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Abstract—Just notable difference (JND) thresholds for the
perception of manipulator dynamic properties are relevant for
tele-operation and simulation of vehicles. Manipulator dynamic
properties are characterized by multiple variables (describing
mass, spring and damping for a linear manipulator) and the
JND threshold for any of these variables is affected by variation
in the remaining variables. In previous work, we demonstrated
and modeled the coupling of the stiffness JND and the mass JND,
and investigated the effects of stiffness and mass properties on
the damping JND. In this work we investigate how changes in
the damping parameter affect the JND in perceiving stiffness
and mass. In an experiment our subjects were instructed to
discriminate between different levels of manipulator’s stiffness
or mass, while tracking a prescribed sinusoidal manipulator
movement. Results show that the JND in spring force and
the JND in inertia force are identical, and increase for higher
damping levels. The JND model developed in our previous
work can successfully describe the experimental observations,
thereby providing an extension of Weber’s law. The impedance
of the manipulator is considered as the reference stimulus in
the frequency domain, so that a single ratio describes the JND
thresholds for all three properties.

Index Terms—Just noticeable difference, Mass-spring-damper
systems, Frequency response function, Weber’s law, haptics

I. INTRODUCTION

In manual control tasks, a control manipulator serves as the

haptic interface between human and machine. The operator

can perceive force feedback while moving the manipulator

to interact with the dynamic system. Through observing the

relation between the applied manipulator movement and the

perceived force feedback, human operators can estimate the

mechanical properties – mass, stiffness and damping – of the

total dynamic system, i.e., manipulator and environment.

For manual control tasks, rendering the proper dynamic

information is important for a haptic interface to help the

human operator form an internal model on which skills and

proficiency rely [1], [2]. Moreover, an accurate simulation

of the desired impedance is also crucial for the therapeutic

exercise carried out for rehabilitation [3]. However, due to the

limitations of soft/hardware and possible distortion by data

transmission, the information that the force feedback conveys

about the mechanical properties – the inertia, spring and damp-

ing force components – is inevitably distorted. This problem

is particularly pronounced in cases where the interaction is

remote, as in bilateral tele-operations [4], [5].

It is therefore important to know how large a distortion

of the force must be to cause different human perception of

mechanical properties. This knowledge can help designers to

better tune the settings of their haptic interfaces, depending on

the task requirements. That is, a task that requires operators

to very accurately distinguish between different mechanical

properties of the dynamic environment they interact with will

require different settings than a task which does not.

Human just noticeable differences (JND) in mass, stiffness

and damping properties have been investigated during the last

few decades [6], [7], [8], [9], [10]. From this it appears that

Weber’s law, which states that the JND is proportional to the

reference stimulus, applies when each of the three properties

is rendered to humans in isolation.

The dynamics conveyed by the manipulator are usually

defined by more than one mechanical property alone, however,

and the effects of manipulating one parameter on the JND

of another parameter have been largely overlooked. When a

mass-spring-damper system is rendered to humans, the JND in

perceiving the damping force violates Weber’s law as the stiff-

ness and mass properties vary [11], [12]. In our latest work,

we discovered that when modeling the JND in the frequency

domain, using the frequency response function (FRF) between

force feedback and manipulator deflection, all these relations

could be explained and understood [12], [13]. For instance, we

found that the frequency response magnitude of the damping

JND was proportional to the frequency response magnitude of

the combined mass-spring-damper system. We also found that

the JNDs in perceiving stiffness and mass were coupled [12],

[13].

The present study continues on our previous work [12], [13],

of which the findings will be discussed in greater detail in

Section II. The objective of this paper is to further explore

the relations among these three mechanical properties, and in

particular study the effects of changing the damping parameter

on the joint JND in perceiving spring and inertia forces.

The contributions of this paper are summarized as follows:

1) From an experiment with human participants, we find that

the JNDs in spring and inertia forces are identical and

independent of the excitation frequency. We also find that

the JNDs violate Weber’s law when the damping property

varies: They become higher as the damping increases.
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Fig. 1. The Nyquist plot of H(ω) with typical settings of k, m and b

coefficients. The arrow of the curve indicates the increase of frequency. The
frequency responses at two frequencies (ω1 and ω2) are marked as examples.

