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Holonomic quantum manipulation in the Weyl disk

Victor Boogers, Janis Erdmanis , and Yuli Nazarov
Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands

(Received 10 July 2021; revised 30 May 2022; accepted 16 June 2022; published 27 June 2022)

It has been shown that a Weyl point in a superconducting nanostructure may give rise to a Weyl disk
where two quantum states are almost degenerate in a two-dimensional manifold in the parametric space. This
opens up the possibility of a holonomic quantum manipulation: A transformation of the wave function upon
an adiabatic change of the parameters within the degenerate manifold. In this paper, we investigate in detail
the opportunities for holonomic manipulation in Weyl disks. We compute the connection at the manifold in
quasiclassical approximation to show it is Abelian and can be used for a phase gate. To provide a closed example
of quantum manipulation that includes a state preparation and readout, we augment the holonomic gate with a
change of parameters that brings the system out of the degenerate subspace. For numerical illustrations, we use
a finite value of quasiclassical parameter and exact quantum dynamics. We investigate the fidelity of an example
gate for different execution times. We evaluate the decoherence rate and show it can be made small to ensure a
wide frequency range where an adiabatic manipulation remains coherent.

DOI: 10.1103/PhysRevB.105.235437

I. INTRODUCTION

A quantum computer promises unprecedented advantage
over a classical one for a set of challenging problems like pro-
tein folding [1] and prime number factorization [2]. However,
building it is a challenge since it is necessary to isolate a set
of quantum states from the environment as well as to manip-
ulate it within the same environment. A particular obstacle
is decoherence whereby the states pick up the fluctuations of
the environment, which adds stochastic dynamical phases and
may induce dissipation [3,4].

An alternative way to meet the challenge is the quan-
tum manipulation within degenerate subspaces that have
gained considerable interest nowadays [5–7]. The resonant
manipulation that can be applied in the most systems with
well-separated energy levels does not work for degenerate
subspaces. Instead, the manipulation is performed within a
degenerate manifold: A set of parameters within which the
states are degenerate and distinct. An adiabatic change of
parameters in time along a trajectory within this manifold
corresponds to a unitary operator in the degenerate subspace,
that depends on the trajectory rather than on the way it is
traversed. Such mapping of a trajectory to a unitary operator
for manifold is often characterized with a connection that sets
how a wave function defined at a point is transported to other
points in an infinitesimally small neighborhood. An important
property of a connection is the holonomy: A property that
transporting a vector over different trajectories with the same
starting point and destination results in different vectors. This
is the manifestation of either curvature of the connection or
a singularity that separates the trajectories into topological
classes, so that the transportation results differ only if two
trajectories belong to different classes.

In quantum mechanics, the connection is characterized by
a gauge potential [8], and the unitary operators correspond

to the path integrals involving the potential. They are called
holonomic transformations. The advantage of using these
transformations for wave-function manipulation is that in adi-
abatic limit the result is determined by the trajectory only,
rather than by details of the time dependence of the parameter
evolution along the trajectory. This provides the robustness
against parametric noise and other decoherence sources.

In quantum mechanics, the connection of a manifold can
be either Abelian or non-Abelian. The Abelian connection
has been studied by Berry [9] while Wilczek and Zee [8] ad-
dressed the general non-Abelian case specific for degenerate
manifolds. In general, a holonomic transformation is assigned
to any curve in the Hilbert manifold. The transformations
have been studied in the context of geometric phase [10] and
nonadiabatic geometric computation [11–19]. For an Abelian
connection, the unitary operators representing all trajectories
with the same end points can be simultaneously diagonalized.
Such diagonalization is not possible for a non-Abelian con-
nection, and thus holonomy is irreducible. This in principle
permits an implementation of a complete set of quantum gates
to achieve universal holonomic quantum computation in a va-
riety of systems [20]. However, the experimental realization of
these schemes appeared difficult due to long execution times
required to get rid of nonadiabatic corrections [11,21,22].

A particular example of holonomic manipulation in-
volves a two-dimensional system of indistinguishable anyons.
Changing the positions of the anyons provides a connection
with a vanishing curvature [23]. The holonomic transforma-
tions are the same for all trajectories from the same homotopy
class specified by number of windings around the anyons.
This sets the paradigm of topological quantum computa-
tion [24]. Within the paradigm, a quantum manipulation is
implemented as a braiding, a move of anyons along the tra-
jectories whereby all anyons return to starting points making
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loops around each other. The holonomic transformations in
this case are robust against the fluctuations of the trajectory
shapes; this promises to implement manipulations of an ex-
ceptional fidelity [25]. These opportunities have raised interest
in anyonic excitations in solid-state systems such as Majorana
superconductor-semiconductor nanowires [26] and specific
fractional quantum Hall effect setups [27,28].

Many quantum systems exhibit topologically protected
energy-level crossings in three-dimensional parameter space
that are commonly called Weyl points [29]. In solid-state
physics, the parameter space is a space of wave vectors con-
fined to a Brillouin zone of the crystal lattice. The Weyl
points in solid-state band structures are a subject of active
theoretical and experimental research [30]. Another realiza-
tion of Weyl points concerns a multiterminal superconducting
nanostructure, where the Weyl points appear as the crossings
of mirror-symmetric Andreev bound states at zero energy [31]
in the parametric space of three independent superconducting
phases.

It has been shown recently that the interaction effects
can cause a substantial modification of Weyl points [32].
A generic interaction model combines soft confinement and
fluctuations in the parameter space. In the quasiclassical limit,
a Weyl disk is formed in the vicinity of a point: Two quantum
states are (almost) degenerate in a finite two-dimensional (2D)
region of the three-dimensional (3D) parameter space. The
residual level splitting is exponentially small in the quasi-
classical parameter. This makes the degeneracy physically
achievable for a variety of systems. For instance, in a multiter-
minal superconducting junction, the Weyl disk can be realized
by placing large inductances between each superconductor
terminal and the nanostructure. This makes the phase dif-
ferences at the nanostructure softly constrained by the phase
differences at the terminals.

The degenerate manifold at Weyl disk may be used for
holonomic quantum manipulation. We explore this opportu-
nity in this paper. Using the quasiclassical approximation,
we compute the connection at the Weyl disk to show it is
Abelian. A corresponding quantum gate [Fig. 1(a)] is thus
a phase gate in a proper basis. We show the relation of the
phase shift and the Berry phase from the classic example of 1

2
spin in magnetic field [9]. To demonstrate richer opportunities
for quantum manipulation, we augment the purely holonomic
transformations by adiabatic passages to the exterior of the
disk [Fig. 1(b)]. We show that the crossing of the disk bound-
ary corresponds to a Hadamard gate. With this, we provide
a closed example of quantum manipulation that incudes an
initialization in a superposition state, a holonomic manipu-
lation, and a subsequent readout. The crossings of the disk
boundary can occur in different points as well [Fig. 1(c)].
The resulting gates are equivalent if a trajectory in the disk is
closed along the boundary of the disk [cf. Figs. 1(c) and 1(d)].
We investigate the work of these quantum gates beyond the
adiabatic approximation with a full numerical simulation at a
finite and moderate value of the quasiclassical parameter. We
evaluate the gate fidelity as function of the execution time and
provide analysis of the dominant nonadiabatic corrections.

