
Delft University of Technology

Master of Science Thesis

Analysis of 2D homogeneous space solutions
of the seismoelectric P-SV-TM mode

for interferometric purposes

Author:
Iris Hartstra

Supervisors:
N. Grobbe M.Sc. and Prof. dr. ir. E. C. Slob

August 26, 2012



Title: Analysis of 2D homogeneous space solutions of the seismoelectric P-SV-TM mode
for interferometric purposes

Author: Iris Hartstra

Master program: IDEA League Joint Master’s in Applied Geophysics, class of 2010

Supervisors: N. Grobbe M.Sc. and Prof. dr. ir. E. C. Slob

Readers: dr. F. Bosch, N. Grobbe M.Sc. and Prof. dr. ir. E. C. Slob

2



Abstract
Seismic and electromagnetic imaging methods both provide the geophysi-
cist with different types of medium parameters. Seismic methods are
sensitive to the elastic properties of the medium, while electromagnetic
methods are sensitive to the electric properties. In porous-saturated me-
dia, these two wave fields occur as a coupled system, which is known as
’seismoelectrics’. This coupling is caused by physical interactions at the
grain surface boundary and is a function of several medium parameters,
such as dynamic permeability. This medium parameter is valuable to
the oil and gas industry, as well to the field of hydrology. By conducting
a seismoelectric survey it would theoretically be possible to provide an
extra control on this medium parameter. However, both practice and
theory have shown that this coupling mechanism also results in a low
signal-to-noise ratio. A possible solution to this problem would be to
apply interferometric Green’s retrieval, which is a technique based on
stacking of cross-correlated data. This approach has been proved suc-
cessful for the SH-TE mode in 1D. The SH-TE mode forms together
with the P-SV-TM mode, the total seismoelectric system. In this the-
sis the first steps are taken towards the proof that this technique could
also work for the P-SV-TM mode of the system. This is supported by a
modelling experiment of 2D homogeneous space solutions of the seismo-
electric P-SV-TM mode for different configurations and an evaluation of
the effects of cross-correlation on these responses. This evaluation turned
out that the unwanted artefacts observed in the interferometric retrieval
are generated by cross-correlations between P-waves and SV-waves.
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Chapter 1

Introduction

Electromagnetic and mechanical wave fields are two very powerful physical phenomenons,
which both aid the geophysicist in imaging the Earth’s structure. The electromagnetic
waves provide us with information on the electric properties of the investigated medium,
such as electric permittivity and conductivity, whereas mechanical wave fields can provide
us with valuable mechanical properties, such as bulk density and other elastic medium
parameters. One way to obtain both mechanical as electric properties, is by conducting
independent electromagnetic and seismic surveys of the medium. Another way to obtain
both, is by considering the coupling possibility of these two different wave fields within
the investigated medium. The field describing this coupling of both wave fields, is known
as ’electrokinetics’, which has been developed since the first experiment was conducted
by Reuss in 1809 which reported such a coupling. Afterwards, a long history of attempts
followed in order to develop a theory to explain this electrokinetic phenomenon (for a re-
view of this history, the reader is referred to [9]). A key moment occurred in 1994, when
Pride [7] came up with a full set of equations which coupled Maxwell’s equations to the full
elastodynamic wave theory in 1994. This theory was experimentally validated by Schoe-
maker et al. in 2012 [9]. Seismoelectrics does not only provide a great potential due to
the ability to obtain both relevant wave field responses by conducting a single survey. In
addition to that, the seismoelectric SP coupling coëfficient could be derived from such a
measurement. This coupling coëfficient depends on several valuable medium parameters,
such as the dynamic permeability. The dynamic permeability is a valuable medium param-
eter to the oil and gas industry, as well as to the field of hydrology. However, it is exactly
this valuable coupling factor which causes the complications in seismoelectric applications.
Due to the fact that the coupling factor is of a relatively low value, the conversion of one
wave-type into another via this mechanism decreases the amplitude, resulting in a low
signal-to-noise ratio. In order to make it possible to retrieve this coupling coëfficient from
seismoelectric surveys in practice, it is required to apply a technique to this phenomenon
in order to improve this signal-to-noise ratio. An interesting technique, presented in 2004
by Wapenaar [12], is the principle of interferometry, based on the reciprocity theorem of
the correlation type [4]. It prescribes an elegant way of cross-correlating traces of shot
gathers of the acquired data and a subsequent stacking of those cross-correlated gathers,
in order to obtain a desired signal from that data. The basis of this technique was founded
by Claerbout [3], who pioneered in this field by obtaining the reflection response from the
auto-correlation of a transmission response for a 1D medium. Wapenaar [12] extended
this for 3D inhomogeneous media, as well as for any class of wave phenomena, including
the seismoelectric wave field system as formulated by Pride [7]. The improvement of the
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signal-to-noise ratio by use of this technique depends primarily on the amount of sources
used. One way to increase this amount is by conducting a passive measurement of uncor-
related noise of a sufficient length of time. In Appendix F of the paper by Wapenaar and
Fokkema [15], an interferometry scheme is provided for Pride’s [7] seismoelectric system
of equations. In 2009, de Ridder [5] used this scheme to numerically validate that signal
retrieval of a seismoelectric response is theoretically possible for the SH-TE mode in a 1D
layered medium. The objective of this thesis is to validate the same for the seismoelectric
P-SV-TM mode in a 2D homogeneous medium. For that, it is required to exactly formulate
the interferometry relation with homogeneous Green’s functions derived from Pride’s [7]
system of equations. Subsequently, a detailed analysis of these Green’s functions of the
2D P-SV-TM system was undertaken with the objective to improve the understanding of
this seismoelectric mode and possibly discover where the errors observed in the modelled
interferometric retrieval are caused by.
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Chapter 2

