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In the driver’s mind: cognitive modeling of human overtaking behavior
when interacting with oncoming automated vehicles

Samir H.A. Mohammad1, Haneen Farah2 and Arkady Zgonnikov1

Abstract— Understanding human behavior in overtaking sce-
narios is crucial for enhancing road safety in mixed traffic
with automated vehicles (AVs). Modeling plays a pivotal role in
advancing our comprehension of human overtaking behavior in
dynamically evolving scenarios. Currently, our understanding
of overtaking behavior primarily revolves around straight-
forward interactions with human-driven vehicles (HDVs). To
address this gap, we conducted a “reverse” Wizard-of-Oz
driving simulator experiment with 30 participants interacting
with both oncoming AVs and HDVs, featuring time-varying
dynamics. We hypothesized that the type of oncoming vehicle
(AV or HDV) does not significantly influence gap acceptance
during overtaking, while we anticipated an increase in gap ac-
ceptance when the oncoming vehicle briefly decelerates during
interactions with the human ego-vehicle driver. Our findings
reveal that participants did not significantly alter their over-
taking behavior when interacting with oncoming AVs compared
to HDVs. Surprisingly, brief decelerations in the oncoming
vehicle’s velocity did not significantly affect the decision-making
processes of overtaking. Moreover, our results reinforced pre-
vious insights into the significance of the initial distance and
time-to-arrival to the oncoming vehicle, and the ego-vehicle
velocity on participants’ overtaking behavior. We highlight the
potential of simple drift-diffusion models (DDMs), a subset of
cognitive models, in understanding human overtaking behavior
in dynamically evolving scenarios involving oncoming AVs.
Our proposed model accurately captures qualitative patterns
in gap acceptance during these intricate overtaking scenarios,
further advancing the ongoing development of safer interactions
between human drivers and AVs during overtaking maneuvers.

I. INTRODUCTION

While driving automation offers promise for improving
traffic safety [1], successfully managing interactions between
automated vehicles (AVs) and human drivers in mixed traffic
scenarios remains a substantial and ongoing challenge [2].
Overtaking maneuvers on two-lane rural roads, in particular,
pose significant risks of head-on collisions at high speeds.
Human drivers’ inconsistent judgments of available gaps [3]–
[5] underscore the need for a comprehensive understanding
of human overtaking behavior to enhance road safety.

Advanced overtaking behavior models can play a pivotal
role in enhancing road safety and the development of AV
technology. These models can generate realistic overtaking
scenarios, improving the accuracy of testing and validation
during the early stages of AV development [6]. Equipped
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with these models, AVs can predict gap acceptance in real
time and anticipate overtaking maneuvers by human-driven
vehicles (HDVs), contributing to overall safety [7]. More-
over, integrating clear communication interfaces (e.g., [8],
[9]) and effective behavioral cues (e.g., [10], [11]) between
AVs and human drivers can further enhance human-AV
interactions [2].

However, our current understanding of overtaking behav-
ior predominantly focuses on instantaneous decision-making
processes (e.g., [3], [12]–[20]), overlooking the dynamic
nature of overtaking maneuvers. These interactions evolve
over time, influenced by factors such as relative speeds,
distances between vehicles, and possibly by the behavior
of other road users [21], [22]. Neglecting these dynamic
aspects can severely limit the predictive capabilities of AVs
in overtaking scenarios.

Recent research has started to bridge this gap by employ-
ing cognitive process models to describe dynamic decision-
making processes across various traffic situations, includ-
ing pedestrian-crossing [23], unprotected left-turns [24],
[25], and straightforward overtaking maneuvers [26]. Drift-
diffusion models (DDMs), a subset of cognitive models, are
grounded in the theory of bounded accumulation of evi-
dence, where drivers integrate visual cues, such as distance
and time-to-arrival (TTA) to oncoming vehicles, into their
decision-making processes. These models have effectively
captured the effect of interactions, such as an AV signal-
ing yielding intent through deceleration or external human-
machine interface signals, on gap acceptance behavior [23].
Furthermore, DDMs have demonstrated potential in describ-
ing how time-varying dynamics of oncoming AVs influence
gap acceptance decisions and response times [25].

Despite this progress, DDMs have yet to be validated
with data involving overtaking interactions with oncoming
AVs featuring varying dynamics. Most notably, the study by
Mohammad et al. [26] was based on data from Sevenster
et al. [13], where oncoming vehicles exhibited constant
acceleration. To better represent real-world scenarios, we
propose two significant improvements: first, considering
more intricate interactions, including time-varying dynamics
of oncoming vehicles, and second, exploring how different
vehicle types, AVs or HDVs, may affect gap acceptance.
Recent studies have presented mixed results on the influence
of vehicle type on gap acceptance. Notably, Soni et al. [27]
and Trende et al. [28] reported that drivers significantly
accepted more gaps when interacting with AVs compared
to HDVs. However, it is worth noting that these studies
influenced their participants’ perceptions of AVs before their



experiments, potentially impacting their results. In contrast,
studies that refrained from doing so (e.g., [29]–[31]) did not
find a significant difference in gap acceptance. These mixed
findings underscore the need for a more comprehensive
investigation into the potential influence of vehicle type on
overtaking behavior.

This study aims to address these gaps through a driving
simulator experiment involving 30 participants who inter-
acted with both oncoming AVs and HDVs with varying
dynamics. We manipulated the acceleration profile of the
oncoming vehicle in three different ways: maintaining a
constant speed, brief and weak deceleration nudging, and
brief and strong deceleration nudging, as detailed in Section
II. Furthermore, we used a “reverse” Wizard-of-Oz exper-
imental setup to increase the participants’ belief that the
two vehicle types are distinct. Our hypotheses are twofold:
firstly, that human overtaking behavior remains consistent
when interacting with AVs, and secondly, that gap acceptance
increases when the oncoming vehicle briefly decelerates
during interaction with the ego-vehicle driver – Section III.
We collected decision outcomes and their respective response
times to fit experimental data to cognitive models – Section
IV. Our ultimate goal is to enhance our understanding of
these intricate overtaking maneuver interactions and their im-
plications for road safety and AV development, as discussed
in Section V.

II. METHODS

A. Participants

Approval for this study was granted by the Human Re-
search Ethics Committee of Delft University of Technology.
Our participant pool consisted of 30 individuals, evenly
distributed by gender (15 males and 15 females), with an age
range from 18 to 35 years (Mean: 24.2, SD: 3.1). On average,
participants held a driver’s license for 5.6 years, with a range
from 0.3 to 17 years (SD = 3.7). Participants’ self-reported
familiarity with self-driving cars averaged 2.4 on a 5-point
Likert scale, with a standard deviation of 1.3. Additionally,
their self-reported perceived safety of self-driving cars on the
road averaged 2.9 (SD: 0.8). In return for their participation,
each participant received a 20-euro gift voucher.

B. Setup

Participants conducted the experiment within a fixed-base
driving simulator located at the Cognitive Robotics Depart-
ment of Delft University of Technology (Figure 1). The
simulator featured a 65-inch screen and was equipped with
a Logitech G923 steering wheel, along with an additional
unconnected Logitech Driving Force GT steering wheel, and
a secondary monitor. For data recording purposes, we used
JOAN as an experiment manager [32], capturing data at a
rate of 100 Hz. The simulator ran on CARLA, an open-
source autonomous driving simulation platform [33]. The
experimental environment, comprising a two-lane rural road,
was designed in RoadRunner.

Figure 1: “Reverse” Wizard-of-Oz’ experimental setup of
the driving simulator. During sessions involving oncoming
human-driven vehicles, the experimenter operated an uncon-
nected driving simulator setup.