It has to be noted that the setup under consideration is
not decoherence free. The fluctuations of control parameters
that drive the system out of the degenerate subspace is the

A

A
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B

(a) (b)

(c) (d)

FIG. 1. A Weyl disk (shown in white) is a 2D elliptic region in
the parametric space where two quantum states are degenerate. (a) A
purely holonomic transformation is achieved by adiabatic change of
parameters along a closed trajectory. (b) To achieve more functional-
ity, we consider adiabatic passages beyond the degenerate manifold.
A Hadamard gate describes the crossing of the disk boundary. (c) The
crossings of the boundary do not have to be in the same point. (d) The
gate from (c) is equivalent to the gate where the trajectory in the disk
is closed along the disk boundary.

main source of decoherence. The execution times of the gates
should be smaller than the decoherence time to achieve the
coherent manipulation, although they should be long enough
to satisfy the adiabaticity condition. We show how to mini-
mize the decoherence rate to achieve this in a wide frequency
range.

The paper is organized as follows. In Sec. II we provide
a Hamiltonian description of a multiterminal superconducting
junction with a Weyl point and discuss the soft constraints
that enable the Weyl disk regime. In Sec. III we consider
the Weyl disk manifold in quasiclassical approximation and
supplement it with a numerical example at a finite and mod-
erate quasiclassical parameter. Section IV is separated into
subsections where we (A) recall the concept of holonomic
transformations, (B) compute the connection in the quasi-
classical limit, (C) consider the adiabatic passages beyond
the disk, and (D) evaluate the connection beyond the qua-
siclassical limit. In Sec. V we analyze the deviations from
adiabatic approximation, and present the results of the full
quantum dynamics simulation evaluating the fidelity of the
swap gate as function of the gate execution time. Section VI is
devoted to the consideration of the decoherence. We conclude
in Sec. VII.

II. THE SYSTEM

Weyl points in various physical systems have been a sub-
ject of an active research [29,30,33]. An important property of
a Weyl point is its topological protection: The conservation of
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(b)(a) (c)

FIG. 2. (a) Multiterminal superconducting junction with super-
conducting phases φn. (b) The Andreev bound state spectrum as a
function of one of the superconductor terminal phases φ1 with the
other phases at general settings. (c) The same spectrum for the choice
of the other phases corresponding to a Weyl point at certain φ1 [31].

topological charge guarantees that small perturbations of the
system just shift rather than destroy the point and associated
conical singularity in energy spectrum.

Recently, it was shown [31] that multiterminal supercon-
ducting junctions with the leads of ordinary topologically
trivial material can host Weyl points. In other words, the
lowest in energy Andreev bound state (ABS) can be tuned to
zero energy (Fig. 2). The tuning parameters are the supercon-
ducting phases of the terminals. Owing to gauge invariance,
only phase differences between terminals matter and thus at
least four terminals are required to achieve Weyl points.

The Hamiltonian describing the conical spectrum in the
vicinity of a Weyl point is a 2 × 2 matrix in the basis of two
singlet degenerate ground states of the nanostructure [34]

HWP = (h̄/2e)
∑

n=x,y,z

Inφnσ̂n. (1)

Here, σ̂n are the Pauli matrices in the space of the singlet
states, φn are the superconducting phases counted from the
positions, and In are the coefficients defining the energy slopes
of the spectrum. The corresponding energy levels are E =
±(h̄/2e)

√∑
n I2

n φ2
n .

In a realistic setup, the multiterminal superconducting
junction is embedded in a linear circuit (Fig. 3), and thus the
phases determining the Weyl point become dynamical vari-
ables rather than parameters, φn → φ̂n, and can deviate from
the external phases φr

n that now play the role of control param-
eters. The linear circuit thus constrains softly the φ̂n to φr

n.
The constraint in general can be implemented as a

quadratic addition to the energy. In particular, for our setup
this is an inductive energy: Each inductance Ln adds a term
(h̄/2e)2(φ̂n − φr

n)2/2Ln constraining the corresponding phase.
The quantum fluctuations of the phase around this point are
determined by the corresponding capacitances that provide
charging energy (2eN̂n)2/2Cn, N̂n being a variable canonically
conjugated to φ̂n. The full Hamiltonian of the system with a
soft constraint reads as

H ( �φr ) = HWP +
(

h̄

2e

)2 ∑
n

(
φ̂n − φr

n

)2

2Ln

+
∑

n

(2eN̂n)2

2Cn
, (2)

FIG. 3. Formation of the Weyl disk. Left: A four-terminal
Josephson junction embedded in a linear circuit. The linear circuit
represents the finite capacitances and inductances of the supercon-
ducting leads and the surrounding electromagnetic environment.
Middle: The 3D region where the two minima of quasiclassical
potential are present. The two minima are of the same energy at a
2D region shown in red: The Weyl disk. Right: The energy spectrum
along a line perpendicular to the disk (upper panel) and one in the
disk plane (lower panel). In upper panel, the energies of two lowest
minima split upon increasing the distance from the disk plane. In
lower panel, two minima are degenerate and merge in one at the disk
edge (red dot in the plot) [32].

where the middle term accounts for the soft constraint and
the last term for the fluctuations. This is a minimum model of
the embedding linear circuit; more complex models involve
general frequency-dependent response functions of the circuit
and do not change the qualitative conclusions.

The relevant scales in this Hamiltonian can be understood
when considering a single-dimension version of it:

H (φr ) = (h̄/2e)Iφσ̂z +
(

h̄

2e

)2 (
φ̂ − φr

n

)2

2L
+ (2eN̂ )2

2C
. (3)

The diagonalization of this Hamiltonian is trivial since the
quasispin and φ separate and we have an oscillator centered at
the positions that depend on the eigenvalue of spin σ = ±1,
φ = φr − σφ0, φ0 ≡ 2eIL/h̄. At φr = 0 these two positions
correspond to degenerate minima separated by energy barrier
EB = LI2/2. The energy spectrum is given by (m being the
number of quanta in the oscillator)

Em,σ = h̄ω(m + 1/2) + h̄

2e
Iφrσ − EB, (4)

where ω = √
LC is the oscillator frequency.

We assess the significance of quantum fluctuations by
comparing the barrier height and the energy quantum in the
oscillator. We introduce a quasiclassical parameter:

Q = EB

h̄ω
= 1

2

(LIe

h̄

)2 h̄

e2Z
, (5)

Z = √
L/C being the characteristic impedance of the oscil-

lator. Since Ze2/h̄ � 10−2 for typical circuits, the parameter
can be large even for relatively small inductances. If Q � 1,
the system is in the quasiclassical regime and the overlap
of the states in two minima is exponentially small. In the
opposite limit Q � 1 the overlap is big and the effect of soft
confinement can be treated perturbatively.

We see that for one-dimensional version of the Hamilto-
nian the energy levels retain conical singularity as far as their
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dependence on �φr is concerned. Generally, one expects this
to hold for the 3D case as well: The confinement would just
renormalize the “velocities” ∂E/∂φn defining the singularity.
It has been discovered in [32] that there is an important ex-
ception from this general rule: For one of the directions (we
will call it an easy axis and take it for z direction) the velocity
remains finite while vanishing in the limit of large Q for two
perpendicular directions. The easy direction is defined by the
biggest energy barrier: Ez

B ≡ LzI2
z /2 > Ex

B, Ey
B.

Thereby a Weyl point in the presence of confinement and
in the quasiclassical limit becomes a Weyl disk (see Fig. 3):
Two energy levels remain degenerate within an ellipse in the
φr

x-φr
y plane, the semiaxes being given by (n = x, y)

An = 4e

h̄In

(
Ez

B − En
B

)
. (6)

This is related to the existence of two potential minima in
the vicinity of the Weyl point corresponding to two spin
directions. In quasiclassical approximation, the correspond-
ing wave functions do not overlap being localized near the
minima.

It has been shown that the residual level splitting is
exponentially small in the quasiclassical parameter. The
approximate degeneracy in the Weyl disk is potentially in-
teresting for quantum manipulation: That could allow a
superposition of two degenerate states to evolve in time very
slowly and enables holonomic manipulations of this super-
position by changing φr

x, φ
r
y along a trajectory. In the next

section, we will discuss in detail the properties of the states
at the Weyl disk.

