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Preface

During the International symposium coastal hydro- and morphodynamics in honour of Prof.
Jurjen Battjes in May 2004 one of the speakers was Robert Dalrymple. He presented some
results of numerical modelling of waves using the SPH method. The innovative way to de-
scribe water with particles attracted my attention immediately. Numerical modelling of water
motion is one of the most interesting parts of Civil Engineering for me. I was happy to get
the challenging graduation subject to study the possibilities of SPH in hydraulic engineering.

I’d like to thank my enthusiastic committee members. Robert Jan Labeur was stimulat-
ing and always ready to help me to find solutions for the problems we faced. Prof. G.S.
Stelling was very interested in the capabilities of SPH. M. Zijlema could give good help with
programming in Fortran and numerical integration. A.W. Heemink was interested as an ex-
ternal member of my committee. I’m thankful to all members for their thorough feedback in
the meetings.

Most of all I’m thankful for the capacities God gave me to fulfill this wonderful gradua-
tion work, and for the perspective He gives me every day. Solving differential equations is
very nice, but in the end life is about relations with each other and with Him.

Lynyrd de Wit
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Abstract

In this thesis the Smoothed Particle Hydrodynamics (SPH) method is described and demon-
strated for some simulations in the application field of hydraulic engineering. SPH is a
Lagrangian particle method which uses a smoothing function to find spatial dependencies
between particles. The particles carry all the quantities and no grid is needed. Because the
particles can move themselves the total material derivative of quantities can be used, this
avoids problems with advective transport. SPH can be used to solve the non-hydrostatic
Navier-Stokes equations to model water motion. The fluid in SPH is made slightly compress-
ible (density variations maximal 1 %) to get a time derivative of the density and calculate the
pressure explicitly from the density. The fluid is not approximated as incompressible because
an implicit Poisson equation for the pressure needs to be solved then which is cumbersome to
do in a particle method. Viscous stress terms are simulated with an artificial viscosity. The
artificial viscosity is also needed for numerical stability. The free surface in SPH simply is the
transition between an area with particles and an area without. Fast varying or intersecting
surfaces like in overtopping waves are no problem to model. Boundaries are modelled with
boundary particles with a repulsive force for all fluid particles coming close. Ghost fluid par-
ticles are created outside of a boundary to prevent artificial boundary effects.

A 2D version of SPH is programmed and used in several simulations from the hydraulic
engineering practice. Some viscosity benchmark problems showed that the artificial viscos-
ity approach indeed works like a viscous stress term. Velocity differences are decreased by
exchange of momentum, not completely correct but in an artificial way. The SPH results
for a broken dam problem and a bore at a wall are very close to experimental or theoretic
results. A standing wave simulation showed that the present version of SPH suffers from a
positive numerical phase error, and big dissipation from the artificial viscosity that is needed
for stability. SPH gives realistic results for spilling or plunging waves on a beach. Phenomena
like shoaling, wave set-down before breaking and wave set-up after breaking are reproduced
correctly by SPH. Wave overtopping and breaking in the case of plunging waves is found from
the Navier-Stokes equations without further assumptions. Finally SPH is used to model the
flow over a sharp weir. SPH can handle the sharp pressure gradients and the water jet at the
weir. The discharge is close to the expected theoretical discharge.

The simulations in this thesis show that SPH can be used in many different situations in
hydraulic engineering. Especially in problems with large pressure gradients, fast varying
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water levels and intersecting free surfaces the advantages of SPH show to full extend. Un-
fortunately a small time step is needed for stability, together with many particles needed
for enough resolution, this leads to considerable calculation times. The application of SPH
is therefore restricted to local and short phenomena. SPH can be used in situations where
many other methods fail, for instance wave overtopping can be simulated in great detail.
Although SPH is a relatively new technique in the field of hydraulic engineering, it’s future
looks promising.
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Chapter 1

Introduction

Hydraulic engineering is defined as the branch of civil engineering dealing with the use and
control of water in motion. Numerical simulation is an important tool to understand the mo-
tion of water. The position of the free surface is difficult to predict when it changes rapidly
in time. A multiply defined free surface as in overtopping waves is harder or even impossible
to predict for many operational numerical methods. The subject of this report is Smoothed
Particle Hydrodynamics (SPH), it is a particle method using a smoothing function for inter-
actions between particles. It can be used to model water motion and claims to be a robust
technique for many dynamic problems in hydraulic engineering. Fast varying water levels,
difficult interaction between water and moving objects, and spectacular overtopping waves
can be modelled with SPH directly from the Navier-Stokes equations, without assumptions
over what will happen beforehand. This report will investigate whether the claims are true.
An introduction to numerical modelling and the position of SPH among other methods is not
given in this general introduction, but in chapter 2.

1.1 Problem statement

This graduation thesis will investigate the possibilities of SPH in hydraulic engineering. The
aspects considered are:

1. How does SPH model water motion? Which assumptions are made and how are the
equations, governing water motion, approximated in SPH?

2. Develop or find a working SPH computer code.

3. Use SPH to carry out some simulations in the field of hydraulic engineering. How do
the results compare with experiments or theory? How accurate is SPH?

4. Finally, what is the conclusion about the possibilities of SPH in hydraulic engineering?
What are strong and weak points? Which improvements are needed?

1



Chapter 1. Introduction

1.2 Outline of the thesis

After this introduction the position of SPH among other numerical approaches in hydraulic
engineering is explained in chapter 2. The basic principles of SPH are the subject of chapter 3.
The way functions are approximated in SPH is explained, and then applied to the equations
governing fluid motion. To use SPH in a computer code, and to improve the accuracy, some
implementations are needed, like time-integration, boundaries, etc. These implementations
are standing in chapter 4. With the SPH equations and implementations a computer code is
developed, the structure of it can be found in chapter 5. The simulations carried out with the
SPH computer code are presented in chapter 6. All simulations are from the field of hydraulic
engineering. Finally in chapter 7 conclusions about SPH are drawn and further improvements
are recommended.
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Chapter 2

Numerical simulation of free surface

flows

This chapter gives a general introduction to numerical modelling in hydraulic engineering.
The general interest in hydraulic engineering lies in problems with a free surface. After the
introduction to numerical simulation some different approaches to model free surface flows
on a computer with their key assumptions are given. This chapter does not pretend to be
complete about every approach, but gives a very brief overview. The position of the subject
of this paper, Smoothed Particle Hydrodynamics, among the other approaches will become
clear.

2.1 Introduction to numerical simulation

Numerical simulation has become an important tool for solving engineering problems. With
the help of increasing computer power less and less assumptions are necessary and problems
can be solved with more details. Numerical simulations are replacing expensive and diffi-
cult experiments in laboratories more and more. To carry out a numerical simulation on
a computer a physical problem is translated into a discrete set of mathematical formulas.
For fluid motion this gives a set of partial differential equations (PDE’s) in time and space.
Pressure, and a velocity component for every used dimension, are the only main independent
field variables. With enough initial and boundary conditions the PDE’s can be solved giving
the pressure and velocity at every point, at every time. In most cases analytical solutions
are not available. But when space is divided in a finite number of components, and time
is divided in a finite number of steps, the solution of the PDE’s can be found by numerical
integration. Many ways to discretise the PDE’s and to handle a free surface are possible.
They all have advantages and disadvantages for certain problems. Four approaches which
are able to model free surface flows will be introduced below. These are grid based methods,
methods combining a grid with particles, a method combining a grid with a surface finder,
and particle methods without grid.

3



Chapter 2. Numerical simulation of free surface flows

2.2 Grid based methods

In grid based numerical methods space is divided in a finite number of cells forming a grid. The
PDE’s governing fluid motion are solved on the grid. In most methods the grid is fixed and the
fluid is flowing through it, this is called an Eulerian grid. At the centre of a cell the pressure
is calculated, at the boundary of a cell the velocities are calculated giving fluxes between the
cells. Grid based numerical methods can be divided in two main approaches. One approach
is using the finite differencing method (FDM), space is discretised with an orthogonal grid
leading to a structured grid. The approach called finite volume method (FVM) is practically
the same as FDM. The spatial derivatives of the original PDE’s are approximated on the grid.
In the limit of a grid with an infinite number of cells the discretised spatial derivative will give
the original analytical derivative. By this discretisation the original PDE’s are converted into
a set of ordinary differential equations (ODE’s) in time, with a numerical time integration
scheme the solution can be progressed in time. On a structured grid the discretisation is
straight forward and conservation of mass is easily obtained. The drawback is that real world
is not orthogonal and structured. The other approach using a grid is called the finite element
method (FEM), this method divides space in a finite number of elements. These elements are
often triangles, but other elements are possible as well. The original PDE’s are not discretised
in space on the grid, but a shape function is used to approximate the spatial solution of the
original PDE’s on the grid. Again the solution is progressed in time by a numerical time
integration scheme. Irregular geometry can be modelled easily with FEM because of the use
of triangles. FEM can be combined with a Lagrangian grid moving along with the flow, but for
simulations considered in hydraulic engineering the large deformation gives problems. Both
grid based methods are used often and give accurate solutions for many problems concerning
free surface flows. However grid based methods do have some drawbacks. FDM and FEM can
have vertical adaptive grids for a varying water level, but the water level may not change too
fast in time or space. Intersecting or breaking surfaces cannot be modelled. A fixed grid also
gives difficulties with the correct calculation of the transport between cells. This advective
transport is non-linear and therefore hard to solve efficiently and correctly.

2.3 Grid with particles

To compensate some of the drawbacks of grid based numerical methods they have been
combined with particles. One of the first methods combining particles with a grid was the
Particle-in-Cell method (PIC) for compressible flows of Harlow (1963). The particles are used
to handle advective transport, the other terms of the PDE’s are solved on the grid. Every
timestep the values from the particles and the grid are exchanged by interpolation to give a
correct solution of the PDE’s inclusive advection. The problems with non-linear advective
transport in a grid based method is solved this way, but the exchange of information between
the particles and the grid causes excessive numerical diffusion. Recently some improvements
are made to PIC to handle incompressible flow and to reduce the numerical diffusion by
making the particles the fundamental representation of the fluid. The grid is only used to

4



Chapter 2. Numerical simulation of free surface flows

calculate interaction between the particles. This improves the results with PIC a lot, but it
would be interesting to go one step further and calculate the interaction between particles
directly without a grid. Another combination of particles with a grid is the Marker-and-Cell
method (MAC) from Harlow and Welch (1965). This method uses a grid to solve the PDE’s
inclusive advective terms and marker particles to indicate the fluid configuration. The marker
particles do not have fysical quantities like mass or volume and they do not participate in
the calculation. They only serve as flow visualisation and indicate the free water surface.
MAC can handle varying water levels and even breaking surfaces. But MAC does need a
lot of particles to track a fast varying water level accurately. Calculation time and memory
requirements are large, therefore MAC is not often used for 3D simulations but mostly for
2D problems only. MAC has the same problems with non-linear advection as the grid based
methods without particles.

2.4 Grid with free surface finder

It would be interesting to combine the accurate surface handling capabilities of MAC with-
out the big computational costs. A method which can achieve this is the Volume-of-Fluid
method (Hirt and Nichols 1981). It uses a fixed Eulerian grid to solve the equations of fluid
motion. By tracking the volume of fluid in every cell it finds the free surface, the slope of the
surface is found by using the volume fractions in the neighbouring cells. The time evolution
of the surface is calculated by moving the volume fractions through the grid correctly, also
free surface boundary conditions are applied at the free surface. Its use of volume tracking
for finding the free surface is robust enough to handle breaking surfaces. The volume frac-
tions can vary continuously, therefore the free surface can be at any level, not only at cell
boundaries. VOF can produce impressive results for free surface simulations, including for
example breaking waves with splash up. A lot of administration to simulate a correct free
surface is needed though, and due to its use of a fixed Eulerian grid VOF is struggling with
the advective transport.

2.5 Particle methods

All currently mentioned approaches are using a fixed grid to solve the PDE’s governing fluid
motion. In a particle method no grid is used, but all flow quantities are carried by parti-
cles, they have mass, volume, pressure, velocity, etc. The quantities of a particle are moving
along with it, they can only change by external influence or internal production, not by
transport over the boundaries of the particle. Therefore there are no problems with non-
linear advective transport in particle methods. The spatial derivatives are approximated by
interaction between the particles. The free surface is just the transition between an area
with fluid particles and an area without. Particle methods can handle fast varying, breaking
or intersecting surfaces. These interesting features are the reason to further investigate the
possibilities of a particle method in hydraulic engineering. The two most popular particle
methods are Smoothed Particle Hydrodynamics (SPH) and Moving Particles Semi-implicit

5



Chapter 2. Numerical simulation of free surface flows

(MPS). SPH is used for slightly compressible flow, in MPS an extra equation is solved to guar-
antee an incompressible flow. Unfortunately the semi-implicit equations in MPS to ensure
incompressibility are cumbersome to solve numerically. SPH is chosen because it is robust,
much easier to implement than MPS, and it has been used for several 2D and 3D simula-
tions of complex free surface flows (Gómez-Gesteira and Dalrymple 2004), or breaking waves
(Rogers and Dalrymple 2004).
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Chapter 3

Smoothed Particle Hydrodynamics

equations

3.1 The basic equations of fluid motion

The motion of fluids can be described by three conservation laws, namely conservation of
mass, conservation of momentum and conservation of energy. The conservation laws are for-
mulated under the assumption that the fluid is a continuous medium. From these conservation
laws partial differential equations are derived. For the type of problems in this thesis only
conservation of mass and conservation of momentum are to be considered. The lecture notes
from Wesseling (2002) were very useful for this section.

3.1.1 Notation

A Cartesian coordinate system will be used with components (x, y, z). Only two dimensional
problems have been tackled, but the presented equations are valid for three dimensions as
well. Bold-faced small letters denote vectors, for example velocity u = (ux, uy, uz)T . Normal-
faced letters denote scalars. The total derivative of a property φ is denoted by Dφ

Dt . The total
derivative accounts for the variation of a property when following a particular particle. It can
be expressed in local field quantities by:

Dφ

Dt
=

∂φ

∂t
+ u · ∇φ. (3.1)

3.1.2 Conservation of mass

Without production of mass, there is no change of mass in an arbitrary material volume V (t).
In equation form this becomes:

d

dt

∫
V (t)

ρdV = 0, (3.2)

with the transport theorem this can be written as:∫
V (t)

(
∂ρ

∂t
+∇ · (ρu))dV = 0. (3.3)

7
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This is valid for every volume V (t), so the integrand must be zero:

∂ρ

∂t
+∇ · (ρu) = 0 → ∂ρ

∂t
+ u · ∇ρ + ρ∇ · u = 0 →

Dρ

Dt
= −ρ∇ · u. (3.4)

Without the influence of salinity or temperature on the density, the variations of the density
in water are extremely small. Often water is approximated as a totally incompressible fluid,
because the equations for an incompressible fluid are easier to solve than for an almost in-
compressible fluid. In an incompressible fluid the density of each material particle remains
constant:

Dρ

Dt
= −ρ∇ · u = 0. (3.5)

From this it follows that ∇ · u = 0, an incompressible fluid is divergence free. In an in-
compressible fluid there is no relation between pressure and density, because the density is
always the same while the pressure can vary. The pressure is calculated implicitly by solving
a Poisson equation. For SPH this implicit way of calculating the pressure is very cumbersome,
therefore another approach is chosen. The almost incompressible medium water is not made
totally incompressible but more compressible in SPH. The full mass conservation equation
has to be used, reading:

Dρ

Dt
= −ρ∇ · u = −∇ · (ρu) + u · ∇ρ. (3.6)

This equation gives a time derivative of the density. With a relation between the pressure and
the density it is no longer necessary to solve the implicit Poisson equation for the pressure.
When atmospheric pressure is neglected, the relation between pressure and density is given
by the following equation of state (see also Batchelor (1974)):

p = B

[(
ρ

ρ0

)γ

− 1
]
, (3.7)

where p is the pressure in Pa, γ = 7, B = c2ρ0/γ, ρ0 = 1000kg/m3, and c is the used speed
of sound. When the real sound speed in water of 1480 m/s is used in the constant B, this
relation agrees with measured data for water within a few percents, for pressures less than
1010Pa. With a large c the time step has to be small for stability reasons, this leads to
large calculation times. In stead of using the real sound speed an artificial sound speed of
c ≈ 10umax is used in SPH. The variation in the density of a fluid is given by Monaghan
(1994):

∆ρ

ρ
∼ u2

c2
= M2, (3.8)

where u is a typical fluid velocity, c is the speed of sound in water and M is the Mach
number. The relative density differences are proportional to M2. With c ≈ 10umax the
maximum relative density differences are small, order ∼ 1%. Now the calculation time stays
reasonable and water is only slightly compressible in SPH.

8
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3.1.3 Conservation of momentum

Conservation of momentum implies that the rate of change of momentum of a material volume
is equal to the total force on the volume. The total force exists of surface forces proportional
to the surface dS(t) of a volume, and body forces proportional to its mass ρdV (t).

d

dt

∫
V (t)

ρudV =
∫

S(t)
fsdS +

∫
V (t)

ρfbdV. (3.9)

The surface tension fs can be expressed with an inner product of a second order tensor T
with the outward unit normal vector n on S.∫

S(t)
fsdS =

∫
S(t)

T · ndS =
∫

V (t)
∇ ·TdV. (3.10)

Where the last step is known as the divergence theorem. Combining equation 3.9 with 3.10
and using the transport theorem together with conservation of mass (equation 3.6) to rewrite
the first term in equation 3.9 this becomes:∫

V (t)
ρ
Du
Dt

dV =
∫

V (t)

(
∇ ·T + ρfb

)
dV. (3.11)

Since this holds for every volume V (t), it results in:

ρ
Du
Dt

= ∇ ·T + ρfb. (3.12)

The LHS represents the rate of change of momentum of a material volume. T is the second
order stress tensor representing the surface forces, ρfb represents the body forces. With a
constitutive relation for a Newtonian fluid to relate the stress tensor to the motion of fluid,
conservation of momentum yields the Navier-Stokes equations:

Du
Dt

= −1
ρ
∇p + ν∇2u + fb, (3.13)

where the LHS is the rate of change of momentum. The first term on the RHS is a pres-
sure gradient, second term represents the influence of viscosity, last term is an acceleration
representing the body forces. An example of fb is the influence of gravity.

3.2 Functions and derivatives in SPH

In SPH the fluid is discretised in large particles, they have the properties: mass, density,
pressure, position and velocity. These properties are attributed to the centre of each particle.
The particles with their properties are scattered in space, and can move independently. The
key idea in SPH is that it uses a smoothing function to produce smooth, continuous interpo-
lation fields of fysical properties from the discrete particle information in the computational
domain.

9
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3.2.1 Functions in SPH

A continuous function f(x) can be approximated by the integral interpolant:

〈f(x)〉 =
∫

Ω
f(x ′)W (x− x ′, h)dx ′. (3.14)

Where W (x− x ′, h) is an interpolation kernel with h as the smoothing length, which deter-
mines the width of the kernel. Section 3.3 will say more about smoothing kernels. When
space is not continuous anymore but discretised into a set of particles the approximation of
a function becomes:

〈f(x)〉 =
∑

j

f(xj)W (x− xj , h)∆Vj ,

〈f(x)〉 =
∑

j

f(xj)W (x− xj , h)
1
ρj

(ρj∆Vj),

〈f(x)〉 =
∑

j

mj

ρj
f(xj)W (x− xj , h). (3.15)

When a function needs to be known at a particle position xi this approximation can be written
as:

〈f(xi)〉 =
∑

j

mj

ρj
f(xj)Wij , (3.16)

where i, j are used as particle-indexes, mj and ρj are respectively mass and density belonging
to particle j, Wij = W (xi − xj , h) is the value of the smoothing kernel for the interaction
between particle i and j.

