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1 Introduction

In 1998 Google’s founders Sergey Brin and Larry Page published a paper in which they
presented a mathematical method they developed to rank webpages according to importance.1

The ranking, called PageRank, they proposed uses only the link structure of the internet
to measure the importance of webpages. When a user enters a search query into Google,
within milliseconds Google returns the search results. These results are not only based on
the relevance to the search query, but also on the importance of a webpage. The importance
of a webpage is measured by the number of recommendations it has from other important
webpages, a recommendation being a hyperlink. This – seemingly circular – definition can be
stated explicitly in mathematical terms. The PageRank model will be introduced, it will be
shown that the PageRank vector – containing the PageRank value for each known webpage –
is an eigenvector of the Google matrix.2

A lot of research has been done on several aspects of the PageRank model. The sensi-
tivity of the PageRank vector to change in the underlying network structure has been a
popular topic in recent years, see for example [4], [5] and [12]. These papers mainly study the
results of some deterministic change on PageRank. E.g., the effect of rank one updates of the
hyperlink matrix on the new PageRank vector. A lot of this research focused on providing
upper bounds for change in the PageRank vector, given some specific sort of change in the
underlying network. On the other hand, the evolution of the structure of the internet as a
whole has seen a lot of attention as well. See for example, [6], [10] and [11]. These papers
focus mainly on the effects of random change in networks. E.g., what can be said about the
connectivity of the internet in case of a random breakdown.

In this report things will be considered from a different perspective. Change will not be
thought of as a given, as something that just happens, but it will be investigated why there
would be change, what sort of change happens in a network and how this would affect PageR-
ank. Mainly numerical methods will be used, as the application of analytical methods is limited.

First, in chapter 3, the PageRank algorithm will be introduced. In chapter 4 a model
will be introduced in which network change will be modelled in terms of webpage own-
er/administrator activity. A basic model will be proposed in section 4.1, in which the
owner/administrator activity will be assumed to be equal for every webpage. The results of this
basic model will be shown in section 4.2. In sections 4.3-4.6, this model will be adjusted so as
to take into account that some webpages are more active than others. In the objective extended
model of section 4.3 page owners/administrators are assumed to be rational in the sense that
they will make decisions based on the PageRank of other pages. The subjective extended
model of section 4.5 will simulate webpage activity by owners/administrators making decisions
based on the number of links that point to other webpages. The behaviour of the models can
be investigated using numerical methods. First the general behaviour of the models will be
shown using numerical methods, in sections 4.4 and 4.6. In section 4.7, based on both extended
models, some tests will be devised to measure the influence of page owner/administrator
activity on the PageRank of the webpage. The results indicate the optimal strategy to be used
by owners/administrators for maximizing the PageRank value of a webpage.

1See [1].
2Note that the current PageRank model used by Google is still based on the original proposal, however it is

almost certain that Google uses a more advanced model, hence the PageRank model as discussed in this report
may not be a completely up-to-date depiction of the algorithm.
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2 Preliminaries

Definition 1. Let x ∈ Rn. The 1-norm on Rn is defined as

‖x‖1 :=

n∑
i=1

|xi|

Definition 2. Let ‖ ·‖1 be the 1-norm on Rn and let M be an n×n matrix. Then the induced
matrix norm corresponding to ‖ · ‖1 is defined as

‖M‖1 := max
1≤j≤n

n∑
i=1

|Mij |,

the largest absolute column sum.

Definition 3. An n× n matrix M is called row substochastic if:

1. Mij ≥ 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ n

2.
∑n

i=1Mij ≤ 1 for all 1 ≤ i ≤ n.

Definition 4. An n× n matrix M is called row stochastic if:

1. Mij ≥ 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ n

2.
∑n

i=1Mij = 1 for all 1 ≤ i ≤ n.

Definition 5. An n × n matrix M is called irreducible if for each element Mij of M there
exists an n ∈ N>0 such that (Mn)ij > 0. M is called reducible if it is not irreducible.

Definition 6. An n× n matrix M is called aperiodic if for all 1 ≤ i ≤ n:

gcd{k ∈ N>0 : (Mk)ii > 0} = 1

Moreover, if for every 1 ≤ i ≤ n it holds that Mii > 0, then M is aperiodic. M is called
periodic if it is not aperiodic.

Definition 7. An n × n matrix M is called primitive if and only if M is aperiodic and
irreducible. M is called imprimitive if it is not primitive.

Lemma 1. Let M be a stochastic n× n matrix. Then 1 is an eigenvalue of M, and moreover,
for each eigenvalue µ it holds that |µ| ≤ 1, i.e. 1 is the largest eigenvalue of M.

Lemma 2. Let M be an n × n matrix and let λ be an eigenvalue of M. Then λ is also an
eigenvalue of MT .

Theorem 1. (Perron-Frobenius) If the n×n matrix M ≥ 0 is irreducible then the following
properties hold.

1. M has a simple maximum eigenvalue λ > 0 (λ has an algebraic multiplicity of one).

2. There exists an eigenvector x > 0 such that Mx = λx

3. There is a unique vector p > 0 such that Mp = λp and ‖p‖1 = 1.
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3 The PageRank algorithm

In The Anatomy of a Large-scale Hypertextual Web Search Engine Sergey Brin and Larry Page
made their PageRank algorithm known to the rest of the world. This algorithm uses the
structure of the web to calculate the importance of every known webpage on the internet. This
value is then used to rank search results for a particular search query according to importance
of the webpages.

3.1 Structure of the internet

The basic idea behind PageRank is that the internet can be viewed as a directed graph. Each
webpage can be seen as node in the graph. A hyperlink on webpage P1 to webpage P2 can be
seen as a directed edge from node P1 to P2.

3 This hyperlink is called an outlink of webpage
P1 and an inlink of webpage P2.

1 2 3

4 5

Figure 1: A network of webpages.

The Google founders viewed an inlink as a recommendation for a webpage. The more recom-
mendations a webpage has, the more important and popular it must be. The problem with
this approach is that one can easily manipulate the number of recommendations for a webpage.
The status of the webpage providing the inlink should also be considered. The more outlinks a
webpage has, the less should it be considered an important recommendation. When a webpage
has an inlink from an important webpage, it increases the importance of the webpage being
linked to. If however, the important webpage has many outlinks it will not have as much as an
impact. This is the basic idea behind the PageRank model.

3.2 Importance of webpages

In the following sections it will be explained that some changes to this basic idea are necessary
to make it mathematically robust. These change lead to a more robust interpretation of im-
portance. The idea is that of a random surfer. Imagine a person who browses the internet
by randomly clicking links from webpage to webpage. After this process is continued for an
indefinite amount of time, the relative importance of the webpages is obtained. The more web-
pages link to a certain webpage, the more often the random surfer will visit that webpage and
the more important it is. This process can be simulated by a Markov chain. It turns out that

3Note that only unique hyperlinks are considered. Multiple hyperlinks from one webpage to another are
counted as one.
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the ranking of a network is the stationary distribution of the Markov chain, corresponding to
eigenvalue 1.

3.3 Ranking

A few definitions will be introduced in order to formalize the underlying basic idea of PageRank.

Definition 8. Let δij be defined as

δij =

{
1, if there is a hyperlink from webpage Pi to webpage Pj

0, otherwise

Definition 9. The outdegree of node Pi is defined as:

|Pi| =
n∑

j=1

δij

The outdegree of a node is simply the amount of unique outlinks on the webpage (multiple links
to the same webpage are not counted). Using these definitions the idea of a ranking based on
the link structure as explained in the previous section can be defined.

Definition 10. Let B(Pj) denote the set of nodes outlinking to node Pj (also called the set
of pages backlinking or inlinking to Pj) and let n be the total number of webpages. The 1× n
vector πT is called a ranking if

1. πj ≥ 0, for all 1 ≤ j ≤ n.

2.
n∑

j=1
πj = 1

3. πj =
∑

Pi∈B(Pj)

πi
|Pi|

This means that a ranking must satisfy a system of linear equations. E.g., the ranking of the
network in figure 1 must satisfy the linear system:

π1 = 1
2π2 + π4

π2 = 1
3π1 + π3

π3 = 0

π4 = 1
3π1 + π5

π5 = 1
3π1 + 1

2π2

π1 + π2 + π3 + π4 + π5 = 1

π1, π2, π3, π4, π5 ≥ 0

The solution for this linear system is given by πT = [6/16 2/16 0 5/16 3/16]. In this
example P1 would be the most important webpage, followed by P4, etc. The sixth equation
(
∑5

j=1 πj = 1) in the linear system guarantees the uniqueness of the solution. The system of
linear equations exactly models the basic idea of important webpages having lots of important
recommendations.
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3.4 Hyperlink matrix H

A system of linear equations can be written in a more clear and compact matrix form. In order
to achieve this the following matrix is introduced.

Definition 11. Let the n× n matrix H be defined as follows:

Hij =

{
1/|Pi|, if δij = 1
0, otherwise

H is called the row normalized hyperlink matrix of the corresponding network.

The non-zero elements of row i correspond to the outlinks of Pi, similarly, the non-zero elements
of column j correspond to the inlinks of Pj . More specifically, the elements of row i denote the
probabilities to surf from Pi to any other page if a hyperlink on Pi were selected randomly.

Definition 12. If |Pi| = 0 then Pi is called a dangling node.

If a page Pi is a dangling node, i.e. if it does not have any outlinks, the ith row of H contains
only zero elements. Figure 2 is an example of a network with a dangling node.

1 2 3

4 5 6

Figure 2: A network of webpages with a dangling node.

The normalized hyperlink matrix H corresponding to figure 2 is given as follows. Node P6 is a
dangling node, hence the 6th row of H contains only zero elements.

H =



0 1/3 0 1/3 1/3 0
1/3 0 0 0 1/3 1/3
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1/2 0 1/2
0 0 0 0 0 0


If π is a ranking then HTπ = π, since for element πi:

πi =
∑

k∈B(Pi)

πk
|Pk|

=
n∑

k=1

HT
ikπk = (HTπ)i,

i.e. a ranking π is a right eigenvector of the matrix HT associated with eigenvalue 1.

The hyperlink matrix H has the following valuable properties.
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1. H is a sparse matrix, i.e. a large proportion of its elements are zero. This means that if a
storage scheme is used in which only the non-zero elements of H and their locations are
stored, then H does not require much storage space.

2. Since H is sparse, it does not require the O(n2) computation for matrix multiplication. In
fact, the average webpage on the internet has been estimated to have about 10 outlinks,
which means that H contains about 10n non-zero elements. As a consequence, matrix
multiplication involving H requires only an O(n) computation.

3. H is almost row stochastic. Only the rows corresponding to dangling nodes contain only
zero elements. All the other rows are stochastic, hence H is row substochastic.

4. H can be periodic and/or reducible.

3.5 Stochastic matrix S

A ranking π satisfies the equation HTπ = π. The natural question that one could ask is
under what conditions for HT does a stationary distribution exist? And, if it exists, under
what conditions is it unique? It turns out that additional conditions on H are needed to make
sure a unique stationary distribution exists. The Google founders modified the matrix H in
such a way that the uniqueness and existence are guaranteed, while making sure the intended
interpretation still would hold.

The first step was to ensure that H is row stochastic. It was noted in the previous sec-
tion that H already is row substochastic. Whenever the random surfer ends up in a dangling
node, it will get stuck. The stochasticity modification will ensure that the random surfer does
not get stuck.

Definition 13. Let the n× 1 vector d be defined as

di =

{
1, if |Pi| = 0
0, otherwise

then d is called the dangling node vector corresponding to the network.