III. PROPERTIES OF THE STATES AT THE WEYL DISK

In this section, we complete and expand the analysis of the
quantum states at the Weyl disk that was started in Ref. [32].
We present the numerical results and compare with the analyt-
ical ones in the quasiclassical limit. This analysis is crucial for
understanding the available holonomic transformations and
other manipulations at the manifold.

Let us first consider a numerical illustration (Fig. 4). We
choose a moderate value of the quasiclassical parameter Q =
Ez

B/h̄ωz = 5 in the Hamiltonian (2). The barriers in x, y direc-
tions are lower and equal, Ex,y

B /EB = 1/3. The corresponding
oscillator frequencies are also the same, h̄ωx,y = Ex,y

B ; this
suggest the circular symmetry of the setup with respect to ro-
tations about z. The effective Q in this direction is thus �1. We
will use this set of parameters for all numerical illustrations in
the paper since it proves the feasibility of holonomic manipu-
lations at moderate values of the quasiclassical parameter.

In the left panel and inset of Fig. 4, we present the energies
of the four lowest states. We will perform quantum manipula-
tions in the basis of the two lowest states. As we will see later
in dynamical simulations, the wave function from this basis
mostly leaks to the third and fourth states.

In the left panel, we plot the energies versus φr
x at φr

z,y =
0, that is, in the disk plane. The energies of the two lowest
states are apparently degenerate up to φr

x � 0.5Ax. Deep in
the quasiclassical limit, they remain degenerate up to φr

x =
Ax. The moderate value of Q results in the residual splitting

FIG. 4. Numerical results for the energy spectrum and wave
functions. For numerical illustrations in this paper, we choose a
moderate value of the quasiclassical parameter Q = EB/h̄ωz = 5
(EB ≡ Ez

B). Other parameters are h̄ωx,y/EB = 1
3 , Ex,y

B /EB = 1
3 . Left

panel: Four lowest-energy levels of the Hamiltonian (2) in the disk
plane φr

z = 0 versus φr
x . The two lowest levels are degenerate deep

in the disk. In the limit Q → ∞ the degeneracy persists until the
disk edge (φr

x )2/A2
x + (φr

y )2/A2
y = 1 with Ax,y given by Eq. (6). Since

Q = 5 is taken, the residual splitting at the disk edge is already com-
parable with ωx,y,z which defines the energy distance to the higher
levels. However, the splitting is not visible at φr

x < 0.5Ax . Inset: Four
lowest-energy levels versus φr

z at φx,y = 0. The splitting is lifted upon
a shift φr

z in the easy direction and is proportional to the shift. Right
panel: The probability density of φz, p(φz ) = ∑

σ

∫ |�σ |2dφxdφy in
the disk plane for even (solid line) and odd (dashed line) lowest-
energy states at several values of φr

x . The probability deep in the disk
separates in two almost nonoverlapping peaks corresponding to two
degenerate minima in the effective potential. At the edge of the disk,
the minima merge resulting in a single peak.

that becomes comparable with the energy distance between
the third and the second states at the edge of the disk.

It is important for further consideration to note a symmetry
of the Hamiltonian at this choice of the parameters: It is
invariant with respect to 180◦ rotation about the x axis. Owing
to this, the splitting is diagonal in the basis of odd and even
states with respect to the rotation. The first and the fourth state
are even, while the second and third are odd.

If we change the phase in easy direction φr
z , the degeneracy

is immediately lifted (inset of the Fig. 4), the splitting being
proportional to φr

z . An instructive picture to comprehend this
is that of a two-well potential depending on φz. The ener-
gies of the distinct potential minima are aligned in the disk
plane and are shifted by φr

z in opposite directions. The dis-
tance between the minima reaches maximum at the center of
the disk and decreases upon moving to the edge of the disk
where two minima merge into one. In the quasiclassical limit,
the wave function is localized at the minima. This is illustrated
in the right panel of Fig. 4 where we plot the probability
density p(φz ) for even and odd states. We observe two distinct
peaks at the center, slightly overlapping peaks at φr

x � 0.5Ax

and a single peak at the disk edge.
To characterize the double-well potential, we resort to

quasiclassical approximation. If we neglect the quantum
fluctuations completely, the quantum states are localized in
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FIG. 5. The effective potential [Eq. (10)] and comparison with
the numerical results. Left panel: Color contours of the quasiclassical
effective potential in the φz-φx plane for the parameters at the Weyl
disk: φr

z , φ
r
y = 0 and φr

x/Ax = 0.5, 1, 1.5 from the upper to lower
plots. The minima of this double-well potential merge at the disk
edge. Right panel: The locations of the potential minima φ0

x,z given by
Eq. (11) and the numerical averages 〈φx,z〉. To compute the averages,
we take the wave functions of the two lowest states and arrange
their superposition corresponding to the state localized in the upper
minimum. The locations and averages are in reasonable agreement
even for the moderate Q chosen.

superconductor phase space. The states can be decomposed
as follows:

|�〉 = | �φ〉 ⊗ |S〉 , (7)

where | �φ〉 is a wave function with definite values of the super-
conducting phases and |S〉 is a two-component wave function
in the spin space. This decomposition allows us to determine
|S〉 from the Hamiltonian (2). Since we are looking for the
states of the minimum energy, we set the spin to be antiparallel
to the effective “magnetic field” at the point �φ,

�W · �σ |S〉 = −|S〉, (8)

�W being the normalized vector in the direction of the “field”

Wn = Inφn√∑
n I2

n φ̂2
n

. (9)

With this, we evaluate the effective potential for the state
|ψ〉 averaging the Hamiltonian over the state (8) and neglect-
ing the charging energy:

V ( �φ) = − h̄

2e

√∑
n

I2
n φ2

n +
(

h̄

2e

)2 ∑
n

(φn − φr
n)2

2Ln
. (10)

In Fig. 5 (left) we plot the color contours of this effective
potential in the φx-φz plane at three values of φr

x at φr
z , φ

r
y = 0.

We see the minima moving towards each other upon increas-
ing of φr

x and eventually merging at φr
x = Ax. We expect the

wave functions to be localized in the minima. To check for
this, we compare the positions of the quasiclassical minima
with the numerical averages 〈φx,z〉 to find the reasonable cor-
respondence even for the moderate Q.

θ

θ

FIG. 6. The spin directions of the localized states compared with
the numerical averages. Left panel: The contours of the even wave
function. The spin directions in the potential minima are shown by
the arrows. We rescaled the axes by Ax, Az so that the spin directions
point towards the origin. Right panel: The quasiclassical predictions
for σx, σz as compared with the numerical averages for the superpo-
sition of two lowest eigenfunctions corresponding to the localization
in the upper minimum. We show the quasiclassical spin direction �n
with the spin direction obtained numerically. We normalize 〈�σ 〉 to
〈�σ 〉2 = 1 to validate the decomposition given by Eq. (7). There is a
good agreement even for the moderate Q taken.

The positions of the minima are given by [32]

〈φ̂x〉 = φ0Iz

AxIx
φr

x, 〈φ̂y〉 = φ0Iz

AyIy
φr

y,

〈φ̂z〉 = ±φ0

√
1 − ρ2, (11)

where φ0 = (2e/h̄)IzLz, ρ2 = (φr
x )2/A2

x + (φr
y )2/A2

y (ρ2 = 1
corresponds to the disk edge).