3.2.2 Spatial derivatives in SPH

Following the SPH approach to describe a function f(x), the spatial derivative at x can be
approximated with:

〈∇ · f(x)〉 =
∫

Ω
[∇ · f(x ′)]W (x− x ′, h)dx ′,

〈∇ · f(x)〉 =
∫

Ω
∇ · [f(x ′)W (x− x ′, h)]dx ′ −

∫
Ω

f(x ′) · ∇W (x− x ′, h)dx ′. (3.17)

The first integral of equation (3.17) can be converted into a surface integral using the diver-
gence theorem:

〈∇ · f(x)〉 =
∫

S
[f(x ′)W (x− x ′, h)] · ndS −

∫
Ω

f(x ′) · ∇W (x− x ′, h)dx ′, (3.18)

where n is the outward unit vector normal to surface S. The smoothing function has compact
support, which means that W (x− x ′, h) = 0 when |x− x ′| > κh. When a spatial derivative
is needed at a point more than κh away from the surface S the first term in equation 3.18 is
zero and the spatial derivative of a function becomes:

〈∇ · f(x)〉 = −
∫

Ω
f(x ′) · ∇W (x− x ′, h)dx ′. (3.19)

10
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For derivatives at positions within κh from surface S adaptations have to be made to prevent
artificial boundary effects. With the steps from equation 3.15 the derivative can be written
in discrete formulation, giving

〈∇ · f(x)〉 = −
∑

j

mj

ρj
f(xj) · ∇W (x− xj , h). (3.20)

A spatial derivative of a function at a particle position xi can be written as:

〈∇ · f(xi)〉 = −
∑

j

mj

ρj
f(xj) · ∇jWij , (3.21)

where
∇jWij =

xj − xi

rij

∂Wij

∂rij
. (3.22)

Here x is the vector containing the position of a particle and rij is the absolute value of the
distance between particle i and j. Furthermore∇jWij = −∇iWij and equation 3.21 can also
be written as:

〈∇ · f(xi)〉 =
∑

j

mj

ρj
f(xj) · ∇iWij . (3.23)

Now the derivative does not have a negative sign on the RHS because the gradient is taken
with respect to particle i.

3.3 Kernel

3.3.1 Properties of a kernel

SPH is not using a grid but particles to discretise space. In the last section it is shown that
a smoothing function is used to approximate a function and its derivative from the values
known at particle positions. The choice of the smoothing kernel together with a adequate
smoothing length is therefore important for both accuracy and speed. First some important
properties of kernels are summed up (Liu and Liu 2003).

1. The smoothing function must be unity over its support domain:∫
Ω

W (x)dx = 1. (3.24)

2. The smoothing function must have compact support, which means:

W (x− x ′, h) = 0, for|x− x ′| > κh, (3.25)

where κh defines the influence domain where contributions of other particles cannot be
neglected. The scaling factor κ normally is set to 2.

3. When the smoothing length h goes to zero, the smoothing function should behave like
a Dirac delta function:

lim
h→0

W (x− x ′, h) = δ(x− x ′). (3.26)

11
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4. The smoothing function must be positive in its entire domain.

5. The smoothing function must be maximum when |x−x ′| = 0, and zero when |x−x ′| =
κh. In between the smoothing function must decrease monotonically. Particles close to
each other must have more influence on each other than particles with a larger distance.

6. The smoothing function must be symmetric. Two particles at the same distance of a
particle i, but at different position must have the same influence on particle i.

7. The smoothing function should be sufficiently smooth. A smoother function is less
sensitive to particle disorder.

3.3.2 Piecewise cubic spline

Every function which meets the properties summed up above can be used as smoothing kernel.
A Gaussian kernel (Wij = αde

−q2
, see equation 3.27 for explanation of the terms) can fulfill

six of the seven properties excellently. Unfortunately it does not have compact support. A
smoothing function which looks like a Gaussian kernel, but also has compact support is the
Piecewise cubic spline. It is used a lot in SPH practice, for instance see (Monaghan 1994)
and (Liu and Liu 2003). The Piecewise cubic spline is used for the simulations in this report,
it is defined by:

Wij = αd


1− 3

2q2 + 3
4q3 0 ≤ q < 1

1
4(2− q)3 1 ≤ q ≤ 2
0 q > 2

(3.27)

where αd is a scaling factor making the smoothing function unity as mentioned in equation
3.24. For 1D, 2D and 3D problems αd is 2/(3h), 10/(7πh2) and 1/(πh3) respectively. Wij

is not dimensionless, it has the dimension (length)−2 for 2D problems. q = rij/h, rij is the
absolute distance between particles i and j. Wij depends on the smoothing length h and via
q it depends on distance rij . In figure 3.1 left the Piecewise cubic spline is plotted for two
dimensions with h = 1 m.

In order to get a spatial derivative of a function the analytical spatial derivative of the kernel
is needed, see equation 3.23. The analytical spatial derivative of the Piecewise cubic spline is
given by:

∇iWij =
xi − xj

rij

∂Wij

∂rij
, (3.28)

with

∂Wij

∂rij
= αd


−3

4
1
h(4q − 3q2) 0 ≤ q < 1

−3
4

1
h(2− q)2 1 ≤ q ≤ 2

0 q > 2
(3.29)

All used variables are given in equation 3.27. ∂Wij

∂rij
has dimension (length)−2/length for

2D problems. In figure 3.1 (right) ∂Wij

∂rij
of the Piecewise cubic spline is plotted for two

dimensions, again with h = 1 m. ∂Wij

∂rij
is always negative. From equation 3.28 it follows that
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Figure 3.1: Piecewise cubic spline in two dimensions (left), spatial derivative of the Piecewise cubic
spline (right).

the corresponding ∂W
∂x is negative when xi−xj > 0 and positive when xi−xj < 0. The same

is true for ∂W
∂y in y direction. This can be seen in figure 3.2.
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Figure 3.2: Piecewise cubic spline spatial derivative in x (left) and y (right) direction.

3.3.3 Smoothing length

Figure 3.3: Influence domain of particle
i with h = 1.4∆r.

As can be seen in figure 3.1 of the Piecewise cubic
spline there is no interaction when rij/h > 2, because
then Wij and ∂Wij

∂rij
are zero. The choice of the smooth-

ing length h is determining the number of interac-
tions for each particle. When h is too small, there are
not enough particles nearby to interact with, giving a
low accuracy. When h is too big, local properties are
smeared out too much, this gives a low accuracy again
and the calculation becomes slow. With a smoothing
length around 1.4 times the initial particle spacing ∆r,
the circle of influence has a radius of 2.8∆r. In figure
3.3 it is visible that with this smoothing length every particle has 20 neighbours in two di-
mensions. That is a good optimum for both accuracy and calculation speed. Because the
particles have the tendency to keep their neighbours at the initial distance ∆r during the
simulation, the number of neighbours for each particle remains fairly constant.
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3.4 Equations of fluid motion in SPH

The general conservation laws for fluid motion from section 3.1 can be combined with the
SPH approximations of functions from section 3.2. Together with some extra relations a
closed set of equations is obtained to model fluid motion. The equations are derived following
Monaghan (1994) and are used by many other researchers modelling with SPH. For every
equation the interaction between particles is made symmetric to be sure that the influence of
particle i on j is equal to the influence of j on i.

3.4.1 Conservation of mass

The conservation of mass equation derived in section 3.1.2 reads:
Dρ

Dt
= −ρ∇ · u = −∇ · (ρu) + u · ∇ρ. (3.6)

When the particle approximation of a derivative is used (equation 3.23) this can be written
as:

Dρi

Dt
= −∇i · (ρu) + ui · ∇i(ρ),

Dρi

Dt
= −

∑
j

mj

ρj
(ρjuj) · ∇iWij + ui ·

∑
j

mj

ρj
ρj∇iWij ,

Dρi

Dt
=
∑

j

mj(ui − uj) · ∇iWij . (3.30)

In this approach the density of a particle only changes when it is in relative motion with
other particles. Note that the density of a particle also could be calculated from the mass
of neighbouring particles with equation 3.16. But then a particle near the free surface would
miss the contribution of particles above the free surface and the density would become too
low. The calculation of the time derivative of the density does not lead to densities that are
too low at the free surface.

Equation of state
From the density of each particle the pressure can be found with an equation of state (equation
3.7). The equation of state in particle form becomes:

pi = B

[(
ρi

ρ0

)7

− 1
]
, (3.31)

where B = c2ρ0/7, ρ0 = 1000kg/m3. c is the used speed of sound in the model c ≈ 10umax,
with umax as the maximum fluid velocity in the model. When a simulation needs to start
with hydrostatic pressure, the initial density is adjusted to produce hydrostatic pressure from
the equation of state (equation 3.31). Then the initial density is calculated with:

ρi = ρ0

(
1 +

ρ0g(d− yi)
B

)1/7

, (3.32)

where d is the initial water level, yi is the vertical particle position and the other parameters
are the same as in equation 3.31.
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3.4.2 Conservation of momentum

Conservation of momentum is described by the earlier derived Navier-Stokes equations:

Du
Dt

= −1
ρ
∇p + ν∇2u + fb, (3.13)

First the Euler equations with only the pressure gradient on the RHS are treated. The
pressure gradient could be discretized directly for particle i, leading to:

Du
Dt

= −1
ρ
∇p → Dui

Dt
= − 1

ρi
∇ip,

Dui

Dt
= − 1

ρi

∑
j

mj

ρj
pj∇iWij . (3.33)

But now the force of particle i on j is not equal and opposite of direction to the force of j on
i, because Fi = miai should give Fi = −Fj but pi 6= pj and therefore:

− mimj

ρiρj
pj∇iWij 6= −mjmi

ρjρi
pi∇jWij . (3.34)

Note that ∇iWij = −∇jWij . Action is not equal to reaction that is a violation of Newton’s
third law and will not result in conservation of linear momentum. Therefore the pressure
term is adjusted to give symmetric interaction between particle i and j.

1
ρ
∇p = ∇

(
p

ρ

)
+

p

ρ2
∇ρ, (3.35)

because
1
ρ∇p = ∇

(
p
ρ

)
+ p

ρ2∇ρ

= 1
ρ∇p + p∇

(
1
ρ

)
+ p

ρ2∇ρ

= 1
ρ∇p + p

(
∂1/ρ
∂ρ ∇ρ

)
+ p

ρ2∇ρ

= 1
ρ∇p− p

ρ2∇ρ + p
ρ2∇ρ

= 1
ρ∇p.

The particle approximation of the Euler equations with a symmetric pressure gradient inter-
action becomes:

Dui

Dt
= −

∑
j

mj

ρj

(
pj

ρj

)
∇iWij −

(
pi

ρ2
i

)∑
j

mj

ρj
ρj∇iWij ,

Dui

Dt
= −

∑
j

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∇iWij . (3.36)

Now the particle approximation of the full Navier-Stokes equations, inclusive viscous stress
terms, is given:

Dui

Dt
= −

∑
j

mj

(
pi

ρ2
i

+
pj

ρ2
j

+ Πij

)
∇iWij + fi, (3.37)
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where the pressure gradient is discretised symmetrically, Πij is an artificial viscous stress term
which is explained next section. fi is the acceleration due to a body force, an example is the
influence of gravity.

Artificial viscosity
Viscous stress terms could be estimated directly with the SPH approximation of a second
derivative of the velocity. But the second derivative of the Piecewise Cubic spline kernel is
linear in r and does change sign at rij = 2/3h. This would mean that for every interaction
pair the direction of transfer of momentum is depending on the distance between the two
particles in the interaction pair. Sometimes the transfer of momentum is from the particle
with highest velocity to the particle with lowest velocity, sometimes the other way around.
This is incorrect, viscosity should transfer momentum from the particle with the highest
velocity to the particle with the lowest velocity independent on their distance rij . Therefore
viscous terms are not estimated directly, but modelled with the following artificial viscosity
term:

Πij =

{
−αhc

ρ̄ij

uij ·rij

r2
ij+ϕ2 uij · rij < 0

0 uij · rij ≥ 0
(3.38)

where α is a constant chosen normally between following limits 1 < α < 0.01. ρ̄ij = (ρi+ρj)/2
is the average density. uij = ui−uj , this is the velocity difference between two particles and
rij = ri − rj is the distance between two particles. ϕ = 0.1hij is used to prevent singularities
when two particles have zero distance. This artificial viscosity introduces both shear and
bulk viscosity, but with neglectable changes in the density it is almost entirely shear viscosity.
When ϕ is neglected this artificial viscosity term can be understood by rewriting it to:

Πij =

{
−αhc

ρ̄ij

uij

rij
≈ −αhc

ρ̄
∆u
∆r uij · rij < 0

0 uij · rij ≥ 0
(3.39)

The kinematic viscosity ν is proportional to αhc and ∆u
∆r is something like a spatial derivative

of the velocity. When the artificial viscosity term is used in the full Navier-Stokes equa-
tions (equation 3.37) this leads to ∇(−ν ∆u

∆r ), and that does look like a viscous stress term.
Monaghan (2005) related the artificial viscosity to a continuum viscosity more thoroughly.
With the artificial viscosity active for both approaching and receding particles he derived
that the artificial viscosity leads to ν ≈ αhc/8. To reduce the influence of artificial viscosity
in this thesis it is only active when particles are approaching, this removes the viscosity for
rarefactions. It seems reasonable that it is half as effective as Monaghan derived, therefore
the effective kinematic viscosity can be estimated with ν ≈ αhc/16. This approach to model
viscosity guarantees that momentum is transfered from the particle with the highest velocity
to the particle with lowest velocity in an interaction pair. The artificial viscosity term Πij is
a Galilean invariant and vanishes for rigid rotation.

3.4.3 Moving the particles

In stead of moving a particle with its own velocity, an average between its own velocity and
the averaged field velocity from all particles nearby is taken. This is called the XSPH variant
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and it prevents particle penetration. Note that every particle has two velocities now, one used
to move the particle, called û, and one indicating the amount of momentum of the particle,
called u. The XSPH variant is defined by:

ûi = ui + ε
∑

j

mj

(
uj − ui

ρ̄ij

)
Wij , (3.40)

Dxi

Dt
= ûi. (3.41)

ε is a constant (0 ≤ ε ≤ 1). With ε = 1 the particles are moved with the field velocity, with
ε = 0 the particles are moved with their own velocity, normally ε = 0.5. ρ̄ij = (ρi + ρi)/2.
Details about the implementation are given in section 4.3. For consistency reasons, the
velocity used to move the particles ûi also has to be used in the conservation of mass equation.
See equation 3.42 for the adapted conservation of mass equation. u is used in the Navier-
Stokes equations.

3.4.4 Summary of equations in SPH

Now a summary of the main properties of the discretisation of the equations for fluid motion
in SPH is given. Also the equations which form a closed set to simulate motion of fluid are
summarized. The main properties are:

• Slightly artificial compressible fluid to get a time derivative of the density.

• With a stiff equation of state the pressure is calculated from the density.

• The pressure gradient in the Navier-Stokes equation is discretized in a symmetric way.

• Viscosity is modelled with an artificial viscosity approach.

• The particles are moved with an adjusted velocity according to the XSPH technique.
The adjusted velocity is also used in the equation for conservation of mass.

The following closed set of equations describes fluid motion in a SPH model. Extra informa-
tion about all used terms can be found at their original locations.

Dρi

Dt
=
∑

j

mj(ûi − ûj) · ∇iWij (3.42)

pi = B

[(
ρi

ρ0

)7

− 1
]

(3.31)

Dui

Dt
= −

∑
j

mj

(
pi

ρ2
i

+
pj

ρ2
j

+ Πij

)
∇iWij + fi (3.37)

ûi = ui + ε
∑

j

mj

(
uj − ui

ρ̄ij

)
Wij (3.40)

Dxi

Dt
= ûi (3.41)
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Chapter 4

SPH implementation

In this chapter some implementations needed to make SPH suitable for simulations in hy-
draulic engineering are explained. When possible the influence of an implementation is visu-
alised with a simulation of a breaking dam. The details about this simulation can be found in
section 6.3. Here it is enough to know that it is about a square column of water with hydro-
static pressure placed behind a dam. At time t = 0 the dam is removed instantaneously and
the fluid column collapses under influence of gravity. The flow configuration after t = 0.14
s will be used to show the influence of different implementations. The chapter ends with
conclusions about the choices made for further simulations in this report.

4.1 Time integration

SPH is an explicit method and time integration can be done with standard numerical schemes
like Runge-Kutta (RK), predictor corrector, Leap-Frog. For the SPH model in this thesis
the second order Leap Frog is chosen because it has low memory usage and only one force
evaluation per time step. The Courant-Friedrichs-Levy (CFL) condition has to be fulfilled.
The CFL condition states that the distance fysical information or the particle itself can
travel in one timestep has to be smaller than the numerical influence domain. The numerical
influence domain is equal to the smoothing length h. Monaghan (1992) gave an expression
for the stability condition in SPH:

∆t ≤ min
(

0.4
h

c + 0.6αΠc
, min 0.25(

h

fi
)1/2

)
, (4.1)

where c is the used sound velocity, α is the used artificial viscosity parameter and fi is the
maximum magnitude of force per unit mass for a particle (acceleration).

In SPH there are only three independent variables: density ρ, velocity u and position x.
The pressure p is with the equation of state 3.31 directly linked to the density and is not an
independent variable. As shown in section 3.4.4 there are three differential equations that
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need to be integrated in time:

Dρ

Dt
= f1(û,x), (4.2)

Du
Dt

= f2(ρ,u,x), (4.3)

Dx
Dt

= û. (4.4)

û is the velocity adjusted with XSPH (section 3.4.3) used to move the particle, u is the
particle velocity from the momentum equations. Using the Leap-Frog time integration with
predictors for velocity and density at intermediate time steps the differential equations are
integrated in time as follows:

ρn+1/2 = ρn−1/2 + ∆tf1(û∗n,xn), (4.5)

un+1/2 = un−1/2 + ∆tf2(ρ∗n,u∗n,xn), (4.6)

xn+1 = xn + ∆tûn+1/2. (4.7)

How û is integrated in time is explained in section 4.3. The predictors for density ρ∗n and
velocity u∗n are defined by:

ρ∗n = ρn−1/2 + 1/2∆tf1(û∗n−1,xn−1), (4.8)

u∗n = un−1/2 + 1/2∆tf2(ρ∗n−1,u∗n−1,xn−1). (4.9)

With these predictors the Leap-Frog time integration is second order accurate. In figure 4.1
the variables used in Leap-Frog are shown schematically in time.

ρ∗n−1 ρn−1/2 ρ∗n ρn+1/2 ρ∗n+1

u∗n−1 un−1/2 u∗n un+1/2 u∗n+1

xn−1 xn xn+1

-� -�

∆t ∆t

Figure 4.1: Variables in time for the Leap-Frog scheme.
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4.2 Boundaries

4.2.1 Closed boundaries

When a fluid particle is coming close to a closed boundary, for example a wall, it is supposed
to be blocked and it’s fysical properties may not change. A water particle near a wall still has
the density and other quantities of water. In a particle method this is not easy to implement,
different choices are possible all with their strong and weak points. Three ways to make a
closed boundary are mentioned here.

a) Boundary particles with repulsive forces

u u u u
eXXz e��: e-

e��:

Figure 4.2: Fluid and
boundary particles.

