m . 78
B.6 Bi CR.m . 79

C PIDR(s) files 81

C.1 main.m . 82

x

C.2 pidrs.m . 83
C.3 pidrs eachiter.m . 84
C.4 pidrs eigenvalue.m . 85
C.5 pidrs example.m . 86

D Other Matlab files 89

D.1 Aanroep methodes.m . 90
D.2 Arnoldi Basis.m . 91
D.3 Arnoldi Basis Block.m . 91
D.4 CDE.m . 92
D.5 sorteig.m . 92

xi

Chapter 1

Introduction

In secondary school we learn to solve small (two or sometimes three variables) systems of linear
equations by hand. However, in scientific computing applications we rarely encounter such
small problems. Often we want to solve systems of linear equations with millions of variables.
Rather than trying to solve these systems by hand (an impossible task), we let a computer
solve such problems. The study of algorithms for performing linear algebra computations
on computers is called numerical linear algebra. It has broad applicability in a wide variety
of technical areas, such as electrical engineering, aerospace engineering, signal processing,
computer science, physics, communication and economics.

1.1 Krylov subspace methods

Within the field of numerical linear algebra, iterative methods methods play an important role.
Iterative methods generate a sequence of vectors (the approximate solutions) that converges
to the exact solution under certain conditions. This is in contrast to direct methods (such
as Gaussian elimination), which find an exact solution in a finite number of steps. The field
of iterative methods underwent great progress in the 1950s with the introduction of the first
computers. Methods such as the Lanczos method (1950) [9], the Arnoldi method (1951) [1]
and the Conjugate Gradient (CG) method (1952) [8] made it possible to solve large scale
problems on a computer that were impossible to solve before. Later, methods like Bi-CG
(1976) [4], GMRES (1986) [11] and Bi-CGSTAB (1992) [18] contributed to the success of
numerical linear algebra.

If the matrix corresponding to a system of linear equations is symmetric and positive definite
(SPD), we prefer to use the Conjugate Gradient method, since it minimises the residual and
uses short recurrences. Here, short recurrences means that we only need a few of the previous
approximate solutions to compute a new solution. Unfortunately, there is no such method
if the matrix corresponding to a system of linear equations is nonsymmetric. The search
for new iterative methods for nonsymmetric problems has taken two approaches. ‘GMRES-
type’ methods minimise the residual in every iteration. Hence, the solution converges in as
few iterations as possible. However, the required memory grows for an increasing number of
iterations and often we cannot afford to run the full algorithm. ‘Bi-CG-type’ methods use
short recurrences, which means that the amount of work per iteration does not increase if the
dimension of the problem grows. However, we have no optimality condition for the residual
and hence, convergence may be slower.

1

Most of the iterative techniques for solving large systems of linear equations are examples
of projection methods. In a projection method we try to find an approximate solution in
a subspace K of Cn (the right subspace), such that the residual is orthogonal to another
subspace L of Cn (the left subspace). Different choices of K and L give rise to different
projection methods. A projection method for which the right subspace (of size m) equals
span{r0, Ar0, A2r0 . . . , A

m−1r0} is called a Krylov subspace method, named after the Russian
mathematician Alexei Krylov. Krylov subspace methods work by building a basis for the
Krylov subspace and by constructing the approximate solution as a linear combination of the
vectors in this basis. Moreover, Krylov subspace methods can be used to solve eigenvalue
problems. Hence, they form a broad class of iterative methods (see for example [5] and [10]).

1.2 Research goals

The Induced Dimension Reduction (IDR) method was originally proposed by Peter Sonneveld
in 1980 [20]. It is a Krylov subspace method for nonsymmetric matrices that tries to combine
an optimality condition for the residual with reasonably short recurrences. IDR generates
residuals that are forced to be in certain subspaces of decreasing dimension. In the years
after, research focussed on Bi-CG-type methods like Bi-CGSTAB and CGS and hence IDR
has always been overshadowed by these methods. This is quite unfortunate, because although
there is a clear relation between Bi-CG-type methods and IDR, the underlying mathematical
ideas are completely different. By exploiting these differences, better methods can be devel-
oped. Fortunately, there has been renewed interest in the IDR method in the past few years.
This renewed attention has led to the IDR(s) method, proposed by Peter Sonneveld and
Martin van Gijzen [16]. Since IDR(s) is in essence an iterative method, we can ask ourselves
if it is possible to see IDR(s) as a projection method. If this is the case, we might be able to
better understand the IDR(s) method.

In their paper ‘Interpreting IDR as a Petrov-Galerkin method’ [12], Valeria Simoncini and
Daniel B. Szyld show that the IDR(s) method can indeed be seen as a projection method
over the Krylov subspace. When the left subspace and the right subspace are appropriately
chosen, we see that the IDR(s) method can be interpreted as a classical Krylov subspace
method that fits in the framework of projection methods. However, Simoncini and Szyld do
not provide an implementation of IDR(s) as a projection method and in their paper the right
subspace is not explicitly defined. Hence, we ask ourselves the following question:

How can we implement IDR(s) as a projection method?

The goal of this project is to develop a working algorithm for IDR(s) as a projection method.
We will refer to this method as the PIDR(s) method. We will give an algorithm of PIDR(s)
for solving systems of linear equations and for solving eigenvalue problems. To do this, we
will first need to identify the left and the right subspace.

1.3 Structure of this thesis

Chapter 2 describes the definitions that we use frequently in the rest of this thesis. Chapter
3 is the foundation of this thesis. It describes the theory behind projection methods. It also

2

gives a general algorithm of projection methods. Finally it explains what Krylov subspaces
are and how they are related to projection methods.

Chapter 4 will make the reader acquainted with a selection of Krylov subspace methods.
These can be classified into methods that solve eigenvalue problems and methods that solve
systems of linear equations. We will present the Arnoldi method, the Lanczos method and
the Bi-Lanczos method as examples of methods that solve eigenvalue problems. Methods
that solve systems of linear equations include the Full Orthogonalisation Method (FOM),
the Generalised Minimal Residual (GMRES) method, the Conjugate Gradient (CG) method
and the Biconjugate Gradient (Bi-CG) method. Moreover, chapter 4 explains how all these
methods can be seen in the framework of projection methods.

In chapter 5 we will explain how we can derive the IDR(s) algorithm. We will describe how
the IDR(s) algorithm works. Finally, we will illustrate its performance by conducting four
numerical tests. In chapter 6 we arrive at the core of this thesis. We will derive the left
and right subspace of PIDR(s) for systems of linear equations and for eigenvalue problems,
together with an algorithm and an implementation. In chapter 7 we will present six motivating
examples of the performance of PIDR(s). In chapter 8 we will present our findings and we
will give recommendations for future research.

3

Chapter 2

Definitions

In this chapter we will present the relevant definitions for this thesis.

Definition 2.1 (Inner product).
Let a and b be two vectors in Rn. The inner product (a, b) of a and b is defined as

(a, b) = aT · b =
n∑
i=1

ai · bi.

It is easy to see that (a, b) = (b, a), since multiplication is a commutative operation.

Definition 2.2 (Orthogonality).
Two vectors ai ∈ Rn and aj ∈ Rn are said to be orthogonal if (ai, aj) = 0 when i 6= j.

Vectors in a set S = {a1, a2, . . . , am} are said to be pairwise orthogonal if (ai, aj) = 0 ∀i 6= j.

Definition 2.3 (Orthonormality).
Two vectors ai ∈ Rn and aj ∈ Rn are said to be orthonormal if (ai, aj) = δij, where δij
denotes the Kronecker Delta function:

δij =

{
1 if i = j
0 if i 6= j.

Definition 2.4 (Eigenvalue, Eigenvector).
A scalar λ ∈ C is called an eigenvalue of A ∈ Rn×n if a nonzero vector u ∈ Cn exists such
that Au = λu. The vector u is called an eigenvector of A associated with λ.

Definition 2.5 (Symmetric Positive Definite).

A matrix A ∈ Rn×n is said to be Symmetric Positive Definite or SPD if it satisfies

(i) AT = A,

(ii) uTAu > 0 ∀u ∈ Rn, u 6= 0.

5

Definition 2.6 (Hessenberg Matrix).
An upper Hessenberg matrix Hn ∈ Rn×n is a matrix whose entries below the first subdiagonal
are all zero:

Hn =



h11 h12 h13 . . . h1(n−1) h1n
h21 h22 h23 . . . h2(n−1) h2n
0 h32 h33 . . . h3(n−1) h3n
0 0 h43 . . . h4(n−1) h4n
...

...
...

. . .
...

...
0 0 0 . . . hn(n−1) hnn


.

A lower Hessenberg Matrix Hn ∈ Rn×n is a matrix whose entries above the first superdiagonal
are all zero.

Definition 2.7 (Conjugate transpose).
The conjugate transpose of a matrix A ∈ Cm×n is a matrix A∗ ∈ Cn×m such that

A∗ij = Aji,

where A denotes complex conjugate of A.

Definition 2.8 (Spectrum).
The spectrum of a matrix A ∈ Rn×n is the set of all its eigenvalues λ:

σ(A) = {λ ∈ C : A− λI = 0}.

Definition 2.9 (Rational Krylov subspace).
Let qm−1(A) be a polynomial in A of degree (m− 1) of the form

qm−1(A) =

m−1∏
i=1

(
I − 1

µi
A

)
,

where A ∈ Rn×n and µi ∈ Rn \ σ(A).

A rational Krylov subspace [7] corresponding to A and an initial vector v ∈ Rn is a Krylov
subspace for which

Km(A, v) = qm−1(A)−1span{v,Av, . . . , Am−1v}.

Definition 2.10 (Block Krylov subspace).
A block Krylov subspace corresponding to a matrix A ∈ Rn×n and initial matrix P ∈ Rn×s is
a Krylov subspace for which the matrix A operates on P :

Km(A,P) = span{P,AP, . . . , Am−1P}.

6

Chapter 3

Projection methods

In this chapter we will explore the area of projection methods. For the information in this
chapter, we rely heavily on the book ‘Iterative methods for sparse linear systems’, written by
Yousef Saad [10], which is considered an influential book in the field numerical linear algebra.

Consider the system of linear equations

Ax = b, (3.1)

with A ∈ Rn×n and b ∈ Rn.

In contrast to direct methods, iterative methods generate a sequence of vectors that under
certain conditions converge to the exact solution. If this sequence of solutions converges to
the exact solution, an iterative method is said to be convergent. The iterative methods
that we will discuss in chapter 4 are examples of projection methods. A projection method
tries to find an approximate solution to equation (3.1) by extracting it from a subspace
of Rn with dimension m ≤ n. This subspace is often denoted by Km and is called the
subspace of candidate approximants, search subspace or the right subspace. In order to find
this approximation, m constraints must be imposed on Km. This is typically done by requiring
that the residual vector r = b − Ax is orthogonal to m linearly independent vectors. These
vectors form a basis for another subspace Lm with dimension m and it is called the subspace of
constraints or left subspace. There are two kinds of projection methods: orthogonal projection
methods (also called Galerkin methods) and oblique projection methods (also called Petrov-
Galerkin methods). In orthogonal projection methods the right subspace Km is equal to the
left subspace Lm and in oblique projection methods Lm and Km differ. Throughout the rest
of this thesis, we use the symbol Km to denote the right subspace and Lm to denote the left
subspace.

3.1 General projection methods

Consider equation (3.1) and let Km and Lm be two subspaces of Rn with dimension m. Define
rm = b− Axm as the residual. A projection method onto Km and orthogonal to Lm tries to
find an approximate solution xm to equation (3.1) by requiring that xm belongs to Km such
that rm ⊥ Lm :

7

Find xm ∈ Km such that rm ⊥ Lm. (3.2)

These conditions are called the Petrov-Galerkin conditions. When Lm = Km, the Petrov-
Galerkin conditions are referred to as the Galerkin conditions.

It is also possible to use the initial guess x0 as a source of extra information to find an
approximate solution. The approximate solution must now be found in the affine subspace
x0 +Km instead of the vector space Km. Hence, (3.2) changes into:

Find xm ∈ x0 +Km such that rm ⊥ Lm. (3.3)

According to (3.3), it is possible to write xm = x0 + δ with δ ∈ Km. Using r0 = b− Ax0, we
can rewrite rm as:

rm = b−Axm = b−A(x0 + δ) = b−Ax0 −Aδ = r0 −Aδ.

Hence, (3.3) can be written as:

Find xm ∈ x0 +Km such that r0 −Aδ ⊥ Lm.

Let w be a vector in Lm. Since all vectors w ∈ Lm are orthogonal to the residual, the inner
product (r0 −Aδ,w) = 0. The solution to equation (3.1) can now be defined as:

xm = x0 + δ, δ ∈ Km, (3.4)

(r0 −Aδ,w) = 0, ∀w ∈ Lm. (3.5)

We now have to solve (r0 −Aδ,w) for δ in order to find the approximate solution xm. In each
iteration, the newly calculated residual should be orthogonal to the left subspace Lm. Figure
3.1 illustrates this orthogonality condition [10, p. 134].

3.2 Matrix-vector representation of a projection process

Let the column-vectors of Vm = [v1, v2, . . . , vm] and Wm = [w1, w2, . . . , wm], both n × m
matrices, form orthonormal bases for Km and Lm respectively. The approximate solution to
equation (3.1) can be written as:

xm = x0 + Vmym, (3.6)

This is true, since the approximate solution can be written as the initial guess plus a linear
combination of the orthonormal vectors in Km. The vector ym contains the coefficients for
the column vectors of Vm.

Vmym = [v1, v2, . . . vm]ym = y1v1 + y2v2 + . . . ymvm

8

Figure 3.1: Interpretation of the orthogonality condition

where vnm is the n-th element of vm. When we substitute equation (3.6) in rm, we obtain:

rm = r0 −AVmym. (3.7)

Since rm ⊥Wm by definition, the orthogonality condition in (3.5) can be written as

W T
m(r0 −AVmym) = 0 ⇐⇒ W T

mr0 =
(
W T
mAVm

)
ym.

If we assume that the matrix W T
mAVm is nonsingular (invertible), then we have an explicit

solution for ym and, since xm is a function of ym, also for xm:

ym =
(
W T
mAVm

)−1
W T
mr0 (3.8)

xm = x0 + Vm
(
W T
mAVm

)−1
W T
mr0 (3.9)

Equation (3.8) and (3.9) gives rise to algorithm 3.1, which is a general algorithm for projec-
tion methods that solve systems of linear equations [10]. We have assumed that the matrix
W T
mAVm is nonsingular, but this might not always be the case. However, there are two im-

portant cases in which the nonsingularity of W T
mAVm is guaranteed [10, p. 136]. Theorem

3.1 states these cases:

Theorem 3.1.
Let A, Km and Lm satisfy either one of the two following conditions

(i) A is positive definite and Lm = Km;

(ii) A is nonsingular and Lm = AKm.

Then the matrix W TAV is nonsingular for any bases Vm and Wm of Km and Lm respectively.

Proof. See [10, p. 136].

9

Algorithm 3.1 General projection method for systems of linear equations

1: Select a pair of subspaces Km and Lm
2: Until convergence; Do
3: Build bases Vm = [v1, v2, . . . , vm] for Km and Wm = [w1, w2, . . . , wm] for Lm
4: ym :=

(
W T
mAVm

)−1
W T
mr0

5: xm := x0 + Vmym
6: rm := b−Axm
7: Check stopping criterion
8: EndDo

3.3 The projector of a projection process

For each projection method we can define a projector [10, p. 34]:

Definition 3.2.
A projector P : Rn −→ Rn is any linear mapping which is idempotent, i.e., such that

P 2 = P.

We can find the projector corresponding to projection methods by rewriting the residual.
First we substitute equation (3.8) in equation (3.7). We obtain:

rm = r0 −AVmym =
(
I −AVm

(
W T
mAVm

)−1
W T
m

)
r0.

We define P as

P = I −AVm
(
W T
mAVm

)−1
W T
m.

Hence, we have rm = Pr0, which means that we can find the m-th residual by projecting r0.
Writing out definition 3.2 yields:

P 2 = I2 − 2AVm
(
W T
mAVm

)−1
W T
m +AVm

(
W T
mAVm

)−1
W T
mAVm

(
W T
mAVm

)−1
W T
m

= I − 2AVm
(
W T
mAVm

)−1
W T
m +AVm

(
W T
mAVm

)−1
W T
m

= I −AVm
(
W T
mAVm

)−1
W T
m

= P.

We see that the matrices W T
mAVm and (W T

mAVm)−1 cancel.

10

3.4 Projection methods for eigenvalue problems

For the eigenvalue problem we want to find the eigenvectors u(i) 6= 0 in Cn and the corre-
sponding eigenvalues λ(i) ∈ C of a square matrix A ∈ Rn×n such that Au(i) = λ(i)u(i) for
i = 1, . . . , n. For an n×n matrix, there are n eigenvalues (not necessarily distinct). However,
most of the times we are only interested in (a few of) the largest or smallest eigenvalues.

In a projection method for eigenvalue problems we want to find (in the m-th iteration) the

eigenvectors u
(i)
m in the right subspace (for i = 1, . . . ,m) and their corresponding eigenvalues

λ
(i)
m such that the left subspace is orthogonal to the residual r

(i)
m :

Find λ(i)m ∈ R and u(i)m ∈ Km such that r(i)m ⊥ Lm. (3.10)

Let Vm be a basis for Km and let Wm be a basis for Lm. Since u
(i)
m ∈ Km for 1 ≤ i ≤ m, we

can write u
(i)
m = Vmy

(i)
m . Here, y

(i)
m contains the coefficients for the column vectors of Vm. If

we write out the orthogonality condition, we obtain:

W T
mr

(i)
m = 0 ⇔ W T

m

(
Au(i)m − θ(i)m u(i)m

)
= 0

⇔ W T
mAVmy

(i)
m − θ(i)m Vmy

(i)
m = 0

⇔
(
W T
mAVm

)
y(i)m = θ(i)m

(
W T
mVm

)
y(i)m

Here the θ
(i)
m denote the eigenvalues of W T

mAVm. The corresponding eigenvectors are W T
mV y

(i)
m .