The locations of the minima determine the spin of the
localized states. With Eqs. (8) and (11) we evaluate the angle θ

it makes with the easy direction: cos θ = ±〈φ̂z〉/φ0. The spins
of two localized states in the center of the disk are aligned
with z and are antiparallel. At the disk we come closer to the
disk boundary, and the spins align with the disk plane and
are parallel (see Fig. 6). The dependence of spin directions on
�φr is essential for the holonomic transformations as discussed
in the next section. To verify this numerically, we compute
the average values of σx, σz for the superposition of the two
lowest states that corresponds to the localization in the upper
minimum. The results are presented in the right panel of
Fig. 6. We see a reasonable agreement with the quasicalssical
results that expectedly gets worse near the edge of the disk
where the overlap of the states localized in different minima
is significant.

IV. QUANTUM GATES

A. Geometric phase and holonomic transformations

Let us recall here the basics of geometric phase and holo-
nomic transformations. We consider a Hamiltonian Ĥ (�x) that
depends on a set of parameters �x. We change the parameters in
time along a trajectory �x(t ); this results in the time-dependent
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Hamiltonian Ĥ (�x). We introduce a local basis that diagonal-
izes Ĥ (�x) in each point of parameter space,

En(�x)|n〉 = Ĥ (�x)|n〉. (12)

The Schrödinger equation in the local basis reads as

ih̄ψ̇n = En − h̄ẋiM
i
nmψm, (13)

where the effective vector potential M̂i,

Mi
nm = −i〈n|∂i(|m〉), (14)

represents the connection of the bases. With this, and in gen-
eral, the unitary transformation of the wave function can be
separated into two parts [10]: The dynamical phase arising
from the first term that represents the time-dependent ener-
gies, and a geometric phase arising from the second term
that depends solely on the trajectory in the parametric space.
The geometric phase is a phenomenon of potential importance
for quantum information processing. There are setups where
the dynamical phase can be neglected beyond the adiabatic
approximation. Such examples have been actively studied in
the field of nonadiabatic geometric quantum manipulation
[11–18]. Alternatively, the trajectory in the parameter space
can be passed adiabatically. The resulting geometric phase
then reduces to a holonomic phase and is a basis of actively
studied holonomic quantum manipulation [6,7].

The most common example of adiabatic manipulation is
the Berry phase [9]. In this case, the energy levels are non-
degenerate, and the adiabaticity implies that the frequencies
associated with the parameter change are much smaller than
the energy distances between the levels. One can neglect the
nondiagonal elements of M̂i so the Schrödinger equation re-
duces to

ih̄ψ̇n = En(�x(t ))ψn − h̄ẋiM
i
nψn. (15)

The dynamical phase separates from the geometric one. The
latter depends on the trajectory only and is given by the line
integral over the trajectory, �xi, �x f being the initial and final
points of the trajectory:

βn =
∫ �x f

�xi

�Mn · d�l (16)

The vector potential is not gauge invariant and changes upon
a gauge transformation |n〉 → U (�x)|n〉, |U |2 = 1,

Mi
n → Mi

n + U ∗∂iU . (17)

The gauge-invariant Berry phase is defined for closed trajec-
tories �xi = �x f and, by virtue of Stoke’s theorem, equals to the
surface integral of the curl of �M over the surface enclosed by
the trajectory.

A fascinating extension of this concept pertains the case
where several levels of the Hamiltonian are degenerate in a
subspace of �x. The adiabaticity implies that the frequencies
of the change are much smaller than the energy distance be-
tween the degenerate and nondegenerate levels. The adiabatic
motion along a trajectory results in a unitary transformation in
the degenerate subspace Ŝ(�xi, �x f ):

Ŝ = P exp

(
i
∫ �x f

�xi

�̂M(�x) · d�l
)

. (18)

P stands here for the ordering of �̂M along the trajectory. The
operator vector potential is not invariant with respect to the
unitary transformations of the basis |n〉 → U (�x)|n〉, |U |2 = 1,

Mi
n → Û †Mi

nÛ + Û †∂iÛ . (19)

The gauge invariance is achieved for closed trajectories, and
pertains the eigenvalues of Ŝ.

The holonomic transformations can be Abelian and non-
Abelian. They are Abelian if M̂i(�x) can be chosen to commute
for all �x. As we will see soon, this will be the case under
consideration. The non-Abelian connection permits to real-
ize a universal set of quantum gates [6,7] from holonomic
transformations over different trajectories. However, the ex-
perimental implementation of them is difficult because of the
nonadiabatic corrections [11,21,22].

B. Pure holonomic transformation

Let us apply these general considerations to the manifold
of nearly degenerate wave functions at the Weyl disk. The
first step is the parametrization of the basis in the degenerate
subspace. We restrict ourselves to the deep quasiclassical
limit. The natural basis choice is that of wave functions
localized either in upper (φz > 0) or lower (φz > 0) minimum.
As discussed, those can be decomposed into spin and orbital
parts

|+〉 = |S〉+|O〉+; |+〉 = |S〉−|O〉−. (20)

Here, |O〉± are the normalized wave functions in �φ space
located at the minima positions (〈φ̂x〉, 〈φ̂y〉,±

√
1 − ρ2)

[see Eq. (11)]. The |S〉± are spinors representing the
spin antiparallel to the corresponding �w± [see Eq. (9)],
�w− = (wx

+,w
y
+,−wz

+).
The best choice of the coordinates in the elliptic disk cor-

responds to an unambiguous mapping of (φr
x, φ

r
y ) to the upper

hemisphere of the vector �w+. The two parametrizing angles
θ , α, 0 < θ < π/2,−π < α < π are determined from

sin θ = ρ; eiα =
(

φr
x

Ax
+ i

φr
y

Ay

)
ρ−1; (21)

while �w+ = (cos α sin θ, sin α sin θ, cos θ ).
It is essential to choose |S〉± to ensure the continuity

over the hemisphere and the absence of singularity. This is
achieved by setting

|S〉+ =
[−e−iα sin θ

2
cos θ

2

]
; |S〉− =

[
cos θ

2−eiα sin θ
2

]
. (22)

We compute the connection from Eq. (14). We may ne-
glect the overlap between |O〉+ and |O〉− in the quasiclassical
limit, so the connection is diagonal in this basis and therefore
Abelian. Moreover, the derivatives of |O〉± with respect to
θ, α may be neglected as well. They give rise to the quantities
proportional to the expectation values of the momentum and
angular momentum for these states: Those are zero since the
states are localized. The connection is thus determined by the
derivatives of |S〉+ and reads as

M̂α = −τ̂z sin2 θ

2
; M̂θ = 0. (23)
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Thereby we reduce the situation to the classic example of
Berry phase for an electron spin in spin magnetic field of
constant amplitude [9]. Any holonomic transformation has a
form of exp(−iτzβ ). This is a phase gate, whereby the states
|±〉 acquire opposite phase shifts ∓β, β being the Berry phase
from the example. For any closed trajectory, β is thus half of
a solid angle enclosed by the trajectory on the hemisphere:

β =
∮

curl �M dS = 1

2

∮
sin θ dθ dα. (24)

In original coordinates, the connection and the curl read as
follows:

Mx = φr
y

ρ2AyAx
(1 −

√
1 − ρ2), (25)

My = − φr
x

ρ2AyAx
(1 −

√
1 − ρ2), (26)

curl �M = 1

2AxAy

√
1 − ρ2

. (27)

We will consider the deviations due to finite Q in the
Sec. IV D. In the next subsection, we will present quantum
gates that enable measuring of the result of holonomic trans-
formations.

C. Beyond the disk

The initialization and measurement of a quantum state at
the degenerate manifold is questionable if ever possible in
principle. To check if holonomic transformations work as sup-
posed, we need to extend the quantum manipulation schemes.
A simple way to achieve this would be to depart from the disk
in easy direction. This leads to energy splitting between |+〉
and |−〉 and enables the measurement in this basis. However,
with this measurement one cannot characterize the work of the
phase gate predicted since it does not alter the probabilities
to be in |±〉. Besides, the states almost do not overlap: This
makes it difficult to arrange their superposition. We need to
do something different.