The closed boundary is modelled with a single row of bound-
ary particles with mass, fixed density (1000 kg/m3), and no
pressure. Their positions are fixed during the calculation. A
repulsive boundary force is used to stop approaching fluid par-
ticles. When a fluid particle is approaching the repulsive force
grows rapidly with decreasing distance. It works like the repul-
sive force between two molecules. Monaghan (Monaghan 1992)
gave an expression of the boundary force per unit of mass:

f(rij) =

{
D
(
( r0

rij
)12 − ( r0

rij
)4
)

xij

r2
ij

rij ≤ r0

0 rij > r0

(4.10)

f(rij) has dimension m2/s, rij is the distance between the fluid and boundary particle. The
length scale r0 is chosen as the initial spacing between particles (∆r). The parameter D has
dimension m2/s2 and is chosen of the same scale as gd, where d is a representative water level.
The repulsive force works along the centreline of the fluid and boundary particle. It grows
rapidly when the distance between fluid and boundary particle gets under r0, and is zero
when the distance is larger than r0. To produce a slip boundary the boundary particles can
simply be included in the calculation of viscous stress terms of fluid particles. The boundary
particles are not used in the calculation of the averaged velocity with XSPH from section
3.4.3. The boundary particles are included in the density calculation of fluid particles near a
boundary, but still these fluid particles are missing a contribution from other particles over the
boundary. The boundary therefore disturbs the density of fluid particles nearby and also the
pressure. Another drawback of this way of modelling a boundary is that the boundary force
is radial around each boundary particle, it is not constant when moving along the boundary
at a fixed distance. A flow is feeling this like ripples. The last drawback can be fixed by
choosing another boundary force which is constant when moving along the boundary at a
fixed distance. In fact this is already done (Monaghan et al. 2003), but it needs quite some
computational effort.
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B) Boundary particles with repulsive force and ghost particles

u u u u

6

?

κh

eXXy

e��9 e�

e��9

eXXz e��: e-
e��:

Figure 4.3: Fluid, boundary
and ghost particles.

This way to model a closed boundary tries to minimize the dis-
turbing influence of the boundary on the density and pressure
of the fluid nearby. When a fluid particle is coming within the
influence domain (κh) of a closed boundary, an identical ghost
particle is mirrored at the other side of the boundary. This
ghost particle has the same density and pressure as the original
fluid particle but opposite velocity. The normal and tangential
velocity at the boundary thus becomes zero. When a particle is
coming closer to the boundary its mirrored ghost particle comes
closer as well. The influence of the pressure of the ghost particle
gets larger, but it is not enough to prevent penetration 100 %.
These ghost particles are therefore combined with a single row
of fixed boundary particles with a boundary force according to
equation 4.10. Because of the combination of a repulsive force
and ghost particles the constant D in equation 4.10 can be smaller than without ghost par-
ticles. When travelling parallel to the boundary particles are experiencing almost no ripples
now. Fluid particles close to the boundary are not missing the contribution from outside the
boundary because of the ghost particles. The density near the boundary is not disturbed very
much. When a slip boundary is needed both ghost and boundary particles are used in the
calculation of the viscous stress terms, for a free-slip boundary they are not used. Boundary
and ghost particles are not used for the calculation of the XSPH term.

In summary: For every particle within κh from the boundary a ghost particle is mirrored
outside the boundary every timestep. On the boundary there is a single line of boundary
particles without pressure, but with a repulsive force for every fluid particle closer than rij .
Both boundary and ghost particles are included in the density calculation of fluid particles.
In plots of the results the ghost particles are not shown.

C) Quasi fluid boundary particles

u u u uu u u

eXXz e��: e-
e��:

Figure 4.4: Fluid and quasi
fluid particles.

Conceptual this way is the easiest one to model a closed bound-
ary. A double row of fixed fluid particles is placed in a stag-
gered way at the boundary. No estimates of boundary forces or
directions are needed, the boundary particles just act like nor-
mal fluid particles except that their position is fixed in time.
They build up pressure just like normal fluid particles, this is
how they prevent particle penetration. Fluid particles near the
boundary have interaction with a double staggered row of quasi-
fluid particles and do not mis much interaction from outside.
When a slip boundary is needed these quasi fluid particles are
used in the calculation of the viscous stress terms, for a free-slip boundary they are not used.
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Quasi fluid particles are not used for the calculation of the averaged velocity according to the
XSPH technique.

4.2.2 Influence of different closed boundaries

In this section the two most promising ways to model closed boundaries, boundary B and C,
are compared with each other. Boundary particles combined with ghost particles, boundary
B, will give less disturbance on the fluid than boundary particles only, which is boundary A.
Therefore boundary A is not tested, and this section contains a comparison between boundary
B and C.

In figure 4.5 the result of the breaking dam simulation at time t = 0.14 s using boundary B
and C are displayed. First, the simulation with boundary B is discussed. Be aware that only
fluid and boundary particles are displayed, the ghost particles are not. The initial distance
between the fluid and the boundary is equal to the initial distance between fluid particles ∆r,
this is also the influence distance of the boundary force. The pressure near the boundary is
disturbed only a little by the boundary. The tip is pretty sharp, as expected with free-slip
boundaries. The boundary has no negative influence on the shape of the water surface near
the left boundary.

The result of the simulation with quasi fluid boundary particles in figure 4.5(b) is different.
The results are sensitive to the initial distance between the fluid and this boundary. When the
initial distance is too large the fluid can move towards the boundary and the initial condition
is not at rest. When the initial distance is too low a fluid particle will feel suction when
moving away from the boundary. This is not fysical, fluid moving away from a boundary is
not glued to it. For the bottom the best initial distance between fluid and the boundary is
2∆r, because this is the equilibrium distance between fluid and the bottom at places where
there was no water initially (right of x = 0.057 m). The initial distance between the fluid and
the left boundary is 2h = 2.8∆r. A smaller initial distance gave suction and distorted the
water surface. Now also the free surface is distorted left because the fluid can move towards
the left boundary a little, but this distortion is smaller than with a smaller distance with
suction. Free-slip boundaries are used, but the tip of the fluid is not smooth and sharp. It
has a strange shape. This boundary also has a negative influence on the pressure of the fluid
near the bottom.

With boundary B the particles can initially be placed at ∆r from the boundary without the
danger of giving under pressure when the particles are moving away. This together with less
disturbing influence on the pressure near the wall does make this way of modelling a closed
boundary preferable over boundary C. All further simulations are performed with closed
boundaries consisting of boundary and ghost particles.
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(a) Boundary 1 = boundary and ghost particles

(b) Boundary 2 = quasi fluid particles

Figure 4.5: Influence of two types of a closed boundary.
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4.2.3 Open boundaries

At an open boundary the fluid can flow in or out the model. At an inflow boundary, particles
have to be created and put in the system in a way that is not messing up the flow. At
an outflow boundary, particles have to be removed without messing up the flow. At an
open boundary only one parameter can be fixed, either the velocity/discharge, or the water
level/pressure. But to put particles in the system in the correct way, one needs both position
and velocity of each particle. Also the position and velocity of the top particle, which indicates
the water level, need to be known exactly. The easiest way to satisfy these contradicting
demands is to use a periodic boundary. With a periodic boundary the simulation is made
round, particles which are leaving the domain on the right are entering with same fysical
quantities on the left and vice versa. The particles within the influence distance of the left
boundary are influenced by the particles within the influence domain of the right boundary
and vice versa. The simulation behaves like the domain is truly round. A periodic boundary
is a good way to model an open boundary without disturbing the fluid, but unfortunately it
can only be applied to a limited number of cases.

Another combination of two open boundaries is used in this thesis for a 2D-vertical simulation.
It is the simulation of water flowing over a sharp weir in section 6.7. At the inflow boundary on
the left, the water level is horizontal and prescribed. No bottom friction is taken into account,
so all particles in a cross section far away from the weir, move at roughly the same velocity.
Within ∆r from the inflow the horizontal inflow velocity is not prescribed, but the change
in horizontal velocity is averaged to ensure that all particles keep on moving at the same
velocity. A vertical line of particles therefore stays an exactly vertical line near the inflow.
When a vertical line of particles has moved ∆r away from the inflow, a new vertical line with
exactly the same velocity is put into the domain. To prevent disturbance in the density and
pressure of particles near the inflow boundary, the same approach as with closed boundaries
is applied. Outside the inflow boundary two extra vertical rows with ghost particles at a
horizontal distance of ∆r are placed. These ghost particles make that the fluid particles near
inflow are not missing interaction from their left. The outflow boundary is after the sharp
weir. The water jet is just cut of, all particles lower than a prescribed position are removed.
Because the particles are in the middle of a free fall the disturbing influence on the density is
not important. No special treatment with ghost particles is made.

4.3 Moving the particles with XSPH

When using the XSPH technique from section 3.4.3 a particle is moved using an average
between the velocity of the particle itself and the velocity of particles nearby. For consistency
the velocity used to move the particles is the same as the velocity used in the conservation of
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mass equations (equation 3.42). The equations describing the XSPH technique are:

ûi = ui + ε
∑

j

mj

(
uj − ui

ρ̄ij

)
Wij , (3.40)

Dxi

Dt
= ûi. (3.41)

ε is a constant (0 ≤ ε ≤ 1) normally ε = 0.5, ρ̄ij = (ρi+ρi)/2. This way of moving the particles
conserves linear and angular momentum, but not energy. Monaghan (2005) describes a way
to conserve energy with XSPH. Therefore this equation has to be made implicit by:

ûi = ui + ε
∑

j

mj

(
ûj − ûi

ρ̄ij

)
Wij , (4.11)

now the averaged velocity is calculated using the already averaged velocities of the particles.
An implicit formula like this is solvable by iteration, but that does take some iteration steps
every timestep again for every particle. In this report the XSPH technique is used by taking
the averaged velocities from half a timestep before to calculate the new averaged velocity.
This prevents iteration. Using the same notation and time steps as in section 4.1 the averaged
velocity now becomes:

ûn+1/2
i = un+1/2

i + ε
∑

j

mj

( û∗nj − û∗ni

ρ̄ij

)
Wij , (4.12)

û∗n = ûn−1/2 + 1/2∆tf2(ρ∗n−1,u∗n−1,xn−1), (4.13)

with subscripts i and j as particle indexes and superscripts indicating the timestep. Super-
script ∗ denotes a predicted value as explained in section 4.1. Function f2 is the total time
derivative of ui.

This way of calculating the averaged velocity is more energy conservative than the complete
explicit equation 3.40, but without iteration. Note that every particle has two velocities.
One indicates the amount of momentum of the particle, and is used to calculate the viscous
stress terms. The other, averaged, velocity is used to move the particles and used in the
conservation of mass equations.

4.3.1 Influence of XSPH

To show the influence of the XSPH technique on the dam break problem, first the viscosity is
lowered a lot. Originally the artificial viscosity was chosen as ν ≈ αhc/17 = 2.4 · 10−4m/s2.
In this simulation the viscosity parameter α is chosen as α = 0.01, leading to ν ≈ αhc/17 =
0.9 · 10−5m/s2. Viscosity decreases velocity differences by exchange of momentum. It makes
the way particles move more orderly. XSPH also makes the way particles move more orderly
by using an averaged velocity to move the particle. Their influence has some similarities,
therefore the viscosity is lowered to make the influence of XSPH bigger.
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In the comparison between moving the particles with XSPH or with just their own velocity
in figure 4.6 the influence of XSPH is clear. With this low viscosity, clusters of particles
with large negative pressure are next to clusters of particles with large positive pressure when
XSPH is not used. At the front of the flow this even distorts the free surface. With XSPH
the pressure field is smooth, without large areas of negative pressure and the free surface
is still smooth and correct. XSPH does make the simulation more stable, prevents particle
penetration without exchange of momentum and is an improvement.
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(a) Move particles with XSPH.

(b) Move particles with their own velocity.

Figure 4.6: Influence XSPH.
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4.4 Tensile instability

During simulations the particles in SPH can form clumps. This clustering is called tensile
instability and is related to a combination of negative pressures and the sign of the second
derivative. With the use of the Piecewise cubic spline the first derivative is negative and has
its minimum at q = rij/h = 2/3, see figure 3.1. When particles are approaching each other
because of negative pressure and their distance is already smaller than q = 2/3, the value
of the first derivative becomes smaller and smaller and finally is zero. The repulsive force
from the pressure gradient gets smaller in stead of bigger when two particles are too close
and coming closer. This results in clumps of particles. The problem of tensile instability
is tackled by Monaghan (2000) . An extra repulsive force between particles is introduced
which is almost zero when rij > ∆r but increases a lot when rij → 0. The adaptation to the
standard SPH program are small. The original equation of conservation of momentum reads:

Dui

Dt
= −

∑
j

mj

(
pi

ρ2
i

+
pj

ρ2
j

+ Πij

)
∇iWij + fi. (3.37)

Now an extra repulsive force term is introduced by replacing:(
pi

ρ2
i

+
pj

ρ2
j

+ Πij

)
with: (

pi

ρ2
i

+
pj

ρ2
j

+ R(fij)4 + Πij

)
, (4.14)

where the factor R depends on the pressure and density. The function fij is dependent on
the kernel and the distance rij between the particles:

fij =
W (rij)
W (∆r)

. (4.15)

∆r is the initial particle spacing. With the Piecewise cubic spline and smoothing length
h = 1.4∆r, fij = 1 when rij = ∆r, fij = 1.97 when rij = 0 and fij = 0.09 when rij = 2∆r.
This means that the repulsive force is growing a factor (1.97)4 = 15 when the distance
decreases from rij to zero. Also is the repulsive force practically zero ((0.09)4 ≈ 0) when the
distance grows to 2rij . The factor R is related to the pressure, and is defined by:

R = Ri + Rj , (4.16)

with:

Ri =

{
0.2|pi|

ρ2
i

pi < 0

0 pi ≥ 0
(4.17)

Rj can be found with replacing the index i with j. Even if both pi and pj are positive the
particles tend to form local linear structures. This can be prevented by:

R = 0.01

(
pi

ρ2
i

+
pj

ρ2
j

)
if pi > 0 ∧ pj > 0 (4.18)
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The influence of this last term is very small and mostly cosmetic. The repulsive force is much
more important to prevent clumps when the pressure of a particle is negative. It can be seen
as an artificial pressure term which is negligible when the distance between two particles is
near ∆r or larger and it comes in action when two particles are coming too close to each
other.

4.4.1 Influence of artificial pressure

The influence of the artificial pressure term will be shown with a close up of the tip of the
flow of the breaking dam simulation. The breaking dam simulation is executed as explained
in the beginning of this chapter. One simulation shows the result with artificial pressure,
the other is without artificial pressure. Both results are compared with each other in figure
4.7. When artificial pressure is used the particles are scattered in space more equally, and
no clusters of particles are formed, but the pressure is varying more than in the simulation
without artificial pressure. The artificial pressure does prevent particles coming too close, but
it does not remove the cause for the particles to come that close to each other. The artificial
pressure does prevent unfysical clustering of particles and will be used in further simulations.

(a) SPH with artificial pressure. (b) SPH without artificial pressure.

Figure 4.7: Influence artificial pressure to prevent tensile instability.
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4.5 Improvement of the accuracy of SPH

The accuracy of the SPH method can be improved by introducing corrections to the function
approximations in SPH. Bonet e.a. (2000) wrote an article about corrections and stabilisation
of SPH methods. In the article different corrections are proposed. The kernel itself can be
adjusted, or the gradient. Also a combination of a simple correction to the kernel with a cor-
rection to the gradient is possible. The correction to the kernel itself is unsuitable for explicit
type of calculations, because it is very computational expensive and the resulting equations
are cumbersome to solve. This is the conclusion about kernel correction in another article
addressing kernel normalisation (Bonet and Lok 1999). A simple gradient correction will be
tried here. The correction to the SPH approximation of a gradient is proposed by Bonet e.a.
(2004).

In SPH functions and there gradients are approximated with particle information as follows.
See their original position in section 3.2.1 and 3.2.2 for explanation of all the terms.

〈f(xi)〉 =
∑

j

mj

ρj
f(xj)Wij , (3.16)

〈∇ · f(xi)〉 =
∑

j

mj

ρj
f(xj) · ∇iWij . (3.23)

Two requirements need to be fulfilled by the gradient approximation to ensure that the
gradient of a linear or constant function is evaluated correctly. These two requirements are:∑

j

mj

ρj
∇iWij = 0 and

∑
j

mj

ρj
(xj − xi)⊗∇iWij = I. (4.19)

A way to fulfill these two conditions is to correct the original gradient of the kernel ∇iWij

with a vector ε and a second order tensor L. The corrected gradient of the kernel becomes:

∇̃iWij = Li[∇iWij + εiδij ], (4.20)

with δij as the Kronecker delta, and the correction terms εi and Li defined by:

εi = −
∑

j

mj

ρj
∇iWij , (4.21)

Li =
[∑

j

mj

ρj
(xj − xi)⊗∇iWij

]−1

. (4.22)

These two correction terms on the gradient give a correct evaluation of constant and linear
functions. All gradients are now approximated with the corrected gradient of the kernel
∇̃iWij :

〈∇f(xi)〉 =
∑

j

mj

ρj
f(xj)∇̃iWij . (4.23)
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4.5.1 Influence of gradient correction

This gradient correction has been implemented in the SPH code. For the correction term Li

the inverse of a matrix is needed. This inverse is very sensitive to the particle positions, near
the fluid interface with only a couple of neighbours this matrix can become singular. Then
the corrected gradient function is almost infinite, resulting in almost infinite acceleration of
the particle. To reduce this problem a small positive term is added to the determinant of the
matrix that has to be inverted. Two test cases are presented here. First is the breaking dam
simulation, second is a still water test. For the second test a square of water particles with
a bottom and two side boundaries consisting of boundary and ghost particles are subjected
to gravity. Initially the particles do have zero pressure, in the end the simulation should give
hydrostatic pressure.

Figure 4.8: Breaking dam simulation SPH with gradient correction.

Start with the breaking
dam test. The parameters
are chosen as explained in
section 6.3. The result for
SPH with gradient cor-
rection in figure 4.8 can
be compared with the re-
sult without gradient cor-
rection in figure 4.5(a).
With gradient correction
a small clump of particles
is ejected from the tip of
the flow and shot to the
right. Another particle is
flying high above the rest
of the flow. This is clearly
unfysical and did not happen without the gradient correction. Near the free surface there is
no line of particles with very high pressure as was in SPH without gradient correction, but
the pressure near the bottom is worse. Even for this placid simulation the gradient correction
caused unfysical ejection of particles from the free surface, that is not promising for more
dynamic free surface problems.

In the still water test the particles have initially zero pressure, but because of gravity the
particles will feel the weight of the particles on top of them, this gives hydrostatic pressure.
A large viscosity is used to damp out the velocities. As can be seen in figures 4.10 and
4.9, SPH does end up with pressure zero at the fluid interface and linearly increasing to the
bottom. On the left the particles are displayed with the discrete values of the pressure of
the particles in the middle. On the right a figure of the pressure in the vertical is displayed.
The pressure is calculated at several points on a vertical line using the SPH approximation
of a function, see equation 3.16. The pressure is varying largely from particle to particle.
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(a) Particles with their pressure. (b) Pressure in the middle.

Figure 4.9: Still water pressure SPH without gradient correction.

(a) Particles with their pressure. (b) Pressure in the middle.

Figure 4.10: Still water pressure SPH with gradient correction.

But the oscillating behaviour of the pressure of discrete particles damps out mostly when the
pressure is calculated on a vertical line using the SPH approximation of a function. Despite
of the oscillating discrete values of the pressure at different particles, the pressure field still
is close to the expected linear hydrostatic pressure. When the results of SPH with gradient
correction are compared with the results of SPH without gradient correction some things can
be concluded. First the gradient correction is not suppressing the pressure variation from
particle to particle. Second the pressure at the vertical is correct for SPH without gradient
correction, but too low with gradient correction.