Definition 14. A 1× n vector vT is called a personalization vector if

• vi > 0 for all 1 ≤ i ≤ n

•
n∑

i=1
vi = 1

This vector can be used for the personalization of rankings. Each element vi of v describes
the chance to jump to Pi. The vector elements can be customized so as to correspond to the
interests and preferences of the user. For example, if a user is interested in Bitcoins and P5 is a
webpage about Bitcoin, v5 can be made larger than the other elements. Then the chance that
the user will go to P5 is relatively large compared to the other elements, which corresponds to
the users surfing habits.

Definition 15. The row stochastic n× n matrix S is defined as

S = H + dvT

10



This modification of H results in a row stochastic matrix S. It simply replaces the zero rows
of H corresponding to dangling nodes with the vector vT . If the random user ends up in a
dangling node, it will jump to page Pi with probability vi. The matrix S corresponding to the
graph in figure 2 with v = (1/n)e is given as follows.

S =



0 1/3 0 1/3 1/3 0
1/3 0 0 0 1/3 1/3
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1/2 0 1/2

1/6 1/6 1/6 1/6 1/6 1/6


If the random surfer ends up in P6 the probability that it will visit any webpage Pi next is
equal for all six pages.

The matrix S has the following properties.

1. Since S is stochastic, the matrix has largest eigenvalue 1 and hence ST as well. Certainly
a ranking π such that STπ = π then exists, however it need not be unique.

2. S is in general periodic as well as reducible.

3. S is still sparse, but much less so then H. This is because every row corresponding with a
dangling node is replaced by a row of non-zero elements and, since there are quite a lot of
dangling nodes on the internet, this makes the matrix denser. As a consequence, matrix
multiplications involving S will take more time and resources.

3.6 Google matrix G

Still another modification to the matrix is necessary to ensure the existence of a unique station-
ary distribution. This primitivity modification will make the matrix primitive, i.e. aperiodic
and irreducible. The Perron-Frobenius theorem then guarantees the uniqueness of the station-
ary distribution. In order to achieve this, the Google founders extended the model by allowing
the random surfer to teleport to another webpage. The interpretation for this is that, a surfer
does not only surf the internet by following hyperlinks, but also sometimes by jumping to a
webpage by using the browser’s address bar.

Definition 16. Let 0 ≤ α < 1 denote the probability that the random surfer will follow a link.
α is called the teleportation parameter.

Brin and Page used this parameter to define the following matrix.

Definition 17. The Google matrix G is defined as

G = αS + (1− α)evT

where e is the n× 1 vector containing all 1’s and v the personalization vector.

The Google matrix models the behaviour of the random surfer explained above. The matrix
S contains the probabilities of jumping from page to page by following hyperlinks, while the
matrix evT contains the probabilities of teleporting from one webpage to another by not
following links. Those probabilities are multiplied by α and 1− α respectively, which results in
the desired interpretation. It turns out that α directly influences the convergence rate of the
power method, which we will be discussed in one of the next sections.

The matrix G has the following properties.

11



1. G is stochastic. G is a convex combination of S, which is stochastic, and evT , which is
also stochastic since ‖v‖1 = 1 and v > 0.

2. G is a positive matrix (G > 0). This is the result of v > 0 and α < 1. This means
that storage and matrix operations such as multiplication involving G require a lot of
resources. Luckily however, G is a convex combination of the sparse matrix S and the
product of the vectors e and v which means G does not have to be stored as a full matrix.
This will also simplify matrix operations, which will be discussed in the section about the
power method.

3. G is aperiodic. This is enforced by G > 0.

4. G is irreducible. G > 0, hence there is a non-zero probability that the random surfer will
visit webpage Pj from any starting position Pi.

5. G is aperiodic and irreducible, hence primitive.

6. If the spectrum of S is {1, µ2, µ3, . . . , µn} in descending order, then the spectrum of G is
{1, λ2 = αµ2, λ3 = αµ3, . . . , λn = αµn}.4 The link structure of the internet makes it likely
that |µ2| ≈ 1 or even |µ2| = 1, while the biggest eigenvalue of both matrices is 1, hence
|λ2| ≤ α < 1. The second eigenvalue turns out to be important for the convergence rate
of the power method for calculating the stationary distribition.

3.7 PageRank

Now that the existence and uniqueness of a stationary distribution is guaranteed, the PageRank
vector can be defined in terms of this stationary distribution.

Definition 18. The unique PageRank vector π is defined by

• GTπ = π

•
n∑

i=1
πi = 1

• πi > 0 for all 1 ≤ i ≤ n

The uniqueness of the PageRank vector is guaranteed by the Perron-Frobenius theorem. This
theorem implies that 1 is a simple eigenvalue of GT (1 has an algebraic multiplicity of one), and
that there exists a positive eigenvector π corresponding to the eigenvalue 1, thereby implying
the uniqueness of the vector π with ‖π‖1 = 1. Now that the PageRank vector has been defined,
a method to calculate the actual vector is needed. This will be the subject of the next section.

3.8 Power method

The original method proposed by Brin and Page for computing the PageRank vector, is the
power method. This iterative method is used to find the dominant eigenvalue and eigenvector
pair of a matrix, in this case the eigenvector corresponding to the dominant eigenvalue 1 of G.
The power method is considered a slow method, since the convergence rate depends on the
difference between the first and second eigenvalue. The eigengap between the first and second
eigenvalue is in general rather small. The eigengap for the Google matrix however, is not that
small and can even be regulated in a simple way.

4As proven in [1] p. 46.
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For the actual power method one takes a starting vector π(0) with ‖π(0)‖1 = 1 to begin
the iterative process

π(k+1) = GTπ(k)

Usually the uniform vector π(0) = (1/n)e is chosen. As shown in theorem 2 the convergence
does not depend on the chosen π(0), although of course a starting vector closer to π will need
fewer iterations to converge.
Since G = αS + (1− α)evT the process can be expressed as

π(k+1) = αSTπ(k) + (1− α)(evT )Tπ(k)

= α(H + dvT )Tπ(k) + (1− α)veTπ(k)

= αHTπ(k) + αvdTπ(k) + (1− α)v

= αHTπ(k) + (1− α+ αdTπ(k))v

So the iteration process can be expressed in terms of a matrix multiplication involving the sparse
matrix H, which drastically reduces the required computation time and resources. As seen in
section 3.4, multiplication involving H requires only O(n) effort. Also, in order to calculate the
PageRank, only storage for d, v and H are necessary, the dense G does not have to be stored.
Theorem 2 will show that the convergence rate can be regulated by α. These are the main
reasons why Brin and Page chose for the power method.

Theorem 2. The power method applied to G will converge to the PageRank vector π if
‖π(0)‖1 = 1 and π(0) ≥ 0.

Proof. Let v1, v2, . . . , vn be an eigenbasis of GT for Rn corresponding to eigenvalues
λ1, λ2, . . . , λn, assuming 1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. Furthermore, let π(0) with
‖π(0)‖1 = 1 and π(0) ≥ 0 be the starting vector. Since v1, v2, . . . , vn is a basis for Rn there exist
a1, a2, . . . , an ∈ R such that π(0) =

∑n
i=1 aivi.

5 Multiplying this equation by GT yields

π(1) = GTπ(0) = GT
n∑

i=1

aivi =

n∑
i=1

aiG
T vi =

n∑
i=1

aiλivi

Repeated multiplication by GT yields

π(k) = (GT )kπ(0) = (GT )k
n∑

i=1

aivi =
n∑

i=1

ai(G
T )kvi =

n∑
i=1

aiλ
k
i vi

Since λ1 = 1 and λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| it follows that

lim
k→∞

π(k) = lim
k→∞

n∑
i=1

aiλ
k
i vi = a1λ1v1 = a1v1 = a1π

So this process converges to a scalar multiple of the eigenvector corresponding to eigenvector
1. It remains to show that a1 = 1. By assumption ‖π(0)‖1 = 1 and π(0) ≥ 0. Now assume
‖π(k)‖1 = 1 and π(k) ≥ 0. With the induced matrix norm it follows that

‖π(k+1)‖1 = ‖GTπ(k)‖1 ≤ ‖GT ‖1 · ‖π(k)‖1
5Assuming GT is diagonalizable. If GT is not diagonalizable, the matrix can be written in Jordan form

GT = PJP−1. For each eigenvalue λ the corresponding Jordan block Jλ can be written as Λ + N with Λ a
diagonal matrix with λ on the diagonal and a nilpotent matrix N. Hence if λ < 1, then Jkλ → 0 for k → ∞. For
λ = 1 this does not hold, therefore the convergence of the power method to the corresponding eigenvector is still
ensured.
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By assumption ‖π(k)‖1 = 1 and π(k) ≥ 0. Also ‖GT ‖1 = maxj
∑n

i=1 |GT
ij |, the largest absolute

column sum. G is row stochastic, hence GT is column stochastic, therefore ‖GT ‖1 = 1. Note
that GT > 0 as well. So ‖π(k)‖1 = 1 and π(k) ≥ 0 for all k ∈ N. Moreover, for k ≥ 1 it holds
that π(k) > 0, since GT > 0. Now it follows that

1 = ‖π‖1 = ‖ lim
k→∞

π(k)‖1 = ‖a1v1‖1 = |a1|‖π‖1 = |a1|

Hence a1 = 1, since π is a positive vector.

The significance of this proof is that it shows the convergence rate of the power method. Since
at step k

π(k) = a1λ1v1 + a2λ
k
2v2 + · · ·+ anλ

k
nvn = π + a2λ

k
2v2 + · · ·+ anλ

k
nvn

hence
‖π(k) − π‖ = ‖a2λk2v2 + · · ·+ anλ

k
nvn‖

If the eigenvalues are assumed to be in descending order, i.e. for each j |λj | ≥ |λj+1|, the power
method converges with O(λ2). As seen in section 3.6, |λ2| ≤ α, hence the convergence rate is
determined by α.
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4 A probabilistic model for link changes

4.1 Basic model

The links between webpages will change over time. This is especially true for links between
dynamic webpages like news pages and social media. The changes will affect the matrix H and
thus the Google matrix G. The changes in the Google matrix will lead to changes in the actual
PageRank vector. The only deterministic way a change in links can occur is if the owner or
administrator of a webpage adds or removes an outlink to another webpage, since webpages
have no direct control over inlinks. In order to model link changes it will be sufficient to model
changes in outlinks.
First the adjacency matrix A representing a network is considered. The matrix contains the
following elements

Aij =

{
1, if there is a link from Pj to Pi

0, otherwise
,

hence a column A∗j represents the outlinks of Pj . Let A∗j denote the outlink vector of page Pj .
For every element Aij in the outlink vector there are four events that can occur, namely:

A. The link from Pj to Pi remains unchanged, given that their was a link. (P (1→ 1) = α)

B. The link from Pj to Pi is removed, given that their was a link. (P (1→ 0) = 1− α)

C. A link from Pj to Pi is added, given that there was no link. (P (0→ 1) = β)

D. There remains no link from Pj to Pi, given that there was no link. (P (0→ 0) = 1− β)

These four events are the only events that can occur. The probability of the first two events
sums up to 1, since, given that there is a link, the only possibilities that can happen are that
it remains or that it is removed. Let the probability of event A be denoted by P (1 → 1) = α.
Then the probability of event B is denoted by P (1 → 0) = 1 − α. Similarly the probabilities
of event C and D can be denoted by P (0 → 1) = β and P (0 → 0) = 1 − β respectively. The
probability that there is an outlink to Pi at some time t depends on the previous time. By
defining the probability of there being a link at time t as

Pij(t) := P (Aij = 1 at time t),

the probability of there not being a link at time t is given as

P (Aij = 0 at time t) = 1− Pij(t)

since those two occurrences cover the whole probability space (P (Aij = 0 at time t) + P (Aij =
1 at time t) = 1). The probability of there being a link at the next time step is given by

Pij(t+ ∆t) = αPij(t) + β[1− Pij(t)] = [α− β]Pij(t) + β, (1)

and similarly the probability of there not being a link at the next time step is given as

1− Pij(t+ ∆t) = (1− α)Pij(t) + (1− β)[1− Pij(t)] = [β − α]Pij(t) + [1− β] (2)

Or more generally, Pij(t+ (n+ 1)∆t) = [α − β]Pij(t+ n∆t) + β, the probability of step n+ 1
depends only on the probability at step n and thus is memoryless. The model introduced here
is actually a two-state Markov chain, there being a link and there not being a link between
each two pages.
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Taking Pij(t) = 0 if there is no link at starting point t and Pij(t) = 1 if there is a link
at t, the desired interpretations are achieved, namely Pij(t + ∆t) = β in the first case and
Pij(t + ∆t) = α in the second case. These probabilities correspond with event C and A
respectively.

