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A B S T R A C T

The effective environmental management of combined sewer systems requires reliable estimation of discharge 
and pollutant loads conveyed at the outlet during rainstorms. This study investigates how, with a lumped 
modelling approach, it is possible to reproduce the quality characteristics of discharged water, provided that high 
temporal resolution experimental data of pollutant concentrations are available. The methodology is applied to 
the combined sewer of a real urban drainage network where a continuous high resolution monitoring campaign 
of water quality and quantity has been carried out at an overflow structure location near the outlet of the 
drainage system. The lumped modelling approach has been implemented in the Storm Water Management Model 
(SWMM) with hydrological parameters estimated from cartographic information, based on recently proposed 
methodology that allows reliably simulating the storm hydrographs without model calibration. A semi- 
distributed model has been also developed using the SWMM with hydrologic parameters randomly sampled to 
fit the measured hydrographs of different training and validation data. The results obtained show that the un
calibrated lumped model simulates the observed hydrographs with similar performance as with the semi- 
distributed model (i.e., the normalized Nash-Sutcliff efficiency index of the validation set is 0.753 for the un
calibrated lumped model and 0.765 for the best-performing sampled parameter set of the semi-distributed 
model). The water quality parameters describing the build-up and wash-off of total dissolved solids (TDS) in a 
lumped model have been calibrated too, as well as those describing the mixing and consumption of dissolved 
oxygen (DO). The results show that a lumped modelling approach can reproduce the water quality dynamics in a 
combined sewer system, representing a promising tool for effective environmental management. However, 
event-specific calibrated parameter values have been obtained in some cases, which require further investigation 
and still limit the general applicability of the obtained results, thus confirming that setting up a reliable model 
requires water quality measurements.

1. Introduction

Design, operation, and management of Urban Drainage Systems 
(UDSs) rely on good modelling practice. A good UDS model should 
reliably predict hydraulic and water quality parameters in the sewer 
network under different conditions (Butler et al., 2018), with the pur
pose of designing and operating the infrastructures, protecting the urban 
environment from flooding (Piadeh et al., 2022), and avoiding pollution 
of nearby water bodies due to Combined Sewer Overflows (CSOs) 
(Petrie, 2021).

Typically, UDS models simulate hydrologic, hydraulic and pollutant 
release and transport processes (Bach et al., 2014) occurring within the 
urban catchment. Regarding the hydrological modelling, in literature, 
approaches with different levels of detail have been adopted (Salvadore 
et al., 2015; Ji et al., 2025), namely: distributed, in which the variety of 
hydraulic processes within the drainage system are modelled with 
physically-based equations (e.g., Pan et al., 2012); semi-distributed, in 
which the drainage system is represented as a set of sub-catchments, 
making use of either conceptual and physically based equations 
(Brendel et al., 2021) or lumped, in which a conceptual model replaces 
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the entire drainage system (e.g., Farina et al., 2023).
The aim of the hydrological modelling is to describe the trans

formation of rainfall in runoff over the catchment surface. The hydraulic 
quantities in the sewer network are usually calculated solving the Saint- 
Venant equations (Chow, 1959) for gradually varied unsteady flow 
conditions. The water quality, instead, is simulated for process under
standing, either with empirical or kinetic models, or for predictive 
purposes, with data-driven approaches such as regression or machine 
learning models (e.g., Jia et al., 2021). In any case, the aim of water 
quality modelling is to predict the concentration of pollutants in sewer 
flows, and thus the assessment of water treatment plant load, as well as 
potential environmental impact of sewer discharges.

To run any simulation model, the values of its parameters must be 
determined first. In this respect, model calibration is a common practice 
(e.g., Gamerith et al., 2011; Muschalla et al., 2008). However, model 
calibration of UDSs presents several difficulties and uncertainties 
(Deletic et al., 2012). For example, highly detailed models have many 
hydrologic, hydraulic and water quality calibration parameters, so that 
the inverse problem of model calibration may be cumbersome and often 
lacking uniqueness of solution (Beven, 2006; Okiria et al., 2022; Spear, 
1997). This issue can be addressed by using simplified modelling ap
proaches such as surrogate models (e.g., Mahmoodian et al., 2018) or 
using machine learning approaches (e.g., Li et al., 2023, Garzón et al., 
2022). Hydrologic model calibration can be avoided with the lumped 
approach proposed by Farina et al. (2023), which exploits empirical 
relationship, based on measured rainfall-runoff transformation in a set 
of networks with different characteristics, to assign parameters directly 
from cartographic information.

However, even if the issues of the calibration process were solved, 
substantial calibration data would still be required to obtain reliable 
model simulations of water quality. Unfortunately, field experimental 
data of both water quality and quantity in sewer systems are still very 
scarce (Moy De Vitry et al., 2019; Pedersen et al., 2021; Vonach et al., 
2019), because sewer monitoring is expensive and difficult to manage. 
Specifically, in literature, water quality monitoring is less common than 
flow monitoring, due to the high uncertainty in the former (Jia et al., 
2021). In studies on water quality in urban environments, wastewater or 
stormwater sampling techniques are largely more common than 
continuous monitoring, with limited time resolution of available water 
quality data (Kim et al., 2022). The lack of water quality data with the 
temporal resolution required for model calibration, such as those pro
vided by online monitoring sensors (Bertrand-Krajewski et al., 2008; 
Brzezińska et al., 2016; Métadier and Bertrand-Krajewski, 2012; Schel
lart et al., 2023), still limits the accuracy of water quality modelling in 
UDSs (Jia et al., 2021). Consequently, few attempts have been made so 
far to directly predict the discharged pollutant loads of CSOs (e.g., by 
Dirckx et al., 2022; Farina et al., 2024; Pistocchi, 2020; Willems, 2006).