We propose to augment the purely holonomic transforma-
tions in the disk with adiabatic passages in the same plane that
go beyond the degenerate manifold (Fig. 1). This will bring
us to the basis of the ground and first excited states that is
continuous and unambiguous in the exterior of the disk. The
adiabatic passages in the exterior change the phase difference
between these basis states (mostly this is the effect of dynam-
ical phase) not affecting the probabilities. Since the states are
distinguishable (e.g., they correspond to different currents in
the superconducting leads given by energy derivatives with
respect to �φ), these probabilities can be measured. Such mea-
surements can be done with Andreev bound state spectroscopy
[35–37]. The resonant quantum manipulation is also possible
since the energies are spilt and the wave functions of the states
overlap.

Let us find how the wave function is transformed between
the interior and exterior bases upon crossing the disk boundary
in the point θ = π/2, α = α0. We consider a transformation
R(α0): 180◦ rotation about the axis (cos α0, sin α0, 0) that is in
the direction of the spin-orientation vectors �w± at this point.
For a circular-symmetric disk Lx = Ly, Ix = Iy, Cx = Cy this

is a true symmetry transformation of the Hamiltonian. For
an anisotropic disk, this symmetry holds approximately in
quasiclassical limit where the wave functions are concentrated
near a point in �φ space.

The transformation should be diagonal in exterior basis.
The ground and excited states are, respectively, even and odd
upon R(α0). As to the interior states, let us note that |0〉± =
R(α0)|0〉∓, so that

R(α0)|±〉 = e∓iα0 |∓〉. (28)

With this, we find that the wave functions in exterior and
interior bases are related by a generalized Hadamard gate

H(α0) ≡ 1√
2

[
1 eiα0

e−iα0 −1

]
. (29)

Since H2 = 1, the same matrix relates the bases upon the
reverse passage.

Let us consider the quantum gate given in Fig. 1(b). We
initialize the wave function in a point A beyond the disk:
We can wait for the relaxation that brings the system to the
ground state. After this, we can bring it to a superposition of
the ground and excited states with a pulse of an oscillating �φ
with the frequency matching the level splitting in this point.
The adiabatic trajectory enters the disk, makes a loop there
for a holonomic manipulation, and returns to the same point.
The resulting quantum gate reads as

Ŝ = H(α0)eiτzβH(α0), (30)

β being the Berry phase accumulated on the loop. This does
not include the phase shifts in the exterior basis that do not
change the probability. If we start in the ground or excited
state, we end up in the excited or ground state with the
probability

T = sin2 β. (31)

Measuring these probabilities thus permits the characteriza-
tion of the holonomic transformation. The answer for the
probability, as expected, does not depend on the entrance point
α0.

To measure the wave function in the exterior basis, one
does not have to return to the initial point [Fig. 1(c)]: The
measurement can be performed upon leaving the disk at some
other point (π/2, α1). The resulting quantum gate upon the
phase factors in exterior basis is given by

Ŝ = H(α0)e−iτzβH(α1) (32)

so the probability T = sin2[β∗ + (α1 − α0)/2], β∗ being the
Berry phase acquired upon the part of the trajectory that con-
nects the entrance and exit points. One may be surprised with
the fact that β∗ in principle is not gauge-invariant quantity.
This is resolved if we note that in our gauge (α1 − α0)/2 is the
Berry phase acquired upon a passage along the disk boundary
from α1 to α0. So, the gate in Fig. 1(c) is equivalent to that
in Fig. 1(d) where the trajectory in the disk is closed. This
restores the gauge-invariant expression T = sin2 β, β being
the Berry phase accumulated along the closed trajectory.

More sophisticated gates can be arranged by entering and
leaving the disk repeatedly along an adiabatic passage. They
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are composed of Hadamard gates, holonomic phase shifts in
interior basis, and dynamical phase shifts in exterior basis.

D. Connection beyond the quasiclassical limit

The simple expression for holonomic transformation ob-
tained above is valid in the deep quasiclassical limit only and
relies on the localization of the wave functions. One may
wonder how accurate it is at finite values of Q. At first site,
this problem is superfluous since finite values of Q give rise
to the splitting of degenerate values in the disk; this formally
invalidates the holonomic transformation. However, the split-
ting is exponentially small and may be neglected when the
deviations from the deep quasiclassical limit are noticeable.

To investigate and illustrate this, in this section we compute
numerically the connection at finite Q. We restrict ourselves
to a simple particular case when this computation is straight-
forward: We concentrate on the circular trajectories at a
circular-symmetric disk.

The circular symmetry of the disk implies Ix,y = Ir , Lx,y =
Lr , Cx,y = Cr . Let us concentrate on a family of the Hamil-
tonians Ĥ (α) along a circular trajectory φr

x = r cos α, φr
y =

r sin α, r being the radius. This family is obtained by rotations
about z axis by α,

Ĥ (α) = R−1
z (α)ĤRz(α), (33)

where

Rz(α) = exp(−iαĴz ) (34)

and Ĵz is the angular momentum operator. Rα
z represent rota-

tion around easy direction with an angle α. The rotation thus
generates the family of the bases diagonalizing Ĥ (α):

|n〉α = exp(−iαĴz )|n〉α. (35)

The connection M̂α is thus determined through the matrix
elements of Ĵz [see Eq. (14)], and is constant over the trajec-
tory. One needs to diagonalize the Hamiltonian only once per
trajectory to compute the connection.

We project Ĵz on the two lowest eigenstates |e〉, |g〉, of the
Hamiltonian

Mα
ab = 〈a|Ĵz|b〉, (36)

where a, b = g, e. The half-difference of the eigenvalues of
this matrix defines the holonomic transformation phase accu-
mulated over the circular trajectory β = π (M+ − M).

One needs to take into account that the eigenvalues of Ĵz are
half-integer and the basis given by Eq. (35) is discontinuous.
Owing to this, a formal calculation would give β = π even at
r → 0 where no change of the Hamiltonian takes place. So,
one has to subtract π to make sure β → 0 at r → 0.

The results are plotted in Fig. 7. In the deep quasiclassical
limit, the angular momentum operator can be replaced with
σz/2 and the holonomic phase is given by

β = π
1 − 〈σ̂z〉

2
= π (1 −

√
1 − (r/A)2), (37)

A being the disk radius. We observe significant corrections to
the quasiclassical limit at finite Q: Those become bigger at
the disk boundary and at the smaller Q. However, the overall
dependence of β(r) is preserved even at Q = 4.

0

π/4

π/2

3π/4

π

0 0.2 0.4 0.6 0.8 1

β

r/A

Q=1
Q=4
Q=7
Q=10
Q=∞

FIG. 7. Holonomic phase at various finite values of Q for a circu-
lar trajectory of radius r at the circular-symmetric disk. We compare
it with the quasiclassical result [Eq. (37)] in the limit Q → ∞.

V. QUANTUM DYNAMIC

In this section, we discuss the deviations from the ideal
results of the execution of the quantum gates described. The
deviations come from the residual level splitting in the disk
and from the nonadiabatic excitations to higher levels in the
course of the execution at finite time. We illustrate these
sources with the numerical examples of the quantum dy-
namics of the full Hamiltonian (2). The parameters of the
Hamiltonian used for illustrations are the same as in the pre-
vious sections corresponding to the moderate quasiclassical
parameter Q and circular symmetry. We show that the gates
work well even in this case.