The assumption being made here is that α and β are fixed, i.e. they do not depend on
any webpage or time. In order to obtain realistic results from this model it is assumed that α
is relatively big and β is relatively small, that is, the probability that an outlink will remain is
relatively high and the probability that a new outlink will be added is relatively small. The
condition imposed on those probabilities is that |α− β| < 1, or rather α− β < 1 since α >> β.
The probability of there being a link after some number of steps can be stated in terms of the
starting probability Pij(t).

Proposition 1. The nth (n ≥ 1) step probability of there being a link from Pj to Pi is given
by

Pij(t+ n∆t) = (α− β)nPij(t) + β
n−1∑
k=0

(α− β)k

Proof. By induction. For n = 1 formula (1) is clearly obtained.
Now assume the formula holds for some s ∈ N, i.e.

Pij(t+ s∆t) = (α− β)sPij(t) + β

s−1∑
k=0

(α− β)k

By formula (1) the following formula for step s+ 1 is obtained

Pij(t+ (s+ 1)∆t) = (α− β)

[
(α− β)sPij(t) + β

s−1∑
k=0

(α− β)k

]
+ β

= (α− β)s+1Pij(t) + β

[
1 +

s−1∑
k=0

(α− β)k+1

]

= (α− β)s+1Pij(t) + β

[
(α− β)0 +

s∑
k=1

(α− β)k

]

= (α− β)s+1Pij(t) + β
s∑

k=0

(α− β)k

This concludes the proof.

Since α− β < 1 it follows that

lim
n→∞

Pij(t+ n∆t) = lim
n→∞

[
(α− β)nPij(t) + β

n−1∑
k=0

(α− β)k

]
= 0 + β

1

1− α+ β
=

β

1− α+ β

As time progresses the probability that there is a link convergences to the probability above.
This means that approximately a fraction β/(1−α+β) of the pages will have an inlink from Pj .

The limit of the convergence process is now known. Now the rate of convergence of

lim
n→∞

Pij(t+ n∆t) = lim
n→∞

[
(α− β)nPij(t) + β

n−1∑
k=0

(α− β)k

]
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to the limit value will be investigated. Obviously the term (α− β)nPij(t) converges at the rate
of (α−β)n to 0, since α−β < 1. As will be shown, the summation term converges at the same
rate to β/(1− α+ β). By taking the infinite sum

β + β(α− β) + β(α− β)2 + . . .

and subtracting the first N terms the N th-step error for the geometric series is obtained

[β + β(α− β) + β(α− β)2 + . . . ]− [β + β(α− β) + · · ·+ β(α− β)N−1]

= β(α− β)N + β(α− β)N+1 + β(α− β)N+1 + . . . ,

which is itself a geometric series which sums to β(α − β)N/(1 − α + β). So the total nth-step
error term is given by

εij(t+ n∆t) =
β(α− β)n

1− α+ β
− (α− β)nPij(t) = (α− β)n

(
β

1− α+ β
− Pij(t)

)
(3)

which converges to 0 at the rate of (α− β)n.

4.2 Results of the basic model

To illustrate the theoretical results a network containing a subset of 9914 webpages in the
*.cs.stanford.edu domain will be used. First of all, it will be tested whether or not the
convergence of the probability of there being a link matches the theoretical rate of convergence.
For this test the values α = 0.95 and β = 0.05 will be used. Two pages, P3 and P5, within column
4 (the outlinks of P4) have been picked so as to illustrate the convergence of the probability.
The probabilities will converge to 0.05/(1− 0.95 + 0.05) = 1/2.

Figure 3: Convergence of the probability of there being an outlink from P4 to P3 and P5

Notice that in figure 3 the convergence is perfectly symmetrical in the 0.5 probability line. As
can be seen in equation 3, this is because if β/(1 − α + β) = 1/2 (i.e. β = 1 − α) then the
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error of a page with start value 1 is equal to the absolute value of the error of a page with start
value 0 at any given step. Figure 3 also shows that after about 50 steps the error is already
quite small. By calculating the error after 50 steps by using formula 3 the following values are
obtained.

ε3,4(t+ 50∆t) =
0.05(0.95− 0.05)50

1− 0.95 + 0.05
− (0.95− 0.05)50 · 0 ≈ 0.0026

ε5,4(t+ 50∆t) =
0.05(0.95− 0.05)50

1− 0.95 + 0.05
− (0.95− 0.05)50 · 1 ≈ 0.0026− 0.0052 = −0.0026

Those values are indeed quite small. In table 1 some more approximate values of the respective
probabilities are given.

n P3,4(t+ n∆t) P5,4(t+ n∆t)

0 0 1
1 0.05 0.95
2 0.095 0.905
3 0.1355 0.8645
10 0.3257 0.6743
20 0.4392 0.5608
30 0.4788 0.5212
50 0.4974 0.5026
75 0.4998 0.5002
100 0.5 0.5

Table 1: Convergence of probability of there being a link after n steps rounded to four decimals.

By setting an upper bound for the error equation the number of steps required to fall within
that bound can be calculated as follows.

(α− β)n
(

β

1− α+ β
− Pij(t)

)
≤ δ

In the case of α = 0.95 and β = 0.05 Pij(t) can be ignored because of symmetry. Then the
number of steps can be calculated by

n ≥ log(2δ)

log(9/10)

Using this formula following table is obtained.

ε n

10−1 16
10−2 38
10−3 59
10−4 81

Table 2: The upper bound for the error and the number of steps required to achieve it.

Now the actual behaviour in outlinks in the columns are investigated and compared to the
behaviour of the probability of there being a link.
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Figure 4: Change in the number of outlinks of P1, P9612 and P6562 over time.

Figure 4 shows the change in the number of outlinks over time. The webpages P1, P9612 and
P6562 have a starting number of outlinks of 0, 133 and 277 respectively. The probability of
there being a link at any given position (except from a webpage to itself) will converge to
β/(1 − α + β). Taking α and β as before the probabilities converge to 1/2. This means that
after the probabilities are close enough to their limit value the number of outlinks in any given
column will fluctuate around approximately (1/2) · (n − 1) where n is the total number of
webpages. In figure 4 one can see that after about 40 time steps the number of outlinks is
already close to the limit value. The actual number of outlinks for the pages in this particular
simulation after 40 iterations are 4789, 4887 and 4895 respectively. The difference between
the actual and expected number of outlinks can mainly be attributed to the fact that because
of the starting number of outlinks the bigger portion of the 9914 webpages does not have an
inlink from any of the three webpages. Since, as can seen in figure 3 and table 1, the chance of
there being a link while there was none at the beginning will increase to 0.5 and there being
more pages with no inlinks the average chance of there being a link in any of the three columns
will be below 0.5. As time progresses this effect will disappear and the number of outlinks will
fluctuate around the expected value.

The next thing that will be discussed is the effect of the model on the adjacency matrix as a whole
and on the PageRank vector. For the individual columns the number of outlinks will eventually
fluctuate around (1/2)(n − 1) (given α and β as before). This means that for the adjacency
matrix the number of outlinks will eventually fluctuate around (1/2)n(n− 1) = 49, 138, 741 in
this case.
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Figure 5: A graphical representation of the links in the 9914× 9914 matrix.

Figure 5 shows the structure of the original *.cs.stanford.edu matrix. The total number of
outlinks is 35, 555, which is only about 0.04% of the total number of possible links (9914×9913 =
98, 277, 482). Figure 6 shows what part of the matrix looks like after one iteration.

Figure 6: On the left the original links between the first 500 pages and on the right the links
between the same pages after one iteration.

To be able to see enough detail, only the links between the first 500 webpages are plotted. After
just one iteration it already looks like random noise. The matrix after this particular simulation
now contains 4, 945, 484 links, which is about 5% of the total number of possible links. Plotting
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the number of outlinks over time the following results is obtained.

Figure 7: The change in the total number of outlinks over time.

Figure 7 shows no real surprises. The number of outlinks progress towards the predicted value
of about 49, 138, 741. It seems to take quite a number of steps to get there, but this is explained
by the fact that since the number of links in the original matrix is so low, the average proba-
bility of there being a link is much lower than 0.5 in the beginning, especially since there are
quite a number of dangling nodes, hence it will take longer to actually reach the predicted value.

How do these matrix changes affect the PageRank vector? First the PageRank of the
original matrix will be computed and plotted in descending order by using a permutation
matrix P (i.e. πsorted = Pπ). After one time step the PageRank vector will be computed again
based on the new adjacency matrix and vector π′ is obtained. This vector is sorted by using
the permutation matrix P which was used previously, i.e. π′sorted = Pπ′. This means that the
pages will be plotted in the same order over for each time step.
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Figure 8: The PageRank for the 1000 pages with highest PageRank based on the original matrix.

As can be seen in figure 8, after only one iteration the PageRank is already almost flattened
out. The difference between the maximum and minimum PageRank based on the original
matrix is about 7.9 · 10−3, while the spread based on the adjusted matrix is a mere 6.8 · 10−5.
After 10 iterations it is down to about 10−5. This is exactly what one would expect to happen.
The links are randomly distributed, while the number of links in each column will tend towards
9913/2. After 10 iterations the average number of links in a column is about 3229 and since
A is a square matrix, the average per row will be the same. So the number of outlinks and
number of inlinks will be about the same for each webpage and hence every webpage will have
about the same importance as any other webpage according to the PageRank model. After 10
iterations the maximum number of inlinks is 3431 while the minimum is 3041. For the outlinks
the maximum and minimum equal 3432 and 3034 respectively. As time increases the spread
will decrease, barring statistical noise, and the PageRank vector will flatten out even more.

In order to obtain a more interesting result in PageRank changes, a more modest β will
be used. The original adjacency matrix contains 35555 links. The average number of outlinks
per page is then 35555/9914 ≈ 3.5. By taking β = 0.00036, the expected number of links in
the matrix after one time step will be 0.95 · 35555 + 0.00036 · (9914 · 9113 − 35555) ≈ 69144
which is about twice the original number of links. Hence the changes in PageRank are
expected to be less drastic since the maximum number of inlinks for the webpages is 344 and
the minimum is 0. The expected number for the page with maximum number of inlinks is
0.95 · 344 + 0.00036 · 9569 ≈ 330. PageRank does not solely depend on the number of inlinks,
however major changes in outlinks for the webpages are not expected for similar reasons as
major changes in the number inlinks are not expected. On average about 3.5 new outlinks per
column will be added randomly, which will flatten the PageRank vector somewhat. Figure 9
shows the actual results.
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Figure 9: The average PageRank over ten simulations for the 1000 pages with highest PageRank
before and after one iteration using a small β .

In figure 8 the difference between the maximum and minimum PageRank was about 7.9 · 10−3.
After averaging 10 simulations of 1 iteration each using β = 0.00036 the spread is down to
4.3 · 10−3, which is much less drastic than the mere 6.8 · 10−5 in figure 8. The results seem to
agree with the predictions.

