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ABSTRACT
Most existing bundle generation approaches fall short in generating
fixed-size bundles. Furthermore, they often neglect the underlying
user intents reflected by the bundles in the generation process,
resulting in less intelligible bundles. This paper addresses these
limitations through the exploration of two interrelated tasks, i.e.,
personalized bundle generation and the underlying intent inference,
based on different user sessions. Inspired by the reasoning capa-
bilities of large language models (LLMs), we propose an adaptive
in-context learning paradigm, which allows LLMs to draw tailored
lessons from related sessions as demonstrations, enhancing the per-
formance on target sessions. Specifically, we first employ retrieval
augmented generation to identify nearest neighbor sessions, and
then carefully design prompts to guide LLMs in executing both tasks
on these neighbor sessions. To tackle reliability and hallucination
challenges, we further introduce (1) a self-correction strategy pro-
moting mutual improvements of the two tasks without supervision
signals and (2) an auto-feedback mechanism for adaptive super-
vision based on the distinct mistakes made by LLMs on different
neighbor sessions. Thereby, the target session can gain customized
lessons for improved performance by observing the demonstrations
of its neighbor sessions. Experiments on three real-world datasets
demonstrate the effectiveness of our proposed method.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Neural networks.
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1 INTRODUCTION
Product bundling has evolved into a crucial marketing strategy for
promoting products, catering to both physical and online retail-
ers [46, 58]. A bundle refers to a group of products recommended
or sold together as a package. These products are bundled together
due to various reasons, e.g., having complementary or alternative
relationships [2, 7]. For instance, as depicted in Figure 1, if a cus-
tomer is shopping for a camera, a bundle recommendation may
include not only the camera itself but also accessories like lenses,
camera bags, tripods, and memory cards - all packaged together at a
discounted price. Therefore, product bundling can offer a beneficial
solution for both customers and businesses. On the one hand, it fa-
cilitates the discovery of new items, prevents the formation of filter
bubbles, and presents opportunities for potential promotions, ulti-
mately enhancing the long-term customer experience. On the other
hand, it can significantly increase product sales and drive business
revenue, promoting overall economic growth within societies [49].

Given the substantial benefit, a growing body of research can
be found on exploring product bundling. Most of the studies as-
sume the pre-existence of bundles and directly dive into down-
stream tasks, e.g., bundle recommendation. In particular, they take
co-consumed products [30] or user-generated lists [7, 20, 21] as
synthetic bundles, or rely on manually pre-defined bundles by re-
tailers [13, 17, 33, 36]. However, the co-consumed products may not
always reflect common intents; user-generated lists are generally
limited to specific domains (e.g. music and books); and pre-defined
bundles are restricted by quantity and diversity due to the high
cost of producing such bundles [49].
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$46

$36

Unlock the Mysteries of History
with Our Thrilling Series!

$600

$549

Capture the Moment,
Unleash Your Creativity!

Figure 1: Example bundles for (1) a camera and its accessories;
and (2) mystery, thriller, and historical fiction.

Recognizing the demand for high-quality bundles, some research
endeavors to develop methods for bundle generation. Early works
create bundles by specifying hard constraints. The generated bun-
dles may (1) possess a limited budget ormaximum savings/customer
adoption/expected revenue [5, 16, 58–60, 74]; or (2) contain com-
patible products in related categories, style, or functionality [27].
Recently, deep learning (DL) based methods [3, 8, 54] have emerged
to learn the latent association of products for bundle generation.
Nevertheless, these methods exhibit certain limitations, for instance,
they can only form either fixed-size bundles or are limited to produc-
ing a single bundle for each user. Most importantly, they overlook
the requirement for a consistent user intent underlying all prod-
ucts in the same bundle: products in a high-quality bundle should
all reflect the same user intent that is semantically interpretable,
describing a consistent user need (or purpose) in interacting with
products (e.g., camera accessories, clothes for parties, or movies
for Friday nights). Without such a constraint of intents, the gener-
ated bundles become less relevant and intelligible to users, thereby
failing to meet their actual needs in applications.

To fill the gap, we propose simultaneously performing two in-
terrelated tasks, i.e., generating personalized bundles and inferring
underlying intents from user sessions1. This is motivated by the
fact that users are inclined to explore relevant products, either as
alternatives or complements, based on their specific intents dur-
ing a session [28, 51]. In doing so, (1) user sessions can serve as
valuable sources to create high-quality and personalized bundles;
(2) the inferred user intents can enhance the interpretability of
bundles, just as a well-defined bundle can clearly reflect the user’s
intent. However, performing both tasks at the semantic level poses
significant challenges as it entails comprehending various poten-
tial motivations and contexts behind user actions and preferences,
which can be intricate and ever-evolving.

To tackle the above challenges, we devise an adaptive in-context
learning (AICL) paradigm leveraging the advanced reasoning capa-
bilities of large language models (LLMs)2. This paradigm empowers
LLMs to draw tailored lessons from closely related tasks, using
them as demonstrations while tackling the target task. Specifically,
we first adopt the retrieval augmented generation [26] to identify
the nearest neighbor sessions for each target session, and then cre-
ate prompts to instruct LLMs to perform both tasks in neighbor
sessions. To enhance reliability and mitigate the hallucination issue,
we further develop (1) a self-correction strategy to foster mutual
improvements in both tasks without supervision signals; and (2) an
auto-feedback mechanism to recurrently offer adaptive supervision
by comparing LLMs’ output and the labels. Subsequently, we guide
1A user session is a sequence of actions (e.g., clicks, purchases) performed by a user on a
platform or website with the products during a short period (e.g., a single visit) [51, 56].
2We use GPT-3.5-turbo in our study without further statement.