As a matter of fact, the regulations aiming at limiting the environ
mental impact of UDS are becoming increasingly strict (Jensen et al., 
2020). Thus, operational modelling tools are needed for their manage
ment, in many cases without the help of available measurements of 
water quantity and quality. While reliable hydrologic modelling of UDS 
can be carried out with lumped approach without calibration (Farina 
et al., 2023), setting up general models of water quality is still an issue 
(e.g., Rodrìguez et al., 2013). This is due to the rare availability of 
suitable experimental datasets of water quality parameters for model 
calibration (e.g., Popick et al., 2022). Furthermore, established simpli
fied models, with a few unknown parameters, are also lacking, which 
would make calibration easier.

To contribute to this topic, the suitability of a lumped approach with 
simplified equations for water quality modelling in a UDS is investi
gated. Specifically, the case of a real combined UDS is studied, where 
continuous experimental data of water flow and water quality indicators 
(namely, dissolved oxygen and total dissolved solids) are available. The 
data were collected through an online monitoring campaign of surrogate 
water quality parameters, carried out with a multi-parametric probe at a 

CSO near the outlet of the UDS. The experimental data of water flow 
allowed the calibration of the semi-distributed model of the network in 
SWMM and the comparison of its simulation performance with that of an 
uncalibrated lumped model (Farina et al., 2023). The results highlight 
the issue of identifiability of the many hydrologic parameters charac
terising the semi-distributed model of the sewer system, even in pres
ence of complete geometric information provided by the local water 
utility. However, the lumped model satisfactorily reproduced the 
observed hydrographs without requiring a site-specific calibration and 
was thus applied also to water quality simulation. The parameters of the 
relevant equations (i.e., describing mixing processes and build-up and 
wash-off processes, depending on the considered pollutant) were iden
tified by optimising the goodness of fit between observed and simulated 
water quality graphs.

2. Methodology

2.1. Overview

In this study, the results of an online monitoring campaign of 
wastewater and stormwater quality and quantity in a real sewer network 
are used to assess the suitability of a lumped modelling approach for 
reliably simulating discharge and concentration of transported species 
at the outlet of the network. The collected dataset allowed investigating 
the suitability of a lumped model to hydrologic and water quality sim
ulations. The monitoring campaign started, after a testing period, in 
September 2021 and ended in July 2023. The recorded data were used to 
calibrate a semi-distributed model of the urban drainage system of the 
study site, by optimising the goodness of fitting (GoF) of the hydro
graphs at the main outlet of the UDS. Furthermore, a simplified lumped 
model of the system was also applied, with the approach proposed by 
Farina et al. (2023), that does not need a site-specific calibration of the 
hydrologic parameters. In this way, only the identification of water 
quality parameter values required model calibration. With this model, 
capable of reproducing the observed hydrographs with similar accuracy 
as the semi-distributed model, simulations of the concentrations of TDS 
and DO in the outlet were carried out, calibrating the parameters of the 
water quality equations against the measured concentrations.

2.2. Study area

Urban catchments of densely populated areas are characterised by 
large fractions of impervious surface (Ramezani et al., 2021), and thus, a 
potentially high environmental impact of discharges from sewer net
works on water bodies (Farina et al., 2024). The densely populated 
coastal city of Portici, in Italy, was chosen as the study area. Portici 
belongs to the metropolitan area of Naples, in southern Italy (Fig. 1a), 
with about 51,000 inhabitants and a population density of nearly 12,000 

p
km2 (ISTAT, 2021). The UDS is a combined sewer system and collects 
wastewater of around 30,000 inhabitants and stormwater from a 
catchment with area 3.2km2, average slope 3.7 % (altitudes vary be
tween 0 and 144 m above sea level), and 78 % of impervious surface, 
mostly of it with residential use. The rainfall data are taken from the rain 
gauge network of the Civil Protection Department (DPCN, 2023a), with 
ten minutes resolution. In this study, the rainfall data of the rain gauge of 
Ercolano, 2.7 km east from Portici (Fig. 1b), were used.

The sewer system contains 188 junctions, 189 conduits (in most 
cases made of reinforced concrete), 5 regulators, 4 overflow structures 
and a gate valve. The network layout of the sewer system is provided in 
Fig. 1c. A pumping station, which conveys wastewater and part of the 
stormwater to a wastewater treatment plant (WTP), is placed down
stream the main outlet of the UDS. During extreme storm events, four 
overflow structures (red dots in Fig. 1c) discharge excess water to the 
sea, to avoid flooding and WTP overload. One of the overflow structures 
is located at the main outlet of the UDS (Fig. 1c), where the monitoring 
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station was installed.

2.3. Semi-distributed urban drainage model

The semi-distributed (i.e. more detailed) model of the sewer network 
of Portici was implemented in the Storm Water Management Model 
(SWMM) (Rossman & Huber, 2016a), relying on Geographic Informa
tion System (GIS) data provided by the local water utility, GORI S.p.A, 
together with established literature recommendations on values of hy
drologic parameters of urban catchments. The model consists of a hy
drologic and a hydraulic module.

In SWMM, a catchment can be discretised into several sub- 
catchments, schematised as rectangular inclined planes, with area A, 
width W (as defined in Rossman & Huber, 2016b), and slope S, subjected 
to the rainfall intensity i. For each sub-catchment, the runoff from 
pervious and impervious surfaces is calculated separately, using a 
nonlinear reservoir conceptual model (Chen & Shubinski, 1971; Ross
man & Huber, 2016b), and iteratively solving the following mass con
servation and runoff equations: 

∂d
∂t

= i − ev − f − q (1) 

q =
W

̅̅̅
S

√

An
(d − ds)

5/3 (2) 

where i is rainfall intensity, ev evaporation, d is the water depth over the 
ground and ds is the height of the depression storages, f is the infiltration 
rate (for the pervious part only), q is the runoff per unit area, for an 
equivalent inclined rectangular surface with: slope S, width W, overall 
area A and Manning roughness coefficient n. To quantify the pervious 
and impervious parts of the area, the parameter I, i.e. the fraction of 
impervious surface, is assigned to each sub-catchment. The total runoff 
from each sub-catchment is the sum of the runoff from both its pervious 
and impervious parts.