Seismoelectric wave theory

In this Chapter the details of the seismoelectric coupling mechanism at a micro-scale are
explained, as well as the effects of this coupling in the case of the presence of an interface.
Subsequently, the consequences of simplifying a 3D medium to a 2D medium are explained
with the purpose of introducing the seismoelectric wave equation system of the P-SV-TM
mode in 2D.

2.1 Seismoelectric coupling at the electric double-layer

In this section the relevance of the electrokinetic coupling mechanism is explained with help
of the microscopic electric double-layer model [8]. In a fluid saturated porous medium, ions
are adsorbed on the grain surface, resulting in an immobile layer of surface charge Q on the
grain surface, referred to as the Stern layer. This surface charge is counteracted by charge
of opposite valence provided by the fluid electrolyte surrounding the grain surface, referred
to as the diffuse layer. This mobile fluid phase layer can be moved relative to the immobile
Stern layer of the solid grain surface due to a pressure gradient. This pressure gradient can
be established by either a longitudinal P-wave or a transversal S-wave travelling through
the medium. The result of this, is a relative movement of charge, referred to as a streaming
current. This streaming current, in turn, results in a charge build-up which is consequently
counteracted by a conduction current, due to the formed electric field acting in the opposite
direction of the streaming current. This results in the oscillatory storage and release of
electric energy in the form of free charge, which effectively decreases the conductivity. In
equation 2.5, which describes the modified Ampere’s law for electrokinetic systems, can
indeed be seen that the coupling term L̂ξ̂ effectively reduces the conductivity of the original
Ampere’s law. This dependent electromagnetic field propagates at the same speed and
frequency as this mechanical wave and is referred to as the ’coseismic’ field [8]. However,
this electromagnetic field is not a real electromagnetic wave, because in the continuous
storage and release of electric energy is not a function of electric permittivity, but purely
of the oscillatory pressure gradient. As stated by Pride [7] the coupling mechanism is
assumed linear, for which reason reciprocity applies. This means it is as well able to convert
electromagnetic waves into seismic waves. In this case the oscillating electric field strength
due to the electromagnetic wave polarization induces movement of the mobile diffusive
layer relative to the immobile grain surface. This relative movement of particles induces
a pressure gradient which moves inherently along within the electromagnetic wave. This
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pressure gradient will propagate at the same speed and frequency of the electromagnetic
wave through the medium. This dependent form of a mechanical wave is referred to as the
’coelectric’ field [9].

2.2 What happens at an interface

In the previous subsection the generation of dependent fields was discussed. In seismoelec-
tric wave propagation it is also possible for an independent wave to be generated from a
wave field of a different type. However, this can only occur at an interface across which
either the mechanical or electrical properties of the medium change. For the generation of
an independent electromagnetic diffusive field from a mechanical wave, the mechanism at
an interface is as follows: The free charge separation induced by the mechanical pressure
wave experiences asymmetry due to the change in properties at the interface and a part
of the conduction current is not completely counteracted by the pressure wave oscillation.
This gives rise to a resultant oscillatory conductive current. This oscillating current acts as
an electric dipole source, which has the ability to generate an independent electromagnetic
diffusive field. However, due to the relative low frequency of the initial mechanical wave,
this electromagnetic wave is more of a diffusive nature. This is because in general even
at ultrasonic frequencies, order of a few MHz, the electromagnetic field is dominated by
the electric conductivity and hence behaves as a diffusive field. The other way round it is
also possible, an incident electromagnetic wave can generate an independent mechanical
wave at the interface. The oscillating pressure gradient induced by the electromagnetic
wave experiences asymmetry at the medium interface. Due to that, there is a resultant
force acting at the interface, which acts as a dipole source for a mechanical wave. This
mechanical wave will inherit the electromagnetic frequency of its original generator, but
its speed is now equal to the mechanical wave speed of the medium. This wave speed
is considerably lower than the electromagnetic wave speed. If the initial electromagnetic
wave is of a frequency, which exceeds the order of MHz, the resulting seismic wave would
have a wavelength of the order of the grain size, or even smaller. Therefore, the electroseis-
mic theory is not valid for frequencies above a few MHz, because the wave length should
always be much bigger than the grain size. Therefore, seismoelectric theory is only valid
for a frequency range up to the order of 106 Hz [8].

