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Abstract

Deep Reinforcement Learning enables us to control increasingly complex and high-dimensional
problems. Modelling and control design is longer required, which paves the way to numerous in-
novations, such as optimal control of evermore sophisticated robotic systems, fast and efficient
scheduling and logistics, effective personal drug dosing schemes that minimise complications, as
well as applications not yet conceived. Yet, this potential is obstructed by the need for vast amounts
of data. Without it, deep Reinforcement Learning (RL) cannot work. If we want to advance RL re-
search and its applications, a primary concern is to improve this sample efficiency. Otherwise, all
potential is restricted to settings where interaction is abundant, whilst this is seldom the case in
real-world scenarios.

In this thesis we will study binary corrective feedback as a general and intuitive manner to in-
corporate human intuition and domain knowledge in model-free machine learning. In accordance
with our conclusions drawn from literature, we will present two algorithms, namely Probabilistic
Merging of Policies (PMP) and its extension Predictive PMP (PPMP). Both methods estimate the abili-
ties of their inbuilt Reinforcement Learning (RL) entity by computing the covariance over multiple
output heads of the actor network. Subsequently, the corrections are quantified by comparing the
uncertainty in what is learned with the inaccuracy of the given feedback. The resulting new action
estimates will immediately be applied as probabilistic conditional exploration. The first algorithm
is a surprisingly clean and straightforward way to accelerate an off-policy RL baseline and as well
improves on existing work that learns from corrections only. Its extension Predictive Probabilistic
Merging of Policies (PPMP) predicts the corrected samples. This gives the most substantial improve-
ments, whilst the required feedback is further reduced.

We demonstrate our algorithms in combination with Deep Deterministic Policy Gradient (DDPG)
on continuous control problems of the OpenAI Gym. We show that the greatest part of the otherwise
ignorant learning process is indeed evaded. Moreover, we achieve drastic improvements in final
performance, robustness to erroneous feedback and feedback efficiency both for simulated and
real human feedback, and show that our method is able to outperform the demonstrator.
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“He who learns but does not think, is lost! He who thinks but does not learn is in great danger.”

— Confucius





Preface

Delft, January 2019

In the year 1913, when Giacomo Balla painted the artwork "Automobile in Corsa", that covers
this thesis, his paint captured the spirit of the time. It was the same year in which the first mass-
produced car, the T-Ford, came into being. Many were astonished by the revolutionary innovations
that were rapidly changing society, and the repeated fragmented evocations of the car’s speed illus-
trate how the new technologies had an overwhelming effect on those who experienced them for the
first time.

Years later, the industrial revolution had disrupted the labour markets, there had been wars, and
the public faith in technology had turned down; it was no longer deemed solely a driving factor of
human progress. Sir Charles Spencer Chaplin phrased this disenchantment best: “We have devel-
oped speed, but we have shut ourselves in. Machinery that gives abundance has left us in want”. If
we again observe the painting, which illustrates the notion of speed, innovation, perplexity, and the
corresponding excitement so well, it occurs to me that these emotions are again broadly felt for the
current developments in data, learning, and artificial intelligence — the ‘digital revolution’.

With this work, I have developed my understanding of artificial intelligence. I have thereby as
well placed myself in the midst of contemporary discussion on what technology can bring us, and
what it could take. Concerns about privacy, labour, surveillance, the global monopolies... there are
many plausible directions in which machine learning can lead to disappointment, if we do not scru-
tinise, envision, and question current developments. Whereas I experience the same excitement as
Balla painted more than hundred years ago, I hope that I will not be naive. I hope that what I have
learnt allows me to better value tomorrow’s innovations, improve the discussion of it, and that these
innovations will end up in the right place.

J.J. Scholten
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1
Introduction

Many imagine a future with flawless autonomous driving where traffic fatalities belong to the past.
We expect intelligent drug dosing schemes that minimise adverse effects whilst personal robotics
alleviate the chores of our day-to-day life, or we could envision how goods and data are optimally
routed such that the planet is relieved from needless pollution and we are saved avoidable waits.

All of the above promises may one day be delivered upon by advances in technology in general
and artificial intelligence in particular. A key technique here is Reinforcement Learning (RL), an
autonomous learning paradigm where interaction is the driving force. Learning may start from
nothing: no models, no assumptions and no pre-programming. Being free from models or even
notions such as gravity, velocity or damage makes RL applicable to virtually any sequential decision
problem — this alone already makes it such an interesting technique. The algorithm operates by
collecting knowledge on the problem, that is perceived somehow (e.g. as sensor data or video),
manipulated by any means available, and reflected upon through a (given) performance measure.
As such, a RL agent is able to adjust its strategies when faced with modifications in the environment
such as a changing nature of the problem or new possible solutions. The RL approach suits control
and scheduling problems including those posed in the first paragraph, all of which have partial
solutions that are currently approached with RL1. Specifically interesting applications are those in
which model-based control design is inconvenient or even intractable, such as settings with high-
dimensional input/output spaces, or machinery subject to wear and tear (Kober et al., 2013).

In essence, reinforcement learning employs statistical principles to learn and as well as in statis-
tics, quality is driven by quantity. State-of-the art results on application of RL to computer games in-
deed require up to hundreds of million samples (Horgan et al., 2018). In real-world applications that
are constrained in interaction, either physically or time-wise, this requirement renders the problem
infeasible. So whilst the tabula rasa property makes RL a strongly generic technique, it meanwhile
poses a major weakness in its applicability. When we want to advance reinforcement learning re-
search and the application of it, a primary concern is to ease the restrictive need for interaction
(Rastogi et al., 2018).

In this work, we will counter poor sample efficiency by incorporating human insight in the RL
learning process, such that the ignorant learning stage is circumvented and the learning agent effi-
ciently attains desired performance. First, let us stipulate some man/machine differences and see
why human feedback is especially suitable for the desired acceleration of (deep) RL. In contrast
to autonomous learning algorithms, humans are very effective in identifying strategies when faced

1 Reinforcement learning was applied to robust autonomous driving by Ferdowsi et al. (2018). Treatment with optimal
drug schemes for HIV has been studied by Ernst et al. (2007), whereas Zhao et al. (2009) apply these techniques to dose
chemotherapy treatment of cancer patients. Robotics and reinforcement learning are discussed by Kober et al. (2013);
IFR (2017) and for the context of logistics we refer to Camhi (2018).
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Figure 1.1: A hypothetical illustration of how human insight relates to Reinforcement Learning in terms of
potential performance (this may of course vary wildly, depending on the problem). Although computers can
be faster and more precise, they need a lot of interaction with the problem before these advantages enter into
force. In this study, we aim to combine these properties and have the best of both worlds.

with new problems. As depicted in Figure 1.1, in many cases we achieve decent performance in the
first try despite having a poorer precision and reaction time (which may limit us in eventual perfor-
mance). Indeed, from the sample efficiency perspective, human and RL performance are comple-
mentary and incorporating human insight into a learning algorithm is a great way to alleviate one
of its major deficiencies.

Throughout this study we focus on continuous control problems and aim for a solution that is
scalable and applicable to a wide set of RL baselines in the rapidly advancing field. From these ob-
jectives we discuss the literature and then stipulate our understanding of how the combination of
RL and human feedback is best approached. These ideas materialise in two algorithms: Probabilis-
tic Merging of Policies (PMP) and Predictive Probabilistic Merging of Policies (PPMP). Both employ
binary corrective feedback as a general and intuitive manner to incorporate human intuition and
domain knowledge in model-free machine learning.

The methods estimate uncertainty in the policy, such that corrective feedback can be combined
directly in the action space as probabilistic conditional exploration. PPMP then extends on PMP by
predicting the corrected actions. This improves the memorisation of the obtained feedback, such
that it has greater effect for lesser corrections. This work is validated both with simulated feedback
(for consistent comparison) and actual human participants. For the performance assessment, we
use simulated continuous control benchmarks of the OpenAI Gym (Brockman et al., 2016). We will
see that the greatest part of the otherwise ignorant learning process can indeed be circumvented.
Next to the desired improvements in sample efficiency, our methods enhance final performance,
are feedback efficient and robust to erroneous feedback.

In the next chapter, we will discuss the background information and literature upon which this the-
sis builds. In Chapters 3 and 4 we introduce the two new algorithms. These are validated according
to the procedures described in Chapter 5. The results of these experiments are presented and dis-
cussed in Chapter 6, and this work than concludes in Chapter 7.

As additional results, we present scalability and sensitivity studies in Appendix A. Individual
results from actual human feedback are contained in Appendix B. This work has a accompanying
paper (Scholten et al., 2019, see Appendix C) that has been submitted to the 58th IEEE Conference
on Decision and Control (CDC).



2
Background and Related Work

This work is rooted in the fields of Reinforcement Learning (RL), Deep Learning (DL), and Interactive
Reinforcement Learning (IRL), of which the preliminaries are covered in this chapter. Section 2.1
will set out the principles of RL along with the concept of a Markov Decision Process (MDP) and
corresponding assumptions. Second, it is summarised how artificial neural networks can be used
as function approximators in Section 2.2. Section 2.3 discusses a combination of the two: the Deep
Deterministic Policy Gradient (DDPG) algorithm. Finally, Section 2.4 regards various aspects of hu-
man feedback, such as the existing work and developments, how it can accelerate RL and lastly the
imperfections that can arise when transmitting knowledge.

2.1. Reinforcement Learning

Reinforcement Learning is a branch of machine learning concerned with experience-driven and
autonomous problem solving. As opposed to model-based control approaches, the greater deal of
contemporary RL learns by trial and error, without any knowledge or assumptions on the problem at
hand (Sutton et al., 1992). The process starts tabula rasa and it is the experience that constitutes the
outcome of the learning process. As a corollary, RL is a very general solution that and furthermore
has the ability to preserve optimality of the policy in nonstationary situations (for example wear and
tear), in contrast to classic control theory (Kober et al., 2013, p. 1250).

Besides naming a class of algorithms, ‘RL’ also refers to the conventions of the problem these
algorithms aim to solve. Central to this framework is the Markov Decision Process (MDP) which
defines the quintuple (S ,A,T ,R,γ) (Watkins, 1989, Ch. 3). This set consists of state-spaceS , action-
spaceA, transition function T : S ×S ×A 7→ [0,1], reward functionR : S ×S ×A 7→ R and constant
discount rate γ (Sutton and Barto, 2018, p. 38). RL further defines the following concepts, with
reference to Figure 2.1:

Environment If one would explain the RL concepts with a board game as example, the environ-
ment would be the board, the playing pieces and the rules of the game. Formally, it constitutes
the setting of the problem by defining S , A and the probability distribution of ending up in
a new state s′: T (s′ | s, a) = P

(
sk+1 = s′ | sk = s, ak = a

)
. The environment is subject to time (in

this work we use discrete time-index k), and there may also be initial and/or terminal (final)
states s0 and s f .

Agent Controlled by the reinforcement learning algorithm, the agent interacts with the environ-
ment by deciding over possible actions a, given the state s of the environment. This provides
for a new state (possibly the same or terminal), and the agent obtains an immediate reward r .
The sequence of rewards is used by the agent to learn its optimal policy.

3
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Environment

Agent

 s, r  a
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time 
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Figure 2.1: The Reinforcement Learning framework defines interaction between agent and environment.
Based on the current state, the agent is to decide on an action that is optimal with respect to the reward it
obtains.

Markov Property A fundamental assumption in RL is conditional independency of the future with
respect to the past, given the current state and input sequence. In other words, all system-
dynamic information is contained in the state.

Reward Function The reward functionR(s, a, s′) returns a scalar value r , the instantaneous reward
that reflects how desirable the current situation is with respect to the problem at hand. The
ultimate goal of the agent is to maximise the accumulated discounted reward Rk =∑ke

i=k γ
i ri+1

with γ ∈ [0,1] being the discount rate and ke the end of the possibly infinite horizon.

Policy Policy π defines the probability of action a given the current state: π(s) = P(a = ak | s = sk ).
Loosely speaking, the optimal policy π∗(s) is the solution to the problem. It is possible to use
a deterministic policy instead of a distribution.

Value Function Future rewards are possibly stochastic and Rk thus uncertain. However, given pol-
icy π which is followed, it is possible to infer the expected return E[R] or value for every state
using the state-value function

V π(s) = E[Rk |π, sk = s]

= E
[ ∞∑

n=0
γr k+n+1

∣∣∣π, sk = s

]
.

Likewise, the expected return of a certain state-action pair may be represented by the action-
value function

Qπ(s, a) = E[R |π, sk = s, ak = a]

= E
[ ∞∑

n=0
γr k+n+1

∣∣∣π, sk = s, ak = a

]
.

For a great overview of the RL field, (Sutton and Barto, 2018) is recommended, whilst more spe-
cific topics are bundled by Wiering and Van Otterlo (2012). In Section 2.3, this writing discusses
DDPG, a specific algorithm for RL problems. First, let us elaborate about deep learning, a technique
adopted by DDPG.
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Figure 2.2: A Neural network (left) where arrows are weighed connections. Neurons (right) have a bias b.

2.2. Function Approximation with Neural Networks

Deep Learning (DL) is a field that studies function approximation, inspired by biological neural net-
works such as sensory neurons in the human eye that connect to the central nervous system and
possibly to motor neurons. It is the specific topology of interconnections that is central to the func-
tionality of the network. Different input can activate different regions and lead to a variety of inter-
pretations and reactions. Such functionality is roughly approximated in artificial neural networks,
where connections have weight w ∈ R and all connections to a neuron are summed with bias b ∈ R
(w and b are the network’s parameters). The resulting signal is saturated by means of an activation
function that allows the neural network to adopt great nonlinearities. As in biology, there are many
topologies. Most designs organise neurons in layers, where the layer size specifies the number of
neurons per layer and the network depth corresponds to the number of hidden layers. It is custom-
ary to coin all learning approaches with multiple hidden layers ‘Deep’. This study is concerned with
feedforward neural networks, i.e. neurons are only connected to subsequent layers, as in Figure 2.2.

