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Adaptive Algorithms for Radar Detection of
Turbulent Zones in Clouds and Precipitation

The adaptive algorithm synthesis theory is used to develop new

algorithms applied to radar signals in the detection of turbulent

zones in clouds and precipitation. The efficiency of these new

algorithms is analyzed. Simulations of weather radar signals

on the one hand and modeling and testing of the processing

algorithms on the other hand are performed for comparative

analysis. The results demonstrate a significant superiority of the

new algorithms in comparison with the widely used pulse-pair

algorithm.

I. INTRODUCTION

Meteorological conditions can significantly
influence the flight safety of airplanes. One of the
crucial meteorological factors affecting aircraft
behavior is atmospheric turbulence. The overwhelming
majority (97%) of dangerous turbulent zones in
the atmosphere are associated with clouds and
precipitation, which are detectable by radar1 [1].
Nevertheless, it does not mean that all clouds detected
contain dangerous turbulent zones. We should not
avoid clouds, however, but find a safe path through
them. That is why weather radar is necessary as well
as obligatory standard equipment of any modern
aircraft. A major aspect of the operational efficiency
of airborne weather radar is the reliability of
turbulence detection. Detecting turbulence is difficult,
because the reflectivity involved can be rather weak.
Hence, noise and interference can essentially influence
the reliability of the wanted information, resulting in
very short detection ranges. At the same time, one
of the major applications of turbulence detection is
during cruise flight, at maximum airspeed. Finally,
for aircraft in controlled airspace, often a significant

1Clear air turbulence (CAT) makes only 3% of all zones of
dangerous turbulence. Nevertheless it is a serious problem because
of its suddenness. Due to a low concentration of hydrometeors,
in most cases genuine CAT is not detectable using X-band radar.
Active or passive optical systems would be better suited for these
applications. Hybrid systems employing both radar and lidar
or radar and interferometry would be our preferred approach
to effectively detect the various manifestations of turbulence in
atmosphere.
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lead-time is required before turbulence avoidance
maneuvers can be initiated. All these factors require
large detection ranges if the turbulence detector is
to be of any practical use. Available airborne radars
still do not enable us to accurately detect zones of
dangerous turbulence in clouds and precipitation.
Therefore, at present it is necessary to use an
excessively cautious decision-making strategy in
order to ensure an acceptable flight safety level. This
leads to an essential decrease in flight regularity, an
increase in flight time, unproductive fuel expenditure,
and deterioration of other air transport economic
parameters.
This paper is devoted to the development of

new turbulence detection algorithms primarily for
airborne noncoherent radar systems. However, the
approach developed in this work is rather general and
can be useful for different applications in weather
radar engineering and radar meteorology including
coherent systems as well. The paper is organized as
follows. The problem is stated in Section II. Basic
mathematical models are considered in Section III.
Later these models are used to develop optimal
algorithms under the different conditions. Gradually,
these conditions become more ambiguous. Namely,
in Section IV an optimal parametrical algorithm
is synthesized. This algorithm provides optimum
turbulence detection because all statistical information
is assumed to be known. A synthesis approach,
based on the turbulence detection algorithm, which
is invariant to noise power, is described in Section V.
Then in Section VI the synthesis using the adaptive
two-sample algorithm, which is invariant to the
intensity of the background scattering, is performed.
Section VII gives a comparative analysis of the newly
developed algorithms and the widely used pulse-pair
algorithm.

II. OPTIMAL TURBULENCE DETECTION: PROBLEM
STATEMENT

The relationship between the back-scattered
radar signal parameters and the local changes in the
microstructure and dynamics of atmospheric scatterers
in a single-resolution volume determines the physical
basis of radar detection of turbulence in clouds and
precipitation.
At present, two groups of informative parameters

of radar signals are in use for turbulence detection.
The first group includes various reflected-power
characteristics related to the radar reflectivity.
Statistical correlation between the radar reflectivity
of clouds or precipitation and the rms velocities
of the turbulent movements in them have been
used for decades in the evaluation of the degree of
meteorological danger to aircraft. The nature of this
correlation comes from the fact that turbulence and
vertical flows of air promote the growth of drops

and the increase in the concentration of large drops.
This leads to an increase in radar reflectivity and
therefore in received signal power. Thus, there are
well-known radar methods of the turbulence detection
based on radar reflectivity measurements, which
use average values of echo-signal amplitudes [1, 2].
Averaged signal power reflected from clouds and
precipitation is related statistically with dangerous
zones of turbulence. However, this correlation is not
strong enough to provide a tool for reliable turbulence
detection.
The Doppler spectrum parameters of the reflected