We concentrate on the gate of the type given in Fig. 1(c).
We chose a simple family of the trajectories (Fig. 8) consisting
of two straight passages (“arms”) in radial direction and an arc
around the origin. The initial and final points A, B are beyond
the disk at the same distance R > A from the origin, A being
the disk radius. The radius and the angle of the arc are r and �,
respectively. We expect the holonomic phase β to accumulate
upon the passage

β = 1

2
�

√
1 −

( r

A

)2
. (38)

The time dependence of �φr at the trajectory can be defined
in terms of the angular velocity � at the arc part and the linear

A
B

FIG. 8. The concrete example trajectories investigated in Sec. V.
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velocity v ≡ Aρ̇. The overall execution time of the gate is thus
T = �/� + 2(R − r)/v. In a realistic manipulation, it is easy
to make these velocities time dependent, preserving the total
execution time; this might be a possibility to reduce the nona-
diabatic corrections and thus improve the gate performance.
However, the qualitative analysis made and our attempts of
such optimization did not show any substantial improvement.
The optimal time dependence of the velocities is close to
constant.

We consider the deviations at the arc part and at the arms
separately, and conclude by combining both in an example of
the gate fidelity versus the execution time T . The Schrödinger
equation at the arc part is best expressed in the local basis (35),

ih̄ψ̇n = Enψn − h̄�(t )Jz
nmψm, (39)

the effective Hamiltonian not depending on time if �(t ) =
const. The initial condition corresponds to the wave function
localized in the two lowest levels ψ1,2 �= 0, and the equa-
tion needs to be solved at the time interval (0,�/�).

The first source of the deviations is the residual level split-
ting E2 − E1. The proper work of the holonomic gate requires
this splitting to be smaller than the second term ∝�, that is,
|E2 − E1| � h̄�. If this condition is fulfilled, the deviations
in probabilities are proportional to [(E2 − E1)/h̄�]2.

The second source are the nonadiabatic corrections cor-
responding to the excitations to higher levels n > 2. The
probabilities of the excitations from the states |1〉, |2〉 can be
estimated as

P1,2→n ≈ |〈n|Ĵz|1, 2〉|2
(

h̄�

En − E1,2

)2

. (40)

The small probabilities thus require h̄� � |En − E1,2| �
h̄ωx,y,z. The execution time thus should be much larger than
ω−1

x,y,z.
We illustrate this with the quantum dynamics simulation at

the arc part of the trajectory (Fig. 9). We simulate the work of
the gate assuming its ideal execution while passing the arms.
The initial state corresponds to the excited state in the exterior
basis at the point A. We compute the probabilities P1,2 to end
up in the ground and excited states at the point B. For an ideal
gate, those are given by P1,2 = sin2 β, cos2 β.

We plot the probabilities versus � for three different
angular velocities � = 10−2, 10−1, 100ωz. We choose r =
0.25 where the residual splitting E2 − E1 = 0.002ωz. At the
smallest �, the deviation owing to the residual splitting is
noticeable. There is no excitation to the higher levels, so
that P1 + P2 = 1. At the intermediate �, the results follow
those of the ideal gate with the numerical accuracy. The
probabilities achieve minimum or maximum at � ≈ π1.03
corresponding to β = π/2. At the highest �, the nonadiabatic
correction becomes noticeable. The probability progressively
leaks to higher levels, with only a half of it remaining in the
computational subspace for the longest gate � = 2π . Despite
the significant deviations, the curves at the lowest and at the
highest angular velocity still follow the oscillatory pattern.
This demonstrates that the gate works in a wide range of the
angular velocities.

Let us analyze the deviations coming from the radial arms
of the trajectory. The residual splitting in this case only
modifies the phase factor in the exterior basis and can be

FIG. 9. The deviations coming from the arc part. We assume the
ideal gate work at the arms of the trajectory. The initial state is
an excited state |2〉 in the exterior basis. We plot the probabilities
P1,2 (blue and red) versus � at three different angular velocities
� = 10−3, 10−2, 10−1ωz (dashed, solid, and dotted lines). At the
intermediate �, the results coincide with those for the ideal gate
upon numerical accuracy. At the smallest �, the deviations are due to
the residual level splitting in the disk interior. At the highest �, the
deviations are due to nonadiabatic excitation to the higher levels.

disregarded. To quantify the nonadiabatic corrections, we
represent the Schrödinger equation in the instantaneous basis
H (t )|n(t )〉 = E (t )|n(t )〉 and compute the probabilities to be
in the excited states n > 2 in the second-order perturbation
theory in terms of the nondiagonal elements of ∂H∂t .

Owing to circular symmetry, the results do not depend
on the direction of the arm. We can compute the amplitudes
for the motion in the x direction with the velocity depending
on the actual value of φr

x , φ̇r
x (φr

x ). The amplitude in the excited
state n accumulated in the course of motion from r to R then
reads as

ψn(R) = − h̄Ix

2e

∫ R

r
ds2

|〈n(s2)|σx|a(s2)〉|
En(s2) − Ea(s2)

× exp

[
i

h̄

∫ s2

r

1

φ̇r
x (s1)

[En(s1) − Ea(s1)]ds1

]
, (41)

where |a〉 is a state from the computational subspace, either
ground one or excited one.

To evaluate this integral numerically, we use instantaneous
eigenstates obtained by diagonalization of the Hamiltonian
at various φr

x . We summarize the results in Fig. 10 where
we present the probability 1 → 3 versus the average velocity
at the arm. The nondiagonal matrix element energizing the
transition is plotted versus φr

x in Fig. 10(a). We try a family of
φr

x dependencies of this velocity parametrized by γ :

φ̇r
x

(
φr

x

)
〈
φ̇r

x

〉 = γ

2 tanh(γ /2)
[1 − ρ2 tanh2(γ /2)], (42)

where ρ = (2φr
x − R − r)/(R − r). These velocity profiles

are plotted in Fig. 10(b) for several values of γ . In the main
figure, we plot the excitation probability versus the average
velocity for several γ . The overall dependence is qualitatively
consistent with exponential suppression of the transitions at
low velocities, ln P � v−1. The detailed dependence is not
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FIG. 10. The deviations coming from the radial part of the trajectory. The probability of the dominant excitation P1→3. For this example,
the trajectory starts at r = 0.25A and ends at R = 2A. (a) The intensity of the matrix element energizing the transition versus the distance from
the origin φr

x . (b) The velocity profiles corresponding to Eq. (42). The curves correspond to various γ shown in the labels. Main figure: We
plot the probability for various velocity profiles (γ is shown in the curve labels) as function of the average velocity. The probabilities are lower
than 0.005 for lower velocities <0.06Aωz and increase rapidly at higher velocities. The slowest growth corresponds to the constant velocity
profile γ = 0.

smooth, and the probabilities oscillate showing interference
due to finite length of the arm. At all velocity profiles checked,
the probabilities are <5 × 103 for φ̇r

x ≈ Aωz/4π and grow
rapidly at higher velocities. We find that the time-independent
velocity profile γ = 0 eventually provides smaller probabili-
ties and is thus advantageous for the gate design.