Upon initialisation, the parameters of the network can be optimised to approximate a function
using available input-output data. This is called training, an iterative process where for each of N
input samples the predicted output ŷi is compared to the true output yi . Then the parameters are
altered to minimise a loss function, such as the mean squared error J = 1

N

∑N
i=1(ŷi − yi )2. The de

facto standard approach to this optimisation problem is to obtain a gradient by error backpropaga-
tion, a reverse computation (starting with the output error) respecting the chain rule. The weights
in the network are then updated according to wk+1 = wk −α ∂J

∂w (gradient descent). However, be-
cause training is sample-based, hence the gradient stochastic, it can cause for great variance. As a
countermeasure, it is commonplace to compute an average gradient over samples in a minibatch
(from the greater dataset), such that learning signals that generalise across the minibatch are re-
tained whereas individual errors can be cancelled. On the contrary, low variance may rise a second
problem in stochastic gradient descent: getting stuck in local minima. As a tradeoff, minibatches
are kept small (typically of size 64) (Lillicrap et al., 2016; Haarnoja et al., 2018).

Besides scheduling the training data, state-of-the-art solvers handle variance and local minima
by improving on gradient estimation. For example the family of adaptive moment estimation op-
timisers (Kingma and Ba, 2014) not only average the gradient over a batch but also over time. In
addition, the variance of the gradient estimate is accounted per parameter and inversely propor-
tional to this parameters individual learning rate. In effect, Adam downplays updates on parts of the
parameter space that have a fluctuating gradient and vice versa. An advantage for convergence is
the automatic annealing of the learning rate upon stabilisation of the gradient estimates.

In this study, neural networks are used to estimate knowledge about the problem. The next
section elaborates on this application by summarising DDPG, a seminal work in the field of deep
reinforcement learning for continuous actions.
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Actor

Critic
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Prediction loss, Eq. (2.1) 

Policy Gradient, Eq. (2.2) 

  

Figure 2.3: Schematic of an actor-critic agent that decides on action a by learning from s and r . The dashed
lines indicate how the critic updates both itself and the actor.

2.3. Deep Deterministic Policy Gradient

DDPG, as proposed by Lillicrap et al. (2016), is a popular algorithm that uses neural networks to learn
Q and π functions. The actor-critic architecture is derived from the Deterministic Policy Gradient
(DPG) method in conventional RL (Silver et al., 2014). In actor-critic learning, independently pro-
posed by both Konda and Tsitsiklis (2000) and Sutton et al. (2000), a value-function and policy are
learned simultaneously by the critic and actor respectively (see Figure 2.3). Whilst possibly con-
tinuous actions are efficiently obtained (line 5 in Algorithm 1) by a single evaluation of the policy
(in contrast, critic-only approaches require argmax sampling), the algorithm is still able to learn
off-policy, i.e., from transitions that do not necessarily adhere to the current policy (line 8).

Whereas the idea of adopting neural networks in RL is straightforward, the actual implementa-
tion is problematic because of instability (Tsitsiklis and Van Roy, 1997). As originally proposed by
Mnih et al. (2015), DDPG uses target networks and experience replay as countermeasures. Originating
back to 1992 (Lin), experience replay is a proven effective means of improving sample efficiency.
Samples, represented by quadruples (sk , ak , sk+1,rk+1), are stored and reused to learn recurrently
using a replay buffer (see line 7 and 8 of Algorithm 1). With respect to stability, experience replay is
especially helpful in deep RL because it breaks temporal correlation between samples.

Introduced by Mnih et al. (2015), the target network Q ′ acts as a copy of the Q-network that
is temporally frozen (exempt from updates). It allows to compute the TD-error more consistently
as the comparison is not compromised by the possibly high fluctuation of the online Q-estimates.
DDPG applies a ‘soft update’ θQ ′ ← τθQ + (1−τ)θQ ′

to establish tracking with a rate τ (lines 12 and
13). The same technique and notation is used for the policy network with parameters ψ.

The critic network is trained by minimising its prediction error (the mean square of the temporal
difference errors, line 10)

JQ = 1

N

N∑
i=1

(
ri +γQ ′

(
si+1,π′(si+1 |ψ′) | θQ ′)−Q(si , ai | θQ )

)2

where i is an index for the samples in the replay batch. The actor is trained with a gradient from the
critic (line 11), such that the policy is altered in the direction of increasing value:

∇ψ Jπ ≈ 1

N

N∑
i=1

(
∇aQ(s, a | θQ )

∣∣
s=si ,a=π(si ) ∇ψπ(s |ψ)

∣∣
s=si

)
. (2.1)
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Algorithm 1 Deep Deterministic Policy Gradient (Lillicrap et al., 2016)

1: Initialize:
Neural network parameters θQ ,θQ ′

,ψ,ψ′

Replay buffer B

2: for episode = 1 to M do
3: Initialize:

Ornstein-Uhlenbeck process ν

4: for t = 1 to T do
5: at ←π(st |ψ)+νt

6: Obtain st+1 and rt by executing at

7: Store transition (st , at ,rt , st+1) in B
8: Randomly sample N transitions (si , ai ,ri , si+1) from B

9: Compute target Q-values yi = ri +γQ ′
(
si+1,π′(si+1 |ψ′) | θQ ′)

10: Update θQ , minimising loss JQ = 1
N

∑N
i=1

(
yi −Q(si , ai | θQ )

)2

11: Update ψ using the sampled policy gradient:

∇ψ Jπ ≈ 1

N

N∑
i=1

(
∇aQ(s, a | θQ )

∣∣
s=si ,a=π(si ) ∇ψπ(s |ψ)

∣∣
s=si

)
12: Update target network of Q : θ′ ← τθ+ (1−τ)θ′

13: Update target network of π : ψ′ ← τψ+ (1−τ)ψ′

14: end for
15: end for

For exploration with temporal consistency, an Ornstein-Uhlenbeck (OU) process (a mean-reverting
random walk) ν is added to the action (line 5).

2.4. Learning from Human Feedback

Autonomous RL methods can be extended to learn from humans. Such methods, known as Inter-
active Reinforcement Learning (IRL), bring several benefits. Whilst regular RL is especially powerful
in fine-tuning performance (even beyond human abilities) these experience-driven methods lack
insight and require many more interactions than humans to learn (Mnih et al., 2015). The required
amount of training is especially restrictive in real-world applications (explained in Kober and Peters,
2012) and human feedback can help to overcome this problem (Suay and Chernova, 2011; Amershi
et al., 2014; Celemin et al., 2018). Subsequently, RL techniques can account for performance re-
finements, such that IRL benefits both from human insight, and responsiveness and precision of a
computer.

The next subsection categorises three ways to convey information from a teacher to a learning
agent. The discussion includes methods that learn from feedback only (without RL-parts), since
a great deal of IRL research is rooted there. Next, we will address the leading question of how to
combine the information from the feedback with the learning outcome of the agent, such, that the
whole is greater than the sum of its parts.

2.4.1. Obtaining Human Feedback
There are many ways to convey knowledge, and some are more informative than others depend-
ing on the situation. We will address three methods, sorted by general information richness. First
evaluative feedback, then preference-based feedback and finally corrective feedback.
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Evaluative Feedback
As evaluative feedback we consider the cases in which the feedback signal is scalar (h ∈ R) and re-
flects the quality of what is perceived. For example, one may intuitively provide feedback according
to a 5-star rating system (Vollmer and Hemion, 2017). Naturally, these approaches typically interpret
such feedback as reward, although we will later discuss that this might be suboptimal.

Since the introduction of evaluative IRL by Thomaz and Breazeal (2006), a breakthrough was
achieved by Knox and Stone (2009) who designed a general approach called Training an Agent Man-
ually via Evaluative Reinforcement (TAMER) — at the time not combined with RL but learning from
human feedback only. The main principle in TAMER is that human feedback is obtained as a scalar
value (similar to MDP reward), and modelled as a function of the state-action space: H :S×A 7→R.
This model is then learned. Innovations of the TAMER framework include integration with RL (Knox
and Stone, 2012), adoption of the actor-critic architecture (Vien and Ertel, 2012) and extension to
Deep Learning (Warnell et al., 2017).

An advantage of evaluative feedback is the intuitive and easy communication. This approach
is used in many robotic applications, e.g., León et al. (2011); Knox et al. (2013); MacGlashan et al.
(2017); Vollmer and Hemion (2017). However, the ease trades of with the richness of the informa-
tion, and the benefits scale poorly as problems become more complex (Suay and Chernova, 2011).

Preference-based Reinforcement Learning
In our categorisation we consider preference based RL as the case where a teacher selects the best
alternative between multiple state trajectories (Wirth, 2017) (it may as well be considered evalua-
tion). Discriminating between suggestions typically results in a better sample efficiency compared
to evaluative feedback using scalar signals, because it can be more informative and the information
can be related to a greater part of the policy. Indeed, recent work in this direction has proven its
effectiveness also for complex environments (Christiano et al., 2017; Pinsler et al., 2018).

From a practical perspective, disadvantages of this method are that it is ideally conducted as
side-by-side comparison, which requires simulation and segmentation. Furthermore, ambiguity
may arise for demonstrations with distinct suboptimalities and indifferent performance. Still, this
feedback is reported to be more robust than evaluative feedback (Pinsler et al., 2018).

Corrective Feedback
The third means of information transfer from teacher to agent discussed in this study is corrective
feedback, a signal in the action space. A paramount distinction compared to evaluative or preference
feedback is that the feedback now concerns what should happen (given the situation) rather than
what has happened. Corrective feedback is particularly suitable to update a policy in a continuous
action space. Conceptually, it allows for pruning of the search tree (space), as opposed to evaluative
feedback that rather concerns single nodes (points).

For a discussion on corrective feedback for discrete action spaces, we refer to Chernova and
Thomaz (2014, p. 59). Generalisation to a continuous action space was achieved by Celemin and
Ruiz-del Solar (2015a,b) who introduced the COrrective Advice Communicated by Humans (COACH)-
framework. COACH collects unitary feedback in the action-domain (h ∈ {−1,0,1} for all channels in
a) and learns a model that represents and generalises the feedback as a function of the state-space.

In line with the explanation of corrective feedback as a rich source of information, Celemin and
Ruiz-del Solar (2018) demonstrate how COACH outperforms regular RL, teleoperation and TAMER in
various continuous settings such as robot dribbling, and simulated bicycle balancing. Suay and
Chernova (2011) highlight how corrective feedback especially flourishes in larger problems, an ob-
servation experimentally verified in Celemin et al. (2018) also for continuous action spaces.

The freedom in providing corrections may become a difficulty when the action space grows
too large and/or the teacher becomes unfamiliar with the action domain. In such cases, mappings
between policy space and feedback space can be used (Celemin et al., 2018).
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2.4.2. Processing Human Feedback
Although there are different ways in which information from feedback and the learned policy may
be combined, it is in general not clear which method is most effective, or how the answer to this
question would depend on the different feedback formats. In literature this issue is not broadly
covered, with exemption of the two studies reviewed below.

Using evaluative feedback, Knox and Stone (2010) studied eight implementations that use a
model H(s, a) of the human reward (as in TAMER). Some directly alter the Q-function, or append
the signal to the feature vector in order to learn how the feedback should be processed. The best
results were found for what is later coined action biasing and control sharing. In action biasing,
ak = argmaxa Q(sk , a)+B(sk , a)H(sk , a) with B a tunable, decayed state-dependent scaling func-
tion. In control sharing, B is used to alternate between policies according to a stochastic approach
where P

(
a = argmaxa H(s, a)

)= min(B(s, a),1). Note that the two sources of knowledge are iterated
between and do not supplement each other: suggestions are followed regardless possible inconsis-
tency with what is already learned, and vice versa. Interestingly, both methods directly affect action
selection, and Q itself is not modified.

Building on these observations, Griffith et al. (2013) emphasise how human feedback is given
with respect to the policy, and indeed should affect action selection directly rather than learning
of value estimates. They propose to use distributional RL and derive the Bayes-optimal multiplica-
tion of policies: π∝ πRL ×πT, where the latter two policy notations represent conventional RL and
the teacher respectively. The probabilistic approach, they reason, is effective in handling uncer-
tainties of the received feedback. Using a synthetic oracle to simulate feedback and a consistency
estimate to cope with erroneous feedback, significant improvements in learning progress were re-
ported (comparing against action biasing and control sharing). These results have been recognised
by Cederborg et al. (2015), who verified them with actual participants.

A combination of RL and corrective feedback is proposed in Celemin et al. (2017, 2018), who map
corrective feedback to the feature space of an actor-only RL baseline, and use it as additive noise to
obtain an alternative policy that is consistent throughout the episode. Using policy-search (actor-
only) baselines, their method is able to learn motor primitives for swingup, drawing and bilboquet
problems.

2.4.3. Difficulties of Human Feedback
Whilst learning with human feedback can accelerate RL, it will also introduce certain flaws that stem
from human nature. An important problem can be feedback inconsistency (Griffith et al., 2013) as
a result of mistakes or a changing feedback policy. Furthermore, certain types of feedback (or ways
to provide it) may suit the teacher and/or problem better than others (Thomaz and Breazeal, 2008)
such that the feedback quality may be further compromised in case of a poor fit.