signal belong to the second group. The Doppler
spectrum depends on the distribution of radial
velocities of particles weighed on their radar cross
section. The theory developed in [3—5] relates spectral
parameters of radar signal sequences reflected
from weather objects with moving scatterers. The
technique of meteorological object sounding by using
ground-based weather radar to obtain information
about the dynamics and microphysics of clouds and
precipitation has been worked out as well [5]. Air
eddies involve radar scatterers (hydrometeors) in the
turbulence motion. That is why turbulence increases
the velocity dispersion of scatterers. This leads to
widening of the Doppler spectrum. However, at least
three circumstances can decrease the relationship
of turbulence intensity to the Doppler spectrum
width and therefore can hamper the interpretation of
experimental measurements. Firstly, the captivity of
drops by air whirls is not absolute; secondly, not only
turbulence but also other factors influence particle
motion; and thirdly, the particle radar cross section
distribution is unknown in advance. Therefore, the
connection of the Doppler spectrum width with the
turbulence intensity in the radar resolution volume
has a statistical character that is similar to the earlier
mentioned reflectivity characteristics, which belong
to the first group of informative parameters. In the
case of noncoherent radar, the width of the intensity
fluctuation spectrum satisfying the Nyquist condition
is unambiguously connected to the Doppler spectrum
width [4]. Therefore, it contains information about the
turbulence as well.
The Doppler spectrum width is inversely related

to the interperiod correlation factor. It enables us
to use correlation parameters of the envelope of the
echo signal in radar meteorology and avionics [5, 6].
Specifically, this idea is widely used in the so-called
pulse-pair algorithm [5]. Taking into account the
signal-to-noise ratio (SNR) and limited measuring
time, we first discuss the performance capabilities
of the pulse-pair algorithm. A radar signal reflected
from clouds is a correlated random process. The
correlation coefficient r between two consecutive
pulses reflected from the same single radar volume
(interperiod correlation factor) is a function of the
turbulence intensity r = r(¾V), where ¾V is the rms
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Fig. 1. Diagrams of mixture correlation factor r§ versus ¾V at
different values of noise power ¾n (Ts = 0:001 s, ¸= 0:03 m).

value of the Doppler velocity as a parameter of
the turbulence intensity. The higher the turbulence
intensity, the lower the correlation factor. An additive
mixture of the correlated signal and uncorrelated noise
is characterized by the correlation factor

r§ = r°=(1+ °) (1)

where
° = kR¾

2
V=¾

2
n (2)

is SNR, and kR is a dimensional factor depending on
the characteristics of the radar. Substituting the model
of the correlation factor [5]:

r = 1¡ 8¼
2T2s
¸2

¾2V = 1¡CR¾2V (3)

(where Ts is the pulse repetition period and ¸ is the
wavelength) into (1), one can see that the correlation
factor becomes a nonmonotonic function, which has a
maximum value at

¾2V = ¾
2
V0

=
µ
¡CRkR¾2n +

q
(CRkR¾2n)2 +CRk

2
R¾

2
n

¶Á
CRk

2
R:

(4)
This corresponds to an SNR value given by

°0 =¡1+
s
1+

1
CR¾

2
n

: (5)

Starting from this value of SNR, the correlation
factor decreases for increasing ¾V. That is why the
pulse-pair algorithm, which actually measures the
interperiod correlation factor, becomes sensitive to
the increase in Doppler spectrum width and turbulence
intensity only if SNR is more than °0, as determined
by expression (5). Fig. 1 shows the diagrams of the
mixture correlation factor r§ versus ¾V at different
values of noise power ¾n (here we set Ts = 0:001 s
and ¸= 0:03 m). Expression (5) can be used to find
the necessary noise factor and receiver sensitivity in
order to provide a required range of radar turbulence
detection.
The pulse-pair turbulence detection algorithm,

which measures the correlation factor of the
signal and noise mixture, should only be used in

measurements with SNR above the minimum value as
determined by expression (5). Actually, the pulse-pair
algorithm detects the decrease in the signal correlation
factor. Uncorrelated noise may cause significant
decorrelation in the received signal. It means that the
detection threshold should then be increased. It is this
circumstance that decreases greatly the efficiency of
the pulse-pair algorithm at low SNR values. This leads
therefore in a decrease in the range of turbulence
detection.
In practice, the measuring time is also a limiting

factor because the statistical characteristics of sample
estimates essentially depend on the number of
samples. An insufficient sample number limits the
reliability of any turbulence detection algorithm,
which requires that the consistent estimates of
informative parameters can be derived. The limited
measuring time has two negative influences: firstly,
it restricts the accumulation of signal power to
overcome a low SNR; secondly, it restricts the time
needed to obtain statistically valid estimates of
the correlation factors. This short analysis shows
that known methods of radar turbulence detection
are based on the measuring of physically clear
informative parameters. However, they do not provide
the required turbulence detection quality. The signal
processing algorithms in weather radars are usually
not optimal. For example, the pulse-pair algorithm,
which measures the correlation factor of the envelope
of the mixture of weather signal and receiver noise,
is not even an optimal (in any sense) estimate of
the correlation factor. The usage of such estimates
in weather radars is mainly based on tradition and
heuristic considerations. The algorithms built on the
physical considerations do not always perform best
for real-life situations. On the other hand, during
the development of an algorithm we are not so
much interested in the real physical processes, but
more in the information, which is derived from the
statistical correlation between the signal parameters
and the weather object characteristics. That is why
we formulate the problem in terms of a statistical
synthesis of turbulence detection algorithms.
The purpose of this paper is to improve and clarify

statistical models of the weather radar signal, and
to develop optimal algorithms for the detection of
dangerous turbulence in clouds and precipitation,
by using the adaptive algorithm synthesis theory.
Afterwards, the developed algorithms are compared
with known algorithms.