This gradient correction gives disappointing results. It is meant to improve the evaluation of
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linear and constant functions, but the pressure field is a linear function in the hydrostatic case
and SPH with gradient correction analysed the pressure field worse than without correction.
Also some particles get too much acceleration and are ejected from the rest of the flow. The
correction does need several extra operations every timestep for every particle, and it makes
the simulation about two times slower. Maybe some extra adaptations should be made to
the SPH equations to get an improvement when using this correction technique, but in this
thesis the gradient correction is not used in further simulations. Other corrections proposed
by Bonet are more extensive as the gradient correction, but globally they use the same ap-
proach. Because of the bad results of the simple gradient correction the other more extensive
corrections are not tried in this thesis.

4.6 Particle interaction

Because of the compact support of the smoothing function every particle has a finite number
of neighbours which it has interaction with. When the smoothing length is chosen as 1.4 times
the initial particle distance (h = 1.4∆r) every particle has 20 neighbours, see also figure 3.3.
Because the position of all particles can change, the process of finding all neighbour particles
within the influence domain is necessary every timestep. All interaction pairs are stored in an
array. Starting with the first particle i the distance to all other particles j = i + 1, i + 2, .., N

is calculated and when this distance rij is smaller than the radius of the influence domain
κh the indexes i and j are stored as an interaction pair. This is easy to program, but very
time consuming to calculate. The total work to find all interaction pairs is of order O(N2)
every timestep. There are more advanced ways to find all interaction pairs. A background
mesh with a raster size equal to the influence distance κh can be used for book keeping. For
each particle only 9 book keeping cells have to be considered in 2D where particles can be
within the influence domain. This reduces the number of calculations of rij considerably, but
for every problem a new background mesh has to be made. In the simulations for this report
only the first way to find interaction pairs is used. Because of the conservation of linear
momentum all interaction forces are symmetric. The influence of particle i on j is as big as
the influence of j on i, but opposite in direction. Therefore interactions are not determined
by calculating the influence of all neighbours on i = 1, 2, .., N separately, but interaction is
calculated per interaction pair.

4.7 Conclusions about chosen implementations

Here the findings of this chapter for the implementations in SPH will be summed up briefly.
Time integration is performed with second order Leap-Frog. A closed boundary consists of
ghost and boundary particles, open boundaries are rarely used and very problem dependent.
Periodic boundaries are no problem in SPH. Particles are moved with an averaged velocity
calculated with XSPH. Artificial pressure prevents unfysical clumping of particles. A gradient
correction did not improve the accuracy of SPH, but made the results worse and is not used.
All interaction pairs are found by just checking all possible pairs.
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2D SPH computer code

The equations from chapter 3 have been implemented in a 2 dimensional computer code
using chapter 4 for further specifications. The computer code explained in the book SPH
(Liu and Liu 2003) has been a help when developing the code used in this thesis, but the
program explained here is different and programmed by the author from scratch. Two basic
versions of the program are explained, the first version has fixed closed boundaries and no
open boundaries, it is called ‘SPH 2D closed’. The second version can have moving boundaries
and inflow or outflow of particles, this version is called ‘SPH 2D open’. In section 5.1 the
global outline of both versions is explained with their differences. All used files for both
versions are explained in section 5.2 and 5.3. How SPH 2D can be used is explained in section
5.4.

5.1 Program outline

In order to model the motion of fluid with SPH the equations of chapter 3 are solved together
with the implementations from chapter 4. Next to the main properties of the solved equations
in SPH from section 3.4.4 the following features are important for the implementation of ‘SPH
2D closed’ in a computer code.

• SPH 2D programmed in Fortran 77

• Input of fluid and boundary particles from file or generated by the program initially

• Ghost particles are generated at prescribed boundaries

• Interactions are found by simply checking all possible pairs

• The Piecewise cubic spline kernel is used for function approximations

• Artificial viscosity, XSPH, or artificial pressure can be used if wanted

• Time integration with explicit second order Leap Frog
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Start program Start program�� ��Input fluid & boundary particles
�� ��Input fluid particles

↓ ↓
Start of time step Start of time step�� ��Generate ghost particles

�� ��Generate inflow & remove outflow p.’s

↓ ↓�� ��Find all interactions
�� ��Generate boundary & ghost particles

↓ ↓�� ��Kernel Wij & ∇iWij

�� ��Find all interactions

↓ ↓�� ��Calculate Dρi
Dt

, Dui
Dt

& XSPHi

�� ��Kernel Wij & ∇iWij

↓ ↓�� ��Update ρi, ui, xi for all particles
�� ��Calculate Dρi

Dt
, Dui

Dt
& XSPHi

↓ ↓�� ��Output
�� ��Update ρi, ui, xi for all particles

End of time step ↓
↓

�� ��Output

After enough time steps: end of program End of time step

↓
After enough time steps: end of program

Figure 5.1: ‘SPH 2D closed’ layout (left) ‘SPH 2D open’ layout (right).

Because of the explicit time integration, the CFL condition need to be satisfied, so the permis-
sible time steps are of the order O(10−4s) for a commonly used particle spacing ∆r = 0.025
m. Next to the features of the closed version, the open version can have moving boundaries
and open boundaries. This results in the following two extra features.

• Boundary particles are generated every time step, not read from inputfile

• At inflow particles are generated and at outflow removed

The global outline of the two versions of the program are shown next to each other in figure
5.1. In the open version every time step the subroutine for inflow and outflow is called,
here particles are generated or removed if needed. Because with open boundaries the total
number of particles can change every time step and the boundary particles are stored in the
same array as the fluid particles, the boundary particles have to be generated every time step
whether the boundary is moving or not. In the closed version the boundary particles have
to be generated only once, this operation can be put in front of the time loop. So the closed
version is a little faster, because less operations are necessary every time step, but the open
version is more flexible.

5.2 SPH 2D closed files

The used Fortran files for ‘SPH 2D closed’ are briefly explained. The files for this version are
not listed in the appendix, but the more extensive files for ‘SPH 2D open’ can be found in
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appendix A. In the files it is clearly marked which parts of the code are not used in ‘SPH
2D closed’. The short description per file including all the calls to each other will make clear
how the program is implemented in Fortran code.
SPH_2D.f Main program.

Calls input.f once, starts time loop with derivatives.f and Leap Frog
time integration every time step. Calls output.f if requested, generates
output on screen.

input.f Subroutine for initial input.
Generates or reads from file all fysical quantities for fluid particles and
boundary particles.

derivatives.f Subroutine to solve the equations every time step.
Make all time derivatives zero at start. Generation of ghost particles.
Interaction-pairs, kernel Wij & ∇iWij , and Dρi

Dt are found. Get pres-
sure from density. Pressure terms including artificial pressure, artificial
viscous terms, gravity and boundary forces determined. Dui

Dt found. In-
fluence of average velocity calculated with XSPH. First time step call
parameterfile.f.

output.f Subroutine to write output to textfile.
Writes output in textfile with 8 columns containing particle information
i, x, y, ux, uy, ρ, p, m.

parameterfile.f Subroutine to write general info about simulation in textfile.
param.txt Include file with some declarations and parameters.

This file is included in every other file. It contains the declaration of
some variables used in every file. Contains parameters telling if the
input is from file or has to be generated by the program. And contains
parameters telling if artificial viscosity, XSPH or artificial pressure is
used.

5.3 SPH 2D open files

The same Fortran files as for ‘SPH 2D closed’ plus two extra files inputpb.f and inoutflow.f

are used for ‘SPH 2D open’. derivatives.f and input.f are slightly different, which is clear
from the description below. The complete listing of ‘SPH 2D open’ can be found in appendix
A. In the complete code it is clearly marked which parts are only used in ‘SPH 2D open’, all
other parts are used in both versions. The displayed code is used for the flow over a sharp weir
simulation in section 6.7, some parts are specific for that simulation, which also is indicated
clearly. The following will make clear how ‘SPH 2D open’ is implemented in Fortran.
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SPH_2D.f Main program.
Calls input.f once, starts time loop with derivatives.f and Leap Frog
time integration every time step. Calls output.f if requested, generates
output on screen.

input.f Subroutine for initial input.
Generates or reads from file all fysical quantities for fluid particles only.

derivatives.f Subroutine to solve the equations every time step.
Generation of ghost particles. Calls inoutflow.f and inputbp.f. Now
make all time derivatives zero. Interaction pairs, kernel Wij & ∇iWij ,
and Dρi

Dt are found. Get pressure from density. Pressure terms including
artificial pressure, artificial viscous terms, gravity and boundary forces
determined. Dui

Dt found. Influence of average velocity calculated with
XSPH. First time step call parameterfile.f.

inoutflow.f Subroutine for inflow and outflow.
Inflow particles are generated and added to the existing arrays. Outflow
particles are removed from the existing arrays.

inputbp.f Subroutine for generation of boundary particles.
Generates all boundary particles. In ’SPH 2D closed’ this part is in-
cluded in input.f.

output.f Subroutine to write output to textfile.
Writes output in textfile with 8 columns containing particle number i,
x, y, ux, uy, ρ, p, m.

parameterfile.f Subroutine to write general info about simulation in textfile.
param.txt Include file with some declarations and parameters.

This file is included in every other file. It contains the declaration of
some variables used in every file. Contains parameters telling if the
input is from file or has to be generated by the program. And contains
parameters telling if artificial viscosity, XSPH or artificial pressure is
used.

5.4 How to use SPH 2D

SPH 2D does not have an interface, all input has to be specified in the Fortran files. The
Fortran files can be compiled with any Fortran 77 compiler into an executable. SPH 2D does
not have a consistency check on the input, all input must be correct, otherwise the result of
the simulation will be nonsense. It will be explained here which variables can be adjusted
where in the program, but first think about the problem that has to be simulated with SPH
2D.

• What is the problem domain, where are the boundaries?

• Is the problem 2Dv or 2Dh: gravity needed or not?

• What is the desired resolution, this determines the initial particle-spacing ∆r.
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• What will be the maximum velocity in the simulation, c ≈ 10umax?

• What time step is required to keep the simulation stable, how many time steps?

• What are the initial conditions, generate them with the program or read them from
files?

• Use artificial pressure, artificial viscosity or average velocity XSPH?

• What viscosity parameter α and what XSPH ε is needed?

These questions are mostly obvious, but all of them need an answer. File by file the important
parameters that have to be defined for every simulation will be explained.
param.txt Parameters for the use of artificial pressure, artificial viscosity, average

velocity XSPH and input from file or not can be changed here.
input.f Input from file → give source-directory.

Generating input → give initial particle parameters.
inputbp.f Program position of the boundary particles.

Other fysical parameters must be consistent with the fluid particles.
*** In ’SPH 2D closed’ this part is included in input.f ***

inoutflow.f Inflow → program the position and velocity of inflow particles and let
them flow into the domain at the right time. Other fysical parameters
must be consistent with the already existing fluid.
Outflow → remove all parameters for outflowing particles from the ar-
rays.
*** Not in ’SPH 2D closed’ ***

derivatives.f Give the position of closed boundaries for generation of ghost particles.
Choose c ≈ 10umax, c comes back in B = c2

0ρ0/7 for the equation of
state 3.31.
Set α for artificial viscosity and ε for average velocity XSPH.
Set influence domain of boundary force ro. Normally ro = ∆r. Also set
constant D for the boundary force.
Comment the lines for the influence of gravity when gravity is not
needed.

SPH_2D.f Set the time step, maximum number of time steps and the desired fre-
quency of output here.

When all these parameters are chosen correctly the program will produce one textfile every
chosen time step containing 8 columns with the information of all the fluid and boundary
particles (i, x, y, ux, uy, ρ, p, m). Matlab can be used to post-process the textfiles.
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Simulations

With the computer code described in chapter 5 simulations in the field of hydraulic engineer-
ing are carried out. Section 6.2 deals with some viscosity benchmark problems to test the
formulation of viscous shear stresses in SPH. In the rest of this chapter, problems with a free
surface are treated. These is a simulation of a breaking dam, a bore at a wall, a standing wave
in a closed basin, waves propagating on a beach, and finally a sharp weir. These simulations
will show the accuracy of SPH. But first the interpretation of results in SPH is explained in
next section.

6.1 Interpretation of results

u u u u u
u
u
u

u
u
u

e e e
e e e

Figure 6.1: SPH space
discretisation with boundary
and fluid particles. Dotted
line shows the area of every

fluid particle.

The interpretation of results from SPH is not always straight-
forward, here some important notions are made. In SPH space
is discretised using particles. Every particle has the quantities
mass, density, pressure, velocity, and position. Other quantities
like color, or salinity etc. could be stored for every particle, but
that has not been done in this thesis. The result of a simula-
tion with SPH is a data file for every required timestep with
all particle quantities stored. These quantities are addressed
to the centre of each particle. In 2D every particle represents
a certain area (∆r)2 around its centre. In figure 6.1 the space
discretisation with particles is shown, ghost particles are not
shown. Near boundaries one has to be careful when interpret-
ing the results. As can be seen the transition between fluid and
the wall is not at the centreline of the boundary particles, but somewhere between the closest
fluid particle and a boundary particle. Every fluid particle represents an area of (∆r)2, a
correct definition of the boundary seems to be 1/2∆r under the lowest fluid particles and
1/2∆r next to the most left or right fluid particles.

With Matlab a snapshot of the position of the particles can be made to visualize the flow
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from the data files. Sometimes information is needed on a specific point of interest. There
are not always particles exactly at the point of interest, therefore the function approximation
in SPH is used:

〈f(xi)〉 =
∑

j

mj

ρj
f(xj)Wij , (3.16)

now xi is the position of a point of interest. For example, to calculate the velocity at a point
of interest this equation becomes:

〈ui〉 =
∑

j

mj

ρj
ujWij . (6.1)

〈ui〉 is the velocity at a point of interest found by the average of the velocity of particles
nearby. For the flow parameters in a cross-section several points of interest are chosen at a
vertical line. When the density is calculated at a vertical line, the position where the density
gets under 500 kg/m3 is defined as the free surface. This definition of the free surface roughly
gives a free surface at 1/2∆r above the centre of the highest particles. This agrees with the
area (∆r)2 every particle represents in figure 6.1. From the data files the flow configuration,
information at a certain point of interest, and the water depth can be found. This is all the
information needed to analyse the simulations.

6.2 Viscosity benchmark problems

To test how effective the artificial viscosity is in practice, three standard benchmark problems
are used. These are a Poisseuille flow, a Couette flow and a shear driven cavity simulation,
all with very low Reynolds numbers. The Reynolds number is given by Re = ul/ν. u is a
characteristic velocity, l is a characteristic length scale and ν is the kinematic viscosity. A
low Reynolds number means the flow is laminar and not turbulent.

6.2.1 Poisseuille flow

The first viscosity test involves the flow between two parallel infinite plates placed at y = 0
and y = l. Initially all velocities are zero, but because of a constant driving force F the
fluid will start to flow to the right. With a constant kinematic viscosity the final state is
a stationary parabolic velocity profile with zero velocity at the wall because of drag and its
maximum in the middle. The velocity profile can be found from the Navier-Stokes equations.
Velocities in y direction are zero, only the Navier-Stokes equation in the horizontal x need to
be considered. In the stationary final state the time derivative of the velocity is zero. There
is no pressure gradient and the velocity gradient in horizontal x direction is zero. The only
body force is the constant driving force F in the horizontal x direction, this results in:

0 = ν
∂2ux

∂y2
+ F. (6.2)
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Using that ux = 0 at both boundaries y = 0 and y = l this equation can be integrated to y

twice, giving the final state solution of the velocity profile:

ux(y) = − F

2ν
y(y − l). (6.3)

The maximum velocity in the final state occurs at y = 1/2l and is given by:

ux,max = − F

8ν
l2. (6.4)

The development of this solution in time from the start to the final state is found in the book
of Liu (2003):

ux(y, t) = − F

2ν
y(y − l) +

∞∑
n=0

−4Fl2

νπ3(2n + 1)3
sin(

πy

l
(2n + 1))exp(−(2n + 1)2π2ν

l2
t). (6.5)

In this simulation the length l = 10−3 m, the kinematic viscosity ν = 10−6 m2/s, and the
driving force F = 2 · 10−5 m/s. Using equation 6.4 this results in a maximum velocity
ux = 2.5 · 10−5 m/s, which corresponds to Re = uxl/ν = 0.025.

In SPH the infinite length of the plates is simulated with periodic boundaries in the flow
directions. Periodic boundaries are explained in section 4.2.3. The used parameters in the
SPH simulation together with the initial particle setup are showed below.

Figure 6.2: Initial particle positions
Poisseuille flow.

Poisseuille flow simulation:
20x39 = 780 particles, ∆r = 2.5 · 10−5 m
Smoothing length h = 3.5 · 10−5 m
c = 0.25 m/s
∆t = 0.00005 s
Artificial viscosity
α = 1.95, ν ≈ αhc/17 = 1 · 10−6 m/s2

Slip boundaries up and down
D = 0.01 m2/s
Periodic boundaries left and right
No gravity

Initial conditions:
ux = 0, uy = 0
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Figure 6.3: Poiseuille
flow at t = 0.6 s.

After 12000 steps (t = 0.6 s) the simulation reaches the steady end
state. The particles with some velocities at t = 0.6 s are plot-
ted in figure 6.3. Only fluid and boundary particles are shown,
ghost particles at the top and bottom boundary or left and right
are not shown. The velocity profiles at different times from SPH
are compared with the analytical solution according to equation 6.5
in figure 6.4. The agreement is excellent. A conclusions that
can be drawn from this benchmark test is that although artifi-
cial viscosity doesn’t use second derivatives of the velocity, it can
predict a parabolic velocity profile without problems. The kine-
matic viscosity resulting from these results is ν ≈ αhc/17, this
is slightly less than the theoretically derived ν ≈ αhc/16 in sec-
tion 3.4.2. The same conclusion can be drawn from tests where
h, c, and α are changed in such way that the kinematic viscos-
ity ν = 1 · 10−6 m/s2 stays the same. Also in simulations with
a different ν the velocity profiles from SPH agree with the theo-
retic profiles when the kinematic viscosity is calculated using ν ≈
αhc/17.

During this laminar and ordered simulation a spurious checkerboard mode enters the pres-
sure. The reason for this is that all variables are known at every particle and in this ordered
situation the distance between all neighbours is constant. The contribution of a neighbour on
a particle is the same as the contribution of the opposite neighbour. A checkerboard mode
in pressure now gives zero pressure gradient at every particle, this is an artificial equilibrium.
SPH is normally used in very dynamic situations, then the distance between particle is not
the same for all neighbours and this checkerboard mode does not show up. At t = 0.6 s the
checkerboard mode is very weak, but not totally absent, it slows down the flow a little. The
influence is less than one percent. This influence can be seen from the fact that SPH is over-
predicting the velocities a little at t = 0.1 s when the checkerboard mode is not developed
yet, but SPH is exactly predicting the velocities at t = 0.6 s with the checkerboard mode.

6.2.2 Couette flow

The second viscosity test is almost the same as the first and also involves the flow between
two parallel infinite plates placed at y = 0 and y = l. Initially all velocities are zero, but
suddenly at t = 0 the upper plate starts to move to the right with U0. Again the stationary
velocity profile in the final state can be found from the Navier-Stokes equations. Velocities in y

direction are zero, only the Navier-Stokes equation in the horizontal x need to be considered.
In the stationary final state the time derivative at the LHS is zero, there is no pressure
gradient, the velocity gradient is zero, and there is no body force. This results in:

0 =
∂2ux

∂y2
. (6.6)
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Figure 6.4: Comparison Poisseuille flow results SPH (marks) with theory (line).