Accounting for inconsistent human feedback is done in various ways across literature. Peng
et al. (2015, 2016) process feedback with a bias for teacher personality (e.g. reward or punishment-
based). Griffith et al. (2013) increase robustness by means of a consistency estimate that adaptively
schedules the influence of the feedback, such that inconsistent information can be downplayed.
This strategy is adopted by Lin et al. (2017) in the context of a deep RL study.

Other distortions may arise in the form of extreme feedback values, presumably a result of hu-
man simplification when operating a slider (Senft et al., 2017). Furthermore, Vollmer and Hemion
(2017) discuss how people may have different feedback strategies or social inclinations, illustrated
with examples of people that intend to motivate the agent by giving extra reward. This optimistic
feedback resulted in premature convergence, whereas Thomaz and Breazeal (2006) studied a ‘guid-
ance’ approach that actually relies on such future-directed feedback. Last but not least, teachers
will be quiet allegedly 30% of the time (Cederborg et al., 2015), and this silence may mean different
things, and not necessarily optimality; the teacher could be inconclusive, neutral or simply dis-
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tracted.

2.5. Conclusion

In this chapter, the concept of the Markov Decision Process was established along with the Rein-
forcement Learning framework. In succession it was discussed how Deep Learning allows for gen-
eral function approximation and generalisation, and how this technique applies to RL by regarding
the DDPG algorithm. Next, it was discussed how (human) experience and insight may be carried over
to a learner online either by evaluative, comparative or corrective feedback (in increasing order of
information-richness and possibly combined). Whilst the first options are better researched, the lat-
ter is especially promising when applied to larger problems and continuous action spaces, because
corrective feedback contains most information in most situations. In addition, we have presented
evidence that it is most effective to apply human feedback in action selection. Last but not least,
it was argued that a distributional approach can be effective to cope with the uncertainties that
arise from the feedback, and moreover the errors and inconsistencies stipulated in the penultimate
section of this chapter.

Yet, a method that combines deep RL with corrective feedback does not exist, and that brings us
to the coming chapters.



3
Proposed Method 1:

Probabilistic Merging of Policies

We here establish the principles behind our work with the intention to answer the key question of
how human intuition is best used to improve the sample efficiency of deep Reinforcement Learn-
ing (RL) for continuous control problems. Central to this objective is our observation that humans
are very effective in identifying strategies and sometimes achieve decent performance even in the
very first try, but with limited precision, whereas computational agents have opposite properties —
complementary, in the light of efficient learning.

In Section 3.1, we stipulate the motivation of our approach with reference to existing literature.
In succession, Section 3.2 covers the realisation of these ideas by presenting the selector module, the
multihead actor network and a schematic overview. This chapter is concluded in Section 3.3.

3.1. Motivation and Related Work

Our method is founded on a set of insights as derived both from literature and our own view on
the matter. Partly, these propositions have been covered in the previous chapter. As illustrated in
Figure 3.1, we enumerate the following ideas for future reference

1. Action Selection After first evidence by Knox and Stone (2010, 2012), it later was Griffith et al.
(2013) who made a strong case for how feedback is given with respect to the action (sequence)
and it is most effective to directly adjust the actions in case feedback is obtained. In a compar-
ison against other evaluative feedback methods, their algorithm outperformed all baselines
that instead affect the actions indirectly by modification of the policy (Section 2.4.2).

2. Significant Error If we consider the early learning phase, where the policy is useless but the
feedback most valuable, we believe feedback is received in case of a significant error as to help
the agent develop a notion of the task rather than to communicate refinements. Moreover, we
argue that the instantaneous precision of feedback is rather coarse (instantaneous, as in con-
trast to feedback on steady-state error in a later learning phase). We quantify this limitation
by defining a precision d that expresses a region of indifference per dimension. d is used as a
radius, so in a 1D-example, let d = 1 and feedback h on policy ap = −1 thus only be given in
case the optimal action a∗ <−2 or a∗ > 0.

3. Reinforcement Learning for Fine-stage Optimisation Reinforcement learning is superior in
final performance because of its precision and reaction time (Mnih et al., 2015). From our

11
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Figure 3.1: Using respective covariances, the policy is combined with human feedback in the action space.
The resulting distribution on the action that is selected, is truncated such that corrections always have signif-
icant effect and the given information cannot dissipate in case of an overconfident policy.

point of view, it should therefore be allowed to autonomously optimise during the later learn-
ing phases, such that local optima are identified (e.g. using gradients) independent from past
feedback.

4. Probabilistic Approach In the words of Losey and O’Malley (2018): “When learning from cor-
rections ... [the agent] should also know what it does not know, and integrate this uncertainty
as it makes decisions”. We subscribe this point of view, and furthermore emphasise past suc-
cess of this principle in other fields (Thrun et al., 2005). However, whereas Losey and O’Malley
(2018) then estimate the uncertainty in the corrections, we consider feedback covariance fixed
(related to the precision d in Item 2, Significant Error) and argue that the correction size is
inversely proportional to the learning progress (performance) of the agent. We combine this
view with the work of Griffith et al. (2013), who proposed to combine the policy and feedback
distributions to determine the action.

5. Corrective Feedback In line with the discussion in Section 2.4.2, we choose to comply with
binary corrective feedback as a scalable, feasible and powerful input format that is especially
suitable for continuous action spaces (Celemin and Ruiz-del Solar, 2015b). Nevertheless, our
approach is ready for use with corrective feedback of any real number, so this proposition is
not restrictive, but merely a framework.

It immediately becomes apparent that some of these ideas align, e.g. that corrections are inaccu-
rate (2), but do not need to be accurate, since RL will efficiently identify local minima (3). However,
before connecting the dots, let us complete this motivation by stipulating the following assump-
tions:

1. Given the assumed area of indifference of Item 2 (Significant Error) expressed by d (Fig-
ure 3.1) the RL functionalities are able identify the local minimum within this area. In other
words, the Items 2 and 3 concern overlapping regions. As an implication, the global optimum
is attained if the feedback brings us anywhere close.

2. Over time, the magnitude of the error e between the policy and the optimal action will show
a diminishing trend.
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3. We are able to estimate the covariance of the policy online and this covariance will diminish
as the agent learns.

As a corollary of the above statements, we develop a learning method where actions are obtained
by significant modification of the policy with respect to obtained binary feedback, in a probabilistic
manner that reflects on the current abilities of the agent. A natural advantage of this approach is that
it preserves autonomy and optimality (Item 3, RL for Fine-stage Optimisation), as there will be no
feedback when the teacher deems the performance satisfactory (Assumption 2) and our approach
then recedes to its RL principles.

There is further evidence in literature that supports our approach at least partly but has not yet
been mentioned. In an autonomous (regular) RL study, Haarnoja et al. (2018) successfully combine
the probabilistic argument with vigorous (maximum entropy) exploration. The idea of using feed-
back as exploration is recognised by Nair et al. (2017) however their method requires full demon-
strations and post-processing these in simulation. Last but not least, Ngo et al. (2014) demon-
strate uncertainty-handling exploration for classification problems aided by binary human feed-
back. They show an improvement in sample efficiency, robustness to errors and that for negligible
extra computational costs.

3.2. Design

This section describes how the aforementioned ideas materialise in the learning algorithm that we
coin Probabilistic Merging of Policies (PMP). First, it is established how the feedback and policy
information is reconciled by comparing respective covariances. The second section covers how the
modified action selection process is incorporated in the complete learning framework. Last, we
discuss how to infer the policy covariance by means of a multihead neural network.

3.2.1. Combining Policy Information in the Selector
For the sake of this explanation, let us temporally assume a one-dimensional situation with non-
erroneous directional feedback h ∈ {−1,0,1} on current policy ap that indicates the relative location
of optimal action a∗ (observe Figure 3.1). In line with Item 1 (Action Selection), our approach is to
immediately alter the policy ap in the direction of h, such that the eventually selected action

a = ap + êh (3.1)

(the orange distribution in Figure 3.1) and ê being an estimate of the absolute error |ap −a∗|.
Inspired by the principles of the Kalman filter, we estimate the unknown magnitude of the error

using the covariance of the policy (the prediction) and the feedback (an observation) in a module
that we call the Selector. It is assumed that the greatest errors occur during the early stages of the
learning process, and these will diminish over time along with the covariance of the policy Σap ap .
With the covariance of the feedback Σhh as a known constant (Item 2, Significant Error), and Σap ap

obtained as described later in Section 3.2.3, let

ê =G diag(cs)+1cT
o (3.2)

with G =Σap ap (Σap ap +Σhh)−1

and 1 = [1,1, . . . ,1]T .

(see lines 8 and 9 in Algorithm 2) where the constant vectors c set the bounds on ê as described in
the last two paragraphs of this section.

Note that G ∈ (0,1) (all Σ are positive definite by definition) is analogue to the Kalman gain as a
dimensionless trade-off measure. When the policy shows great covariance the corrections will have
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Figure 3.2: Schematic representation of the suggested approach, where human feedback is combined with
the policy. The elements in the grey area constitute an autonomous learner.

greater effect and facilitate vigorous exploration, and the inverse: upon convergence, corrections
will be more subtle. Besides that the exploration is automatically annealed over time (Assump-
tion 3), its effect is furthermore state-dependent and tailored for every action channel, respecting
correlations.

The relation of G to ê is defined using two vectors, of which the length equals the dimensionality
of the action space. First, let us discuss offset co . With reference to Item 2 (Significant Error), a lower
bound on e in terms of the feedback and its precision d is expressed as e− = ap +hd . Moreover, for
the action selection in Equation (3.1) we may further restrict the search by using the fact that a is
guaranteed to be closer to a∗ than ap even if ê = 2d . By Assumption 1, it is therefore more efficient
to use this as a lower bound on ê, that is farther from ap . Setting co = 2d in Equation (3.2) realises
exactly this (see Figure 3.1). Apart from the optimisation perspective, it is always desired to apply a
significant correction in case feedback is provided. First, it will avoid frustration of the user. Second,
the information is not preserved otherwise.

The scale cs allows us to set an upper bound e+ for the applied corrections. From the perspective
of using human feedback as exploration, let us consider the case where the policy suggests some
negative action, and receives h = 1 since optimality is contained in the positive half of the action
space (Figure 3.1). Although we cannot make any general statements about the reachability of the
state-space, it is clear that feedback can only have the intended effect when ê is large, else there is
no escape from the wrong half of the action space.

3.2.2. Integrating the Selector with Autonomous Learning

The ideas established in the previous paragraph raise requirements for the eventual algorithm. The
probabilistic combination of the policy and the feedback results in off-policy data in a continuous
action space. As critic-only methods are suitable for a discrete action space whilst actor-only meth-
ods are on-policy, an actor-critic scheme remains as the evident choice.

Figure 3.2 illustrates how the policy of an actor-critic scheme is combined with human feedback
in the selector to obtain action a. It is assumed that the human provides binary feedback signals
h occasionally and bases this on the observed state sequence (and possibly the actions). Delays
between perception and feedback are not taken into account. The selector module adjusts ap with
respect to h as described in the previous paragraph. In case feedback is not provided (h = 0) the
algorithm relies on its own policy, including exploration noise. Autonomy is hereby preserved.

Next, let us see how an estimate of Σap ap is obtained by means of a multihead neural network.
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Figure 3.3: A multihead implementation of a neural network with K heads. We use index j to denote a
particular head.

3.2.3. Multihead Actor Network
The purpose of the multihead neural network is not only to estimate a quantity but furthermore to
estimate the covariance in this estimate. Gal (2016) has established that the uncertainty over a deep
neural networks output may be obtained from multiple passes with dropout1. Osband et al. (2016)
however report how, at least in the context of RL, a multihead neural network that maintains multi-
ple hypotheses is a more consistent approach to generate posterior samples than dropout. Whereas
in their study the purpose of the multihead network is to directly use the posterior for exploration
rather than to quantify confidence (as desired for our approach), Rupprecht et al. (2017) indeed es-
tablish how multiple hypotheses provide for accurate estimation of abilities in a deep learning clas-
sification problem. As it is furthermore desired to have efficient and scalable estimation2, we apply
the multihead architecture as discussed in Osband et al. (2016) to the actor network, according to
the schematic in Figure 3.3.

Effectively, the modification of a regular actor network to its multihead counterpart results in
K copies of the output layer that estimate the optimal action a j = π j (s | ψ), where j indicates the
head. For our Gaussian inference, we then estimate Σap ap as cov

(
π(sk |ψ)

)
(line 6 in Algorithm 2).

For the training, we establish an extension to Equation (2.1) that features individual values of ∇aQ
and ∇ψπ for each head. This sampled multihead policy gradient

∇ψ Jπ ≈ 1

N

N∑
i=1

(
Φ ∇ψπ(s |ψ)

∣∣
s=si

)

with Φ=


∇aQ(s, a | θQ )T

∣∣
a=π1(si )

∇aQ(s, a | θQ )T
∣∣

a=π2(si )
...