2) A frequency-domain model is used to describe the joint

JND in the perception of stiffness and mass. We show

that the frequency response magnitude of this joint JND

is proportional to the frequency response magnitude of the

combined mass-spring-damper system.

The remainder of this paper is organized as follows: In

the following section, we will further discuss our damping

JND model and the joint JND in stiffness and mass. In

Section III we design an experiment to investigate human JND

in perceiving stiffness and mass from force. In Section IV

we analyze the results of the experiment and formulate the

model for the JND. Section V discusses our work and practical

applications. Section VI concludes our contributions.

II. OVERVIEW OF PREVIOUS WORK

Assume that the dynamics rendered by a haptic interface

(a control manipulator) are represented by a mass-spring-

damper system. The open-loop dynamics from the manipulator

deflection angle to the force feedback, can then be expressed

with the frequency response function (FRF):

H(ω) =
T (ω)

Θ(ω)
= k −m · ω2

︸ ︷︷ ︸

ℜH(ω)

+ b · ω
︸︷︷︸

ℑH(ω)

·j (1)

Here Θ(ω) and T (ω) denote the Fourier transforms of the de-

flection angle θ(t) and the torque feedback τ(t), respectively.

ℜH(ω) and ℑH(ω) · j denote the real and imaginary parts

of the complex-valued FRF. Without loss of generality, in the

remainder of this section we refer to torque as force.

For any given excitation movement, a change in the har-

monic force response of the system results from a change in

the FRF. Therefore modeling the JND in perceiving mechan-

ical properties from force is equivalent to modeling the JND

in the FRF. Fig. 1 shows a plot of H(ω) with typical settings

of k, m and b. The JND in the FRF specifies a region within

which a change in the curve does not lead to a change in the

operator’s perception of the system’s force response.

Each point of the curve determines the system’s response at

a particular frequency. The characterization of the JND can be

simplified by investigating individual frequencies. Now con-

sider that the system is only excited at a particular frequency

ω0, i.e., the excitation movement is a sinusoidal signal with

frequency ω0. The force response of the system (T (ω)) is

then also a sinusoidal signal with the same frequency, but

with a different amplitude and phase which are determined by

H(ω0). According to Eq. (1), T (ω) can be divided into two

components: the responses of the real and imaginary parts.

As can be seen from Eq. (1), the real part ℜH(ω0) is a

combined frequency response of stiffness and mass properties.

It acts as a gain which generates a force response that is

either in phase with (if ℜH(ω0) > 0), or exactly opposing

(if ℜH(ω0) < 0), the sinusoidal position input. We found

that humans cannot isolate the information about either of the

stiffness and mass properties from this combined force [12],

[13], [14]. That is, this combined force is perceived as a spring

force when ℜH(ω0) is positive (e.g., ω0 = ω1 in Fig. 1), and

it is perceived as an inertia force when ℜH(ω0) is negative

(e.g., ω0 = ω2) 1. One can imagine that the changes in m and

k, which result in a particular change in this combined force

– and with that, a particular change in the perception – are

not unique. This suggests that the JNDs in the perception of

these two mechanical properties are coupled in the same way

as their responses:

∆ℜH(ω) = ∆kjnd −∆mjnd · ω
2 (2)

Here, ∆kjnd and ∆mjnd denote the stiffness JND and mass

JND, respectively. We use ∆ℜH(ω) to represent their com-

bined response: the JND in the real part ℜH(ω).
Now, the imaginary part ℑH(ω0) · j is the frequency

response of the damping property. Due to the imaginary unit j,

this part generates a damping force which is 90 degrees out of

phase with the manipulator movement: a force proportional to

the velocity. Humans are able to distinguish the damping force

from the combined force response of stiffness and mass [12].