In the last line we have a generalised eigenvalue problem for the matrices W T
mAVm and

W T
mVm. As we will see in chapter 4, the generalised eigenvalue problem reduces to an ordinary

eigenvalue problem if Vm and Wm are biorthogonal. The matrices W T
mAVm and W T

mVm
have the same dimension, which is generally much smaller than the dimension of A. Hence,
computing the eigenvalues of W T

mAVm has a relative low cost. As we will explain in more
detail in section 4.1, the Ritz values of W T

mAVm are approximations of the eigenvalues of A
and the eigenvectors of A can be approximated by the Ritz vectors Vmym, where ym is the
eigenvector of W T

mAVm. In algorithm 3.2 we see a pseudoformal code of a general projection
method for eigenvalue problems.

Algorithm 3.2 General projection method for eigenvalue problems

1: Select a pair of subspaces Km and Lm
2: Until convergence; Do
3: Build bases Vm = [v1, v2, . . . , vm] for Km and Wm = [w1, w2, . . . , wm] for Lm
4: Solve W T

mAVmym = θmW
T
mVmym and approximate the eigenvalues with θm

5: and the eigenvectors with Vmym.

6: Check stopping criterion
7: EndDo

11

3.5 Definition of the Krylov subspace

Section 3.1 explained that a projection method searches for an approximate solution in the
right subspace Km such that the residual is orthogonal to all vectors in the left subspace Lm.
In Krylov subspace methods, the subspace Km is a Krylov subspace corresponding to the
matrix A and the initial residual r0:

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}, (3.11)

r0 is the initial residual and the vectors r0, Ar0, A
2r0, . . . , A

m−1r0 are the Krylov vectors.

There is a wide variety of Krylov subspace methods, such as the Full Orthogonalisation
Method (FOM, see section 4.2.1), the Generalised Minimum Residual method (GMRES, see
section 4.2.2) and the Conjugate Gradient method (CG, see section 4.2.3). Different Krylov
subspace methods arise from using different subspaces for Lm. Two widely used choices of
Lm give rise to the best-known techniques. The first one is simply Lm = Km and the other
one is Lm = AKm. Other methods, such as the Lanczos Biorthogonalisation method (see
section 4.1.3), take Lm = Km(AT , r0).

Recall that we can write xm = x0 +Km and we can write xm as x0 plus a linear combination
of the first m Krylov vectors or simply as x0 plus a polynomial pm−1 in A of degree (m− 1),
multiplied by r0:

xm = x0 +

m−1∑
j=0

αjA
j

 r0 = x0 + pm−1(A)r0,

with α ∈ R and A0 = I. If we have x0 = 0, r0 = b and we obtain: xm = pm−1(A)b.

We can obtain a similar expression for the residuals. From 3.7 we have rm = r0−A(xm−x0).
Since xm− x0 ∈ Km, we have that A(xm− x0) ∈ Km+1. r0 is in any Krylov subspace, so also
in Km+1. Therefore, we know rm ∈ Km+1 and we can write rm as a linear combination of the
first (m+ 1) Krylov vectors or simply as a polynomial qm of degree m in A multiplied by r0:

rm =

 m∑
j=0

βjA
j

 r0 = qm(A)r0.

12

Chapter 4

Krylov subspace methods

Numerical linear algebra is often concerned with two kinds of problems: finding the eigenval-
ues of a matrix (eigenvalue problems) and solving a system of (linear) equations.

Eigenvalues have many applications in mathematics. For example, eigenvalues can be used to
get a better understanding of the convergence behaviour of numerical methods. The second
type of problem is finding the solution of a system of linear equations. There is a wide variety
of methods available to solve either problem. Krylov subspace methods are one of those.
Krylov subspace methods can be classified, depending on the kind of problem we want to
solve and the characteristics of A. Chapter 4 will discuss several of these methods. Section
4.1 will discuss different Krylov subspace methods to solve eigenvalue problems and section
4.2 will discuss several Krylov subspace methods to solve systems of linear equations. Figure
4.1 shows the methods that will be discussed and shows their classification according to the
problem and matrix properties.

Figure 4.1: Krylov subspace methods

4.1 Krylov subspace methods for eigenvalue problems

In an eigenvalue problem, we want to find the eigenvalues λ(i) ∈ C and corresponding eigen-
vectors u(i) 6= 0 in Cn of a matrix A ∈ Rn×n for i = 1, . . . , n. The eigenvalues can be found by

13

solving the system of linear equations det(A−λ(i)I) = 0. Here I denotes the (n×n) identity
matrix. The eigenvector u(k) corresponding to a particular eigenvalue λ(k) can be found by
solving the equation (A − λ(k)I)u(k) = 0. However, this is often an expensive calculation,
since A can be a large matrix. Moreover, we are often interested in only a few of the extreme
eigenvalues. The Arnoldi method (see section 4.1.1), the Lanczos method (see section 4.1.2)
and the Lanczos Biorthogonalisation method (see section 4.1.3) are three Krylov subspace
methods for solving eigenvalue problems that work around this problem.

4.1.1 The Arnoldi method

The Arnoldi method is an example of a Krylov subspace method. It approximates the eigen-
values of a general matrix A ∈ Rn×n. It was proposed by Walter Edwin Arnoldi in 1951 [1].
The main idea of the Arnoldi method is to find an upper Hessenberg matrix Hm ∈ Rm×m
with m� n, whose eigenvalues are approximations to a subset of the eigenvalues of A. This
is accomplished by building an orthonormal basis of vectors Vm = [v1, . . . vm] for the Krylov
subspace Km, with

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}. (4.1)

In iteration j, an extra vector vj is added to the basis. Since Hm is smaller than A, the
eigenvalues are inexpensive to compute. Algorithm shows one possible implementation of the
Arnoldi method (see also appendix A.1.

Algorithm 4.1 The Arnoldi Method

1: Choose an initial vector v1 such that ||v1|| = 1
2: For j = 1, 2, . . . ,m Do
3: wj := Avj
4: For i = 1, 2, . . . , j Do
5: hij = (wj , vi)
6: wj := wj − hijvi
7: EndDo
8: hj+1,j = ||wj ||2
9: If hj+1,j = 0

10: Stop
11: EndIf
12: vj+1 = wj/hj+1,j

13: Build the Hessenberg matrix Hj and calculate its eigenvectors
14: Check stopping criterion
15: EndDo
16: Approximate the eigenvalues and eigenvectors of A using the upper
17: Hessenberg matrix Hm and the orthonormal basis Vm.

First we have to choose a starting vector v1 with ||v1||2 = 1. In the remainder of the text,
we will use || · || for the Euclidian norm. Each subsequent basis vector vj+1 (j = 1, . . . ,m) is
calculated by multiplying the previous vector vj with A (line 3) and orthogonalising it with

14

respect to all the previous basis vectors using the modified Gram-Schmidt process (lines 5-6).
Finally we normalise the resulting vector (line 12) [10, p. 12]. When the stopping criterion

is satisfied, the algorithm calculates the Ritz values θ
(i)
m and the eigenvectors y

(i)
m of Hm with

i = 1, . . . ,m.

For the stopping criterion, we use ||rj || < TOL, where ||rj || := ||Au(i)j −λ
(i)
j u

(i)
j ||, i = 1, . . . , j,

is the residual in the j-th iteration. Note that this stopping criterion is expensive to compute,
since we have to compute a matrix-vector product in every iteration and A might be a large
dense matrix. Fortunately, we can work around this problem.

We substitute line 3 of the algorithm into line 6, line 6 into line 12 and we multiply both sides
of the equation with hj+1,j to obtain

hj+1,jvj+1 = Avj −
j∑
i=1

hijvi. for j = 1, . . . ,m

We can rewrite this as

Avj = hj+1,jvj+1 +

j∑
i=1

hijvi for j = 1, . . . ,m (4.2)

=

j+1∑
i=1

hijvi for j = 1, . . . ,m. (4.3)

If we define Vm = [v1, . . . , vm], we can write these equations in matrix-vector notation:

AVm = VmHm + hm+1,mvm+1e
T
m, (4.4)

= Vm+1Hm, (4.5)

where Vm ∈ Cn×m is a matrix with orthonormal columns that form a basis for Km, Hm ∈
Rm×m is an upper Hessenberg matrix, Hm ∈ R(m+1)×j is an upper Hessenberg matrix with
one extra row and eTm the transpose of the m-th unit vector.

Equation (4.4) can be used to formulate an efficient stopping criterion for the Arnoldi method.
We substitute it into the definition of the residual and find (for j = 1, . . . ,m and i = 1, . . . , j):

||rj || = ||Au(i)j − λ
(i)
j u

(i)
j ||

= ||AVjy(i)j − θ
(i)
j Vjy

(i)
j ||

= ||VjHjy
(i)
j + hj+1,jvj+1e

T
j y

(i)
j − θ

(i)
j Vjy

(i)
j ||

= ||Vj(Hjy
(i)
j − θ

(i)
j y

(i)
j) + hj+1,jvj+1y

(i)
j (j)||

= ||hj+1,jvj+1y
(i)
j (j)||

= |hj+1,j | · |y(i)j (j)|.

15

Equation (4.4) is used in the third line and the fifth line reduces to |hj+1,j | · |y(i)j (j)|, because
||vj+1|| = 1, since the vectors in Vj = [v1, . . . , vj] are pairwise orthonormal. Hence, we have
the following stopping criterion:

|hj+1,j | · |y(i)j (j)| < TOL. (4.6)

In the j-th iteration, the algorithm produces j eigenvectors. The eigenvector(s) of Hj that we
should use, depends on which eigenvalue(s) of A we are interested in. For instance, if we want
to approximate the largest eigenvalue of A, then we should use the eigenvector corresponding
to the eigenvalue of Hj with the largest magnitude.

The Ritz values of Hm are approximations to a subset of the eigenvalues of A. They converge

to the extreme eigenvalues. The eigenvectors u
(i)
m of A can be approximated by the Ritz vector

Vmy
(i)
m . We can show this by rewriting equation (4.4) to VmHm + rme

T
m. Here we have used

that hm+1 = ||rm|| and vm+1 = rm/||rm||. If the Ritz values are close to the eigenvalues,
the residual is small and hence AVm ≈ VmHm. In the m-th iteration we have the following
relation

Au(i)m = AVmy
(i)
m ≈ VmHmy

(i)
m = Vmθ

(i)
m y(i)m = θ(i)m Vmy

(i)
m = θ(i)m u(i)m . (4.7)

This shows that the Ritz values are approximations to the eigenvalues of A. Finally, we have
the following result:

Theorem 4.1.
A Hessenberg matrix produced by the Arnoldi method will be a tridiagonal matrix if A ∈ Rn×n
is symmetric.

Proof.

Recall that V T
mVm is equal to the identity matrix, since the column vectors of V T

m are pairwise
orthonormal. Multiplying both sides of equation (4.4) with V T

m , we have:

V T
mAVm = Hm. (4.8)

When we transpose both sides, we get

V T
mA

TVm = HT
m. (4.9)

Since A is symmetric, we have A = AT . Hence, equation (4.9) can be written as

V T
mAVm = HT

m. (4.10)

Since the right-hand sides of equations (4.8) and (4.10) are the same, we have HT
m = Hm.

Since Hm is an upper Hessenberg matrix and HmT a lower Hessenberg matrix, we must have
that Hm is a tridiagonal matrix.

�

16

4.1.2 The Lanczos method

The Lanczos method [9][10] is a Krylov subspace method that is used for finding the eigen-
values of symmetric matrices. It can be seen as a simplification of the Arnoldi method for the
case that A is symmetric and positive definite (SPD). The Lanczos method was named after
Cornelius Lanczos, a Hungarian mathematician. Since A is an SPD matrix, the eigenvalues
of A are real and positive. The Lanczos algorithm is useful in situations where a few of A’s
largest or smallest eigenvalues are desired. Just as the Arnoldi method, it builds an orthonor-
mal basis Vm for the Krylov subspace Km (defined in equation (3.11)). The Lanczos method
also produces a tridiagonal matrix Tm. Algorithm 4.2 shows one possible implementation of
the Arnoldi method (see also appendix A.2).

Algorithm 4.2 Lanczos method

1: Choose an initial vector v1 such that ||v1||2 = 1.
2: Set β1 = 0 and v0 = 0.
3: For j = 1, 2, . . . ,m Do
4: wj := Avj − βjvj−1
5: αj := (wj , vj)
6: wj := wj − αjvj
7: βj+1 := ||wj ||2
8: If βj+1 = 0
9: Stop

10: EndIf
11: vj+1 := wj/βj+1

12: Set Tj = tridiag({βi}ji=2, {αi}
j
i=1, {βi}

j
i=2) and calculate its eigenvectors

13: Check stopping criterion
14: EndDo
15: Approximate the eigenvalues and eigenvectors of A using the tridiagonal
16: matrix Tm and the orthonormal basis Vm.

In line 4-6 the algorithm finds a new search direction orthogonal to all search directions of
the previous vectors v and in line 11 normalisation takes place. The vectors {vj}mj=1 are the
‘Lanczos vectors’ and they can be used to find an approximation to the eigenvectors of A. In
order to do this, all the Lanczos vectors have to be stored. The algorithm builds a tridiagonal
matrix Tj ∈ Rj×j in every iteration. Tj takes the following form:

Tj =



α1 β2
β2 α2 β3 O

β3 α3
. . .

. . .
. . .

. . .

O
. . .

. . . βj
βj αj


. (4.11)

When the stopping criterion is satisfied (after m iterations), the Lanczos algorithm calculates

17

the Ritz values θ
(i)
m and the eigenvectors y

(i)
m of Tm with i = 1, . . . ,m. The Ritz values of Tm

are approximations to a subset of the eigenvalues of A (see section 4.1.1). The eigenvectors

u
(i)
m of A can be approximated by the Ritz vector Vmy

(i)
m for i = 1, . . . ,m.

We can formulate a low-cost stopping criterion for the Lanczos method in the same way as
we did for the Arnoldi method. By substituting line 4 in line 6, line 6 in line 11, multiplying
both sides of the equation with βj+1 and rewriting this equation, we get

Avj = βjvj−1 + ajvj + βj+1vj+1 for j = 1, . . . ,m. (4.12)

From this expression it is easy to see that an orthonormal basis can be build using only three
vectors in every step. Therefore, the Lanczos method is called a short-recurrence method, an
iterative method that only needs a few previous vectors to build a new one. This is different
from the Arnoldi method, which is a long-recurrence method: an iterative method which
needs all the previous vectors to build a new one (compare equation (4.3) to equation (4.12)).
However, we will need all the basis vectors to approximate the eigenvectors of A. Equation
(4.12) can be written in matrix-vector notation as

AVm = VmTm + βm+1vm+1e
T
m. (4.13)

Note that equation (4.13) is similar to equation (4.4) (with Hm replaced by Tm), since
hm+1,m = ||wm|| = βm+1. We can therefore use the same stopping criterion as used in
the Arnoldi method, that is:

|βj+1| · |y(i)j (j)| < TOL.

4.1.3 The Lanczos Biorthogonalisation method

Although the Arnoldi method has good properties (it is a stable method with respect to
rounding errors and breakdown does not occur, [19]), it does have disadvantages. Arnoldi
uses Modified Gram-Schmidt orthogonalisation of all vectors vj and this causes the work (the
number of vector operations) to increase quadratically in every subsequent step. Although
Hm is relatively small compared to A, this might result in having to restart the algorithm.
However, in this case the good convergence properties are lost [19, p.107]

The Lanczos Biorthogonalisation method [9][10], also called the Bi-Lanczos method or non-
symmetric Lanczos method, is a Krylov subspace method that uses biorthogonalisation to find
the eigenvalues of a nonsymmetric matrix A. The Bi-Lanczos method produces two sequences
of vectors {vj}mj=1 and {wj}mj=1 that are biorthogonal. That means that if Vm = [v1, . . . , vj]

and Wm = [w1, . . . wj], then V T
mWm = W T

mVm = I. Vm and Wm are the bases for the two
subspaces Km(A, v1) and Lm(AT , w1):

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(AT , w1) = span{w1, A
Tw1, (A

T)2w1, . . . , (A
T)m−1w1}.

18

Algorithm 4.3 shows the Lanczos Biorthogonalisation method in pseudoformal notation. The
implementation of Bi-Lanczos can be found in appendix A.3. First we have to choose two
starting vectors v1 and w1 such that (v1, w1) = 1. In line 4-6 the algorithm finds a new search
direction orthogonal to all search directions of the previous vectors v and in line 12 and 13
normalisation takes place. Next, the algorithm builds a tridiagonal matrix Tj ∈ Rj×j in each
iteration. Tj has the following form:

Algorithm 4.3 Lanczos Biorthogonalisation method

1: Choose two vectors v1 and w1 such that (v1, w1) = 1.
2: Set β1 = δ1 = 0 and v0 = w0 = 0
3: For j = 1, 2, . . . ,m Do
4: αj := (wj , vj)
5: v̂j+1 = Avj − αjvj − βjvj−1
6: ŵj+1 = ATwj − αjwj − δjwj−1
7: δj+1 := |(v̂j+1, ŵj+1)|1/2
8: If δj+1 = 0
9: Stop

10: EndIf
11: βj+1 := (v̂j+1, ŵj+1)/δj+1

12: vj+1 = v̂j+1/δj+1

13: wj+1 = ŵj+1/βj+1

14: Set Tj = tridiag({δi}ji=2, {αi}
j
i=1, {βi}

j
i=2) and calculate its eigenvectors

15: Check stopping criterion
16: EndDo
17: Approximate the eigenvalues and eigenvectors of A using the tridiagonal
18: matrix Tm and the basis Vm.