The UDS of Portici was discretised into 33 sub-catchments for the 
purpose of modelling (represented in Fig. 1c). Sub-catchments were 
defined based on the location of the sewer network main conduits and 
on the topographical map of Portici, in turn derived from the digital 
elevation model of Italy (Tarquini et al., 2023). Variables A, W, and S 
were retrieved from maps for each sub-catchment. The percentage of 
impervious surface of each sub-catchment, I, initially evaluated from 
available maps, was adjusted afterwards based on the comparison be
tween measured and simulated flow. The parameters n and ds initially 
set based on literature recommendations (e.g., Chow, 1959; Rossman & 

Fig. 1. Location of Portici (Naples) in Italy (a); municipal boundary of Portici and position of the rain gauge of Ercolano, used as rainfall data source (b); layout of the 
model of the urban drainage system (c).
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Huber, 2016b), were also adjusted afterwards for the impervious areas. 
Further details of model parameter assignment are discussed in Section 
2.7.

Historical data of rainfall i was available (Section 2.1). Owing to the 
short duration of the analysed rainstorms ev was neglected, and f was 
modelled with the modified Horton method (Akan, 1992), such that the 
pervious areas did not contribute to runoff generation.

To calculate the hydraulic quantities in each channel of the sewer 
system, SWMM solves the St. Venant equations (conservation of mass 
and momentum) for unsteady free surface flow through each conduit. 
The geometric features of each conduit were extracted from the GIS of 
the network, and the roughness parameters were assigned based on the 
material of each conduit. Eqs. (1) and (2) and the St. Venant equations 
were numerically solved with a time discretization interval of 30 s and 
then resampled to 2 min, so to be consistent with the frequency of 
acquisition of monitoring data (section 2.5).

2.4. Lumped modelling approach

In a recent study (Farina et al., 2023), a simplified modelling 
approach to simulate UDSs with little information available and low 
computational effort was tested against several case studies found in the 
literature. The approach consisted in assigning few catchment parame
ters to a simplified lumped model (SM) of the UDS implemented in 
SWMM. In this approach, the parameters can be assigned a priori from 
cartographic information, thanks to empirical relationships derived 
from a set of networks where flow measurements were available. Spe
cifically, the parameters of the lumped model were determined with the 
following equations (Farina et al., 2023): 

IL = 0.51I1.2 WL = 0.87W
WL

̅̅̅
S

√

nL
= 24.28W0.8 (3) 

In Eq. (3), the subscript L denotes the parameters of the lumped model, 
while the symbols without subscript indicate parameters read from the 
cartographic information.

The SM showed similar performance, in terms of goodness of fitting 
of the simulated hydrograph at the outlet section, compared to semi- 
distributed detailed model (DM), where all the sub-catchments of the 
urban area are separately described. Besides the reduced computational 
burden, the SM presents the great advantage of not requiring a site- 
specific calibration, thanks to the empirical relationships of Eq. (3).

In this study, this approach has been applied to the UDS of Portici 

alongside the semi-distributed model. The SM of the UDS of Portici 
consists of 4 lumped sub-catchments (in place of the 33 of the semi- 
distributed model), chosen as the upstream catchments of 4 overflow 
structures of the UDS (Fig. 2). Model parameters assigned based on 
available cartographic information through the relationships proposed 
by Farina et al. (2023) and the main characteristics of the four lumped 
sub-catchments are given in Table 1.

2.5. Water quality simulation model

The transport of pollutants through the conduits is described, 
assuming complete mixing, with the following simplified mass balance 
equation (Rossman & Huber, 2016c): 

d(Vc)
dt

= CinQin − cQout − VK1c (4) 

In Eq. (4), c and V are concentration and volume within the conduit, 
respectively; Cin and Qin represent concentration and discharge of any 
inflow to the conduit, respectively; Qout is the discharge leaving the 
conduit; and K1 is a first-order reaction constant, which can be either 
assigned based on literature recommendations or calibrated against 
experimental data of concentration.

A generic compound may be present in the wastewater with an 
average concentration CW, and in the stormwater with an average 
concentration CR, which are flow weighted averaged: 

Cin = (qWCW + qCR)/(qW + q) (5) 

In Eq. (5), qW represents the dry weather inflow to the conduit. Also, 
some pollutants may accumulate over the catchment surface during dry 
weather periods and be washed off during storm events. In this study, to 
model the water quality dynamics, the build-up (Eq. (6)) and wash-off 

Fig. 2. Scheme of the simplified model of the UDS of Portici, following the approach of Farina et al., 2023.

Table 1 
Main characteristics of the four sub-catchments of the lumped model of the 
combined sewer network of Portici, and hydrologic parameters estimated with 
the relationships proposed by Farina et al. (2023).

Catchment nr. A(ha) S(%) WL(m) nL(m− 1/3s) ds(mm) IL(%)

1 115.0 3.42 4720 0.0414 1.25 83.9
2 93.4 3.78 2540 0.0384 1.25 98.9
3 27.4 3.12 1428 0.0311 1.25 100.0
4 127.2 4.86 1932 0.0412 1.25 70.7
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(Eq. (7)) processes are described by the following exponential equations 
(Butler et al., 2018; Rossman & Huber, 2016c): 

b(tb) = C1
(
1 − e− C2 tb

)
(6) 

w(tw) = b0e− C3qC4 tw (7) 

where b(tb) is the mass of pollutant accumulated per unit area, tb is the 
antecedent dry weather period, C1 is the maximum possible accumula
tion of mass of pollutant per unit area, C2 is a rate constant; w(tw) is the 
pollutant mass per unit area remaining on the ground surface during the 
wash-off process at the time tw from the beginning of the rain event, b0 is 
the initial mass of pollutant per unit area, C3 and C4 are wash-off coef
ficient and exponent, respectively. The mass rate w can be converted to a 
concentration by dividing by the runoff per unit area q.