LLMs to provide a summary of rules derived from the entire task
execution process to prevent recurring errors in the future. Finally,
the two tasks in the target session are performed by observing
demonstrations of its neighbor sessions. Different neighbors may
possess distinct mistakes made by LLMs, thereby receiving different
feedback. It thus enables LLMs to seek adaptive and customized
lessons for improved performance on the target session.

Our contributions are three-fold. First, we propose a new re-
search question to perform two interrelated tasks, i.e., bundle gen-
eration and intent inference, based on user sessions. As such, the
generated bundles are more intelligible and aligned with users’
actual needs. Second, we design a novel adaptive in-context learn-
ing paradigm for our defined tasks, which enables LLMs to seek
tailored lessons from neighbor sessions as demonstrations. To
achieve this, we devise step-by-step strategies evolving from mu-
tual self-correction (self-supervision) to adaptive auto-feedback
(auto external-supervision), and finally rules summarization (self-
supervision). This is a novel idea in the context of using LLMs for
recommendation. Lastly, we conduct experiments on three public
datasets. The results show that AICL surpasses baselines on the
bundle generation task, and the inferred intents are of high quality,
comparable to or even exceeding those annotated by humans.

2 RELATEDWORK
2.1 Recommendation with Prebuilt Bundles
Many works assume the presence of prebuilt bundles and immedi-
ately delve into the downstream task of bundle recommendation.
Early methods generate bundles by satisfying certain constraints,
e.g., limited cost [17, 33]. Later, factorization-based methods decom-
pose user-item and user-bundle interactions to learn users’ interests
over items and bundles, respectively [6, 35]. Recently, DL-based
methods (e.g., DAM [9], AttList [20], CAR [21], BRUCE [2], and
BundleGT [55]) adopt the attentionmechanism to learn item-bundle
affinity and user-bundle preference. Other methods adopt graph or
hypergraph convolutional networks to better infer users’ prefer-
ence towards bundles, such as BGCN [7], BundleNet [13], Cross-
CBR [36], MIDGN [71], UHBR [65], SUGER [70], and DGMAE [42].
However, these methods are all based on prebuilt bundles, i.e., ei-
ther co-consumed products, user-generated lists, or predefined ones
by retailers as summarized in Table 2. They ignore the fact that
(1) co-consumed products may not consistently represent shared
intentions; (2) user-generated lists are typically confined to specific
domains (e.g., music and books); and (3) pre-defined bundles are
constrained by their limited quantity and diversity, primarily due
to the high production costs associated with them.

2.2 Recommendation with Bundle Generation
Several studies explore bundle recommendation with generation.
In the early stage, bundles are created via frequent itemsets min-
ing algorithm [1, 49]. Later, they are formed by adhering to spe-
cific hard constraints. For instance, greedy-based methods create
bundles by minimizing the cost [16, 58], or fulfilling other require-
ments [38, 39]. Heuristic methods form bundles by maximizing
customer adoption [60], expected revenue [5], or sharing the same
category [27]. Preference elicitation methods produce bundles via
users’ preference for cost and quality [14, 59]. Others frame bundle
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Table 1: Approaches with bundle generation. ‘?’ means the answer is not found based on the paper and source code if available.
[1] [49] [16] [58] [39] [38] [60] [5] [59] [14] [74] [27] [3] [10] [54] [12] [23] [8] Ours

Dynamic Bundle Size ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ? ✘ ✔ ✔ ✔
Multiple Bundles ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔

Personalized Bundles ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Intent Inference ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔

Table 2: Approaches with different prebuilt bundles.
Type Methods

Co-consumed Products [30]
User Generated Lists [2, 6, 7, 9, 13, 20, 21, 35, 36, 42, 55, 65, 70, 71]
Predefined by Retailers [2, 13, 17, 33, 36, 42, 55]

generation as a Quadratic Knapsack Problem [74] to maximize the
expected reward. Recent studies mainly resort to DL techniques
for bundle generation, such as Seq2Seq based methods [3, 10, 54],
and graph-generation based method [8]. Other works treat it as
combinatorial optimization [12] or Markov Decision Process [23]
and adopt reinforcement learning to compose bundles. However,
they suffer from various drawbacks (see Table 1): some methods
can only generate fixed-size bundles or a single bundle for each
user [39, 74]; some overlook personalization [1, 27]; and others ex-
hibit high complexity and limited scalability [8]. Most importantly,
they generally fail to understand user intent at the semantic level
during bundle generation. Consequently, the created bundles may
be less comprehensible and aligned with users’ actual needs.

2.3 Intent-Aware Session Recommendation
Our proposal of simultaneously generating personalized bundles
and inferring underlying intents from user sessions is related to
intent-aware session recommendation [28, 51]. Specifically, early
work learns the main intent in a session to help infer user pref-
erence [28, 34, 64]. However, only learning the main intent may
limit the model performance, as items in a session may often reveal
multiple intents. Hence, later works capture multiple intents in a
session [29, 50, 51]. However, they can only learn a fixed number
(one or multiple) of latent intents in the session, which is overly
rigid and cannot faithfully unveil user intents in a session. In con-
trast, our study aims to generate an adaptive number of bundles
and underlying intents at the semantic level based on user sessions.
Closet to our work is the method proposed in [73] that can learn
multiple user intents in a session; its assumption, i.e., items belong-
ing to the same category indicate the same intent, however, may
not always hold in reality. Our method instead, allows to generate
multiple intents of any type, not restricted to item categories.