Tj =



α1 β2
δ2 α2 β3 O

δ3 α3
. . .

. . .
. . .

. . .

O
. . .

. . . βj
δj αj


. (4.14)

Note that βj+1 = ±δj+1. This is easily deduced from the formulas for βj+1 and δj+1 in
line 7 and 11. If (v̂j+1, ŵj+1) is positive, then βj+1 = δj+1. If (v̂j+1, ŵj+1) is negative, then
βj+1 = −δj+1.

When the stopping criterion is satisfied (after m iterations), the Bi-Lanczos algorithm calcu-

lates the Ritz values θ
(i)
m and the eigenvectors y

(i)
m of Tm with i = 1, . . . ,m. The Ritz values

of Tm are approximations to a subset of the eigenvalues of A. The eigenvectors u
(i)
m of A can

be approximated by the Ritz vectors Vmy
(i)
m (see section 4.1.1).

19

By substituting line 5 in line 12, multiplying both sides of the equation with δj+1,j and
rewriting this equation, we get

Avj = βjvj−1 + αjvj + δj+1vj+1 for j = 1, . . . ,m.

We see that the Bi-Lanczos method is also a short recurrence method. The above expression
can be written in matrix-vector notation as

AVm = VmTm + δm+1vm+1e
T
m. (4.15)

We can use equation (4.15) to obtain an inexpensive stopping criterion for the Bi-Lanczos
method in a similar fashion as in the Arnoldi and Lanczos method. However, in the Bi-Lanczos
method, the vectors v1, . . . vj are not orthonormal (||vj+1|| 6= 1). Hence, we obtain:

|δj+1| · |y(i)j (j)| · ||vj+1|| < TOL. (4.16)

4.2 Krylov subspace methods for solving systems of linear
equations

Suppose we are interested in solving the system of linear equations Ax = b with A ∈ Rn×n
and b ∈ Rn and initial guess x0. Let Vj = [v1, . . . , vj] and Wj = [w1, . . . , wj] be orthonormal
bases for the Krylov subspaces Kj and Lj respectively. We can write the solution in the j-th
iteration as xj = x0 + Vjyj , where yj is a vector with coefficients for the vector vj . In section
3.2 we found the following relations for ym and xm:

ym =
(
W T
mAVm

)−1
W T
mr0

xm = x0 + Vm
(
W T
mAVm

)−1
W T
mr0

Since v1 = r0/||r0|| and ||r0|| = β (and hence r0 = βv1), we have:

W T
mr0 = βW T

m · v1 = βe1, (4.17)

where e1 is the first unit vector. In the last equality sign we used that W T
mv1 = e1. If

Wm = Vm (in orthogonal projection methods) we obtain V T
mv1 and this is clearly equal to e1.

In case Vm and Wm are biorthogonal, we obtain the same relation. We now have:

ym =
(
W T
mAVm

)−1
βe1 (4.18)

xm = x0 + Vm
(
W T
mAVm

)−1
βe1. (4.19)

Krylov subspace methods for systems of linear equations are classified in two categories. First,
the ‘GMRES-type’ category, which contains methods based on the Arnoldi method. Hence
they are long recurrence algorithms. Secondly, we have the ‘BI-CG-type’ category, which
contains short recurrence methods based on the Bi-Lanczos method. In the next sections we
present an overview of the most commonly used Krylov subspace methods for solving systems
of linear equations.

20

4.2.1 The Full Orthogonalisation Method (FOM)

The Full Orthogonalisation Method (FOM) is a Krylov subspace method that is used for
solving systems of linear equations. It is based on the Arnoldi method. FOM is an orthogonal
projection method onto Km and orthogonal to Lm, with

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(A, v1) = Km(A, v1).

We can find a solution to a system of linear equations Ax = b by using equation (4.18)
and (4.19). Algorithm 4.4 shows one possible implementation of the FOM method. The
implementation of the algorithm can be found in appendix B.1.

Algorithm 4.4 Full Orthogonalisation Method (FOM)

1: Compute r0 = b−Ax0, β := ||r0||2 and v1 := r0/β
2: For j = 1, 2, . . . ,m Do
3: wj := Avj
4: For i = 1, 2, . . . , j Do
5: hij = (wj , vi)
6: wj := wj − hijvi
7: EndDo
8: hj+1,j = ||wj ||2
9: If hj+1,j = 0

10: Stop
11: EndIf
12: vj+1 = wj/hj+1,j

13: yj = H−1j (βe1)
14: Check stopping criterion
15: EndDo
16: x = x0 + Vmym

Until line 12, the algorithm is exactly the same as the Arnoldi method’s algorithm. In the
j-th iteration, the algorithm builds an orthonormal basis for Kj . In line 13 the coefficients
for the orthonormal column vectors of Vj are computed. After the algorithm finishes (after
m iterations), both Vm and ym are used to compute the approximate solution xm in line 16.
For the stopping criterion, we use equation (4.20) with ε = TOL [19, p. 56]:

||rj ||
||b||

=
||b−Axj ||
||b||

< TOL. (4.20)

As in the Arnoldi method, it is not efficient to compute the residual directly. Instead we
substitute the approximate solution into equation (4.20) and using equation (4.4) in the
second line and equation (4.18) in the third line with W T

mAVm = Hj , we find:

21

||rj || = ||r0 −AVjyj ||
= ||βv1 − VjHjyj − hj+1,jvj+1e

T
j yj ||

= ||βVje1 − βVje1 − hj+1,jvj+1yj(j)||
= ||hj+1,jvj+1yj(j)||
= |hj+1,j | · |yj(j)|.

Substituting this into equation (4.20) and rewriting it, we find the following stopping criterion:

|hj+1,j | · |yj(j)| < ||b|| · TOL.

4.2.2 The Generalised Minimal RESidual (GMRES) method

The Generalised Minimal Residual (GMRES) method [10][11] is a Krylov subspace method
for solving systems of linear equations. It minimises the residual norm in every step. GMRES
is an oblique projection method, so Lm 6= Km. Instead, we have:

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(A, v1) = AKm(A, v1)

Just as FOM, GMRES is based on the Arnoldi method. However, there are some differences.
We use equation (4.5) instead of equation (4.4) to build an orthogonal basis for the Krylov
subspace. The particular selection of the right and left subspace in GMRES ensures the
minimisation of the residual in the Euclidian norm. Assume that Vj ∈ Rn×j represents an
orthogonal basis for Kj(A, r0). The approximate solution is given by xj = x0 + Vjyj . We can
rewrite the residual in a similar fashion as in the Arnoldi method. This yields:

||rj || = ||βe1 −Hjyj ||. (4.21)

We have to select the yj in order to minimise the residual. We define:

yj = min
y
||βe1 −Hjy||. (4.22)

Algorithm 4.5 shows the GMRES method in pseudoformal notation. An implementation can
be found in appendix B.2. Until line 12, the algorithm is exactly the same as the Arnoldi
method’s algorithm. The algorithm builds an orthonormal basis for Km. In line 13 the
coefficients yj for the vectors vj are calculated by solving a least squares problem. In line
16 the approximate solution xm is calculated. Using equation (4.21) we obtain the following
stopping criterion:

||βe1 −Hjyj || < ||b|| · TOL. (4.23)

22

Algorithm 4.5 Generalised Minimal Residual method (GMRES)

1: Compute r0 = b−Ax0, β := ||r0||2 and v1 := r0/β
2: For j = 1, 2, . . . ,m Do
3: wj := Avj
4: For i = 1, 2, . . . , j Do
5: hij = (wj , vi)
6: wj := wj − hijvi
7: EndDo
8: hj+1,j = ||wj ||2
9: If hj+1,j = 0

10: Stop
11: EndIf
12: vj+1 = wj/hj+1,j

13: yj = miny||βe1 −Hjy||
14: Check stopping criterion
15: EndDo
16: x = x0 + Vmym

4.2.3 The Conjugate Gradient (CG) method

The Conjugate Gradient (CG) [8][10] method is one of the best-known iterative methods for
solving systems of linear equations with a symmetric positive definite matrix A (see definition
2.5). It is an orthogonal projection method onto Km and orthogonal to Lm with the following
left and right subspace:

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(A, v1) = Km(A, v1).

Let x be the exact solution of the system of linear equations Ax = b. The idea of CG is to
construct a vector xj ∈ Kj in every iteration such that ||x − xj || is minimal. It turns out
that it is not possible to calculate this norm, since we do not know x beforehand. Instead we
define a new norm, called the A-norm: ||y||A =

√
yTAy [19, p. 66]. In every iteration we

now compute the approximate solution xj such that

||x− xj ||A = min
xj∈Kj

||x− xj ||A.

This gives rise to the Conjugate Gradient method as seen in algorithm 4.6. An implementation
can be found in appendix B.3. In every iteration the algorithm calculates the new solution
xj+1, updates the residual rj+1 and updates the search direction pj+1. We use equation (4.20)
as a stopping criterion, where ||rj || is computed directly.

The search directions are A-orthogonal: ||pTi Apj || = 0 for i < j. The name of the method is
derived from the fact that rj+1, the new residual vector, is orthogonal (conjugate) to all the

23

Algorithm 4.6 The Conjugate Gradient method (CG)

1: Compute r0 = b−Ax0 and p0 := r0
2: For j = 0, 1, 2, . . . m Do
3: αj := (rj , rj)/(Apj , pj)
4: xj+1 := xj + αjpj
5: rj+1 := rj − αjApj
6: Check stopping criterion
7: βj := (rj+1, rj+1)/(rj , rj)
8: pj+1 := rj+1 + βjpj
9: EndDo

10: x = xm

previous search directions (gradients), so pTi rj+1 = 0 for i < j. Using this, we find that rj+1

is also orthogonal to the previous residuals:

pTi rj+1 = (ri + βi−1pi−1)
T rj+1 = rTi rj+1 + βi−1p

T
i−1rj+1 = rTi rj+1 = 0

4.2.4 The Conjugate Residual (CR) method)

In section 4.2.3 we found that CG was an analogue of FOM for symmetric positive definite
(SPD) matrices. Something similar holds for the Conjugate Residual (CR) method [10]. It is
an analogue of GMRES for Hermitian SPD matrices. Because of this, the CR method is an
oblique projection method onto Km and orthogonal to Lm, where

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(A, v1) = AKm(A, v1).

Algorithm 4.7 shows in pseudoformal notation the CR method. The implementation of the
CR method can be found in appendix B.4.

Algorithm 4.7 The Conjugate Residual method (CR)

1: Compute r0 = b−Ax0 and set p0 := r0
2: For j = 0, 1, 2, . . . m Do
3: αj := (rj , Arj)/(Apj , Apj)
4: xj+1 := xj + αjpj
5: rj+1 := rj − αjApj
6: Check stopping criterion
7: βj := (rj+1, Arj+1)/(rj , Arj)
8: pj+1 := rj+1 + βjpj
9: Apj+1 = Arj+1 + βjApj

10: EndDo
11: x = xm+1

24

The algorithm is similar to the algorithm of CG. In every iteration the new solution xj+1,
the new residual rj+1 and the new search direction pj+1 are calculated. Just as in CG, the
residual is calculated directly using (4.20).

In the CR method, the residual vectors ri are A-orthogonal (conjugate): riArj = 0 if
i 6= j. Hence the name of the method. Moreover, the vectors {Api}mi=1 are orthogonal.
The convergence behaviour of CR and CG is similar and since the CR method requires extra
storage and one extra vector update compared to CG, the latter is often preferred [10, pp.
203-204].

4.2.5 The Biconjugate Gradient (Bi-CG) method

The Conjugate Gradient algorithm is one of the most widely used algorithms to solve a system
of linear equations Ax = b. The Biconjugate Gradient method (Bi-CG) [4][10] can be viewed
as an extension of CG for general matrices. It is an oblique projection method onto Km and
orthogonal to Lm with

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(AT , w1) = Km(AT , w1).

where v1 = r0/||r0||. The vector w1 may be chosen arbitrarily provided that (v1, w1) 6= 0, but
normally it is chosen to be equal to v1.

Algorithm 4.8 Biconjugate Gradient algorithm

1: Compute r0 = b−Ax0,.
2: Set p0 = r0, and p∗0 = r∗0
3: For j = 0, 1, 2, . . . ,m Do
4: αj := (rj , r

∗
j)/(pj , A

T p∗j)
5: xj+1 := xj + αjpj
6: rj+1 := rj − αjApj
7: r∗j+1 := r∗j − αjAT p∗j
8: Check stopping criterion
9: βj := (rj+1, r

∗
j+1)/(rj , r

∗
j)

10: pj+1 := rj+1 + βjpj
11: p∗j+1 := r∗j+1 + βjp

∗
j

12: EndDo
13: x = xm+1

A possible algorithm for the Bi-CG method is given in algorithm 4.8 and an implementation
is given in appendix B.5. First we define the dual system of Ax = b as the system ATx∗ = b∗.
Next, we define r∗j = b∗ −ATx∗j as the j-th residual of the dual system. r∗j is often called the
‘shadow residual’. In every iteration, the algorithm calculates the updated solution xj+1, the

25

updated residual rj+1, the updated shadow residual r∗j+1, the new search direction pj+1 and
p∗j+1, the ‘shadow search direction’. We use equation (4.20) as a stopping criterion, where
||rj || is computed directly. The Bi-CG method can be used to solve the dual system as well.
To do this, we need to insert x∗j+1 = x∗j + αjp

∗
j after line 5 of the algorithm.

4.2.6 The Biconjugate Residual (Bi-CR) method

The Bi-CG method is an extension of CG for nonsymmetric matrices. Similarly, the Bicon-
jugate Residual method (Bi-CR) was recently suggested as an extension to CR for nonsym-
metric matrices [14]. Bi-CR is an oblique projection method with the following right and left
subspace:

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(AT , w1) = ATKm(AT , w1).

with v1 = r0/||r0|| and w1 = r∗0/||r∗0|| as usual. An implementation for Bi-CR can be found
in algorithm 4.9

Algorithm 4.9 Biconjugate Residual algorithm

1: Compute r0 = b−Ax0 and set p0 = r0 and p∗0 = r∗0.
2: For j = 0, 1, 2, . . . ,m Do
3: αj := (rj , A

T r∗j)/(pj , A
T (AT p∗j))

4: xj+1 := xj + αjpj
5: rj+1 := rj − αjApj
6: r∗j+1 := r∗j − αjAT p∗j
7: Check stopping criterion
8: βj := (rj+1, A

T r∗j+1)/(rj , A
T r∗j)

9: pj+1 := rj+1 + βjpj
10: p∗j+1 := r∗j+1 + βjpj∗
11: EndDo
12: x = xm

When we look closely at the algorithm, we find that it is similar to the algorithm of Bi-CG.
This is no coincidence, since Bi-CR can be obtained by multiplying the initial shadow residual
r∗0 in the Bi-CG method by AT , that is: r∗0 7→ AT r∗0. This can be seen as follows.

Suppose sj+1 and tj+1 are polynomials of degree (j + 1). We can write (in a similar fashion
as in section 3.5) the shadow residual in the Bi-CG method as a polynomial in AT multiplied
by r∗0:

r∗j = sj+1(A
T)r∗0.

If r∗0 7→ AT r∗0 in the Bi-CG method, then we have:

26

r∗j = sj+1(A
T)AT r∗0. (4.24)

Since p∗0 = r∗0, we have p∗0 7→ AT p∗0. In a similar fashion as for the shadow residual, we find:

p∗j = tj+1(A
T)AT p∗0. (4.25)

From equation (4.24) and (4.25), is it clear that all the shadow residuals and the ‘shadow
search vectors’ in the Bi-CG algorithm have been multiplied by AT . However, this will give
an algorithm that is exactly the same as the algorithm of the Bi-CR method. Hence, we have:

LBi−CRm (AT , r∗0) = AT · LBi−CGm (AT , r∗0) = LBi−CGm (AT , AT r∗0).

27

Chapter 5

IDR(s): Induced Dimension
Reduction(s)

If we are interested in solving a system of linear equations Ax = b with A a an SPD matrix,
the Conjugate Gradient method (see section 4.2.3) is often preferred. It combines optimal
minimisation of the residual with short recurrences.

Unfortunately it is not possible to find a Krylov subspace method for general nonsymmetric
matrices that combines these properties [3]. When the matrix A is not symmetric, we can
follow two approaches. In the first approach, research focused on methods in which the
requirement for short recurrences was removed. GMRES (see section 4.2.2) is the most
popular member of this family of methods. In the second approach, research focused on short
recurrence methods without the optimality condition. The archetype of this method is the
Bi-CG method (see section 4.2.5). However Bi-CG requires twice the work as CG. Other
methods, such as CGS [15] and Bi-CGSTAB [18] have been developed in order to overcome
this problem, but all these methods are based on Bi-CG.

This is where the Induced Dimension Reduction (IDR) method comes in. It was first proposed
by Peter Sonneveld in 1980 [20]. IDR is based on reasonably short recurrences and computes
the solution in at most 2N matrix-vector multiplications. This makes it at least at fast as
the Bi-CG method. Over the years, IDR has been completely overshadowed by CGS and
Bi-CGSTAB, but in recent years there has been renewed interest in IDR. One of the new
family of methods that was developed in 2008 is the IDR(s) method (see [16] and [17]).