Using that ux = 0 at the under plate y = 0 and ux = U0 at the upper plate y = l this equation
can be integrated to y two times leading to the final state solution of the velocity profile:

ux(y) =
U0

l
y. (6.7)

This is a linear velocity profile with zero velocity at y = 0 and maximum velocity of ux = U0

at y = l. The development of this solution in time from the start to the final state is found
in the book of Liu (2003):

ux(y, t) =
U0

l
y +

∞∑
n=1

2U0

nπ
(−1)nsin(

nπ

l
y)exp(−n2π2ν

l2
t). (6.8)

In this simulation the length l = 10−3 m, the kinematic viscosity ν = 10−6 m2/s, and
U0 = 2.5 · 10−5 m/s. The Reynolds number for this test is Re = uxl/ν = 0.025.

The geometry, initial particle positions and chosen parameters in the SPH calculation are
the same as with Poisseuille flow and can be found there. Here only the result of SPH will
be compared with the analytical solution in figure 6.5. At t = 0.6 s the stationary state is
reached. As with Poisseuille flow both the development in time as the final state solution
from SPH agrees excellent with the analytical solution. The final state is the theoretic derived
linear velocity profile. Here also the kinematic viscosity is calculated with ν ≈ αhc/17.
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Figure 6.5: Comparison Couette flow results SPH (marks) with theory (line).
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6.2.3 Shear driven cavity

The last viscosity test is a shear driven cavity problem. A square closed box of fluid is
considered with four closed boundaries. The upper boundary moves with U0 to the right, while
the other boundaries have a zero velocity. The flow will reach a steady circulation pattern of
which the shape is determined by the Reynolds number. In this simulation U0 = 0.001 m/s,
the length of a side of the square box l = 0.001 m and the kinematic viscosity ν = 1 · 10−6

m/s2. Re = U0l/ν = 1. This is a 2D problem and a theoretic solution cannot be simply
derived from the Navier-Stokes equations. The results of SPH are compared with results of
a finite volume method (FVM) from Wesseling (2002). In the FVM calculation 40 x 40 cells
are used. The parameters in SPH together with the initial particle set up are showed below.

Figure 6.6: Initial particle positions shear driven
cavity.

Shear driven cavity simulation:
39x39 = 1521 particles
∆r = 2.5 · 10−5 m
Smoothing length h = 3.5 · 10−5 m
c = 0.25 m/s
∆t = 0.00005 s
Artificial viscosity α = 1.95
ν ≈ αhc/17 = 1 · 10−6 m/s2

Slip boundaries
D = 0.01 m2/s
No gravity

Initial conditions:
ux = 0, uy = 0

In figure 6.7 the situation at t = 0.15 is plotted. The steady state is reached now. A
circulation pattern has been developed with its centre at x ≈ 1/2l and y ≈ 0.78l. Because
the Reynolds number is very small there is only one major circulation, there are no secondary
circulations in the corners. SPH gives a correct circulation pattern, except very close to both
upper corners. The velocity of the particles in both corners is too low, maybe the boundary
forces around the boundary particles slows down the flow too much. The non-dimensional
velocity profiles over the horizontal and vertical centerlines from SPH are compared with the
velocity profiles from FVM in figure 6.8. The shape of the velocity profile in SPH is correct,
but it underestimates the maximums with 19 %.

6.2.4 Conclusion about viscosity benchmark problems

Three benchmark problems have been used to test the accuracy of the artificial viscosity
approach in SPH. Artificial viscosity actually decreases velocity differences between particles
by exchange of momentum and it simulates viscous stresses without the use of second deriva-
tives of velocities. The Poisseuille flow and Couette flow showed that the artificial viscosity
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Figure 6.7: Shear driven cavity at t = 0.15 s.

(a) Normalised velocity at horizontal centerline (b) Normalised velocity at vertical centerline

Figure 6.8: Comparison shear driven cavity results SPH with FVM at t = 0.15 s.

gives an effective kinematic viscosity parameter ν ≈ αhc/17, this is slightly smaller than the
theoretic expected ν ≈ αhc/16. The development in time and the final state velocity profile
is exactly as expected. In the shear driven cavity test SPH ended in a steady circulation
pattern as expected, but SPH under predicted the maximum velocities with 19 %. The three
tests showed that the artificial viscosity approach can give a linear velocity profile for Couette
flow, a parabolic velocity profile for Poiseuille flow, but a sharper curved velocity profile in a
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shear drive cavity was more difficult. With these conclusions in mind now simulations with a
free surface will be carried out.

6.3 Breaking dam

The breaking dam simulation describes the flow of water after a dam is broken. SPH is
very suitable to describe this problem with a fast varying water level. Initially a square
column of water with hydrostatic pressure is placed behind a dam. At time t = 0 the dam is
removed instantaneously and the fluid column collapses because of gravity. In the past similar
simulations have been executed with the Marker-and-Cell method (Harlow and Welch 1965),
and several times with SPH, (Monaghan 1992) and (Bonet and Lok 1999). The results of
the simulation will be compared with experimental data (Martin and Moyce 1952). In the
experiment the water column is 0.05715 m (2.25 inch) high and 0.05715 m wide, it is square.
In the SPH calculation this is approximated with 57 by 57 particles with ∆r = 0.001. The
water column in SPH is therefore 0.057 m by 0.057 m. Free slip boundaries are used with
a weak boundary force. The most important parameters together with the initial particle
positions are mentioned below.

Figure 6.9: Initial particle positions
breaking dam.

Breaking dam simulation:
57x57 = 3249 particles, ∆r = 0.001 m
Smoothing length h = 0.0014 m
c ≈ 10

√
2gd = 10.59 m/s

∆t = 0.00004 s
Artificial viscosity
α=0.27, ν ≈ αhc/17 = 2.4 · 10−4 m/s2

Free slip boundaries
D = 0.1 m2/s

Initial conditions:
ux = 0, uy = 0
Hydrostatic pressure

The position of the fluid at six different times is displayed in figure 6.10. First the fluid is
squeezed out at the bottom of the column, later the top of the column moves down. The tip of
the fluid is sharp, as expected with free slip boundaries. The surface stays smooth during the
whole simulation. The shape of the fluid during the simulation is comparable with the shape
using the Marker-and-Cell method or earlier simulations with SPH, it is also comparable with
the shape in the experiment (Martin and Moyce 1952). Some small differences in the shape
of the surface near the boundaries are visible though. SPH uses an artificial viscosity model
with constant ν, therefore wall friction would overestimate the drag and free slip boundaries
are used. Only the radial boundary force around every boundary particle gives ripples and
slows down the flow a little bit near boundaries in SPH. In the experiment the tip is not as
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sharp as in SPH, at the left the water level goes up towards the wall because of the drag. In
SPH the water level stays horizontal.

Figure 6.10: Breaking dam.

To compare the results from SPH with the experiment the variables are made non-dimensional
with the initial width of the column a. The position of the surge front z becomes Z = z/a,
the top of the column h becomes H = h/a, and time t becomes T = t

√
g/a. During the

collapse of a perfect fluid column the following relations hold:

Z = F1[n2, T ], (6.9)

H = F2[n2, T ]. (6.10)

n2 denotes the ratio between the original height and width of the column, in this case n2 = 1.
In the experiment there were problems finding the right start time of the collapse of the fluid
column. In the article ?? the assumption is made, when comparing the measures with a the-
ory, that after T = 0.1 motion began. The results of SPH are compared with the originally
published experimental data and with the experimental data with adjusted start time.
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Figure 6.11: Position of the surge front in
time.

In figure 6.11 the position of the surge front is
plotted as a function of time. The SPH results are
very close to the experimental data with shifted
start time. The angle of the line indicates the
velocity of the tip of the bore. At the start the
velocity of the tip is zero, then it increases to a al-
most constant value between T = 0.7−2. Only at
the end of the simulation the result of SPH starts
to differ significant from the shifted experimental
data, probably because of the free slip bound-
aries in SPH. The contact area between the fluid
and the bottom increases during the simulation,
so does the bottom friction. In this simulation
with SPH the most important friction is internal
viscosity, this is not increasing with more contact
area between bottom and fluid. This can explain
that the velocity of the tip is higher in SPH than
in reality at the end of the simulation. But even
at T = 1.8 the difference between SPH and the
shifted experiment is only 3.5 %.

Figure 6.12: Position of the top of the fluid
column in time.

When looking at the position of the top of
the fluid column at the left boundary in fig-
ure 6.12 the results of SPH are similar to the
results of the experiment shifted T = 0.1.
Don’t look too much at the line of the ex-
periment between the first two stars. Only
two measures of h and t are taken, in be-
tween just a straight line is drawn. One
would expect that the line starts horizontal
and then slopes down more, going through
the measurement points. From T = 0.7 on-
wards the difference between the experiment
shifted and SPH is very small. At T = 1.8
the difference is only 0.8 %. Apparently the
free slip boundary does have more influence
on the horizontal velocity than on the verti-
cal velocity. Given the rather arbitrary cho-
sen time shift of T = 0.1, both the posi-
tion of the surge front and the position of the
top of the fluid are simulated correctly with
SPH.
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6.4 Bore at wall

6
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Figure 6.13: Schematic idealised bore.

A horizontal layer of water is suddenly flowing against
a vertical wall. The flow is stopped abruptly and a
bore will develop, running away from the wall. The
long-wave theory cannot be applied to the steep front
of the bore, but the theory is valid for the two uniform
areas on both sides of the front. See figure 6.13 for the
idealised situation considered in the long-wave theory.
The conservation of volume per unit of width reads:

ubore(d1 − d0) = u0d0. (6.11)

For this idealised stationary situation considering both uniform sides of the bore, the conser-
vation of momentum per unit of width reads:

1
2
ρgd2

1 −
1
2
ρgd2

0 − ρu2
0d0 = ρuboreu0d0. (6.12)

This equation means that the difference between momentum left and right of the bore on
the LHS causes the bore to progress with ubore stopping the movement of water ρu0 over the
whole depth d0 on the RHS. Combining these two equations and elimination of terms gives:

ubore = u0 +
√

1
2
gd1(1 +

d1

d0
) ,with

d1

d0
=

ubore + u0

ubore
. (6.13)

This analytical solution can be used to check the water level and velocity of the bore calculated
with SPH. This simulation has been carried out with SPH before (Bonet and Lok 1999), the
dimensions are chosen according to the earlier simulation. The initial water depth is d0 = 0.1
m. Two simulations have been performed with two different initial velocities u0 = 0.2971
m/s (Froude number = 0.3) and u0 = 0.9813 m/s (Fr = 0.9). The left boundary is fixed, on
the right a push boundary is used to give an uniform velocity over the depth flowing into the
bore. The total number of fluid particles is constant. The other parameters used, are listed
below.

Bore simulation:
349x20 = 6980 particles, ∆r = 0.005 m Initial conditions:
Smoothing length h = 0.007 m ux = −u0, uy = 0
c ≈ 10

√
2gd = 14 m/s Hydrostatic pressure

∆t = 0.0001 s
Artificial viscosity α = 0.0408
ν ≈ αhc/17 = 2.4 · 10−4 m/s2

Free slip boundaries
D = 0.1 m2/s
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Figure 6.14: Bore 1 with initial velocity u0 = 0.2971 m/s.

In figures 6.14 and 6.15 the particle positions are plotted for six successive times. The color
indicates the horizontal velocity. The color is changing at ux = −u0 + 0.1 m/s, ux = −0.2
m/s and ux = −0.9 m/s for both simulations respectively. This change in color has been used
as the front of the bore. Because the different positions of the front in time will be compared
with each other, the exact choice of definition for the front of the bore is not that important,
as long as the same definition is used every time the front of the bore has to be found. As
can be seen in figure 6.14, with u0 = 0.2971 the bore is not very high, and the front of the
bore is an unbroken wave. This is called an undular bore. For the second simulation with
u0 = 0.9813 m/s the situation is different. The water splashes up the left boundary and
gives an over topping wave to the right. After the wave is broken the front of the bore stays
turbulent. The tip of the overtopping wave is some particles thick, one would expect that
the tip would end in only one particle. This is because the artificial viscosity is too high, but
when a smaller viscosity is chosen the simulation becomes unstable. In the last picture of
figure 6.15 the right push boundary has just entered the plotted area.

In table 6.1 the average height of the first 0.2 m from the left of the bore is determined. For
both simulations these values differs less than 1 % from the theoretic value calculated with
the long wave theory. The theoretic velocity of the bore ubore is compared with the value from
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Figure 6.15: Bore 2 with initial velocity u0 = 0.9813 m/s.

x [m] 0 0.05 0.100 0.150 0.200 mean theory error
bore 1 d1 [m] 0.1370 0.1315 0.1317 0.1330 0.1327 0.1332 0.1320 0.9 %
bore 2 d1 [m] 0.2228 0.2198 0.2165 0.2100 0.2082 0.2155 0.2158 -0.2 %

Table 6.1: Bore height at t = 0.8 s for bore 1 (u0 = 0.2971 m/s) and bore 2 (u0 = 0.9813 m/s).

SPH in table 6.2. The velocity of the bore with SPH differs more from the theoretic value
than the height of the bore, now the maximum error is 3 %. An explanation could be that
the velocity of the bore can not be found accurately from the results. It is found by tracking
the front of the bore at two different time steps and dividing the distance the front has moved
by the time interval. The front of the bore is found with a visual estimate of the position of
the change of color in figures 6.14 and 6.15. Concluding can be said that SPH gives a very
accurate prediction of the height of the bore and the velocity seems correct as well, but that
is difficult to check exactly.

t 0.3 s 0.8 s ubore theory error
bore 1 front 0.29 m 0.75 m 0.92 m/s 0.929 m/s -1 %
bore 2 front 0.36 m 0.77 m 0.82 m/s 0.847 m/s -3 %

Table 6.2: Calculation of ubore for bore 1 (u0 = 0.2971 m/s) and bore 2 (u0 = 0.9813 m/s)
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6.5 Standing wave

The way a numerical method is solving the equations can introduce non-physical dissipation of
energy. A numerical method can also introduce a phase error in the velocity that information
is transfered. The amount of numerical dissipation and the phase error can be tested with the
simulation of a periodic process without physical damping. A standing wave in a closed basin
with free slip boundaries is such simulation, without friction the total amount of energy, this is
the sum of potential and kinetic energy, will stay constant and the wave period is determined
by the geometry. With numerical dissipation the total amount of energy will decrease, with
a numerical phase error the wave speed in the model will differ from the physical wave speed
leading to a different wave period. A closed basin of effective 1.975 m wide with a cosine-shape
standing wave of 4.95 m long is used. Exactly half a wave length fits in the basin, the initial
amplitude H is 0.15 m. The water depth d is 2 m. The wave is characterised by:

k = 2π/L = 2π/3.95 m = 1.59 rad/m,

ω2 = gk tanh(kd) = 15.55 rad2/s2 → ω = 3.92 rad/s,

T = 2π/ω = 1.59 s,

H/d = 0.075, H/L = 0.03.

The linear wave theory predicts that the shape of the wave is not changing over time, but
the linear theory is only valid in cases where the amplitude is much smaller the the water
depth. In this simulation the ratio amplitude/depth is 0.075, maybe some non-linear effects
are visible at the end of the simulation. Next to the visible changes in the water level this
standing wave problem can have other evanescing solution modes which distract energy from
the visible surface elevation. From the surface elevation itself no hard conclusions can be
drawn, but also with small non-linear influences and evanescing solution modes the total
amount of energy in the system should stay constant.

6.5.1 Standing wave with standard boundary force

In order to keep the simulation stable SPH needs some artificial viscosity. In this simulation
it appeared that minimal α = 0.01 leading to ν ≈ αhc/17 = 1 ·10−3 m/s2 was necessary. This
artificial viscosity dissipates energy. Another source of dissipation is the radial boundary force
around every boundary particle to give a closed boundary. The flow parallel to boundaries
does feel this radial boundary force as ripples, the ripples dissipate energy as well. Because of
the combination of a boundary force with ghost particles the boundary force can stay small
to ensure a closed boundary, but the dissipation from the boundary force is not zero. The
wave speed can be calculated by uwave = ω/k, in this simulation the wave number k is fixed
by the geometry. Dissipation will cause the wave to slow down leading to a lower uwave, with
constant k this gives a lower ω. A lower ω is equal to a higher period T . The conclusion
is that dissipation will increase the wave period. SPH introduces some dissipation from the
artificial viscosity and the radial boundary force, therefore it is expected that the wave period
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in SPH is larger than 1.59 s.

The initial conditions in this simulation are chosen according to the wave in its middle,
with zero amplitude and maximum velocities. See figure 6.16 for a visualisation. The initial
velocities are calculated with the linear wave theory. Starting with zero amplitude gave better
results than starting at a maximum amplitude because the position of the particles is discrete
and the initial velocity given to the particles can be any value. The most important numerical
parameters are:

Figure 6.16: Initial particle positions
standing wave with initial velocity

quiver.

Standing wave simulation:
79x80 = 6320 particles, ∆p = 0.025 m
Smoothing length h = 0.035 m
c ≈ 11

√
gd = 50 m/s

∆t = 0.0002 s; ∆t/T = 1/7950
Artificial viscosity α = 0.01
ν ≈ αhc/17 = 1 · 10−3 m/s2

Free slip boundaries
D ≈ 1/2gH = 10 m2/s

Initial conditions:
Horizontal water line
Velocities according to standing wave
Hydrostatic pressure

The top graph in figure 6.17 shows the elevation of the surface at x = 0.1 m, the line is
the linear theoretic elevation for a wave without dissipation, the stars are the results from
SPH. The amplitude in SPH is decreasing over time, due to the artificial viscosity and the
boundary force, but non-linear effects are absent in these 4 periods. The numerical dissipa-
tion in SPH leads to a lower wave speed and a higher period, but this higher period is not
visible in the results. Next to numerical dissipation as a source for wave speed errors also a
numerical method itself can give wave speed errors. It appears that the numerical translation
in SPH of the original equations introduces a wave speed which is too big. The positive phase
error from the numerical method itself cancels out against the negative phase error from the
numerical dissipation. The wave in SPH does have the same period as the theoretic wave,
and the amplitude is decreasing.

The amount of dissipation of energy can be seen in the development the energy in the lower
graph of figure 6.17. From the potential energy the initial potential energy is subtracted, the
total energy is the sum of the potential and kinetic energy. The fluid settles about 6 mm
at the start which destroys potential energy. This settlement causes the potential energy to
become under the initial potential energy, this gives negative values in the graph. The kinetic
energy is maximal when the potential energy is minimal, and the line of the total energy is
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almost straight. So the conversion between kinetic and potential energy is correct. Because
of the settlement of the fluid not the total energy is used to find the amount of dissipation,
but the maximum kinetic energy in a period.

Without dissipation the maximum kinetic energy in a period should stay constant during
the simulation. The initial kinetic energy in SPH is 104 J/m, this is a little less than 109
J/m expected from theory. The reason for this is the discrete positions and velocities of the
particles in stead of the theoretic continuous fluid and velocity field. After four periods only
32 J/m of kinetic energy is left, this is 31 %. The artificial viscosity and closed boundaries in
SPH are dissipating a lot of energy, 69 % in four wave periods.

Figure 6.17: Time series of standing wave in SPH with radial boundary force.