2.4 LLMs for Recommendation
The remarkable achievements of LLMs have led to their widespread
adoption for more effective recommendation [18, 57, 68]. Many
works adopt in-context learning (ICL) to align LLMs for recommen-
dation. For instance, Zhai et al. [66] transform knowledge graphs
into knowledge prompts for more explainable recommendation.
Other studies [11, 22, 45] highlight ChatGPT’s potential to mitigate
the cold start issue and provide explainable recommendations. An-
other line of research exploits parameter-efficient fune-tuning (PEFT)
to align LLMs for recommendation, such as TallRec [4], PALR [63],
InstructRec [69], and HKFR [61]. Despite the effectiveness of these

LLM-based methods, they are all designed for individual item rec-
ommendation. On the contrary, our study attempts to leverage the
capability of LLMs through ICL for personalized bundle (a set of as-
sociated items) generation and underlying intent reasoning. Instead
of using randomly sampled few-shot examples [45], we employ the
retrieval augmented generation to retrieve the dataset and identify
the most correlated neighbor sessions. On this basis, we create
demonstrations via the proposed self-correction and auto-feedback
strategies. This process empowers LLMs to take customized and
adaptive lessons from neighboring sessions, ultimately leading to
enhanced performance in the test session.

2.5 Prompting Methods for LLMs
The fact that LLMs have seen extensive application across diverse
tasks and domains has also made a strong impact in the research
communities, where an increasing amount of researchwork is being
found on designing prompts for LLMs utilization. Many advanced
prompting methods have been introduced to guide LLMs in gener-
ating more specific, accurate and high-quality responses, such as
Chain-of-Thought [53], Tree-of-Thought [62], Self-Consistency [52],
Self-Reflection [37], Generated Knowledge [31], Least-to-Most [72]
and Retrieval Augmentation [26]. These methods offer promising
opportunities in recommendation contexts, yet come also with the
crucial challenge of creating appropriate prompts that are tailored
to specific recommendation tasks. In response to this challenge, our
study introduces novel strategies specifically designed to leverage
LLMs effectively for bundle generation and intent inference.

3 THE PROPOSED METHODOLOGY
We design an adaptive in-context learning (AICL) paradigm for
LLMs to simultaneously perform two interrelated tasks: generating
bundles and inferring underlying intents, from user sessions. This is
motivated by the fact that users tend to explore highly correlated
products, either alternatives or complements, based on their specific
intents during a session [51]. The two tasks defined can be mutually
reinforced and enhanced. Specifically, effective user intents can help
identify relevant products to form improved bundles and enhance
interpretability. Meanwhile, a well-defined bundle, in turn, can
provide a clearer elucidation of the user’s intent.
Model Overview. Our core idea is to enable LLMs to seek tailored
and adaptive lessons from closely related tasks as demonstrations
while performing the target task. This is different from existing ICL-
based recommendation methods [11, 45], which rely on randomly
sampled examples and static instructions. Our AICLmainly consists
of three modules as shown in Figure 2.
• Neighbor Session Retrieval exploits the retrieval augmented gener-
ation [26] to identify from the entire dataset the most correlated
sessions for each target session regarding products contained.
Such neighbor sessions will be used to generate demonstrations.
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Figure 2: The overall framework of AICL. We take one test session and its top-1 neighbor session as an example for illustration.

• Adaptive Demonstration Generation creates prompts to instruct
LLMs to perform both tasks in neighbor sessions. To enhance
reliability and mitigate the hallucination issue, we develop a
self-correction strategy to foster mutual improvements in both
tasks without the need for any supervision signals. Afterwards,
an auto-feedback mechanism is devised to recurrently provide
adaptive supervision by comparing the outputs of LLMs and
the ground truth (labels). Finally, it directs LLMs to provide a
summary of rules derived from the entire task execution process
to prevent recurring errors in the future.
• Demonstration Guided Inference observes demonstrations of neigh-
bor sessions to perform the two tasks in the corresponding target
session. Different neighbor sessions may encounter distinct mis-
takes/errors made by LLMs, thereby receiving diverse feedback.
Hence, it empowers LLMs to seek tailored and adaptive lessons
for improved performance on the target session.

Equipped with the three modules, our AICL paradigm is capable of
effectively creating multiple, personalized, and intelligible bundles
with adaptive sizes given any user session.

3.1 Neighbor Session Retrieval (NSR)
Existing ICL-based recommendation methods [11, 32, 45] randomly
sample few-shot examples to instruct LLMs (e.g., ChatGPT) for the
inference process. However, when the sampled examples are less
relevant to the target task, LLMs receive only a restricted amount
of useful knowledge to guide them [24]. To resolve this issue, the
Neighbor Session Retrieval module (NSR) employs the retrieval
augmented generation [26] to retrieve the entire dataset and identify
the most correlated sessions (i.e., nearest neighbor sessions) for
each target session regarding products contained. By doing so, we
can acquire a wealth of valuable knowledge and lessons that can
significantly enhance performance.

To this end, we devise a hierarchical aggregation strategy to
get the representation of each session. First, for each item, we pro-
cess its title via the natural language processing toolkit - NLTK
(nltk.org) and regular expressions, to remove stop words and spe-
cial characters (e.g., &, #), etc. The processed item title is treated
as its description denoted as 𝑖 ← [𝑤1,𝑤2, · · · ], where 𝑤𝑥 means
an individual word. Then, we concatenate descriptions of items
within one session to represent its session description denoted as
𝑠 ← [𝑖1, 𝑖2, · · · ]. Subsequently, we feed the session description into
SentenceTransfomers (all-MiniLM-L6-v2) [41] to get its latent rep-
resentation. given by, 𝒆𝑠 = SentenceTransformer(𝑠). Finally, for

each target (test) session, we calculate its cosine similarity with
all training sessions using the learned latent representations, to
identify its top-𝑘 nearest neighbors. Such neighbor sessions are
used for generating demonstrations to enhance LLMs’ performance
on the test session.