2.3 Electrokinetic wave fields from 3D to 2D

In this thesis the electroseismic system will be investigated in 2D, which has significant
consequences for the mechanics of the seismoelectric system, as well as for the geometry
of the propagating wave field as is given by the 2D Green’s function.

2.3.1 Seismoelectrics in 2D

In the 3D world the grain boundary surface can have any spatial orientation. This gives a
great diversity of coupling possibilities, because in the seismic as well as the electromagnetic
world different wave field types are defined by their polarization. This is of course not
the case for dilatational wave fields, P-waves, because then the particle displacement is
simply in the same direction as the direction of propagation in an isotropic medium. Shear
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waves on the other hand are transversal in nature. In this case, for a certain direction
of propagation the polarization is in any direction in the plane perpendicular to the wave
vector. In the case of an anisotropic medium this fact is non-trivial, because the wave
velocity now depends on the polarization direction and possibly also on the propagation
direction. This is why the shear wave field is divided in two modes, which form two end
members of shear wave polarization. One is the wave polarized in the plane of propagation,
referred to as the vertically polarized shear wave. The other end member is referred to as
the horizontally polarized shear wave, which is purely polarized in the plane perpendicular
to the plane of propagation. In an anisotropic medium the fields polarized in a direction
in between these two perpendicular planes of course can also have a different wave speed,
but in this theory it is assumed that this wave can be expressed as a superposition of
the two [11]. Electromagnetic waves are geometrically similar to shear waves, in that the
changes in the electric field strength are also perpendicular to the direction of propagation
[6]. However, an important difference is that the electromagnetic wave is also characterized
by an oscillating magnetic field strength, which is always perpendicular to the electric field
polarization. In the same way as for shear waves two main modes are defined for the
electromagnetic wave field as well. The transverse magnetic field is the mode in which the
electric field oscillates in the plane of propagation, naturally the magnetic field oscillates
in the plane perpendicular to it. The other mode is the transverse electric field, in this
case the electric field oscillates in the plane perpendicular to the plane of propagation. The
magnetic field vector lies within the plane of incidence in the latter case. In the case of a
3D isotropic medium, P-waves, SH-waves and SV-waves all have the possibility to induce
a pressure gradient perpendicular to the grain surface and induce a relative movement of
the charged diffusive layer, generating a coseismic electromagnetic field. And vice versa,
both TE and TM wave fields can generate all of the possible mechanical waves. However,
in this thesis the 2D isotropic case is addressed. In this case, the grain surface is a 2D
function of position in the 2D plane and a constant in the dimension perpendicular to
that plane. The diversity of coupling possibilities is restrained accordingly, which results
in an effective decoupling of the two modes of the seismoelectric system, SH-TE and P-
SV-TM. If a P-wave would be generated in this 2D medium, it can only induce a pressure
gradient in the direction along the 2D model plane, which is the plane of propagation.
The pressure gradient can generate an electric field oscillation in the plane of the medium,
which is the coseismic TM mode. At an interface, the pressure gradient could generate
an S-wave with a polarization directed along the plane of the medium, which is therefore
a vertically polarized S-wave. In turn, it is also possible for the SV-wave to generate
a coseismic electric field of the TM mode, but this happens via induction. Because of
this, the coseismic electric field of an S-wave is in general weaker than the coseismic of
a P-wave [8]. The SH-TE mode can only be generated completely independently of the
P-SV-TM mode. The SH-TE mode establishes a horizontally polarized shear wave, which
accelerates the charged mobile layer of the EDL in the x2-direction. This effectively results
in an electric streaming current in this direction. According to Ampere’s law (2.5), this
electric current induces a magnetic flux, which rotates spatially around the electric current
direction. In turn, as dictated by Faraday’s law (2.6) this magnetic field flux generates
an electric field variation perpendicular to the medium plane. This varying electric field
vector represents the TE-mode of the electric field [6]. In this thesis only the P-SV-TM
mode will be analysed in 2D.
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2.4 Wave fields in 2D

In the 2D world wave fields require a different formulation than wave fields in 3D. In the
3D world a wave field can be visualized as a spherical wave front which expands with
increasing time and thereby decreases its amplitude due to the geometrical spreading of
the wave energy. However, in a 2D medium it is required that all wave field vectors are a
constant function of the x2 - direction, which is the direction perpendicular to the medium
under consideration. In order to meet this requirement, the original 3D spherical field is
integrated over this constant spatial direction. The result of this, is a wave field which can
be visualized as a field which is induced by an infinite line source directed in the constant
x2 - direction. The wave front of this wave field is of a cylindrical shape, of which the
long axis coincides with the imaginary line source. Such a cylindrical function can only be
represented in integral form as a modified Bessel function of order zero. Refer to Appendix
A for this Bessel function expression, including its spatial derivatives [1], which will be
required later for the derivation of the seismoelectric Green’s functions in 2D.
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2.5 Derivation of the wave equations for the coupled P-SV-
TM mode in 2D