5.1 Derivation of the IDR(s) algorithm

The IDR(s) method is based on the IDR theorem, which was originally published in [20].

Theorem 5.1 (IDR Theorem).
Let A be any matrix in Rn×n, let v1 be any nonzero vector in Rn and let G0 be the full Krylov
space Kn(A, v1). Let S denote any (proper) subspace of Rn such that S and G0 do not share
a nontrivial invariant subspace of A, and define the sequence Gj , j = 1, 2, . . . as

Gj = (I − ωjA) (Gj−1 ∩ S) , (5.1)

where the ωj’s are nonzero scalars.

29

Then the following holds:

(i) Gj ⊂ Gj−1 ∀j > 0;

(ii) Gj = {0} for some j ≤ n.

Proof. See [16, p. 1037]

The main idea of the IDR(s) method is to generate residuals rm that are forced to be in the
subspaces Gj , where j is nondecreasing for increasing m. The subspaces Gj are also called
the Sonneveld spaces. The first part of the IDR theorem tells us that Gj ⊂ Gj−1, so that the
dimension of the Sonneveld spaces reduces in each iteration. Hence the name of the method.
Using the second part of the IDR theorem, the j-th residual must eventually be in Gj = {0}
after at most n dimension reduction steps. If the residual is zero, we have found the solution
to the system Ax = b.

According to Sonneveld and Van Gijzen [16], the residuals of a general Krylov-type solver can
be described by

rm+1 = rm − αAvm −
K∑
k=1

γk∆rm−k, (5.2)

where γk, α ∈ R and vm ∈ Km(A, r0) \ Km−1(A, r0). The integer K is the depth of the
recursion. Recall that we want the residual rm+1 to be in the Sonneveld spaces Gj+1. This is
the case if

rm+1 = (I − ωm+1A) vm with vm ∈ Gj ∩ S, (5.3)

which can be seen directly from the definition of the Sonneveld spaces. Now define the (K×1)
vector c = [γ1 γ2 . . . γK]T and the (n × s) matrix ∆Rm = [∆rm−1 ∆rm−2 . . . ∆rm−s] . If
we choose vm to be

vm = rm −
K∑
k=1

γk∆rm−k = rm −∆Rmc, (5.4)

then rm+1 satisfies equation (5.2) (with α = ωj+1).

Now define an (n× s) matrix P = [p1 p2 . . . ps] with pij ∈ R. Without loss of generality, we
assume that the subspace S is the left nullspace of P . Letting vm ∈ S, we obtain:

P T vm = 0. (5.5)

Substituting equation (5.4) in (5.5) yields:(
P T∆Rm

)
c = P T rm. (5.6)

Since we know P , ∆Rm and rm, we can solve this system of linear equations. Having K
unknowns and s equations, this system is in general uniquely solvable for c if K = s. In
Figure 5.1 we illustrate this.

30

Figure 5.1: Solving
(
P T∆Rm

)
c = P T rm

With the vector c we can compute vm and hence rm+1. After updating ∆Rm to ∆Rm+1, we
start a new iteration in which we calculate vm+1 and rm+2. Since we know vm+1 ∈ Gj ∩S, we
can conclude from equation (5.3) that also rm+2 ∈ Gj+1. We repeat these steps s + 1 times,
until the vectors rm+1, . . . , rm+s are in Gj+1. Since we now have enough vectors in Gj+1, the
next vector, rm+s+1, will be in Gj+2.

Of course, we also need to find an expression for the solution vector. We can easily find one
using equation (5.2) (with αm = ωj+1):

rm+1 = rm − ωj+1Avm −
K∑
k=1

γk∆rm−k = rm − ωj+1Avm −∆Rm−kc. (5.7)

Using rm = b−Axm, cancelling the b’s on both sides and multiplying with A−1 yields:

xm+1 = xm + ωj+1vm −
K∑
k=1

γk∆xm−k = xm + ωj+1vm −∆Xm−kc. (5.8)

Equation (5.7) and (5.8) form the basis of IDR(s). An algorithm for IDR(s) can be seen in
algorithm 5.1.

First we have to initialise the algorithm by choosing a matrix P and computing r0. Next, we
have to build ∆Rm+1 and ∆Xm+1, which we need for building the spaces Gj+1. The algorithm
carries out the loop s + 1 times in order to find s + 1 vectors for Gj+1. In the calculation of
the first residual in Gj+1, we have to find ωj+1. We can use an approach that minimises the
residual (see e.g. [17]). We obtain

ωj+1 =
vTAv

vTATAv
.

For the calculation of the subsequent residuals in Gj+1, the same value for ωj+1 must be
used. This is a drawback, since it is not guaranteed that this value of ωj+1 also minimises
the subsequent residuals in Gj+1. Other selections for ωj are proposed in [12] and [17].

31

Algorithm 5.1 IDR(s)

1: Require A ∈ RN×N ; x0, b ∈ RN ; P ∈ RN×s; TOL ∈ (0, 1); MAXIT > 0
2: Ensure xm such that ||b−Axm|| < TOL
3: {Initialisation}
4: Calculate r0 = b−Ax0;
5:

6: {Apply s minimum norm steps to build enough vectors in G0}
7: For m = 0 to s− 1 Do
8: v = Arm ;
9: ω =

(
vT rm

)
/
(
vT v

)
;

10: ∆xm = ωrm;
11: ∆rm = −ωv;
12: rm+1 = rm + ∆rm;
13: xm+1 = xm + ∆xm;
14: EndFor
15: ∆Rm+1 = (∆rm . . .∆r0);
16: ∆Xm+1 = (∆xm . . .∆x0);
17:

18: {Building Gj spaces for j = 1, 2, 3, . . .}
19: m = s
20: {Loop over Gj spaces}
21: While ||rm|| > TOL and m < MAXIT Do
22: {Loop inside Gj spaces}
23: For k = 0 to s Do
24: Solve c from P T∆Rmc = P T rm;
25: v = rm −∆Rmc;
26: If k = 0 then
27: {Entering Gj+1}
28: t = Av;
29: ω =

(
tT v
)
/
(
tT t
)
;

30: ∆xm = −∆Xmc+ ωv;
31: ∆rm = −∆Rmc− ωt;
32: else
33: {Subsequent vectors in Gj+1}
34: ∆xm = −∆Xmc+ ωv;
35: ∆rm = −A∆xm;
36: End if
37: rm+1 = rm + ∆rm;
38: xm+1 = xm + ∆xm;
39: m = m+ 1;
40: ∆Rm = (∆rm−1, . . . ,∆rm−s);
41: ∆Xm = (∆xm−1, . . . ,∆xm−s);
42: End for
43: End while
44: x = xm

32

5.2 Performance of the IDR(s) method

The IDR theorem predicts that dimension reduction will take place, but it does not provide
information about the speed of convergence. The extended IDR theorem gives information
about the rate of convergence.

Theorem 5.2 (Extended IDR theorem).
Let A be any matrix in Rn×n, let p1, p2, . . . , ps ∈ Rn be linearly independent, let P =
[p1, p2, . . . , ps], let G0 = Kn(A, r0) be the full Krylov space corresponding to A and the vector
r0 and let the sequence of spaces {Gj , j = 1, 2, . . .} be defined by

Gj = (I − ωjA) (Gj−1 ∩ S) ,

where ωj are nonzero numbers, such that I −ωjA is nonsingular. Let dim (Gj) = dj; then the
sequence {dj , j = 1, 2, . . .} is monotonically nonincreasing and satisfies

0 ≤ dj − dj−1 ≤ dj−1 − dj ≤ s.

Proof. See [16]

From the extended IDR theorem, it is clear that the dimension reduction per step is between
0 and s. In practice, the reduction is s [16]. If this is the case throughout the whole process,
we have the so called generic case. As a consequence of the extended IDR theorem, we have
the following corollary (see [16, p. 1041–1042]):

Corollary 5.3.
In the generic case IDR(s) requires at most n+n/s matrix-vector multiplications to compute
the exact solution.

As a result, the IDR(s) method is a finite method, meaning that it will find a solution in a
finite number of iterations.

5.3 Numerical experiments with IDR(s)

In this section we will give four examples that compare the convergence behaviour of Bi-CG,
full GMRES and IDR(s) for s = 1, 2, 4 and 8. We take b = A · ones(n, 1), TOL = 10−8 and
a random starting vector v1. We use the build-in routines in Matlab for GMRES and Bi-CG
and use the idrs.m algorithm from the website of Martin van Gijzen1.

1http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

33

5.3.1 Example 5.3.1 - the convection-diffusion equation

Consider the centered finite difference discretisation in the unit cube of the operator

L(u) = −∆u+ β(ux + uy + uz) = −∆u+ β∇u, (5.9)

with homogeneous Dirichlet boundary conditions. This a convection-diffusion equation with
convection term β∇u and diffusion term −∆u. In each direction of the unit cube, we take 20
internal nodes, which gives us a matrix of size n = 8000 and a mesh size of h = 1/(20 + 1).

In Figure 5.2 (for β = 100) we see that the convergence behaviour of IDR(2), IDR(4) and
IDR(8) is much better than the convergence behaviour of Bi-CG. IDR(1) does also converge,
but it needs more MATVECS and more time. For β = 200 (see Figure 5.3), we see that
IDR(4) and IDR(8) still perform well, while IDR(2) now needs more MATVECS than Bi-CG
and IDR(1). IDR(1) does not find a solution after 1000 iterations.

If we take β even larger (e.g. β = 500), all four IDR(s) methods are outperformed by
GMRES and Bi-CG. IDR(s) does not converge for s = 1, 2, 4, while IDR(8) needs more time
MATVECS to find a solution. This behaviour is caused by the larger convection term, which
makes the problem asymmetrical [12, p.11]. In Table 5.1 we see the exact number of iterations
and the CPU-time for GMRES, Bi-CG and IDR(s) for s = 1, 2, 4, 8. Note that GMRES needs
the fewest iterations, though it needs much more time to find a solution.

Method MATVECS CPU time

GMRES 71 0.6552s

Bi-CG 158 0.0936s

IDR(1) 183 0.0936s

IDR(2) 124 0.0624s

IDR(4) 97 0.1092s

IDR(8) 84 0.0780s

Table 5.1: Example 5.3.1 with β = 100

Method MATVECS CPU time

GMRES 93 0.9984s

Bi-CG 234 0.1248s

IDR(1) - -

IDR(2) 454 0.2496s

IDR(4) 171 0.1092s

IDR(8) 123 0.1092s

Table 5.2: Example 5.3.1 with β = 200

5.3.2 Example 5.3.2 - the Sherman4 matrix

From the Matrix Market2 we consider the Sherman4 matrix3. This nonsymmetric, real matrix
of size 1104× 1104 is used in the simulation of oil reservoirs.

We now solve the system Ax = b, where b is A times a vector with ones in all its entries
(so the solution will be a vector with ones in all its entries). We take 1000 as the maximum
number of iterations. In Figure 5.4 we can see the convergence behaviour of GMRES, Bi-CG
and IDR(s).

2http://math.nist.gov/MatrixMarket/
3http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/sherman/sherman4.html

34

http://math.nist.gov/MatrixMarket/
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/sherman/sherman4.html

0 20 40 60 80 100 120 140 160 180 200
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

Number of MATVECS

|r
|/|

b|

GMRES
Bi−CG
IDR(1)
IDR(2)
IDR(4)
IDR(8)

Figure 5.2: Convergence behaviour of the convection diffusion matrix with β = 100

0 50 100 150 200 250 300 350 400 450 500
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

Number of MATVECS

|r
|/|

b|

GMRES
Bi−CG
IDR(2)
IDR(4)
IDR(8)

Figure 5.3: Convergence behaviour of the convection-diffusion matrix with β = 200

35

0 50 100 150 200 250 300
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

Number of MATVECS

|r
|/|

b|

GMRES
Bi−CG
IDR(1)
IDR(2)
IDR(4)
IDR(8)

Figure 5.4: Convergence behaviour of the Sherman4 matrix

In this example IDR(s) with s = 1, 2, 4, 8 outperforms Bi-CG. In Table 5.3 we can see the
exact results. We see that the Bi-CG methods needs more time to compute a solution than the
IDR(2) and the IDR(4) method, while it needs close to twice as much iterations. Furthermore,
Bi-CG is as quick as IDR(1), but the latter needs fewer iterations. GMRES needs the fewest
iterations, but note that IDR(8) only needs 16 MATVECS more (about 10% more) than full
GMRES, while it is four times as fast. For this example, the IDR(s) apparently works well.

Method MATVECS CPU time

GMRES 120 0.2496s

Bi-CG 272 0.0468s

IDR(1) 204 0.0468s

IDR(2) 167 0.0156s

IDR(4) 147 0.0312s

IDR(8) 136 0.0624s

Table 5.3: Convergence behaviour of the Sherman4 matrix

36

5.3.3 Example 5.3.3 - the add20 matrix

The add20 matrix4 is another matrix from the Matrix Market. It is a real nonsymmetric
2395× 2395 matrix that is used in electronic circuit design.

We now solve the system Ax = b, where b is A times a vector with ones in all its entries
(so the solution will be a vector with ones in all its entries). We take 1000 as the maximum
number of MATVECS. In Figure 5.5 we see the convergence behaviour for GMRES, Bi-CG
and IDR(s) and in Figure 5.6 we see a close-up for IDR(4) and IDR(8). We see that IDR(1)
has not converged after 1000 MATVECS and that IDR(2) performs poor compared to Bi-CG.

In Table 5.4 we summarise the results. We see that IDR(4) and IDR(8) need fewer MATVECS
to find a solution, but it does take more time to do so. We see that for increasing s the
performance of IDR(s) also increases. Furthermore we see that GMRES is about 20 times as
slow as Bi-CG and 16 times as slow as IDR(8).

Method MATVECS CPU time

GMRES 295 2.0124s

Bi-CG 638 0.0936s

IDR(1) - -

IDR(2) 760 0.1872s

IDR(4) 484 0.1560s

IDR(8) 382 0.1248s

Table 5.4: Convergence behaviour of the add20 matrix

5.3.4 Example 5.3.4 - the jpwh 991 matrix

The jpwh 991 matrix5 is another matrix from the Matrix Market. It is a real nonsymmetric
991× 991 matrix that is used in circuit physics.

We now solve the system Ax = b, where b is A times a vector with ones in all its entries
(so the solution will be a vector with ones in all its entries). We take 1000 as the maximum
number of iterations.

In Figure 5.7 we see the convergence behaviour of the GMRES method, the Bi-CG method
and the IDR(s) method. From the plot it immediately becomes clear that the Bi-CG method
does not compute a solution. We see that the different IDR(s) methods perform well on this
problem. Note that the convergence behaviour of the IDR(2) method is more irregular than
the other three IDR(s) methods, especially between ten and thirty MATVECS and during
the last ten MATVECS. It even needs more MATVECS than the IDR(1) method.

4http://math.nist.gov/MatrixMarket/data/misc/hamm/add20.html
5http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/cirphys/jpwh_991.html

37

http://math.nist.gov/MatrixMarket/data/misc/hamm/add20.html
http://math.nist.gov/MatrixMarket/data/Harwell- Boeing/cirphys/jpwh_991.html

0 100 200 300 400 500 600 700 800 900 1000
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Number of MATVECS

|r
|/|

b|

GMRES
Bi−CG
IDR(1)
IDR(2)
IDR(4)
IDR(8)

Figure 5.5: Convergence behaviour of the add20 matrix

0 100 200 300 400 500 600 700
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Number of MATVECS

|r
|/|

b|

GMRES
Bi−CG
IDR(4)
IDR(8)

Figure 5.6: Zoomed in convergence behaviour of the add20 matrix

38

0 10 20 30 40 50 60 70 80
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

Number of MATVECS

|r
|/|

b|

GMRES
Bi−CG
IDR(1)
IDR(2)
IDR(4)
IDR(8)

Figure 5.7: Convergence behaviour of the jpwh 991 matrix

In Table 5.5 we summarise the results. We see that IDR(1) and IDR(2) need the same amount
of CPU time and the same holds for IDR(4) and IDR(8). Furthermore we see that IDR(1)
and IDR(2) are approximately three times as fast as GMRES and IDR(4) and IDR(8) are
approximately 6 times as fast.

Method MATVECS CPU time

GMRES 57 0.1092s

Bi-CG - -

IDR(1) 72 0.0312s

IDR(2) 78 0.0312s

IDR(4) 67 0.0156s

IDR(8) 62 0.0156s

Table 5.5: Convergence behaviour of the jpwh 991 matrix

39

Chapter 6

PIDR(s): Projected Induced
Dimension Reduction(s)

Recall that in a projection method, we can find the approximate solution xm to a system of
linear equations Ax = b with A ∈ Rn×n and b ∈ Rn in the following manner:

Find xm ∈ x0 +Km, such that rm ⊥ Lm,

where Km is defined as:

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}.

Section 3.5 said that different choices of Lm lead to different projection methods. It turns
out that the IDR(s) method can also be seen in the framework of projection methods when
we consider a special choice for Lm [12]. We will also explicitly give a formula for the right
subspace Km. Hereafter, we will refer to IDR(s) as a projection method as PIDR(s), which
stands for Projected IDR(s).