The use of the above-described equations within a lumped model of 
the sewer network is a novel aspect of the proposed methodology, made 
possible thanks to the availability of continuous online measurements of 
water quality parameters and discharge. Specifically, in Eqs. (6) and (7), 
tb was known from the rainfall time series, q and tw were calculated by 
the hydrologic module, while C1, C2, C3, and C4 were calibrated, as well 
as CR. Differently, as explained in Section 2.6, CW was in all cases 
assigned a priori.

2.6. Monitoring campaign

Quality and quantity data of wastewater and stormwater were 
recorded at the main outlet of the UDS of Portici (see Fig. 1c), contin
uously, during dry weather and wet weather, with a time resolution of 2 
min, at three measurement sections s1, s2, and s3. The experimental 
dataset spans nearly two years, from September 2021 to June 2023, thus 
representing a still uncommon source of information on the behaviour of 
a combined sewer system.

The layout of the outlet section and the location of the installed 
sensors are represented in Fig. 3. The outlet features: 

• A rectangular inlet channel, p1 (width 3 m, height 3 m), which 
conveys the mixed sewage from the UDS: the flow rate was measured 
in this section (s1) and the stage-discharge curve was derived.

• A side weir (Fig. 3) overflow structure with a crest height of 0.85 m, 
and length of 4.40 m, which discharges excess flow, activating at 
around 2 m3

s . The water level and the quality parameters were 
measured in this section (s2).

• A rectangular channel, p2 (width 3 m, height 3 m), which conveys the 
untreated water discharged during CSOs, to the sea. The water level 
was measured in this channel (s3).

• A transverse gate valve with a rectangular opening (width 1.5 m, 
height 0.7 m).

• A rectangular channel, p3 (width 1.5 m, height 3 m), which conveys 
the sewage to the pumping station (and then, to the WTP).

A multi-parameter probe (Aquaread® AP-5000) was installed in 
front of the side weir (s2) (Fig. 4), inside a protective pipe, in a place 
where sediment accumulation over time did not occur. In this way, it 
could be safely assumed that the parameter values measured by the 
probe were the same of the discharged water (owing to complete mixing 
of the flow). Nonetheless, a regular cleaning protocol of the probe was 
defined, executed once a week to keep the probe head free from sedi
ments and biological film. A testing period preceded the start of the 
monitoring campaign, during which the electric and optical sensors of 
the probe were calibrated following the manufacturer user manual. 
Frequent checks and re-calibrations were also carried out to ensure the 
reliability of the quality measurements over time.

Raw data of electrical conductivity (EC), temperature, water level, 
dissolved oxygen (DO), and turbidity, were measured continuously, 
transmitted via a modem, and stored remotely. Total dissolved solids 
(TDS) were estimated from EC and temperature through an empirical 
relationship (e.g., Atekwana et al., 2004; Taylor et al., 2018; Walton, 
1989). To ensure the reliability of the data, they were pre-processed and 
cleaned from negative values (when applicable), outliers, and unreal
istic spikes; parameter values measured by the probe were periodically 
compared with samples collected in front of the side weir and analysed 
in laboratory. Based on these measurements, among the estimates of 
pollutants derived from the data acquired by the electrical sensor and 
the optical sensor, TDS and DO were found to be the most reliable, as 
they showed plausible trends during both dry and wet weather. Differ
ently, despite the frequent cleaning of the probe optics, the measure
ments from the turbidity sensor were often unreliable, likewise the 
estimates of nitrogen compounds. Therefore, TDS and DO concentra
tions were chosen as water quality parameters suitable to be modelled.

In the inlet channel (s1), flow rate was measured with a laser/ul
trasonic sensor (TIENet® 360 LaserFlow®), while in front of the side 
weir (s2) and in the overflow channel (s3), water levels were measured 
with pressure sensors (SIEMENS® Sitrans P). The average measured dry 
weather flow at s1 was 0.090 m3

s . A list of the sensor technical specifi
cations and the measured parameters is provided in Table 2.

Fig. 3. Layout of the main outlet of the UDS of Portici, where sensors for online measurements were installed. Three measurement sections were instrumented to 
record water quality (s2) and quantity (s1, s2, and s3) data.
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2.7. Setting up of hydrologic and water quality models

As mentioned in Section 2.3, hydrologic parameters of the semi- 
distributed model should be obtained through calibration. Specifically, 
hydrographs measured by s1 sensors were used as targets for model 
parameter identification. Seven overflow events were considered, 
selecting those having hydrographs that could be undoubtably coupled 
with measured rainfall. The first five events were used for model 
training, while the last two for validation. Table 3 reports the main 
characteristics of the selected events, all characterized by ordinary 
rainfall intensity, with return periods smaller than two years.

The identified parameters, along with their calibration ranges, are 
given in Table 4. The parameters n and ds of the pervious surfaces have 
little influence on hydrograph evaluation in urban areas (Farina et al., 
2022, 2023), as runoff mostly originates from the impervious parts of 
the sub-catchments during short rainfall events. For the same reason, 
also the calculated concentration of compounds is not significantly 
affected by the water quality of the runoff from the pervious surfaces. 
Therefore, the parameters listed in Table 4 were calibrated for the 
impervious parts and assumed equal to those of the pervious parts for all 
the sub-catchments.

Fig. 4. Overflow structure (s2), where the water quality multi-parameter probe was installed. The probe was placed inside a pipe to protect it from damage. The side 
weir, at the centre of the picture; the gate valve, on the right of the picture.

Table 2 
List of sensor technical specifications and measured parameters.