Macroscopic equations describing the P-SV-TM mode in a 2D homogeneous and isotropic
domain are derived in order to clarify the complex coupling mechanisms and the generated
wave fields associated with this system. In a 2D model, any spatial variation in the x2-
direction is zero. In order to obtain the P-SV-TM mode all field components belonging to
its complementary mode, the SH-TE system, are set to zero, which are:

• Transverse Electric components E2, H1 and H3

• Transverse Electric source components J (e)
2 , Jm1 and Jm3

• Horizontally polarized elastodynamic components vs2, τ12, τ32, τ22 and w2

• Horizontally active elastodynamic source components f2, h12, h32 and h22.

The medium for which the equations hold is porous-saturated, homogeneous, isotropic
and dissipative. The derivation is based on volume averaged Maxwell’s electrodynamic
equations [6] and Biot’s elastodynamic equations [2], as formulated by Pride [7]. Biot’s
equations [2] for a porous medium are represented by two sets of equations: elastodynamic
propagation in the fluid phase and in the solid phase, which are coupled to each other
due to the existence of boundary conditions for the particle motion fields at the grain
boundaries [2]. In Pride’s system of equations, Biot’s equations for the fluid and solid
phase equations are averaged over a volume, which size exceeds the grain size scale, but is
smaller than the minimum wavelength [7]. Biot’s equations are also coupled to Ampere’s
law of Maxwell’s equations. The underlying principle of this theory lies in the theory of
the EDL, as explained in section 2.1. These coupling mechanisms described here will be
explained further with the help of the governing equations.
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2.5.1 Basic equations

The equations presented in this section form together the coupled set of first order macro-
scopic seismoelectric equations for the P-SV-TM mode in 2D. All derivations are done
in the Laplace domain for the special case when the real part of the Laplace parameter
is zero, which is also known as the Fourier domain. In the subsequent paragraphs these
equations will be combined together into higher order equations, in order to clarify the
wave behaviour of this system. The symmetry properties of the stress, strain and stiffness
parameter tensors, which are valid in an isotropic domain, are applied at all times [11].
Note that in case of a vector equation, only the non-zero components are displayed, which
are in most cases the first and third component. However, if a vector equation occurs
which is of an alternative structure, it will be explicitly noted which non-zero components
are displayed in those cases, or whether an equation is of scalar nature. The source terms
will exclusively be written on the right hand-side. The following substitutions are made,

s = iω (2.1)
ŵ = φ(v̂f − v̂s) (2.2)
ζ = σ̂m + sµ (2.3)
ξ̂ = ηL̂/k̂ (2.4)

Here, the velocity of the particles in the fluid phase and in the solid phase are defined as
v̂f and v̂s, respectively. The filtration velocity is given by ŵ. The fluid viscosity is given
by η, the porosity by φ and the dynamic permeability by k̂. The electric and magnetic
bulk conductivities are given by σ̂e and σ̂m. The bulk magnetic permeability is given by
µ. The Laplace parameter is given by s, which is equal to the imaginairy unit multiplied
with the angular frequency, ω.

Generalized Ampere’s law [6],

∂3Ĥ2 +
(
σ̂e + sε− L̂ξ̂

)
Ê1 + ξ̂ŵ1 = −Ĵe1 , (2.5a)

−∂1Ĥ2 +
(
σ̂e + sε− L̂ξ̂

)
Ê3 + ξ̂ŵ3 = −Ĵe3 , (2.5b)

In equation 2.5 Ĥ represents the magnetic flux, Ê the electric field, Ĵe the electric dipole
current and Ĵm the magnetic dipole current.

Faraday’s law [6], all components of this vector are zero except for the x2-directed compo-
nent,

∂3Ê1 − ∂1Ê3 + ζĤ2 = −Ĵm2 , (2.6)

In this medium there are two phases, a solid phase and a fluid phase. The equations de-
scribing the particle motion can be formulated separately for each phase in the microscopic
approach [2] . However, in this representation of the system all equations are averaged over
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a volume much bigger than the grain size, therefore containing both phases [7] . By av-
eraging the two particle motion equations over this volume and adding them together, a
relation is found which describes the motion of the bulk material, which encompasses both
fluid as solid phase,

sρv̂s1 + sρf ŵ1 − ∂1τ̂11 − ∂3τ̂13 = f̂ b1 , (2.7a)
sρv̂s3 + sρf ŵ3 − ∂3τ̂33 − ∂1τ̂31 = f̂ b3 , (2.7b)

In equation 2.7 τ̂ denotes the specified component of the traction matrix. The medium
parameters ρ and ρf , denote the bulk and fluid densities, respectively, and f̂ b denotes the
bulk force.