We illustrate the deviations on all parts of the trajectory by
computing the fidelity of the swap gate versus the execution
time (Fig. 11). A swap gate implements the transformation
|1〉 → |2〉; |2〉 → |1〉 in the exterior basis, that is, T = 1. The

FIG. 11. The fidelity of the holonomic swap gate as function of
the execution time T . The gate corresponds to the trajectory with
r = 0.25A, R = 2A, � = π and is executed with constant velocity
along the trajectory.

actual example differs a bit from the swap gate: The trajectory
parameters are r = 0.25A, R = 2A, � = π ; this corresponds
to β ≈ 1.5209 that differs slightly from the swap gate value
of π/2. However, T ≈ 0.9975 for this value of β so the
difference with the ideal swap gate is negligible. The velocity
in φr

x − φr
y is constant along all parts of the trajectory. The

fidelity is almost zero at T ωz < 10, increases nonmonoton-
ically until T ωz < 80, and is close to ideal value at bigger
T . We thus expect the gate to work good at T ωz � 100 and
longer. This looks parametrically bigger than a naive ad hoc
estimation T ωz � 1. However, we have to take into account
that the typical energy differences along the path are �0.2ωz

and the better estimation for time is a period rather than the
inverse frequency. So that T ωz � 100 corresponds to 3–4
typical oscillation periods. Eventually, this corresponds to the
number of peaks seen in the time dependence of the fidelity.

In the figure, we show a full numerical simulation of the
swap gate for different runtimes. As expected from small
runtimes, the execution is diabatic and thus all state proba-
bilities after execution are close to zero. On the other hand, at
long runtime limit, we see that the gate is relatively stable, a
desirable property for holonomic computation.

VI. DECOHERENCE

In this section, we evaluate the decoherence time for
Weyl disk under consideration and its effect on the work
of the gates described. The most prominent decoher-
ence mechanism is due to the fluctuations of the control
phases that drive the system away from the 2D degenerate
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manifold. Indeed, these fluctuations induce the time-
dependent stochastic energy splitting of two degenerate states.
This ruins the superposition of the states centered in different
wells at φz ± φ0

√
1 − ρ2 [see Eq. (11)].

To derive the Hamiltonian describing the decoherence, we
add to the Hamiltonian (2) the fluctuations of the relevant con-
trol parameter φr

z , φr
z → φr

z + f̂ (t ), concentrate on the terms
linear in f̂ , and project then on the basis of the degenerate
states. This yields

Hdec = −
(

h̄

2e

)2
φ0

√
1 − ρ2

Lz
τz f̂ (t ). (43)

We can deduce already from this that the decoherence rate
depends on the position at the disk. Since the fluctuation
intensity does not depend on the position, the dependence of
the rate is determined by the square of the prefactor in Hdec

and is proportional to 1 − ρ2 vanishing at the disk edges.
Let us develop a reasonable model for the fluctuations f̂ .

For this, we have to soften the constraint on φr
z making it

a dynamical variable in an electric circuit, that is, to repeat
the procedure to soften the constraints on the original phases
of the Josephson junction. With this, the spectrum of the
fluctuations is expressed via the corresponding susceptibility
χ (ω) of the circuit and the temperature T :〈

f 2
ω

〉 = h̄ cotanh

(
h̄ω

2kBT

)
Imχ (ω). (44)

A realistic circuit model would include an inductance L1 � Lz

and a dissipative element, a resistor R in parallel with this
inductance. The dissipative part of the susceptibility then
reads as

Imχ (ω) = ωL2
1

R[1 + (ωL1/R)2]
. (45)

Since the decoherence rate is supposed to be smaller than the
temperature in frequency units, and the relaxation rate R/L1,
the decoherence is determined by low-frequency fluctuations,
and f̂ (t ) can be treated as a classical white noise. Collecting
all the factors, we obtain for the decoherence rate

1

τd
= φ2

0 (1 − ρ2)kBT
L2

1

e2RL2
z

. (46)

It can be made small by increasing the load resistance R. This
estimation should be taken with caution since at finite fre-
quencies the load resistance can be shunted by the capacitive
response in which case a common estimation for the resistor
value is the vacuum impedance. The validity of Eq. (46) is
ensured if the capacitive response is negligible at frequencies
�τ−1

d .
This rate has to be compared with the frequency scale

ωz below which the adiabatic manipulation is plausible. It is
convenient to express ωz in terms of the energy barrier and
the quasiclassical parameter Q, h̄ωz = LzI2

z /2Q. With this,
the result of comparison does not depend on the Weyl point
parameter Iz, and reads as

1

τdωz
= 8 kBT L2

1Q

h̄ RLz
(1 − ρ2). (47)

This number defines the range of frequencies available for
coherent adiabatic manipulation and should be at least a cou-
ple of orders of magnitude smaller than one for successful

experiments. This can be achieved at sufficiently low temper-
atures and big resistances. For a realistic example, we choose
T = 10 mK, L2

1/L = 2 × 10−13H (micrometer loop scale),
very big quasiclassical factor Q = 50, and R = 1 k Ohm. For
this choice,

1

τdωz
= 10−4, (48)

in the center of the disk implying that the coherent adiabatic
manipulation is plausible within the four orders of magnitude
wide frequency range.

The effect of the decoherence is incorporated to the evolu-
tion equation for the density matrix as an extra term next to
the Hamiltonian dynamics

d ρ̂

dt
= − 1

2τd (t )
(ρ̂ − τzρ̂τz ). (49)

Here, the time dependence of τd is determined by the current
position (φr

x (t ), φr
y (t )) on the manipulation path according

to Eq. (46). The effect of the unitary gate exp(iτzβ ) of the
execution time t is given by

ρ
( f )
++ = ρ

(i)
++; ρ

( f )
−− = ρ

(i)
−−, (50)

ρ
( f )
+− = eiβX (t )ρ (i)

+−; ρ
( f )
−+ = e−iβX (t )ρ (i)

−+; (51)

dX/dt = −X/τd (t ), (52)

where ρ̂ (i/ f ) is the density matrix before and after the execu-
tion. The effect of the decoherence is an exponential damping
of the nondiagonal matrix elements X (t ) = exp(−t/τd ) if the
decoherence does not depend on time. Since it generally de-
pends on the path, the resulting nonunitary gate does depend
on the path in addition to the execution time dependence.

As explained, we expect the highest decoherence in the
case of traversing the disk. The decoherence while moving
beyond the disk is strongly reduced since the degenerate levels
are split, and we may disregard this effect.

VII. CONCLUSIONS

In conclusion, we have investigated holonomic manipula-
tions that can be performed utilizing approximate degeneracy
at the Weyl disk: A rather counterintuitive example of 2D
finite degenerate manifold in 3D parameter space. The Weyl
disks can be realized by soft confinement of parameters in
the superconducting nanostructures hosting the Weyl points
in the spectrum of Andreev bound states, which is the exam-
ple considered here. The resulting Hamiltonian is, however,
generic and can be realized in many quantum systems with the
Weyl-type crossings in the spectrum of discrete energy states,
so our results are of general nature.

We have computed the connection in the Weyl disk mani-
fold in the quasiclassical limit and found it Abelian: It realizes
a phase gate, the phase difference being related to the Berry
phase in its classic example. This may seem a rather dis-
couraging result. However, we propose to augment the purely
holonomic transformations with the adiabatic passages be-
yond the degenerate manifold. With this, we can propose the
realization of more sophisticated gates and practical measure-
ment of the results of the holonomic transformations.
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We did quantum dynamic simulation of the gates proposed
for realistic Hamiltonians and find they can work properly
at rather short execution times. The execution time of the
gate, despite being adiabatic, should be smaller than the de-
coherence time. We have computed decoherence rate for the
dominant mechanism: The fluctuations of the control param-
eter along the easy axis that drive the system out of the
degenerate 2D subspace. We have discussed how the deco-
herence modifies the result of a gate operation.

A natural continuation of this research line would include
the consideration of several Weyl points brought into soft

confinement and interaction with each other. They would give
rise to degenerate manifolds of higher dimensions with richer
holonomic transformations and perhaps provide the protection
against decoherence.

ACKNOWLEDGMENTS

This research was supported by the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant Agreement
No. 694272).

[1] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M.
Troyer, Gate-count estimates for performing quantum chem-
istry on small quantum computers, Phys. Rev. A 90, 022305
(2014).