The dynamic pressure in SPH at t = 6 s at both ends of the standing wave in its extreme
elevation is shown in figure 6.18. The dynamic pressure is the difference between the linear
hydrostatic pressure and the actual pressure in a wave. The theoretic dynamic pressure is
calculated using the linear wave theory with the decreased amplitude at t = 6 s of 0.09 m.
The shape of the dynamic pressure in SPH is correct, it is negative when the surface elevation
is negative and positive when the elevation is positive. The dynamic pressure in figure 6.18(b)
is close to the theoretic expected pressure, but in figure 6.18(a) the difference at some points
is more than 100 %. Maybe this comes from the influence of non linear wave components
which start to evolve, or some compression waves walk through the basin.
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(a) Pressure negative elevation. (b) Pressure positive elevation.

Figure 6.18: Dynamic pressure in standing wave at t = 6 s.

6.5.2 Standing wave with adapted boundary force

The artificial viscosity is necessary to keep the simulation stable, but the closed boundary
could be adapted a little to remove the ripples of the boundary force. This would reduce
the numerical dissipation in SPH. The radial boundary force per unit of mass around every
boundary particle is defined with following equation from section 4.2.1:

f(rij) =

{
D
(
( r0

rij
)12 − ( r0

rij
)4
)

xij

r2
ij

rij ≤ r0

0 rij > r0

(4.10)

with rij defined as the distance between a fluid particle and a boundary particle and length
scale r0 taken equal to the initial particle spacing ∆r. The complete explanation can be found
in section 4.2.1. This boundary force gives a bumpy boundary force field and the flow along
the boundary does feel this as ripples. To remove the ripples, the boundary force is changed
from radial around every boundary particle to a direction always square at the boundary.
This is achieved by changing the boundary force into:

fy(∆y) =

{
D
∆y

(
( r0
∆y )12 − ( r0

∆y )4
)

∆y ≤ r0

0 ∆y > r0

(6.14)

fy is the vertical boundary force at the bottom. ∆y is the distance between a fluid particle
and the bottom, r0 and D are the same as in the original boundary force. Near the bottom
only a vertical boundary force is active. Near a vertical wall simply change every direction y

in this boundary force into x and the horizontal boundary force is found. This boundary force
doesn’t give ripples and is not dissipating energy of the flow flowing parallel to a boundary.

The results of the standing wave in SPH with this new boundary force is displayed in figure
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6.19. The surface elevation is displayed in the top graph. Because there is less dissipation,
the wave speed will be higher than in the last simulation, the wave period will be smaller.
The top graph shows that the sinus-shaped elevation in SPH at the end of the simulation is
shifted to the left compared with the linear wave. The period in SPH is indeed smaller than
1.59 s last simulation. The graph of the energy in the system will be used to find the amount
of dissipation. The settlement of the fluid at the start can again be seen in the line of the
potential energy. At the end of the simulation, the line of the total energy is not straight, but
there are humps. The maximums of the kinetic energy do not correspond to the minimums
of the potential energy. Next to the kinetic and potential energy, there must be another type
of energy which is important here. Maybe a compression wave walks through the basin and
exchanges energy with the potential energy as well.

The phase shift in the surface elevation is also visible in the line of kinetic energy, at the
end the data points from SPH do not correspond with the maximums anymore. To find the
maximum kinetic energy at the end a smooth spline function is fitted on the results. At the
end 44 J/m is left of the original 104 J/m, this is 42 %. The dissipation in SPH is 58 %
over 4 periods, much less than 71 % dissipation in last simulation with the radial boundary
force. The adapted boundary force does removes the friction at the wall and reduces the total
dissipation of energy a lot. But it is not easily applicable at irregular boundary shapes. This
boundary force is only used for this simulation, maybe it could improve results of some other
simulations as well.

Figure 6.19: Time series of standing wave in SPH with perpendicular boundary force.
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6.6 Wave propagation on a beach

This simulation is about the propagation of waves on a beach. On the left a vertical wave
maker generates waves, there is a beach with a slope of 1:10 on the right. Between the utmost
left position of the wave maker and the start of the beach is a horizontal section of 10 m.
With the wave maker regular waves are generated with constant amplitude and period. Two
simulations with two different wave periods on the same beach are presented. They will show
clearly distinct breaking behaviour. The way a wave is breaking on a beach depends on
the steepness of the wave and the slope of the beach, this is combined in the parameter of
Iribarren, explained in the lecture notes of Battjes (2001), which is given by:

ξ =
tan α√
H/L0

, (6.15)

where α is the slope of the beach, H is the waveheight at the breaking point and L0 is the
wavelength at deep water. When ξ < 0.4 waves will spill giving some foam at the crest, but
no overtopping. When 0.4 < ξ < 2 waves will plunge. Plunging means the wave top goes
faster than the wave itself, resulting in an overtopping crest. The crest hits the base with a lot
of energy giving a high splash. In the first simulation the wave generator creates waves with
ω = 2 rad/s, T = 2π/ω = 3.14 s. L0 = gT 2/(2π) = 15.4 m. The stroke of the wavemaker
is 1.5 m, this results in a maximum waveheight of H = 1.84 m. Iribarren’s parameter is
ξ = 0.29, the waves will spill. The second simulation is performed with much longer waves
on the same beach. ω = 1 rad/s, T = 2π/ω = 6.28 s. L0 = gT 2/(2π) = 61.6 m. The stroke
of the wavemaker is now 2.5 m, resulting in a waveheight H = 2.4 m at the breaking point.
ξ = 0.51, now the waves will plunge and show overtopping.

In SPH the wave maker consists of a vertical row of boundary particles with a prescribed
horizontal velocity and position according to a sinus-shape movement. With ghost particles
created at the wave maker sometimes fluid particles are glued high at the waveboard and
fall down later on. This disturbs the fluid motion more than a small error in the pressure
near the wave maker, therefore ghost particles are not created at the left boundary. At the
other boundaries ghost particles are created as usual. Fluid particles of 0.1 x 0.1 m are used,
for overtopping waves with a waveheight H ≈ 2 m this gives enough resolution to capture
the overtopping. Initially the water level is horizontal with a depth of 5 m in the horizontal
section. About 6 wave periods are simulated, resulting in 20 s for the first and 40 s for the
second simulation. Calculation time was 16 and 31 hour respectively on a 2 GHz PC with 1
gb memory under Linux, the calculation time was the main reason not to model more wave
periods. The results are sensitive to the amount of artificial viscosity. With too little viscosity
particles go everywhere, with too much viscosity the waves are smeared out and cannot have a
sharp crest, overtopping is certainly impossible then. The viscosity used in these simulations
was found after many trials and is the lowest viscosity possible without large disturbance of
the free water surface. The parameters used in SPH for these simulations are summed up now.
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Wavemaker simulation:
17192 particles, ∆p = 0.1 m Initial conditions:
Smoothing length h = 0.14 m ux = 0 m/s, uy = 0
c ≈ 7

√
gd = 50 m/s Hydrostatic pressure

∆t = 0.001 s
Artificial viscosity α = 0.02 Left boundary:
ν ≈ αhc/17 = 8 · 10−3 m/s2 Wave maker
Free slip boundaries Right boundary:
D = 10 m2/s Beach with 1:10 slope

6.6.1 Spilling waves

The first simulation is with short waves which will spill on this beach because ξ = 0.29. The
particle configuration after 19 s is showed in figure 6.20. The crests are sharp and when a
movie of the progressing waves is analysed it is visible that the crests crumble and do not
overtop. The shape is as expected with spilling waves. The length of the first complete wave
visible at the left is around 15.7 m, this is more than the deep water wavelength L0 = 15.4
m. In reality the wave slows down towards the shore because of the decreasing depth, and
the wave period stays constant. From the relation uwave = ω/k the conclusion is that with
constant ω a wave gets shorter when the wave speed decreases. From the dispersion relation
the wave length at every depth can be calculated when the wave period and the depth are
known, for the first wave the length should be 14.3 m. Next wave is 13.6 m long when 12.4
m was expected from theory. Last wave is 11 m long when 10 m was expected. Also in SPH
the waves slow down and the wave length decreases with decreasing depth, the influence of
the depth on a wave is correct in SPH. But the absolute value of a wave length in SPH is
approximately 10 % too long. A possible explanation comes from the positive phase error
in the numerical integration of SPH as already found in the standing wave simulation. A
positive phase error leads to a wave speed which is too high and this gives a wave which is
too long.

Figure 6.20: Spilling waves on the beach.

The path of five particles, indicated with dark dots in figure 6.20, is followed during the simu-
lation. At t = 0 they all are at x = 10 at different vertical positions. In figure 6.21 their paths
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are shown. Under influence of the progressing waves the particles make an orbital motion,
which is an ellipse with the longest axis in the horizontal direction. They do not move in a
closed ellipse, but every period they have a net displacement. This is called the Stokes’ drift
and is also seen in experiments. The vertical displacement in the ellipse is larger for particles
who are further away from the bottom. Near the bottom the ellipse is almost flat, near the
free surface the ellipse is more round. The lowest particles follow the slope of the beach. The
net displacement is to the right for the highest two particles and to the left for the lowest
three particles. At the top of a progressive wave the mass transport is in the direction of
propagation and at the bottom there is a counter current. In the final state the nett mass
transport over the vertical is zero. The orbital motion of the particles in SPH is as expected
in a progressing wave.

The conclusion about this spilling wave simulation on a beach is that SPH can handle this
type of waves. Physical phenomena like crumbling spilling wave crests and an elliptical or-
bital motion are visible. The sharp crest and non hydrostatic pressure in a short wave was no
problem. Unfortunately the predicted wave length was too large, but with another integration
scheme or smoothing kernel, with a smaller phase error, this probably can be improved.

Figure 6.21: The orbital motion of 5 particles under spilling waves.

6.6.2 Plunging waves

Second type of waves generated with the wave maker have a period twice as large as previous
waves. Their length in deep water is much bigger L0 = 61.6 m, their height is comparable.
These longer waves feel the same beach as much steeper than the previous shorter waves. From
ξ = 0.51 it can be concluded that these waves will plunge on the beach, showing an overtopping
and breaking character as known from the Dutch beach. The particle configuration after 13.5
s in figure 6.20 shows an overtopping wave. Starting at the wavemaker every wave moves to
the right. When the waves enter shallower water shoaling becomes visible. Shoaling means
that a decreasing depth leads to a lower wave speed, a shorter wave length and an increasing
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wave height. This process continues until the wave becomes unstable and the wave breaks.
A close up with six snapshots of a breaking wave is shown in figure 6.23, the color indicates
the original horizontal position. The crest of the wave curls over more and more until it falls
into the base. This gives a big splash. The different colors in figure 6.23 show there is some
mixing after breaking, but it is smaller than in real waves. The artificial viscosity needed for
stability is too high to show more realistic behaviour with more vorticity, and finer splash up.
But SPH can capture the overtopping itself and that is spectacular already.

Figure 6.22: Plunging wave on the beach.

From time-series of the water level at certain points 5 m from each other the time averaged
level of the wave crest, wave trough, and mean water level is determined and displayed in figure
6.25. The time averaged values are only from 2-4 wave periods depending on the distance
from the wave maker. The wave crests become higher until the break point at x = 35 m,
at x = 40 m the wave is overtopping. The displayed averaged wave crest level at x = 40
m is the lowest free surface level under the tube of the overtopping wave. At x = 45 m the
crest has fallen and the crest hight is decreased a lot. After breaking the crest level stays
constant towards the shore. The wave trough increases a little towards the shore until the
break point, after the break point it increases faster. From theory and measurements it is
known that the mean water line goes down a little when going from deep water to shallow
water until the break point. This is called the wave set-down, a rough theoretic value is given
by (Battjes 2001):

η̄ = −1/8
kH2

sinh 2kd
, (6.16)

where k is the wave number, H is the local wave height inclusive shoaling effects, and d is the
local waterdepth. The theoretic wave set-down is calculated with reference to the still water
line, indicated with s.w.l. in figure 6.25. At sea the s.w.l. is the mean water level at deep
water, in this small scale simulation it can be calculated from conservation of volume in the
basin. The still water line in this simulation is at y = 5 m. Before the break point the mean
water level in SPH is under the still water level, some set-down is visible. Towards the break
point the set-down in SPH becomes less than the theoretic value, but from measurements is
known that this theoretic value of the set-down is too large at the break point. The exact
set-down can only be compared with an experiment.
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Figure 6.23: Close up of a breaking wave, the color indicates the position in the first snapshot.

Figure 6.24: Breaking index γ for
plunging waves along the shore.

More important than the set-down before breaking is
the set-up after breaking. This wave set-up after the
break point is bigger than the set-down and it deter-
mines how far waves can propagate on the beach. The
run up of waves determines the minimal hight a sea
defence has to have to prevent overtopping. In SPH
there is a big set-up after the breaking point, much
more than the set-down before breaking. This is just
as expected. A rough estimate of the slope of the
mean water level after the breaking point is given by
(Battjes 2001):

dη̄

dx
=

3/8γ2

1 + 3/8γ2
tan α, (6.17)

where γ is the breaking index defined by Hb/depth
and Hb is the wave height at the breaking point. α

is the slope of the beach. The breaking index is dis-
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played in figure 6.24. In this simulation γ = 0.94 at breaking, the theoretic set-up line is
drawn in figure 6.25. The mean water level in SPH for x > 35 m is close to the theoretic
set-up line. When the breaking index along the shore is analysed from figure 6.24, it is clear
that the waves grow until the break point at x = 35 m with γ = 0.94. From measurements
it is known that plunging waves break between γ = 0.8 and γ = 1.2, the value from SPH
is within this range. After the break point γ decreases to 0.73 and increases again to the
breaking value at x = 60 m.

The conclusion about this simulation is that SPH can also handle plunging waves on a beach.
Phenomena like shoaling, a small wave set-down before the break point and a big wave set-up
after breaking are present in the results of SPH. The breaking of waves itself is captured from
the Navier-Stokes equations without further assumptions. The results from SPH are realistic,
but the exact values can only be verified with an experiment.

Figure 6.25: Comparison of wave data from SPH with linear theory.
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6.7 Sharp weir
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Figure 6.26: Schematic idealised sharp weir.

When water is flowing over a sharp weir, like
drawn in figure 6.26, only one measure of the
waterlevel is enough to know the discharge
over the weir. Therefore this type of weir is
used a lot to measure discharges in labora-
tory flumes or irrigation channels etc. At the
weir the waterlevel is going down fast and the
pressure gradient is large. This is the reason
that many other numerical methods cannot
handle a sharp weir. The aim of this sec-
tion is to show that SPH can handle a sharp
weir.

At a clear overfall the water depth at the overfall is 2/3 of the energy level Ek and the
depth averaged velocity at a clear overfall is equal to

√
2/3gEk. Rehbock combined this

theory with some empirical adjustments. The energy level Ek is almost equal to the much
easier to measure water level hk, first Rehbock replaced Ek with hk and then he added an
empirical correction factor to hk, leading to he = hk + 0.11 cm. The empirical correction of
0.11 cm is needed to take viscosity and surface tension into account. He used he to calculate
the discharge over a sharp weir:

q = m′ 2
3
he

√
2
3
ghe, (6.18)

where q is the discharge per unit of width, g = 9.81 m/s2. m′ is a discharge coefficient given
by:

m′ = 1.045 + 0.141
he

a
. (6.19)

The water level with regard to the weir height hk has to be measured 2a upstream, with
a defined as the weir height. The discharge can be calculated with only one measure of a
waterlevel, all other parameters are known for a given weir. The factor m′ is larger than 1
because of the curvature of the streamlines above the weir.

In SPH the sharp weir consists of a vertical line of fixed boundary particles. All parti-
cles that fall below y = 0 right of the weir are removed, at the left an inflow boundary with
constant waterlevel is modelled. The details about this inflow boundary are mentioned in
section 4.2.3, the most important used parameters in this simulation are mentioned now.
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Sharp weir simulation:
1300 particles on average, ∆p = 0.025 m Initial conditions:
Smoothing length h = 0.035 m ux = 0.5 m/s, uy = 0
c =≈ 11

√
gd = 22 m/s Hydrostatic pressure

∆t = 0.0005 s
Artificial viscosity α = 0.01 Left inflow boundary:
ν ≈ αhc/17 = 5 · 10−4 m/s2 waterlevel = 0.4 m
Free slip boundaries Right sharp weir:
D = 0.1 m2/s a = 0.175 m

Figure 6.27: Flow over a sharp weir.

The flow over a sharp weir in SPH from figure 6.27 gives the same impression as the schematic
idealised flow over a sharp weir in figure 6.26. Note the regular position of the particles at the
inflow. Near the bottom some lines with fluid particles with a small horizontal distance and
a large vertical distance are visible. This is some negative influence of the bottom boundary.
The waterlevel after the inflow is almost horizontal, over the weir the flow bends down and
gets a free fall. The XSPH technique from section 4.3 is used to move the particles. Only
for particles that are over the weir the vertical velocity to move the particle is not adjusted
with XSPH, because then the falling flow after the weir would pull the flow left from the weir
and this gives bad results. Outside the weir ghost particles are generated to give the correct
pressure near the weir. Ghost particles are generated for every fluid particle left of the weir
and lower than the influence depth of y = 0.2 m. These ghost particles can only interact
with fluid particles left of the weir, the fluid particles who are already over the weir cannot
interact with the ghost particles.

In order to compare the results of SPH with the Rehbock formula (equation 6.18) a reference
level at the bottom of the flow is introduced and the exact height of the weir is determined. As
explained in section 6.1 every particle represents an area of (∆r)2. The bottom of the flow is
not at y = 0 but 1/2∆r below the centre of the lowest particles. From the results is found that
the bottom of the flow is at y = 0.0125, this is defined as the reference level. The sharp weir
consists of a row of vertical fixed boundary particles until y = 0.175 m. The boundary force
of the top boundary particle of the sharp weir has an influence distance of r0 = ∆r = 0.025
m. The lowest particle that can flow over the weir is at y = 0.175+0.025 = 0.2 m, the lowest
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particle also represents fluid 1/2∆r under its centre, therefore the effective top of this sharp
weir in SPH is at y = 0.2 − 1/2∆r = 0.1875 m. According to the reference level the sharp
weir is effectively 0.1875− 0.0125 = 0.175 m high.

In summary, from every vertical coordinate y the reference level of y = 0.0125 m has to be sub-
tracted to get the effective depth. At the left there is an inflow boundary with a constant fixed
water level of y = 0.4125 m, this corresponds to an effective depth of 0.4125−0.0125 = 0.4000
m. This is correct because the inflow consists of a vertical row of 16 particles each represent-
ing 0.025 m, and 16× 0.025 = 0.4000 m. At the right there is a sharp weir of effectively 0.175
m high.

x [m] 0 0.5 1.0 1.5 2.0
depth [m] 0.3998 0.3940 0.3926 0.3918 0.3661

Table 6.3: Time averaged water depth sharp weir (reference y = 0.0125 m).

hk he m′ qRehbock qSPH error
0.2186 m 0.2196 m 1.222 0.2145 m2/s 0.2260 m2/s 5.4 %

Table 6.4: Discharge sharp weir from Rehbock’s formula.

All quantitative results showed here are averaged over the last 5 s of the simulation. The
waterlevel, pressure and discharge at a position are varying in time. The simulation never
gets into a perfect equilibrium, but it varies around it. First the water level will be analysed.
There is some negative influence of the inflow boundary left, the waterlevel drops around half
a centimeter directly, this is visible in figure 6.27. In table 6.3 the averaged depths show
that between x = 0.5 m and x = 1.5 m the waterlevel only drops 2 mm. Because of the
viscosity some energy is dissipated, leading to a decreasing energy level towards the right.
When the energy level decreases also the water depth has to decrease. The Rehbock discharge
is calculated in table 6.4, using the water level hk at 2a = 0.35 m upstream of the weir. The
discharge in SPH is determined by counting the volume of the inflow particles at the left.
The discharge in SPH is 5.4 % too high.
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Figure 6.28: Pressure at the weir.