∇aQ(s, a | θQ )T
∣∣

a=π j (si )


T
∣∣∣∣∣∣∣∣∣∣∣

s=si

and π(s |ψ) =


π1(s |ψ)
π2(s |ψ)

...
π j (s |ψ)

 . (3.3)

The question remains how to determine the policy, needed both during action selection and
calculation of the temporal difference error. Note that the policies are possibly multimodal and in
such case averaging the individual policies is an unfortunate choice. For ap (line 5 in Algorithm 2)
we choose to randomly select a head je per episode such that temporal consistency is preserved.
For the training of the critic (line 13), the target policy π′

ji
(si+1 | ψ′) is evaluated for ji , the same

head as was used to predict ai .
Apart from providing for a uncertainty estimate, the functioning of the multihead implementa-

tion is no different than a regular actor network.
1Dropout, a regularisation technique, refers to the practice of randomly setting weights to zero with a small probability

(Srivastava et al., 2014).
2In Section A.2 of the appendices it is studies how the computational complexity scales with the amount of heads K .
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Algorithm 2 K -Head Probabilistic Merging of Policies (PMP)

1: Initialize:
Neural network parameters θ,θ′,ψ,ψ′

Replay buffer B
Feedback covariance Σhh

Scale cs and offset co

2: for episode e = 1 to M do
3: Initialize:

Ornstein-Uhlenbeck process ν
Randomly set active head je

4: for timestep k = 1 to T do
5: ap ←π je (sk |ψ)+νk

6: Σap ap ← cov
(
π(sk |ψ)

)
7: Obtain feedback hk

8: G ←Σap ap (Σap ap +Σhh)−1

9: ak ← ap + (
G diag(cs)+1cT

o

)
h

10: Obtain sk+1 and rk by executing ak

11: Store transition (sk , ak ,rk , sk+1, je ) in B
12: Randomly sample N transitions (si , ai ,ri , si+1, ji ) from B

13: Compute target Q-values yi = ri +γQ ′
(
si+1,π′

ji
(si+1 |ψ′) | θ′

)
14: Update θ, minimising loss JQ = 1

N

∑N
i=1

(
yi −Q(si , ai | θ)

)2

15: Φ← ∇aQ(s, a | θ)|s=si ,a=πn (si )∀n ∈ {1,2, ...,K }, see Equation (3.3)
16: Update ψ using the sampled multihead policy gradient:

∇ψ Jπ ≈ 1

N

N∑
i=1

(
Φ ∇ψπ(s |ψ)

∣∣
s=si

)
17: Update target network of Q : θ′ ← τθ+ (1−τ)θ′

18: Update target network of π : ψ′ ← τψ+ (1−τ)ψ′

19: end for
20: end for
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3.3. Conclusion

In this chapter the foundations of our approach have been established and they were connected to
existing work. We have established five founding ideas that concern 1) application of feedback in the
action domain 2) the magnitude of corrections during the early learning phase 3) the strength of RL
for final performance and autonomy 4) the advantage of using uncertainty when reconciling policy
information and 5) binary corrective feedback as an intuitive, effective and scalable format. The
realisation of this idea was motivated with sections on probabilistic action selection in the selector
module, obtaining policy covariance by means of a multihead neural network and a section on the
complete interconnection. In conclusion, the content of this chapter constitutes a promising and
very general idea to accelerate RL problems by means of feedback, along with an implementation
that is straightforward and computationally efficient.

What was covered in this chapter will be extended in the next, where a module is introduced
that explicitly stores corrected state-action pairs.





4
Proposed Method 2:

Predicted Probabilistic Merging of Policies

The previous chapter introduced a general method called Probabilistic Merging of Policies (PMP)
that improves the sample efficiency of deep Reinforcement Learning (RL) in continuous control
problems. The method uses human corrective feedback to affect action selection and than stores
past interaction in a buffer to learn from it. Ironically, the originally poor sample efficiency of DDPG
may in this approach also impede the proposed solution to it. When feedback is only contained in
a small subset of the interaction stored in the buffer (this is true when the feedback rate is low) its
effect is limited, as in deep learning single samples deliberately have little effect. The fundamental
instability problem (Tsitsiklis and Van Roy, 1997) will otherwise cause divergence.

In this chapter, we propose a method to generalise the obtained feedback and reuse it during
learning. This second algorithm, coined Predictive Probabilistic Merging of Policies (PPMP), engages
a copy of the actor network (assuming its architecture and hyperparametrisation is the best known
choice) that predicts the corrected actions. Under the assumption that the feedback source’s un-
derlying policy is not subject to change, a rough estimate of corrections is now available for every
state, even when feedback is not provided. Following the argumentation of the previous chapter,
this rough estimate is exactly what we need to improve sample efficiency.

First, the design is explained Section 4.1. In Section 4.2 the consequences of applying what
is predicted whilst predicting what is applied are discussed. Section 4.3 concerns the difference in
quality between the policy and the corrections, and how the respective performances crossfade over
time. Section 4.4 covers the solution to the problems explained in its preceding two sections. The
conclusion of this chapter is found in Section 4.5.

4.1. Design

The proposed architecture featuring the predictor P (s | φ) is illustrated in Figure 4.1, and the pseu-
docode is contained in Algorithm 3 with the elements from PMP printed in grey. The predictor has
parameter set φ and it is trained with corrected samples from a separate buffer Bc (line 25). Now,
there are always two actions available before possible corrections are applied:

1. the policy ap from the actor (line 8)

2. the predicted corrected action âc from the predictor (line 9).

The critic decides which actions is to be executed, and this action is labelled as aQ (line 10). Before
providing the details of this substitution, that allows us to reap the harvest of predicted corrections,
two problems that this new module causes need to be addressed.

19
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Figure 4.1: A schematic representation of Predictive Probabilistic Merging of Policies (PPMP), where the pre-
dictor module lessens the required amount of feedback by predicting corrected samples âc . The critic then
chooses either ap or âc . Human feedback may then be given with respect to this choice aQ and is is again the
selector that then computes the eventually executed action a.

4.2. Failure Caused by Prediction

A naive implementation of the PPMP scheme as presented in the previous section would be to take
action âc ‘greedily’ at every step in the early learning stage. As a corollary, the data in the experience
buffer Bc would then solely consist of samples that adhere to the predictor policy P (s |φ) (disregard-
ing prediction error). Note that this policy is a generalisation of little data, namely the the corrected
samples only.

As clearly established in the work of de Bruin et al. (2015), training on uniform data from a sta-
tionary policy destabilises the learning in an off-policy framework. Moreover, this shortcoming
seems to specifically concern policies with consistent performance, as these cause for small vari-
ation in the replay buffer. The authors reason about overfitting because of the strongly correlated
data. In addition, we suspect that the Adam optimiser (Kingma and Ba, 2014) may become over-
confident in its gradient estimate (the variance in the sampled gradients drops when the estimates
are consistent) and raises at least some of its adaptive learning rates to an unstable value.

The aforementioned problem has been very apparent in the development of PPMP. Although it
is possible to have great performance from the start by maximal utilisation of âc , this approach is
very prone to divergence, although it typically recovers soon once some data of the unstable pol-
icy is collected. As we deem it more desirable to have an approximately monotonically increasing
performance curve, it is needed to address the decision making between ap or âc .

We introduce three countermeasures that address the variance issue. From our experiments
we conclude that it is essential to collect data with a random or pristine policy (e.g. solely the OU-
process, or the actor right after random initialisation). Therefore, as a first but partial solution, we
enable the predictions in line 9 only after a first training split of NP samples is collected. It is however
still required to alternate between predictions ap and âc after this ‘cold-start’. We will address this
decision in Section 4.4, after discussing a second countermeasure here, and a second problem with
the use of âc in the next section.

The aforementioned problem is furthermore countered and partly overcome by injecting noise
in the predicted corrected sample, thus a = âc +N (0,σâc ), withN being a Gaussian random vector
centred around zero. This noise may be related to the resolution d and the fact that âc has never
been more than a very noisy estimate (Item 2, Section 3.1), such that additive noise rather restores
the original distribution than disturbing it. Our primary concern however is to alleviate the variance
problem in the experience buffer, and for this it is sufficient to have a constant value as a tuning
parameter. We set σâc per channel, defined as a fraction of the action range. Alternatively, this
can be thought of as local system identification using Gaussian noise, as commonplace in system
identification literature (Verhaegen and Verdult, 2007).
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4.3. Transcending Performance Limitations

Another adverse effect of taking âc is that over time, the policy will perform favourably as the quality
of the estimated corrections is limited. In addition, the quality of the feedback source may fall short
of what is attainable with RL. While in the previous section it was argued that the predictor should
be disabled in some of the early learning steps, we here conclude that the influence of the feedback
again needs to be scheduled away during the later learning phases.

Griffith et al. (2013) anneal the influence of the feedback model by means of a hyperparameter.
Although their and our method both account the covariance of the policy, the authors reason that
this estimate can converge too quickly and the scheduling needs to be accomplished otherwise.
However, from our point of view and the experience of designing an annealing schedule, the choice
of annealing heuristic greatly affects the learning curve. When the predictor is disabled too early, the
actor may cause for a setback in performance. In contrast, retaining the noisy corrected estimates
for too long will suppress performance even though a more optimal policy has become available.
The exact intersection is eventually completely dependant on the environment and the feedback
given (both quantitatively and qualitatively). Hence, manually tuning for the optimal tipping point
is not a great solution, and possibly even infeasible in case of high-dimensional problems.

Another approach is to train the predictor on a mixture of data, as Vecerík et al. (2017); Nair et al.
(2017) do with the actor. It would allow the prediction module to converge to the policy over time.
However, there is a different discrepancy in this approach, as it is as well the task of the predictor to
suggest something that is significantly different from the policy. Especially during the first stages of
learning mixing in policy data is therefore of great adverse affect to the prediction quality. Since this
is the time where the predictor is needed, we do not subscribe to this approach — not to mention
the sampling heuristics that become quite involved (Vecerík et al., 2017).

Our solution to the sampling problem uses value estimates as a general solution that does not
require domain knowledge. It is treated in the next section.

4.4. Scheduling the Predictions using the Q-Filter

In the previous two sections it was discussed why it is needed to rely only partially on the estimates
âc provided by the predictor, namely to prevent overfitting and to retain autonomy and optimality
upon convergence. We accomplish the required scheduling by applying a Q-filter (Nair et al., 2017)
that selects actions based on their expected value, and so kill two birds with one stone. Setting
ak = argmaxa Q(s, a)|s=sk ,a=πn (sk )∨a=âc is the most fruitful heuristic to interleave a with âc and more-
over automatically fades the control towards the policy upon its convergence (line 10). We have
experienced that the performance using the Q-filter is greater than the sum of its parts, presumably
because the relative optimality of either policy, at a given time, depends on the state in which it is
evaluated, such that ε-style selection violates temporal correlation of preference.

There is however one hitch in the application of a Q-filter, being that the critic needs to be
learned first. As a corollary, the first stage of the learning does not benefit from the predictions
to the fullest extent, as these predictions are at that stage often unjustly rejected. Although the re-
sulting suboptimality may be acceptable, in this study we particularly aim to improve performance
during the earliest learning stage in order to demonstrate the potential of corrective feedback. For
that matter, we may also exploit the fact that the critic converges faster than the policy (Konda and
Tsitsiklis, 2000; Grondman et al., 2012) and it is advantageous to enable the Q-filter only after a
certain amount of training (and until then rely on the predictor). This amount is defined as a hy-
perparameter NQ > NP , and it is emphasised that the difference in convergence speed between the
critic and the actor offers a wide range in which this number is successfully set — in contrast to the
aforementioned heuristics. We provide a hyperparameter study in Appendix A.1.
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Algorithm 3 K -Head Predictive Probabilistic Merging of Policies (PPMP)

1: Initialize:
Neural network parameters θ,θ′,ψ,ψ′,φ

2: Replay buffers B and Bc

3: Feedback covariance Σhh

4: Scale cs and offset co

5: for episode e = 1 to M do
6: Initialize:

Ornstein-Uhlenbeck process ν
Randomly set active head je

7: for timestep k = 1 to T do
8: ap ←π j (sk |ψ)+νk

9: âc ← P (s |φ)+N (0,σa)
10: aQ ← argmaxa Q(s, a)|s=sk ,a=ap∨a=âc

11: Obtain feedback hk

12: if hk then
13: Σap ap ← cov

(
π(sk |ψ)

)
14: G ←Σap ap (Σap ap +Σhh)−1

15: ak ←aQ+(
G diag(cs)+1cT

o

)
h

16: Store (sk , ak ) in Bc

17: end if
18: Obtain sk+1 and rk by executing ak

19: Store transition (sk , ak ,rk , sk+1, je ) in B
20: Randomly sample N transitions (si , ai ,ri , si+1, ji ) from B

21: Compute target Q-values yi = ri +γQ ′
(
si+1,π′

ji
(si+1 |ψ′) | θ′

)
22: Update θ, minimising loss JQ = 1

N

∑N
i=1

(
yi −Q(si , ai | θ)

)2

23: Φ← ∇aQ(s, a | θ)|s=si ,a=πn (si )∀n ∈ {1,2, ...,K }, see Equation (3.2)
24: Update ψ using the sampled multihead policy gradient:

∇ψ Jπ ≈ 1

N

N∑
i=1

(
Φ ∇ψπ(s |ψ)

∣∣
s=si

)
25: Randomly sample N transitions (si , ai ) from Bc

26: Update φ, minimising the loss J P = 1
N

∑N
i=1

(
P (si |φ)−ai )

)2

27: Update target network of Q : θ′ ← τθ+ (1−τ)θ′

28: Update target network of π : ψ′ ← τψ+ (1−τ)ψ′

29: end for
30: end for
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4.5. Conclusion

This chapter introduced Predictive Probabilistic Merging of Policies (PPMP), a method that extends
the the PMP algorithm by predicting the corrected samples in order to relieve the need for feedback
and ease the user’s efforts. Along with the design, we reflected upon two issues raised by the pre-
dicted corrections, namely 1) a lack of variance in the experience buffer and 2) the falling behind
of performance when not scheduling back to the policy upon its convergence. Subsequently, we
proposed to delay the predictor module, inject little noise and schedule between predictions and
the policy by regarding the Q-value of the estimates. With these three simple countermeasures,
the two problems are overcome. After an explanation of our experiments in the next chapter, the
performance of the two algorithms is presented in Chapter 6.