Because of this, the JND in perceiving the damping should

be distinguished from that of the stiffness and mass. Here we

express the JND in the perception of the damping force with

the JND in ℑH(ω):

∆ℑH(ω) = ∆bjnd · ω (3)

Our current interest lies in the two JNDs in Eqs. (2) and

(3) at each frequency. Although these two JNDs relate to

different mechanical properties, the interaction between the

real and imaginary parts must be taken into account. It has

been demonstrated that ∆ℑH(ω) is affected by ℜH(ω) (this

means that the damping JND is affected by the stiffness

and mass properties) [11], [12]. This effect was studied for

ω = 6 [rad/s] in our previous work [12], [13], in which a

model was obtained to express ∆ℑH(ω) as:
∣
∣
∣
∣

∆ℑH(ω)

H(ω)

∣
∣
∣
∣
= c , (4)

1Here spring force refers to the force that is proportional to the position
(manipulator displacement). Inertia force refers to the force that is proportional
to acceleration (this force becomes maximum where the direction of the
manipulator movement changes.)



Here c is a constant. The effect of ℜH(ω) is implicitly shown

by this model. The magnitude of H(ω) increases when the real

part ℜH(ω) increases, as a result the damping JND becomes

higher.

Eq. (4) can be seen as an extension of Weber’s law. This

model indicates that the frequency response magnitude of the

damping JND is a constant fraction of the frequency response

magnitude of the combined system. In other words, this equa-

tion expresses the proportional relation between the system’s

FRF and the JND in its imaginary part. This demonstrates

an effect of the real part on the JND in the imaginary part.

The effect of the imaginary part on the real part has yet to

be revealed, but is expected to be similar because the two

variables are orthogonal. In other words, we assume that the

JND in the perception of the stiffness and mass becomes

higher when the damping increases.

In order to verify this, ∆ℜH(ω) needs to be measured

for different damping levels. Due to the fact that the spring

force and the inertia force have opposite directions, the human

JND in the perception of these two forces may be different.

Therefore, the investigation of ∆ℜH(ω) should be considered

for two different cases, i.e., the JND in the spring force

(∆ℜH(ω) in the case of positive ℜH(ω)) and the JND in

the inertia force (∆ℜH(ω) in the case of negative ℜH(ω)).
The objective of this study is to test the validity of the model

in Eq. (4) for the JND in the real part. The dependence of this

model on the excitation frequency will also be investigated. In

the following section, we discuss an experiment designed to

study both cases.

III. EXPERIMENT DESIGN

A. Conditions

The objectives of the experiment are threefold; we want to

establish the effect of changes in the manipulator damping

coefficient on the perception of spring (1) and on the percep-

tion of inertia (2) forces. In addition, we want to explore the

effect of the frequency with which the manipulator is deflected

on the thresholds (3). Since the procedure to determine a

single threshold value is fairly long, we limited the number of

conditions by not creating a full factorial experiment.

The experiment to measure ∆ℜH(ω) (the JND in the real

part) has nine different conditions, expressed in terms of the

real and imaginary part of the FRF. Details of conditions are

given in Table I. We label the conditions as Ci for an easy

reference in the following content.

The JND measurement for each condition will be collected

at a single frequency of excitation ωi. This is achieved by

asking subjects to apply (an approximately) sinusoidal move-

ment to the manipulator during the experiment. More details

about this prescribed manipulator movement will be given in

Section III-D.

Conditions C1-5 define a positive ℜH(ωi), corresponding

to a spring force, and five different ratios of ℑH(ωi) to

ℜH(ωi) ranging from 0 to 2. The measurements for these five

conditions will demonstrate how different levels of damping

TABLE I
CONDITIONS OF THE EXPERIMENT

Condition ℜH(ωi) ℑH(ωi)
ωi

([rad/s])
r=

∣

∣

∣

ℑH(ωi)
ℜH(ωi)

∣

∣

∣

C1 1.26 0.0 6 0.0

C2 1.26 0.63 6 0.5

C3 1.26 1.26 6 1.0

C4 1.26 1.89 6 1.5

C5 1.26 2.52 6 2.0

C6 1.26 0.0 8 0.0

C7 1.26 2.52 8 2.0

C8 -1.26 0.0 6 0.0

C9 -1.26 2.52 6 2.0

Note that all the variables in this paper are defined using the rotational
convention.
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Real

2.52

Imaginary
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Fig. 2. Conditions of the experiment shown on the complex plane.

affect ∆ℜH(ωi). Conditions C6-7 are designed with a dif-

ferent excitation frequency ωi to investigate the effect of the

frequency on the JND. A negative ℜH(ωi), corresponding to

an inertia force, and two different ratios are defined in C8-9

to study the effect of force direction (the sign of ℜH(ωi)) on

the JND. Fig. 2 shows the settings of the nine conditions on

the complex plane.