It is noteworthy that onemay consider using the embeddings (i.e.,
representations) generated by LLMs (e.g., OpenAI text-embedding-
ada-002) to calculate the similarity. Instead, we choose Sentence-
Transformers due to three aspects. (1) Lower Time Complexity.
The dimension of the embedding output by SentenceTransformer
(all-MiniLM-L6-v2) is 384, whereas the dimension output by Ope-
nAI (text-embedding-ada-002) is 1536. The smaller embedding size
will greatly reduce the time complexity for finding the nearest
neighbors. (2) Less API Usage Cost. SentenceTransformer is an
open-source Python framework, whereas we have to pay when us-
ing LLMs such as OpenAI (text-embedding-ada-002). In comparison,
SentenceTransformer helps save much financial cost, especially for
large-scale session datasets. (3) Comparable Performance. Sen-
tenceTransformers can obtain comparable performance as LLMs
such as OpenAI (text-embedding-ada-002), which can be verified
by the experimental results in Section 4.2.3.

3.2 Adaptive Demonstration Generation (ADG)
Next, ADG designs proper prompts to instruct LLMs to perform
both tasks (i.e., bundle generation and intent reasoning) on these
neighbor sessions, with the goal of creating demonstrations for
improved performance on the target session.

First, a prompt that asks LLMs to generate bundles is created as
- A bundle can be a set of alternative or complementary products that
are purchased with a certain intent. Please detect bundles from a se-
quence of products. Each bundle must contain multiple products. Here
are the products and descriptions: {[product X: title, . . . ]}. The answer
format is: {‘bundle number’:[‘product number’]}. No explanation for
the results. As a result, LLMs will generate bundles and output them
in the requested format. Subsequently, another prompt is passed to
LLMs to infer the intent behind each generated bundle as - Please
use 3 to 5 words to generate intents behind the detected bundles, the
output format is: {‘bundle number’:‘intent’}. Note that we adopt the
average number of words in the ground truth intents (i.e., 3.4) as
a constraint to prevent overly long intents. To further enhance
the reliability and mitigate the hallucination issue, we design the
following strategies for more robust performance.
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3.2.1 Mutual Self-Correction. Given the generated bundles and
intents, we design a self-correction strategy to foster mutual im-
provements in both tasks without the need for any supervision
signals. As emphasized, the two tasks are interrelated, that is, the
user intent can increase the interpretability of bundles and help
identify relevant products to form bundles, while the well-defined
bundles can clearly reflect the user’s intent. We thus create a prompt
to exploit the inferred intent to refine the generated bundles - Given
the generated intents, adjust the detected bundles with the product
descriptions. The output format is: {‘bundle number’:[‘product num-
ber’]}. If there is any adjustment, the adjusted bundles, in turn, are
further employed to refine the intents - Given the adjusted bundles,
regenerate the intents behind each bundle, the output format is: {‘bun-
dle number’:‘intent’} . We repeat the above process 𝑇𝑠 times or until
there is no further adjustment.

3.2.2 Adaptive Auto-Feedback. Despite the effectiveness of the self-
correction strategy, explicit supervision is more helpful to better
guide LLMs. Hence, we proceed to design an auto-feedback mech-
anism to recurrently provide adaptive instructions for LLMs re-
garding the generated bundles and intents, thereby chasing further
performance enhancement. We start from the generated bundles.
Based on the ground truth bundles and potential mistakes made by
LLMs, we define five types of supervision signals:
• Type 1: correct and should be kept;
• Type 2: invalid and should be removed (not containing any prod-
ucts in the ground truth bundles);
• Type 3: containing unrelated products to be removed;
• Type 4: missing some products and should append other related
products (bundle size>1);
• Type 5: missing some products and should contain at least two
related products (bundle size=1).
Since multiple bundles may be generated by LLMs given a ses-

sion, we calculate the Jaccard similarity between the generated bun-
dles and ground truth bundles. Thus, we can match and compare
them, and then automatically provide the corresponding supervi-
sion signals. Accordingly, we pass the prompt to LLMs to refine its
generated bundles - Here are some tips for the detected bundles in
your answer: {[bundle X is Type X, . . . ]}; Adjust the bundles based
on the tips in your answer. Please output the adjusted bundles with
the format: {‘bundle number’:[‘product number’]}. We repeat such a
process 𝑇𝑏 times or until only the Type 0 signal is returned. Since
LLMs could make different mistakes for various generated bundles
in different sessions, the auto-feedback mechanism can recurrently
offer adaptive supervision based on the ground truth bundles.

We now proceed with the inferred intents. We first ask LLMs
to re-infer intents for the above updated bundles - Please use 3 to 5
words to generate intents behind the detected bundles, the output for-
mat is: {‘bundle number’:‘intent’}. Afterwards, similar to the bundle
auto-feedback generation, we define 3 types of supervision signals
for the inferred intents as below:
• Type 1: (Naturalness) be more natural;
• Type 2: (Coverage) cover more products within the bundle;
• Type 3: (Motivation) have a more motivational description.
We seek to compare the intents inferred by LLMs and the ground
truth in three aspects. In particular, Naturalness indicates whether

the intent is easy to read and understand; Coverage implies to what
extent the items in the bundle can be covered by the intent; and
Motivation suggests whether the intent contains motivational de-
scription, i.e., describing the purpose of the bundle by activities,
events, or actions. For example, the intent ‘assembling computer’ is
motivational, whilst ‘different computer accessories’ is not. Based
on this, we can provide the corresponding supervision signal de-
fined above. However, it may necessitate human evaluation, poten-
tially leading to labor-intensive tasks. To remedy this, we adopt
two LLMs (another ChatGPT and Claude-2) as raters to automati-
cally conduct the intent assessment task via the Intent Assessment
Prompt demonstrated on the right side.