5
Experimental Setting

The proposed algorithms PMP and PPMP will be compared to two benchmarks in the field of deep
learning. The first reference implementation is DDPG, the deep RL method that this study builds on
(Lillicrap et al., 2016). DDPG is a regular RL algorithm that learns from MDP reward only. The second
baseline is Deep COrrective Advice Communicated by Humans (DCOACH) (Pérez Dattari et al., 2018).
DCOACH learns from binary corrective feedback, regardless of MDP reward. This chapter covers how
this comparison is realised.

First, in Section 5.1, the technicalities of our implementation are described. Subsequently three
continuous control problems from the OpenAI Gym (Brockman et al., 2016) are introduced that
will be used to validate our approach. In Section 5.3 it is discussed how synthesised feedback is
constructed as a consistent means to study the performance of the methods subject to feedback.
Thereafter, the experiments with human participants are motivated in Section 5.4. This chapter is
brought to a close in Section 5.5.

5.1. Details of Implementation

Our source code is publicly available at github.com/janscholten/ppmp. The training of Q and (mul-
tihead) π networks follows the work of Lillicrap et al. (2016), except for the multihead extension pre-
sented in Section 3.2.3. For the critic, a neural network is used with two hidden layers of size 400
and 300, where the actions are included at the second layer. The activation functions of the critic
network are rectified linear units (Glorot et al., 2011). The actor is implemented using the multihead
approach described in the previous section, again with two hidden layers of size 400 and 300 respec-
tively. There are ten output heads that have hyperbolic tangent activation, such that the actions are
delimited within their bounds. The other activation functions in the actor network are again rec-
tified linear functions. For all networks except the predictor (Section 4.1) we have target networks
with soft updates as discussed in Section 2.3, and we train with the Adam optimiser of Kingma and
Ba (2014).

5.1.1. Probabilistic Merging of Policies

The lower and upper bounds of the corrections are defined by setting parameters d and cs to 1
8 and

1
2 as a fraction of the complete action space (per channel), just as in Figure 3.1. These settings will
result in great perturbations on the policy. We refer to Section 3.1 to emphasise that this is indeed
desired.

Other hyperparameters are provided in Table 5.1.
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Table 5.1: The hyperparameters of Probabilistic Merging of Policies (PMP).

Description Symbol Value
Actor and Critic Network
Actor learning rate αa 1 ·10−4

Critic learning rate αc 2 ·10−3

Buffer size 1e6
Minibatch size N 64
Discount rate γ 0.99
Number of heads K 10
Initial variance (critic) 3 ·10−3

Initial variance (actor) 1 ·10−3

Target network mixing factor τ 3 ·10−3

Hidden layer sizes 300, 400
OU-Process standard volatility σOU 0.3
OU-Process damping θOU 0.15
OU-Process timestep ∆t 0.01
Environment
Maximum length of episode 1000
Maximum number of episodes 200
Action Selection Module
Resolution (fraction of action space) d 0.125
Scale factor (fraction of action space) cs 0.5
Feedback variance Σhh 1 ·10−9
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Table 5.2: The hyperparameters of Predictive Probabilistic Merging of Policies (PPMP).

Description Symbol Value
Neural Networks
Critic learning rate αc 2 ·10−3

Actor learning rate αa 1 ·10−4

Predictor learning rate αp 5 ·10−4

Buffer size (Actor and Critic) 1e6
Buffer size (Predictor) 1600
Minibatch size N 64
Discount rate γ 0.99
Number of heads (actor) K 10
Initial variance (Critic) 3 ·10−3

Initial variance (Actor) 1 ·10−3

Initial variance (Predictor) 1 ·10−3

Target network mixing factor τ 3 ·10−3

Hidden layer sizes 300, 400
Other
OU-Process standard volatility σOU 0.3
OU-Process damping θOU 0.15
OU-Process timestep ∆t 0.01
Environment
Maximum length of episode 1000
Maximum number of episodes 200
Selector and Predictor
Resolution (fraction of action space) d 0.125
Scale factor (fraction of action space) cs 0.5
Prediction variance (fraction of action space) σâc 0.025
Feedback variance Σhh 1 ·10−9

Cold-start samples NP 1500
Q-filter enabling samples NQ 4000

5.1.2. Predicted Probabilistic Merging of Policies

PPMP is implemented as much as PMP in order to allow for a fair comparison. Correspondingly, this
section only discusses the differences between the two algorithms. Details of the shared properties
are found in the previous subsection.

The predictor module P (s | φ) with parameter set φ is implemented in the same way as the
policy, as they have a similar function there is no reason to choose a different architecture (except for
the number of heads, which is one for the predictor network). The predictor is trained to minimise
prediction loss on data from its buffer Rc which contains corrected state-action pairs.

To control the variance in the replay buffer, we set NP to 1500 samples and σâc to 0.025 as a
fraction of the action space (per channel). With the batch size still at 64, this guarantees a significant
split of training data recorded at poor performance, a necessity in learning. The Q-filter is enabled
after NQ = 4000 samples. Other hyperparameters are found in Table 5.2
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Figure 5.1: From left to right, impressions of the Pendulum, Mountain Car and Lunar Lander environments
from the OpenAI gym Brockman et al. (2016). The respective goals in these underactuated problems is to
swingup and balance, drive up the mountain and gently land between the flags. The continuous actions are
always penalised such that efficiency is incorporated in the objective.

5.2. Benchmark: the OpenAI Gym

The OpenAI Gym, a project by Brockman et al. (2016), allows for standardised comparison between
RL algorithms by means of simulated problems. For the algorithms proposed in this work, we use
three continuous control environments in 2D.

5.2.1. Underactuated Inverted Pendulum
As a classic example from control theory, the first environment is the inverted pendulum problem,
depicted on the left in Figure 5.1. More specifically, we consider the Pendulum-v0 implementation.
From a random initial condition, the goal is to swing the pendulum to its unstable (upright) equilib-
rium and keep it there. This objective is reflected upon in the reward function by quadratic penali-
sation of both displacement from the equilibrium (position and velocity) and the applied torque. As
a corollary, the return is at most zero, but typically less because of the ‘cost to go’, i.e. the necesarry
control penalty for an optimal transition to the upright equilibrium.

The observations s consist of Cartesian coordinates that define the position of the pendulum’s
tip along with the angular velocity. There is one action applied, of which the magnitude is con-
tained in a symmetric and bounded interval centered in 0. The maximal torques insufficient to
directly steer from the stable to the unstable equilibrium, such that the agents needs to learn a
swing-up technique along with the stabilisation. In the Pendulum problem, an episode always lasts
200 timesteps.

5.2.2. Mountain Car
The Mountain Car problem, depicted in the middle of Figure 5.1, comprises a car that needs to
build up momentum in order to drive up a hill — again, an underactuated control problem, with
a track record in the IRL field (Celemin and Ruiz-del Solar, 2015a; Knox and Stone, 2012). Here,
the MountainCarContinuous-v0 version is considered. The Mountain Car’s state space consists of
position and speed. The action space is of size one, as the car is controlled by a (reverse) driving
force only. When the car reaches the flag, the episode is over and 100 reward points are obtained,
discounted by the cumulative squared action. Initialisation is with zero velocity and a random po-
sition in the valley.

5.2.3. Lunar Lander
The rightmost impression in Figure 5.1 is of the Lunar Lander problem, where a space pod needs
to be flown from the top of the screen to the landing pad situated between the flags. The pod is
controlled by means of a main engine (a rocket firing downwards) and two steering rockets on either
side. The rockets are only engaged above 50% power, and the two steering rockets are controlled
with a single action value to enforce that the signals are perpendicular. In effect, the action space
is of size two. The state space is of size eight. It consists of positions, angle, velocities and Boolean
values for leg contact. For proper navigation from the top of the screen to the landing pad between
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100 and 140 reward units are achieved. Fuel is infinite, but usage is discounted. Gently coming to
rest adds 100 points whereas a crash costs 100. In either case, the episode is over.

5.3. Synthesised Feedback

As stipulated in Section 2.4.3, human feedback raises non-reproducible inconsistencies (and train-
ing effects) which hinder effective comparability across implementations. As is commonplace in
the field of IRL (Knox and Stone, 2012; Griffith et al., 2013; Christiano et al., 2017; Pinsler et al., 2018;
Celemin et al., 2018), we employ synthesised feedback to eliminate these distortions from the even-
tual comparison.

The artificial corrections are obtained by comparison against a reference policy (or ‘oracle’) and
regarding the difference. If the difference exceeds a threshold, a correction is given in the direction
of the oracle’s policy. For our algorithms, we set this threshold equal to the assumed feedback preci-
sion d . For the experiments with DCOACH, the performance would be unfairly hindered by applying
an assumption that the authors do not make, so the threshold is omitted. To control the feedback
rate, a feedback probability is annealed. The exact amount of feedback however depends on the
abilities of the agent, and in case all actions are within distance d of the reference policy, no feed-
back is given regardless the feedback probability. The error rates of the erroneous feedback cases
were implemented as the chance that a correction has opposite sign, analogue to a human that
presses the wrong button. This approach is adopted from Celemin et al. (2018).

5.4. Human Feedback

In order to test the applicability to actual human feedback scenarios, four tests are conducted with
three participants each. Each test (DCOACH versus PPMP, both in the Pendulum and Mountain Car
domain) is done four times with every participants, so both comparisons consist of 24 runs. In each
run, one was asked to provide feedback for as long as they deemed it relevant, and in case runs did
not converge commit for at least ten minutes before giving up. These ten minutes amount to 60
episodes with feedback in Pendulum. For Mountain Car the amount of episodes within this time-
span depends on the performance, but it was often comparable. To record the performance in the
absence of feedback, all runs were continued up to 200 episodes.

The participants in these experiments were under 30 years old and of various background. A
priori they were given an explanation of the environment, the goal and the interface (keyboard ar-
rows), and we explained that they were to correct an entity that learns to solve the problem. After
one dummy run to familiarise participants with their task, the data was gathered in random fashion.
As each comparison takes between one and two hours per person, one was given the possibility to
pause an experiment when desired.

5.5. Conclusion

This chapter has provided the details on the implementation and testing of this work. First, the im-
plementation of the neural network architectures was covered, for each component in PMP and PPMP
respectively. Along with an account of the hyperparameters used for these existing approaches, the
few additional hyperparameters that our methods introduce were motivated. Then, the intended
benchmark environments Pendulum, Mountain Car and Lunar Lander were introduced. This was
followed by a discussion on reproducible testing by means of synthesised feedback. In addition, the
protocol for testing with real human feedback was provided.

Now that the details of implementation and validation have been established, we proceed this
writing by presenting the experimental results in the next chapter.





6
Results

The algorithms PMP and PPMP that were presented in Chapters 3 and 4 respectively are evaluated
here. The criteria that this evaluation concentrates on are fourfold. Since the incentive of this study
is to combine the benefits of human intuition with machine precision and speed, the foremost ob-
jective is to have both sample efficiency and final performance. Further criteria are feedback effi-
ciency (minimal user effort) and robustness to erroneous feedback to comply with the imperfec-
tions that stem from human factors.

The first reference implementation is DDPG, an instance of deep RL (Section 2.3). The second
baseline is DCOACH (Pérez Dattari et al., 2018) DCOACH learns from binary corrective feedback only.
For reproducibility, the different algorithms are evaluated for the same random seeds in order to fix
the environmental stochasticity. The ten seeds were set by the least significant digits of a nanosec-
ond timer in the first run, to randomise the seeding and avoid seeding bias. In the displayed results,
quantities are averages over these random seeds. To improve readability, the results are furthermore
smoothed by a moving average filter with window size 5. The depicted hue reflects the standard
deviation in the results, but its value is not to be confused with the actual standard deviation at a
certain point because of two reasons. First, the smoothing affects the magnitude of the shaded area.
Second, the displayed deviation is a bootstrapped estimate of the true standard deviation. Never-
theless, the shaded area allows us to make inferences about the actual variance and this is consistent
throughout this writing.

The performance of the oracle will be displayed as a constant line. Although its policy is in-
deed deterministic and not subject to change, the actual return per episode depends on the initial
conditions and does vary. This is expressed by the shaded area.

The sequel of this chapter starts with the simulated results for the Pendulum problem (Sec-
tion 6.1), followed by those for the Mountain Car (Section 6.2). This includes studies with erroneous
feedback. Section 6.3 presents results for the same two environments but then for actual human
feedback. In Section 6.4 we present results for the Lunar Lander environment, where we demon-
strate that PPMP is able to outperform the demonstrator policy. Thereafter, this chapter concludes
in Section 6.5.

6.1. Underactuated Inverted Pendulum, Simulated Feedback

Figure 6.1 contains the results for all four implementations, along with an indication of the oracles
performance (purple). The DCOACH (green) study does show some progress but as the feedback is cut
off after 100 episodes there is no further learning. If we consider DDPG (red), there is a decent learn-
ing curve, however the sample efficiency leaves room for improvement and is moreover weakened
by a long period of performance below -1000, which is the worst across all methods.
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Figure 6.1: The average return and feedback rate in the Pendulum domain. Here, performance is studied
with consistent synthetic feedback from an ‘oracle’.
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Figure 6.2: The average return and feedback rate in the Pendulum domain. The applied feedback is artificially
distorted to assess the robustness of the implementations. The erroneous feedback has greatest adverse effect
in methods that rely on a learned model of the feedback, such as DCOACH and PPMP in its early learning phase.
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Figure 6.3: The average return and feedback rate in the Mountain Car domain, studied with consistent syn-
thetic feedback.