In order to obtain the desired settings of ℜH(ωi) and

ℑH(ωi) in Table I, the three coefficients k, m and b in Eq. (1)

were set in the following way2:

k =

{

ℜH(ωi) + 0.01ωi
2 , if ℜH(ωi) > 0

0 , if ℜH(ωi) < 0

m =







0.01 , if ℜH(ωi) > 0
−ℜH(ωi)

ω2
i

, if ℜH(ωi) < 0

b =
ℑH(ωi)

ωi

(5)

As can be seen from Eq. (1), at a single frequency the

combination of k and m that yields a particular ℜH(ωi) is not

unique. By using the settings specified in Eq. (5), ∆ℜH(ωi)

2Ideally, the mass for the simulated manipulator m should have been chosen
to be zero for ℜH(ωi) > 0. However, to maintain stability of the simulation,
a minimal mass of 0.01 [kg ·m2] is maintained. The stiffness k is therefore
adjusted accordingly to obtain the desired value of ℜH(ωi).
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Fig. 3. (a): The apparatus used in the JND experiment. The side-stick
manipulator and the LCD screen are marked by white rectangles. The LCD
screen only displays the visual presentation of the tracking task. (b): The
tracking task shown on the LCD screen. To reduce the manipulator deflection
tracking error exampled in this figure, the subject has to push the manipulator
towards the left.

can be simply obtained through measuring the stiffness JND

(when ℜH(ωi) > 0) and the mass JND (when ℜH(ωi) < 0).

B. Apparatus and participants

The experiments were performed in the Human-Machine In-

teraction Laboratory at the faculty of Aerospace Engineering,

TU Delft. An illustration of the devices is given in Fig. 3a. An

admittance-type side-stick manipulator driven by an electro-

hydraulic motor was used in the experiment. Details of the

manipulator can be found in [12]. The manipulator can move

in the left/right direction (lateral). The torque-to-deflection

manipulator dynamics specified by Eq. (1) can be accurately

rendered to the human operator at the two desired frequencies

of excitation. The settings of the mass, spring and damper

coefficients (m, k and b in Eq. (1)) of the rendered manipulator

dynamics can be configured according to different conditions.

An LCD screen, placed in front of the subject, was used

to help subjects follow the prescribed sinusoidal manipulator

movement (see Section III-D).

Nine subjects participated (n = 9), all right-handed and

without a history of impairments in moving their arm or hand.

An informed consent form was signed before the experiment.

C. Procedure

In this study, only the upper JNDs were investigated. The

JND for each condition was measured by a one-up/two-down

staircase procedure [15]. The procedure generally needed

approximately 20-30 trials to converge. Each trial consisted of

two 6.3-second simulations. In one simulation the manipulator

was configured with the reference setting which is the setting

of the condition (see Table I and Eq. (5)). In the other

simulation the manipulator was configured with the controlled

setting which only differed from the reference setting in the

tested mechanical property S (stiffness or mass) by an adjusted

increment δS. The sequence of the two simulations in each

trial was randomly based on a prior probability of 0.5.