For the sake of robustness, we instruct each rater to repeat the
evaluation process three times and calculate the average as the
final rating. For each metric, we compare the rating between the
generated intent and ground truth. If any rater provides a lower
rating to the generated intents on any metric, we then provide the
corresponding supervision signals to LLMs for further refinement
via the prompt - Here are some tips for the generated intents in
your answer: regenerate intent X to {[Type X, · · · ]}. Please output
the regenerated intents with the format: {‘bundle number’:‘intent’}.
We repeat the above process either 𝑇𝑖 times or until the ratings of
generated intents are no lower than those of ground truth across
the three metrics for both raters.

Prompt: Intent Assessment

The intent should describe the customer’s motivation well in
the purchase of the product bundles. You are asked to evalu-
ate two intents for a bundle, using three metrics: Naturalness,
Coverage, and Motivation. The details and scales of each
metric are listed below.
Naturalness:
1 - the intent is difficult to read and understand
2 - the intent is fair to read and understand
3 - the intent is easy to read and understand
Coverage:
1 - only a few items in the bundle are covered by the intent
2 - around half items in the bundle are covered by the intent
3 - most items in the bundle are covered by the intent
Motivation:
1 - the intent contains no motivational description
2 - the intent contains motivational description
Following are the bundles that we ask you to evaluate:
{[product X: title, . . . ]}, {intent X, intent GT}
Please answer in the following format: {‘intent number’:
[‘Naturalness’:score, ‘Coverage’:score, ‘Motivation’:score]}.

3.2.3 Rules Summarization. Beyond the conversation above, we
further instruct LLMs to derive useful rules from the entire task
execution process to prevent recurring errors in the future, with
the prompt - Based on the conversations above, which rules do you
find when detecting bundles? . Here are examples of some generated
rules: (1) products with similar intents are grouped together in a
bundle; (2) missing products can be appended to the bundles if they
are related to the intent; (3) the adjusted bundles should reflect
the intent and include relevant products from the sequence; (4) the
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intent behind a bundle can be inferred from the combination of
products and their intended use; and (5) the regenerated intents
should be descriptive and motivational.

3.3 Demonstration Guided Inference (DGI)
Given the constructed demonstration, we ask LLMs to perform
the two tasks on the corresponding test session via the prompt -
Based on the rules above, detect bundles for the below product se-
quence: {[product X: title, . . . ]}. The answer format is: {‘bundle num-
ber’:[‘product number’]}. No explanation for the results and - Please
use 3 to 5 words to generate intents behind the detected bundles, the
output format is {‘bundle number’:‘intent’}. By observing demonstra-
tions of neighbor sessions, LLMs can seek tailored and adaptive
lessons for improved performance on the test session.

3.4 Complexity Discussion
The time complexity of our method mainly comes from three mod-
ules: (1) Neighbor Session Retrieval, (2) Adaptive Demonstration
Generation, and (3) Demonstration Guided Inference. For (1), using
SentenceTransformer to obtain the session embedding is quite fast.
The main complexity lies in the pairwise similarity calculation, i.e.,
O(|S𝑟 | × |S𝑡 |), where |S𝑟 | and |S𝑡 | are the total number of training
and test sessions, respectively. For (2), it involves calling ChatGPT
API for iterative adjustment via self-correction and adaptive auto-
feedback, which constitutes the bulk of the complexity. This process
mainly depends on the network latency and server load. For (3), it
involves doing inference with the demonstration as context using
ChatGPT API, which depends on the token size of the context and
factors mentioned in (2).

In real-world applications, the computation within each of the
three modules can be done in parallel to speed up the whole process.
Besides, during inference, for each test session, step (1) can be sped
up by employing Product Quantization (PQ) [25] to compress text
embedding as quantization-based representation [67], thereby re-
ducing the cost of similarity computation. Step (2) involves multiple
iterations and refinements using LLMs for generating demonstra-
tions, which constitute the bulk of the complexity and can be done
offline and stored in the database in advance. This is because the
demonstrations are generated using training sessions only. We can
offline generate them on all training sessions or a reasonable num-
ber of representative training sessions. In summary, our method is
reasonably feasible for practical application.

4 EXPERIMENTS AND RESULTS
We conduct extensive experiments on three public datasets to
demonstrate the effectiveness of our proposed AICL paradigm. For
reproducibility [47], our code is available at https://github.com/
BundleRec/bundle_generation.

4.1 Experimental Setup
4.1.1 Datasets. We adopt three public bundle datasets created by
a resource paper in SIGIR 2022 [48, 49]. In particular, they design a
crowdsourcing task to annotate high-quality bundles and the corre-
sponding intents from user sessions in Amazon datasets [19] with
three domains, i.e., Electronic, Clothing, and Food. The statistics
are summarized in Table 3. For each dataset, we chronologically

Table 3: The statistics of the three bundle datasets.
Electronic Clothing Food

#Users 888 965 879
#Items 3499 4487 3767

#Sessions 1145 1181 1161
#Bundles 1750 1910 1784
#Intents 1422 1466 1156

#User-Item Interactions 6165 6326 6395
#User-Bundle Interactions 1753 1912 1785

Average Bundle Size 3.52 3.31 3.58

split the session data into training, validation, and test sets with
a ratio of 7:1:2. To the best of our knowledge, they are the ONLY
bundle datasets with user sessions and well-labeled intents. Other
widely-used bundle datasets, such as Steam, Netease, Youshu [2],
Goodreads [21], and iFashion [42] cannot be utilized in our study
due to the unavailability of bundle intents.