C. Experimental design

Participants were instructed to replicate their real-world
driving behavior throughout the experiment. Each trial
started with the ego-vehicle set to cruise control until the
platoon of vehicles on the opposite lane passed it. Following
an audible beep signal, participants gained full control over
the pedals and were tasked with assessing the road situation.
Participants always started driving with full control at a
headway of approximately 1.5 seconds behind a lead vehicle
(a truck). Subsequently, to induce a desire to overtake, the
truck’s speed was gradually reduced from 60 km/h to 45
km/h. During the driver’s assessment of the road situation,
a gap was presented, following a methodology akin to
Sevenster et al. [13] (Figure 2). Participants then made an
overtaking decision based on the presented gap.

Figure 2: Participants’ perspective while performing the task
in the driving simulator. As the participant moves to the
opposing lane to assess the road situation a decision has to
be made to either overtake the truck (accepting the gap) or
stay behind the truck.

Each trial involved four controlled variables, including the



initial distance between the ego-vehicle and the oncoming
vehicle (240m and 280m), the initial time-to-arrival (TTA)
(6s and 10s), the acceleration profile of the oncoming vehicle
(constant speed, weak nudge, and strong nudge) and the
oncoming vehicle type (AV and HDV) (Figure 3). The
experiment followed a within-participant design with a 2 x 2
x 2 x 3 factorial structure, resulting in 26 unique conditions–
24 plus one “impossible” condition (d0 ∼ U(70m,150m),
TTA = 2s) per vehicle type to discourage participants from
performing blind overtaking maneuvers and to promote a
careful assessment of the road situation.

To familiarize participants with the driving equipment
and task, they underwent between 5 to 10 practice trials,
ensuring their comfort with the experimental procedure. The
26 unique conditions were randomly repeated five times and
split evenly into two sessions based on vehicle type, resulting
in a total of 130 trials. To maintain participant concentration,
a brief off-screen distracting task followed every 13 trials,
and each session lasted approximately 45 minutes, including
a 15-minute break between the sessions.

In the session featuring an oncoming HDV, we employed
a “reverse” Wizard-of-Oz setup where the experimenter was
situated behind another driving simulator setup (Figure 1).
This setup created the illusion that the oncoming HDV was
human-controlled. Furthermore, the HDV had an animated
driver and no LiDAR (Figure 3). Participants were equipped
with a noise-canceling headset throughout the experiment to
prevent any auditory influence from the experimenter’s pedal
inputs. The session order was alternated among participants.

D. Experimental conditions

Per vehicle type, the remaining conditions were equally
distributed (Figure 3). Given the higher lead vehicle velocity
in comparison to Sevenster et al.’s study (45 km/h vs. 30
km/h), the distance conditions were adjusted to 240 and 280
meters, allowing reasonably high-speed interactions with the
oncoming vehicle. With TTA values of 6s and 10s and an
average ego-vehicle speed of 45 km/h, the initial velocity of
the oncoming vehicle ranged between 40 km/h (low distance,
high TTA) and 120 km/h (high distance, low TTA). The
oncoming vehicle either maintained a constant speed or
executed a deceleration of either 2.5 m/s2 or 5 m/s2 for 2
seconds, followed by acceleration with the same respective
value for another 2 seconds back to its initial speed.

To minimize variations in the initial ego-vehicle velocity
and following distance to the lead vehicle, participants initi-
ated each trial with cruise control and gained full control only
upon hearing a beep (approximately 1.5 seconds of headway
behind the truck). Following the beep, participants were
tasked with assessing the road situation and subsequently
deciding whether to overtake the truck or wait until the
oncoming vehicle passed. The experiment recorded a total
of about 3600 possible overtaking decisions.

E. Measures

To model overtaking behavior using the DDM framework,
two primary dependent variables were measured: the decision

Figure 3: Experimental setup of the overtaking maneuver.
The lead vehicle (red) slows down to induce an overtaking
desire by the ego-vehicle (yellow). In each scenario, a
distance and time-to-arrival gap to the oncoming vehicle
(dark blue) is presented after the last platoon vehicle (cyan)
passes. The oncoming vehicle, in half the cases an automated
vehicle and in the other half a human-driven vehicle, drives
with either of the three acceleration profiles.

outcome (Overtake or Stay) and its respective response time.
Response times for rejected gaps were calculated fol-

lowing the method proposed by Sevenster et al. [13] (see
Figure 4). Their approach to measuring response times for
accepted gaps specified that the decision-making process
concluded when the ego-vehicle crossed the lane divider.
In our experiment, the truck being overtaken was positioned
more to the left of the lane compared to the setup in Sevenster
et al.. As a result, the ego-vehicle was close to or already
beyond the lane divider when assessing oncoming traffic in
accepted gap scenarios. While an ideal generalized method
for measuring the endpoint of decision-making in accepted
decisions could have addressed this issue, it was beyond the
scope of this study to conduct such an investigation. Instead,
we compared three methods: ‘crossing the lane divider’,
‘fully entering the opposing lane’, and ‘near full throttle’ (see
online supplementary information at https://osf.io/ya34n).
We opted to use throttle data, later translated into acceleration
data of the ego-vehicle, as a practical solution (Figure 4, 5).
We justified this choice by the typical behavior observed in
this experiment, where participants generally refrained from
accelerating while assessing oncoming traffic due to their
proximity to the slow-moving vehicle ahead.

Additionally, the decision outcomes—whether partici-
pants chose to “Overtake” (accepted gap) or “Stay” (re-
jected gap)—can potentially be further categorized into
two subtypes: change-of-minds and aborted maneuvers [17].

https://osf.io/ya34n


Figure 4: Response time measurement in rejected gaps [13]
and our proposed measurement method in accepted gaps.

Change-of-minds are considered initially rejected gaps (brak-
ing i.e. acceleration < 0m/s2) that participants later decided
to accept, effectively converting them into accepted gaps.
Conversely, aborted maneuvers represented scenarios where
participants initially accepted a gap (near full throttle i.e.
acceleration > 3m/s2) but subsequently decided to reject it.
We identified change-of-minds and aborted maneuvers based
on acceleration data (Figure 5), but their analysis falls beyond
the scope of this study, and therefore only final outcomes and
their response times are further considered.

F. Exclusion criteria

We applied specific exclusion criteria to refine our dataset
for analysis. We excluded trials in which the overtaking deci-
sion could not be determined due to vehicle crashes (N=19)
and instances where the response time in accepted decisions
could not be accurately measured (N=75) due to missing
acceleration data. Additionally, we identified and removed
instances of unrealistic response times, both excessively short
(< 0.5s, N=225) and exceptionally long (> 4s, N=29). These
exclusions were made in the context of statistical analyses
involving response times and cognitive modeling but not in
the statistical analyses of decision outcomes.

Unrealistically fast responses might be attributed to sensi-
tivity in measurement equipment or instances where partici-
pants had already made their decisions before fully assessing
the road situation. Distinguishing between these possibilities
was not feasible; therefore, all unrealistically fast responses
were excluded from further analysis.

Figure 5: Comparison of decision outcomes: accepted gap
vs. change-of-mind and rejected gap vs. aborted maneuver.

Conversely, slow responses could be attributed to partic-
ipants changing their decisions during the decision-making
process. This is because the endpoint of the decision-making
process is intricately linked to the final decision (Figure 5).

In total, our analyses were based on 3438 overtaking
maneuvers to assess decision outcomes and 3184 decisions
for analyzing response times and cognitive modeling.

G. Data analysis

We conducted statistical analyses using mixed-effect re-
gressions for both decision outcomes (logistic) and response
times (linear). Dummy coding was employed for vehicle
types and acceleration profiles, using AV and constant speed
as the respective reference groups. To address variations in
baseline values of dependent variables across individuals, we
included the vehicle type per participant ID as a random
slope in all regression models.