The equation for the averaged relative fluid motion is found by subtracting the averaged
solid motion from the fluid motion, scaled by the fluid density, and averaging the result
over the fluid phase,

sρf v̂s1 +
η

k̂

(
ŵ1 − L̂Ê1

)
+ ∂1p̂ = f̂f1 , (2.8a)

sρf v̂s3 +
η

k̂

(
ŵ3 − L̂Ê3

)
+ ∂3p̂ = f̂f3 , (2.8b)

In equation 2.8 the p̂ denotes the pressure and f̂f the force acting on the fluid phase. An
important note is that these two equations of motion 2.7 and 2.8 are simply a result of
linearly combining the two modified equations of solid and fluid motion from Biot [2], by
either adding or subtracting them, before averaging over the volume. Because of this, all
equations describe the physical effects on the bulk.
The volume-averaged deformation matrix equation for the bulk reduces to 4 components
in the 2D P-SV-TM system,

−sτ̂11 + S1111∂1v̂
s
1 + S1133∂3v̂

s
3 + C (∂1ŵ1 + ∂3ŵ3) = S1111ĥ11 + S1133ĥ33 + Cq̂, (2.9a)

−sτ̂33 + S3333∂3v̂
s
3 + S3311∂1v̂

s
1 + C (∂1ŵ1 + ∂3ŵ3) = S3333ĥ33 + S3311ĥ11 + Cq̂, (2.9b)

−sτ̂13 + S1313 (∂3v̂
s
1 + ∂1v̂

s
3) = 2S1313ĥ13, (2.9c)

−sτ̂31 + S3131 (∂1v̂
s
3 + ∂3v̂

s
1) = 2S3131ĥ31, (2.9d)

The symbol S denotes a component of the stiffness tensor and ĥ denotes a strain source.
Equations 2.9a and 2.9b represent the two normal components of the stress tensor, active
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in the x1- and x3- directions, respectively. These are in turn coupled to the fluid phase
particle velocity by the filtration velocity. Equations 2.9c and 2.9d represent the two shear
stress components, which are equal in magnitude, but differ in direction: one is acting on
an arbitrary x1- directed plane in the x3- direction, and the other is acting on an arbitrary
x3- directed plane in the x1- direction. The shear stress components are responsible for
the independent shear wave propagation (in combination with the equation of motion 2.7),
because of their ability to form a rotational acceleration of particles.

Scalar volume-averaged deformation equation for the pressure field in the bulk,

sp̂+ C (∂1v̂1 + ∂3v̂3) +M (∂1ŵ1 + ∂3ŵ3) = C
(
ĥ11 + ĥ33

)
+Mq̂, (2.10)

The elastic medium parameters are denoted by C and M . The volume injection rate is
denoted by q̂. This equation together with the equation of motion describes the propaga-
tion of a diffusive dilational wave, referred to the P-wave of the second kind. The wave
equation is derived in paragraph 2.5.3.

2.5.2 The electromagnetic wave equation

By substituting the ζĤ2 component of Faraday’s law 2.6 into Ampere’s law 2.5 the electric
field wave equation is obtained, which is coupled to the filtration velocity,

∂3

(
∂1Ê3 − ∂3Ê1

)
+ ζ

(
σ̂e + sε− L̂ξ̂

)
Ê1 + ζξ̂ŵ1 = −ζĴe1 + ∂3Ĵ

m
2 , (2.11a)

∂1

(
∂3Ê1 − ∂1Ê3

)
+ ζ

(
σ̂e + sε− L̂ξ̂

)
Ê3 + ζξ̂ŵ3 = −ζĴe3 − ∂1Ĵ

m
2 , (2.11b)

By taking the divergence of equation 2.11 it can be shown that ,

(
σ̂e + sε− L̂ξ̂

)(
∂1Ê1 + ∂3Ê3

)
+ ξ̂ (∂1ŵ1 + ∂3ŵ3) = −

(
∂1Ĵ

e
1 + ∂3Ĵ

e
3

)
, (2.12)

which shows that in a homogeneous isotropic fluid the electric field, the divergence of
electric sources is linearly coupled to the divergence of the filtration velocity. When the
electromagnetic sources are omitted this can be understood more intuitively in that a rela-
tive fluid motion is opposed by an electric field vector, simply because the relative motion
of the surface ions at the EDL results in a electric field gradient in the opposite direction.

Equations 2.11 and 2.12 will be used to show that the elastodynamic wave equations are
coupled to the electric wave equation. The filtration velocity plays the key role here.