In the performance curve of PPMP one can see which elements are commanding at a certain
time. In the first stage, the performance resembles that of DDPG, but with slight improvements be-
cause of the applied corrections. After approximately 10 episodes the predictor enters into force
and this gives great performance. It is slightly suboptimal, as is expected by the coarseness of ap-
proximation in the predictor module. Slightly later, after approximately 20 episodes, the Q-filter
is enabled. As the RL learning process is now in full swing, the actor and critic will sometimes be
wrong still. Indeed there is a slight setback in performance and a little increase of resulting correc-
tive feedback, but the performance is largely retained and already comparable with the converged
baselines. After some 50 episodes, the RL functionalities have converged to final performance which
exceeds the other methods and has less variance. The required feedback is not directly comparable
to DCOACH, because the performance is different and our methods only had feedback on the greatest
errors. The depicted amount is however far less than in DCOACH.

Figure 6.2 shows the performance of the interactive methods when these are subjected to erro-
neous feedback. As expected, the DCOACH implementation suffers from the modelling errors caused
by the wrong feedback. The performance is brought down over the complete learning trajectory:
convergence is slowed down and final performance worse. In PPMP however, the misguidance is
only of adverse effect at the time the predictor is in full control (i.e. approximately between 10 and
20 episodes). After 20 episodes, the effects are hardly significant. After 50 episodes there is no ap-
parent deviation from optimality. Being completely model-free, PMP has the greatest robustness.
The feedback curves roughly equal those presented in Figure 6.1. As expected by the slightly lesser
performance, the erroneous runs require a bit more feedback.

6.2. Mountain Car, Simulated Feedback

In contrast to the Pendulum environment, DDPG now does not learn to solve the problem in the
designated time (Figure 6.3) whereas DCOACH is more successful. Nevertheless, there is quite a long
learning time in DCOACH and still more feedback would be required before all instances converge (we
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Figure 6.4: The average return and feedback rate in the Mountain Car domain. The applied feedback is
artificially distorted to assess the robustness of the implementations.

see the average of methods that either reach or do not reach the flag). PPMP performs up to reaching
the flag in a few episodes, and some runs reach the flag even in the first effort. The RL functionalities
nevertheless still need a reasonable amount of time to learn the problem, as feedback is given during
the first 100 episodes to retain performance. The small dip around the 90th episode indicates that
this feedback is not superfluous and the algorithm has not converged yet.

In this problem, the performance of PMP is more behind PPMP than it was in the Pendulum prob-
lem. From the shaded area we conclude that most runs nevertheless solve quite soon, but few others
never converge such that the average final performance stays behind — this in spite of the signif-
icantly greater amount of feedback that PMP receives. Again, the predictor module proves to be
useful, as it provides for faster and better performance for lesser feedback. Moreover, it may further
help to accomplish persistent exploration, that is here a necessity to gain momentum.

Figure 6.4 illustrates the sensitivity of the interactive methods to imperfect feedback. For DCOACH,
almost all runs that were subjected to erroneous feedback failed to reach the flag. PMP proves to be
very robust, only the severe case of 30% causes a significant set-back in performance. PPMP han-
dles the imperfections best. Neither the sample efficiency nor the final performance is substantially
affected.

Let us now proceed to the next section, where it is reviewed how these results carry over to actual
human feedback.

6.3. Real Human Feedback

In this section, PPMP is compared to DCOACH as it was in the previous two sections concerning erro-
neous feedback, but then with feedback from human participants. The curves presented here are
averages of 12 experiments, of which individual plots are found in Appendix B.

Figure 6.5 contains the results for the Pendulum problem. The performance of PPMP is good,
and approximately equal to our findings with the simulated feedback. The DCOACH algorithm fails
except for one run (Figure B.2), despite a considerable amount of feedback. This is in line with what
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Figure 6.5: The learning curves with actual human feedback in the Pendulum domain.

may be expected from the simulated results.

The main difference with the results from simulation is the feedback rate, which is greater here
although the performance is comparable. It reveals that human feedback is indeed not perfect, and
there is a discrepancy with simulation because of delays in the feedback (amongst other things, see
Section 2.4.3). It could besides be a result of feedback bursts when people hold a key, such that
the feedback rate rapidly increases whereas the information gain is not necessarily proportional.
Furthermore, people perhaps compensate for earlier erroneous feedback. It could also be that the
feedback is simply superfluous. The duration of the feedback here is comparable with the duration
of the feedback in the simulated results.

Figure 6.6 concerns the Mountain Car domain. It was previously shown that RL has more diffi-
culties there than in Pendulum. Likewise, PPMP requires little but continuous feedback in the first
100 episodes to retain performance. In these results the performance of PPMP again quickly rises to
the maximum. However, participants than presumably think that the algorithm has converged and
their task is done. Indeed, after 25 episodes the provided feedback quickly diminishes. The consec-
utive set-back in performance reveals that the algorithm did however not yet converge. It then takes
some episodes to recover, and after that the problem is quite consistently solved.

For DCOACH the performance has a great variance and reflects on all situations. There are runs
that solve the problem and from then on always reach the flag with minimal effort and maximum
return (Figure B.4), whereas on the other hand there is one that was badly stuck in driving to the
left (minimum return). Most evaluations are somewhere in between and only occasionally have a
return over 90. These results are in line with our findings in the previous sections where feedback
was simulated. It was furthermore observed that the DCOACH solutions tend to drive back and forth
a lot, which is neither necessary nor optimal.

6.4. Outperforming the Oracle (Lunar Lander)

This section is not concerned with benchmarking and validation, but demonstrates a typical use
case where the feedback has limited performance and is not able to fully solve the problem itself.
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Figure 6.6: The learning curves with actual human feedback in the Mountain Car domain.

This scenario is different from the previous studies with erroneous feedback. Before, incidental mis-
takes may have been overcome by low-pass dynamics and generalisation, which is possible when
the corrections eventually still extend to the end-goal. Here, we generate feedback with a partial
policy to that has learned to fly but not to land. It will thus help in learning to fly, but solving the
sequel of the problem is left to the agent.

The result of this study is depicted in Figure 6.7, along with the performance of the ‘partial’
oracle and an evaluation of DDPG. Again, the results are averaged over ten runs. At first sight, the
result may not seem very telling, but it is emphasised that the reward function of this environment
stresses stable operation by assigning great negative reward to crashes. Only the last 100 reward
units that our method obtains correspond to having learned to land properly. As such, our method
allows to solve a problem that is otherwise not feasible.

In addition to the results discussed in this chapter, Appendix A discusses supplementary results on
hyperparameter stability and scalability of the multihead actor network.

6.5. Conclusion

This chapter discussed the results of our methods in comparison to DDPG and DCOACH. Most results
were obtained in the Pendulum and Mountain Car continuous control problems of the OpenAI gym.
First, measurements were taken by means of synthesised feedback, in order not to disturb the re-
sults by human factors. The main criterion was sample efficiency, and it was demonstrated how
our methods have great, sometimes decisive impact in that respect. Further care went out for feed-
back efficiency, final performance and the robustness to erroneous feedback. Again, PMP and PPMP
compared favourably. Next, the applicability of our work to actual human feedback was validated
by means of a test with different participants for the same two environments. The results were in
line with those from simulated feedback. In addition it was demonstrated how PPMP solves a prob-
lem (Lunar Lander) even when the teacher has limited knowledge. As desired, the sample efficiency
of DDPG is drastically improved by our methods, and the poor performance stage is in some cases
almost completely evaded. In the next and final chapter this work will be concluded.
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to fly and not crash.





7
Conclusion

Deep Reinforcement Learning is a promising way to solve high-dimensional control and decision-
making problems, as it autonomous and does not require modelling. A disadvantage is however
the excessive need for interaction between the agent and the problem, which limits applicability to
real-world scenarios. In this work, it is discussed how binary corrective feedback may be used as
a probabilistic exploration signal. By slight modification of the DDPG algorithm, an uncertainty of
the policy was obtained and coupled with the magnitude of the provided corrections. As such, we
established effective exploration that is initially very expressive, but more subtle upon convergence
of the policy to facilitate refinements. This algorithm was named Probabilistic Merging of Policies
(PMP).

In a second, extended algorithm named Predictive Probabilistic Merging of Policies (PPMP), a
predictor network provides for estimates of the corrected policy which can substitute for the actual
policy when it increases the value of the state-action pair (especially during early learning). The
predictor module helps to generalise the corrections and improve memorisation, such that there is
a lesser need for feedback and greater, more consistent final performance. However, a naive imple-
mentation of the predictor makes DDPG (even more) prone to instability. We have proposed three
solutions to overcome this problem, which require a minimal amount of hyperparameters, and fur-
thermore argued that there is a wide range in which these parameters are successfully set.

In effect, our methods are easily implemented and make realistic assumptions about the feed-
back. It does not need to be a full demonstration, expertise may be limited, we do not assume
feedback is abundant, neither is simulation or post-processing required. Nevertheless, both our
algorithms PMP and PPMP consistently improve on sample efficiency, final performance and robust-
ness in a comparison against pure RL (DDPG) and learning from corrections only (DCOACH). It was
furthermore demonstrated that our methods require little feedback and are able to outperform the
demonstrator.

In conclusion, we have established the desired improvement of sample efficiency by using cor-
rective feedback as probabilistic exploration. The applicability of deep reinforcement learning meth-
ods for continuous control is thereby extended.
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Further Research

Let us start this discussion with suggested improvements (¦) and subsequently reason about possi-
ble extensions (∗) to this study.

¦ The idea that the feedback should be rough perturbation of the policy has led to promising
results in simulated experiments. However, it may cause for unwanted side-effects when ap-
plied to physical systems, and perhaps damage. We believe further work on the Selector mod-
ule (for example in the direction of low-pass filtering) is essential before our algorithms are
safely applied to arbitrary physical systems.

¦ We have used the multihead actor network to estimate the covariance in the policy. The sub-
sequent application in the Selector worked out, but we have not scrutinised this estimation
itself, and we are interested to see how well the estimates actually reflect the abilities of the ac-
tor. How the covariance relates to state visitation, generalisation, and optimality is not clear,
neither do we know what factors possibly bias this estimation. In the words of Osband et al.
(2016): “... this area of uncertainty estimates for neural networks remains an important area of
research in its own right”.

∗ From the possible extensions to this study, an exiting avenue would be to refine the probabilis-
tic part. In particular, we would like to either extend the Gaussian approximation using mix-
ture models (Haarnoja et al., 2018) or dispose of it and connect with full distributional learn-
ing (Bellemare et al., 2017; Barth-Maron et al., 2018), possibly combined with uncertainty-
handling estimation of human feedback (Wout et al., 2019). It would presumably yield better
estimates of the current abilities and allow for more sophisticated action selection, for exam-
ple by means of posterior or Thompson sampling (Osband et al., 2016).

∗ The proposed methods are naturally compatible with continuous feedback, such as from a
joystick, or feedback with a extended discretisation (e.g. h ∈ (−5,−1,0,1,5) to let the user affect
the magnitude of correction). It would be interesting to study if one of these could further
improve learning efficiency.

∗ A more sophisticated re-sampling of past experience (de Bruin et al., 2018), that possibly dis-
tinguishes samples that have been corrected, could improve the learning of the actor and the
critic. In addition, the predictor’s training batch could perhaps be appended with the latest
correction (at most once, or a few times) in order to account for temporal correlations in the
feedback.

∗ To account for delays between intended human corrections and actual processing, it could be
desirable to adopt a credit assigner module that distributes feedback over a range of samples
(Knox and Stone, 2009; Celemin and Ruiz-del Solar, 2015a). Although it would be hard to
incorporate credit assignment directly in the learning of the problem, there are interesting
possibilities for this in the learning of the predictor.



A
Additional Results

Here, in the first appendix, we present additional studies as further support to the main matter.
Section A.1 presents an assessment of the hyperparameter sensitivity. In Section A.2 it is studies
how multihead networks scale.
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Figure A.1: A fitted density plot of the average return in the first 75 episodes of the Pendulum environment.
Each hyperparameter set is evaluated five times. NQ and NP do not have a great impact on the stability and
convergence properties, but finding optimal values may lead to a slightly faster learning curve.

A.1. Hyperparameter Sensitivity

Some deep reinforcement learning approaches are notoriously brittle (Duan et al., 2016; Henderson
et al., 2017), and this is certainly the case for DDPG (Lillicrap et al., 2016). We have yet covered the
need for sample efficiency and and improved on it, but meanwhile hyperparameter sensitivity is a
complementary aspect that should not be overlooked. If a method requires extensive hyperparam-
eter searches, the saving on required interaction can never materialise. In this study the brittleness
of DDPG is out of our scope, as we deem our method applicable to more stable off-policy approaches
(e.g. Haarnoja et al., 2018) as well. Nonetheless, we will assess the sensitivity of the newly introduced
parameters of the predictor module.

In Section 4, where the design of PPMP was presented, it was stated that the two additional hy-
perparameters NQ and NP do not require meticulous tuning since there is a wide range in which
these are successfully set. In order to motivate the alleged robustness, we here present twelve per-
mutations of the hyperparameter subspace, each evaluated five times in the Pendulum domain for
15000 timesteps (75 episodes).