Before proceeding with parameter estimation, we stan-
dardized all continuous variables (initial distance D0, initial
TTA T TA0, and initial ego-vehicle velocity vego

0 ) through
z-scoring. This standardization allowed us to interpret the
coefficients (β ) for each independent variable in terms of
their relative contributions to the dependent variable.

In the case of the response time regression, we computed
the Type-III sum-of-squares ANOVA table, utilizing the Sat-
terthwaite approximation for degrees of freedom. To account
for multiple comparisons in both decision and response time
regression analyses, particularly concerning the acceleration
profiles, we adjusted p-values using the Tukey method.

We used pymer4 [34], a Python-based statistical analysis
tool, to analyze decision outcomes and response times.



TABLE I: Coefficients of the mixed-effect logistic regression
describing the final decision as a function of acceleration
profile, vehicle type, session order, and z-scored variables
D0, T TA0, and vego

0 . The vehicle type per participant ID was
included as a random slope.

β SE z p
(Intercept) -0.056 0.28 0.20 0.85

D0 0.99 0.06 15.48 < 0.001
T TA0 0.56 0.06 9.18 < 0.001

vego
0 0.73 0.08 9.10 < 0.001

Acceleration profile ‘weak nudge’ 0.047 0.15 0.32 0.75
Acceleration profile ‘strong nudge’ 0.052 0.14 0.37 0.71

Vehicle type HDV -0.26 0.40 -0.65 0.51
Session order second -0.46 0.39 -1.18 0.23

III. RESULTS

A. Decision outcomes

The probability of accepting the gap (expressed as the
“Overtake” decision) was significantly positively affected by
the initial distance D0, initial time gap T TA0, and initial
ego-vehicle velocity vego

0 (for details, see Table I and Figure
6). Post-hoc comparisons showed that there is no substantial
evidence to suggest that the probability of overtaking differs
between vehicle types AV vs. HDV (∆ = -0.11, z = -1.14,
p = 0.25) in either the first (p = 0.52) or second session
(p = 0.21). Likewise, there is no compelling evidence to
indicate differences in overtaking probability across different
acceleration profiles, such as ‘constant speed’ with ‘weak
nudge’ (∆ = -0.071, z = -0.69, p = 0.76), ‘constant speed’
with ‘strong nudge’ (∆ = -0.057, z = -0.56, p = 0.84), and
‘weak nudge’ with ‘strong nudge’ conditions (∆ = -0.014, z
= -0.14, p = 0.99).

B. Response times

In our analysis of response times (Table II, Figure 6),
we observed significant influences of the decision outcome,
initial distance D0, and initial time gap T TA0. Interest-
ingly, there was no substantial evidence indicating that
the initial ego-vehicle velocity vego

0 significantly impacted
response times (p = 0.23). Further post-hoc comparisons
for response times revealed noteworthy patterns. Overtake
responses exhibited significantly quicker response times than
Stay responses (∆ = -1.16s, t = -60.0, p < 0.001). Moreover,
no significant evidence emerged indicating differences in
response times between vehicle types AV and HDV (p =
0.46). Furthermore, our analysis did not detect substantial
differences in response times across different acceleration
profile conditions. Specifically, for Overtake response times,
between conditions ‘constant speed’ - ‘weak nudge’(∆ = -
0.01s, t = -0.29, p = 0.95), ‘constant speed’ - ‘strong nudge’
(∆ = -0.044s, t = -1.27, p= 0.41), and ‘strong nudge’ - ‘weak
nudge’ (∆ = 0.034s, t = 1.01, p = 0.57). Likewise, Stay
responses exhibited no significant differences in response
times between the ‘constant speed’ - ‘weak nudge’ (∆ = -
0.002s, t = -0.064, p= 1.0), ‘constant speed’ - ‘strong nudge’
(∆ = -0.020s, t = -0.76, p= 0.73), and ‘strong nudge’ - ‘weak
nudge’ ∆ = 0.019s, t = 0.69, p = 0.77) conditions.

TABLE II: ANOVA table based on the mixed-effect linear
regression describing response time as a function of decision,
acceleration profile, vehicle type, and z-scored variables D0,
T TA0, and vego

0 .

SS MS df F p
Decision 641 641 1 3547 < 0.001

D0 6.94 6.95 1 36.4 < 0.001
T TA0 14.2 14.2 1 78.8 < 0.001

vego
0 0.26 0.26 1 1.46 0.23

Acceleration profile 0.39 0.19 1.07 1.05 0.34
Vehicle type 0.10 0.10 1 0.55 0.47

Session order 0.11 0.11 1 0.62 0.44

C. Post-experiment questionnaire

In the post-experiment questionnaire (Likert scale 1 to 5)
participants reported a similar (t = -0.25, p = 0.83) sense of
safe interactions in each session (AV: M = 3.9, SD = 0.76 and
HDV: M = 3.9, SD = 0.64). Lastly, the belief that the self-
driving and the human-driven car behaved differently varied
substantially among the participants (M = 3.1, SD = 1.3).

D. Main findings

Based on the experimental findings, we can conclude the
following.

• Initial distance, initial TTA, and initial ego-vehicle
velocity significantly affected overtaking probability but
response times showed only significant differences in
initial distance and initial TTA.

• No evidence of a significant difference in overtaking
probability between the oncoming vehicle types AV and
HDV was found.

• Weak and strong nudges did not significantly impact
overtaking probability compared to the constant speed
acceleration profile of the oncoming vehicle.

• Response times exhibited no significant differences
based on the oncoming vehicle type or its acceleration
profile.

These key conclusions were also drawn when employing
alternative methods to measure response times in accepted
gaps, except for the initial ego-vehicle velocity not signif-
icantly affecting response times, as outlined in the supple-
mentary information.

IV. MODELING

Modeling plays a crucial role in deepening our under-
standing of human overtaking behavior in dynamically evolv-
ing scenarios. Previous research demonstrated the effective-
ness of cognitive modeling in comprehending and model-
ing straightforward overtaking interactions (as presented in
the Thesis chapter on Preliminary Work). In this section,
we aim to capture the complexities inherent in overtaking
interactions when the oncoming vehicle exhibits varying
dynamics. To achieve this, we employ the cognitive modeling
framework and test variations of the drift-diffusion model.
The model fitting and simulation code for this study is
available online.

https://osf.io/ya34n
https://osf.io/ya34n
https://osf.io/p2wme


Figure 6: Overview of the average participant’s behavior in overtaking decisions.

A. Dataset

We filtered this dataset by removing measures with un-
realistic response times and missing values as described in
Section II-F. The remaining data (N=3184) were used for
further analysis. Additionally, we clustered the initial ego-
vehicle velocities into two distinct groups for compatibility
with existing fitting tools such as pyddm [35]. Our statistical
analysis (Section III) of the dataset revealed relationships be-
tween the overtaking scenario’s setup and human overtaking
behavior (i.e. decisions and response times).

B. Cognitive modeling

1) Basic drift-diffusion model and its applications to traf-
fic: We utilized the drift-diffusion modeling framework [36]
to describe participants’ decision-making processes in our
experiment. This framework is based on the concept that
when individuals are confronted with a decision, they engage
in an ongoing process of integrating relevant perceptual
information such as distance and TTA over time (Figure 7).
Notably, Roitman and Shadlen [37] reported variations in
neural activity within the LIP area (neurons associated with
the visual sensory system) depending on the choice made,
implying the continuous accumulation of evidence for each
alternative.