III. INITIAL MATHEMATICAL MODELS FOR
ALGORITHM SYNTHESIS

A spatial domain with hydrometeors consists of a
large number of drops or crystals. They are moving
randomly inside a single radar resolution volume.
The statistical parameters of this motion are related
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TABLE I
Classification of Turbulence

Degree of
Turbulence Negligible Weak Moderate Strong

¾V, m/c 0—1.5 1.5—3 3—4.5 > 4:5

to the characteristics of atmospheric turbulence in
a complicated way. In order to build turbulence
detection algorithms, one must first define the
mathematical models that connect signal parameters
to the turbulence parameters.
Such mathematical models should satisfy two basic

requirements: it should
1) give an adequate description of real physical
processes,

2) be a convenient analytical tool in the mathematical
synthesis.

These requirements are not always simultaneously
satisfied. Therefore the choice of mathematical
models is to some extent an art and is connected
to the mathematical style of à researcher. Our
goal is achieved if the efficiency of the developed
algorithm appears stable enough when certain critical
parameters in the models are varied within certain
limits. Otherwise, the obtained algorithms will be
applicable only to a narrow class of situations where
the mathematical models are adequate.
We use the rms value in the velocity spread ¾v

of turbulence as our primary quantitative turbulence
parameter. This parameter is used in turbulence
classification as defined in aeronautics [7], and
shown in Table I. The classes indicated in the table
correspond to those spatial scales of turbulence
(about 500 m) which have the greatest effect on
airplanes of intermediate size. The correlation between
the turbulence characteristics and the radar signal
parameters at the receiver output is used for radar
turbulence detection in clouds and precipitation. In
order to develop turbulence detection algorithms we
assume that:
1) the spatial and temporal random behavior of
scatterers is caused by turbulent motions of air,

2) the Doppler spectrum parameters are related to the
scatterer motions,

3) the larger the reflected signal power, the larger the
probability that turbulence is present in the cloud.

Based on these assumptions, we now establish the
models, which link the signal parameters to the
turbulence characteristics.
The reflected power P, received from an individual

scatterer, can be expressed by the basic radar equation
[5] and contains the radar parameters and the radar
cross section of the scatterer. The amplitude of the
resulting signal is a random variable. One amplitude
value measured at any instant t does not contain

practically useful meteorological information. This
is because the instantaneous signal, reflected from a
volume filled with chaotically located particles, can
exhibit a wide range of values. Therefore one usually
considers the average signal power P̄(td) reflected
from a resolution volume at distance R = ctd=2, with
td as the travel time. This means that the time of
averaging is much larger than the pulse repetition
period Ts.
Introducing the radar reflectivity Z, P̄ is

represented as

P̄ = C
Z

R2
jKj2, Z =

Z Dmax

Dmin

D6s N(Ds)dDs (6)

where C is the radar constant, jKj2 is a parameter
related to the refraction index of the scatterer
substance, and N(Ds) is the drop size distribution
with Ds being the diameter of the sphere equivalent
in volume to the nonspherical scatterer. Formula
(6) is correct under the condition of Rayleigh
scattering, which is applicable when the largest
drops have diameters significantly less than the
radar wavelength, i.e., Ds¿ ¸. This is true for
cloud/raindrops detected by radar with centimeter
wavelengths. More complicated formulas based on the
Mie theory should be used for radar with millimeter
wavelengths.
For constructing a model which connects signal

power parameters with turbulence parameters, we
processed the data obtained by radar “Emblema”
[8]. It was an X-band airborne noncoherent weather
radar with typical performance characteristics
(antenna beamwidth= 3:4 deg, pulse length= 1 ¹s,
pulse repetition period= 1 ms). The Z values
obtained during different experiments (about 700
measurements) were transformed and normalized
into voltages at 30 km distance. The variance ¾2

of the weather signals is proportional to the mean
power P̄, therefore the data processing allowed us to
estimate two random variables: the rms value of the
Doppler spectrum ¾V, and the rms value of amplitude
variations ¾, for different clouds. The statistical
processing has shown that the random values of
¾V and ¾ are dependent with a correlation factor of
about 0.5. The regression dependency between ¾V
and ¾ was constructed. The result obtained is in good
agreement with the data of simultaneous airplane and
radar measurements [1]. On average it means that, the
higher the variance in amplitude of weather echoes ¾,
the larger the variance turbulence movements ¾V. The
established linear regression line can be written as

¾2 = kR¾
2
V: (7)

Of course, this is just a functional relationship
between statistical parameters of random values but
not between the random values themselves. The
simple formula (7) will be used further as an initial
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Fig. 2. Typical ACF of echo signal from Cb (boxes) and its
approximation by Gaussian model (Dashed-dotted line) and

exponential model (dashed line).

model which represents the first group of informative
parameters as considered in Section II.
Now we connect ¾V with an informative parameter

of the second group. Traditionally, the Doppler
spectrum g(f) of signals reflected from meteorological
targets is given by a normalized Gaussian model with
a mean frequency f0 and a variance in the Doppler
frequency ¾2f . The power spectrum G(F) for the
amplitude detector at the fluctuation frequency F then
becomes [4]