2.5.3 Dilatational waves of the second kind coupled to electromagnetic
waves

The elastodynamic wave equation for the fluid phase is derived by substituting the pressure-
strain relation 2.10 into the equation of motion 2.8,
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s2ρf v̂s1 − C∂1 (∂1v̂
s
1 + ∂3v̂

s
3) + sη

(
ŵ1 − L̂Ê1

)
/k̂ −M∂1 (∂1ŵ1 + ∂3ŵ3)

= sf̂f1 − C∂1

(
ĥ11 + ĥ33

)
−M∂1q̂, (2.13a)

s2ρf v̂s3 − C∂3 (∂1v̂
s
1 + ∂3v̂

s
3) + sη

(
ŵ3 − L̂Ê3

)
/k̂ −M∂3 (∂1ŵ1 + ∂3ŵ3)

= sf̂f3 − C∂3

(
ĥ11 + ĥ33

)
−M∂3q̂. (2.13b)

The filtration velocity and its divergence in 2.13 are eliminated by substituting electric
field equations 2.11 and 2.12. This results in a relation which shows the coupling of the
electric field strength to the relative particle velocity in the solid,

s2ρf v̂s1 − C∂1 (∂1v̂
s
1 + ∂3v̂

s
3)

− sη

ξ̂k̂

[
ζ−1∂3

(
∂1Ê3 − ∂3Ê1

)
+ (σ̂e + sε) Ê1

]
+
M
(
σ̂e + sε− L̂ξ̂

)
ξ̂

∂1

(
∂1Ê1 + ∂3Ê3

)
= sf̂f1 − C∂1

(
ĥ11 + ĥ33

)
−M∂1q̂ +

sη

ξ̂k̂

(
Ĵe1 − ζ−1∂3Ĵ

m
2

)
− M

ξ̂
∂1

(
∂1Ĵ

e
1 + ∂3Ĵ

e
3

)
, (2.14a)

s2ρf v̂s3 − C∂3 (∂1v̂
s
1 + ∂3v̂

s
3)

− sη

ξ̂k̂

[
ζ−1∂1

(
∂3Ê1 − ∂1Ê3

)
+ (σ̂e + sε) Ê3

]
+
M
(
σ̂e + sε− L̂ξ̂

)
ξ̂

∂3

(
∂1Ê1 + ∂3Ê3

)
= sf̂f3 − C∂3

(
ĥ11 + ĥ33

)
−M∂3q̂ +

sη

ξ̂k̂

(
Ĵe3 + ζ−1∂1Ĵ

m
2

)
− M

ξ̂
∂3

(
∂1Ĵ

e
1 + ∂3Ĵ

e
3

)
, (2.14b)

The wave equation for the divergence of the electric field strength coupled to the divergence
of the particle velocity is obtained by taking the divergence of 2.14, resulting in a scalar
wave equation describing the coupled dilatational wave of the second kind,

[
s2ρf − C

(
∂2

1 + ∂2
3

)]
(∂1v̂1 + ∂3v̂3)

−

sη
ξ̂k̂

(σ̂e + sε)−

(
σ̂e + sε− L̂ξ̂

)
M

ξ̂

(
∂2

1 + ∂2
3

)(∂1Ê1 + ∂3Ê3

)
= s

(
∂1f̂

f
1 + ∂3f̂

f
3

)
−
(
∂2

1 + ∂2
3

) [
C
(
ĥ11 + ĥ33

)
+Mq̂

]
sη

ξ̂k̂

(
∂1Ĵ

e
1 + ∂3Ĵ

e
3

)
− M

ξ̂

(
∂2

1 + ∂2
3

) (
∂1Ĵ

e
1 + ∂3Ĵ

e
3

)
(2.15)
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In line with Biot [2], the rotation is also applied to the equation describing the wave
propagation. In the purely elastodynamic case in Biot’s paper [2] the rotation gave zero,
because there this equation described the wave propagation in the fluid phase and the
perfect fluids are unable to sustain a circulation. To see whether rotational waves exist in
the wave equation of the volume averaged form of the relative movement between fluid and
solid particles, the curl must be taken of 2.14. This does not result in zero. The curl of
the 2.14 results in a vectorial equation, for which the components in x1- and x3- directions
are zero, but the x2 component is given by,

s2ρf (∂3v̂
s
1 − ∂1v̂

s
3)− sη

ξ̂k̂

[
ζ−1

(
∂2

1 + ∂2
3

)
− (σ̂e + sε)

] (
∂1Ê3 − ∂3Ê1

)
= s

(
∂3f̂

f
1 − ∂1f̂

f
3

)
+
sη

ξ̂k̂

[
∂3Ĵ

e
1 − ∂1Ĵ

e
3 − ζ−1

(
∂2

1 + ∂2
3

)
Ĵm2

]
(2.16)

When we analyse the left-hand-side terms we see that the electromagnetic wave operator
acts on the curl of the electric field. However, no shear wave operator acts on the curl of
the particle velocity in the solid. When we would ignore the source terms on the right-
hand-side, we would have an independent electromagnetic wave, which induces a dependent
circulation of the particles of the solid. This coupling of the electromagnetic wave to this
particle circulation depends highly on the fluid viscosity, because this medium parameter is
multiplied with the electromagnetic wave equation in 2.16. According to that, an increase
of fluid viscosity, when assuming all other parameters remain constant, will yield a stronger
rotation in the particle velocity field. This dependent rotational flow, is referred to as the
coelectric field. The coelectric field cannot exist without the electromagnetic wave, except
at the source location.