[2] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM Rev. 41,
303 (1999).

[3] C. H. Bennett and D. P. DiVincenzo, Quantum information and
computation, Nature (London) 404, 247 (2000).

[4] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2009).

[5] P. Zanardi and M. Rasetti, Holonomic quantum computation,
Phys. Lett. A 264, 94 (1999).

[6] A. C. M. Carollo and V. Vedral, Holonomic Quantum Compu-
tation (Wiley, Hoboken, NJ, 2016), pp. 475–482.

[7] L.-A. Wu, P. Zanardi, and D. A. Lidar, Holonomic Quantum
Computation in Decoherence-Free Subspaces, Phys. Rev. Lett.
95, 130501 (2005).

[8] F. Wilczek and A. Zee, Appearance of Gauge Structure in
Simple Dynamical Systems, Phys. Rev. Lett. 52, 2111 (1984).

[9] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. London, Ser. A 392, 45 (1984).

[10] Y. Aharonov and J. Anandan, Phase Change During a Cyclic
Quantum Evolution, Phys. Rev. Lett. 58, 1593 (1987).

[11] E. Sjöqvist, D. M. Tong, L. M. Andersson, B. Hessmo, M.
Johansson, and K. Singh, Non-adiabatic holonomic quantum
computation, New J. Phys. 14, 103035 (2012).

[12] R. Leone, On the parallel transport in quantum mechanics with
an application to three-state systems, arXiv:1903.04928.

[13] A. A. A. Jr, J. M. Fink, K. Juliusson, M. Pechal, S. Berger,
A. Wallraff, and S. Filipp, Experimental realization of non-
abelian non-adiabatic geometric gates, Nature (London) 496,
482 (2013).

[14] S. E. Economou and T. L. Reinecke, Theory of Fast Optical
Spin Rotation in a Quantum Dot Based on Geometric Phases
and Trapped States, Phys. Rev. Lett. 99, 217401 (2007).

[15] H. Li, Y. Liu, and G. Long, Experimental realization of single-
shot nonadiabatic holonomic gates in nuclear spins, Sci. China
Phys. Mech. Astron. 60, 080311 (2017).

[16] S.-L. Zhu and Z. D. Wang, Implementation of Universal Quan-
tum Gates Based on Nonadiabatic Geometric Phases, Phys.
Rev. Lett. 89, 097902 (2002).

[17] K. Nagata, K. Kuramitani, Y. Sekiguchi, and H. Kosaka,
Universal holonomic quantum gates over geometric spin

qubits with polarised microwaves, Nat. Commun. 9, 9
(2018).

[18] L.-M. Duan, Geometric manipulation of trapped ions for quan-
tum computation, Science 292, 1695 (2001).

[19] P. Solinas, P. Zanardi, N. Zanghì, and F. Rossi, Semiconductor-
based geometrical quantum gates, Phys. Rev. B 67, 121307(R)
(2003).

[20] L. Faoro, J. Siewert, and R. Fazio, Non-Abelian
Holonomies, Charge Pumping, and Quantum Computation
with Josephson Junctions, Phys. Rev. Lett. 90, 028301
(2003).

[21] D. Parodi, M. Sassetti, P. Solinas, P. Zanardi, and N.
Zanghì, Fidelity optimization for holonomic quantum gates
in dissipative environments, Phys. Rev. A 73, 052304
(2006).

[22] K. Toyoda, K. Uchida, A. Noguchi, S. Haze, and S. Urabe,
Realization of holonomic single-qubit operations, Phys. Rev. A
87, 052307 (2013).

[23] J. M. Leinaas and J. Myrheim, On the theory of identical parti-
cles, Il Nuovo Cimento B Series 11 37, 1 (1977).

[24] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303, 2 (2003).

[25] G. P. Collins, Computing with quantum knots, Sci. Am. 294, 56
(2006).

[26] J. D. Bommer, H. Zhang, Önder Gül, B. Nijholt, M. Wimmer,
F. N. Rybakov, J. Garaud, D. Rodic, E. Babaev, M. Troyer, D.
Car, S. R. Plissard, E. P. Bakkers, K. Watanabe, T. Taniguchi,
and L. P. Kouwenhoven, Spin-Orbit Protection of Induced Su-
perconductivity in Majorana Nanowires, Phys. Rev. Lett. 122,
187702 (2019).

[27] D. E. Feldman, The smallest particle collider, Science 368, 131
(2020).

[28] J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Direct
observation of anyonic braiding statistics, Nat. Phys. 16, 931
(2020).

[29] C. Herring, Accidental degeneracy in the energy bands of crys-
tals, Phys. Rev. 52, 365 (1937).

[30] B. Yan and C. Felser, Topological materials: Weyl semimetals,
Annu. Rev. Condens. Matter Phys. 8, 337 (2017).

[31] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov,
Multi-terminal Josephson junctions as topological matter, Nat.
Commun. 7, 11167 (2016).

[32] J. Erdmanis, Á. Lukács, and Y. V. Nazarov, Weyl disks:
Theoretical prediction, Phys. Rev. B 98, 241105(R)
(2018).

235437-12

https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1038/35005001
https://doi.org/10.1016/S0375-9601(99)00803-8
https://doi.org/10.1103/PhysRevLett.95.130501
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1088/1367-2630/14/10/103035
http://arxiv.org/abs/arXiv:1903.04928
https://doi.org/10.1038/nature12010
https://doi.org/10.1103/PhysRevLett.99.217401
https://doi.org/10.1007/s11433-017-9058-7
https://doi.org/10.1103/PhysRevLett.89.097902
https://doi.org/10.1038/s41467-017-01881-x
https://doi.org/10.1126/science.1058835
https://doi.org/10.1103/PhysRevB.67.121307
https://doi.org/10.1103/PhysRevLett.90.028301
https://doi.org/10.1103/PhysRevA.73.052304
https://doi.org/10.1103/PhysRevA.87.052307
https://doi.org/10.1007/BF02727953
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1038/scientificamerican0406-56
https://doi.org/10.1103/PhysRevLett.122.187702
https://doi.org/10.1126/science.abb3552
https://doi.org/10.1038/s41567-020-1019-1
https://doi.org/10.1103/PhysRev.52.365
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1103/PhysRevB.98.241105


HOLONOMIC QUANTUM MANIPULATION IN THE WEYL … PHYSICAL REVIEW B 105, 235437 (2022)

[33] T. O’brien, Applications of topology to Weyl semimetals and
quantum computing, Ph.D. thesis, Leiden University, 2019.

[34] T. Yokoyama and Y. V. Nazarov, Singularities in the Andreev
spectrum of a multiterminal Josephson junction, Phys. Rev. B
92, 155437 (2015).

[35] A. Zazunov, V. S. Shumeiko, E. N. Bratus’, J. Lantz, and G.
Wendin, Andreev Level Qubit, Phys. Rev. Lett. 90, 087003
(2003).

[36] S. Shafranjuk, I. Nevirkovets, and J. Ketterson, A qubit device
based on manipulations of Andreev bound states in double-
barrier Josephson junctions, Solid State Commun. 121, 457
(2002).

[37] C. Janvier, L. Tosi, L. Bretheau, Ç. O. Girit, M. Stern, P. Bertet,
P. Joyez, D. Vion, D. Esteve, M. F. Goffman, H. Pothier, and C.
Urbina, Coherent manipulation of Andreev states in supercon-
ducting atomic contacts, Science 349, 1199 (2015).

235437-13

https://doi.org/10.1103/PhysRevB.92.155437
https://doi.org/10.1103/PhysRevLett.90.087003
https://doi.org/10.1016/S0038-1098(02)00040-6
https://doi.org/10.1126/science.aab2179