From the distributions in Figure A.1 we may conclude that these parameters slightly effect the
cumulative return, but there is indeed no brittleness as all tests were successful.
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Figure A.2: For a given problem and amount of samples, the execution time of our multihead actor imple-
mentation scales approximately linear in the amount of heads K .

A.2. Execution Time vs. Number of Heads

As this works aims to improve on the feasibility of model-free learning control, we here address a
secondary concern that may arise upon application: the computational complexity. Most modifica-
tions and parameters that we suggest add a fixed amount of operations to the RL baseline. Changing
the amounts of heads in the multihead actor however does affect the computational complexity, and
in this appendix we will infer the scaling properties of this parameter.

These results were collected for ten full runs (200 episodes) in the Pendulum domain using a
Asus® UX490 machine running Linux Ubuntu 18.10. This is not a dedicated platform, but back-
ground processes were kept at a minimum. The architecture and hyperparameters are as presented
in Chapter 5, implemented in Python as available at github.com/janscholten/ppmp.

In figure Figure A.2 the scaling of the multihead implementation is depicted, up to fifteen heads.
The execution times (obtained with the bash command time) are narrowly distributed. As should
be expected, the execution time scales linearly with the additional parameters, save a little kink be-
tween 7 and 12 heads — presumably a memory bottleneck. From this result, we may conclude that
the multihead approach does not conflict with feasibility as the additional cost is very manageable.

https://github.com/janscholten/ppmp




B
Human Feedback: Individual Results

In this appendix the results obtained with actual human participant are presented individually, for
each algorithm and for each environment.
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Figure B.1: Experiments with real human feedback for PPMP in the Pendulum domain.
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Figure B.2: Experiments with real human feedback for DCOACH in the Pendulum domain.
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Figure B.3: Experiments with real human feedback for PPMP in the Mountain Car domain.
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Figure B.4: Experiments with real human feedback for DCOACH in the Mountain Car domain.
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A compact treatise of this work is available on ArXiv.com (Scholten et al., 2019) and submitted to the
58th Conference on Decision and Control (currently under review). The main difference with this
writing is that only Predictive Probabilistic Merging of Policies (PPMP) is explicitly presented, and
Probabilistic Merging of Policies (PMP) is only included as an ablation.
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Deep Reinforcement Learning with Feedback-based Exploration

Jan Scholten, Daan Wout, Carlos Celemin, and Jens Kober

Abstract— Deep Reinforcement Learning has enabled the
control of increasingly complex and high-dimensional problems.
However, the need of vast amounts of data before reasonable
performance is attained prevents its widespread application. We
employ binary corrective feedback as a general and intuitive
manner to incorporate human intuition and domain knowledge
in model-free machine learning. The uncertainty in the policy
and the corrective feedback is combined directly in the action
space as probabilistic conditional exploration. As a result, the
greatest part of the otherwise ignorant learning process can
be avoided. We demonstrate the proposed method, Predictive
Probabilistic Merging of Policies (PPMP), in combination with
DDPG. In experiments on continuous control problems of the
OpenAI Gym, we achieve drastic improvements in sample
efficiency, final performance, and robustness to erroneous
feedback, both for human and synthetic feedback. Additionally,
we show solutions beyond the demonstrated knowledge.

I. INTRODUCTION

Contemporary control engineering is adopting the data-
driven domain where high-dimensional problems of increas-
ing complexity are solved, even if these are intractable from a
classic control perspective. Learning algorithms, in particular
Reinforcement Learning [1], already enable innovations in
robotic, automotive and logistic applications [2]–[4] and are
on the verge of broad application now that data becomes
ubiquitous [5]. There are many applications also beyond
the classical control engineering domain, such as HIV [6]
and cancer treatment schedules [7]. A possibly extension to
diabetes treatment could have great impact [8]. In contrast to
model-based control, RL is able to retain optimality even in a
varying environment, and modelling of dynamics or control
design is not needed.

This study concerns deep RL (DRL), the leading approach
for high-dimensional problems that uses neural networks to
generalise from observations to actions. DRL can greatly
outperform humans [9] in virtue of machine precision and
reaction time. However, DRL requires extensive interaction
with the problem before achieving final performance. For
real-world systems that have restrictions on interaction, the
sample efficiency can be decisive for the feasibility of the in-
tended application [10]. Improving sample efficiency is thus
essential to the development of DRL and its applications.

In contrast to autonomous learning algorithms, humans are
very effective in identifying strategies when faced with new
problems. In many cases we achieve decent performance in
the first try, despite poorer precision and reaction time that
limit final performance. Indeed, from the sample efficiency

All authors are with Cognitive Robotics Department, Faculty of Mechan-
ical, Maritime and Materials Engineering, Delft University of Technology,
The Netherlands and reachable via jan@jjscholten.com

Fig. 1. In the suggested approach, human feedback is combined either with
the policy or a prediction of the corrected action. The critic discriminates
these with respect to the estimated value of the action. The magnitude
of the correction is estimated in the Selector and proportional to the
estimation variance of the policy. The elements in the grey area constitute
an autonomous learner.

perspective, human and RL performance are complementary
and incorporating human insight into a learning algorithm is
a great way to accelerate it.

Some existing RL methods update the policy with addi-
tional human feedback, which is provided occasionally [11],
[12]. In contrast, we propose to keep the original RL process
and use the human feedback for exploration, as Nair et
al. do with demonstrations [13]. Focussing on DRL, there
are methods that learn from a priori demonstrations [14] or
intermittently collect those (dataset aggregation) [15]. In con-
trast to corrective feedback, demonstrations are not always
available or even possible (there may be limitations in the
interface or expertise), besides that they may require manual
processing [14] or simulation [13]. Likewise, methods that
receive preferences between trajectories can be powerful
[16] but they assume the availability of simulation, which
is not generally realistic. As a general measure, there is
evaluative feedback [2] but we believe that there currently
is no method that uses (binary) corrective feedback [12]
to accelerate DRL. Yet for the purpose of conditioning the
exploration of continuous control problems this would be
a natural choice. Moreover, corrective feedback promises to
be more effective than evaluative rewards especially in larger
action spaces [17].

We present a pioneering combination of DRL with correc-
tive human feedback for exploration, to efficiently solve con-
tinuous control problems (Fig. 1). We revisit the question of
how the current estimate of the policy is best combined with
feedback, and subsequently derive a probabilistic algorithm
named Predictive Probabilistic Merging of Policies (PPMP)
that improves the state-of-the art in sample efficiency, is
robust to erroneous feedback, and feedback efficient. Whilst
the proposed assumptions remain realistic, the introduced
techniques are moreover generic and should apply to many
deep actor-critic (off-policy) methods in the field.
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Our approach is motivated by four ideas:
Action Selection: After first evidence by Knox & Stone

[18], it later were Griffith et al. [19] who made a strong
case for how human feedback is given with respect to
the action (sequence) and it is most effective to directly
adjust the actions when feedback is obtained. Their algorithm
outperformed other evaluative feedback methods that instead
affect the actions indirectly (modification of the policy).

Significant Error: If we consider the early learning phase,
where the policy is useless but the human feedback most
valuable, we believe feedback is received in case of a
significant error as to help the agent develop a notion of
the task rather than to communicate refinements. Indeed, a
recent study demonstrated that vigorous initial exploration is
beneficial for sample efficiency [20]. Moreover, we argue that
the instantaneous precision of human feedback is then rather
coarse (in contrast, corrections for steady-state errors of an
almost converged policy may be smaller). Accordingly, this
limitation is quantified by defining a precision d expressing
a region of indifference per dimension.

RL for Fine-stage Optimisation: Reinforcement learning is
superior in final performance due to its precision and reaction
time [21]. From our point of view, it should therefore be
allowed to autonomously optimise during the later learning
phases, such that local optima are identified (e.g. using
gradients) independent from past feedback.

Probabilistic Approach: Griffith et al. [19] proposed a
probabilistic combination of the policy and feedback dis-
tributions to determine the action. Because the policy and
feedback estimates are balanced by their respective accuracy,
such approaches are very effective and robust. In the words
of Losey & O’Malley: ‘When learning from corrections ...
[the agent] should also know what it does not know, and
integrate this uncertainty as it makes decisions’ [22]. We
subscribe to this point of view and furthermore emphasise
past success of using uncertainty in other fields, such as
the Kalman filter or localisation algorithms [23]. However,
whereas Losey & O’Malley estimate the variance in the
corrections [22], we consider the feedback (co)variance fixed
(d in Significant Error) and argue that the correction size is
inversely proportional to the performance of the agent.

It immediately becomes apparent that some of these ideas
align, e.g., that corrections are inaccurate (Significant Error),
but do not need to be accurate, since RL will efficiently
identify local optima (RL for Fine-stage Optimisation).
However, before connecting the dots, let us complete this
motivation with the assumption that, given the assumed area
of indifference of Significant Error expressed by d (Fig. 2),
RL is able to identify the local optimum. In other words,
Significant Error and RL for Fine-stage Optimisation concern
overlapping regions and the global optimum is attained if the
feedback brings us in proximity.

As a corollary of the above statements, we develop a
learning method where actions are obtained by significant
modification of the policy in direction of the obtained binary
feedback. A probabilistic manner that reflects the current
abilities of the agent determines the magnitude of correc-

c

Fig. 2. Using respective covariances, the policy is combined with human
feedback in the action space. The resulting distribution on the action that is
selected, is truncated such that corrections always have significant effect and
the given information cannot dissipate in case of an overconfident policy.

tion. This method strongly reduces the need for interaction
and furthermore improves final performance. Autonomy and
optimality are furthermore preserved, since there will be no
feedback when the performance is deemed satisfactory, and
our method then resorts to its RL principles.

II. BACKGROUND

This study is defined in a sequential decision making con-
text, in which the Markov decision process serves as a mathe-
matical framework by defining the quintuple (S,A, T ,R, γ).
This set consists of state-space S, action-space A, transition
function T : S × S × A 7→ [0, 1], reward function R :
S × S ×A 7→ R, and constant discount rate γ [1].

The computational agent interacts with an environment by
taking actions ak (where convenient, we omit the time index
k) based on its current state sk and will then end up in a
new state sk+1 and receive a reward rk and human feedback
hk ∈ {−1, 0, 1} to indicate an advice of the direction
in the action space, wherein the agent could explore. The
objective of the agent is to learn the optimal policy π∗(s) that
maximises the accumulated discounted reward R =

∑
i γ

iri
And we assume the feedback aligns with this goal. Along
with the policy contained in a neural network called the
actor, the agent will have a network called critic which learns
to predict the value of a state-action pair, i.e., the Q-function
Q(s, a) = E[R | π, sk = s, ak = a]. This deep actor-critic
approach was introduced in [24]. Their work is the basis
of the RL-functionalities used here, such as target networks
π′ and Q′ and replay buffers B, although we consider our
scheme could also be applied to other RL algorithms.

III. PREDICTIVE PROBABILISTIC MERGING OF POLICIES

The aforementioned point of view materialises in our new
learning algorithm PPMP, of which we will discuss each
element in one of the following subsections.

A. Combining Policy Information in the Selector

For the sake of this explanation, let us temporally assume
non-erroneous corrective feedback h on policy ap that indi-
cates the relative location of optimal action a∗ (all scalar, as
in Fig. 2). With reference to the Action Selection statement,
our approach is to immediately alter the actors suggested ap
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in the direction of h, such that the eventually selected action
a = ap + êh (the orange distribution in Fig. 2) and ê being
an estimate of the absolute error |ap − a∗|.

Deriving from the Kalman filter, the unknown magnitude
of the error is estimated using the covariance of the policy
(the prediction) and the feedback (an observation) in a
module that we call the Selector. It is assumed that the
magnitude of the error will diminish over time along with the
covariance of the policy Σapap . With the covariance of the
feedback Σhh as a known constant and Σapap obtained as
described in Sec. III-C, let ê = G diag(cs)+1cTo , (lines 9-11
in Algorithm 1) where the constant vectors c set the bounds
on ê as described in the last two paragraphs of this section,
1 = [1, 1, . . . , 1]T and G = Σapap(Σapap + Σhh)−1. Note
that G ∈ (0, 1) (all Σ are positive definite by definition)
is analogue to the Kalman gain as a dimensionless trade-
off measure. When the policy shows large covariance, the
corrections will have larger effect and facilitate vigorous
exploration. And inversely, corrections will be more subtle
upon convergence of the policy. Besides that, the exploration
is automatically annealed over time by the decrease of Σapap ,
its effect is state-dependent and tailored for every action
channel, respecting correlations.

The relation of G to ê (line 11) is defined using two
vectors of which the length equals the dimensionality of
the action space. First, let us discuss the relevance of offset
co. With reference to Significant Error, a lower bound on
e is e− = ap + hd. Moreover, for the action selection we
may further restrict the search by using the fact that a is
guaranteed to be closer to a∗ than ap even if ê = 2d.
Setting co = 2d accordingly sets an effective lower bound
on the corrections. Apart from the optimisation perspective,
it is always desired to apply a significant correction in
case feedback is provided. First, it will avoid frustration of
the user, who actually observes the effect of the feedback.
Second, the information is not preserved otherwise.

The scale cs allows us to set an upper bound e+ for the
applied corrections. From the perspective of using human
feedback as exploration, let us consider the case where the
policy suggests some negative action and receives h = 1
since optimality is contained in the positive half of the
action space (Fig. 2). Although we cannot make any general
statements about the reachability of the state-space, it is clear
that feedback can only have the intended effect when ê is
large, else there is no escape from the wrong half of the
action space.