The time averaged pressure near
the weir is showed in figure 6.28.
The hydrostatic pressure at the
inflow on the left is shown with
the thick black line. At the weir
the pressure is expected to be to-
tally different. At the free surface
(y = 0.3786 m) the pressure should
be the atmospheric pressure (p=0).
Also at the top of the weir (y = 0.2
m) the pressure should be atmo-
spheric because the flow is venti-
lated. The pressure at the bot-
tom of the weir is expected to have
the value of the hydrostatic pres-
sure at the bottom near inflow, be-
cause it is a stagnation point. The
expected pressure at the weir goes
through the points just mentioned,
but its shape between the points is
just qualitatively.

When this expected pressure at the weir is compared with the time averaged pressure in
SPH, the agreement is not bad at all. At the top of the weir the pressure in SPH is zero,
in SPH also the flow is ventilated. Towards the bottom the pressure increases to hydrostatic
pressure. Near the stagnation point at the bottom the pressure in SPH is too small, because
it is in a corner with two rows of boundary particles which do not contribute to the pressure.
In the top of the flow the pressure in SPH differs from the expected pressure, it is not zero
but negative.

SPH can handle the large pressure differences and bending water line at a sharp weir, the
results are close to the theoretic expected results. The discharge differs only 5.4 % and the
time averaged pressure at the weir looks realistic.
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Chapter 7

Conclusions and recommendations

7.1 Overview

The Smoothed Particle Hydrodynamics method has been studied and a 2D version of this
method is programmed in Fortran. The influence of different implementations in the code
is analysed. To find out what the prospects of SPH are in hydraulic engineering several 2D
vertical simulations with a free surface have been carried out. These simulations comprise the
water motion at a breaking dam, a bore at a wall, a standing wave, waves propagating on a
beach and a sharp weir. Also some 2D horizontal problems have been carried out to test the
artificial viscosity, these are Poisseuille flow, Couette flow and a shear driven cavity problem.
In this chapter the conclusions about the application of SPH in hydraulic engineering are
presented together with some recommendation to improve SPH.

7.2 Conclusions

• SPH in general
SPH is a Lagrangian particle method which can solve the total Navier-Stokes equations.
Because SPH uses moving particles, it does not have troubles with advection. The fluid
is made slightly compressible (∆ρ/ρ ≤ 1%), to get a time derivative of the density. The
pressure is calculated with an explicit equation of state from the density, and can be
non-hydrostatic.

• Viscosity
The influence of viscosity is not modelled with exact second derivatives of the velocity,
but approximated with an artificial viscosity term. In the shear driven cavity problem,
the artificial viscosity underestimated the maximums in the velocity. Poisseuille and
Couette flow did result in the correct velocity profile. The artificial viscosity needed for
stability is very dissipative.

• Free surface
A free surface in SPH is simply the transition between particles and nothing. Large
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variations in the free surface, or intersecting surfaces are no problem at all. Overtopping
of waves is found from the Navier-Stokes equations without further assumptions.

• Boundaries
Closed boundaries are created with a line of fixed boundary particles with a boundary
force and ghost particles over the boundary. Closed boundaries sometimes disturb the
flow nearby. Open boundaries are difficult to apply in SPH. For the case of a sharp
weir an inflow boundary was created which gave only a small disturbance on the flow.
This inflow boundary can only handle a uniform velocity in one direction. Periodic
boundaries can be used without problems.

• Calculation time
A small time step is needed for stability and finding all the interaction pairs every time
step is computational expensive. The calculation times therefore are considerable. The
usability of SPH is restricted to local and short phenomena.

• Future
The simulations in chapter 6 show that SPH can give accurate results for many problems
in hydraulic engineering. SPH can be used in situations where other numerical methods
fail. The possibilities of SPH in hydraulic engineering are therefore numerous and with
some improvements it will be used more and more.

7.3 Recommendations

• Reduction of calculation time
The calculation time for simulations with large numbers of particles can be reduced
with a more sophisticated interaction find algorithm. Parallelisation of the code can
also decrease the calculation times significantly.

• Expansion of SPH to 3D
With a faster code and increasing computer power over time, soon the calculation time
for 3D simulations with satisfactory resolution will be acceptable.

• Improvement of the viscosity model
The currently used artificial viscosity approach is too dissipative. A less dissipative
viscosity model, which keeps the simulation stable, would give better results in turbulent
situations. Some papers are already published about a combination of SPH with the
concept of large eddy simulation (LES). The particle movement from the Navier-Stokes
equations is used to capture the large scale motion, and a sub-particle-scale (SPS)
turbulence model is used to calculate the influence of turbulence from smaller length
scales.

• Improvement of the formulation of boundaries
An improvement in the way closed and open boundaries are modelled is welcome. Ro-
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bust techniques to model open boundaries without negative boundary effects would
make SPH applicable in more situations.

• Make the fluid incompressible
The compressibility of water is exaggerated in SPH to get a time derivative of the density
and to get a relation between density and pressure. An approach closer to reality would
be to model water as an incompressible fluid, and to solve an implicit Poisson equation
for the pressure.

• Staggering of information over different types of particles
In the very structured 2D horizontal viscosity tests a disturbing checkerboard mode
entered the pressure of the particles. SPH is normally used in very dynamic situa-
tions, then the disturbing checkerboard mode does not show up. A fundamental correct
solution would be to introduce two types of particles: particles which carry informa-
tion about pressure and particles which carry information about velocity. From grid
based methods it is known this prevents checkerboard modes and it does not reduce the
accuracy. However this will not be easy to implement in a particle method.
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Appendix A

Listings of ’SPH 2D open’

computer code

SPH_2D.f

program SPH

implicit none

include ’param.txt ’5

integer maxtimestep , itime , d, m, i, printstep , screenstep , niac

double precision dt , rho_min(maxn), v_min(dim ,maxn), drhodt(maxn),

& dvdt(dim ,maxn), av(dim ,maxn), t1 , t2 , xl , yl

10

dt = 0.0005

maxtimestep = 10

printstep = 1

screenstep = 1

15

call cpu_time(t1)

call input (x, v, mass , rho , p, u, itype , hsml , ntotal ,

& nvirt , xl , yl)

20

do itime=1, maxtimestep ! save rho&v last timestep

if (itime.ne.1) then ! predict rho&v half timestep

do i=1,ntotal

rho_min(i)=rho(i)

rho(i)=rho(i)+0.5* dt*drhodt(i)25

do d=1,dim

v_min(d,i)=v(d,i)

v(d,i)=v(d,i)+0.5* dt*dvdt(d,i)

vXSPH(d,i)= vXSPH(d,i)+0.5* dt*dvdt(d,i)

enddo30

enddo

endif

if (itime.eq.1) then

call derivatives (x, v, v, mass , rho , p, u, hsml , ntotal ,

& nvirt , nvII , drhodt , dvdt , av , niac , itime , dt , rho_min , v_min)35

else

call derivatives (x, v, vXSPH , mass , rho , p, u, hsml , ntotal ,

& nvirt , nvII , drhodt , dvdt , av , niac , itime , dt , rho_min ,
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& v_min)

endif40

if (itime.eq.1) then ! first timestep different integration

do i=1,ntotal

rho(i)=rho(i)+0.5* dt*drhodt(i)

do d=1,dim45

vXSPH(d,i)=v(d,i)+0.5* dt*dvdt(d,i)+av(d,i)

v(d,i)=v(d,i)+0.5* dt*dvdt(d,i)

x(d,i)=x(d,i)+dt*vXSPH(d,i)

enddo

enddo50

else ! normal time - integration

do i=1,ntotal

rho(i)= rho_min(i)+dt*drhodt(i)

do d=1,dim

vXSPH(d,i)= v_min(d,i)+dt*dvdt(d,i)+av(d,i)55

v(d,i)= v_min(d,i)+dt*dvdt(d,i)

x(d,i)=x(d,i)+dt*vXSPH(d,i)

enddo

enddo

endif60

if(mod(itime ,printstep ).eq.0) then

call output(x, v, vXSPH , mass , rho , p, u, itype , hsml ,

& ntotal , nvirt , nvII , itime)

endif65

if(mod(itime ,screenstep ).eq.0) then

write (*,*)’ ***************************************** ’

write (*,*)’ Timestep: ’, itime , ’ of ’, maxtimestep70

write (*,*)’ Interactionpairs: ’, niac

write (*,*)’ ***************************************** ’

endif

enddo

75

call cpu_time(t2)

write(*,’(a,f9.2,a)’)’ CPU time: ’, t2 -t1 , ’ s. ’

end program
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input.f

subroutine input (x, v, mass , rho , p, u, itype , hsml , ntotal ,

& nvirt , xl, yl)

c -------------------------------------------------------------------------

c Subroutine to create initial fluid particles. *** In ’SPH closed ’ in this5

c subroutine also the boundary particles are created. ***

c

c Variables used in call:

c x :particle position in 2 dimensions [out]

c v :particle velocity in 2 dimensions [out]10

c mass :particle mass [out]

c rho :particle density [out]

c p :particle pressure [out]

c u :particle energy (not used) [out]

c itype :number indicating fluid or boundary (not used) [out]15

c hsml :particle smoothing length [out]

c ntotal :number of fluid particles [out]

c nvirt :number of boundary particles [out]

c xl :max horizontal position of the fluid [out]

c yl :max vertical position of a the fluid [out]20

c -------------------------------------------------------------------------

implicit none

include ’param.txt ’25

integer nx, ny , ix , iy , i, j, d, im, mx , my

double precision xl , yl , dx, space

c -------------------------------------------------------------------------30

c Load initial fluid particle input from file

if(input_file) then

open(1,file="data/ini_xv.dat")

open(2,file="data/ini_state.dat")35

open(3,file="data/ini_other.dat")

write (*,*)’ ------------------------------------------------’

write (*,*)’ Loading initial particle configuration ...’

read (1,*) ntotal40

write (*,*)’ Total number of particles : ’, ntotal

write (*,*)’ ------------------------------------------------’

do i = 1, ntotal

read (1,*)im , (x(d, i),d = 1, dim), (v(d, i),d = 1, dim)

read (2,*)im , mass(i), rho(i), p(i), u(i)45

read (3,*)im , itype(i), hsml(i)

enddo

else

50

c -------------------------------------------------------------------------

c Generate initial fluid particles in this subroutine

open(1,file="data/ini_xv.dat",status=’replace ’)

open(2,file="data/ini_state.dat",status=’replace ’)55

open(3,file="data/ini_other.dat",status=’replace ’)

nx=200 ! outer number of particles in staggered way o o o

ny=12 ! this example is 2x3 o o
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space =0.025 ! size is 2dx 1dy o o o60

i=0

ntotal=nx*ny !+(nx -1)*(ny -1)

c Outside grid

do ix= 1,nx

do iy= 1, ny65

i=i+1

x(1,i)= -1.* space+ix*space

x(2,i)=0.* space+iy*space

enddo

enddo70

c Second staggered grid inside first one

c do ix=1,nx -1

c do iy= 1,ny -1

c i=i+1

c x(1,i)=0.5* space+ix*space75

c x(2,i)=0.5* space+iy*space

c enddo

c enddo

do i=1, ntotal80

v(1,i)=0.5

v(2,i)=0.0

rho(i)=1000*(1+(9810/6.914 e4*(x(2,ny)-x(2,i))))**(1./7)

mass(i)=1000* space*space

p(i)=0.85

u(i)=0.

hsml(i)=0.035

itype(i)=2

enddo

90

c Write just derived particle info to file

write (1,*) ntotal

do i = 1, ntotal95

write (1 ,1001) i, (x(d, i),d = 1, dim), (v(d, i),d = 1, dim)

write (2 ,1002) i, mass(i), rho(i), p(i), u(i)

write (3 ,1003) i, itype(i), hsml(i)

enddo

1001 format (1x, I5 , 6(2x, e14 .8))100

1002 format (1x, I5 , 7(2x, e14 .8))

1003 format (1x, I5 , 2x, I2, 2x, e14 .8)

write (*,*)’ ************************************************** ’

write (*,*)’ Initial particle configuration generated ’

write (*,*)’ Total number of particles ’, ntotal105

write (*,*)’ ************************************************** ’

endif

close (1)110

close (2)

close (3)

end subroutine
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derivatives.f

subroutine derivatives (x, v, vXSPH , mass , rho , p, u, hsml , ntotal

& ,nvirt , nvII , drhodt , dvdt , av, niac , itime , dt , rho_min , v_min)

c -------------------------------------------------------------------------

c Subroutine to solve the SPH equations every timestep.5

c All interactions are calculated per interactionpair and then added to

c both particles belonging to that interactionpair.

c

c Variables used in call:

c x :particle position in 2 dimensions [in]10

c v :particle velocity in 2 dimensions [in]

c vXSPH :particle XSPH velocity in 2 dimensions [in]

c mass :particle mass [in]

c rho :particle density [in]

c p :particle pressure [out]15

c u :particle energy (not used) [in]

c hsml :particle smoothing length [in]

c ntotal :number of fluid particles [in]

c nvirt :number of boundary particles [in]

c nvII :number of ghost particles [out]20

c drhodt :time derivative of density [out]

c dvdt :time derivative of velocity in 2 dimensions [out]

c av :particle average velocity contribution of XSPH [out]

c niac :total number of interactions [out]

c itime :current timestep number [in]25

c dt :timestep [in]

c rho_min :particle density from previous timestep [out]

c v_min :particle velocity in 2 dim. from previous timestep [out]

c -------------------------------------------------------------------------

30

implicit none

include ’param.txt ’

integer i, j, k, d, niac , i_pair(max_int), j_pair(max_int), itime ,35

& ii , i_inflow(maxn), inflowparts , ncheck

double precision drhodt(max_int), dvdt(dim ,max_int), av(dim ,maxn),

& r, r2 , dx(dim), rij2(max_int), q, alpha_d , W(max_int),

& dWdx(dim ,max_int), vijdWdx , c, B, ppart , mrho , epsilon ,40

& avgpart , h, f, RR, alpha , beta , eta2 , artvisc , g, dt , vijrij ,

& mu , xl , vl , r0 , DD , pb , xshore , yshore , rho_min(maxn),

& v_min(dim ,maxn), sumdvdt , sumav

logical check145

save inflowparts , i_inflow

c After moving particles inflow and outflow50

c *** Not used in ’SPH closed ’ ***

ncheck=ntotal

if (itime.gt.1) then

call inoutflow (x, v, vXSPH , mass , rho , p, u, hsml ,

& ntotal , i_inflow , inflowparts , rho_min , v_min)55

endif

c With inflow/outflow boundaries call inputbp every timestep

c *** Not used in ’SPH closed ’ ***

call inputbp(x, v, mass , rho , p, u, itype , hsml , ntotal ,
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& nvirt , xl, vl, itime , dt)60

c Track particles within space from inflow boundary

c *** Not used in ’SPH closed ’ ***

k=0

do i=1,ntotal65

if (x(1,i).le. 0.0250000) then

k=k+1

i_inflow(k)=i

endif

enddo70

inflowparts=k

do i=ntotal+1,ntotal+nvirt !boundary parts also need vXSPH

do d=1,dim

vXSPH(d,i)=v(d,i)75

enddo

enddo

c Create virtII ghost particles within 2hsml from boundary

80

ii=ntotal+nvirt

c Left boundary

do k=1, inflowparts

do j=1,285

ii=ii+1

i=i_inflow(k)

x(1,ii)=-j*0.025+x(1,i)

x(2,ii)=x(2,i)

v(1,ii)=v(1,i)90

v(2,ii)=v(2,i)

vXSPH(1,ii)=vXSPH(1,i)

vXSPH(2,ii)=vXSPH(2,i)

mass(ii)=mass(i)

rho(ii)=rho(i)95

p(ii)=p(i)

u(ii)=u(i)

hsml(ii)=hsml(i)

enddo

enddo100

c Lower boundary

do i=1,ntotal

if (x(2,i).le.2* hsml(i).and.x(1,i).le.2) then

ii=ii+1

x(1,ii)=x(1,i)105

x(2,ii)=-x(2,i)

v(1,ii)=v(1,i)

v(2,ii)=-v(2,i)

vXSPH(1,ii)=vXSPH(1,i)

vXSPH(2,ii)=-vXSPH(2,i)110

mass(ii)=mass(i)

rho(ii)=rho(i)

p(ii)=p(i)

u(ii)=u(i)

hsml(ii)=hsml(i)115

endif

c Right boundary

if (x(1,i).ge .1.93. and.x(1,i).lt.2. and.x(2,i).le .0.2) then

ii=ii+1
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x(1,ii)=4-x(1,i)120

x(2,ii)=x(2,i)

v(1,ii)=-v(1,i)

v(2,ii)=v(2,i)

vXSPH(1,ii)=-vXSPH(1,i)

vXSPH(2,ii)=vXSPH(2,i)125

mass(ii)=mass(i)

rho(ii)=rho(i)

p(ii)=p(i)

u(ii)=u(i)

hsml(ii)=hsml(i)130

endif

enddo

nvII=ii -ntotal -nvirt

c Initializing: make derivatives zero at start , must be after inoutflow.f135

do i=1,ntotal+nvirt+nvII

drhodt(i)=0.0

do d=1,dim

dvdt(d,i)=0.0

av(d,i)=0.0140

enddo

enddo

c Interaction + kernel

niac=0145

do i=1,ntotal ! first part interaction is real part

do j=i+1,ntotal+nvirt+nvII ! interaction only j>i

check1=x(1,i).ge.2.and.j.gt.ntotal+nvirt

c *** Specific for this simulation ***

c The ghost particles outside the weir may not have interaction with the150

c fluid jet flowing over the weir , check1 makes sure this is the case.

if(.not.check1) then

do d=1,dim

dx(d)=x(d,i)-x(d,j)

enddo155

r2=dx (1)**2+ dx (2)**2

h=(hsml(i)+hsml(j))/2

if (r2.le.4.*h*h) then

niac=niac+1

i_pair(niac)=i160

j_pair(niac)=j

rij2(niac)=r2

c Kernel is Piecewise cubic spline (Monaghan 1985)

r=sqrt(r2)

q=r/h165

alpha_d =10./(7.* pi*h*h)

if (q.ge.0. and.q.lt .1.0) then

W(niac)= alpha_d *(1 -1.5*q*q+0.75*q**3)

do d=1,dim

dWdx(d,niac)= alpha_d *( -3+2.25*q)/h**2 * dx(d)170

enddo

else if (q.ge.1.0. and.q.le .2.0) then

W(niac)= alpha_d *0.25*(2 -q)**3

do d=1,dim

dWdx(d,niac)=-alpha_d *0.75*(2 -q)**2* dx(d)/(h*r)175

enddo

else

W(niac )=0

do d=1,dim
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dWdx(d,niac )=0.180

enddo

endif

endif

endif

enddo185

enddo

c Density

do k=1,niac

i=i_pair(k)190

j=j_pair(k)

do d=1,dim

vijdWdx =(vXSPH(d,i)-vXSPH(d,j))* dWdx(d,k)

drhodt(i)= drhodt(i)+mass(j)* vijdWdx

if(j.le.ntotal) drhodt(j)= drhodt(j)+mass(i)* vijdWdx ! double change in sign=OK195

enddo

enddo

c Equation of State

do i=1,ntotal+nvirt200

c=22.