6.1 Analysis of the right subspace

Simoncini and Szyld [12] claim that the right subspace is equal to a Krylov subspace Km(A, r0)
generated by A and r0. However, they do not explicitly give a definition for the right subspace.
In their definition of the left subspace we see a factor (Ωj(A))−T . However, in a projection
process we avoid these inverses, since they can make a program unstable. This seems to
support the idea that we should have a right subspace with a factor Ωj(A) in its definition in

order to avoid the explicit computation of (Ωj(A))−T . We will now derive an expression for
the right subspace.

Section 3.5 tells that we can always write a residual as a polynomial in A multiplied with r0:

rm = Φm(A)r0, (6.1)

where Φm(A) is a polynomial in A of degree m. Now suppose that rm ∈ Gj for some j > 0.

41

From [16] we have:

rm = (I − ωjA) r′ with r′ ∈ Gj−1 ∩ S

Since r′ ∈ Gj−1, we can write r′ = (I − ωjA)) r′′ with r′′ ∈ Gj−2 ∩ S. Repeating this yields:

rm = Ωj(A)r′′′ with r′′′ ∈ G0 ∩ S, (6.2)

where we define Ωj(A) as a matrix of degree j:

Ωj(A) =

{
I if j = 0;∏j

i=1 (I − ωiA) if j ≥ 1.
(6.3)

Here, I denotes the (n × n) identity matrix and ωi ∈ R. By definition, Ωj(A) ∈ Rn×n.
Equating (6.1) and (6.2) yields:

Ωj(A)r′′′ = Φm(A)r0 ⇐⇒ r′′′ = Ψm−j(A)r0, (6.4)

where Ψm−j(A) = (Ωj(A))−1 Φm(A). Note that (Ωj(A)) is of degree j and Φm(A) is of degree
m. Hence, Ψ(A) is of degree m− j. When we substitute equation (6.4) in (6.2) we obtain:

rm = Ωj(A)Ψm−j(A)r0.

If we define rm−j = Ψm−j(A)r0, then we know that rm−j = span{r0, Ar0, A2r0, . . . , A
m−jr0},

which is the same as saying that rm−j ∈ Km−j+1. We know have:

rm = Ωj(A)Km−j+1.

Using section 3.5, we obtain:

xm = Ωj(A)Km−j .

We now claim that the subspace in equation (6.5) is the correct search subspace of PIDR(s):

∼
Km(A,

∼
r0) = Ωj(A) Km−j(A, r0), (6.5)

with Ωj(A) as in equation (6.3). Here, Km−j(A, r0) is a regular Krylov subspace (defined in
definition (3.11)) of dimension m− j.

There are a few important points to be noted. First, note that we could write
∼
Km(A,

∼
r0) =

Km−j(A, Ωj(A)r0) [16, p. 1046] and hence
∼
r0 = Ωj(A)r0 by definition. Furthermore, note

that Km−j is dependent on Ωj(A) instead of Ωm(A). This is no coincidence, as we will show
in section 6.3.

42

6.2 Analysis of the left subspace

Let σ(A) denote the spectrum of A (see definition 2.8) and define the block Krylov subspace
Kj(AT , P) (see definition 2.10). Here, P = [p1, p2, . . . , ps] is a matrix in Rn×s (see [16, p.
1044] for a discussion on how to choose P) and AT denotes the conjugate transpose of A. We
could also write Kj(AT , P) in the following way:

Kj(AT , P) =
s⋃
i=1

Kj(AT , pi)

According to Simoncini and Szyld [12], the left subspace for the IDR(s) algorithm is equal to:

∼
Lj(AT ,

∼
P) = (Ωj(A))−T Kj(AT , P). (6.6)

The subspace
∼
Lj is a rational block Krylov subspace (see definitions 2.9 and 2.10), in which we

use (Ωj(A))−T : the inverse of the matrix Ωj(A)T . A necessary condition for the invertibility
of this matrix is that 1

ωj
/∈ σ(A). This can be seen by rewriting equation 6.3 (for j ≥ 1) as

Ωj(A) = c ·
(
A− 1

ωj
I

)
· . . . ·

(
A− 1

ω2
I

)(
A− 1

ω1
I

)
,

with c = (−1)j ·ωj · . . . ·ω2 ·ω1. If 1
wk
∈ σ(A) for some 1 < k ≤ j, we have that

(
A− 1

ωk
I
)

= 0

and hence det Ωj(A) = 0. Therefore we should have 1
ωj

/∈ σ(A).

We can prove that
∼
Lj gives rise to a projection method. Recall that the IDR(s) method

generates residuals that are forced to be in subspaces Gj of decreasing dimension, where Gj
is defined in equation (5.1).We can write Gj in the following way [6, p. 24] [13, p. 1104]:

Gj = Ωj(A) Kj(AT , P)⊥. (6.7)

When s+ 1 residuals have been computed in Gj , the next residual will be in Gj+1. This can
be written as

rm ∈ Gj , with j = bm/(s+ 1)c,

where bm/(s + 1)c denotes the largest integer not greater than m/(s + 1). In a projection
method, these residuals should be orthogonal to the left subspace. Theorem 6.1 (see [12])

states that
∼
Lj is indeed the left subspace of a projection method.

Theorem 6.1.

rm ⊥
∼
Lj and hence

∼
Lj is the left subspace of the IDR(s) method.

43

Proof. Let rm ∈ Gj . This implies that rm ⊥ G⊥j . We show that G⊥j =
∼
Lj . Let B = Ωj(A) and

Lj = Kj(AT , P). Using (6.7), we find Gj = BL⊥j = {Bw | w ∈ L⊥j }. We now have:

G⊥j
(6.7)
=

(
BL⊥j

)⊥
= {v | vTBw = 0, w ∈ L⊥j }

= {v |
(
BT v

)T
w = 0, w ∈ L⊥j }

= {B−T y | yTw = 0, w ∈ L⊥j }
(
using y = BT v

)
= B−T {y | yTw = 0, w ∈ L⊥j } = B−TW (6.6)

=
∼
Lj

Since G⊥j =
∼
Lj , we have that rm ⊥

∼
Lj if rm ∈ Gj .

�

6.3 Definition of the approximate solution

It is now time to show how IDR(s) fits into the framework of projection methods. For this
we use algorithm 3.1, which shows the general framework for a projection method. In this
algorithm, we first have to select the right subspace Km and the left subspace Lm. Sections
6.1 and 6.2 tell that the right and left subspace can be written in the following way:

∼
Km(A,

∼
r0) = Ωj(A) Km−j(A, r0) = Km−j(A, Ωj(A)r0) (6.8)

∼
Lj(AT ,

∼
P) = (Ωj(A))−T Kj(AT , P) = Kj(AT , (Ωj(A))−T P) (6.9)

Next, the algorithm builds a basis for these two subspaces. Denote
∼
V m,

∼
W j , Vm−j and Wj

as the bases for the right and left subspace, the Krylov subspace Km−j(A, r0) and the block
Krylov subspace Kj(AT , P) respectively. We obtain:

∼
V m = Ωj(A) Vm−j ; (6.10)

∼
W j = (Ωj(A))−T Wj , (6.11)

In line 4 of algorithm 3.1, we compute the coefficient vector ym, which contains the coefficients

for the basis vectors
[∼
v1, . . .

∼
vm

]
. Using the orthogonality condition and (3.7) yields:

∼
W

T

j rm = 0 ⇔
∼
W

T

j r0 −
∼
W

T

j A
∼
V mym = 0

⇔
∼
W

T

j
∼
r0 =

∼
W

T

j A
∼
V mym

Solving this expression for ym, we obtain:

44

ym =

(
∼
W

T

j A
∼
V m

)−1 ∼
W

T

j r0. (6.12)

We can simplify equation (6.12) by using the following proposition:

Proposition 6.2.
The matrix polynomial Ωj(A) is commutative with any matrix A ∈ Rn×n for j ≥ 0.

Proof. It is clear that Ωj(A) is commutative with A if j = 0, since any matrix is commutative
with the identity matrix. For j ≥ 1 we use induction. For j = 1 we have:

AΩ1(A) = A (I − ω1A) = AI −Aω1A = IA− ω1A
2 = (I − ω1A)A = Ω1(A)A

Now suppose that AΩj(A) = Ωj(A)A for some j > 1 . For j + 1 we find:

AΩj+1(A) = AΩj(A) (I − ωj+1A)

I.H.
= Ωj(A)A (I − ωj+1A)

= Ωj(A) (I − ωj+1A)A = Ωj+1(A)A.

�

Substituting (6.10) and (6.11) into equation (6.12) and using proposition 6.2 yields:

ym =
(
W T
j AVm−j

)−1 ∼
W

T

j r0. (6.13)

Note that we have to compute the inverse of the matrix W T
j AVm−j . This can only be done

if this matrix is square. In other words, the number of vectors in Wj should be equal to the
number of vectors in Vm−j . This is not true for general m. Recall that j = bm/(s+ 1)c. Now
suppose that we are in an iteration that is a multiple of s + 1. Writing m = k(s + 1) with
k = 1, 2, . . . , we have j = k. Then it is clear that both bases have the same dimension, since:

dim (Vm−j) = n× (m− j) = n× (k(s+ 1)− k) = n× ks = n× js
dim (Wj) = n× js

Here we have used that Wj is a block basis with blocks of size s. From this dimension analysis
it is clear that we can only compute a unique solution in iterations that are multiples of s+1.

Since the approximate solution xm can be written as x0 +
∼
V mym, we can use the coefficient

vector in equation 6.12 to compute xm in line 5 of algorithm 3.1:

xm = x0 +
∼
V m

(
W T
j AVm

)−1 ∼
W

T

j r0. (6.14)

In the sixth line of algorithm 3.1, we use the norm of the residual to check if the stopping
criterion is satisfied.

45

6.4 The PIDR(s) algorithm

Simoncini and Szyld describe that PIDR(s) tries to find at the m-th iteration an approximate

solution xm ∈ x0 +
∼
Km(A,

∼
r0) such that rm ⊥

∼
Lj . This only holds if m > s, since

∼
Lj is not

defined for j = 0. Hence, in order for the method to work, the algorithm needs to compute the
first s approximate solutions and residuals using any other projection method. An algorithm
of PIDR(s) is given in Algorithm 6.1.

Algorithm 6.1 PIDR(s): Projected IDR(s) for systems of linear equations

1: Do s steps of a projection method to compute s approximations and residuals
2: Select the Krylov subspaces Km−j(A, r0) with basis Vm−j
3: and the block Krylov subspace Lj(AT , P) with basis Wj .
4: Until convergence; Do

5: Extend Vm−j with s vectors
6: Extend Wj with s vectors

7: Extend Ωj(A) to Ωj+1(A)

8: Build basis
∼
V m = Ωj(A)Vm−j

9: Build basis
∼
Wm = (Ωj(A))−1Wj

10: ym :=
(
W T
j AVm−j

)−1 ∼
W

T

j r0

11: xm := x0 +
∼
V mym

12: Check stopping criterion

13: EndDo

First we compute s basis vectors and we define the two bases Vm−j and Wm. Next, we look
at a cycle of (s + 1) iterations. In s of these iterations, we update Vm−j , which means that
we compute s extra basis vectors. In the first iteration of each cycle, iterations of the form

j = k(s + 1) with k = 1, 2, . . . , we update the polynomial and the bases
∼
V m, Wj and

∼
W j .

Since W is a block basis, the number of extra vectors computed in each cycle is equal to s.

Hence, the number of vectors in all of the bases Vm−j ,
∼
V m, Wj and

∼
W j after one cycle is

equal to j×s. Therefore we are able to compute the inverse of W TAV . Using this inverse, we
can compute the coefficient vector in line 9 and a new approximate solution x in line 10. It
is clear that we can only compute a solution every (s+ 1)st iteration. In line 11 we compute
the residual, which is used to check if the stopping criterion is satisfied.

Two different implementation of the PIDR(s) algorithm can be found in appendix C.2 and
appendix C.3. In pidrs.m we only compute xm in iterations that are multiples of s+ 1. As
a result we update Vm−j with s vectors at a time. In pidrs eachiter.m we update Vm−j
in each iteration. Both algorithms are mathematically equivalent. Note that this algorithm
should be seen from a theoretical point of view. Just as the Arnoldi method is not a one-to-
one copy of algorithm 3.1, neither is the algorithm of PIDR(s). In an efficient implementation,

46

we would never try to compute the inverse of the matrix W T
mAVm−j . Instead we might be

able to use a Hessenberg relation similar to equation 4.2 and 4.3 (for more information on
we refer to [2] and [6]). Furthermore, we would also try to prevent the use of the matrix
(Ωj(A))−T and find an alternate expression for the residual instead of calculating it directly.

6.5 PIDR(s) as an eigenvalue method

Recall that in an eigenvalue problem for projection methods we want to find in the mth

iteration for i = 1, . . . ,m the eigenvectors u
(i)
m 6= 0 in Cn and the corresponding eigenvalues

λ
(i)
m ∈ C of a matrix A ∈ Rn×n such that Au

(i)
m = λ

(i)
m u

(i)
m . We define the mth residual for

the i-th eigenvector and corresponding eigenvale as r
(i)
m = Au

(i)
m − λ(i)m u(i)m . In a projection

method for eigenvalue problems we want to find an eigenvector in the right subspace and an
eigenvalue such that the left subspace is orthogonal to the residual:

Find λ(i)m ∈ C and u(i)m ∈
∼
Km such that r(i)m ⊥

∼
Wj . (6.15)

Proceeding as in the case of IDR(s) for solving systems of linear equations, we select
∼
Vm be

a basis for
∼
Km(A,

∼
r0) and let

∼
Wm be a basis for

∼
Wm(AT ,

∼
P), where

∼
V m and

∼
Wm are defined

as in equations (6.10) and (6.11). Since u
(i)
m ∈

∼
Km(A,

∼
r0), we can write u

(i)
m =

∼
V my

(i)
m =

Ωj(A)Vm−jy
(i)
m . Let the θ

(i)
m be the Ritz values of the matrix

∼
W

T

j A corresponding to the

eigenvector
∼
W

T

j u
(i)
m . For iterations that are multiples of s+ 1 we have:

∼
W

T

j r
(i)
m = 0 ⇔

∼
W

T

j Au
(i)
m − θ(i)m

∼
W

T

j u
(i)
m = 0

⇔
∼
W

T

j A
∼
V my

(i)
m = θ(i)m

∼
W

T

j

∼
V my

(i)
m

If we denote Qm =
∼
W

T

j A
∼
V m and Cm =

∼
W

T

j

∼
V m, then we have the following relation

Qmy
(i)
m = θ(i)m Cmy

(i)
m . (6.16)

Equation (6.16) is an example of a generalised eigenvalue problem. In a generalised eigenvalue
problem for two n× n matrices A and B we want to find (for 1 ≤ i ≤ n the eigenvalues λ(i)

corresponding to the eigenvectors u(i) 6= 0 such that

Au(i) = λBu(i) (6.17)

If we want so solve problem 6.16, the matrices Qm and Cm must have the same dimension.
This condition is satisfied, since both matrix are of size n×js. We can compute the eigenvalues
and eigenvectors by using the eig(Q,C) command in Matlab. Note that computing these is
more economical than computing the eigenvalues of A directly, since the size of Qm is generally
much smaller than the size of A.

Similar to a standard eigenvalue problem, the eigenvalues are approximations to a subset of
the eigenvalues of A. Which eigenvalues are approximated, depends on which eigenvector is

47

used for calculating the residual. In general, the extreme eigenvalues are approximated first.

The eigenvectors of A can be approximated by the Ritz vector
∼
V mym.

In order to find the approximate eigenvalues and eigenvectors, we need to follow the same
steps as in algorithm 6.1. The ultimate goal is to build the matrices Qm and Cm, so that
we can compute the approximated eigenvalues and eigenvectors. Algorithm 6.2 shows an
algorithm for PIDR(s) for solving eigenvalue problems. An implementation of this algorithm

can be found in Appendix C.4. Note that we don’t have to use
∼
Wm in the algorithm, since

we can write
∼
V = Ωj(A)V and

∼
W = (Ωj(A))−1W .

Algorithm 6.2 PIDR(s): Projected IDR(s) for eigenvalue problems

1: Select the Krylov subspaces Km−j(A, r0) with basis Vm−j
2: and the block Krylov subspace Lj(AT , P) with basis Wj .
3: Until convergence; Do

4: Extend Vm−j with s vectors
5: Extend Wj with s vectors

6: Extend Ωj(A) to Ωj+1(A)

7: Build basis
∼
V m = Ωj(A)Vm−j

8: Build basis
∼
W j = (Ωj(A))−1Wj

9: Solve
∼
W

T

j A
∼
V mym = θm

∼
W

T

j

∼
V mym and approximate the eigenvalues with θm

10: and the eigenvectors with
∼
V mym.

11: Check stopping criterion

12: EndDo

48

Chapter 7

Numerical examples PIDR(s)

In this chapter we conducted numerical experiments to test the equivalence of IDR(s) and
PIDR(s). In section 7.1 we will look at three examples in which PIDR(s) is used to solve a
system of linear equations and in section 7.2 we will look at three examples for PIDR(s) as
an eigenvalue problems.

7.1 PIDR(s) for solving systems of linear equations

In this section we will look at three examples in which we solve a system of linear equations
using PIDR(s). First we will consider a matrix corresponding to the convection-diffusion
equation. This matrix was also used in section 5.3.1. Next we consider the sherman1 matrix,
which is related to the sherman4 matrix discussed in section 5.3.2. Lastly, we discuss the
jpwh 991 matrix, which was also used as a test example for IDR(s) in section 5.3.4. In all
three examples we use a random initial guess x0, a random vector with omega’s and a random
right hand side, all three drawn uniformly on the open interval (0, 1). The maximum number
of iterations is equal to 1000 and the tolerance (TOL) for the scaled norm (||r||/||b||) is 10−8.
Finally, the matrix P is an n× s random matrix whose elements are drawn from the uniform
distribution on the open interval (0, 1) and whose columns are pairwise orthogonal.