In each simulation, the subject was asked to perceive the

manipulator dynamics while moving the manipulator with the

prescribed sinusoidal deflection. After each trial, the subject

was asked to report in which of the two simulations he or she

TABLE II
JND MEASUREMENTS, SHOWN AS SAMPLE MEANS AND 95% CONFIDENCE

INTERVALS CORRECTED FOR BETWEEN-SUBJECT VARIABILITY

∆ℜH(ωi)
(condition)

ratio r=

∣

∣

∣

ℑH(ωi)
ℜH(ωi)

∣

∣

∣

0.0 0.5 1.0 1.5 2.0

∆k

(C1-5)
.15±.07 .15±.05 .22±.05 .27±.06 .34±.05

∆k

(C6-7)
.14±.04 - - - .29±.06

∆m · ω2
i

(C8-9)
.16±.05 - - - .30±.08

experienced a higher level of manipulator stiffness (conditions

C1-7) or manipulator mass (conditions C8-9). δS for the next

trial was then adjusted according to the correctness of the

subjects’ answer. In this way, δS gradually converged to the

JND. More details about this staircase procedure can be found

in our previous work [12].

D. Prescribed manipulator movement

To ensure that our subjects excited the manipulator at the

desired excitation frequency, they performed a preview track-

ing task [16] in each simulation, see Fig. 3b. The reference

manipulator deflection is calculated according to:

θref (t) = 0.37 · sin(ωit) (6)

Here ωi denotes the desired frequency of excitation (6 or

8 [rad/s], see Table I). In addition, the first and last cycles

of this prescribed movement are used as fade-in and -out

phases. The movement amplitude gradually increases from 0

to 0.37 during the fade-in phase, and decreases from 0.37 to

0 during the fade-out phase. To perform the tracking task,

the subject needs to reduce the tracking error between the

current manipulator deflection θm(t) (shown by “◦” in Fig. 3b)

and the current reference deflection θref (t) (shown by “+”).

The two symbols only move horizontally. The visual preview,

shown as a winding curve (blue line), contains 1.5-second

future information of the reference deflection θref . It moves

downwards as time progresses.

IV. RESULTS AND MODEL VALIDATION

A. Experimental results

All participants were able to adequately perform the track-

ing task. The actual movement frequencies in all experimental

runs were evaluated, and found to only deviate from 6 [rad/s]

by less than 0.1 [rad/s]. Therefore the effects of the testing

factors at the desired conditions can be accurately reflected

by the experimental observations. Table II summarizes the

results of the experiment. The results are also shown in

Fig. 4 for a clear illustration. When examining the JNDs for

conditions C1-5, an obvious increase can be seen as the ratio

r increases. A one-way repeated measures ANOVA performed

for these five conditions revealed that the effect of r was
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Fig. 4. Measurements of |∆ℜH(ωi)| shown with the sample means and
95% confidence intervals corrected for between-subject variability.

significant (F (4,32) = 8.1, p < .01). Two separate one-way

repeated measures ANOVAs were performed to investigate: (1)

the differences among conditions C1,6,8; (2) the differences

among conditions C5,7,9. Results showed that when r = 0.0

(conditions C1,6,8) the variations in the excitation frequency

ωi and the sign of ℜH(ωi) both failed to cause any significant

change in the JNDs (F (2,16) = .21, p > .05). The same

conclusion was drawn when r = 2.0 (conditions C5,7,9)

(F (2,16) = .74, p > .05).

The above results confirm that the imaginary part affects

the JND in the real part, i.e., ℑH(ω) affects ∆ℜH(ω). This

shows that the JNDs in perceiving the stiffness and mass

properties from force violate Weber’s law when the damping

varies. The JNDs and the observed effect of ℑH(ω) are

independent, however, of the sign of ℜH(ω) and the excitation

frequency. In other words, humans have similar JNDs in

perceiving the spring and inertia forces. The level of the

JNDs does not vary with small variations in the frequency of

excitation movements. When damping is higher (r increases),

changes that can cause different perception in stiffness and

mass increase.

B. Model validation

In order to check the validity of a model similar to Eq. (4),

the JND measurements shown by Table II are normalized to

the corresponding system magnitude according to the follow-

ing equation:

∆n =

∣
∣
∣
∣

∆ℜH(ωi)

H(ωi)

∣
∣
∣
∣

(7)

Fig. 5 shows ∆n obtained for all the nine conditions. A

one-way repeated-measures ANOVA shows no significant dif-

ferences among the nine conditions (F (8,64) = .59, p > .05).