B=6.914 e4

p(i)=B*((rho(i)/1000.)**7 -1)

enddo

205

c Momentum equation

do k=1,niac

i=i_pair(k)

j=j_pair(k)

RR=0.210

f=0.

ppart =(p(i)/rho(i)**2+p(j)/rho(j)**2)

if (virt_pres) then !virt_pres for removing tensile instability

f=W(k)/(0.5* alpha_d) !W(dp)=W(q=0.71)/ alpha_d =0.5

if (p(i).lt.0) RR=-0.2*p(i)/( rho(i)*rho(i))215

if (p(j).lt.0) RR=RR -0.2*p(j)/( rho(j)*rho(j))

if (p(i).gt.0.and.p(j).gt.0) RR =0.01* ppart

endif

do d=1,dim

dvdt(d,i)=dvdt(d,i)-mass(j)*( ppart+RR*f**4)* dWdx(d,k)220

if(j.le.ntotal) dvdt(d,j)=dvdt(d,j)+mass(i)*

& (ppart+RR*f**4)* dWdx(d,k)

enddo

enddo

225

c Artificial viscosity

if (art_visc) then

alpha =0.01

do k=1,niac

i=i_pair(k)230

j=j_pair(k)

if(j.le.ntotal) then

vijrij =0.

mrho=(rho(i)+rho(j))/2

do d=1,dim235

vijrij=vijrij +(v(d,i)-v(d,j))*(x(d,i)-x(d,j))

enddo

if (vijrij <0) then

h=(hsml(i)+hsml(j))/2
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eta2 =0.01*h*h240

mu=h*vijrij /(rij2(k)+eta2)

artvisc=-alpha*c*mu/mrho

do d=1,dim

dvdt(d,i)=dvdt(d,i)-mass(j)* artvisc*dWdx(d,k)

if(j.le.ntotal) dvdt(d,j)=dvdt(d,j)+mass(i)*245

& artvisc*dWdx(d,k)

enddo

endif

endif

enddo250

endif

c Gravity (only for real particles)

g=9.81

do i=1,ntotal255

dvdt(dim ,i)=dvdt(dim ,i)-g

enddo

c Lennard Jones boundary force

r0 =0.025260

DD=0.1

do j=ntotal+1,ntotal+nvirt

do i=1,ntotal ! i=fluid particle

do d=1,dim

dx(d)=x(d,i)-x(d,j)265

enddo

r2=dx (1)**2+ dx (2)**2

if(r2 <r0*r0) then

r=sqrt(r2)

pb=DD/r2*((r0/r)**12 -(r0/r)**4)270

do d=1,dim

dvdt(d,i)=dvdt(d,i)+pb*dx(d)

enddo

endif

enddo275

enddo

c Avg velocity (XSPH)

if (avg_vel) then

epsilon =0.5280

do k=1,niac

i=i_pair(k)

j=j_pair(k)

if(j.le.ntotal) then !XSPH only with fluid particles not with boundary

mrho=(rho(i)+rho(j))/2285

do d=1,dim

avgpart=epsilon *(vXSPH(d,j)-vXSPH(d,i))/ mrho*W(k)

av(d,i)=av(d,i)+mass(j)* avgpart

av(d,j)=av(d,j)-mass(i)* avgpart

enddo290

endif

enddo

endif

c *** Specific for this simulation ***295

c The flow after the weir may not pull.

do k=1,niac

i=i_pair(k)

j=j_pair(k)
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if(x(1,i).ge.2.or.x(1,j).ge.2) then300

av(2,i)=0.

av(2,j)=0.

endif

enddo

305

c *** Specific for this simulation ***

c Get average inflowvelocity

sumdvdt =0.

sumav =0.

do k=1, inflowparts310

i=i_inflow(k)

sumdvdt=sumdvdt+dvdt(1,i)

sumav=sumav+av(1,i)

enddo

315

c *** Specific for this simulation ***

c Particles within hsml from inflow all have the same inflow -velocity

c *** Not used in ’SPH closed ’ ***

do k=1, inflowparts

i=i_inflow(k)320

dvdt(2,i)=0.

av(2,i)=0.

dvdt(1,i)= sumdvdt/inflowparts

av(1,i)= sumav/inflowparts

c A particle within hsml from inflow is not allowed to flow back325

if (v(1,i).le.0.and.dvdt(1,i).le.0.) dvdt(1,i)=0.

if (v(1,i).le.0.and.av(1,i).le.0.) av(1,i)=0.

drhodt(i)=0. ! Combination of depth with p (& rho) is fixated

enddo

330

c Generate textfile with useful info about simulation

if (itime.eq.1) then

call parameterfile(ntotal , nvirt , hsml , mass , c, B, g,

& alpha , epsilon , dt)

endif335

end subroutine
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inoutflow.f

subroutine inoutflow (x, v, vXSPH , mass , rho , p, u, hsml ,

& ntotal , i_inflow , inflowparts , rho_min , v_min)

c -------------------------------------------------------------------------5

c Subroutine to generate fluid particles at inflow and remove particles

c at outflow. Only vertical uniform velocity profile at inflow is possible.

c

c Variables used in call:

c x :particle position in 2 dimensions [in/out]10

c v :particle velocity in 2 dimensions [in/out]

c vXSPH :particle XSPH velocity in 2 dimensions [in/out]

c mass :particle mass [in/out]

c rho :particle density [in/out]

c p :particle pressure [in/out]15

c u :particle energy (not used) [in/out]

c hsml :particle smoothing length [in/out]

c ntotal :number of fluid particles [in/out]

c i_inflow:array with particles within hsml from inflow [in]

c inflowparts:total number of particles within hsml from inflow [in]20

c rho_min :particle density from previous timestep [in/out]

c v_min :particle velocity in 2 dim. from previous timestep [in/out]

c -------------------------------------------------------------------------

implicit none25

include ’param.txt ’

integer i, j, k, d, ii , i_inflow(maxn), inflowparts , jj

30

double precision rij2 , x2save , psave , rhosave , rho_min(maxn),

& v_min(dim ,maxn), x2move , inputmass , inputvol

c Left inflow

ii=ntotal35

inputvol =0

inputmass =0

do k=1, inflowparts

i=i_inflow(k)

if (x(1,i).gt .0.0250000) then40

ii=ii+1

x(1,ii)=x(1,i) -0.025

x(2,ii)=x(2,i)

v(1,ii)=v(1,i)

v(2,ii)=0.45

vXSPH(1,ii)=vXSPH(1,i)

vXSPH(2,ii)=0.

mass(ii)=mass(i)

rho(ii)=rho(i)

p(ii)=p(i)50

u(ii)=u(i)

hsml(ii)=hsml(i)

rho_min(ii)=rho(i)

v_min(1,ii)=v(1,i)

v_min(2,ii)=0.55

! Track input discharge

inputmass=inputmass+mass(ii)

inputvol=inputvol+mass(ii)/rho(ii)

endif
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60

enddo

if (inputmass.ne.0) write(*,’(a,f6.2,a,f6.4,a)’) ’input mass: ’,

& inputmass , ’ kg/m; input vol: ’, inputvol , ’ m2 ’

ntotal=ii65

c Right outflow

do i=1,ntotal

if(x(2,i).lt.0.) then

x(1,i)=x(1,ntotal)70

x(2,i)=x(2,ntotal)

v(1,i)=v(1,ntotal)

v(2,i)=v(2,ntotal)

vXSPH(1,i)= vXSPH(1,ntotal)

vXSPH(2,i)= vXSPH(2,ntotal)75

mass(i)=mass(ntotal)

rho(i)=rho(ntotal)

p(i)=p(ntotal)

u(i)=u(ntotal)

hsml(i)=hsml(ntotal)80

rho_min(i)= rho_min(ntotal)

v_min(1,i)= v_min(1,ntotal)

v_min(2,i)= v_min(2,ntotal)

ntotal=ntotal -1

endif85

enddo

end subroutine
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inputbp.f

subroutine inputbp (x, v, mass , rho , p, u, itype , hsml , ntotal ,

& nvirt , xl, vl, itime , dt)

c -------------------------------------------------------------------------

c Subroutine to create boundary particles. *** In ’SPH closed ’ this5

c subroutine is part of input.f ***

c

c Variables used in call:

c x :particle position in 2 dimensions [in/out]

c v :particle velocity in 2 dimensions [in/out]10

c mass :particle mass [in/out]

c rho :particle density [in/out]

c p :particle pressure [in/out]

c u :particle energy (not used) [in/out]

c itype :number indicating fluid or boundary (not used) [in/out]15

c hsml :particle smoothing length [in/out]

c ntotal :number of fluid particles [in]

c nvirt :number of boundary particles [out]

c xl :horizontal position of a moving boundary [out]

c vl :horizontal velocity of a moving boundary [out]20

c itime :current timestep number [in]

c dt :timestep [in]

c -------------------------------------------------------------------------

implicit none25

include ’param.txt ’

integer nx, ny, ix , iy , itime , i, j, d, im , mx, my

double precision xl , vl , dx, space , dt30

c -------------------------------------------------------------------------

c Load boundary particle input from file

if (vp_file) then

35

open(1,file="data/xv_vp.dat")

open(2,file="data/state_vp.dat")

open(3,file="data/other_vp.dat")

read (1,*) nvirt

do j = 1, nvirt40

i = ntotal + j

read (1,*)im , (x(d, i),d = 1, dim), (v(d, i),d = 1, dim)

read (2,*)im , mass(i), rho(i), p(i), u(i)

read (3,*)im , itype(i), hsml(i)

enddo45

close (1)

close (2)

close (3)

c -------------------------------------------------------------------------50

c Generate boundary particles in this subroutine

else

nvirt = 0

dx = 0.02555

c Boundary particles on the Lower side

do i = 1, 81

nvirt = nvirt + 1
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x(1, ntotal + nvirt) = (i-1)*dx60

x(2, ntotal + nvirt) = 0.

v(1, ntotal + nvirt) = 0.

v(2, ntotal + nvirt) = 0.

enddo

65

c Boundary particles on the Left side (wave maker)

c do i = 1, 50

c nvirt = nvirt + 1

c x(1, ntotal + nvirt) = -1.25* cos (2* itime*dt )+1.25

c x(2, ntotal + nvirt) = i*dx70

c v(1, ntotal + nvirt) = 1.25*2* sin (2* itime*dt)

c v(2, ntotal + nvirt) = 0.

c enddo

c xl= -1.25* cos (2* itime*dt )+1.25

c vl =1.25*2* sin (2* itime*dt)75

c Boundary particles on the Right side

do i = 1, 7

nvirt = nvirt + 1

x(1, ntotal + nvirt) = 280

x(2, ntotal + nvirt) = i*dx

v(1, ntotal + nvirt) = 0.

v(2, ntotal + nvirt) = 0.

enddo

85

c Give physical properties

do i = 1, nvirt

rho (ntotal + i) = 1000.

mass(ntotal + i) = rho (ntotal + i) * dx * dx

p(ntotal + i) = 0.90

u(ntotal + i) = 357.1

itype(ntotal + i) = -2

hsml(ntotal + i) = 0.035

enddo

endif95

c Write data virt part to file one time

if(itime == 1) then

1001 format (1x, I5 , 6(2x, e14 .8))100

1002 format (1x, I5 , 7(2x, e14 .8))

1003 format (1x, I5 , 2x, I2, 2x, e14 .8)

open(1,file="data/xv_vp.dat")

open(2,file="data/state_vp.dat")

open(3,file="data/other_vp.dat")105

write (1,*) nvirt

do i = ntotal + 1, ntotal + nvirt

write (1 ,1001) i, (x(d, i), d=1,dim), (v(d, i), d = 1, dim)

write (2 ,1002) i, mass(i), rho(i), p(i), u(i)

write (3 ,1003) i, itype(i), hsml(i)110

enddo

close (1)

close (2)

close (3)

endif115

end subroutine
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output.f

subroutine output(x, v, vXSPH , mass , rho , p, u, itype , hsml ,

& ntotal , nvirt , nvII , itime)

implicit none

5

c -------------------------------------------------------------------------

c Subroutine to write date to output file.

c

c Variables used in call:

c x :particle position in 2 dimensions [in]10

c v :particle velocity in 2 dimensions [in]

c vXSPH :particle XSPH velocity in 2 dimensions [in]

c mass :particle mass [in]

c rho :particle density [in]

c p :particle pressure [in]15

c u :particle energy (not used) [in]

c itype :number indicating fluid or boundary (not used) [in]

c hsml :particle smoothing length [in]

c ntotal :number of fluid particles [in]

c nvirt :number of boundary particles [in]20

c nvII :number of ghost particles [in]

c itime :current timestep number [in]

c -------------------------------------------------------------------------

include ’param.txt ’25

integer d, i, itime

character *30 filename_xv , filename_state , filename_other

write (filename_xv ,’(a, i8.8, a)’) ’data/f_xv ’, itime , ’.dat ’30

open(1,file=filename_xv , status=’replace ’)

do i = 1, ntotal+nvirt+nvII

write (1 ,1001) i, (x(d, i), d=1,dim), (v(d, i), d = 1, dim),35

& rho(i), p(i), mass(i)

enddo

1001 format (1x, I6 , 7(2x, e14 .8))

40

close (1)

end subroutine
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parameterfile.f

subroutine parameterfile(ntotal , nvirt , hsml , mass , c, B, g,

& alpha , epsilon , dt)

implicit none

5

c -------------------------------------------------------------------------

c Subroutine to write textfile with info about simulation.

c

c Variables used in call:

c ntotal :number of fluid particles [in]10

c nvirt :number of boundary particles [in]

c hsml :particle smoothing length [in]

c mass :particle mass [in]

c c :used velocity of sound [in]

c B :used factor in eq. of state for pressure [in]15

c g :gravity constant [in]

c alpha :constant in artificial viscosity [in]

c epsilong:constant in calculation of XSPH [in]

c dt :used timestep [in]

c -------------------------------------------------------------------------20

include ’param.txt ’

double precision c, B, g, alpha , epsilon , dt

character *30 filename25

write (filename ,’(a)’) ’data/Simulationinfo.txt ’

open(1,file=filename , status=’replace ’)

30

write (1,*) ’----------------------------------------------------’

write (1,*) ’ Smoothed Particle Hydrodynamics 2D model ’

write (1,*) ’ boundary with LJ force and virt II particles ’

write (1,*) ’ Information about simulation ’

write (1,*) ’----------------------------------------------------’35

write (1,*)

write(1,’(a,i7)’) ’Number of fluid particles: ’, ntotal

write(1,’(a,i7)’) ’Number of boundary particles: ’, nvirt

write(1,’(a,f8.5,a)’) ’Timestep: ’, dt, ’ s’40

write (1,*)

write (1,*)

write(1,’(a)’) ’Processes included:’

if (art_visc) then

write(1,’(a,l3)’) ’ Artificial viscosity:’, art_visc45

write(1,’(a,f5.3)’) ’ * alpha = ’,alpha

else

write(1,’(a,l3)’) ’ Artificial viscosity:’, art_visc

endif

50

if (avg_vel) then

write(1,’(a,l3)’) ’ Average velocity:’, avg_vel

write(1,’(a,f5.3)’) ’ * epsilon = ’,epsilon

else

write(1,’(a,l3)’) ’ Average velocity:’, avg_vel55

endif

write(1,’(a,l3)’) ’ Prevention tensile instability:’, virt_pres

write (1,*)
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write (1,*)60

write(1,’(a)’) ’Particle information:’

write(1,’(a,f7.4,a)’) ’ Hsml fluid particles: ’, hsml(1),’ m’

write(1,’(a,f7.4,a)’) ’ Hsml boundary particles: ’,

& hsml(ntotal+1),’ m’

write(1,’(a,f7.4,a)’) ’ Mass fluid particles: ’, mass(1),’ kg/m’65

write(1,’(a,f7.4,a)’) ’ Mass boundary particles: ’,

& mass(ntotal+1),’ kg/m’

write (1,*)

write (1,*)70

write(1,’(a)’) ’Parameters:’

write(1,’(a,f5.2,a)’) ’ Gravity , g = ’,g, ’ m/s^2’

write(1,’(a,f6.2,a)’) ’ Speed of sound , c = ’,c, ’ m/s’

write(1,’(a,e10.4,a)’) ’ Compressionfactor B = c^2* rho/7 = ’,B,

& ’ kg/(ms^2)’75

write (1,*)

write (1,*)

write (1,*) ’----------------------------------------------------’

write (1,*) ’ programmed by: L de Wit ’

write (1,*) ’ Graduation project ’80

write (1,*) ’ Section Fluidmechanics ’

write (1,*) ’ Faculty Civil Engineering ’

write (1,*) ’ TU Delft ’

write (1,*) ’ September 2005’

write (1,*) ’----------------------------------------------------’85

end subroutine
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param.txt

c---------------------------------------------------------

c Including file for parameters and constants used

c in all SPH_2D files.

c---------------------------------------------------------

5

integer maxn , dim , max_int

parameter (maxn =12000 , dim=2, max_int= 100* maxn)

integer itype(maxn), ntotal , nvirt , nvII10

double precision x(dim ,maxn), v(dim ,maxn), vXSPH(dim ,maxn),

& mass(maxn), p(maxn), u(maxn), hsml(maxn), rho(maxn), pi

parameter ( pi = 3.14159265358979323846 )

15

logical virt_pres , art_visc , avg_vel , input_file , vp_file

parameter ( virt_pres =.true.) !virt_pres to prevent tensile instability

parameter ( art_visc =.true.) !art_visc to simulate viscosity

parameter ( avg_vel =.true.) !avg_vel for XSPH variant.20

parameter ( input_file =.true.) ! input_file = T input fluid particles from files

parameter ( vp_file =. false .) !vp_file = T input boundary particles from files

94



Appendix B

List of Symbols

latin

B Constant used in the equation of state (eq. 3.7) B = c2ρ0/γ N/m2

c Velocity of sound in water m/s
D Constant used in the boundary force m2/s
d Water depth m
fb Vector with acceleration due to a body force m/s2

fi Vector with acceleration due to a body force on particle i m/s2

f(x) Continuous function -
〈f(x)〉 Approximation of function f at x -
g Gravitational constant g = 9.81 m/s2 m/s2

h Smoothing length m
i,j Subscripts indicating particle index -
k Wave number rad/m
m Mass, in 2D mass/length kg/m
n Superscript indicating time step -
p Pressure N/m2

q q = rij/h -
rij Absolute value of the distance between particle i and j m
rij Vector with the distance between particle i and j m
r0 Length scale in the boundary force m
∆r Initial particle distance m
t Time s
∆t Time step used in numerical integration s
u Velocity vector m/s
û Velocity vector adjusted with XSPH m/s
uij Velocity difference vector ui - uj m/s
ux, uy, uz Velocity in x, y, or z direction m/s
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W (x− x′, h) Smoothing function m−2

Wij Smoothing function used to calculate interaction between
particle i and j

m−2

∇iWij Spatial derivative of the smoothing function with respect to
particle i

m−3

x Position vector m
x, y, z Three directions in Cartesian coordinate system m

Greek

α Constant used in viscosity term Πij -
γ Constant used in equation of state (eq. 3.7) γ = 7 -
ε Constant used in XSPH 0 ≤ ε ≤ 1 -
κ Constant used to determine the influence domain κh, κ = 2

in this report
-

ν Kinematic viscosity m2/s
Πij Influence of viscosity between particle i and j m5/(kg s2)
ρ Density kg/m3

ρ0 Reference density ρ0 = 1000 kg/m3 kg/m3

ρ̄ij Average density ρ̄ij = (ρi + ρj)/2 kg/m3

ω Wave period rad/s

Abbreviations

2D 2 dimensional
2Dh 2 dimensional horizontal
2Dv 2 dimensional vertical
3D 3 dimensional
SPH Smoothed Particle Hydrodynamics
XSPH Variant of SPH which moves a particle not with its own

velocity, but with an average between its own velocity and
the velocity of particles nearby
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