Bigger values for α and smaller values for β like the one used above are especially use-
ful to model shorter time scales. A few more results will be shown using α = 0.99 and β = 10−3

to be able to compare the behaviour between different α’s and β’s.
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Figure 10: Convergence of the probability of there being a link.

In figure 10 one can see that with the chosen α and β it takes much longer for the probability
to converge, compared to convergence with the previously used values. The limit value is
0.001/(1− 0.99 + 0.001) = 1/11. The convergence is not symmetric either, since the limit value
is not equal to 1/2. In the previous section it was concluded that the rate of convergence was
determined by (α − β)n, hence the slower convergence can be explained by α − β now being
closer to 1. Since the probability convergence is much slower, the number of links is expected
to converge much slower as well. Using the same webpages as in figure 4, figure 11 shows the
number of outlinks of time.
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Figure 11: The number of outlinks for page P1, P9612 and P6562 over time.

Figure 11 shows a much slower convergence process. The values will eventually fluctuate around
(1/11) · 9913 ≈ 901. Figure 12 shows what the links structure looks like after one iteration.

Figure 12: Links between the first 1000 webpages after one iteration.

Figure 12 shows that after one iteration most of the original structure (as can be seen in
figure 5) is still intact, as can be expected since the probability for a link to stay is quite high
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(0.99). The total number of outlinks is now 133, 032, which is about the expected value of
35555 · 0.99 + (9914 · 9913− 35555) · 0.001 ≈ 133, 473.
The expected total number of outlinks is (9914 · 9913)/11) ≈ 8, 934, 316.

Figure 13: Total number of outlinks over time.

As seen in figure 10 the convergence of the probability of there being a link takes a lot of steps,
hence the total number of links will have a low convergence rate as well.

By way of conclusion it can be said that the basic model does not yield very interesting
results, since this probabilistic model relies heavily on purely random processes. In the next
section a more interesting and realistic model will be introduced.

4.3 Objective extended model

The basic model does not yield very interesting results in terms of realistic behaviour. To make
the model less random and more realistic the α and β are made time and webpage dependent,
so that α and β are actually αij(t) and βij(t) respectively. The rationale behind the webpage
dependency is that not every webpage changes its outlinks as often. A news page for example
will change its outlinks very frequently. A small museum webpage, however, will not change its
outlinks all that often, if at all. Hence the probabilities for adding and removing outlinks will
depend on Pj , the webpage that provides the outlinks. The probabilities also depend on Pi, the
page the potential outlink is pointing at, since the outlinks to more popular pages are less likely
to be removed and more likely to be added. For instance, an outlink to a popular webpage as
Wikipedia (which probably has a relatively high PageRank) is likely to stay as it is a stable
webpage and its content is unlikely subject to major changes. This is also why webpages are
more likely to add an outlink pointing at a popular webpage. A popular webpage is usually
stable. The popularity of a webpage at a certain point in time is measured by its PageRank
πi(t). This important metric will be used in the definition of αij(t) and βij(t) to simulate the
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intended behaviour. Through changes in links, the PageRank of a webpage will change over
time, hence the probabilities are time dependent. The model is objective in the sense that
webpages owners or administrators base their decisions on an objective metric, the PageRank.
An active webpage, a webpage with lots of outlinks at the start, is deemed more likely to change
its outlinks. |Pj | can be used in the definition to account for this factor.6

Definition 19. The probabilities for keeping an outlink and adding an outlink from Pj to Pi

at time t are defined as respectively

αij(t) := 1−

1− γ πi(t)

max
i
πi(t)

 δ
|Pj |

max
j
|Pj |

βij(t) :=
πi(t)

max
i
πi(t)

ε
|Pj |

max
j
|Pj |

The definition of α uses damping factors 0 < γ ≤ 1 and 0 < δ ≤ 1 to ensure that the influence
of both the PageRank and outdegree factors are limited. This is due to the observation that
outlinks are not that likely to be removed. The damping factors create an artificial lower
bound for α. There is also a damping factor 0 < ε ≤ 1 in the definition of β. This is to ensure
that the influence of the outdegree factor is dampened. For some data sets this is necessary,
since otherwise the entire link structure of a network could get lost after one iteration because
of the enormous amount of new links. Notice that as πi(t) approaches maxi[πi(t)], α increases,
and as |Pj | approaches maxj |Pj |, α decreases. β increases as both πi(t) and |Pj | approach the
respective maximums. In both cases the desired behaviour for the probabilities is achieved.
Also note that α and β are well-defined, i.e. 0 ≤ α, β ≤ 1, since 0 < πi(t)/maxi[πi(t)] ≤ 1 and
0 ≤ |Pj |/maxj |Pj | ≤ 1.

Now equation 1, the probability of there being a link from Pj to Pi after one iteration,
becomes

Pij(t+ ∆t) =

1−

δ + (ε− γδ) πi(t)

max
i
πi(t)

 |Pj |
max

j
|Pj |

Pij(t) +
πi(t)

max
i
πi(t)

ε
|Pj |

max
j
|Pj |

Since the long-term behaviour of the πi(t) factor cannot be accurately predicted, the long-term
behaviour of the probability above is unknown. Some very rough short-term predictions can be
made based on this equation, after all the original PageRank and outdegree values are known.
The predictions are very limited however. The more general version of the formula is given by

Pij(t+ n∆t) = αij(t+ (n− 1)∆t)Pij(t+ (n− 1)∆t) + βij(t+ n− 1)∆t)[1− Pij(t+ (n− 1)∆t)]

This again is a Markov chain, however this time it is time inhomogeneous, meaning the transition
probabilities are time-dependent. Using the formula above one can find the general nth-step
formula based on the original probability. Using starting time t = 0 and writing n = n∆t for
simplicity, the following formula is obtained.

6By letting |Pj | be time dependent, |Pj |(t) being the number of outlinks at time t, β gets bigger the more
outlinks are added, which in turn increases the probability of adding an outlink, resulting in a cycle. So a fixed
value for |Pj | is used.
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Proposition 2. The nth-step (n ≥ 1) probability of there being a link from Pj to Pi is given
by

Pij(n) = Pij(0)
n−1∏
k=0

[αij(k)− βij(k)] +
n−1∑
p=0

βij(p) n−1∏
m=p+1

[αij(m)− βij(m)]


Proof. For n = 1 once again formula 1 is obtained.
Now assume the formula holds for some s ∈ N. Then:

Pij(s+ 1) = αij(s)Pij(s) + βij(s)[1− Pij(s)]

= αij(s)

Pij(0)

s−1∏
k=0

[αij(k)− βij(k)] +

s−1∑
p=0

βij(p) s−1∏
m=p+1

[αij(m)− βij(m)]


+ βij(s)

1− Pij(0)

s−1∏
k=0

[αij(k)− βij(k)]−
s−1∑
p=0

βij(p) s−1∏
m=p+1

[αij(m)− βij(m)]


= (αij(s)− βij(s))Pij(0)

s−1∏
k=0

[αij(k)− βij(k)]

+ (αij(s)− βij(s))
s−1∑
p=0

βij(p) s−1∏
m=p+1

[αij(m)− βij(m)]

+ βij(s)

= Pij(0)

s∏
k=0

[αij(k)− βij(k)] +

s−1∑
p=0

βij(p) s∏
m=p+1

[αij(m)− βij(m)]

+ βij(s)

= Pij(0)

s∏
k=0

[αij(k)− βij(k)] +

s∑
p=0

βij(p) s∏
m=p+1

[αij(m)− βij(m)]


This concludes the proof.

The use for this formula is limited, since at each step the α and β still have to be computed,
because they are time-dependent. What is known is that |α − β| < 1, if |Pj | > 0. If |Pj | = 0,
then α = 1 and β = 0, however, in that case Pij(0) = 0 for all pages Pi since then Pj would
have no outlinks. So in both cases when n → ∞ the first term on the right converges to 0,
which means that the probability converges to the same value independent of there being a link
at the start.

4.4 Results of the objective extended model

The subset of 9914 webpages in the *.cs.stanford.edu domain will be used to illustrate
the behaviour of the extended model. The values for the damping factors used are γ = 0.95,
δ = 0.05 and ε = 0.1. The value for γ is chosen, because its main use it to prevent the α to
become 1 if Pi is the webpage with maximum PageRank. It seems realistic to suppose that
there is a non-zero probability of removing the outlink to the most popular webpage on the
web, but it will be quite small, in this case δ/20 = 1/400 for the most active webpage. Both
δ and ε are chose quite small, since the goal of the extended model was to get more realistic
behaviour. Using δ = 0.05 and δ = 0.1 results in realistic behaviour. This means that not the
whole link structure will be lost in one time step, but instead the results will show relatively
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small changes, which (more) realistically models weekly or monthly changes in a network.
However the values, as will be indicated by the results, are not too small. This is to illustrate
the model’s behaviour. Too small values for the damping factors would result in barely any
change at all, which does not really show the behaviour of the model.

Using these values the following results are obtained. First the results in change in link
structure.

Figure 14: The links between the first 1000 pages in the original matrix and after 50 steps.

Figure 14 shows the changes in links of the first 1000 pages after 50 steps. As expected, the
original link structure is mostly intact. The figure on the right shows that some pages seem
to have more inlinks and outlinks than others. This is also what is to be expected, since the
probability of there being a link now depends on the PageRank of Pi and outdegree of Pj . This
behaviour is even better illustrated by the change in the whole network.
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Figure 15: The links between all the pages in the original matrix and after 50 steps.

As can be seen in figure 15 in the blank columns, the webpages with no outlinks in the beginning
remain this way. In the definitions of α and β, if |Pj | = 0, then β = 0 for every Pi and at every
time step, hence figure 15 shows the expected and intended behaviour. Some rows look more
dense than others, which means that some webpages have more inlinks than others. In this case,
P2264 has both the highest PageRank and number of inlinks at the start, namely about 0.0079
and 340 respectively. After 50 iterations P2264 still has the highest PageRank and number of
inlinks, now about 0.0064 and 873 respectively. The next figure shows the progression of the
total number of links in the matrix.
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Figure 16: Progression of the total number of links over time.

Figure 16 shows a stable increase in the number of links over time. This means that the α and
β must stay relatively stable over time. This in turn means that the outdegree and PageRank
stay relatively stable over time. This is however quite surprising, since the number of outlinks
has risen from 35555 to 62672, which means that the average outdegree has almost doubled. So
then the ratio between the outdegree and the maximum outdegree must have stayed relatively
stable. This could certainly be the case since activity is proportional to outdegree at the start.
As will be shown in figure 18 the PageRank has changed quite a bit. The small fluctuation
in the α and β can mainly be attributed to the chosen values for the damping factors δ and
ε. They are quite small and any fluctuations in outdegree and PageRank is multiplied by this
value to form the α and β, hence the impact of the PageRank and outdegree is indeed rather
low.
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Figure 17: On the left the β8227,5288 over time and on the right the π8227 over time.

In figure 17 the probability of adding a new link from P5288 to P8227 is being shown. At the start
P5288 only has 2 outlinks. One can see the impact the PageRank of the webpage the potential
link is directed at has on β.

(a) (b)

Figure 18: The average PageRank over 25 simulations of the first 1000 ordered pages (a) before
and (b) after 50 steps.

Figure 18a is sorted using a permutation matrix P. The same matrix P is used to order figure
18b. To correct for probabilistic noise the new PageRank values are the average PageRank
values over 25 simulations.
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Figure 19: The change in PageRank after 50 steps averaged over 25 simulations.