Measurement section Sensor Exercise temperature Type of sensor Measured parameter Measurement range Accuracy from actual value

s1 TIENet® 360 LaserFlow® [ − 20;60]
◦

C Laser Velocity 
[m

s

]
[ − 4.6;4.6] ±0.03

Ultrasonic Level [m] [0;3] ±0.012
s2 Aquaread® AP-5000 [ − 5;50]

◦

C Electric
ECa

[
μS
cm

]
[0;200000] ±1

Temperature [ ◦ C] [ − 5; 50] ±0.1
Level [m] [0;60] ±0.2%
TDS [mg/L] [0; 9999] ±1%

Optical (1) DOb
[mg

L

]
[0;50] ±1%

Optical (2) Turbidity [NTU] c
[0;3000] ±5%

SIEMENS® Sitrans P [ − 10; 80]
◦

C Pressure transducer Level [m] [0;4] ±0.3%
s3 SIEMENS® Sitrans P [ − 10;80]

◦

C Pressure transducer Level [m] [0;4] ±0.3%

a Electrical conductivity (EC).
b Dissolved oxygen (DO).
c Nephelometric turbidity units (NTU).

Table 3 
Overflow events considered for hydrologic and water quality model training and 
validation.

Event 
nr.

Date Duration 
(min)

Rainfall 
depth 
(mm)

Nr. of 
antecedent 
dry days

Modelling 
phase

1 8 July 2022 90 20.8 21 Training
2 16 August 

2022
60 22.4 3.25 Training

3 28 August 
2022

20 8.0 5 Training

4 1 September 
2022

470 18.0 3.25 Training

5 9 September 
2022

40 12.2 4.5 Training

6 16 
September 
2022

210 15.2 5.5 Validation

7 17 
September 
2022

160 13.6 0.5 Validation

P. Marino et al.                                                                                                                                                                                                                                 Journal of Hydrology 662 (2025) 134024 

6 



For each sub-catchment, the calibration of the semi-distributed 
model involves the identification of the three hydrologic parameters 
listed in Table 4, within the reported intervals, which were defined in 
such a way to contain all their plausible values. Regarding I, its starting 
guess values were estimated from the maps for each sub-catchment, and 
then the deviations ΔI from the starting guess were calibrated. Hence, 
the values of 99 parameters had to be identified.

Regarding the water quality, for the TDS, which is affected by build- 
up and wash-off processes, the parameters C1, C2, C3 and C4 of Eqs. (6) 
and (7) were calibrated, within ranges consistent with literature values 
(e.g., Hossain et al., 2010; Tu & Smith, 2018; Wicke et al., 2012). 
Furthermore, CW = 900 mg

l was assumed as the average TDS estimated 
with the multiparametric probe during dry weather flow, and CR = 10 mg

l 
was assumed from literature values for rainfall, as representative of the 
conditions of the wastewater prior to the wash-off process (Beysens 
et al., 2017; Jawad Al Obaidy & Joshi, 2006; Madhushani et al., 2023). 
Chemical reactions affecting the concentration of TDS have been 
neglected, thus K1 = 0 has been assumed in Eq. (4).

For the DO, build-up and wash-off were neglected (i.e., Eqs. (6) and 
(7) were not applied), but the oxidation of the organic matter trans
ported by the wastewater had to be considered. Hence, in Eq. (4), the 
reaction constant K1 was calibrated, while the inflow concentration was 
calculated as the result of the mixing of runoff and wastewater. To this 
aim, CW = 0 mg

l was assumed, since during dry weather conditions the 
measured DO was always < 0.5 mg

l , and CR was calibrated in the range [0;
20]mg

l (Gee et al., 2021). Table 5 reports the calibrated water quality 
parameters and the adopted calibration ranges.

Rather than performing a rigorous calibration of the model, a Monte 
Carlo sampling technique was adopted to run a model sensitivity anal
ysis, generating 10,000 parameter sets by randomly sampling the same 
number of values from a uniform distribution within the assumed ranges 
of the parameters. The GoF between observed and simulated hydro
graph, TDS graph, and DO graph, was evaluated through the Normalised 
Nash-Sutcliffe Efficiency (NNSE) coefficient (Mathevet et al., 2006). The 
Nash-Sutcliffe Efficiency coefficient (NSE, Nash & Sutcliffe, 1970) and 
the NNSE are defined as follows: 

NSE = 1 −

∑T
t=1
(
yt

obs − yt
sim
)2

∑T
t=1
(
yt

obs − yobs
)2 (8) 

NNSE =
1

2 − NSE
(9) 

where yt
obs and yt

sim are respectively the observed and the simulated 
values of the generic quantity y, at the time step t, yobs is the mean of 
observed value of y, and T is the number of discretization steps of the 
time series of y. The NNSE of hydrograph (NNSEQ), TDS graph 
(NNSETDS) and DO graph (NNSEDO), were evaluated by running SWMM 
simulations, with the different sets of the sampled values of model pa
rameters. For the evaluation of the GoF, the values of NNSEQ, NNSETDS, 
and NNSEDO were evaluated both for single events (i.e., event-specific 
calibration) and averaged among the five overflow events considered 
for model training.

3. Results

3.1. Hydrologic results

Among the 10,000 parameter sets of the Monte Carlo sampling for 
the semi-distributed model, the best GoF was 0.863 for the training set, 
corresponding to 0.818 and 0.703 for events nr. 6 and nr. 7 (i.e., vali
dation dataset). The model performance was generally good, as indi
cated by Fig. 5a, where the scatter plot of the NNSEQ values, averaged 
among all the seven overflow events, of the 10,000 randomly generated 
parameter sets is plotted.

The spreading of the values of NNSEQ is relatively limited, as indi
cated by the frequency histogram given in Fig. 5b, which shows that 
about 90 % of the generated parameter sets led to NNSEQ between 0.760 
and 0.813. In the same graphs of Fig. 5, the value of NNSEQ = 0.816,
obtained with the uncalibrated lumped hydrologic model, is also 
indicated.