In these experiments we will compare the convergence behaviour of PIDR(s) (with fixed s)
with four other methods: IDR(s), IDR(4), Bi-CG and full GMRES. In each figure we have
plotted the number of matrix-vector multiplications (MATVECS) against the scaled norm
||r||/||b||. On the vertical axis we see the exponents of this norm with base 10. As section
6.4 told, we build the PIDR(s) algorithm from a theoretical point of view. The algorithm
is not stable, since we have to compute several inverses in each iteration. In order for the
program to work, we often need to choose large values of s, since this decreases the number
of iterations and so the possibilities for a breakdown. Each time we need to consider the
stability of the method and the number of necessary MATVECS. It is not always true that
the smallest value of s yields the best results. The algorithm produces more stable results for
larger values of s, since the algorithm needs fewer iterations. Hence, for the sake of reliability
of the results, we prefer higher values of s to values of s that result in the fewest iterations.
We often use a trial-and-error approach for finding a correct value of s.

Recall that we only compute a solution every (s+1)st iteration. Since we use such large values
for s, we only need a few iterations. Using that PIDR(s) uses s+ 1 MATVECS per iteration,

49

we can find the correct number of MATVECS by multiplying the number of iterations with
s+ 1. In a similar fashion, we have to multiply the number of iterations for Bi-CG with two,
since Bi-CG uses two MATVECS per iteration (one for A and one for AT).

Lastly, it is not relevant to include the computation times of the different methods, since our
goal is not to create an efficient implementation of PIDR(s). However, we will still include
the computation times to give an idea of how the methods perform. An implementation of
the program that invokes these three examples can be found in appendix C.1.

7.1.1 Example 1: the convection-diffusion equation

In section 5.3 we considered the matrix corresponding to the centered finite difference dis-
cretisation in the unit cube with homogeneous Dirichlet boundary conditions of the operator

L(u) = −∆u+ β(ux + uy + uz) = −∆u+ β∇u. (7.1)

We will discuss two examples. In the first example we take 8 internal points (resulting in a
matrix of size 512×512) with the convection parameters β = 100 and β = 200. In the second
example we take 10 internal points, resulting in a 1000×1000 matrix. We use the same values
for β. In Table 7.1 to Table 7.4 we have summarised the results.

Method MATVECS CPU time

GMRES 72 0.1716s

Bi-CG 164 0.0936s

IDR(4) 111 0.0936s

IDR(s) 84 0.0468s

PIDR(s) 108 0.3432s

Table 7.1: Example 7.1 with
β = 100, s = 35

Method MATVECS CPU time

GMRES 107 0.3744s

Bi-CG 226 0.0936s

IDR(4) 223 0.1560s

IDR(s) 124 0.1248s

PIDR(s) 123 0.3432s

Table 7.2: Example 7.1 with
β = 200, s = 40

Method MATVECS CPU time

GMRES 74 0.5148s

Bi-CG 160 0.4680s

IDR(4) 107 0.4056s

IDR(s) 85 0.3744s

PIDR(s) 123 1.7628s

Table 7.3: Example 7.1 with
β = 100, s = 40

Method MATVECS CPU time

GMRES 124 0.9580s

Bi-CG 274 0.7956s

IDR(4) 289 0.9360s

IDR(s) 146 0.8424s

PIDR(s) 192 1.9344s

Table 7.4: Example 7.1 with
β = 200, s = 95

50

Figure 7.1: Convergence behaviour of the convection-diffusion matrix,
β = 100 and s = 35

Figure 7.2: Convergence behaviour of the convection-diffusion matrix,
β = 200 and s = 40

51

Figure 7.3: Convergence behaviour of the convection-diffusion matrix,
β = 100 and s = 40

Figure 7.4: Convergence behaviour of the convection-diffusion matrix,
β = 200 and s = 95

52

In Figure 7.1 we see the convergence plot for n = 512 with β = 100 and s = 35. The PIDR(s)
algorithm behaves slightly worse than IDR(4) when we look at the number of iterations.
However, it needs fewer MATVECS than the Bi-CG method, which seems an encouraging
result. As predicted, the GMRES method needs the fewest iterations. Note that PIDR(s)
only computes a solution and a residual every 36th iteration, so the points of the graph
belonging to PIDR(s) are connected with straight line segments.

If we increase the value of β to 200, of which the plot can be seen in Figure 7.2, we see that
the PIDR(s) method performs similar to the IDR(s) method. In order to get stable results,
we need to increase the value of s to 40. If we look at the convergence curves, we see that
the PIDR(s) behaves better for β = 200. We see that the convergence curves of GMRES and
PIDR(s) lie much closer together. This is logical, since the short-recurrence properties of the
PIDR(s) algorithm are lost for large s. It seems that in this particular problem, the IDR(s)
algorithm seems to behave better for higher s. Just as in section 5.3.1, we see that the IDR(4)
method start to behave relatively bad compared to Bi-CG if we increase the value of β.

In Figure 7.3 we have plotted the convergence curve for the five methods for n = 1000 and
β = 100. With trial and error, we found that s = 40 finds an approximate solution in as few
MATVECS as possible, while also being stable. We might find a solution for smaller s, but the
PIDR(s) behaves less stable. In Figure 7.4 we see that the PIDR(s) algorithm outperforms
the other methods. It is interesting to see that the convergence curve of PIDR(s) lies below
the convergence curve of GMRES, which should not be possible from a theoretical point of
view, since GMRES minimises the residual in each iteration. However, keep in mind that the
points in which PIDR(s) calculates the residual are connected by straight line segments.

7.1.2 Example 2: the sherman1 matrix

From the Matrix Market we consider the sherman1 matrix1, which is related to the sherman4

matrix from section 5.3.2. This nonsymmetric, real matrix of size 1000× 1000 is used in the
simulation of oil reservoirs. Its smallest eigenvalue is approximately -5, its largest eigenvalue
is approximately 0.

Method MATVECS CPU time

GMRES 363 2.4531s

Bi-CG 1082 0.1406s

IDR(4) 728 0.1562s

IDR(s) 401 2.5625s

PIDR(s) 402 3.1094s

Table 7.5: sherman1 matrix with s = 200

1http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/sherman/sherman1.html

53

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/sherman/sherman1.html

Figure 7.5: Convergence behaviour of the sherman1 matrix with s = 200

Figure 7.6: Zoomed in convergence behaviour of
the sherman1 matrix with s = 200

54

In Figure 7.5 we see the convergence curves of GMRES, Bi-CG, IDR(4), IDR(s) and PIDR(s)
and Figure 7.6 shows a close-up of the last few iterations. We see that PIDR(s) behaves good
compared to IDR(4) and Bi-CG and its convergence curve matches that of IDR(s). Also
note that the number of MATVECS for IDR(s) and PIDR(s) is only slightly higher than
the number of MATVECS for full GMRES. In Table 7.5 we can see the exact number of
MATVECS and the required computing times.

7.1.3 Example 3: the jpwh 991 matrix

The jpwh 991 matrix also served as a test example for IDR(s) in section 5.3.4. It is a real
nonsymmetric 991×991 matrix that is used in circuit physics. The eigenvalues approximately
lie between -16 and 0.

Method MATVECS CPU time

GMRES 56 0.1092s

Bi-CG 118 0.0156s

IDR(4) 59 0.1248s

IDR(s) 61 0.1872s

PIDR(s) 72 1.2012s

Table 7.6: jpwh 991 matrix with s = 35

In Figure 7.7 we see the convergence curves of the five projection methods. In Figure 7.8 we
have included a zoomed in Figure of the last few iterations of GMRES, IDR(4), IDR(s) and
PIDR(s). We see that the number of MATVECS of these four methods lie close together. The
number of iterations of the Bi-CG method is approximately the same as the other methods,
but since we have to compute two MATVECS per iteration, the total number of MATVECS
is twice as large as the number of MATVECS of the other four methods. In Table 7.6 we
summarise the results.

55

Figure 7.7: Convergence behaviour of the jpwh 991 matrix with s = 35

Figure 7.8: Zoomed in convergence behaviour of
the jpwh 991 matrix with s = 35

56

7.2 PIDR(s) for solving eigenvalue problems

In this section we consider three examples of matrices of which we compute the eigenvalues
using PIDR(s): the symmetric positive definite Poisson matrix, a nonsymmetric random
matrix and the nonsymmetric ‘Kahan’ matrix. In all three examples we use a random starting
vector and a random list of ωj ’s, both drawn uniformly on the open interval (0, 1). The
maximum number of iterations is equal to 500 and the tolerance (TOL) for the norm is
10−8. Finally, the matrix P is an n × s random matrix whose elements are drawn from the
uniform distribution on the open interval (0, 1) and whose columns are pairwise orthogonal.
An implementation of the program that invokes these three examples can be found in C.1

7.2.1 Example 1: the Poisson matrix

Consider the two-dimensional Poisson equation, which has a broad applicability in engineer-
ing:

−
(
∂2

∂x2
+

∂2

∂y2

)
ϕ(x, y) = f(x, y) (7.2)

We discretise this equation using finite difference method with the 5-point operator on an
n-by-n mesh. This results in the Poisson matrix of size n2, which is a pentadiagonal SPD
matrix. (7.3) gives an example for n = 3:

A =



4 −1 0 −1
−1 4 −1 0 −1 O

0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0
O −1 0 −1 4 −1

−1 0 −1 4


. (7.3)

A has eigenvalues of the form 4− 2 cos(πi
n+1)− 2 cos(πj

n+1) with i = 1 : n and j = 1 : n. Since
the Poisson matrix is a symmetric matrix, the eigenvalues should be real. For n → ∞, the
eigenvalues will lie on the open interval (0, 8). Note that the elements on the main diagonal
are always 4 and that all the elements on the n-th subdiagonal and the n-th superdiagonal are
−1. Most of the elements on the first subdiagonal and the first superdiagonal are -1, except
for the elements that correspond to points on the boundary of the mesh.

In Figure 7.9 and Figure 7.10 we have plotted the real part and the imaginary part of each
eigenvalue and Ritz value of the Poisson(10) matrix with s = 4 and s = 8 respectively.
For s = 4 we see that in most of the runs, PIDR(s) generates the full space (100 basis
vectors). Moreover, it is not guaranteed that the algorithm correctly approximates the largest
eigenvalue(s), although a few of the extreme eigenvalues are approximated correctly. This is
clearly visible in Figure 7.9, in which we can see several spurious (fake) eigenvalues (the
eigenvalues outside the open interval (0, 8)) on the real axis). Hence, running the algorithm
for s = 4 has no advantage over using the eig(A) command in Matlab.

57

Figure 7.9: Eigenvalues (black) and Ritz values (red) of the Poisson(10) matrix with s = 4

Figure 7.10: Eigenvalues (black) and Ritz values (red) of the Poisson(10) matrix with s = 8

58

Figure 7.11: Eigenvalues (black) and Ritz values (red) of the Poisson(25) matrix with s = 8

Figure 7.12: Eigenvalues (black) and Ritz values (red) of the Poisson(25) matrix with s = 32

59

For s = 8 (and s > 8) the algorithm does give advantage over the eig(A) command. In most
runs, the algorithm generates approximately 40 - 48 basis vectors. The extreme eigenvalues
are approximated correctly and only a few spurious eigenvalues are computed. We see that
the real part of every Ritz value lies on the open interval (0, 8).

In Figure 7.11 and Figure 7.12 we have plotted the real part and the imaginary part of each
eigenvalue and Ritz value of the Poisson(25) matrix with s = 8 and s = 32 respectively. For
s = 8 we see the same behaviour as for the Poisson(10) matrix with s = 4. The algorithm
generates the full space and most of the approximated eigenvalues are spurious. For s = 32
(and consequently s > 16) the algorithm seems stable and it generates approximately 96 to
160 basis vectors, depending on the first basis vector and the values of ωj . The extreme
eigenvalues are approximated correctly and we see that the real part of each Ritz value lies
on the open interval (0, 8).

7.2.2 Example 2: the rand(n) matrix

The rand(n) command returns a random matrix of size n× n which contains pseudorandom
values drawn from the standard uniform distribution on the open interval(0,1). Since the
rand(n) matrix is nonsymmetric, the eigenvalues can be real as well as imaginary and they
are all close to 0. Note that the largest eigenvalue is approximately equal to n/2.

In Figure 7.13 and Figure 7.14 we have plotted the real part and the imaginary part of each
eigenvalue and Ritz value of the rand(100) matrix with s = 2 and s = 4.

Figure 7.13: Eigenvalues (black) and Ritz values (red) of the rand(100) matrix with s = 2

60

Figure 7.14: Eigenvalues (black) and Ritz values (red) of the rand(100) matrix with s = 4

Figure 7.15: Eigenvalues (black) and Ritz values (red) of the rand(500) matrix with s = 4

61

Figure 7.16: Eigenvalues (black) and Ritz values (red) of the rand(500) matrix with s = 8

For s = 2, the largest eigenvalue is approximately 50 and hence we immediately see in Figure
7.13 that we have a few outliers for the approximated eigenvalues. When we take a closer
look, we see that the PIDR(s) algorithm generates the full Krylov basis and hence the results
are unreliable. For s = 4 the algorithm gives more stable results. In most of the runs, the
algorithm generates a Krylov basis of size 12, meaning that we have 12 approximated eigenval-
ues. As can be seen in Figure 7.14, the largest eigenvalue is approximated correctly. Running
the algorithm with larger values of s does not yield better results. No extra eigenvalues are
approximated and the algorithm computes more basis vectors.

In Figure 7.15 and Figure 7.16 we have plotted the real part and the imaginary part of each
eigenvalue and Ritz value of the rand(500) matrix with s = 4 and s = 8. For s = 4 the
PIDR(s) algorithm generates the full Krylov base. None of the eigenvalues are approximated
correctly and there are several spurious eigenvalues. For s = 8 the results improve, and we
see that the PIDR(s) algorithm correctly approximates the largest eigenvalue. The Krylov
basis consists of approximately 16 vectors. If we choose s wisely, we might generate a slightly
smaller basis and still approximate the largest eigenvalue correctly.

7.2.3 Example 3: the Kahan(n,θ,ε) matrix

The Kahan matrix is an upper triangular matrix that has interesting properties regarding
estimation of condition and rank. The Matlab command gallery(‘kahan’,n,θ,ε)2 invokes
this matrix. In our test problem, we use the default settings θ = 1.2 and ε = 25. An example
for n = 6 is given in 7.4 (all elements are rounded to four decimals):

2see http://math.berkeley.edu/ mgu/MA221/kahan.m for information about θ and ε

62

A =



1.0000 −0.3624 −0.3624 −0.3624 −0.3624 −0.3624
0.9320 −0.3377 −0.3377 −0.3377 −0.3377

0.8687 −0.3148 −0.3148 −0.3148
0.8097 −0.2934 −0.2934

O 0.7546 −0.2734
0.7033

 .

Note that the elements on the main diagonal are monotonically decreasing and that the non-
zero elements in each column are monotonically increasing. Since the eigenvalues of any
triangular matrix are on the main diagonal, most eigenvalues are approximately 0 for large
values of n. Moreover, all the eigenvalues are real and lie on the half open interval (0, 1 + ξ],
where ξ = ε · eps · n (eps is the machine precision).

In Figure 7.17 and Figure 7.18 we have plotted the real part and the imaginary part of each
eigenvalue and Ritz value of the Kahan(500) matrix with s = 2 and s = 4. For s = 2 the
PIDR(s) algorithm generates the full Krylov space (of size 500) and the extreme eigenvalues
are not approximated correctly. The eigenvalues should lie on the half open interval (0, 1 + ξ]
and this is clearly not the case. For s = 4 the PIDR(s) algorithm does approximate the
extreme eigenvalues correctly. It is clearly visible that the eigenvalues cluster around 0. The
size of the Krylov basis is approximately 24 to 28. For larger values of s the algorithm works
fine, but we expect that the dimension of the Krylov basis is a little greater than the dimension
of the basis corresponding to s = 4.

In Figure 7.19 we have plotted the real part and the imaginary part of each eigenvalue and
Ritz value of the Kahan(1000) matrix with s = 4. For s = 2 the PIDR(s) algorithm doesn’t
generate any output. In each iteration we have to compute the eigenvalues and eigenvectors
in order to compute the norm. The algorithm may become slow if the dimension of the basis
grows large.

Figure 7.17: Eigenvalues (black) and Ritz values (red) of the Kahan(500) matrix with s = 2

63

Figure 7.18: Eigenvalues (black) and Ritz values (red) of the Kahan(500) matrix with s = 4

Figure 7.19: Eigenvalues (black) and Ritz values (red) of the Kahan(1000) matrix with s = 4

64

Chapter 8

Conclusions

In this thesis we considered the IDR(s) method, which is short for the Induced Dimension
Reduction(s) method. IDR(s) is one of the many Krylov subspace methods that are used to
solve systems of linear equations. Krylov subspace methods can be seen in the framework
of projection methods, which are iterative methods that try to find an approximate solution
in a subspace K of Cn such that the corresponding residual is orthogonal to a subspace L
of Cn. It was unclear how we could implement IDR(s) as a projection method and this is
unfortunate, since we know much about these methods. Hence, our goal was to present an
implementation of IDR(s) as a projection method.