Figure 19 gives a clearer view of the changes in PageRank. Some webpages have had a
significant increase in PageRank, while the PageRank of the 200 pages with the highest
PageRank almost all seem to have decreased. Notably the page with ordered number 306 has
seen an increase of about 0.002, which is the biggest increase over all pages. P2264 still has
the maximum PageRank, even though it lost about 0.002 in PageRank. One would certainly
expect the page with high PageRank at the start to retain that position in the short-term.
The highly ranked pages already have inlinks from other highly ranked pages. Since the
probabilities for inlink removal are so low, the inlinks will remain for the most part. This
means that, unless some inlink from a page with high PageRank is removed, the PageRank will
remain more or less stable in the short-term. However, in the long-term the other pages will
gain inlinks over time, possibly from highly ranked pages as well, hence this will increase their
PageRank, likely at the expense of the highly ranked pages. The highly ranked pages already
have inlinks from highly ranked pages at the start, while lower ranked pages probably do not.
So the inlinks from active highly ranked pages to other highly ranked pages are likely to be
more or less stable, while new inlinks from highly ranked pages to lower ranked pages will
appear over time. This means a net loss of PageRank for pages with high PageRank at the start.

Looking at the correlation between the PageRank at the start and the change in PageRank
a value of −0.8490 is obtained. This concurs with the observation that lower ranked pages
will increase in PageRank at the expense of high ranked pages by gaining inlinks from
higher ranked pages. Although it does not say anything about the quality of the inlinks,
the correlation between the number of inlinks at the start and the change in PageRank is
−0.7467. A high number of inlinks is associated with high PageRank, there being a correlation
of 0.8278 between starting PageRank and number of inlinks, so indeed higher ranked pages
seem to already have lots of inlinks from other pages while lower ranked pages do not.
There is also a weak correlation of 0.3994 between starting outdegree and PageRank. In
one of the next paragraphs it will be shown that there are some really active highly ranked pages.
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Is there something that can be said about what determines which pages increase in
PageRank? Since the values are an average over 25 simulations, it seems likely that there is
something about those pages that showed a significant increase in PageRank that explains
their success.

Figure 20: The standard deviation in PageRank of the first 1000 ordered pages over 25 simula-
tions.

The standard deviation in figure 20 gives a good indication of how consistent the results of figure
19 are. The decline in PageRank in the highly ranked pages seems rather consistent. There are
some pages with an extremely high standard deviation indicating that the results are not very
consistent, although there could be something about those pages that increases the likelihood
of big change in PageRank. Adding outlinks in a rational way according to each page’s level of
activity then leads to some high, albeit unstable, increase in PageRank for some pages.

Page PageRank change Standard Deviation

P4103 0.0020 0.0067
P4102 0.0020 0.0066
P6551 0.0012 0.0039
P6540 0.0012 0.0039
P2311 0.0008 0.0032
P3325 0.0008 0.0029
P5095 0.0008 0.0029
P5094 0.0007 0.0029
P2312 0.0007 0.0031
P2512 0.0007 0.0015

Table 3: The top 10 pages with the highest change in PageRank.
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The first thing that stands in table 3 out is that there are three pairs of direct neighbours. This
is likely because of the structure of the dataset. In the downward diagonal of figure 5 it can be
seen that neighbours tend to be interconnected, hence any change in one of the pages will result
in change in both pages. From the top 10 pages with the highest PageRank, 9 are in the top 10
of the pages with highest standard deviation in PageRank. So the high increase in PageRank
only seems to happen in only some percentage of the simulations, but when it happens, the
PageRank increases by a lot. For example, in one simulation P4103’s PageRank increases to
0.0251, which is about 1/40 of the total available PageRank for the 9914 pages. The correlation
between activity (number of outlinks) and change in PageRank is a rather weak −0.4136 over
all pages. By looking at specific cases, however one can see that inactivity tends to pay off the
most. Without exception, the pages of table 3 have only 1, 2 or 3 outlinks, while the maximum
over all pages is 277. Hence those page are not very active themselves and thus do not ’give
away’ much of their PageRank to other pages. There is also a strong positive correlation of
0.9558 between the number of inlinks at the end and the PageRank change, so pages like P4103

tend to gain a lot of inlinks. The quality of the inlinks determine of course the increase in
PageRank. By looking at which pages tend to inlink to the pages of table 3, it may be possible
to give a coherent explanation for their success. Table 3 shows that these pages have a rather
high standard deviation in PageRank, so one should look for links that happen only a small
percentage of the time. Looking at which new links occur in more than 20% of the simulations,
the following table is obtained.

Page Inlinking pages

P4103 P6837, P7032, P7033

P4102 P6837, P7032, P7034

P6551 P7032, P7035, P8057

P6540 P6562

P2311 P9468

P3325 P6840

P5095

P5094

P2312

P2512

Table 4: The new inlinks which occur at least in 6 simulations from the top 10 pages with the
highest change in PageRank.

The inlinks for the last 4 pages in table 4 are are apparently not stable enough to show up,
because there are no inlinks which are created in more than 20% of the simulations. Looking
for example at P4103, the inlinks are from pages which are highly ranked before as well as after
50 steps. The PageRanks of these pages are all in the top 20 before, and all in the top 30 after
50 steps. The consistent inlinks from the other pages almost all have a similarly high PageRank
before and after. These pages must be rather active for these links to be created frequently,
which is indeed the case. P6837 even has the maximal number of outlinks, while most of the
other pages have outdegrees close to it. So the changes in PageRank can be explained by there
being a relatively high probability of gaining an inlink from highly ranked active webpages,
while the pages being linked to are themselves rather inactive. The probability for gaining an
inlink is relatively high because the original PageRank of these pages is still in the top 1000 and
not likely to decrease significantly over time, since these pages are not very active.
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4.5 Subjective extended model

The extended model assumed that page owners made a rational choice about which webpages
to add an outlink to. In reality however, page owners do not always make rational choices.
Page owners may simply look at what outlinks other webpages have. If Pi has a high number
of inlinks, the owner of page Pj will probably notice that many pages have an outlink to Pi.
This may be an incentive to create an outlink from Pj to Pi as well. The reason for webpages
to link to another webpage is then not determined by an objective factor like PageRank, but
by a more subjective determinant of the quality of a page, namely the number of inlinks. This
behaviour can be modelled by letting the probabilities depend on |B(Pi)|(t) instead of πi(t).
The more inlinks a webpage has at some point in time, the more likely it is that webpage owners
will notice the hyperlinks and will add one on their own page as well. Similarly, the higher the
number of inlinks Pi has, the higher the probability that Pj will keep its outlink to Pj . Still
the activity of the webpage owner plays a big role. As was explained in the section about the
extended model based on PageRank, some webpages are more active in adding outlinks than
others. So |Pj | also needs to be considered in the definition of α and β. This leads to the
following definition.

Definition 20. The probabilities for keeping and adding an outlink from Pj to Pi at time t are
defined as respectively

αij(t) := 1−

1− γ |B(Pi)|(t)
max

i
|B(Pi)|(t)

 δ
|Pj |

max
j
|Pj |

βij(t) :=
|B(Pi)|(t)

max
i
|B(Pi)|(t)

ε
|Pj |

max
j
|Pj |

Similar to definition 19, α and β are well-defined. The same damping factors are being used to
reduce the impact of the page owner activity and the subjective popularity on the probability of
keeping a link. Notice that as the number of inlinks of Pi increases, α increases and β decreases.

In this case equation 1 becomes

Pij(t+ ∆t) =

1−

δ + (ε− γδ) |B(Pi)|(t)
max

i
|B(Pi)|(t)

 |Pj |
max

j
|Pj |

Pij(t) +
|B(Pi)|(t)

max
i
|B(Pi)|(t)

ε
|Pj |

max
j
|Pj |

Proposition 2 also holds for the subjective extended model. It is still necessary to calculate the
α and β at each step however. One could use a formula for the expected number of inlinks for
this, but that does not really simplify things.

4.6 Results of the subjective extended model

The *.cs.stanford.edu dataset will be used to illustrate the subjective extended model. The
same values for the damping factors will be used (γ = 0.95, δ = 0.05 and ε = 0.1).
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Figure 21: The links between the first 1000 pages before and after 50 iterations.

Figure 21 shows the new adjacency matrix for the first 1000 pages. It is not really possible to
see whether or not pages with lots of inlinks in the original matrix have gained more inlinks.

Figure 22: The adjacency matrix after 50 iterations.

Figure 22 shows that some pages have no inlinks. In the sparsity plot of the original matrix it
can already be seen that some pages have no inlinks (e.g. P6300). Normally these pages would
not show up in the dataset, since Google explores the internet by following links, hence if a
page has no inlink, it cannot be discovered. These pages are present in the Stanford dataset,
however. The model is constructed such that βij = 0 if Pi has no inlinks, hence the pages still
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have no inlinks after 50 iterations. After this particular iteration the matrix contains 84950
links, which is more than double the starting value of 35555.

(a) (b)

Figure 23: The average PageRank over twenty-five simulations of the first 1000 ordered pages
(a) before and (b) after 50 steps.

Figure 23 shows the average PageRank over 25 simulations for the first 1000 pages ordered
by the permutation matrix P. The number of outlinks has more than doubled over these 50
iterations, averaging about 87487 links. P2264 still has the maximum PageRank, its PageRank
having increased by about 0.0001.

Figure 24: The change in PageRank after 50 steps averaged over 25 simulations.

The changes in PageRank are even better illustrated by figure 24. Most highly ranked pages
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have decreased in PageRank (165 of the top 200). The change seems to be more random with
respect to the original PageRank than in figure 19 of the objective extended model. This is
also backed up by the data. The correlation between the PageRank change and the starting
PageRank is only −0.5091, which is not all that strong. For the same reason as with the
objective model, the highly ranked pages are likely to decrease in PageRank. However, the
correlation between PageRank at the start and number of inlinks at the start is 0.8278. So
higher ranked pages tend to have more inlinks, which means that they generally tend to gain
more inlinks. The amount of new inlinks could compensate slightly for the observation that
highly ranked pages must already have inlinks from other highly ranked pages, hence the weaker
correlation. Keeping this in mind, it is no surprise to see that the top 10 pages with the highest
positive change in PageRank have on average about 191 inlinks at the start. The correlation
between number of inlinks at the start and PageRank change is a mere 0.0391. Indeed gaining
lots of inlinks does not mean gaining quality inlinks. One tends to gain inlinks from the more
active pages, but there is only a weak 0.3994 correlation between activity (number of outlinks)
and PageRank, so the quality of those inlinks is likely not so great. The change in PageRank
still depends on the activity of the page itself as well.

Figure 25: The standard deviation in PageRank of the first 1000 ordered pages over 25 simula-
tions.

The standard deviation in the subjective model as seen in figure 25 is overall much lower than
in the objective model. The maximal standard deviation is now about a factor 10−1 lower. So
overall the values are more consistent. This is what can be expected. Most pages with a low
number of inlinks will not gain many inlinks, so it is likely that their PageRank is relatively
stable. The new inlinks are likely from active webpages, so in general the new inlinks come from
a subset of active webpages. These links will for the most part be directed at pages with already
a high number of inlinks, hence the PageRank will not be affected as much. In this model the
behaviour of the number of inlinks of a page is more predictable than its PageRank, since it
will likely stay roughly proportional to the starting situation. The stability of which links are
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created is illustrated by the following fact. For the objective model the number of links which
are created more than 20% of the time, equals 3515. For the subjective model this number is
4893.

4.7 Owner activity and PageRank change

Search engine optimization, the practice of trying to get one’s webpage highly ranked in the
search results, has been a hot topic ever since the birth of search engines. Search engine
optimization concerning Google’s PageRank is no exception. Using the subjective and objective
extended model, what can be said about the influence of the changes in links on the PageRank
for a particular page? The behaviour of the webpage is determined by the behaviour of the
page owner and/or administrators. Owners or administrators choose to be active (or not),
hence the PageRank can be seen as a function of owners’/administrators’ behaviour. This
presents an opportunity to investigate the PageRank using the models developed, by looking
at what behaviour leads to what change in PageRank. The central question concerns the
influence of webpage behaviour on its PageRank. The role of activity in PageRank will be
looked into for both the subjective and objective model to see if it is better to be rational
(PageRank based) in adding and removing links or to follow the crowd (inlink based). It will
also be investigated whether activity should focus on adding or removing outlinks in order to
consolidate the PageRank.