B. Integrating the Selector with Autonomous Learning

The ideas established in the previous paragraph raise
requirements for the eventual algorithm. The probabilistic
combination of the policy and the feedback results in off-
policy data in a continuous action space. As critic-only
methods are suitable for a discrete action space whilst actor-
only methods are on-policy, an off-policy actor-critic scheme
remains as the evident choice.

Fig. 1 illustrates how the system is interconnected and
the actions selected. It is assumed that the human provides

binary feedback signals h occasionally and bases this on the
observed state sequence (and possibly the actions). Delays
between human perception and feedback are not taken into
account. In order to memorise and generalise the advised cor-
rected samples, those corrected actions are estimated in the
predictor, a supervised learner further discussed in Sec. III-
D. First, the Q-filter (critic) decides whether the policy’s
action ap or the estimated corrected action âc is preferred as
the suggested action aQ (line 7). Then, in accordance with
the description in the previous paragraph, the selector module
adjusts aQ with respect to h and we arrive at the actually
executed action a (line 11). In case feedback is not provided
the algorithm relies on its own policy, including exploration
noise. Autonomy is hereby preserved.

C. Multihead Actor Network

In contrast to DDPG [24] we need not only to estimate
an action, but furthermore to estimate the covariance in this
estimate. In [25] is established that the uncertainty over a
deep neural networks output may be obtained from multiple
passes with dropout. However, in the context of RL, [26]
reports how a multihead neural network that maintains mul-
tiple hypotheses is a more consistent approach to generate
posterior samples than dropout. Whereas in their study the
eventual purpose of the multihead network is to use the
posterior for exploration rather than to quantify confidence
(as desired for our approach), [27] indeed establishes how
the multiple hypotheses provide for accurate estimation of
abilities in a deep learning classification problem. As it is
furthermore desired to have efficient and scalable estimation,
we apply the multihead architecture as discussed in [26] to
the actor network.

Effectively, the modification of a regular actor network to
its multihead counterpart results in K copies of the output
layer that estimate the optimal action aj = πj(s | ψ) (line 5),
where j indicates the head and ψ is the parameter set of
the network. For the training, we establish an extension to
the sampled policy gradient in [24] that features individual
values of ∇aQ and ∇ψπ for each head. This sampled
multihead policy gradient is given by

∇ψJπ ≈
1

N

N∑

i=1

∇aQ(s, a|θ)|a=π(si) ∇ψπ(s|ψ)|s=si , (1)

with a slight abuse of notation in the row-wise expansion
of ∇aQ that contains evaluations for all K policies in π.
To determine the policy during action selection, we choose
to randomly select a head je per episode, preserving both
temporal consistency and compliance with multimodalities
(not preserved when averaging). For the training of the critic
(line 13 in Algorithm 1), π′ji(si+1 | ψ′) is evaluated for ji,
the same head as in ai.

D. Predictor Module

The corrected actions are estimated as âc = P (s | φ),
where P is the prediction network with parametrisation φ,
trained with human-corrected samples (s, a) from buffer Bc.
Whilst these predictions can greatly improve the performance
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Algorithm 1 Predictive Probabilistic Merging of Policies
1: Initialize:

Neural network parameters θ, θ′, ψ, ψ′, φ
Replay buffers B and Bc
Feedback covariance Σhh
Scale cs, and offset co

2: for episode e = 1 to M do
3: Initialize:

Ornstein-Uhlenbeck process ν
Randomly set active head je

4: for timestep k = 1 to T do
5: ap ← πj(sk | ψ) + νk
6: âc ← P (s | φ) +N (0, σa)
7: aQ ← arg maxaQ(s, a)|s=sk,a=ap∨a=âc
8: if Feedback hk is given then
9: Σapap ← cov(π(sk | ψ))

10: G← Σapap(Σapap + Σhh)−1

11: ak ← aQ + (G diag(cs) + 1cTo )h
12: Store (sk, ak) in Bc
13: end if
14: Obtain sk+1 and rk by executing ak
15: Store transition (sk, ak, rk, sk+1, je) in B
16: Sample N tuples (si, ai, ri, si+1, ji) from B
17: Compute target Q-values

yi = ri + γQ′
(
si+1, π

′
ji

(si+1 | ψ′)
∣∣ θ′
)

18: Update θ, JQ = 1
N

∑N
i=1 (yi −Q(si, ai | θ))2

19: Update ψ using multihead policy gradient (1)
20: Randomly sample N transitions (si, ai) from Bc
21: Update φ, JP = 1

N

∑N
i=1 (P (si | φ)− ai))2

22: Update target network Q : θ′ ← τθ + (1− τ)θ′

23: Update target network π : ψ′ ← τψ+ (1− τ)ψ′

24: end for
25: end for

especially during the early learning stage (where the im-
provements need to take place), taking the predicted actions
has two important disadvantages. First, the corrections and
their estimates are coarse improvements that primarily aim
to explore. The eventual performance is limited and at
some point the actor will perform better and the predictor’s
influence needs to be scheduled away.

A second problem is that the predictor generalises from
few feedback samples and its policy may not be very
expressive. As a corollary, the variance in the interactions
is reduced and this impedes the learning from this data. As
clearly demonstrated in [28], learning from data generated
by a stationary policy will cause for instability, presumably
because of overfitting. In addition, we suspect that the Adam
optimiser [29] may become over-confident in its gradient
estimate (which is now artificially consistent) and raises at
least some of the adaptive learning rates to an unstable value.
In [28] the problems are overcome by collecting data with
a random or pristine policy. Accordingly, we disable the
predictor during the first Np non-corrected samples. As a
second countermeasure, we inject noise to the estimates with

Fig. 3. From left to right: Pendulum-v0, MountaincarContinuous-v0 and
LunarLanderContinuous-v2 from the OpenAI gym [31]. The respective
goals in these underactuated problems is to swingup and balance, drive
up the mountain and gently land between the flags.

variance σâc (line 6), such that the original distribution is
somewhat restored and the variance problems partly alle-
viated. Finally, note that in successful actor-critic learning,
the critic learns faster than the actor [30]. We can therefore
interleave âc and ap using a Q-filter that selects the action
with the greatest value (line 7). Besides the retaining of
buffer variance, emphasis will now be scheduled towards the
actor upon its convergence so the Q-filter also solves the first
problem (transcending the predictor performance). Because
the critic needs to be learned before it can correctly schedule,
it is enabled after NQ samples. Note that, in contrast to the
use of direct scheduling heuristics [19], there is a wide range
in which NQ and NP are successfully set (Fig. 6).

IV. IMPLEMENTATION AND EVALUATION

Our code is available at github.com/janscholten/ppmp. All
five neural networks (2 for the actor, 2 for the critic, and
one for the predictor) are of size (400, 300) and use ReLU
activation (except for hyperbolic tangent output layers that
delimit actions within their bounds). We train with Adam
[29], using learning rates of 0.002 for the critic 0.005, 0.0001
for the actor and 0.0002 for the predictor. The actor has
K = 10 heads. The soft target mixing factor τ = 0.003. The
initial variance in the network initialisations is 0.001. The
buffers B and Bc have size 1M and 1600 respectively and the
minibatch size is 64. The discount rate is γ = 0.99. The OU-
process has volatility 0.3, damping 0.15 and timestep 0.01.
The selector and predictor have (as a fraction of the action
range per channel) resolution d = 0.125, scale cs = 0.5
and variance σâc = 0.025. The correction variance is set to
Σhh = 1 · 10−8 The predictor and Q-filter are enabled after
NP = 1500 and NQ = 4000 samples respectively.

For benchmarking purposes we regard the problem set
in Fig. 3. The continuous state space of the pendulum
environment consists of x- and y-positions of the tip and
the angular velocity. The control input is the applied torque.
Negative reward is given both for displacement from the
upright equilibrium and for applied torque. An episode lasts
200 timesteps. The mountain car’s state space consists of
position and speed and it is controlled by a (reverse) driving
force (again, all continuous). When the car reaches the
flag, the episode is over and a reward of 100 is obtained,
discounted by the cumulative squared action. The state space
of the lunar lander has eight dimensions, both continuous
(positions/velocities) and binary (leg contact). It is controlled
with two inputs, one for the main engine and a second for
the steering rockets. An episode ends upon soft landing to
rest (100 points) or crashing (-100), and navigation yields
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Fig. 4. Our methods PPMP and its ablation PMP (without prediction)
outperform all baselines. Depicted is the moving average of ten evaluations
(window size 5) along with the feedback rate.

between 100 and 140 points. The applied actions are dis-
counted. Unsolved episodes terminate after 1000 timesteps.

To account for inconsistencies in human feedback [19],
we use synthesised feedback (oracle). To study applicability,
we additionally test with human participants. The oracle
compares a with a converged policy. We apply the assumed
distance d as a threshold for the feedback, but not for the
DCOACH implementation (the performance would be unfairly
hindered by an assumption that the authors do not make in
their work). The feedback rate is controlled with a biased
coin-flip and annealed over time. To infer robustness we
apply erroneous feedback, implemented as in [12].

The results with human participants were obtained from
three participants in the age of 20 to 30 with different
backgrounds. For each algorithm, they were given a single
demonstration and a test run possibility to get familiar with
the interface. The subsequent four runs were recorded.

We evaluate PPMP and its ablation PMP (without the
predictor) and compare with DDPG [24] and DCOACH [32]
(a non-RL deep method that learns from corrective feedback
only). Implementations are from P. Emami and R Pérez
Dattari on Github.com. We generated ten random seeds (with
another random generator) which we applied to ten runs
of each algorithm respectively, such that the environments
feature equal stochasticity for the different implementations.
We evaluate the results on four criteria: sample efficiency,
feedback efficiency, final performance, and robustness to
erroneous feedback.

V. RESULTS

Fig. 4 shows that our methods outperform other algorithms
in every respect, and whereas the baselines seem to suit
one problem in particular, PPMP is consistent. DDPG agents
only learn good policies within the range of 200 episodes in
the Pendulum problem, for the other environments its poor
sample efficiency is even more outspoken. From a compar-
ison with PMP, we infer that the predictor module provides
for better sample efficiency, more consistent performance,
greater final performance and a reduction of the feedback
demand. Fig. 5 shows the effect of erroneous feedback. In
virtue of value-based learning, our methods prove very robust
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Fig. 5. In case of erroneous feedback, our method proves to be robust and
the sample efficiency is hardly affected. The curves with perfect feedback
are equal to those in Fig. 4 and the same legend applies.
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Fig. 6. Left: Performance with human participants, averaged over 12
experiments (feedback rate is the thinner line). Top right: A sensitivity
analysis of the introduced hyperparameters. Bottom right: PPMP learns to
land, and thereby outperforms the oracle that only knows how to fly.

to erroneous feedback and there is no serious impediment of
final performance. In contrast, DCOACH is greatly affected
and fails for error rates beyond 10%.

In Fig. 6 additional results are presented. On the left, re-
sults from human participants confirm our findings from sim-
ulated feedback. DCOACH obtains a considerable amount of
feedback, but inconsistent feedback causes failure nonethe-
less. PPMP is more feedback efficient, learns fast, and
consistently attains great final performance. There are some
set-backs in performance in the Mountain Car problem,
presumably a result of participants that assume the learning
is finished after some early success.

Top right in Fig. 6 is a sensitivity analysis for the new
hyperparameters NQ and Np. We compare the distribution
of the return during the first 15000 timesteps in the Pendulum
domain. As stated in Sec. III-D the new parameters neither
require meticulous tuning nor cause brittleness.

Next, in the bottom right, let us consider a typical use
case where the feedback has limited performance and is
not able to fully solve the problem itself. This scenario is
different from the previous studies (with erroneous feed-
back), where incidental mistakes may have been overcome
by low-pass dynamics and generalisation but corrections
eventually extended to the end-goal. We use the Lunar
Lander environment, where the oracle is now partial as it
knows how to fly but can not land. The sequel of the problem
is thus left to the agent. It is emphasised that the reward
function of this environment stresses stable operation by
assigning great negative reward to crashes. Only the last 100

56 C. Paper



reward units that our method obtains correspond to having
learned to land properly. As such, our method allows to solve
a problem that is otherwise not feasible.

VI. CONCLUSION

This work discusses how binary corrective feedback may
be used as a probabilistic exploration signal in DRL in order
to improve its sample efficiency. By slight modification of
an off-policy algorithm (here DDPG) the uncertainty in the
policy was obtained and coupled with the magnitude of the
correction induced by the feedback. To generalise corrections
and improve memorisation, a predictor network provides
estimates of the corrected policy, which can substitute for
the actual policy when it increases the value of the state-
action pair (especially during early learning). Our method,
Predictive Probabilistic Merging of Policies (PPMP), is eas-
ily implemented and makes realistic assumptions about the
feedback: it does not need to be a full demonstration, exper-
tise may be limited, we do not assume feedback is abundant,
neither do we require simulation or post-processing. Never-
theless, PPMP consistently improves on sample efficiency,
final performance and robustness in comparison to pure RL
(DDPG) and learning from corrections only (DCOACH),
both for simulated and human feedback.

A first topic further research should address, is how PPMP
carries over to real-world scenarios. Although the scalability
and robustness are promising, the applicability is not yet
proven by this work. From the possible extensions to this
study, an exciting avenue would be to refine the probabilistic
part. In particular, we would like to dispose of the Gaussian
approximation and connect with full distributional learning
[33], [34], possibly combined with uncertainty-handling es-
timation of human feedback [35]. This could give better
estimates of the abilities and allow for more sophisticated
action selection, e.g., posterior or Thompson sampling [26].
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