Mathematically, the rate of evidence accumulation is de-
noted as the drift rate s(t), while the diffusion process
is characterized as a stochastic, noisy variable ε(t). The
momentary evidence x favoring one alternative emerges from

integrating both drift and diffusion (Eq. (1)). This continu-
ous process remains bounded, ceasing when the evidence
favoring one alternative reaches a predetermined threshold
(x = ±b(t)). Despite its computational simplicity, DDMs
have proven highly effective in modeling and comprehending
a wide array of decision-making processes, encompassing
perceptual judgments, choice behavior, and response times
in experimental investigations [38].

dx
dt

= s(t)+ ε(t). (1)

To address the potential element of choice urgency in
traffic-related decisions, we explored extending the drift rate
s(t) and boundaries b(t) to be contingent on dynamically
evolving gap sizes. These extended DDMs successfully
captured human gap acceptance behavior in scenarios like
pedestrian crossings [23] and left-turns at unprotected in-
tersections [24]. However, in contrast to these scenarios,
overtaking maneuvers involve the human driver initiating
the decision-making process with an initial velocity. The
influence of this initial velocity on decision outcomes was
evident in the overtaking experiment conducted by Sevenster
et al. [13], where it positively influenced gap acceptance
while negatively affecting response times in accepted gaps.

Drawing upon data from that study, Mohammad et al. [26]
explored various iterations of the DDM where the initial ve-
locity was integrated into different components of the model:
drift rate s(t), boundary b(t), and the initial bias Z which
is the starting point of the decision-making process. The



simplest model capable of effectively capturing all qualitative
patterns in their used dataset included the initial velocity
within the initial bias Z. This indicated that higher initial
velocities would initiate the drift-diffusion process closer
to the ‘Overtake’ decision boundary, while lower initial
velocities would position it nearer to the ‘Stay’ decision
boundary.

Figure 7: Gap acceptance visualization in overtaking scenar-
ios using the drift-diffusion model. Purple represents the lead
vehicle, blue is the oncoming vehicle, and orange character-
izes the ego vehicle’s human driver. Red indicates staying in
the lane, and green represents overtaking, while blue velocity
curves depict different dynamics of the oncoming vehicle.

2) New candidate drift-diffusion models for dynamic over-
taking scenarios: Overtaking behavior in scenarios involving
constantly accelerating oncoming vehicles was effectively
modeled using an ego-velocity dependent starting point in
a previous study [26]. The most effective model with the
fewest parameters in that study had a drift rate dependent
on both distance (d(t)) and TTA (T TA(t)), and the bound-
aries exhibited exponential collapse as distance and TTA
decreased. We refer to this model as our baseline.

However, our experiment significantly differs from the
one conducted by Sevenster et al. [13], with variations in
the initial distance (160m and 220m vs. 240m and 280m)
and additional controlled variables (initial TTA, and the
oncoming vehicle’s acceleration profile). Thus, we need to
explore multiple models to find the one that fits our dataset
best. To do this, we re-evaluate the four main components
of the DDM framework used by Mohammad et al. [26] and
propose four potential models to explain our experimental
results.

2.1 Non-decision time

For all of our models, the non-decision time (the duration
of cognitive processes unrelated to decision-making, such as
perceptual and motor delays) is assumed to follow a normal
distribution:

tND ∈ N (µND,σND), µND > 0, σND > 0. (2)

Evidence accumulation begins after the non-decision time
ends. Next, we consider the rate of accumulation i.e. the drift
rate.

2.2 Drift rate

The drift rate s(t) in all our four models is determined by
parameters α > 0, β > 0, and θs > 0, and is a measure of
relative evidence x favoring either the “Overtake” or “Stay”
decision at any given moment t (Eq.3). As the gap between
the ego-vehicle and the oncoming vehicle (comprising d(t)
and T TA(t)) increases, for example, when the oncoming ve-
hicle decelerates in relation to a critical value θs (effectively
representing the critical gap size in gap acceptance), the drift
rate becomes more positive. This indicates a higher likeli-
hood of the decision-maker leaning towards the “Overtake”
decision. Conversely, a more negative drift rate suggests a
greater probability of choosing the “Stay” decision.

s(t) = α(T TA(t)+βd(t)−θs) (3)

The drift process ends upon reaching either boundary
(positive or negative) with the height of each boundary
representing how much evidence is required for choosing
the respective alternative.

2.3 Boundary function

Intuitively, with lower values of T TA(t) and d(t), the
decision-maker might experience a stronger sense of urgency
to make a decision, which can potentially be reflected in
the boundary b(t) decreasing with gap size [24]. However,
Zgonnikov et al. [25] showed that models with a constant
boundary better described left-turn gap acceptance at unpro-
tected intersections. Since initial TTA does affect response
times in overtaking (Figure 6), it is worth examining whether
decreasing TTA urges the driver to make a decision. We
test two boundary functions: boundaries constant over time
(Eq. 4) and boundaries exponentially collapsing with the
kinematic variables d(t) and T TA(t) (Eq. 5)

b(t) =±B (4)

b(t) =± b0

1+ e−k(T TA(t)+βd(t)−θs)
. (5)

How fast drift rates reach a certain boundary can also be
affected by the starting point of the evidence accumulation
process.

2.4 Starting point initial bias Z

Despite the small differences in initial ego-velocity data
(lower half: 13.1 m/s, upper half: 14.4 m/s), there is still
a significant effect on the decision outcome (Figure 6). We
will test two variations: a fixed starting point (Eq. 6) and one
dependent on initial velocity-dependent (Eq. 7).

Z =Cz (6)



Z =
2b(t0)

1+ e−bz(v0
ego−θz)

−b(t0) (7)

Here, a value of Z < 0 indicates an initial bias towards
the “Stay” decision, while Z > 0 indicates a bias towards
the “Overtake” decision. This bias can be represented by a
constant value Cz or can vary based on the initial velocity
v0

ego. In the latter case, relatively higher and lower initial
speeds correspond to a bias toward the “Overtake” and
“Stay” decisions, respectively.

2.5 Fitting the drift-diffusion model variations

The four model variants, resulting from different combi-
nations of boundary and initial bias functions, are presented
in Table III. These models were fitted using the differential
evolution optimization technique and Bayesian information
criterion. We employed pyddm, a Python framework ex-
plicitly designed for fitting drift-diffusion models [35], to
implement these methods. Our approach, similar to that of
Mohammad et al. [26], aimed to assess whether our models
effectively captured the behavior of the “average” participant,
as discussed in Section III, rather than explaining individual
differences, a topic explored in studies such as Zgonnikov et
al. [24].

3) Comparing models and data: Since there was no sig-
nificant distinction in overtaking behavior between oncoming
AVs and HDVs, we excluded vehicle type considerations in
all models.

Considering the rest of the findings, we found that the four
tested models differed substantially in their qualitative align-
ment with the observed behavior of the average participant
(Figure 8, Table IV).

All models exhibited consistent behavior regarding the
probability of overtaking across various acceleration profiles
with magnitudes of deceleration nudges ranging from 0
(Constant speed) to 5 m/s2 (Strong nudge). However, models
incorporating a constant starting point (M1 and M2) failed
to account for the effect of initial velocity on gap acceptance
probability. Conversely, models featuring an initial velocity-
dependent initial bias (M3 and M4) successfully captured
this effect.

Turning our attention to response times, models with
constant boundaries (M2 and M4) provided a better fit for
the observed increase in response times compared to their
counterparts using exponentially collapsing boundaries. This
suggests that there might not be a significant urgency effect
under these experimental conditions.

The baseline model (M3) [26], which encompassed sce-
narios with shorter distances and greater variability in initial
velocity, effectively described 6 out of 8 qualitative patterns.
Model M4 comprehensively described all qualitative patterns
of dynamic overtaking interactions by employing constant
boundaries and including a velocity-dependent initial bias.
The fitted parameters for M4 were as follows: α = 0.05,
β = 0.52, θs = 148, B = 1.4, bz = 0.11, θz = 8.48, µND =
0.53, σND = 0.10.