G(F) =
Z 1

¡1
g(f)g(f+F)df =

2p
2¼¾F

exp
µ
¡ F2

2¾2F

¶
,

F ¸ 0 (8)

where ¾2F = 2¾
2
f . The normalized autocorrelation

function (ACF) ½(¿) is Gaussian as well [9,10] and
is given by

½(¿) = exp(¡2¼2¾2F¿2) = exp(¡4¼2¾2f¿2)

= exp
µ
ln(k) ¢ ¿

2

¿2k

¶
(9)

where ¿k is the correlation time at the level k (0< k
< 1).
A typical ACF result of experimental weather

echo measurements with a 3 cm airborne weather
radar is shown in Fig. 2. The experimental data
points were obtained by pulse-to-pulse registration
of reflected signals coming from cumulonimbus
clouds (Cb) in the Kiev region [10]. The dotted
line in this figure represents an approximate ACF
as modeled by a Gaussian curve with appropriate
variance. Using the same experimental data, the ACF
can also be approximated with other functions; e.g. by
an exponential curve, shown in Fig. 2 by the dashed
line.
A comparison in the Doppler frequency

domain has also been made. For this purpose, we
first approximated the experimental ACF by the
exponential and Gaussian functions. The obtained
two regression equations were used to generate
2m-element vectors of real data according to each of
the two approximations. Then the Fourier transform
of a 2m-element vector based on the fast Fourier
transform (FFT) algorithm was applied to calculate the

Fig. 3. Spectra calculated for Gaussian (dotted line) and
exponential (solid line) approximated ACF.

Fig. 4. Measured normalized fluctuation spectrum of echoes from
Cb approximated by rational function G(F).

spectrum estimates. Results are presented in Fig. 3.
We note that the spectra obtained with the exponential
and Gaussian approximations of ACF are rather
similar. It is interesting to compare these outcomes
directly with experimental estimates of spectral signal
densities coming from cumulonimbus clouds (Cb), as
measured in the Kiev region. In Fig. 4, the measured
normalized fluctuation spectrum of echoes from Cb is
approximated by the rational function:

G(F) = 1=(a+ bF2)

with a= 9:7883535, b = 0:0019557:
(10)

The Doppler spectrum width is related to the
correlation coefficient of successive reflections.
According to [5], the dependence between the
interperiod correlation factor of echo-signals and
the rms width of the Doppler velocity spectrum
is determined by formula (3). In the first-order
approximation, this equals a Gaussian spectrum [10]:

r = exp(¡8¼2T2s ¾2V¸¡2): (11)

For ¸= 0:03 m and two values of Ts, we compared
(3) and (11) in Fig. 5. The upper pair of curves meet
at Ts = 500 ¹s and the lower pair at Ts = 1000 ¹s; the
upper curve of each pair is calculated with formula
(11), and the lower curve is calculated with formula
(3). The outcomes show that formula (3) works well
with correlation coefficients close to one, that is,
at small values of ¾V and at small pulse repetition
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Fig. 5. Correlation factor r versus rms Doppler velocity ¾v:
calculation on models (3) and (11) at TS = 1000 and 500 ¹s.

periods Ts. Since we assume that this condition
is satisfied, we use (3) in the following. Together
with (7), the relationship between the informative
radar signal parameters and the weather object
characteristics has been described. For mathematical
convenience, we want to make use of the rational
approximation (10) for G(F). As is well known, such
a rational spectrum corresponds to an exponential
correlation function. We now describe the narrowband
process with the correlation function

B(¿) = ¾2e¡¯j¿ j cos!0¿ (12)

as a model of reflected radar signals coming from a
turbulent zone. The expression (7) yields the received
power variance; !0 is the radar carrier frequency. The
parameter ¯ can be calculated assuming a stochastic
process with a Gaussian correlation function or a
stochastic process with an exponential correlation
function that has the same correlation coefficients of
the quadrature components. From (3) we know that

¯ =¡ 1
Ts
ln
µ
1¡ 8¼

2¾2VT
2
s

¸2

¶
: (13)

For operational use we suppose that the new
algorithm for turbulence detection should work
with samples of the signal envelope after the linear
detector. In accordance with [15], the envelope of
a narrowband Gaussian process with correlation
function (12) is a Markovian process with correlation
function B(¿) = ¾2e¡¯j¿ j and with a conditional
probability density of the transition i¡ 1 to i

!(xi=xi¡1;r,¾
2) =

xi
¾2(1¡ r2) exp

"
¡ r

2x2i¡1 + x
2
i

2¾2(1¡ r2)

#

£ I0
·
rxixi¡1
¾2(1¡ r2)

¸
(14)

where r is the correlation coefficient of adjacent
readings. The n-dimensional probability density
function of samples x1, : : : ,xn of a Markovian process
is completely determined by the one-dimensional
probability density !1(x) and the conditional

probability density of the transitions according:

!n(x1, : : : ,xn;r,¾
2) = !1(x1) ¢

nY
i=2

!(xi=xi¡1;r,¾
2):

(15)
Substituting (14) and the Rayleigh distribution

!1(x) = x1=¾
2 exp(¡x21=2¾2) into (15), we obtain for

the multidimensional probability density function
of samples x1, : : : ,xn of the envelope readings of
reflections from a turbulent zone

!(x1, : : : ,xn;r,¾
2)

=
x1
¾2
e¡x

2
1=2¾

2
nY
i=2

xi
¾2(1¡ r2) exp

"
¡ r

2x2i¡1 + x
2
i

2¾2(1¡ r2)

#

£ I0
·
rxixi¡1
¾2(1¡ r2)

¸
xi > 0, i = 1, : : : ,n:

(16)

First the statistical model (16) together with (3) and
(7) will be used to synthesize the turbulence detection
algorithms and then the efficiency of the developed
algorithms is discussed.