4.7.1 PageRank-based activity

The most influential factor that the page owner or administrator has control over that can affect
the PageRank is activity. In the models discussed the activity was measured by the outdegree
at the start. The obvious way to measure the effect of activity on PageRank is by artificially
setting all activity to a low value and only setting the value of one page to some specific number.
Then look at what happens to the PageRank of that one page. The activity parameter used for
this is defined as

|P ′j | =


1, if |Pj | > 0 and Pj is not a test page
0, if |Pj | = 0 and Pj is not a test page
η, if Pj is a test page

One test page is picked to research the influence of activity on PageRank. To not let the activity
of the other pages interfere too much with the results, the activity parameter is not divided by
the maximum outdegree, but by 1000. Zero activity for the other pages would not be a realistic
situation, since PageRank is heavily influenced by inlinks, which is indirectly influenced by
activity as well. In the objective model a higher PageRank results in a higher probability for
gaining inlinks, so activity of other pages should be taken into account. 0 ≤ η ≤ 1000 is used
as a parameter to control the activity of the test page. Note that this will not interfere with
the links existing between pages, it is only used as an activity parameter. Now the α and β are
defined as

αij(t) := 1−

1− γ πi(t)

max
i
πi(t)

 δ
|P ′j |
1000

βij(t) :=
πi(t)

max
i
πi(t)

ε
|P ′j |
1000

For the damping factors the same values as before are used. As test pages the following pages
were chosen:
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Page Inlinks Outlinks PageRank

P3718 14 9 0.001296
P7485 3 2 0.000065

Table 5: Test pages.

P3718 has a relatively high PageRank (top 100), and P7485 has an intermediate PageRank (rank
4004). The following table shows the average results for both pages over 10 simulations.

Page η PageRank PageRank new Difference St. dev. inlinks outlinks

P3718 0 0.001296 0.001190 -0.000106 0.000430 21.2 9
500 0.001296 0.000567 -0.000729 0.000249 17 179.6
1000 0.001296 0.000778 -0.000518 0.000251 17.6 205.6

P7485 0 0.000065 0.000061 -0.000004 0.000004 3 2
500 0.000065 0.000060 -0.000005 0.000011 3.2 184.6
1000 0.000065 0.000067 0.000002 0.000010 3.6 225.8

Table 6: The PageRank before and after 50 steps using different η’s averaged over 10 simulations
and rounded off to 6 decimal places.

For the high-ranked page P3718 the results in table 6 are unanimous. Activity leads to a lower
PageRank compared to no activity. Activity creates sort of a circle in the PageRank-based
model. An active page likely creates a number of outlinks in the first few iterations. This leads
to a PageRank drop. This lowers the probability of pages adding an outlink to the active page,
hence the active page generally loses out on PageRank compared to the inactive case. And so
the circle continues, more or less. This can be seen in the table as well. In the inactive test
P3718 has on average more inlinks than in both active tests. What further stands out is that the
PageRank loss is lower in the hyperactive test (η = 1000) than in the moderately active test
(η = 500). The standard deviation is also about the same, so it does not seem to be caused by
some extreme values. It may be accounted for by the fact that the average number of inlinks is
slightly higher in the hyperactive test. A quality inlink could significantly boost the PageRank.
The number of outlinks does not seem to matter that much beyond a certain number. It is
hard to draw any definite conclusions from this though, since, for example, this also depends
on whether or not the page has an outlink to your webpage as well. The activity that can be
directly controlled by a webpage, adding or removing outlinks, seems to lead to lower PageRank.
The main factor which is uncontrollable, inlinks, seems to have the most positive impact on
PageRank for the tested pages. The effect of different strategies therefore seems to be overruled
by uncontrollable factors, which explains why each strategy results in PageRank loss for the
tested pages.
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Figure 26: The progress of the number of inlinks and outlinks compared to the PageRank of
P3718 over time in one realization using η = 500.

Note that figure 26 only shows the result of one particular simulation. For this figure η = 500
was used. One can see that each time an inlink is added there is a bump in PageRank. The
steady growth of outlinks does not seem to impact the PageRank very much, or at least it
seems overruled by the new inlinks. Around step 42 the PageRank plummets, while there
is no significant change in inlinks or outlinks to be seen that could have caused it. It might
have been caused by some important webpage removing its outlink to P3718, although it seems
unlikely that it would happen more than once. The number of inlinks stays the same, so at
the same time a new inlink should have been created. The more probable explanation is that
it has been caused by some major change outside of P3718 itself. An important inlink from a
webpage Pk that has an outlink to P3718 could have been removed. This would cause Pk to
decrease in PageRank, and hence decrease P3718’s PageRank.

The results for P7485 are not that clear. The activity of lower ranked pages does not
seem to make much of a difference. In the inactive case barely anything changes. In the active
cases there is slightly more change. The indifference to activity could be explained by the
fact that in some of the active simulations P7485 gained an inlink. P7485 only has 3 inlinks
at the start, so a new inlink could mean a big increase in PageRank. One such inlink could
compensate for all the new outlinks.
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Figure 27: The progress of the number of inlinks and outlinks compared to the PageRank of
P7485 over time in one realization using η = 500.

One simulation is pictured in figure 27. The number of inlinks stay stable over time. P7485 has
a low starting PageRank which diminishes over time, hence there is a very low probability of a
new inlink being added. There seems to be a significant negative correlation between change
in PageRank and change in the number of outlinks. This makes it safe to say there is some
sort of causal relation between the two, which is in accordance with the overall PageRank model.

In general it can be said that activity diminishes PageRank. Providing recommenda-
tions to other webpages diminished ones own PageRank, which also makes it less likely for a
page to be backlinked to, hence activity is a double-edged sword. Especially webpages with
a high PageRank seem to lose out. What was also observed is that after a certain number of
outlinks, the PageRank is not influenced as much any more by new outlinks. On the other
hand, highly ranked pages with a low number of outlinks are especially sensitive to activity.
Big pages with already lots of outlinks, seem not to be influenced too much, which makes it
possible for pages like Wikipedia to have a high PageRank.

4.7.2 Inlink-based activity

The influence of activity on PageRank will be investigated in a similar way using the subjective
model. The same pages, P3718 and P7485, will be used so as to be able to make a fair comparison
between both models. The same definitions and values will be used to model the activity. In
this case the probabilities will be defined as

αij(t) := 1−

1− γ |B(Pi)|(t)
max

i
|B(Pi)|(t)

 δ
|P ′j |
1000

βij(t) :=
|B(Pi)|(t)

max
i
|B(Pi)|(t)

ε
|P ′j |
1000
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For clarity, again the test pages used:

Page Inlinks Outlinks PageRank

P3718 14 9 0.001296
P7485 3 2 0.000065

Table 7: Test pages.

The results are shown in the following table.

Page η PageRank PageRank new Difference St. dev. inlinks outlinks

P3718 0 0.001296 0.000950 -0.000346 0.000146 15.2 9
500 0.001296 0.000931 -0.000365 0.000274 15.8 149
1000 0.001296 0.000838 -0.000458 0.000246 15.4 176.8

P7485 0 0.000065 0.000076 0.000011 0.000034 3.2 2
500 0.000065 0.000056 -0.000009 0.000017 3 150.8
1000 0.000065 0.000063 -0.000002 0.000012 3.4 182.4

Table 8: The PageRank before and after 50 steps using different η’s averaged over 10 simulations
and rounded off to 6 decimal places.

The results for P3718 seem mostly in accordance with the results from the objective model.
More activity generally results in a lower PageRank. The difference between η = 0 and η = 500
seems rather small, but this can be explained by the difference in the average number of inlinks.
With such a low number of inlinks, one additional inlink could compensate for a lot of outlinks.
Since both test pages have a low number of inlinks, as can be expected from the subjective
model, there is not much change in inlinks.

Figure 28: The progress of the number of inlinks and outlinks compared to the PageRank of
P3718 over time in one realization using η = 500.
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Figure 28 clearly shows the correlation between number of inlinks and change in PageRank in
this particular simulation. Each time a page is added, there is a bump in PageRank. Just as in
the previous figures, the sudden and steep declines in PageRank are likely to have been caused
by change in PageRank from pages inlinking to P3718.

With no activity, P7485 even shows an increase in PageRank. This is evidently caused
by the two simulation in which a new inlink was created. A new inlink could mean a significant
increase in PageRank, thereby creating two extreme PageRank values in the simulations.
The relatively high standard deviation further supports this explanation. Again the decline
in PageRank due to additional outlinks seems evident, albeit the only marginal decrease in
PageRank for η = 1000 compared to η = 500. This, again, could be explained by the on
average more inlinks that P7485 has.

Figure 29: The progress of the number of inlinks and outlinks compared to the PageRank of
P7485 over time in one realization using η = 500.

The particular simulation in figure 29 shows the enormous increase a low ranked webpage with
a low number of inlinks endures when a new inlink is added. In step 26 a new link is added
and the PageRank more than doubles in value. Figure 29 also illustrates the marginal impact
outlinks have on a low ranked webpage. Only a minor decrease in PageRank is seen while the
outdegree steadily increases.

All in all, the activity in the subjective model seems to have the same impact as in the
objective case. The only real difference here is that the tested pages both have a low number
of inlinks, hence not many inlinks are being added each simulation. This results in more
PageRank on average, however it is not something a webpage itself can directly influence.
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4.7.3 Adding or removing links

With the information from the previous sections a cautious prediction can be made about what
activity a webpage should focus on to consolidate its PageRank. The results in the previous
sections showed that a page’s PageRank is negatively impacted by a higher number of outlinks.
Hence increasing PageRank is achieved by minimizing the number of outlinks on the page,
although the number of outlinks does not matter as much for pages with high numbers of
outlinks. A small test will be devised to test whether or not the expectations will hold. The
same setup will be used as in the previous sections. Only now the η factor will be split in η1
and η2, for α and β respectively. Now |P ′j is defined as

|P ′j | =


1, if |Pj | > 0 and Pj is not a test page
0, if |Pj | = 0 and Pj is not a test page
η1, if Pj is a test page (used in α)
η2, if Pj is a test page (used in β)

So the test page can use different activity values for outlink removal and link addition activity,
denoted by η1 and η2 respectively. The test pages used can be seen in the following table.

Page Inlinks Outlinks PageRank

P3718 14 9 0.001296
P7485 3 2 0.000065

Table 9: Test pages.

First the objective model will be tested. The results can be found in the following table.

Page η1 η2 PageRank PageRank new Difference St. dev. inlinks outlinks

P3718 0 1000 0.001296 0.000839 -0.000457 0.000442 18.9 545.4
500 500 0.001296 0.000567 -0.000729 0.000249 17 179.6
1000 0 0.001296 0.000881 -0.000415 0.000322 17.9 0.9

P7485 0 1000 0.000065 0.000067 0.000002 0.000019 3.2 564.1
500 500 0.000065 0.000060 -0.000005 0.000011 3.2 184.6
1000 0 0.000065 0.000060 -0.000005 0.000008 3.2 0.1

Table 10: The PageRank before and after 50 steps using different η’s averaged over 10 simula-
tions and rounded off to 6 decimal places.

The first thing that really stands out is the enormous amount of outlinks in the first and fourth
row. In table 6 with η = 1000 – which means η1 = η2 = 1000 in this test – the number of
outlinks is a little over 200, hence active link removal makes a big difference in that aspect. For
P3718 there is not much difference in only focusing either on outlink removal or on addition.
This could be caused by the 1 more outlink that occurs when only focusing on outlink addition.
The standard deviation in that case is also higher, which means that it seems more of a
hit-or-miss strategy than when solely focusing on link removal. The removal strategy seems in
its own turn a better choice than the balanced one.