V. DISCUSSION

We conducted a driving simulator experiment to determine
the effect of a) the oncoming type AV as opposed to HDV
and b) dynamic changes in the oncoming vehicle’s velocity,
and subsequently used the DDM framework to describe gap
acceptance during these intricate interactions. Our experi-
mental results revealed that gap acceptance in overtaking
depends on the initial distance and TTA to the oncoming
vehicle, and on the ego-vehicle’s initial velocity. These find-
ings resonate with other gap acceptance studies in overtaking
such as Farah et al. [18] and Sevenster et al. [13]. Most
importantly, our study reveals two new empirical findings and
one advancement in the modeling part: Firstly, participants
showed no significant difference in their gap acceptance
when interacting with an AV as opposed to an HDV. This
finding is rather reassuring as models do not need to increase
their complexity by incorporating a vehicle-type-dependent
bias. Secondly, the oncoming vehicle’s acceleration profile
did not affect overtaking behavior and this finding is both
surprising and rather disappointing. Potentially, this limits the
effectiveness of AVs in showing yielding behavior to other
human-driven vehicles during overtaking maneuvers. Finally,
we showed that a simplified version of earlier proposed
DDMs using constant decision boundaries can adequately
describe human overtaking behavior.

A. Oncoming automated and human-driven vehicles: two
peas in a pod?

Studies of other gap acceptance situations showed conflict-
ing results on whether humans change their behavior when
interacting with AVs. Soni et al. [27] and Trende et al. [28]
found that drivers were willing to accept shorter gaps at
intersections with approaching AVs i.e. drivers significantly
decreased their critical gaps when they interacted with AVs
as opposed to HDVs. However, in both studies, drivers were
given information with the intention of influencing their
perception of AVs. Other studies that did not inform their
participants about the AV’s behavior (e.g., [29]–[31]) showed
no significant difference in gap acceptance behavior. Our
study contributed to investigating whether the presence of
AVs impacts gap acceptance in overtaking by conducting
a “reverse” Wizard-of-Oz experiment. We did not inform
participants beforehand about the AVs behavior and we
found no significant difference in human overtaking behavior
between sessions with an oncoming AV and an oncoming
HDV. Our finding is in line with those of previous studies
that did not bias their participants’ perception of AVs.

However, participants in our experiment were aware of
the oncoming vehicle type (AV or HDV) before each trial.
This prior knowledge could restrict capturing any potential
bias during the decision-making process. Due to technical
limitations in JOAN, we had to separate the experiment
into sessions with each featuring always the same oncoming
vehicle type. Future studies should consider randomizing the
oncoming vehicle type across trials to mimic the uncertainty
encountered in real mixed-traffic scenarios.



TABLE III: Four tested variations of the generalized drift-diffusion model (1) with varying boundary functions (4) (5) and
initial bias functions (6) (7). The number of parameters in the last column includes the drift rate parameters α , β , θs and
the two non-decision time parameters µND, σND.

Model Decision boundary b(t) Eq. Initial bias −b(t0)< Z < b(t0) Eq. # parameters
M1 ± b0

1+e−k(T TA(t)+βd(t)−θs) (5) Cz (6) 8
M2 ±B (4) Cz (6) 7
M3 (baseline [26]) ± b0

1+e−k(T TA(t)+βd(t)−θs) (5) 2b(t0)

1+e−bz(v0
ego−θz)

−b(t0) (7) 9

M4 ±B (4) 2b(t0)

1+e−bz(v0
ego−θz)

−b(t0) (7) 8

Figure 8: Simulated model results compared to the experimental data to show the effect of distance and TTA, deceleration
magnitudes of acceleration profiles, and the initial ego-vehicle velocity on gap acceptance behavior. The error bars represent
the standard error of the mean.



TABLE IV: Assessment of candidate drift-diffusion models according to the experimental findings.

Finding M1 M2 M3 M4
The probability of accepting the gap increases with the initial distance to the oncoming vehicle. X ! ! !

The probability of accepting the gap increases with the initial TTA to the oncoming vehicle. X ! ! !

The probability of accepting the gap increases with the initial velocity of the ego vehicle. X X ! !

The probability of accepting the gap remains constant regardless of the acceleration profile of the oncoming vehicle. ! ! ! !

Response times in rejected gaps are on average higher than in accepted gap.s X ! X !

Response times in rejected gaps increase with the initial distance to the oncoming vehicle. X ! X !

Response times increase with the initial TTA to the oncoming vehicle. X ! X !

Response times remain constant regardless of the initial velocity of the ego vehicle. ! ! ! !

Response times remain constant regardless of the acceleration profile of the oncoming vehicle. ! ! ! !
Total 3/9 8/9 6/9 9/9

B. Human overtaking behavior: robust to nudging?

Perhaps the most unexpected finding is that we observed
no significant differences across the acceleration profiles of
the oncoming vehicle. This outcome is contrary to Retten-
maier et al. [21] who found human drivers adapted their
behavior when interacting with an oncoming vehicle with
varying dynamics at a narrow passage. Consistent with this,
Zgonnikov et al. [25] reported significantly higher gap accep-
tance in left-turn interactions with an oncoming vehicle ex-
hibiting a deceleration nudge profile compared to a constant-
speed profile. It could be argued that this phenomenon may
be more prominent in interactions where changes in TTA are
easier to perceive [39], such as those involving oncoming
vehicles at relatively short distances (e.g., 50m [21] or 90m
[25]) when compared to our experimental distances of 240m
and 280m. The finding that even strong nudges (deceleration
rate of 5m/s2) had no significant effect on response times
suggests that our participants might not have perceived any
change in TTA.

One possible explanation could be due to the fidelity of the
driver simulator [40]. Participants perceived initial distance
and TTA conditions discriminately but the field of view
(i.e. screen resolution) of the simulator might not have been
large enough to also capture subtle changes in spatial and
temporal information [41]. Future studies should explore how
these simulator-specific perceptual differences may influence
decision-making during overtaking maneuvers.

Besides, it is noteworthy that participants in our study
fell within the age range associated with increased risky
behavior in driver simulators, potentially due to videogame
experience [42]. Any increased risky behavior of participants
might decrease their sensitivity to the oncoming vehicle’s
dynamics. Investigating the relationship between videogame
experience and simulator behavior can help explain individ-
ual differences in driving decisions in simulators.

C. Simpler drift-diffusion model for more complex overtak-
ing scenarios?

Behavioral models, particularly cognitive behavioral mod-
els, offer distinct advantages over purely statistical models
when analyzing observational data. They provide a structured
framework for comprehending the underlying mechanisms
and causal relationships that drive observed behaviors. While
statistical models can depict data correlations, behavioral

models go a step further, allowing exploration into why
drivers accept gaps, rather than merely describing what they
do. Furthermore, cognitive behavioral models add insight
into how human drivers process relevant perceptual infor-
mation over time, emphasizing the decision-making process
itself.

Our study demonstrated that the cognitive modeling ap-
proach is suitable for describing how time-varying inter-
actions with oncoming vehicles affect the decision-making
processes of human ego-vehicle drivers during overtaking
maneuvers. Previous DDMs used to model gap acceptance
behavior either included the acceleration of the oncoming
vehicle separately [23] or integrated it into the TTA [25]. In
our study, we streamlined the model by reducing the number
of parameters and focused on models with drift rates that
depend on both distance and TTA.