IV. PARAMETRICAL ALGORITHM

The problem of detecting dangerous turbulent
zones can be formulated as testing the parametrical
hypothesis H1: dangerous turbulence is present against
the parametrical alternative H0: dangerous turbulence
is absent.
The logarithm of the likelihood ratio determines

the structure of the decision rule for the competing
hypotheses

¸(x1, : : : ,xn) = ln
·
!1(x1, : : : ,xn;¾1,r1)
!0(x1, : : : ,xn;¾0,r0)

¸
(17)

where !1(x1, : : : ,xn;¾1,r1) is the multidimensional
probability density distribution under the hypothesis
H1 and !0(x1, : : : ,xn,¾0,r0) is the multidimensional
probability density distribution under the hypothesis
H0. Substituting (16) into (17) and using the
approximation

I0(z)¼
ezp
2¼z

(18)

leads us to the algorithm

¸(x1, : : : ,xn) =
n¡1X
i=2

C1x
2
i +C2x

2
i¡1 +C3xixi+1 >Vp

(19)

where Vp is the threshold for the decision making, and

C1 = C21r
2
0 ¡C22r21 ; C2 = C21¡C22;

C3 = 2(C21r1¡C22r0); C21 = 2¾21(1¡ r21 );
C22 = 2¾20(1¡ r20 ):
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The pulse-to-pulse correlation of zones with
¾V < 2 m/s (considered as nondangerous zones) can
be calculated with (8) and (9); it results into r0 ¸ 0:94.
Zones with ¾V > 4:5 m/s (considered as dangerous
zones) are characterized by the correlation values r1 <
0:675. We choose for hypothesis H0 when ¾V = ¾0 =
1 m/s and for hypothesis H1 when ¾V = ¾1 = 4:5 m/s,
meaning that ¾1=¾0 = 4:5. For the above-mentioned
classification of turbulent zones (harmless versus
dangerous) we derive the quantitative values C1,C2,C3,
meaning that the parametrical algorithm (15) is fully
determined to be used in the analysis of all kinds of
input data.

V. ALGORITHM INVARIANT TO NOISE POWER

For a given reflectivity of clouds or precipitation,
the power of the echo signal depends on the distance
between the radar and the reflecting volume. In
order to assure a constant false alarm probability, the
threshold of decision-making Vp in the parametrical
algorithm (19) should be changed with distance.
Another way to stabilize false alarm probability
consists of applying various automatic gain controls,
which have to be fast and integrated either in the radio
frequency part or in the intermediate frequency part of
the receiver by means of logarithmic amplifiers.
This section leads to an algorithm for turbulence

detection which is invariant to the echo-signal
power. We start with the probability density function
and the likelihood ratio given in (16) and (17),
respectively. To synthesize a detection algorithm
that is invariant (with respect to signal power),
we consider the likelihood ratio for the competing
hypotheses averaged over all possible power values
of the parameter. In other words, we introduce

¸(x1, : : : ,xn)

=

Z 1

0

!1(x1, : : : ,xn,Ã,r1)dÃ

,Z 1

0

!0(x1, : : : ,xn,Ã,r0)dÃ

(20)
where Ã = ¾2 is the scale parameter that equals the
reflected signal power.
Substituting (16) into (20) and making use of

approximation (18), we derive the algorithm:

¸(x1, : : : ,xn) =
(1+ r0)

Pn
i=1 x

2
i ¡ 2r0

Pn
i=2 xixi¡1

1+ r1
2(1¡ r21 )

Pn
i=1 x

2
i ¡

r1
(1¡ r21 )

Pn
i=2 xixi¡1

>Vp: (21)

It can be proven that statistics ¸(x1, : : : ,xn) given by
(21) is monotonic in the variable

³ =
nX
i=1

x2i

,
nX
i=2

xixi¡1:

Therefore, algorithm (21) has also been satisfied when
we introduce the decision rule

nX
i=1

x2i

,
nX
i=1

xixi¡1 >V
0
p (22)

which is easier to use in applications.

VI. TWO-SAMPLE ALGORITHM INVARIANT TO THE
INTENSITY OF BACKGROUND SCATTERING

The invariant one-sample algorithm (22) is not
sensitive to the echo-signal power and only depends
on the correlation coefficient during turbulence
measurements. Additional information originating
from background (Earth surface) scattering or from
other fixed reflectors in the radar volume can be used
to construct the so-called two-sample decision rule.
Such an algorithm uses two samples: a signal sample
which contains the echo signal from a turbulent
zone and a learning sample y1, : : : ,yn, containing the
background echo signal only.
The hypothesis H0 specifies the situation in which

both the signal sample and the learning sample
belongs to the same distribution (16) with unknown
variance ¾2 and correlation coefficient r = r0. The
hypothesis H1 still assumes distribution (16) to be
valid, however, now with the variance ¾2c = ¾