In chapter 3 we explained the theory behind projection methods. It turned out that all
projection methods, both for eigenvalue problems and solving systems of linear equations, can
be described using a general algorithm. In this chapter we also considered Krylov subspaces
methods, which are a special class of projection methods. In chapter 4 we implemented and
described several Krylov subspace methods to get acquainted with the subject.

In chapter 5 we discussed the IDR(s) method, which forms the basis of this project. We
derived the algorithm using the IDR theorem and the definition of the residuals of a general
Krylov-type solver. To illustrate its functionality, we included four examples, in which we
showed that IDR(s) can be a good alternative to solve systems of linear equations. In chapter
6 we have formulated IDR(s) as a projection method (which we call PIDR(s)) and we proposed
two algorithms for the PIDR(s) method: one for solving system of linear equations and one
for solving eigenvalue problems. We first derived the correct right subspace and showed that,
together with the left subspace, PIDR(s) is indeed a projection method. The three numerical
examples in section 7.1 show that the PIDR(s) method gives results that are consistent with
the results of the standard IDR(s) method. In section 7.2 we showed that PIDR(s) gives
correct approximations of the eigenvalues.

8.1 Summary of the results

In section 6.4 we presented an algorithm for the PIDR(s) method from a theoretical point of
view. This means that our algorithm is not optimal, in the sense that it does not efficiently
compute a solution. This does not mean that the algorithm is useless, because PIDR(s)
shows that IDR(s) can indeed be seen in the framework of projection methods. We based the

65

PIDR(s) algorithm on the general algorithm for projection methods described in section 3.1,
where we have used the following definitions for the right and left subspace:

∼
Km(A,

∼
r0) = Ωj(A) Km−j(A, r0) = Km−j(A, Ωj(A)r0)

∼
Lj(AT ,

∼
P) = (Ωj(A))−T Kj(AT , P) = Kj(AT , (Ωj(A))−T P)

Algorithm 6.1, which uses the bases
∼
V m for the right subspace

∼
Km and the basis

∼
W j for the

left subspace
∼
Lj , shows a general algorithm of PIDR(s) . We present three implementations of

this algorithm in appendix C.2, C.3 and C.4. The first two are implementations for PIDR(s)
that solves systems of linear equations, the last is an implementation for PIDR(s) that solves

eigenvalue problems. First, note that we explicitly compute the left subspace
∼
W j and right

subspace
∼
V m in the implementations, which differs from the original version IDR(s). Secondly,

we see that in the implementation for eigenvalue problems, we do not need to compute
∼
W j ,

which suggests that PIDR(s) for systems of linear equations uses a different right subspace
than PIDR(s) for eigenvalue problems. Lastly, note that we can only compute a unique

solution every (s + 1)st iteration, since the inverse of the matrix
∼
W

T

j A
∼
V m is not defined in

the intermediate iterations.

8.2 Recommendations for future research

With the implementation of PIDR(s) for systems of linear equations, we have shown that
IDR(s) can be seen in the framework of projection methods. The PIDR(s) algorithm for
solving systems of linear equations is not optimal, but this does not matter, since we already
have an efficient algorithm for IDR(s). Hence, further research with the goal of improving
the PIDR(s) algorithm is not useful.

Instead we can focus on the PIDR(s) method for solving eigenvalue problems. We already
have a substantial knowledge about IDR(s) as a method for solving linear systems, but far less
is known about IDR(s) as a method to approximate eigenvalues. In this light, the numerical
experiments for PIDR(s) in section 7.2 show promising results and these results can be used
to create a thorough theoretical framework for IDR(s) as an eigenvalue method.

To conclude, Simoncini and Szyld [12] present a modification of IDR(s), called Ritz-IDR, in
which they use the reciprocals of a subset of the Ritz values as the values for ωj . The Ritz
values are computed using twenty iterations of the Arnoldi method. If we derive an efficient
algorithm for IDR(s) for eigenvalue problems, we can compute the Ritz values with IDR(s)
itself.

66

Bibliography

[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quarterly of Applied Mathematics, 9(17):17–29, 1951.

[2] R. Astudillo and M. B. van Gijzen. An Induced Dimension Reduction Algorithm to Ap-
proximate Eigenpairs of Large Nonsymmetric Matrices. In 11th International Conference
of Numerical Analysis and Applied Mathematics 2013, volume 1558, pages 2277–2280.
AIP Publishing, 2013.

[3] V. Faber and T. Manteuffel. Necessary and Sufficient Conditions for the Existence of
a Conjugate Gradient Method. SIAM Journal on Numerical Analasys, 21(2):352–362,
January 1984.

[4] R. Fletcher. Conjugate Gradient Methods for Indefinite Systems. In Numerical Analysis,
volume 506 of Lecture Notes in Mathematics, pages 73–89. Springer Berlin Heidelberg,
1976.

[5] G. H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins University
Press, Baltimore, MD, USA, 3rd edition, 1996.

[6] M. H. Gutknecht and J.-P. M. Zemke. Eigenvalue Computations Based on IDR. SIAM
Journal on Matrix Analysis and Applications, 34(2):283–311, 2013.

[7] S. Guttel. Rational Krylov Approximation of Matrix Functions: Numerical Methods
and Optimal Pole Selection. GAMM-Mitteilungen, 36(1):8–31, 2013.

[8] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Sys-
tems. Journal of Research of the National Bureau of Standards, 49(6):409–436, December
1952.

[9] C. Lanczos. An Iteration Method for the Solution of the Eigenvalue Problem of Lin-
ear Differential and Integral Operators. Journal of Research of the National Bureau of
Standards, 43(4):255–282, October 1950.

[10] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics (SIAM), 2nd edition, April 2003. http://www-users.cs.umn.edu/~saad/
IterMethBook_2ndEd.pdf, accessed on November 15, 2013.

[11] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Com-
puting, 7(3):856–869, July 1986.

67

http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

[12] V. Simoncini and D. B. Szyld. Interpreting IDR as a Petrov-Galerkin Method. SIAM
Journal on Scientific Computing, 32(4):1898–1912, June 2010.

[13] G. L. G. Sleijpen, P. Sonneveld, and M. B. van Gijzen. Bi-CGSTAB as an Induced Dimen-
sion Reduction method. Applied Numerical Mathematics, 60(11):1100–1114, November
2010.

[14] T. Sogabe, M. Sugihara, and S. L. Zhang. An extension of the Conjugate Residual
Method to Nonsymmetric Linear Systems. Journal of Computational and Applied Math-
ematics, 226(1):101–113, April 2009.

[15] P. Sonneveld. CGS, a Fast Lanczos-type Solver for Nonsymmetric Linear Systems. SIAM
Journal on Scientific and Statistical Computing, 10(1):36–52, 1989.

[16] P. Sonneveld and M. B. van Gijzen. IDR(s): a Family of Simple and Fast Algorithms for
Solving Large Nonsymmetric Systems of Linear Equations. SIAM Journal on Scientific
Computing, 31(2):1035–1062, November 2008.

[17] P. Sonneveld and M. B. van Gijzen. An Elegant IDR(s) Variant that Efficiently Ex-
ploits Bi-orthogonality Properties. ACM Transactions on Mathematical Software, 38(1),
November 2011.

[18] H. A. van der Vorst. BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-
CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and
Statistical Computing, 13(2):631–644, March 1992.

[19] C. Vuik and D. J. P. Lahaye. Course WI4201 Scientific Computing. Delft Institue of
Applied Mathematics (DIAM), Delft, The Netherlands, August 2010.

[20] P. Wesseling and P. Sonneveld. Numerical Experiments with a Multiple Grid and a
Preconditioned Lanczos Type Method. In Approximation Methods for Navier-Stokes
Problems, volume 771 of Lecture Notes in Mathematics, pages 543–562. Springer Berlin
Heidelberg, 1980.

68

Appendix A

Implentations for solving eigenvalue
problems

69

A.1 Arnoldi.m

1 function [Vec,Val,resvec,iter]=Arnoldi(A,v1,m)
2

3 n = length(A);
4

5 % Calculations & declarations
6 V(:,1) = v1 / norm(v1);
7

8 for j=1:m
9

10 w = A * V(:,j);
11

12 for i = 1:j
13 H(i,j) = w' * V(:,i);
14 w = w − H(i,j)*V(:,i);
15 end
16

17 H(j+1,j) = norm(w);
18

19 if j==n | | H(j+1,j) <= 1e−15
20 break
21 end
22

23 V(:,j+1) = w / H(j+1,j);
24

25 % Calculation of eigenvector (s) corresponding to eigenvalue with
26 % the largest magnitude
27 [Vec,Val] = sorteig(H(1:j,1:j));
28 s = Vec(:,j);
29

30 % Residual vector and stopping criterion
31 resvec(j) = H(j+1,j) * abs(s(j));
32 if resvec(j) < 10ˆ−8
33 break
34 end
35

36 end
37

38 iter = j;
39

40 % Approximation of the eigenvalues and eigenvectors of A
41 Val = sort(diag(Val));
42 Vec = V(1:end,1:j) * Vec;

70

A.2 Lanczos.m

1 function [Vec,Val,resvec,iter]=Lanczos(A,v1,m)
2

3 n = length(A);
4

5 % Calculations & declarations
6 V(:,1) = zeros(n,1);
7 V(:,2) = v1 / norm(v1);
8

9 alpha(1) = 0;
10 beta(1) = 0;
11

12 for j=1:m
13

14 r = A * V(:,j+1);
15

16 alpha(j) = V(:,j+1)' * r;
17 r = r − alpha(j) * V(:,j+1) − beta(j)*V(:,j);
18 beta(j+1) = norm(r);
19

20 if j==n | | beta(j+1) <= 1e−15
21 break
22 end
23

24 V(:,j+2) = r / beta(j+1);
25

26 % Building T
27 k = length(alpha);
28 T = full(spdiags([beta(2:k+1)',alpha',beta(1:k)'],[−1 0 1],k,k));
29

30 % Calculation of eigenvector (s) corresponding to eigenvalue with
31 % the largest magnitude
32 [Vec,Val] = sorteig(T);
33 y = Vec(:,j);
34

35 % Residual vector and stopping criterion
36 resvec(j) = beta(j+1) * abs(y(j));
37 if resvec(j) < 10ˆ−8
38 break
39 end
40

41 end
42

43 iter = j
44

45 % Approximation of the eigenvectors and eigenvalues of A
46 Val = sort(diag(Val));
47 Vec = V(:,2:end−1) * Vec;

71

A.3 Bi Lanczos.m

1 function [Vec,Val,resvec,iter]=Bi Lanczos(A,v1,m)
2

3 n = length(A);
4

5 % Calculations & declarations
6 V(:,1) = zeros(n,1);
7 W(:,1) = V(:,1);
8 V(:,2) = v1 / norm(v1);
9 W(:,2) = V(:,2);

10

11 alpha(1) = 0;
12 beta(1) = 0;
13 delta(1) = 0;
14

15 for j = 1:m
16

17 Vbar = A * V(:,j+1);
18 Wbar = A' * W(:,j+1);
19 alpha(j) = Vbar' * W(:,j+1);
20 Vbar = Vbar − alpha(j) * V(:,j+1) − beta(j) * V(:,j);
21 Wbar = Wbar − alpha(j) * W(:,j+1) − delta(j) * W(:,j);
22 delta(j+1) = sqrt(abs(Vbar' * Wbar));
23

24 if j==n | | delta(j+1) == 0
25 break
26 end
27

28 beta(j+1) = (Vbar' * Wbar) / delta(j+1);
29 W(:,j+2) = Wbar / beta(j+1);
30 V(:,j+2) = Vbar / delta(j+1);
31

32 % Building T
33 k = length(alpha);
34 T = full(spdiags([delta(2:k+1)',alpha',beta(1:k)'],[−1 0 1],k,k));
35

36 % Calculation of eigenvector (s) corresponding to eigenvalue with
37 % the largest magnitude
38 [Vec,Val] = sorteig(T);
39 y = Vec(:,j);
40

41 % Residual vector and stopping criterion
42 resvec(j) = abs(delta(j+1)) * abs(y(j)) * norm(V(:,j+2));
43 if R(j) < 10ˆ−8
44 break
45 end
46

47 end
48

49 iter = j;
50

51 % Approximation of the eigenvectors of A
52 Val = sort(diag(Vec));
53 Vec = V(:,2:end−1) * Val;

72

Appendix B

Implementations for solving
systems of linear equations

73

B.1 FOM.m

1 function [V,x,resvec,iter]=FOM(A,b,x0,m)
2

3 % Calculations & declarations
4 r0 = b − A*x0;
5 resvec(1) = norm(r0);
6 normb = norm(b);
7 V(:,1) = r0 / resvec(1);
8

9 for j=1:m
10

11 w = A * V(:,j);
12

13 for i = 1:j
14 H(i,j) = w' * V(:,i);
15 w = w − H(i,j)*V(:,i);
16 end
17

18 H(j+1,j) = norm(w);
19

20 if j==n | | H(j+1,j) <= 1e−15
21 break
22 end
23

24 V(:,j+1) = w / H(j+1,j);
25

26 % Solving a least−square problem for y
27 e 1 = zeros(j,1); e 1(1) = 1;
28 y = H(1:end−1,1:j) \ (resvec(1) * e 1);
29

30 % Residual vector and stopping criterion
31 resvec(j+1) = H(j+1,j) * abs(y(j));
32 if resvec(j+1) / normb < 10ˆ−8
33 break
34 end
35

36 end
37

38 iter = j; % Number of iterations
39 x = x0 + V(:,1:j)*y; % Solution

74

B.2 GMRES.m

1 function [V,x,resvec,iter]=GMRES(A,b,x0,m)
2

3 % Calculations & declarations
4 r0 = b − A*x0;
5 resvec(1) = norm(r0);
6 normb = norm(b);
7 V(:,1) = r0 / resvec(1);
8

9 for j=1:m
10

11 w = A * V(:,j);
12

13 for i = 1:j
14 H(i,j) = w' * V(:,i);
15 w = w − H(i,j)*V(:,i);
16 end
17

18 H(j+1,j) = norm(w);
19

20 if j==n | | H(j+1,j) <= 1e−15
21 break
22 end
23

24 V(:,j+1) = w / H(j+1,j);
25

26 % Solving a least−square problem for y
27 e 1 = zeros(j+1,1); e 1(1) = 1;
28 y = H \ (resvec(1) * e 1);
29

30 % Residual vector and stopping criterion
31 resvec(j+1) = norm(resvec(1) * e 1 − H * y);
32 if R(j+1) / normb < 10ˆ−8
33 break
34 end
35

36 end
37

38 iter = j; % Number of iterations
39 x = x0 + V(:,1:j)*y; % Solution

75

B.3 CG.m

1 function [x, resvec, iter] = CG(A,b,x,maxit)
2

3 % Calculations & declarations
4 r = b − A*x;
5 p = r;
6 resvec(1) = norm(r);
7 normb = norm(b);
8

9 for j=1:maxit
10

11 y = r'*r;
12 z = A*p;
13

14 alpha = y / (z'*p);
15 x = x + alpha * p;
16 r = r − alpha * z;
17 beta = r'*r / y;
18 p = r + beta*p;
19

20 % Residual vector and stopping criterion
21 resvec(j+1) = norm(r);
22 if resvec(j+1) / normb < 10ˆ−8
23 break
24 end
25 end
26

27 iter = j; % Number of iterations

76

B.4 CR.m

1 function [x, resvec, iter] = CR(A,b,x,m)
2

3 % Calculations & declarations
4 r = b − A*x;
5 p = r;
6 resvec(1) = norm(r);
7 normb = norm(b);
8

9 for j=1:m
10

11 y = r'*A'*r;
12 z = A*p;
13

14 alpha = y / (z'*z);
15 x = x + alpha * p;
16 r = r − alpha * z;
17 beta = r'*A*r / y;
18 p = r + beta*p;
19

20 % Residual vector and stopping criterion
21 resvec(j+1) = norm(r);
22 if resvec(j+1) / normb < 10ˆ−8
23 break
24 end
25 end
26

27 iter = j; % Number of iterations

77

B.5 Bi CG.m

1 function [x, resvec, iter] = Bi CG(A,b,x,maxit)
2

3 % Calculations & declarations
4 r = b − A*x;
5 p = r;
6 rster = r;
7 pster = p;
8 normb = norm(b);
9 resvec(1) = norm(r);

10

11 for j=1:maxit
12

13 y = r' * rster;
14 z = A * p;
15

16 alpha = y / (z' * pster);
17 x = x + alpha * p;
18 r = r − alpha * z;
19 rster = rster − alpha * A' * pster;
20

21 beta = (r' * rster) / y;
22 p = r + beta * p;
23 pster = rster + beta * pster;
24

25 % Residual vector and stopping criterion
26 resvec(j+1) = norm(r);
27 if resvec(j+1) < normb * 10ˆ−8
28 break
29 end
30

31 end
32

33 iter = j; % Number of iterations

78

B.6 Bi CR.m

1 function [x, resvec, iter] = Bi CR(A,b,x,m)
2

3 % Calculations & declarations
4 r = b − A*x;
5 p = r;
6 rster = r;
7 pster = p;
8 normb = norm(b);
9 resvec(1) = norm(r);

10

11 for j=1:m
12

13 y = rster' * A * r;
14 z = A * p;
15

16 alpha = y / (pster'*A*z);
17 x = x + alpha * p;
18 r = r − alpha * z;
19 rster = rster − alpha * A' * pster;
20

21 beta = rster'*A*r / y;
22 p = r + beta * p;
23 pster = rster + beta * pster;
24

25 % Residual vector and stopping criterion
26 resvec(j+1) = norm(r);
27 if resvec(j+1) < normb * 10ˆ−8
28 break
29 end
30