Out of the four tested DDMs, only M4 was capable
of describing all the qualitative patterns in our overtaking
dataset. Unexpectedly, the baseline model M3 proposed
by Mohammad et al. [26], based on a dataset involving
more straightforward overtaking maneuvers [13], failed to
describe all patterns. The key difference between M3 and
M4 is that the former incorporates time-varying decision
boundaries, while the latter employs constant boundaries.
Mohammad et al. reported a k value of 0.02, indicating only
minor collapsing of boundaries over time. Contrary to our
expectations, we did not find a global minimum during the
fitting process, even with low values of k. Several factors
could explain this behavior. Firstly, Mohammad et al. did not
consider models with constant boundaries even though the
low value of k indicated that time-varying boundaries might
be redundant. Secondly, the lack of constant acceleration to
close the gap [13] might explain why there was no urgency
effect in our experiment. A note of caution is needed here
since our dataset does not contain acceleration profiles with
acceleration nudges hence we are not able to extrapolate
our findings. Moreover, our results reinforced previous in-
sights into the dynamics of the decision-making process
during overtaking which emphasized the need to implement
a velocity-dependent initial bias [26] despite small deviations
in initial ego-vehicle velocity across our overtaking trials.

Finally, our study demonstrated that Mohammad et al.’s
DDM [26] can be simplified by using constant decision
boundaries, resulting in a better description of the decision-



making processes in dynamic overtaking scenarios. Addi-
tional details can be found in the supplementary information,
where we also show that our model effectively describes the
overtaking dataset of Sevenster et al. [13].

However, our proposed model is limited to only account
for response times of the final decision and not for the
initial decision in case of an aborted overtaking maneuver
or a change-of-mind [35]. This restricts the predictive power
of the decision-making process and to a lesser extent the
decision outcome [43]. Besides, our model does not consider
all factors that affect the probability of aborting an overtaking
maneuver such as the individual driver’s age and gender [17].
We also note that our study is among the first to report
change-of-mind decisions in overtaking maneuvers, and there
is a need for further research to explore the underlying
mechanisms leading to these changes in decision-making.
Future studies should aim to extend DDM fitting tools to
incorporate changed decisions.

D. Closing the gap: implications of cognitive modeling of
intricate traffic decisions

In this paper, we introduce a cognitive modeling approach
to describe human drivers’ gap acceptance behavior during
dynamic overtaking interactions with oncoming AVs. Our
study extends the applicability of DDMs, enhancing our
understanding of human behavior in AV interactions in
dynamically evolving traffic scenarios.

Our findings underscore the versatility and generalizabil-
ity of the cognitive modeling approach, in particular the
DDM framework. DDMs effectively describe gap accep-
tance behavior in intricate, dynamic traffic scenarios, such
as overtaking maneuvers involving AVs, and potentially in
complex maneuvers like merging onto on-ramps or changing
lanes on highways. This represents a significant step forward
compared to previous models, which predominantly focused
on less dynamic [26] scenarios, or simpler traffic situa-
tions without considering the initial velocity of the human
decision-makers [23]–[25].

Understanding human behavior in more intricate interac-
tions between AVs and human drivers is essential for safe
road management [2]. AVs can significantly improve their
trajectory planning by incorporating predictions of human
gap acceptance behaviors exhibited by other road users [7].
AVs can adopt the perspective of human-driven vehicles
and employ perceptual cues such as distance and TTA
in the human drivers’ evidence accumulation process. Yet,
determining the exact initiation point of the decision-making
process remains a complex task, as we currently assume that
the desire to perform a particular maneuver already exists.

Furthermore, cognitive models like DDMs can contribute
to more realistic microsimulations of human-AV interactions
[44]. These models can be embedded in the trajectory
control of other vehicles in simulations, allowing for rigorous
testing of AV performance within highly realistic simulated
environments. However, simulating the impact of individual
differences and how human behavior changes over a long

time, such as their critical gap or, more importantly, their per-
ception of AVs in emerging mixed traffic, remains challeng-
ing in portraying realistic scenarios. On average, participants
did not change their overtaking behavior when interacting
with an AV in this study. However, it is conceivable that as
human drivers become increasingly exposed to human-AV
interactions on the road in the future, behavioral patterns may
evolve. Therefore, it is important to continue investigating
how humans interact with AVs on the road.

Cognitive models, reflecting naturalistic behavior in
human-AV interactions, can enhance the training and val-
idation of interactive-aware controllers for AVs [45]. This
becomes particularly valuable when training and valida-
tion data are scarce or when certain scenarios are deemed
too dangerous for data collection in real-world interactions
with AVs like overtaking [46]. Interactive-aware controllers
equipped with cognitive models can bridge this gap, simu-
lating numerous times to predict human behavior and how
humans would behave when the AV changes its dynamics.
This development offers promise, emphasizing the potential
of simple cognitive process models to not only enhance
our understanding but also significantly improve human-AV
interactions in a multitude of dynamically evolving traffic
scenarios. Nevertheless, continued research is essential to
address challenges related to the initiation of the decision-
making process, individual differences, and evolving human
perceptions of AVs, ultimately unlocking the full potential
of these cognitive process models [47].
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Figure 1.1: Correlation between response time measurement methods in accepted gap decisions

1.1. Supplementary information
A. Response time measurement for accepted gaps
This supplementary section provides insights into the comparison of three distinct methods (Figure 1.1)
for measuring response times in accepted decisions, aiming to address the limitations of the original
lane divider crossing approach and enhance response time accuracy in overtaking decisions.

Original method: crossing lane divider
The original method, as proposed by Sevenster et al. [1], defines the end of the decision-making pro-
cess as the moment when the ego-vehicle crosses the lane divider (Figure 1.2). However, in our
experiment, we faced challenges due to the lead vehicle’s presence near the lane divider obstructing
the driver’s view of oncoming traffic. As a result, the ego-vehicle driver often crossed or was on the
verge of crossing the lane divider before entirely assessing the road situation, leading to very short
response times.

Alternative method 1: fully entering the opposite lane
In response to the limitations of the original method, we introduced an alternative approach where the
end of the decision-making process is defined as when the ego-vehicle fully enters the opposite lane
(Figure 1.2).

Alternative method 2: near full throttle
Another alternative method involved translating throttle data into acceleration and determining the end
of the decision-making process as the moment when the ego-vehicle driver applies (or nearly applies)
full throttle for overtaking, typically at an acceleration rate of 3 𝑚/𝑠2. This method strikes a balance
between the original lane divider crossing approach and the fully entering lane method, resulting in
response times that more closely resemble natural behavior (Figure 1.2).

Effect on method choice on conclusions
We investigated whether the choice of response time measurement method would impact the conclu-
sions drawn from our study. Figure 1.3 demonstrates that most qualitative patterns remain consistent
across methods. Notably, the method ’near full throttle’ differs from the other two methods in its ob-
servation of the effect of distance on accepted response times. However, key findings, such as simi-
lar response times when interacting with both autonomous vehicles (AVs) and human-driven vehicles
(HDVs) and across various acceleration profiles of the oncoming vehicle, remain unaffected by the
choice of measurement method.
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Figure 1.2: Comparison of response time measurement methods in accepted gap decisions, including the crossing lane-divider
method proposed by Sevenster et al. [1] and two alternative approaches. Red and green crosses indicate the start and end of
the decision-making process.
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(a)

Figure 1.3: Experimental results showing the average participant’s overtaking response times measured using the crossing
lane-divider method by Sevenster et al. [1] and two alternative measurement methods
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B. Simplification of the drift-diffusion model
Surprisingly, despite employing simpler boundary functions, our proposed model demonstrated a better
capacity to capture the qualitative patterns of overtaking decisions in more complex scenarios com-
pared to the earlier proposed DDM by Mohammad et al. [2]. To evaluate the robustness of our model,
we fitted it to data on overtaking scenarios where the oncoming vehicle always accelerated at a constant
rate, a setup described by Sevenster et al. [1]. Furthermore, we compared our model to the previously
proposed model by Mohammad et al. Our findings reveal that our model, which incorporates a constant
boundary function (𝑏(𝑡) = ±𝐵), performs on par with the earlier proposed model that utilizes an expo-
nentially collapsing boundary function (𝑏(𝑡) = ± 𝑏0

1+𝑒−𝑘(𝑇𝑇𝐴(𝑡)+𝛽𝑑(𝑡)−𝜃𝑠) ), as depicted in Figure 1.4. This
suggests the robustness and effectiveness of our simplified model in describing overtaking decisions
in diverse scenarios.