2(1+ °)
and the correlation coefficient r = r1(°)< r0. Factor
° ¸ 0 determines the change in distribution (16)
resulting from the change from hypothesis H0 to H1.
In accordance with the generalized empirical Bayesian
technique [13, 14] the structure of the two-sample
decision rule may be written as

¸(x1, : : : ,xn,y1, : : : ,yn)

=

R1
0 !1(x1, : : : ,xn,Ã,r1)!0(y1, : : : ,yn,Ã,r0)dÃR1
0 !0(x1, : : : ,xn,Ã,r0)!0(y1, : : : ,yn,Ã,r0)dÃ

(23)
where ª = ¾2 corresponds to the reflected signal
power; !0 and !1 are the density distributions in the
hypotheses H0 and H1, respectively.
With (23) we may obtain an expression for the

two-sample algorithm ¸(x1, : : : ,xn,y1, : : : ,yn)>Vp with
Vp as threshold level.
Substituting probability density function expression

(16) into (23), including the values of informative
parameters ¾c and r in the corresponding hypotheses
H0 and H1, using (18), and executing the integration,
we finally may find the statistics of the two-sample
algorithm:

¸(x1, : : : ,xn,y1, : : : ,yn)

=
(1+ r0)(

Pn

i=1 x
2
i +
Pn

i=1 y
2
i )¡ 2r0(

Pn

i=2 xixi¡1 +
Pn

i=2 yiyi¡1)

C1
Pn

i=1 x
2
i +C2

Pn

i=1 y
2
i +C3

Pn

i=2 xixi¡1 +C4
Pn

i=2 yiyi¡1

(24)
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with

C1 =
1+ r1

2(1¡ r21 )(1+ °)
; C2 =

1+ r0
2(1¡ r20 )

;

C3 =¡
r1

(1¡ r21 )(1+ °)
; C4 =

r0
(1¡ r20 )

:

The turbulent zone can now be detected by
comparing the statistics ¸(x1, : : : ,xn,y1, : : : ,yn)
determined by (24) with the decision threshold Vp.

VII. COMPARATIVE ANALYSIS OF THE ALGORITHM
EFFICIENCY

The model of radar returns from turbulent weather
formations is based on principles defined in Section
III. Reflections from turbulent zones are characterized
by a narrowband random process, of which the
envelope is a Markovian random process with a
Rayleigh density of probability distribution and
exponential ACF. Dangerous weather formations are
characterized by an increased reflectivity factor and
stronger turbulence that result in an increase of the
signal power and widening of the Doppler spectrum.
The amplitude fluctuations are determined by the
variance of a Gaussian process at the input of the
detector and by the interperiod correlation coefficient
(pulse-to-pulse correlation) as described in (7) and (3),
respectively.
Assuming that at time t = ti the signal x(ti) consists

of an additive mix of receiver noise and reflections
from the turbulent zone, we can write

x(ti) =U(ti)cos(!0ti+')+ ´i (25)

where !0 is the carrier frequency, and ´i describes the
Gaussian noise. The envelope of (25) is a Rayleigh
distributed random value. For a statistical modeling of
the envelope of the signal, we write

xi =
q
(´1i+A(ti))2 + (´2i+B(ti))2, i= 1, : : : ,n

(26)
where ´1i, ´2i are Gaussian uncorrelated numbers
with zero mean and variances equal to the noise
variance, and A(ti) and B(ti) are the quadrature
components of the reflected signal. They represent
Gaussian processes with zero means and variances as
defined by (7). The correlation between successive
measurements of the quadrature components depends
on the rms of the turbulent velocity and is specified
by (3). Sequences A(ti), B(ti), i= 1, : : : ,n have the
correlation coefficient r and are determined (after
exponential smoothening) by

A(ti) = rA(ti¡1)+
p
(1¡ r2)´i cos'i

B(ti) = rB(ti¡1)+
p
(1¡ r2)´i sin'i

(27)

where ´i is a sequence of independent Rayleigh
numbers with the scale parameter ¾2´ = kR¾

2
v ; 'i is a

random phase which is distributed uniformly in the
interval 0 : : :2¼. This model is in good agreement with
the experiments.
A simulator tool which is capable of calculating

the efficiency of the turbulence detection has been
developed. The software contains two major blocks.
Block 1 generates echo-signal samples from turbulent
zones based on algorithms (26) and (27). Block
2 executes the signal processing, and implements
different turbulence detection algorithms according
to expressions (19), (21), and (24), as well as the
algorithm based on a direct evaluation of the sample
pulse-to-pulse correlation. The last algorithm used for
comparison and known as the pulse-pair algorithm,
and is widely applied in weather radars. For the
evaluation of pulse-to-pulse correlation, we use a
sample correlation coefficient calculated via

r¤ =
1
n

n¡1X
i=1

xixi+1¡
Ã
1
n

nX
i=1

xi

!2,
1
n

nX
i=1

x2i ¡
Ã
1
n

nX
i=1

xi

!2

:

(28)

Turbulent zone detection by the pulse-pair algorithm
is implemented by comparing the statistics (28) with a
decision threshold.
The detection characteristics are evaluated by

means of the Monte-Carlo method. The number
of trials for the construction of each point of the
detection characteristics is 10,000. The detection
threshold was set to provide the required value of
the false alarm probability F under the condition of
rms turbulence velocities, ¾V = 1 m/s. If ¾