This confirms the validity of our model, and indicates that the

magnitude of ∆ℜH(ω) is proportional to the magnitude of

H(ω).
Thus, an extension of Weber’s law for the joint JND in

perceiving stiffness and mass from force can be formulated.

When regarding the frequency response of a dynamic system
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Fig. 5. The |∆ℜH(ωi)| normalized to the system magnitude |H(ωi)|. The
normalized JNDs are shown with the sample means and 95% confidence
intervals corrected for between-subject variability.

as the reference stimulus, the relative change along the real

axis of the complex plane is constant:
∣
∣
∣
∣

∆ℜH(ω)

H(ω)

∣
∣
∣
∣
=

∣
∣
∣
∣

∆kjnd −∆mjnd · ω
2

k −m · ω2 + b · ω · j

∣
∣
∣
∣
= p (8)

Here the ratio p is a constant. We found a representative

numerical value (12.2%), by averaging the results shown in

Fig. 5 over all the conditions. It is worth mentioning that

this value is similar to that of perceiving the damping force

(roughly 9% [12]).

V. DISCUSSION

In this study we have demonstrated the effect of the damping

on human perception of stiffness and mass properties of a

dynamic system. Due to the variation in the damping, Weber’s

law, which is commonly used to estimate the JNDs in the

perception of mechanical properties, can not describe the

experimental observations. As expected, the JND in spring

and inertia forces increases as the damping increases. This

phenomenon is successfully characterized by a model which

was previously found to be valid for effects of spring and mass

changes on the damping JND.

The experimental results also demonstrate the validity of

the model for different excitation frequencies. The normalized

JNDs given by the model are approximately identical for the

two chosen frequencies. Although the manipulated variation

in the excitation frequency is relatively small, this conclusion

reliably applies in cases where the excitation movement is

mainly generated by the human arm. This scenario covers a

wide range of manual control tasks, such as car driving and

aircraft flying, in which the main energy of human control

input usually lies below 2-3 Hz in the power spectrum.

The effect of the amplitude of the excitation movement

was excluded from the investigation. This is because the

movement amplitude has no effect on the relative force JND

(Weber fraction) [17], provided that the considered amplitude

is moderate (not too small or too large).



An extension of Weber’s law for the perception of stiffness

and mass is obtained using this model (see Eq. (8)). With this

extension the performance of a haptic interface, in terms of

the rendering of stiffness and mass properties of a dynamic

system, can be easily evaluated. The evaluation can be done

in the frequency domain by examining the differences between

the desired dynamics and the rendered dynamics for the

frequency range of considered excitation. A haptic interface

can potentially lead the operator to have a different perception,

if there exists a frequency where the real-part difference is

larger than the corresponding threshold (12% of the frequency

response magnitude of the desired dynamics).

Moreover, the findings of this study give a number of

insights into the design of haptic interfaces. On the one hand,

a higher level of damping allows for larger distortions of the

spring and inertia forces. This reduces the requirements on the

system performance. The high demands, for simulating mass

and high levels of stiffness, on the gain of the control system

can be alleviated, which in turn can be beneficial to system

stability [18]. On the other hand, the increase of damping also

reduces the human ability to perceive a change in stiffness

and mass properties. When damping injection [19] is used to

guarantee the stability of a haptic interaction, this issue must

be taken into account for cases where discriminating between

different levels of stiffness or mass is important for the task

at hand.

VI. CONCLUSION

In this study we investigated the human JND in the per-

ception of spring and inertia forces, and the effect of system

damping settings on this JND. An experiment employing an

adaptive staircase procedure was conducted to measure the

stiffness and mass JND under conditions in which different

damping levels and excitation frequencies are defined. Results

show that subjects have similar JNDs in perceiving spring and

inertia forces, and these JNDs are independent of the frequency

whith which the manipulator is moved. They become higher,

however, to an equal extent, when the damping increases. We

successfully characterized the experimental observations using

a model obtained in our previous study. We found that the JND

in the joint frequency response of stiffness and mass (the real

part) is proportional to the frequency response magnitude of

the dynamic system.
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