Figure 1.4: Simulated results of our model (Constant bounds) and Mohammad et al.’s [2] model (Collapsing bounds) compared
to the data of Sevenster et al. [1]. The error bars represent the standard error of the mean.





2
Preliminary work: Cognitive modeling

The primary finding from my literature study, as presented in Sections II and III of Mohammad et al. [2]
underscores the potential of cognitive models, particularly drift-diffusion models, as the most suitable
framework for characterizing the dynamic decision-making processes involved in overtaking maneu-
vers. To assess the potentiality of the cognitive modeling approach, I investigated various drift-diffusion
models to describe straightforward human overtaking behavior. The dataset for this study was derived
from Sevenster et al. [1] and encompassed overtaking maneuvers with two different distances (160m
and 220m) to the oncoming vehicle that was accelerating at a constant rate.

My findings revealed that a drift-diffusion model, incorporating an initial decision-making bias (de-
fined as the starting point of the evidence accumulation process) dependent on the initial velocity, best
replicates the qualitative patterns of overtaking gap acceptance observed previously. This analysis
underscores the potential of the cognitive modeling approach in understanding and modeling human
overtaking behavior, particularly in scenarios involving autonomous vehicles (AVs). This work forms
the foundational basis for Chapter 1 of this thesis.

This chapter consists of the section ”Modeling human decision making in overtaking: a proof-of-
concept” from my paper that has been accepted for publication ([2]).
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MODELING HUMAN DECISION MAKING IN OVERTAKING:
A PROOF-OF-CONCEPT

To investigate the feasibility of the cognitive modeling
approach for overtaking, here we test several versions of
the drift-diffusion model using the data on human overtaking
decisions previously collected in a driving simulator [1]. The
model fitting and simulation code used in this case study is
available online.

A. Dataset

A prerequisite of cognitive process modeling using the
drift-diffusion models is measuring the response time. Sev-
enster et al. [1] offered a simple way of measuring response
times in overtaking, and explored the effect of two situation-
specific factors (distance gap and ego-vehicle velocity) on the
response times measured in a driving simulator experiment.
The measures of Sevenster et al. ( [1]) included 2097
overtaking decisions collected from 25 participants, with
varying initial gaps to the oncoming vehicle (160 or 220
meters) and the initial ego-vehicle velocity as a free variable.
It included the decision outcome and the corresponding
response time as the dependent variables. To be able to model
this dataset, we filtered it by removing any measures with
unrealistic response times, missing values, and null values.
The remaining data (N=1758) was used for further analysis.

The continuous nature of the free initial ego-vehicle veloc-
ity variable impedes model fitting using existing fitting tools
such as pyddm [2]. Therefore, in this study, this variable
has been clustered into three initial velocities, and by this
transforming the problem to a 2x3 factorial design (2 initial
distance conditions, 3 initial velocity conditions). We have
opted to exclude measures relating to the lead vehicle such
as following distance, since clustering these as well would
significantly reduce the amount of data for each set of
conditions.

Based on their data, Sevenster et al. [1] highlighted
the following relationships between the initial setup of the
overtaking scenario and the resulting human behavior and
response times:

• The Probability of accepting the gap increases with the
initial distance to the oncoming vehicle.

• The Probability of accepting the gap increases with the
initial velocity of the ego vehicle.

• Response times in rejected gaps are on average higher
than in accepted gaps.

• Response times in both accepted and rejected gaps
increase with initial distance.

• Response times in accepted gaps decrease with initial
velocity.

• Response times in rejected gaps remain constant regard-
less of the initial velocity.

In what follows, we evaluate how well different candidate
cognitive models can capture human behavior according to
these findings.

B. Cognitive modeling

1) Basic drift-diffusion model and its applications to traf-
fic: We employed the drift-diffusion modeling framework [3]
to explain participants’ behavior and response times in our
experiment. This framework is based on evidence accumula-
tion, where humans integrate relevant perceptual information
over time (Figure 1). Accumulation is a noisy process that
continues until the evidence in favor of one alternative
reaches a predetermined boundary. Despite its simplicity,
DDMs have been successful in explaining various behavioral
effects of decision context on outcomes and response times
[4].

Fig. 1: Visualization of gap acceptance decision-making in
overtaking. Depending on the gap to the oncoming vehicle
(blue), the human driver of the ego vehicle (yellow) can
decide either to reject the gap and stay in the lane (red tra-
jectory) or to accept the gap (green trajectory) and overtake
the slow lead vehicle. According to the drift-diffusion model,
this decision can be represented as bounded accumulation of
noisy evidence over time.

Mathematically, the drift-diffusion model represents the
choice between two options as a random process, where
evidence x accumulates based on a drift rate s(t) (momentary
evidence favoring one option over the other) and diffusion
(random noise ε(t)):

dx
dt

= s(t)+ ε(t). (1)

Accumulation stops when the accumulated evidence
crosses an upper x = b(t) or lower decision boundary x =
−b(t).

Recent applications of DDM to gap acceptance [5], [6]
consider the drift rate s(t) to capture dynamically changing
gap sizes and time-varying decision boundaries b(t) to reflect
choice urgency. Such models were able to capture decision
outcomes and response times of human decision-makers.
However, they cannot be directly used for our overtaking
scenario because they do not incorporate the initial velocity
that the human driver has at the start of the decision.
As previous studies have shown, this velocity affects the
decision and therefore it needs to be incorporated in one
of the components of the DDM.

2) Drift-diffusion model of overtaking: Here, we build
upon the previously proposed left-turn gap acceptance model
[6] by incorporating the initial velocity of the ego vehicle in
the different components of the model (drift rate, decision

https://github.com/shamohammad/Overtaking_DDM


boundary, initial decision bias). We then investigate which
of the resulting 8 versions of the model better describes the
data of Sevenster et al. [1].

Each of the tested models includes four main components.
First, the drift rate s(t) is a function of time-to-arrival (T TA)
and distance d between the ego vehicle and the oncoming
vehicle and possibly the initial velocity of the ego vehicle v0

s(t) = α(T TA(t)+βd(t)−θs) (2)

s(t) = α(T TA(t)+βd(t)+ γv0 −θs), (3)

where α > 0, β > 0, γ > 0 and θs > 0 are free parameters.
We define x as a measure of relative evidence, with positive
values indicating support for the “Overtake” decision and
negative values favoring the “Stay” decision at a given
moment t. Intuitively, as the gap between the decision
maker and the oncoming vehicle (a combination of d and
T TA) increases (e.g., when the opposing vehicle decelerates)
relative to a critical value θs, the drift rate becomes more
positive. This implies a higher likelihood of the decision
maker leaning towards the Overtake decision. Conversely,
they are more likely to arrive at the Stay decision when the
drift rate becomes more negative. As the initial speed of the
ego vehicle positively affects the probability of accepting the
gap [1], these effects are amplified when including the initial
velocity in the drift rate.

Second, the decision boundary collapses with either
T TA(t)

b(t) =± b0

1+ e−k(T TA(t)−τ)
, (4)

or with all the kinematic variables affecting the drift rate s(t)

b(t) =± b0

1+ e−k(T TA(t)+βd(t)−θs)
(5)

b(t) =± b0

1+ e−k(T TA(t)+βd(t)+γv0−θs)
. (6)

Intuitively, with lower values of T TA and d the decision
maker experiences stronger urgency to make the decision,
which is reflected by boundary b(t) decreasing with the gap
size (similar to [6]).