The performance of the uncalibrated lumped model was indeed also 
good, with values of NNSEQ comparable, and in some cases even higher, 
than those of the semi-distributed model. The observed and simulated 
hydrographs, for all the considered rainfall events, are represented in 
Fig. A1 of the Appendix. As an example, Fig. 6 shows the best repro
duced event of the training dataset, event nr. 1, and the worst repro
duced event of the validation dataset, event nr. 7. The hydrograph of 
event nr. 1 is very well reproduced with the semi-distributed model 
(NNSEQ = 0.883), as well as with the uncalibrated lumped model, which 
in this case performs even better (NNSEQ = 0.933). For event nr. 7, the 
performance worsens, as it results in NNSEQ = 0.703 with the semi- 
distributed model and NNSEQ = 0.679 with the uncalibrated lumped 
model. However, even in this case the results of the simulations can be 
considered satisfactory, given that the event was different from all the 
others of the dataset, as it was characterized by a very short dry period 
before its beginning and by a small rain intensity (Table 3). The good 
performance of the lumped model was confirmed by the NNSEQ = 0.826 
obtained for event nr. 6 of the validation set, which was even slightly 
better than the value obtained with the semi-distributed model.

3.2. Water quality results

The identification of the parameters related to water quality 
modelling was carried out by considering the sample that corresponded 
to the highest values of NNSEDO and NNSETDS. Specifically, the two in
dexes were calculated either as the mean of the five events of the 
training set, or by considering each event separately. The obtained 
parameter values are given in Table 6, while Table 7 reports the corre
sponding best values of NNSEDO and NNSETDS. Although for most of the 
considered events the identified parameters have similar values, there 
are some exceptions, indicating that in some cases the best simulation of 
the observed concentration with the adopted equations would require 
event-specific calibration.

However, random sampling of the water quality parameters led to 

Table 4 
Ranges of hydrologic parameters of the semi-distributed 
model.

Parameter Calibration range

ΔI [ − 25;+25]%

k =
1
n [10;100]

m1/3

s
ds [1.25;5.0]mm

Table 5 
Calibrated water quality parameters of the lumped model.

Parameter Calibration range

Water quality parameters (TDS)
C1

(
kg
ha

)
[0;150]

C2

(
1
d

)
[1.0; 1.8]

C3

(
dC4 − 1

mC4

)
[0.0; 0.3]

C4( − ) [0.3; 1.0]
Water quality parameters (DO) CR

(mg
l

)
[0;20]

K1

(
1
d

)
[0;2500]
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reliable simulations of both TDS (for most events) and DO (for some of 
the events). This result indicates that the lumped approach is suitable to 
simulate water quality in combined sewer networks. However, while the 
transport of a conservative species such as TDS, subject to build-up and 
wash-off processes, is generally well represented, the simulation of the 

DO with the complete mixing and the first-order reaction cannot 
reproduce some of the observed data. As an example, Fig. 7 and Fig. 8
show the simulated concentration graphs compared to the measured 
ones for the modelled events of the validation dataset (i.e., events nr. 6 
and nr. 7). For DO, event nr. 6 achieved NNSEDO = 0.58, and for event 

Fig. 5. Goodness of fit of the hydrologic simulations averaged among all the seven runoff events: (a) scatter plot of the NNSEQ values of the semi-distributed model 
with 10,000 randomly generated parameter sets; (b) frequency distribution of the NNSEQ values of the semi-distributed model with 10,000 randomly generated 
parameter sets (NNSEQ are evaluated as the average among seven events). The dashed red lines represent the NNSEQ obtained with the uncalibrated lumped hy
drologic model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Example of observed hydrographs vs. hydrographs simulated with both the uncalibrated lumped model and with the best-performing sampled parameter set 
of the semi-distributed model: (a) event nr. 1 (best reproduced event of the training dataset); (b) event nr. 7 (worst reproduced event of the validation dataset).
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Table 6 
Best-performing water quality parameters of the lumped model for the five events of the training set (third column), and for each event separately (columns 4–10).

Simulated substance Parameter Best-fitting values

Training Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

Total dissolved solids (TDS)
C1

(
kg
ha

)
61.2 59.6 67.1 30.0 65.2 53.6 63.3 136.0

C2

(
1
d

)
1.45 1.67 1.48 1.71 1.19 1.07 1.00 1.57

C3

(
dC4 − 1

mC4

)
0.114 0.159 0.122 0.271 0.106 0.228 0.091 0.039

C4( − ) 0.608 0.649 0.616 0.622 0.540 0.700 0.551 0.731
Dissolved oxygen (DO) CR

(mg
l

)
8.61 11.7 4 .80 0.775 17.4 5.83 10.7 5.27

K1

(
1
d

)
689.2 870.9 121.9 2453 2492 189.5 2492 138.7

Table 7 
Goodness of fit of the best-performing water quality simulations achieved through Monte Carlo sampling of model parameters for the five events of the training set 
(column 3), for the validation set (column 4), and for each event separately (columns 5–11).

Simulated substance Metric Best goodness of fit

Training set Validation set Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

Total dissolved solids (TDS) NNSETDS 0.75 0.63 0.67 0.77 0.94 0.84 0.85 0.86 0.52
Dissolved oxygen (DO) NNSEDO 0.52 0.58 0.83 0.61 0.54 0.75 0.65 0.66 0.65

Fig. 7. Examples of simulated vs. observed DO concentration graphs (lumped model of the combined sewer network) for the validation dataset: (a) event nr. 6; (b) 
event nr. 7.

Fig. 8. Examples of simulated vs. observed TDS concentration graphs (lumped model of the combined sewer network) of the validation dataset: (a) event nr. 6; (b) 
event nr. 7.
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nr. 7 it resulted in NNSEDO = 0.59. For TDS, event nr. 6 achieved 
NNSETDS = 0.84, and for event nr. 7 it resulted in NNSETDS = 0.41. The 
observed and calibrated graphs of DO and TDS concentrations, for the 
event-specific model calibration, are represented in Fig. A2 and Fig. A3
of the Appendix, respectively.