31 end
32

33 iter = j; % Number of iterations

79

Appendix C

PIDR(s) files

81

C.1 main.m

1 clear all;
2 close all;
3 clc;
4

5 % Defaults
6 s = 200; % Block size
7 n = 10; % Dimension of the problem
8 m = 10; % #internal points in unit cube
9 maxit = 1200; % Maximum number of iterations

10 tol = 10ˆ−8; % tolerance of the residual
11 beta = 200; % parameter for convection term
12

13 % System defaults
14 A = mmread('.\Matrices\sherman1.mtx'); n = size(A,1)
15

16 x0 = zeros(n,1); % Initial guess for linear system
17 b = rand(n,1); % RHS of linear system
18 v1 = rand(n,1); % starting vector for eigenvalue problem
19 omega = rand(n,1); % random list of omegas
20 P = orth(rand(n,s)); % Random matrix for IDR(s)
21

22 %%%
23 %%%%%%%%%%%%%%%%%%%%%%%%%% Convergence plots %%%%%%%%%%%%%%%%%%%%%%%%%%
24 %%%
25

26 [˜] = idrs example(A,b,x0,s,maxit,tol,omega,P);
27 [˜] = pidrs example(A,b,x0,s,maxit,tol,omega,P);
28

29 %%%
30 % IDR as a projection method for eigenvalue problems and linear systems %
31 %%%
32

33 % disp('pidrs iteration');
34 [Vhat,x,resvec,iter] = pidrs(A,b,x0,s,maxit,tol,omega,P);
35 Residual vector = resvec'
36 Iterations = iter
37 semilogy(Residual vector)
38

39 % disp('pidrs eachiter iteration');
40 [Vhat,x,resvec,iter] = pidrs eachiter(A,b,x0,s,maxit,tol,omega,P);
41 Residual vector = resvec'
42 Iterations = iter
43 semilogy(Residual vector)
44

45 % disp('pidrs eigenvalue iteration');
46 [Vec,Val,resvec,iter] = pidrs eigenvalue(A,v1,s,maxit,tol,omega,P);
47 Residual vector = resvec';
48 Iterations = iter;
49 semilogy(Residual vector);

82

C.2 pidrs.m

1 function [Vhat,x,resvec,iter] = pidrs(A,b,x0,s,maxit,tol,omega,P)
2

3 n = length(A);
4

5 % Calculations & declarations of norms
6 r0 = b − A*x0;
7 resvec(1) = norm(r0);
8 normb = norm(b);
9

10 % Generate defaults of the IDR(s) algorithm
11 I = eye(n); % Identity matrix
12 B = I; % Initial polynomial
13

14 % Starting vector for the Krylov subspace K(A,r0)
15 V(:,1) = r0 / norm(r0);
16

17 for j=1:maxit
18

19 % Updating the polynomial
20 B = (I − omega(j)*A) * B;
21

22 % Building a basis W for Km(A',Omega*P) and
23 % a basis V for Km(A,Omega*r0)
24 if j==1
25 V = Arnoldi Basis(A,V,s−1);
26 W = P;
27 Vhat = B * V;
28 What = B'\W;
29 else
30 V = Arnoldi Basis(A,V,s);
31 W = Arnoldi Basis Block(A',W,1,s);
32 Vhat = B * V;
33 What = B'\W;
34 end
35

36 % Calculating the solution
37 y = (What'*A*Vhat) \ (What'*r0);
38 x = x0 + Vhat*y;
39

40 % Calculating the norm and checking stopping criterion
41 resvec(j+1) = norm(b−A*x);
42 if resvec(j+1) < normb * tol
43 break
44 end
45 end
46

47 iter = j;

83

C.3 pidrs eachiter.m

1 function [Vhat,x,resvec,iter] = pidrs eachiter(A,b,x0,s,maxit,tol,omega,P)
2

3 n = length(A);
4

5 % Calculations & declarations of norms
6 r0 = b − A*x0;
7 resvec(1) = norm(r0);
8 normb = norm(b);
9

10 % Generate defaults of the IDR(s) algorithm
11 I = eye(n); % Identity matrix
12 B = I; % Initial polynomial
13

14 % Starting vector for the Krylov subspace K(A,r0)
15 V(:,1) = r0 / norm(r0);
16

17 %Do s steps of FOM
18 V = Arnoldi Basis(A,V,s−1);
19

20 for j=s+1:maxit
21

22 if mod(j,s+1)˜=0
23 V = Arnoldi Basis(A,V,1);
24 else
25

26 % Updating the polynomial
27 B = (I − omega(j/(s+1))*A)*B;
28

29 % Building the basis What for Km(A,P)
30 if j == s+1
31 W = P;
32 Vhat = B * V;
33 What = inv(B') * W;
34 else
35 W = Arnoldi Basis Block(A',W,1,s);
36 Vhat = B * V;
37 What = inv(B') * W;
38 end
39

40 % Calculating the solution
41 y = (What'*A*Vhat) \ (What'*r0);
42 x = x0 + Vhat*y;
43

44 % Calculating the norm and checking stopping criterion
45 resvec(j/(s+1)+1) = norm(b−A*x);
46 if resvec(j/(s+1)+1) < normb * tol
47 break
48 end
49 end
50 end
51

52 iter = j / (s+1);

84

C.4 pidrs eigenvalue.m

1 function [Vec,Val,resvec,iter]=pidrs eigenvalue(A,v1,s,maxit,tol,omega,P)
2

3 n = length(A);
4

5 % Starting vector for K(A,r0)
6 V(:,1) = v1 / norm(v1);
7

8 % Defaults
9 I = eye(n);

10 B = I;
11

12 % Start of the algorithm
13 for j = 1:n/s
14

15 % Updating the polynomial
16 B = (I − omega(j)*A) * B;
17

18 % Building a basis W for Km(A',Omega*P) and
19 % a basis V for Km(A,Omega*r0)
20 if j==1
21 V = Arnoldi Basis(A,V,s−1);
22 W = P;
23 Vhat = B * V;
24 What = B'\W;
25 else
26 V = Arnoldi Basis(A,V,s);
27 W = Arnoldi Basis Block(A',W,1,s);
28 Vhat = B * V;
29 What = B'\W;
30 end
31

32 % Calculation of the eigenvalues and eigenvectors
33 Q = What'*A*Vhat;
34 C = What'*Vhat;
35 [Vec, Val] = sorteig(Q,C);
36

37 %Residual vector and stopping criterion
38 resvec(j)=norm(A*Vhat*Vec(:,end)−Val(end,end)*Vhat*Vec(:,end));
39 if resvec(j) < tol
40 break
41 end
42 end
43

44 iter = j;
45

46 % Approximation of the eigenvalues and eigenvectors of A
47 Val = sort(diag(Val));
48 Vec = V * Vec;
49

50 % Make plot of eigenvalues and ritzvalues
51 plot(real(EigReal), imag(EigReal), 'ok')
52 hold on
53 plot(real(EigApprox), imag(EigApprox), 'r*')

85

C.5 pidrs example.m

1 function [A] = pidrs example(A,b,x0,s,maxit,tol,omega,P)
2

3 options.omega = omega;
4

5 %%
6

7 choice = 1;
8 scrsz = get(0,'ScreenSize');
9 fig = figure('Position',[scrsz(1) + scrsz(3)/2 scrsz(4)/2

10 −80 scrsz(3)/2 scrsz(4)/2]);
11 hold on;
12 xlabel('Number of MATVECS')
13 ylabel(' |r |/ |b |')
14 set(gca,'FontSize',16)
15 xlhand = get(gca,'xlabel');
16 ylhand = get(gca,'ylabel');
17 set(xlhand,'fontsize',20);
18 set(ylhand,'fontsize',20);
19 grid on;
20

21 %%
22

23 t = cputime;
24 disp('GMRES iteration...');
25 [x,flag,relres,iter,resvec] = gmres(A,b,[],tol,size(A,1),[],[],x0);
26 time = cputime − t;
27 resvec = log10(resvec/resvec(1));
28 figure(fig);
29 it = [0:1:length(resvec)−1];
30 plot(it,resvec,'k−+');
31 drawnow;
32 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))])
33 disp(['Iterations: ',num2str(iter(2))]);
34 disp(['CPU time: ',num2str(time),'s.']);
35 disp(' ');
36

37 %%
38

39 t = cputime;
40 disp('Bi−CG iteration...')
41 [x,flag,relres,iter,resvec] = bicg(A,b,tol,maxit,[],[],x0);
42 time = cputime − t;
43 resvec = log10(resvec/resvec(1));
44 figure(fig);
45 it = [0:2:2*(length(resvec)−1)];
46 plot(it,resvec,'b−+');
47 drawnow;
48 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))]);
49 disp(['Iterations: ',num2str(iter)]);
50 disp(['CPU time: ',num2str(time),'s.']);
51 disp(' ');
52

53 %%

86

54

55 t = cputime;
56 disp('IDR(4) iteration...');
57 [x,flag,relres,iter,resvec] = idrs(A,b,4,tol,maxit,[],[],x0,options.omega);
58 time = cputime − t;
59 resvec = log10(resvec/resvec(1));
60 figure(fig);
61 it = [0:1:length(resvec)−1];
62 plot(it,resvec,'r−o');
63 drawnow;
64 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))]);
65 disp(['Iterations: ',num2str(iter)]);
66 disp(['CPU time: ',num2str(time),'s.']);
67 disp(' ');
68

69 %%
70

71 t = cputime;
72 disp('IDR(s) iteration...');
73 [x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,[],[],x0,options.omega);
74 time = cputime − t;
75 resvec = log10(resvec/resvec(1));
76 figure(fig);
77 it = [0:1:length(resvec)−1];
78 plot(it,resvec,'r−+');
79 drawnow;
80 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))]);
81 disp(['Iterations: ',num2str(iter)]);
82 disp(['CPU time: ',num2str(time),'s.']);
83 disp(' ');
84

85 %%
86

87 t = cputime;
88 disp('PIDR(s) iteration...');
89 [Vhat,x,resvec,iter]=pidrs(A,b,x0,s,maxit,tol,omega,P);
90 sizeVhat = size(Vhat,2);
91 iter = iter * (s+1);
92 time = cputime − t;
93 figure(fig);
94 resvec = log10(resvec/resvec(1));
95 it = [0:(s+1):(s+1)*(length(resvec)−1)];
96 plot(it,resvec,'g−x');
97 drawnow;
98 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))])
99 disp(['Iterations: ',num2str(iter)])

100 disp(['CPU time: ',num2str(time),'s.'])
101 %fprintf('CPU time = %.8g \n',time)
102 disp(' ')
103

104 %%
105

106 legend('GMRES', 'BI−CG','IDR(4)','IDR(s)','PIDR(s)');
107 hold off;

87

Appendix D

Other Matlab files

89

D.1 Aanroep methodes.m

1 clear all
2 close all
3 clc
4

5 % defaults
6 s = 4
7 n = 200;
8 maxit = 1000;
9 tol = 10ˆ−8;

10

11 % System defaults
12 A = gallery('tridiag',n,−1,2,−1);
13

14 b = A * ones(n,1); % RHS of the linear system
15 x0 = zeros(n,1); % initial guess for the linear system
16 v1 = rand(n,1); % starting vector for eigenvaleu problem
17

18 %%
19 %%% Execution of symmetric methods (Lanczos type) %%%
20 %%
21

22 [Vec,Val,resvec,iter] = Lanczos(A,v1,maxit);
23 [x,resvec,iter] = Lanczos system(A,b,x0,maxit);
24 [x,resvec,iter] = CG(A,b,x0,maxit);
25 [x,resvec,iter] = CR(A,b,x0,maxit);
26

27 %%
28 %%% Execution of general methods (Arnoldi type) %%%
29 %%
30

31 [Vec,Val,resvec,iter] = Arnoldi(A,v1,maxit);
32 [V,x,resvec,iter] = FOM(A,b,x0,maxit);
33 [V,x,resvec,iter] = GMRES(A,b,x0,maxit);
34

35 %%
36 %%% Execution of general methods (Bi−Lanczos type) %%%
37 %%
38

39 [Vec,Val,resvec,iter] = Bi Lanczos(A,v1,maxit)
40 [x,resvec,iter] = Bi Lanczos system(A,b,x,maxit)
41 [x,resvec,iter] = Bi CG(A,b,x,maxit)
42 [x,resvec,iter] = Bi CR(A,b,x,maxit)

90

D.2 Arnoldi Basis.m

1 function V = Arnoldi Basis(A,V,m)
2

3 [n,s] = size(V);
4

5 for j=1:m
6

7 w = A * V(:,end);
8

9 % orthogonalising against previous vectors
10 for i = 1:s
11 H = w' * V(:,i);
12 w = w − H*V(:,i);
13 end
14

15 %normalisation
16 V(:,s+1) = w / norm(w);
17 s=s+1;
18 end

D.3 Arnoldi Basis Block.m

1 function V = Arnoldi Basis Block(A,V,m,s)
2

3 for j=1:m
4

5 Z = A * V(:,end−s+1:end);
6

7 for i=1:j
8 H = V(:,s*(i−1)+1:s*i)' * Z;
9 Z = Z − V(:,s*(i−1)+1:s*i) * H;

10 end
11

12 % Compute QR decomposition
13 [Q, ˜] = qr(Z,0);
14 V = [V,Q];
15

16 end

91

D.4 CDE.m

1 function A = CDE(m,b)
2

3 eps = 1;
4 beta(1) = b;
5 beta(2) = b;
6 beta(3) = b;
7 r = 0;
8

9 % Generate matrix
10 h = 1/(m+1);
11 n = m*m*m;
12 Sx = gallery('tridiag',m,−eps/hˆ2−beta(1)/(2*h),2*eps/hˆ2,
13 −eps/hˆ2+beta(1)/(2*h));
14 Sy = gallery('tridiag',m,−eps/hˆ2−beta(2)/(2*h),2*eps/hˆ2,
15 −eps/hˆ2+beta(2)/(2*h));
16 Sz = gallery('tridiag',m,−eps/hˆ2−beta(3)/(2*h),2*eps/hˆ2,
17 −eps/hˆ2+beta(3)/(2*h));
18 Is = speye(m,m);
19 I = speye(n,n);
20 A = kron(kron(Is,Is),Sx) + kron(kron(Is,Sy),Is)+ kron(kron(Sz,Is),Is) −r*I;
21 A = full(A);

D.5 sorteig.m

1 function [EV2,EW2] = sorteig(H,B)
2 % takes a square matrix H as input. the output is a diagonal matrix
3 % EW2 with the eigenvalues on the diagonal from smallest tot largest
4 % and a matrix EV with the corresponding eigenvectors
5

6 if nargin == 1
7 [EV EW] = eig(H);
8

9 EW2 = diag(sort(diag(EW),'ascend'));
10 [c, ind]=sort(diag(EW),'ascend');
11 EV2=EV(:,ind);
12 end
13

14 if nargin == 2
15 [EV EW] = eig(H,B);
16

17 EW2 = diag(sort(diag(EW),'ascend'));
18 [c, ind]=sort(diag(EW),'ascend');
19 EV2=EV(:,ind);
20 end

92

	Summary
	Preface
	List of Figures
	List of Tables
	Introduction
	Krylov subspace methods
	Research goals
	Structure of this thesis

	Definitions
	Projection methods
	General projection methods
	Matrix-vector representation of a projection process
	The projector of a projection process
	Projection methods for eigenvalue problems
	Definition of the Krylov subspace

	Krylov subspace methods
	Krylov subspace methods for eigenvalue problems
	The Arnoldi method
	The Lanczos method
	The Lanczos Biorthogonalisation method

	Krylov subspace methods for solving systems of linear equations
	The Full Orthogonalisation Method (FOM)
	The Generalised Minimal RESidual (GMRES) method
	The Conjugate Gradient (CG) method
	The Conjugate Residual (CR) method)
	The Biconjugate Gradient (Bi-CG) method
	The Biconjugate Residual (Bi-CR) method

	IDR(s): Induced Dimension Reduction(s)
	Derivation of the IDR(s) algorithm
	Performance of the IDR(s) method
	Numerical experiments with IDR(s)
	Example 5.3.1 - the convection-diffusion equation
	Example 5.3.2 - the Sherman4 matrix
	Example 5.3.3 - the add20 matrix
	Example 5.3.4 - the jpwh_991 matrix

	PIDR(s): Projected Induced Dimension Reduction(s)
	Analysis of the right subspace
	Analysis of the left subspace
	Definition of the approximate solution
	The PIDR(s) algorithm
	PIDR(s) as an eigenvalue method

	Numerical examples PIDR(s)
	PIDR(s) for solving systems of linear equations
	Example 1: the convection-diffusion equation
	Example 2: the sherman1 matrix
	Example 3: the jpwh_991 matrix

	PIDR(s) for solving eigenvalue problems
	Example 1: the Poisson matrix
	Example 2: the rand(n) matrix
	Example 3: the Kahan(n,,) matrix

	Conclusions
	Summary of the results
	Recommendations for future research

	Implentations for solving eigenvalue problems
	Arnoldi.m
	Lanczos.m
	Bi_Lanczos.m

	Implementations for solving systems of linear equations
	FOM.m
	GMRES.m
	CG.m
	CR.m
	Bi_CG.m
	Bi_CR.m

	PIDR(s) files
	main.m
	pidrs.m
	pidrs_eachiter.m
	pidrs_eigenvalue.m
	pidrs_example.m

	Other Matlab files
	Aanroep_methodes.m
	Arnoldi_Basis.m
	Arnoldi_Basis_Block.m
	CDE.m
	sorteig.m