2
n = 0:1 and

kR = 1, Fig. 1 learns that the pulse-pair algorithm can
give useful information starting from ¾V. This rms
level corresponds to negligible turbulence (Table I).
First, the simulation was done for large SNR,

¾2=¾2n À 1, and the noise influence can then be
neglected. Such conditions are typical for airborne
weather radar when it observes a cumulonimbus cloud
at the range R = 30 km as mentioned in Section III
for the radar “Emblema.” Under these conditions,
factor kR in (3) equals approximately 1 W¢s2=m2.
This simulation condition was chosen as a more
advantageous one for the pulse-pair algorithm,
because we can see in Fig. 1 that this algorithm loses
its efficiency at small SNR.
The reliability of turbulence detection was

calculated for different numbers of samples including
rather small ones, which is important for operational
weather radars particularly for airborne radars. The
following sample sizes have been adopted: N = 8,
16, 32, 64, 128. The detection threshold was set to
provide the given value of false alarm probability
under the condition of negligible turbulence: ¾V =
1 m/s. The following values of false alarm probability
were adopted: F = 0:1; 0.01; 0.001. We emphasize
again that the comparative efficiency analysis of
different algorithms was of primary interest in this
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Fig. 6. Curves of turbulence detection D at false alarm
probability F = 0:01 and sample size N = 16 in the case of

negligible receiver noise. Curve 1 corresponds to the pulse-pair
algorithm (28); 2, invariant algorithm (21); 3, adaptive algorithm

(24); 4, parametrical algorithm (19).

Fig. 7. Curves of turbulence detection probability D at false
alarm probability F = 0:01 and sample size N = 32 in the case of

negligible receiver noise.

research. The characteristics of turbulence detection D
are shown in Fig. 6 for the false alarm probability F =
0:01 and the sample size N = 16. Fig. 7 shows similar
characteristics for F = 0:01 and N = 32, and Fig. 8
for F = 0:001 and N = 32. Curves marked by number
1 show the efficiency of the pulse-pair algorithm
(28), curves marked by number 2 correspond to the
invariant algorithm (21), number 3 to the adaptive
two-sample algorithm (24), and number 4 to the
parametrical algorithm (19).
Each point on the curve of turbulence detection

characteristic D(¾V) determines the conditional
probability of rejecting hypothesis2 “H0: ¾V =
1 m/s” when the signal is affected by a turbulence
characterized by ¾V. Hence, such turbulence detection
characteristic D(¾V) enables us to determine the
conditional probability of accepting the hypothesis
“H1: ¾V =current value of ¾V.” The mark ¾

Th
V in Fig.

6(a) indicates (as an example) the threshold value
of the rms turbulent velocity, at which algorithm
(19) ensures a detection probability D = 0:8. Such
a threshold value ¾ThV can be determined at different
D, F, and N for each algorithm. In Fig. 9, the
relationship between the threshold value ¾ThV and
sample size N is shown at false alarm probability
F = 0:1 for all algorithms. The curves enable us to
determine the needed sample size at a given false
alarm probability F and threshold value ¾ThV for each
of the considered algorithms.

2The hypotheses accepted at the stage of synthesizing detection
algorithms should not necessarily coincide with those at the
simulation or under the operational conditions [15].

Fig. 8. Curves of turbulence detection probability D at false
alarm probability F = 0:001 and sample size N = 32 in the case of

negligible receiver noise.

Fig. 9. Threshold value ¾ThV versus sample size N at false alarm
probability F = 0:1 and the detection probability D = 0:9.

Fig. 10. Curves of turbulence detection probability D at
SNR= 20 dB (N = 16, F = 0:1).

Further, the efficiency analysis has been done
for the case where uncorrelated noise is present.
At the simulation of the echo-signal, uncorrelated
noise was added to the reflections from the weather
objects. The decision-making threshold was again
calculated for given false alarm probability F at a
negligible turbulence, ¾V = 1 m/s. The characteristics
of the turbulence detection D for N = 16, F = 0:1,
and different noise levels are shown in Figs. 10 and
11. The presence of uncorrelated noise requires
an increase in the decision-making threshold and,
accordingly, it decreases the efficiency of the detection
algorithms. Nevertheless, these results show that the
efficiency of the algorithms decreased much less than
that of the pulse-pair algorithm, which drops almost to
zero if SNR becomes 10 dB or less (e.g., ¾2n = 0:1 and
¾V = 1 m/s in (2) at kR = 1).
The algorithms (except algorithm (21), which

is invariant to power) take into account two
characteristics of the reflected signal: the power
and the pulse-to-pulse correlation factor. The
pulse-pair algorithm is sensitive only to changes in
the correlation factor. That is why it is very interesting
to study the behavior of the algorithms in case the
power (dispersion) of the reflected signal does not
contain any useful information about turbulence. The
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Fig. 11. Curves of turbulence detection probability D at
SNR = 10 dB (N = 16, F = 0:1).