4.1.2 Baselines. We compare our proposed AICL with seven base-
lines. Freq [49] is the frequent itemsets mining method. BBPR [39]
is the greedy method with the predictions of BPRMF [43]. POG [10]
is the Transformer-based encoder-decoder model to generate per-
sonalized outfits. BYOB [12] treats bundle generation as a combina-
torial optimization problem with reinforcement learning. T5 [40]
is a Transformer-based seq2seq model. We use the version with
220M parameters and fine-tune it with our training data. Zero-shot
directly adopts LLMs to generate bundles and infer intents from
user sessions. Few-shot exploits LLMs to perform the two tasks
with few-shot examples. Furthermore, for a comprehensive compar-
ison, we consider different variants for Few-shot by changing the
way of selecting few-shot examples, including (1) Few-shot-random
randomly selecting different examples for each test session as the
demonstration; (2) Few-shot-fix randomly selecting the same exam-
ples, and use them as demonstrations for all test sessions; and (3)
Few-shot-top using the nearest neighbor sessions (same as in AICL)
for each test session as the demonstration. We empirically find that
Few-shot-fix generally achieves the best performance among all
variants. Thus, we report the results produced by Few-shot-fix in
our study. It is noteworthy that we do not compare with BUNT [23],
Conna [54] and BGGN [8]. This is because BUNT requires explicit user
queries, and the source codes of Conna and BGGN are not available.
We failed to reproduce them without the model details.

4.1.3 Evaluation Metrics. Following [48, 49], we adopt three met-
rics to evaluate the quality of generated bundles: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 ,
and 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 . At the session level, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 measure
howmany bundles (subsets included) have been correctly predicted
for each session. Meanwhile, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 , at the bundle level, mea-
sures how many items are correctly covered by each hit bundle
compared to the ground truth bundle. Due to space limitations, the
detailed explanation of these metrics can be found in [48, 49].

Concerning the inferred intents, our initial plan was to perform
an automatic evaluation using the widely-used ROUGE [44] to eval-
uate 𝑛-grams of the generated intents with ground truth. However,
our empirical observations reveal that the generated intents, while
semantically aligned with the ground truth, exhibit distinct expres-
sions. Hence, using ROUGE may not accurately gauge and reflect
the true quality of these intents. Thus, we carefully design human
evaluation to examine the quality of intents with the three metrics
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Table 4: The performance on bundle generation. For the sake of robustness, we run each method five times to report the
average results; the best results are highlighted in bold; the runner-up is underlined; and ‘†’ refers to our method significantly
outperforms the best-performed baselines with a paired t-test (𝑝-value < 0.05).

Electronic Clothing Food
Precision Recall Coverage Precision Recall Coverage Precision Recall Coverage

N
on

-L
LM

s Freq 0.423 0.597 0.701 0.532 0.566 0.698 0.491 0.525 0.684
BBPR 0.260 0.122 0.433 0.239 0.211 0.449 0.210 0.183 0.416
POG 0.339 0.250 0.412 0.312 0.221 0.399 0.365 0.266 0.393
BYOB 0.340 0.294 0.361 0.311 0.273 0.457 0.304 0.253 0.427

LL
M
s

T5 0.553 0.553 0.502 0.572 0.581 0.507 0.575 0.574 0.451
Zero-shot 0.580 0.820 0.720 0.603 0.752 0.788 0.604 0.815 0.748
Few-shot 0.587 0.825 0.724 0.595 0.836 0.781 0.647 0.833 0.749
AICL 0.679† 0.859† 0.741† 0.677† 0.788 0.839† 0.698† 0.851† 0.755†
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Figure 3:Human evaluation on inferred intents. The bar and horizontal line aremean and standard deviation values, respectively.

Naturalness, Coverage, and Motivation defined in Section 3.2.2. In
our study, we ask 15 participants to rate the intents generated by
the workers (ground truth) and three LLMs (Zero-shot, Few-shot,
and AICL) for 60 bundles (20 per domain).

4.1.4 Hyper-parameter Settings. The best parameter settings for all
methods are found based on the performance of the validation set or
the suggested values in the original papers. For Freq, we apply a grid
search in {0.0001, 0.001, 0.01} for the support and confidence values.
The best settings are 0.001 on all datasets. The embedding size is set
to 20 for BBPR, POG, and BYOB for a fair comparison. The negative
samples for BBPR and BYOB are set to 2. For BBPR, the initial bundle
size is 3, and the number of neighbors is 10. For BYOB, the bundle
size is set as 3. For POG and BYOB, the size of candidate item set is
20. The batch size for POG, BYOB, and T5 are set as 64, 64, and 4
respectively. The learning rate is searched in {0.0001, 0.001, 0.01} for
BBPR, POG, and BYOB, and in {0.00002, 0.00005, 0.00007, 0.0001}
to fine-tune T5. The best settings are 0.01, 0.001, 0.001, and 0.00005
for the four methods, respectively. For Zero- and Few-shot, we use
the same prompts as AICL (bundle generation and intent reasoning
parts only). For Few-shot, we use one example to construct the
demonstration. For a fair comparison, we set 𝑘 = 1 for our AICL.
Besides, we apply a grid search in {1, 2, 3, 4, 5} for𝑇𝑠 ,𝑇𝑏 , and𝑇𝑖 . The
optimal settings are 𝑇𝑠 = 𝑇𝑖 = 1 and 𝑇𝑏 = 4.

4.2 Results and Analysis
4.2.1 Performance of Bundle Generation. Table 4 shows the per-
formance of all methods on the bundle generation task. Several
interesting observations can be noted. (1) LLM-based methods gen-
erally surpass Non-LLM ones, exhibiting the superiority of LLMs on
our defined tasks. Regarding the Non-LLM methods, (2) the straight-
forward Freq outperforms all model-based methods (BBPR, POG,
and BYOB), possibly because the data sparsity issue causes the
model-based methods to be under-trained. In contrast, Freq initially

identifies frequent patterns at the category level, effectively mitigat-
ing such an issue. (3) Among the three model-based methods, the
DL-based ones (POG and BYOB) exhibit better performance, under-
scoring the effectiveness of DL techniques. In terms of LLM-based
methods, (4) T5 (220M) performs the least effectively, primarily due
to its relatively small model size in comparison to GPT-3.5 with 154
billion parameters. (5) Few-shot exceeds Zero-shot, showcasing the
usefulness of demonstrations in ICL. (6) AICL generally delivers
the top performance across all datasets, providing solid evidence of
the effectiveness and efficiency of its distinctive design.