P7485 also shows a higher standard deviation when using the addition strategy. This re-
inforces the claim that it seems more like a hit-or-miss strategy. The removal strategy shows
more consistency for both pages. Looking at both pages the removal strategy seems the best
choice when trying to improve one’s PageRank. The strategy is the most consistent overall
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and for pages with a relatively high PageRank already it seems to be the best strategy to
consolidate their rank. For pages with a relatively low PageRank there is not much difference
in PageRank change among the strategies, however, based on the consistency of the removal
strategy it still seems like the best choice. This also affirms what one would expect. Removing
outlinks increases PageRank, which in turn increases the probability of gaining inlinks.

The results for the subjective model are shown in the following table, using the same
activity parameters and test pages as before.

Page η1 η2 PageRank PageRank new Difference St. dev. inlinks outlinks

P3718 0 1000 0.001296 0.000832 -0.000464 0.000222 15.1 465.8
500 500 0.001296 0.000931 -0.000365 0.000274 15.8 149
1000 0 0.001296 0.000944 -0.000352 0.000210 15.4 0.6

P7485 0 1000 0.000065 0.000062 0.000003 0.000009 3.1 452.6
500 500 0.000065 0.000056 -0.000009 0.000017 3 150.8
1000 0 0.000065 0.000063 -0.000002 0.000011 3.5 0.1

Table 11: The PageRank before and after 50 steps using different η’s averaged over 10 simula-
tions and rounded off to 6 decimal places.

The consistency of the removal strategy in the objective model does not show up in the
subjective model. For P3718 the removal strategy still seems like the best choice. The
balanced strategy is very close, however, this may well be caused by the slightly higher
number of inlinks which compensate for the outlinks. In the subjective model the probability
for new inlinks is based on the number of inlinks present, hence one would expect the bal-
anced strategy to be lower in PageRank. The higher number of inlinks just happened by chance.

For the lower ranked page, P7485, the removal strategy seems the best one as well, how-
ever the average number of inlinks is higher than for the link addition strategy. So the addition
strategy seems the best strategy here. In one of the previous sections the observation was made
that additional outlinks did not seem to have much impact on low ranked pages. The results
in this test seem to confirm this. One thing that is certain is that the balanced strategy loses
out here.
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(a) (b)

Figure 30: The correspondence between PageRank and outdegree for (a) the link addition
strategy and (b) the link removal strategy.

Figure 30 nicely illustrates the short-term behaviour of the link addition and removal strategy.
In figure 30a the link addition shows that in the short term the PageRank decreases due
to outlink addition. In the long turn it still decreases, but this is likely to be governed by
other factors. The removal strategy in figure 30b shows that in the short-term the PageRank
increases, while in the long run it is probably mainly governed by other factors.

To conclude it can be said that if one wants to be active, one should generally focus on
outlink removal. For low-ranked pages focusing on link addition is a viable possibility as well.
At the end of section 4.7.2 it was concluded that activity generally was bad for PageRank,
however the tests in that section all included activity in link addition as well as removal. In this
section balanced activity was in almost all cases the worst option. Comparing these results it
seems that no activity at all is overall the best choice, albeit not being a very satisfying result
for a PageRank optimization strategy. For P3718 the average change over both models with no
activity is about −0.000226 while for the removal strategy it is about −0.000384. For P7485 the
changes are 0.000004 and −0.000004 respectively. Both results speak for the inactive strategy.
The results achieved here do point in a certain direction, however, to really take any hard
conclusions from this one should devise a more extensive test with a wider variety of pages and
more simulations.
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5 Conclusion and discussion

Change in the internet or a subset thereof was modelled by webpage behaviour due to own-
er/administrator activity. Owners or administrators have direct control over which links are
on their webpage and thus can influence their page’s PageRank. It was observed that the only
actions webpage owners can do is add or delete an outlink. This was modelled in a probabilistic
manner by using the formula

Pij(t+ n∆t) = αPij(t+ (n− 1)∆t) + β[1− Pij(t+ (n− 1)∆t)]

for the probability of there being a link from Pj to Pi. First in the basic model, which assumed
that activity and thus the α and β are equal for each webpage. All models were tested using
numerical methods, since it was not possible to use analytic methods for extensively testing the
models. The results for the basic model were rather uninteresting, since the links were added
and removed randomly. The extended models took more information into account. Activity
was then based on the activity level of a webpage itself, measured by the ratio between the
number of outlinks on the page and the maximum number of outlinks over all pages. In the
objective extended model this was combined with the assumption that owners/administrators
are rational. They would not just randomly add or remove a link, but they would base their
decisions on the importance of the other webpage, measured by its PageRank. In the subjective
model the decisions were made based on the number of inlinks a webpage has. The more
inlinks a webpage has, the likelier it is that the owner/administrator would notice that page
and the more popular it would appear to be to him. This in turn makes it more likely that the
owner/administrator would add a link to that page, and less likely to remove an existing one
to that particular page. So in the extended models the changes were based on choices made by
the owner/administrator of a webpage.

Both the extended models were used to test what the best strategy would be to opti-
mize the PageRank of a webpage. First results indicated that no activity would be the best
choice. In later tests a different value for addition and removal activity was used. In this test
the best strategy was only being active in removing links. Combining these results it was
concluded that the inactive strategy was still better than the removal strategy, since it usually
leads to a higher PageRank. The tests showed a connection between outlinks and PageRank,
the first negatively influencing the latter, although low ranked pages seemed not to be affected
as much by additional outlinks. The tests used a very limited set of pages and activity values
as well as a modest number of simulations. For more reliable test results a more extensive
testing is necessary.

In order to more realistically model webpage activity and hence network change, one
could look at a model which incorporates hype-based activity. A hype is a short-lived
phenomenon in which a certain webpage or webpages are extremely popular, hence gaining
lots of inlinks over a short time span. This could be modelled by basing the probabilities on
change in the number of inlinks for a webpage. A webpage with lots of new inlinks in a short
time is a hyped webpage and hence even more webpages will add a link to that webpage, until
the hype wears off. Another addition could be static pages. What happens often is that pages
are active at the start, but stay the same afterwards. Possibly some criterion can be found
to identify these pages and model their behaviour realistically. Another possible addition to
the model is the identification of hubs. A hub is a webpage with lots of outlinks, which could
indicate that the webpage is a sort of catalogue of information, meaning that this webpage
is the go-to page for all information on a certain topic. For instance, a Wikipedia entry on
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a certain topic contains lots of outlinks. These outlinks are (mostly) to pages whose content
has a direct connection with the topic of the Wikipedia entry. It is possible to group the
webpages in a network around hubs. Then, for example, the probability of adding a link to a
page connected to the same hub (or hubs) is higher than adding one to a page which does not
have a hub in common, because these pages likely contain similar or related content. Similarly
authoritative pages can be identified. An authoritative page is a page with lots of inlinks. The
inlinks indicate that the page is an authority on a topic. Pages linking to this authoritative
page likely contain similar or related content, so groupings can be made around authoritative
pages in the same way as hubs

50



6 References

References

[1] A.N. Langville, and C.D. Meyer. Google’s PageRank and Beyond. Princeton University
Press. 2006.

[2] S. Brin, and L. Page. The Anatomy of a Large-scale Hypertextual Web Search Engine.
Stanford University, Stanford.

[3] C.D. Meyer. Sensitivity of the Stationary Distribution of a Markov Chain. SIAM Journal
on Matrix Analysis and Applications, vol. 15, no. 3. 1994.

[4] A.N. Langville and C.D. Meyer. Updating Markov Chains with an Eye on Google’s PageR-
ank. SIAM Journal on Matrix Analysis and Applications, vol. 27, no. 4. 2005.

[5] K. Avrachenkov and N. Litvak. The Effect of New Links on Google PageRank. Stochastic
models, vol. 22, issue 2. 2006.

[6] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin. Resilience of the Internet to Random
Breakdowns. Physical Review Letters, vol. 85, no. 21. 2000.

[7] J. Gao, B. Barzel, A.L. Barabási. Universal Resilience Patters in Complex Networks. Na-
ture, vol. 530. 2016.

[8] R. Larson, B.C. Edwards, and D.C. Falvo. Elementary Linear Algebra. Fifth Edition.
Houghton Mifflin. 2003.

[9] A.Y. Ng, A.X. Zheng, and M.I. Jordan. Link Analysis, Eigenvectors and Stability. Inter-
national Joint Conference on Artificial Intelligence. 2001.

[10] P. Baldi, P. Frasconi, and P. Smyth. Modeling the Internet and the Web. John Wiley &
Sons. 2003.

[11] R. Pastor-Satorras, and A. Vespignani. Evolution and Structure of the Internet. Cambridge
University Press. 2007.

[12] R. Lempel, and S. Moran. Rank-Stability and Rank-Similarity of Link-Based Web Ranking
Algorithms in Authority-Connected Graphs. Information Retrieval, vol. 8, issue 2. 2005.

[13] D. Gleich. The *. cs. stanford. edu Matrix.
http://www.cise.ufl.edu/research/sparse/matrices/Gleich/wb-cs-stanford.

html

51



A Appendix – Matlab code

A.1 General PageRank files

Matlab functions used for computations concerning the PageRank algorithm and building a
dataset.

A.1.1 surfer.m

1 function [U,G] = s u r f e r ( root , n ) % by Cleve Moler
2 % SURFER Create the adjacency graph o f a p o r t i o n o f the Web.
3 % [U,G] = s u r f e r ( root , n) s t a r t s a t the URL root and f o l l o w s
4 % Web l i n k s u n t i l i t forms an adjacency graph wi th n nodes .
5 % U = a c e l l array o f n s t r i n g s , the URLs o f the nodes .
6 % G = an n−by−n sparse matrix wi th G( i , j )=1 i f node j i s l i n k e d

to node i .
7
8 c l f
9 shg

10 set ( gcf , ’ doub l ebu f f e r ’ , ’ on ’ )
11 axis ( [ 0 n 0 n ] )
12 axis square
13 axis i j
14 box on
15 set (gca , ’ p o s i t i o n ’ , [ . 1 2 . 20 .78 . 7 8 ] )
16 uicontrol ( ’ s t y l e ’ , ’ frame ’ , ’ un i t s ’ , ’ normal ’ , ’ p o s i t i o n ’ , [ . 0 1 . 09 . 98

. 0 7 ] ) ;
17 uicontrol ( ’ s t y l e ’ , ’ frame ’ , ’ un i t s ’ , ’ normal ’ , ’ p o s i t i o n ’ , [ . 0 1 . 01 . 98

. 0 7 ] ) ;
18 t1 = uicontrol ( ’ s t y l e ’ , ’ t ex t ’ , ’ un i t s ’ , ’ normal ’ , ’ p o s i t i o n ’ , [ . 0 2 . 10

.94 . 0 4 ] , . . .
19 ’ h o r i z ’ , ’ l e f t ’ ) ;
20 t2 = uicontrol ( ’ s t y l e ’ , ’ t ex t ’ , ’ un i t s ’ , ’ normal ’ , ’ p o s i t i o n ’ , [ . 0 2 . 02