2.5.4 Dilatational waves of the first kind and shear waves coupled to
electromagnetic waves

The traction vector components in the equation of motion 2.7 are eliminated by substituting
the deformation equation 2.9,

s2ρv̂s1 − ∂1 (S1111∂1v̂
s
1 + S1133∂3v̂

s
3)− S1313∂3 (∂3v̂

s
1 + ∂1v̂

s
3)

+ s2ρf ŵ1 − C∂1 (∂1ŵ1 + ∂3ŵ3)

= sf̂1 − S1111∂1ĥ11 − S1133∂1ĥ33 − 2S1313∂3ĥ13 − C∂1q̂ (2.17a)

s2ρv̂s3 − ∂3 (S3333∂3v̂
s
3 + S3311∂1v̂

s
1)− S3131∂1 (∂1v̂

s
3 + ∂3v̂

s
1)

+ s2ρf ŵ3 − C∂3 (∂1ŵ1 + ∂3ŵ3)

= sf̂3 − S3333∂3ĥ33 − S3311∂3ĥ11 − 2S3113∂3ĥ13 − C∂3q̂ (2.17b)

From 2.17 the filtration velocity and its divergence are eliminated using again equations
2.11 and 2.12. At the same time the stiffness parameter constants S are substituted for,
so that the solid particle velocity and its divergence can be written explicitly. The result
is the vectorial wave equation for the electric field coupled to the particle velocity of the
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bulk, given in equation 2.19. From this equation onwards, the following medium parameter
substitution is made in order to simplify the equations,

ς = σ̂e + sε− L̂ξ̂ (2.18)

s2ρv̂s1 −
[
KG +G(fr)/3

]
∂1 (∂1v̂

s
1 + ∂3v̂

s
3)−G(fr)

(
∂2

1 + ∂2
3

)
v̂s1

− s2ρf

ξ̂

(
ζ−1∂3

(
∂1Ê3 − ∂3Ê1

)
+ ςÊ1

)
+
Cς

ξ̂
∂1

(
∂1Ê1 + ∂3Ê3

)
= sf̂1 − S1111∂1ĥ11 − S1133∂1ĥ33 − 2S1313∂3ĥ13 − C∂1q̂

+
s2ρf

ξ̂

(
Ĵe1 − ζ−1∂3Ĵ

m
2

)
− C

ξ̂
∂1

(
∂1Ĵ

e
1 + ∂3Ĵ

e
3

)
(2.19a)

s2ρv̂s3 −
[
KG +G(fr)/3

]
∂3 (∂1v̂

s
1 + ∂3v̂

s
3)−G(fr)

(
∂2

1 + ∂2
3

)
v̂s3

− s2ρf

ξ̂

(
ζ−1∂1

(
∂3Ê1 − ∂1Ê3

)
+ ςÊ3

)
+
Cς

ξ̂
∂3

(
∂1Ê1 + ∂3Ê3

)
= sf̂3 − S3333∂3ĥ33 − S3311∂3ĥ11 − 2S3113∂1ĥ13 − C∂3q̂

+
s2ρf

ξ̂

(
Ĵe3 + ζ−1∂1Ĵ

m
2

)
− C

ξ̂
∂3

(
∂1Ĵ

e
1 + ∂3Ĵ

e
3

)
(2.19b)

The wave equation for the divergence of the electric field strength coupled to the divergence
of the particle velocity is obtained by taking the divergence of 2.19. This wave equation
describes coupled dilational waves of the first kind,

[
s2ρ−H

(
∂2

1 + ∂2
3

)]
(∂1v̂

s
1 + ∂3v̂

s
3)− ς

ξ̂

[
s2ρf − C

(
∂2

1 + ∂2
3

)] (
∂1Ê1 + ∂3Ê3

)
= s

(
∂1f̂1 + ∂3f̂3

)
−∂2

1

(
S1111ĥ11 + S1133ĥ33

)
−4S1313∂1∂3ĥ13−∂2

3

(
S3311ĥ11 + S3333ĥ33

)
− C

(
∂2

1 + ∂2
3

)
q̂ + ξ−1

[
s2ρf − C

(
∂2

1 + ∂2
3

)] (
∂1Ĵ

e
1 + ∂3Ĵ

e
3

)
(2.20)

In order to observe for this wave equation the coupled vertically polarized shear wave as
well, the curl must be taken of equation 2.19. In the resulting vector equation only the
component in the x2- direction is non zero,

[
s2ρ−G(fr)

(
∂2

1 + ∂2
3

)]
(∂3v̂

s
1 − ∂1v̂

s
3)