4.2.2 Performance of Intent Reasoning. Figure 3 displays the rating
scores of intents generated by Zero-shot, Few-shot, AICL, and the
workers (ground truth). Other baselines are not compared as they
cannot generate intents. We randomly select 20 correctly generated
bundles and their intents in each domain. In total, 60 bundles are
assessed on three metrics, i.e., Naturalness, Coverage, and Motiva-
tion as defined in Section 3.2.2. The overall trends on all datasets
are similar. First, AICL achieves the best performance in most cases,
either with higher mean values or lower standard deviation values.
This helps confirm the superiority of AICL on effective intent rea-
soning. Second, Few-shot generally exceeds Zero-shot, validating
the usefulness of demonstrations on guiding LLMs for improved
performance. Third, the ground truth intents annotated by work-
ers are defeated by at least one of the three LLM-based methods
(except ‘Motivation’ on Food). This might be attributed to workers
often prioritizing the speed of task completion to maximize their
earnings, potentially at the expense of work quality [15]. Further-
more, it underscores the advanced capabilities of reasoning and
natural language generation in LLMs, emphasizing their substantial
potential in the context of crowdsourcing tasks.

4.2.3 Ablation Study. We compare AICL with its six variants to ex-
amine the efficacy of each component. In particular, AICL_w/o_top
randomly samples one session in the training set to replace the
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Table 5: The results of ablation study on the bundle generation task. We run each variant five times to report the average results.
Electronic Clothing Food

Precision Recall Coverage Precision Recall Coverage Precision Recall Coverage

AICL_w/o_top 0.667 0.823 0.734 0.667 0.761 0.814 0.689 0.837 0.743
AICL_w/o_self 0.651 0.839 0.735 0.649 0.768 0.835 0.651 0.820 0.747
AICL_w/o_auto 0.635 0.811 0.719 0.652 0.768 0.816 0.663 0.825 0.729
AICL_w/o_context 0.556 0.786 0.721 0.577 0.723 0.826 0.583 0.814 0.723
AICL_w/o_rules 0.665 0.822 0.729 0.661 0.772 0.826 0.679 0.834 0.742
AICL_w/o_intent 0.636 0.825 0.731 0.655 0.769 0.821 0.671 0.841 0.741
AICL 0.679 0.859 0.741 0.677 0.788 0.839 0.698 0.851 0.755

Table 6: The performance comparison between Sentence-
Transformer and LLMs on Electronic.

Precision Recall Coverage

SentenceTransformer (all-MiniLM-L6-v2) 0.623 0.745 0.674
OpenAI (text-embedding-ada-002) 0.616 0.860 0.683

top neighbor. AICL_w/o_self removes the self-correction strategy
from the demonstration. AICL_w/o_auto omits the auto-feedback
mechanism from the demonstration. AICL_w/o_context removes
both self-correction and auto-feedback modules from the demon-
stration. AICL_w/o_rules abandons the rules summarization from
the demonstration. AICL_w/o_intent deletes intent reasoning from
the demonstration. Due to space limitations, we only show the
results of the bundle generation task, as presented in Table 5.

Overall, all the variants demonstrate lower performance com-
pared to AICL, showcasing the contribution of each component
to the improved performance. To be specific, AICL_w/o_top un-
derperforms AICL, which indicates the importance of identify-
ing highly correlated examples to generate demonstrations. Both
AICL_w/o_self and AICL_w/o_auto perform worse than AICL,
while gaining better performance comparedwithAICL_w/o_context,
implying the significance of both self-correction and auto-feedback
strategies. The fact that AICL defeats AICL_w/o_rules exhibits the
usefulness of rules summarization in instructing LLMs. Besides, an
obvious performance drop is observed on AICL_w/o_intent when
compared with AICL. This helps reinforce our claim that effective
user intents play a crucial role in identifying relevant products to
form improved bundles.

Furthermore, our Neighbor Session Retrieval module exploits the
open-source Python framework SentenceTransformer (all-MiniLM-
L6-v2) to get session representations for similarity calculation in-
stead of using LLMs (e.g., OpenAI text-embedding-ada-002) due
to its comparable performance with less cost (time and money) as
explained in Section 3.1. To verify our claim, we randomly sample
50 sessions from Electronic and use the two methods to help get
the nearest neighbors. The results are presented in Table 6. Ac-
cordingly, their precision and coverage are comparable, while AICL
with OpenAI embeddings possess higher recall. This also indicates
the results of AICL reported in our paper may not be its upper
bound, and there is still space for further improvements by using
better sentence encoding models.