4. Discussion

The Monte Carlo sampling of the hydrologic parameters of the semi- 
distributed modelling approach leads to NNSEQ, averaged among the 
five runoff events considered in the training dataset, as high as 0.863. 
However, the calibration of the semi-distributed model clearly suffers 
from equifinality issues, as different parameter sets lead to similar 
NNSEQ. In this respect, the values of the correlation indexes between the 
parameter sets corresponding to the ten best simulations (i.e., those with 
the highest values of NNSEQ) are reported in Table 8. In all cases, the 
correlation among the parameter sets is quite low. This result indicates 
that the best-performing ten sets of sampled parameters, though leading 
to very similar values of NNSEQ averaged among all the seven events (i. 
e., all between 0.830 and 0.834), are completely different one from each 
other. This result points out the ill-posedness of the parameter identifi
cation problem for the semi-distributed hydrologic model. The varia
tions of hydrologic parameters of single sub-catchments balance each 
other out, only slightly affecting the simulated hydrograph at the outlet.

Regarding the uncalibrated lumped approach, the results clearly 
indicate its suitability for reliable simulations of stormwater hydro
graphs. The model, with the hydrologic parameters of Table 1 estimated 
from cartographic information with the relationships proposed by 
Farina et al. (2023), provides surprisingly good results (see Fig. 6 and 
Fig. A1 of the Appendix), with NNSEQ ranging between 0.68 and 0.93 for 
the seven events. The value of NNSEQ = 0.842, averaged among the five 
events of the training set, is close to NNSEQ = 0.863, i.e. the highest 
achieved with the semi-distributed model with the Monte Carlo sam
pling method. Although this latter allows slightly improving the per
formance of the simulations, the computational burden of calibration, 
and the issue of equifinality of the parameters, hamper its general 
applicability. Hence, the lumped hydrologic approach represents quite a 
useful tool for the management of combined sewer systems, especially in 
absence of measurements of water flow to be used for model calibration.

Differently, the application of the simplified simulation of water 
quality within the lumped approach, though giving satisfactory results 
for many of the considered events (see the NNSETDS and NNSEDO values 
given in Table 7), presents some issues. It is worth to note, however, that 
the sensors of the multiparametric probe only indirectly measure DO 
and TDS. Respectively, DO is obtained from optical measurements, and 
TDS concentration from electrical conductivity measurements. In both 
cases, empirical relationships developed by the manufacturer are 
employed to convert the measured quantity into the desired parameter. 
This empirical conversion surely increases the uncertainty of the esti
mated concentrations, and thus their reproducibility with model 
simulations.

As indicated by the identified parameters given in Table 6, for both 

DO and TDS, the best-fitting parameter sets exhibit significant differ
ences among the considered events. While these differences are rela
tively small for the four parameters of the build-up and wash-off 
equations for TDS simulation, this issue is particularly relevant for DO 
simulations, where very different values of the same water quality pa
rameters are identified for some of the events. For instance, Table 6
reports CR = 0.775 mg/l for event 3 and CR = 17.4 mg/l for event 4. 
Similarly, it results in K1 = 121.9 d− 1 for event 2 and K1 = 2492 d− 1 for 
event 4. Indeed, the comparison of simulated and observed DO con
centrations (Fig. 7 and Fig. A2 of the Appendix) shows that, in most 
cases, a delay of the DO concentration increase, compared to discharge 
growth, is observed. This delay seems related to the position of the peak 
in the precipitation input histogram, and it affects the calculated 
NNSEDO in such a way that the best-fitting simulated DO concentration 
does not reproduce the observed fluctuations, but it rather follows a 
smooth trend in between them (e.g., Fig. 7b). The smoothening of the 
fluctuations leads in some cases to the identification of unplausible high 
values of the reaction constant K1.

This issue clearly affects the identifiability of parameter values 
holding for all the events. Fig. 9 and Fig. 10 show the dependence of 
NNSETDS and NNSEDO, averaged over the seven modelled events, on the 
calibrated parameters of water quality model for the two species. 
Regarding NNSETDS, it shows some sensitivity to the coefficient C1 of 
build-up equation up to the value of about 61 kg/ha, while it is nearly 
unaffected by the exponent C2 throughout the entire investigated in
terval. Regarding the parameters of the wash-off equation, the simula
tions are sensitive to the exponent coefficient C4, with a maximum 
around C4 = 0.61. Instead, the dependence on parameter C3 is very flat 
around the maximum.

Similarly, the results of the simulations of DO indicate very little 
sensitivity to both the parameters, although NNSEDO shows a maximum 
around CR = 8.6 mg/l (Fig. 10a). The first-order reaction coefficient K1, 
instead, only slightly affects the fitting of the simulations for values 
larger than 1500 d− 1 (Fig. 10b). As already pointed out, this result is 
related to the incapability of the model to catch the timing of the DO 
concentration rise after the rainfall events, in turn affecting the un
plausible identified high values of K1.

The limited sensitivity to parameter variations of the simulated 
concentrations points out that the water quality model, based on Eqs. 
(4)–(7), does not consider all the factors affecting the mixing and 
transport processes of the simulated species in the sewer network, as also 
indicated by the contrasting values of the same parameter obtained in 
some cases after the calibration.

Although more data would be needed to give a possible explanation 
for these results, it is worth noticing that the characteristics of rainfall 
events clearly affect the initial DO concentration in the runoff, where 
oxidation reactions likely occur, which may affect the dissolved oxygen 
concentration and are not considered in the model. In this respect, 
Fig. 11 shows the dependence of the identified DO runoff concentration 
CR on the total rainfall depth of the considered events, showing a peak 
around 18 mm.

Fig. 12 shows how the identified values of the parameters C1 (build- 

Table 8 
Correlation matrix of the ten parameter sets leading to the highest values of average NNSEQ with the semi-distributed hydrologic approach.