Third, the initial bias Z defines the starting position of the
evidence accumulation process (i.e. x(t0) = Z)

Z =Cz (7)

Z =
2b(t0)

1+ e−bz(v0−θz)
−b(t0), (8)

where a value of Z < 0 indicates an initial bias towards
the Stay decision, while Z > 0 indicates a bias towards the
Overtake decision. This bias can be represented by a constant
value Cz (Eq. (7)) or can vary based on the initial velocity
v0 (Eq. (8)). In the latter case, relatively higher and lower
initial speeds correspond to a bias toward the Overtake and
Stay decision, respectively.

Fourth, for all models, the non-decision time (the duration
of the cognitive processes unrelated to decision-making, such

as perceptual and motor delays) is assumed to follow the
normal distribution

tND ∈ N (µND,σND), µND > 0, σND > 0. (9)

The eight model variants resulting from different combi-
nations of the model components are shown in Table I. The
odd-numbered models use a constant bias, while the even-
numbered models use a bias depending on the initial speed.
Models 1, 2, 5 and 6 have their drift rates depending on the
T TA(t) and d(t), whereas Models 3, 4, 7 and 8 also include
the initial speed in the drift rate. The decision boundaries of
Models 1 to 4 decrease with the T TA, while Models 5 to 8
use decision boundaries depending on all kinematic variables
affecting their respective drift rate functions. The simplest
model (M6) contains 8 free parameters (α , β , θs, b0, k, Z,
µND, σND) and the most extensive model (M4) contains 11
free parameters (α , β , γ , θs, b0, k, τ , θz, bz, µND, σND).

3) Model fitting and evaluation: Our goal was to examine
whether extended models could depict the behavior of the
”average” participant in the dataset. Although it is possible to
fit the model to each participant’s data individually, providing
insights into individual differences (see e.g. [6]), it requires
a separate investigation beyond the scope of this study.
Instead, we evaluated the models’ qualitative match to the
data reported in [1] according to the observations listed at
the end of Section -A.

The fitting of the models involved utilizing the differential
evolution optimization technique and Bayesian information
criterion, as implemented in the pyddm framework, a Python
package specifically designed for DDM fitting [2].

4) Comparing models and data: We found that the eight
tested models differed substantially in regards to their qual-
itative match with the observed human behavior (Figure 2,
Table II).

The models that did not include the ego vehicle’s initial
speed v0 in any of the components (M1 and M5) predictably
could not capture the increase of probability of accepting
the gap with v0. The other six models could all account
for the probability of accepting the gap, making it essential
to consider response time as the measure that can help
distinguish between candidate models further.

For response times, the results differ considerably be-
tween odd- and even-numbered models (Table II). The odd-
numbered models, i.e. models with a constant initial bias,
struggle to consistently describe the effect of initial velocity
on response times (in both accepted and rejected gaps). On
the other hand, among the models that do include velocity-
dependent initial bias, M8 captures 5 out of 6 qualitative
patterns, and M2, M4 and M6 even describe them all.

The most successful models, M2, M4 and M6, contain
respectively 10, 11 and 9 free parameters. The differences
between these three models can be found in the decision
boundary: decision boundaries of M2 and M4 collapse only
with T TA(t), while M6’s boundary collapses with T TA(t)
and d(t). Furthermore, in contrast to the drift rate used in M4,
M2 and M6 do not have the initial velocity included in theirs.
Lastly, M6 reuses parameters of the drift rate in the boundary



TABLE I: Tested variations of the generalized drift-diffusion model (1). The number of parameters in the last column
includes the two non-decision time parameters µND, σND.

Model Drift rate s(t) Eq. Decision boundary b(t) Eq. Initial bias −b(t0)< Z < b(t0) Eq. # parameters
M1 α(T TA(t)+βd(t)−θs) (2) ± b0

1+e−k(T TA(t)−τ) (4) Cz (7) 9

M2 α(T TA(t)+βd(t)−θs) (2) ± b0
1+e−k(T TA(t)−τ) (4) 2b(t0)

1+e−bz(v0−θz) −b(t0) (8) 10

M3 α(T TA(t)+βd(t)+ γv0 −θs) (3) ± b0
1+e−k(T TA(t)−τ) (4) Cz (7) 10

M4 α(T TA(t)+βd(t)+ γv0 −θs) (3) ± b0
1+e−k(T TA(t)−τ) (4) 2b(t0)

1+e−bz(v0−θz) −b(t0) (8) 11

M5 α(T TA(t)+βd(t)−θs) (2) ± b0
1+e−k(T TA(t)+βd(t)−θs) (5) Cz (7) 8

M6 α(T TA(t)+βd(t)−θs) (2) ± b0
1+e−k(T TA(t)+βd(t)−θs) (5) 2b(t0)

1+e−bz(v0−θz) −b(t0) (8) 9

M7 α(T TA(t)+βd(t)+ γv0 −θs) (3) ± b0
1+e−k(T TA(t)+βd(t)+γv0−θs) (6) Cz (7) 9

M8 α(T TA(t)+βd(t)+ γv0 −θs) (3) ± b0
1+e−k(T TA(t)+βd(t)+γv0−θs) (6) 2b(t0)

1+e−bz(v0−θz) −b(t0) (8) 10

Fig. 2: Simulated model results compared to the data of Sevenster et al. [1]. The error bars represent the standard error of
the mean.

TABLE II: Assessment of candidate drift-diffusion models according to the experimental findings of Sevenster et al. [1].

Finding M1 M2 M3 M4 M5 M6 M7 M8
The probability of accepting the gap increases with the initial distance to the oncoming vehicle. ! ! ! ! ! ! ! !

The probability of accepting the gap increases with the initial velocity of the ego vehicle. X ! ! ! X ! ! !

Response times in rejected gaps are on average higher than those of accepted gaps. ! ! ! ! ! ! ! !

Response time in both accepted and rejected gaps increases with initial distance. ! ! X ! ! ! X !

Response times in accepted gaps decrease with initial velocity. X ! X ! X ! X !

Response times of rejected gaps remain constant regardless of initial velocity. X ! X ! X ! X X
Total 3/6 6/6 3/6 6/6 3/6 6/6 3/6 5/6



function, therefore consolidating the total amount of free
parameters. Therefore, we conclude that M6 is the simplest
model that can describe all qualitative patterns previously
observed in human behavior. This model hypothesizes drift
rate and decision boundary that both depend on the same
linear combination of TTA and distance, and the decision
bias that scales with the initial velocity of the ego vehicle.
The resulting fitted model parameters for M6 were α = 0.07,
β = 0.11, θs = 47, b0 = 2.8, k = 0.02, bz = 0.14, θz = 5.8,
µND = 1.0, σND = 0.27.
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3
Random effects of the regression

models
In all regression models, the vehicle type per participant ID was included as a random slope. The
forest plots below provide a visual representation of the individual variances between sessions involving
human-driven vehicles (HDV) and automated vehicles (AV). Each session featured a consistent vehicle
type. In Figure 3.1, positive estimate values indicate a higher gap acceptance rate in the HDV session
compared to the AV session, while negative estimates indicate a relatively lower gap acceptance rate
in the HDV session. Similarly, in Figures 3.2 and 3.3 positive estimate values indicate that participants
exhibited longer response times in the HDV session when compared to the AV session.

Figure 3.1: The vehicle type effect per participant as the random slope of the logistic regression model for the decision outcome.
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26 3. Random effects of the regression models

Figure 3.2: The vehicle type effect per participant as the random slope of the linear regression model for the response time in
accepted gaps.

Figure 3.3: The vehicle type effect per participant as the random slope of the linear regression model for the response time in
rejected gaps.



4
Extensive results

This chapter presents the participants’ individual trajectories, velocities, and accelerations.
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