4.2.4 Hyper-Parameter Analysis. We further study the impact of
essential hyper-parameters on AICL, including the rounds of self-
correction (𝑇𝑠 ) and auto-feedback for both tasks (𝑇𝑏 and𝑇𝑖 ), as well
as the number of neighbor sessions (𝑘). First, we observe that around
29% of neighbor sessions adjust bundles and intents with 𝑇𝑠 = 1,
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Figure 4: The impact of 𝑇𝑏 on all neighbor sessions.

and the accuracy is improved by 5.9% w.r.t. Precision on average. In
summary, the self-correction allows LLMs to reassess the response,
leading to more self-consistent and effective results. Second, we
apply a grid search in {1, 2, 3, 4, 5} to check the impact of𝑇𝑏 depicted
in Figure 4. As𝑇𝑏 increases, the performance initially rises, reaching
its peak with 𝑇𝑏 = 4, and subsequently declines as 𝑇𝑏 continues to
increase. Our empirical findings indicate an average improvement
of 16.7% in Precision with the auto-feedback. Third, we find that
with 𝑇𝑖 = 1, most intents (65.7%) generated by LLMs are quite close
to the ground truth intents annotated by workers. It reveals the
great potential of LLMs in crowdsourcing tasks. Lastly, we observe
that the best performance is attained with 𝑘 = 1. Increasing the
value of 𝑘 does not consistently yield noticeable improvements and
can, on occasion, even lead to marginal performance declines. This
is intuitive as a large 𝑘 substantially lengthens the context, which
may confuse LLMs and result in decreased performance.

4.2.5 Case Study. A case study is performed to check the generated
bundles and intents by Zero-shot, Few-shot, and AICL. Due to space
limitations, we only show one sampled test session on Electronic
in Figure 5. For bundle generation, it’s evident that Zero-shot only
manages to generate a portion of the Galaxy Tab and Protection
bundle, overlooking the TV Box bundle. Few-shot, on the other
hand, identifies three bundles, but the first is a subset of the ground
truth, and the last, combining the iPad case and Galaxy Tab, is less
coherent. In contrast, AICL consistently and effectively generates
all bundles that perfectly align with the ground truth. For intent
reasoning, all methods perform similarly in terms of Naturalness and
Coverage. However, AICL demonstrates a superior performance
in terms of Motivation. For example, the intent associated with
the TV Box bundle ‘Upgrade Your Streaming Experience’ is more
motivational than the intents ‘Streaming Box’ (ground truth) and
‘Streaming Player’ (Few-shot).

4.2.6 Limitations of LLMs for Bundle Generation. Despite the effec-
tiveness of LLMs, we now discuss their limitations on our defined
tasks. First, through empirical observations, we notice that LLM-
based methods tend to produce smaller bundles in comparison to
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Figure 5: The generated bundles and intents on Electronic.
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Figure 6: Bundle size distribution on Electronic and Clothing.

the ground truth (GT) bundles annotated by workers, as depicted in
Figure 6. The smaller bundle size could limit the diversity of recom-
mendations. However, it may align with real user behavior, as most
online customers often purchase a small number, typically two, of
items in one shopping session [74]. In this context, an overlarge
bundle size may not provide significant benefits and could poten-
tially divert users’ attention. Second, despite our various attempts
to emphasize the prompt constraint, namely, ‘Each bundle must
contain multiple products’, GPT-3.5 sometimes generates bundles
with only a single product. It could be attributable to its inherent
hallucination issue, and such an issue can be partially resolved by
more powerful LLMs, e.g., GPT-4. Specifically, we do a preliminary
exploration to examine the performance of GPT-4 on sessions (5
per domain) with such an issue using GPT-3.5. The results are de-
picted in Table 7. Overall, improvements are observed in two key
areas. Firstly, all compared methods exhibited fewer instances of
‘bad cases’ (i.e., bundles containing a single product) with GPT-
4 compared to GPT-3.5. Secondly, the accuracy (precision, recall,
and coverage) of most methods show enhancements with GPT-4
compared to GPT-3.5, although there are some exceptions, such
as decreases in certain metrics. Moreover, Figure 7 illustrates the
performance comparison on a real test session on Electronic, which
has such a hallucination issue with GPT-3.5 but can be completely
resolved with GPT-4.

Table 7: The performance comparison between GPT-3.5 and
GPT-4, where ‘#Bad Case’ refers to the number of sessions
with the hallucination issue. Due to space limitation, we only
present the results on Precision and Recall.

GPT-3.5 GPT-4
Recall Precision #Bad Case Recall Precision #Bad Case

El
ec
t. Zero-shot 0.733 0.667 5 0.733 0.633 2

Few-shot 0.533 0.600 5 0.800 0.600 1
AICL 0.800 0.700 5 0.833 0.700 1

Cl
ot
hi
ng Zero-shot 0.533 0.517 5 0.567 0.450 2

Few-shot 0.433 0.400 5 0.667 0.483 1
AICL 0.611 0.556 5 0.667 0.583 1

Fo
od

Zero-shot 0.800 0.733 5 0.800 0.667 2
Few-shot 0.646 0.533 5 0.800 0.667 2
AICL 0.800 0.733 5 0.800 0.700 1

Session GT
Bundles

Zero-shot

Few-shot

AICL

GPT-3.5 GPT-4

Figure 7: The comparison between GPT-3.5 and GPT-4.

5 CONCLUSION AND FUTUREWORK
Motivated by the advanced reasoning capability exhibited in LLMs,
this paper initiates a pioneering exploration into two interrelated
tasks, i.e., personalized bundle generation and the underlying in-
tent inference, both rooted in users’ behaviors within a session. To
this end, we propose an adaptive in-context learning (AICL) para-
digm equipped with three modules, i.e., neighbor session retrieval,
adaptive demonstration generation, and demonstration guided in-
ference. This empowers LLMs to seek tailored and adaptive lessons
from neighbor sessions as demonstrations for performance im-
provements on the test session. As a result, it ultimately delivers
an effective approach that is capable of generating multiple, per-
sonalized, and intelligible bundles with adaptive sizes given any
user session. Experimental results on three public datasets verify
the effectiveness of our AICL on both tasks.

For future endeavors, there are several potential directions, in-
cluding (1) designing strategies to create larger bundles and better
control the output format; (2) introducing self-correction and auto-
feedback mechanisms in the inference stage, and (3) exploring the
utilization of multi-modal data for further enhancement.
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