Parameter set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

Set 1 1.00 0.38 − 0.04 0.39 0.38 0.39 0.25 − 0.16 0.12 0.29
Set 2 0.38 1.00 − 0.21 0.35 0.26 0.32 0.13 0.37 0.29 0.05
Set 3 − 0.04 − 0.21 1.00 − 0.06 0.00 0.21 0.24 0.23 0.16 0.35
Set 4 0.39 0.35 − 0.06 1.00 0.47 0.25 0.11 0.27 0.24 0.08
Set 5 0.38 0.26 0.00 0.47 1.00 0.67 − 0.01 0.05 0.09 0.03
Set 6 0.39 0.32 0.21 0.25 0.67 1.00 0.19 0.15 0.13 0.24
Set 7 0.25 0.13 0.24 0.11 − 0.01 0.19 1.00 − 0.05 0.35 0.27
Set 8 − 0.16 0.37 0.23 0.27 0.05 0.15 − 0.05 1.00 0.25 0.01
Set 9 0.12 0.29 0.16 0.24 0.09 0.13 0.35 0.25 1.00 0.02
Set 10 0.29 0.05 0.35 0.08 0.03 0.24 0.27 0.01 0.02 1.00
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up equation) and C3 (wash-off equation) are affected by the duration of 
the dry period before the onset of each rain event, respectively sug
gesting decreasing and increasing trends for antecedent dry intervals up 
to 5 days. However, more events and further elaborations would be 
required to shed more light in these modelling issues.

5. Conclusions

Reliable mathematical models of water quantity and quality in 
combined sewer networks are essential for their management. In this 
paper, the performance of hydrologic semi-distributed and lumped 
models, both developed in SWMM, have been compared for the case 
study of the city of Portici (Italy). Then, the lumped model has been 
applied to the simulation of water quality. High-resolution online 
measurements of discharge, carried out with a laser/ultrasonic sensor. 
and of several water quality parameters, acquired through a multi- 
parametric probe, were available at the outlet of the network.

Fig. 9. Dependence of the NNSETDS values, averaged over the five events of the training set, on the water quality parameters, based on the simulations carried out 
with the lumped model for the 10,000 randomly generated sets of water quality parameter values.

Fig. 10. Dependence of the NNSEDO values, averaged over the five events of the training set, on the water quality parameters, based on the simulations carried out 
with the lumped model for the 10,000 randomly generated sets of water quality parameter values.

Fig. 11. Scatter plot of DO concentration in the runoff CR vs. the total rainfall 
depth of each event.
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Discharge data allowed the sensitivity of the semi-distributed hy
drological model to the variations of its 99 unknown parameters. The 
results indicate that the semi-distributed model can provide reliable 
simulation of the measured hydrographs, but the inverse problem of 
parameter identification was affected by equifinality, thus impeding the 
identification of parameters with general validity, i.e. applicable also in 
absence of measurements. Differently, the lumped model of the network 
was set up without calibration, thanks to the empirical relationships 
recently proposed by Farina et al. (2023) for the estimation of its hy
drologic parameters directly from cartographic information. The 
hydrographs simulated either with the uncalibrated lumped model or 
with the best-performing sampled parameter sets with the semi- 
distributed model are both close to the experimental ones. This result 
confirms the suitability of the lumped modelling approach of Farina 
et al. (2023) for the development of reliable hydrologic models of 
combined sewer networks, especially when discharge measurements are 
not available.

The lumped approach was then applied to the modelling of water 
quality in the network, specifically simulating the measured concen
trations of dissolved oxygen (DO) and total dissolved solids (TDS). 
Owing to the oxidization of organic matter when wastewater mixed with 
runoff, DO was modelled as a reactive transported species with a 
simplified first-order reaction rate, with the reaction constant treated as 
a model calibration parameter. Differently, TDS were considered con
servative. For the modelling of TDS transport, build-up and wash-off 
phenomena were also considered. Empirical exponential equations 
were adopted for their modelling, the parameters of which had to be 
calibrated for the case study.

The calibration of the water quality parameters led to reliable sim
ulations of the measured concentrations during most of the observed 
runoff events, especially for TDS. This result indicates that lumped 
approach with simplified in-sewer process simulation is suitable for UDS 
modelling, and it may be used in place of commonly adopted more 
complex approaches (Rodrìguez et al., 2013). However, further in
vestigations are required to understand issues affecting the simulations 
of DO in some of the events. Furthermore, different sets of water quality 
parameters were identified for some events. This issue highlights the 
complexity of water quality dynamics in combined sewers, affected by 
event-specific factors which cannot be completely captured by 

simplified approaches such as first-order reactions or exponential build- 
up and wash-off equations. This result highlights the need for data from 
continuous monitoring of wastewater quality in sewers, such as this 
presented in this study, which will help develop reliable modelling 
approaches.
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Appendix 1

Fig. A1. Observed hydrographs vs. hydrographs simulated with both the uncalibrated lumped model and with the calibrated semi-distributed model: (a) event nr. 2; 
(b) event nr. 3; (c) event nr. 4; (d) event nr. 5; (e) event nr. 6. Events nr. 2, 3, 4 and 5 belong to the training dataset. Event nr. 6 belongs to the validation dataset.
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Fig. A2. Observed vs. simulated dissolved oxygen concentrations with event-specific model calibration (simulations carried out with the lumped model of the 
combined sewer network): (a) event nr. 1; (b) event nr. 2; (c) event nr. 3; (d) event nr. 4; (e) event nr. 5; (f) event nr. 6; (g) event nr. 7.
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Fig. A3. Observed vs. simulated total dissolved solids concentrations with event-specific model calibration (simulations carried out with the lumped model of the 
combined sewer network): (a) event nr. 1; (b) event nr. 2; (c) event nr. 3; (d) event nr. 4; (e) event nr. 5; (f) event nr. 6; (g) event nr. 7.

Data availability

All data and files used in the study are available from the corre
sponding author upon reasonable request.
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