.94 . 0 4 ] , . . .
21 ’ h o r i z ’ , ’ l e f t ’ ) ;
22 slow = uicontrol ( ’ s t y l e ’ , ’ t o g g l e ’ , ’ un i t s ’ , ’ normal ’ , . . .
23 ’ p o s i t i o n ’ , [ . 0 1 . 24 . 07 . 0 5 ] , ’ s t r i n g ’ , ’ s low ’ , ’ va lue ’ , 0 ) ;
24 quit = uicontrol ( ’ s t y l e ’ , ’ t o g g l e ’ , ’ un i t s ’ , ’ normal ’ , . . .
25 ’ p o s i t i o n ’ , [ . 0 1 . 17 . 07 . 0 5 ] , ’ s t r i n g ’ , ’ qu i t ’ , ’ va lue ’ , 0 ) ;
26
27 U = c e l l (n , 1 ) ;
28 hash = zeros (n , 1 ) ;
29 G = l o g i c a l ( sparse (n , n) ) ;
30 m = 1 ;
31 U{m} = root ;
32 hash (m) = hashfun ( root ) ;
33
34 j = 1 ;
35 while j < n && get ( quit , ’ va lue ’ ) == 0
36
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37 % Try to open a page .
38 try
39 set ( t1 , ’ s t r i n g ’ , sprintf ( ’%5d %s ’ , j ,U{ j }) )
40 set ( t2 , ’ s t r i n g ’ , ’ ’ ) ;
41 drawnow
42 page = ur l r ead (U{ j }) ;
43 catch
44 set ( t1 , ’ s t r i n g ’ , sprintf ( ’ f a i l : %5d %s ’ , j ,U{ j }) )
45 drawnow
46 cont inue
47 end
48 i f get ( slow , ’ va lue ’ )
49 pause ( . 2 5 )
50 end
51
52 % Fol low the l i n k s from the open page .
53 for f = f indstr ( ’ http : ’ , page ) ;
54 % A l i n k s t a r t s wi th ’ h t t p : ’ and ends wi th the next quote .
55
56 e = min ( [ f indstr ( ’ ” ’ , page ( f : end) ) f indstr ( ’ ’ ’ ’ , page ( f : end) ) ] ) ;
57 i f isempty ( e ) , continue , end
58 u r l = deblank ( page ( f : f+e−2) ) ;
59 u r l ( ur l< ’ ’ ) = ’ ! ’ ; % Nonpr intab le c h a r a c t e r s
60 i f u r l (end) == ’ / ’ , u r l (end) = [ ] ; end
61
62 % Look f o r l i n k s t h a t shou ld be s k i p p e d .
63
64 s k i p s = { ’ . g i f ’ , ’ . jpg ’ , ’ . pdf ’ , ’ . c s s ’ , ’ lmscads i ’ , ’ cybernet ’ ,

. . .
65 ’ s earch . c g i ’ , ’ . ram ’ , ’www. w3 . org ’ , . . .
66 ’ s c r i p t s ’ , ’ netscape ’ , ’ shockwave ’ , ’ webex ’ , ’ f an son ly ’ , ’

ogp .me ’ , . . .
67 ’ youtube . com/embed ’ , ’ xmlrpc ’ , ’ \ ’ , ’< ’ } ;
68 sk ip = any( u r l==’ ! ’ ) | any( u r l==’ ? ’ ) | any( u r l (end)==’ / ’ ) ;
69 k = 0 ;
70
71 while ˜ sk ip && ( k < length ( s k i p s ) )
72 k = k+1;
73 sk ip = ˜isempty ( f indstr ( ur l , s k i p s {k}) ) ;
74 end
75 i f sk ip
76 i f isempty ( f indstr ( ur l , ’ . g i f ’ ) ) && isempty ( f indstr ( ur l , ’ .

jpg ’ ) )
77 set ( t2 , ’ s t r i n g ’ , sprintf ( ’ sk ip : %s ’ , u r l ) )
78 drawnow
79 i f get ( slow , ’ va lue ’ )
80 pause ( . 2 5 )
81 end
82 end
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83 cont inue
84 end
85
86 % Check i f page i s a l r e a d y in u r l l i s t .
87 i = 0 ;
88 for k = find ( hash ( 1 :m) == hashfun ( u r l ) ) ’ ;
89 i f i s e q u a l (U{k} , u r l )
90 i = k ;
91 break
92 end
93 end
94
95 % Add a new u r l to the graph i f t h e r e are fewer than n .
96 i f ( i == 0) && (m < n)
97 m = m+1;
98 U{m} = u r l ;
99 hash (m) = hashfun ( u r l ) ;

100 i = m;
101 end
102
103 % Add a new l i n k . j−>i
104 i f i > 0
105 G( i , j ) = 1 ;
106 set ( t2 , ’ s t r i n g ’ , sprintf ( ’%5d %s ’ , i , u r l ) )
107 l ine ( j , i , ’ marker ’ , ’ . ’ , ’ markers i ze ’ , 6 )
108 drawnow
109 i f get ( slow , ’ va lue ’ )
110 pause ( . 2 5 )
111 end
112 end
113 end
114 j = j +1;
115 end
116 delete ( t1 )
117 delete ( t2 )
118 delete ( s low )
119 set ( quit , ’ s t r i n g ’ , ’ c l o s e ’ , ’ c a l l b a c k ’ , ’ c l o s e ( g c f ) ’ , ’ va lue ’ , 0 )
120
121 %−−−−−−−−−−−−−−−−−−−−−−−−
122
123 function h = hashfun ( u r l )
124 % Almost unique numeric hash code f o r pages a l r e a d y v i s i t e d .
125 h = length ( u r l ) + 1024∗sum( u r l ) ;
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A.1.2 danglingnode.m

1 function [ y ] = dangl ingnode ( H )
2 % C a l c u l a t e s the dang l ingnode v e c t o r f o r a row s u b s t o c h a s t i c

matrix H
3 y= (sum(H, 2 ) ==0) ;
4 end

A.1.3 hyperlinkmatrix.m

1 function [ y ] = hyper l inkmatr ix ( A )
2 % Gives row−s u b s t o c h a s t i c matrix H based on a matrix A such t h a t

A( i , j )=1 i f t h e r e i s a l i n k from j to i
3 n=length (A) ;
4
5 %compute o u t d e g r e e s o f nodes
6 x=sum(A, 1 ) ;
7
8 % b u i l d matrix H
9 H=sparse ( double (A) ) ;

10 for j =1:n
11 i f x ( j )˜=0
12 H( : , j )=H( : , j ) . / x ( j ) ;
13 end
14 end
15 y=transpose (H) ;
16 end

A.1.4 powermethod.m

1 function [ pi ] = powermethod (H, alpha , v , pi0 , error )
2 % C a l c u l a t e s the PageRank v e c t o r us ing the power method
3 n=length (H) ;
4 e=ones (n , 1 ) ;
5 d=dangl ingnode (H) ;
6
7 i f ( nargin<5)
8 error =1e−5;
9 end

10 i f ( nargin<3)
11 v=e/n ;
12 end
13 i f ( nargin <4)
14 pi0 =v ;
15 end
16 i f ( nargin<2)
17 alpha =0.85;
18 end
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19 K=alpha ∗H’ ;
20 pi=pi0 ;
21 s t ep s =100;
22 for i =1: s t ep s
23 temp=pi ;
24 pi=K∗pi+(1−alpha+alpha ∗sum(d .∗ pi ) ) ∗v ;
25 i f (sum(abs ( pi−temp ) )<error )
26 break ;
27 end
28 end
29 end

A.1.5 permutationmatrix.m

1 function [ P ] = permutationmatrix ( vec to r )
2 % Computes the permutat ion matrix P such t h a t P∗ v e c t o r i s a row

v e c t o r s o r t e d in descending order
3 % Convert to column v e c t o r
4 vec to r=vecto r ( : ) ;
5 m=length ( vec to r ) ;
6
7 % Obtain i n d i c e s o f pages in s o r t e d v e c t o r
8 [ ˜ , index ]= sort ( vector , ’ descend ’ ) ;
9

10 % Use t h e s e i n d i c e s to compute P
11 P=sparse (m,m) ;
12 for i =1:m
13 P( i , index ( i ) ) =1;
14 end
15 end
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A.2 Probabilistic model files

Matlab functions used for computations concerning the probabilistic model for link changes.

A.2.1 basicmodel.m

1 function [ A ] = basicmodel ( A, alpha , beta )
2 % Compute new matrix at the next time s t e p f o r the b a s i c model
3 % Each element : P i j ( t+d e l t a t )= alpha ∗P i j ( t )+be t a ∗[1−P i j ( t ) ]
4 i f ( nargin<2)
5 alpha =0.95;
6 beta =0.05;
7 end
8
9 m=length (A) ;

10 M1=binornd (1 , alpha ,m,m) ;
11 M0=binornd (1 , beta ,m,m) ;
12
13 A=A.∗M1+(A==0) . ∗ (M0−diag ( diag (M0) ) ) ;
14 % Disp lay the number o f l i n k s in the new matrix
15 d i s p l a y ( [ ’#o u t l i n k s : ’ ,num2str(sum(sum(A) ) ) ] ) ;
16 end

A.2.2 objectivemodel.m

1 function [ A ] = objec t ivemode l ( A, tempalphas , tempbetas ,gamma)
2 % C a l c u l a t e s matrix at the next time s t e p us ing a l p h a i j ( t ) and

b e t a i j ( t ) which are PageRank based
3 % This f u n c t i o n i s used f o r the extended o b j e c t i v e model
4 n=length (A) ;
5
6 i f ( nargin<4)
7 gamma=0.95;
8 end
9

10 % C a l c u l a t e PageRank f i r s t
11 H=hyper l inkmatr ix (A) ;
12 pi=powermethod (H) ;
13
14 % C a l c u l a t e the r e l a t i v e PR f o r each row
15 temp=pi . /max( pi ) ;
16
17 % C a l c u l a t e P(1−>1) f o r the whole matrix
18 a lphas=1−(1−gamma∗temp ) ∗ tempalphas ;
19
20 % C a l c u l a t e the P(0−>1) f o r the whole matrix
21 betas=temp∗ tempbetas ;
22
23 % Compute changes P(1−>1)
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24 OnetoOne=binornd (1 , a lphas .∗A, n , n) ;
25 % Compute P(0−>1)
26 ZerotoOne=binornd (1 , betas , n , n ) ;
27
28 % Compute changes in A
29 A=A.∗OnetoOne+(A==0) . ∗ ( ZerotoOne−diag ( diag ( ZerotoOne ) ) ) ;
30
31 % Disp lay new number o f l i n k s in matrix
32 d i s p l a y ( [ ’#o u t l i n k s : ’ ,num2str(sum(sum(A) ) ) ] ) ;
33 end

A.2.3 subjectivemodel.m

1 function [ A ] = sub jec t ivemode l ( A, tempalphas , tempbetas ,gamma)
2 % C a l c u l a t e s matrix at the next time s t e p us ing a l p h a i j ( t ) and

b e t a i j ( t ) which are i n l i n k based
3 % This f u n c t i o n i s used f o r the extended s u b j e c t i v e model
4 n=length (A) ;
5
6 i f ( nargin<4)
7 gamma=0.95;
8 end
9

10 % C a l c u l a t e r e l a t i v e number o f i n l i n k s o f each page
11 temp=sum(A, 2 ) ;
12 temp=temp . /max( temp ) ;
13
14 % C a l c u l a t e P(1−>1) f o r each column
15 a lphas=1−(1−gamma∗temp ) ∗ tempalphas ;
16
17 % C a l c u l a t e the P(0−>1) f o r each column
18 betas=temp∗ tempbetas ;
19
20 % Compute changes P(1−>1)
21 OnetoOne=binornd (1 , a lphas .∗A, n , n) ;
22 % Compute P(0−>1)
23 ZerotoOne=binornd (1 , betas , n , n ) ;
24
25 % Compute changes in A
26 A=A.∗OnetoOne+(A==0) . ∗ ( ZerotoOne−diag ( diag ( ZerotoOne ) ) ) ;
27
28 % Show new number o f l i n k s in matrix
29 d i s p l a y ( [ ’#o u t l i n k s : ’ ,num2str(sum(sum(A) ) ) ] ) ;
30 end
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