Fig. 12. Detection probability versus rms turbulence velocity at
constant dispersion (power) of weather echo signal.

detection characteristics under constant dispersion of
weather echo-signals are shown in Fig. 12 for each
of the analyzed algorithms. These outcomes show the
comparative efficiency of different algorithms in case
model (7) is not valid. It means that an echo-signal
contains turbulence information only because of the
widening in the Doppler spectrum but not because
of an increase in the reflected power. Efficiency
analysis of the considered algorithms for such a model
illustrates that the new algorithms are more efficient
in comparison with the pulse-pair algorithm even if
turbulence does not influence the reflectivity factor.
This important result can be explained by the fact
that the structure of the new algorithms is based on
statistical synthesis. It uses the information contained
in the signal sample most completely, while the
statistics of the pulse-pair algorithm is not optimal in
this respect.
During the analysis, additional simulations have

been performed based on the quadratic conversion
of the envelope. Then the process is characterized by
an exponential distribution instead of the Rayleigh
distribution. In this case, superiority of the developed
algorithms was also shown. It means that the proposed
algorithms are effective even in case the signal
model differs from the initial models used in this
synthesis. Thus, the set of presented curves enables
us to evaluate the efficiency of the adaptive algorithms
(21), (24), and the parametrical algorithm (19) in the
detection of turbulent zones, and to compare them
with the widely used pulse-pair algorithm (28) under
different conditions.
The research results show that the parametrical

algorithm (19) is most efficient, followed by the
adaptive two-sample algorithm (24) and the adaptive
algorithm (21). All developed algorithms are more
efficient than the existing reference algorithm (28).

VIII. DISCUSSION AND CONCLUSION

The turbulence detection algorithms proposed
here have been synthesized as optimal ones. The
synthesis has been based on a new mathematical
model for radar signals reflected from turbulent
zones. The model developed here takes into account
two important kinds of signal modifications caused
by turbulence: changes in signal power and in the
spectral structure of the pattern after the envelope
detector. The change in the spectral composition
appears as a spectrum widening and therefore as a
decrease in the interperiod correlation coefficient.
Ultimately, the signal is described as a Markovian
narrowband random process with exponential ACF.
The use of this convenient mathematical model
together with a statistical synthesis technique of
optimum decision rules has led to new adaptive
algorithms for the detection of radar reflections from
turbulent zones.
Three new algorithms have been developed

here: the parametrical algorithm, which assumes
all statistical information known; the algorithm
invariant to noise power; and the adaptive two-sample
algorithm, which is invariant to the intensity of
background scattering. The developed mathematical
models and software enable us to analyze the
synthesized turbulence detection algorithms and
compare them with each other and with the known
pulse-pair algorithm. For the analysis of the algorithm
efficiency, the Monte-Carlo method was used.
The sequence of readings of the envelope of the
narrowband Gaussian random process that was
simulated corresponds well to experimental data.
The proposed new algorithms take into account

two features: power and correlation factor. The
pulse-pair algorithm uses a nonparametric estimation
of the interperiod correlation coefficient and leaves
out amplitude characteristics of the radio echo. The
sample correlation coefficient, which is practically
measured to implement the pulse-pair algorithm, is not
an optimal correlation factor estimate of the envelope
of the mix of weather signal and receiver noise. The
wide application of such an estimate is based mostly
on tradition and heuristics. Thus, it is natural that the
efficiency of the synthesized algorithms exceeds that
of the nonoptimum pulse-pair algorithm.
An important task of the analysis was to

compare all algorithms in the case when real
characteristics of the signal differ from the models
accepted in the synthesis. The analysis was done
under the following conditions: 1) various SNR
levels were used, including for the cases when the
condition of large SNR was not valid; 2) exponential
amplitude distribution was used instead of Rayleigh’s
distribution accepted in the synthesis; 3) the power
of the echo signal was determined independent of the
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turbulence intensity, that is, the power feature accepted
in the synthesis did not work.
The results of simulation assure that the proposed

invariant algorithms are always superior to the
pulse-pair algorithm. It is important to note that the
synthesized algorithms are also highly efficient when
the statistical model of the input signal is modified.
This has been confirmed by simulating the data with
Rayleigh or exponential distributions. Another positive
aspect of the new algorithms is that they are more
efficient than the pulse-pair algorithm even if the
power of the echo signal is completely independent
of the turbulence intensity.
The advantages of the new algorithms are

especially apparent at low SNR levels because
there the pulse-pair algorithm detects a decrease
of correlation factor, and uncorrelated noise causes
strong decorrelation of the received signal. It means
that the detection threshold must be increased in
order to get the same false-alarm probability. That
is why the efficiency of the pulse-pair algorithm
is reduced sharply if SNR equals 10 dB or less.
A similar phenomenon is characteristic for some
multiple target indicator (MTI) algorithms, which are
efficient only for large SNR (at comparatively small
distances). Thus, the outcome of this analysis shows
the high efficiency of the new algorithms. Each of
them ensures a higher efficiency in comparison with
known algorithms used already in weather radars,
especially for a small number of samples, which is
usual in practical circumstances.
Existing methods and tools for radar detection of

dangerous turbulence zones in the atmosphere show
insufficient performance. The reason for this is the
incomplete use of information contained in the echo
signal.
Simplicity of engineering realization, potentials

of high efficiency and improved noise stability of the
algorithms developed here promise wide applicability
in modern airborne and airport weather radars.
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