− s2ρf

ξ̂

[
ζ−1

(
∂2

1 + ∂2
3

)
− ς
] (
∂1Ê3 − ∂3Ê1

)
= s

(
∂3f̂1 − ∂1f̂3

)
+ 2G

(
∂1∂3ĥ33 − ∂3∂1ĥ11

)
+
s2ρf

ξ̂

[
∂3Ĵ

e
1 − ∂1Ĵ

e
3 − ζ−1

(
∂2

1 + ∂2
3

)
Ĵm2

]
(2.21)
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The curl operation eliminated all divergence terms of the wave equation 2.19, as well as
the terms related to the bulk modulus KG. The equation resembles 2.16, but it contains
now an elastic shear wave operator acting on the curl of the particle velocity in the solid
and a wave operator, that contains both the electromagnetic parameters and the coupling
coefficients, that acts on the curl of the electric field. This is not surprising, because this
wave equation is derived from an equation of motion 2.7, which is the volume-averaged
form of the fluid and solid equations of motion added together [2], and shear waves can
sustain in the solid phase.

What has been done in the preceding paragraphs: first the two elastodynamic vecto-
rial wave equations are derived from the two different equations of motion 2.8 and 2.7.
Subsequently the electric field wave equation coupled to the filtration velocity is substi-
tuted in the two wave equations. This resulted in coupled particle velocity-electric field
vectorial wave equations, 2.14 and 2.19. By taking the divergence of these wave equations
the dilatational wave behaviour can be analysed, alternatively the curl can be taken in
order to analyse the transversal wave behaviour. In the following paragraphs we continue
to simplify these two sets of wave equations to one main wave equation.

2.5.5 Derivation of the P-SV-TM mode Green’s function

We use the divergence wave equations 2.15 (electrically coupled P-waves of the second kind)
and 2.20 (electrically coupled P-waves of the first kind) to find separate expressions for
the divergence of the electric field and the divergence of the particle velocity, in the three-
dimensional wavenumber domain. Equations 2.15 and 2.20 in the wavenumber domain are
given as,

[
s2ρf + C

(
k2

1 + k2
3

)]
i (k1v̆1 + k3v̆3)

− ς

ξ̂

[
sη

ςk̂

(
ς + L̂ξ̂

)
+M

(
k2

1 + k2
3

)]
i
(
k1Ĕ1 + k3Ĕ3

)
= si

(
k1f̆

f
1 + k3f̆

f
3

)
−
(
k2

1 + k2
3

) (
C
(
h̆11 + h̆33

)
+Mq̆

)
+ ξ̂−1

(
sη

k̂
+M

(
k2

1 + k2
3

))
i
(
k1J̆

e
1 + k3J̆

e
3

)
. (2.22)

[
s2ρ+H

(
k2

1 + k2
3

)]
i (k1v̆1 + k3v̆3)

− ς

ξ̂

[
s2ρf + C

(
k2

1 + k2
3

)]
i
(
k1Ĕ1 + k3Ĕ3

)
= si

(
k1f̆1 + k3f̆3

)
− k2

1

(
S1111h̆11 + S1133h̆33

)
− 4S1313k1k3h̆13

− k2
3

(
S3311h̆11 + S3333h̆33

)
− C

(
k2

1 + k2
3

)
q̆

+ ξ̂−1
[
s2ρf + C

(
k2

1 + k2
3

)]
i
(
k1J̆

e
1 + k3J̆

e
3

)
. (2.23)

Subsequently, the equations 2.22 and 2.23 can be written in matrix form, due to the
resemblance between their left-hand-side terms, which contain the divergence of the particle
velocity and electric field,

18



[
L1 −ςL2/ξ̂

L3 −ςL1/ξ̂

] [
ik1v̆1 + ik3v̆3

ik1Ĕ1 + ik3Ĕ3

]
=

[
X1

X2

]
, (2.24)

Where, L1 = s2ρf + C
(
k2

1 + k2
3

)
and L2 = (s2ρE

(
1 + L̂ξ̂/ς

)
+ M

(
k2

1 + k2
3

)
) and L3 =

s2ρ+H
(
k2

1 + k2
3

)
The expression 2.24 expresses the divergence of the electric field and the particle velocity
in terms of sources and medium parameters. The vectorial wave equations 2.14 and 2.19
contain these divergence terms, which can now be rewritten as source terms and put on
the right-hand-side, resulting in the following vectorial wave equations in the wavenumber
frequency domain, the relative fluid particle velocity coupled to the electric field,

s2ρf v̆1 −
sη

ξ̂k̂ζ

(
k2

1 + k2
3 + ζς + ζξ̂L̂

)
Ĕ1 = X11,1

= Cik1
L1X1 − L2X2

L2
1 − L2L3

+ ξ−1

(
sη

ζk
−Mς

)
ik1

ξ

ς

L3X1 − L1X2

L2
1 − L2L3

+ sf̆f1 + Cik1

(
h̆11 + h̆33

)
+Mik1q̆

+
sη

ξk

(
J̆e1 + ζ−1ik3J̆

m
2

)
+
M

ξ
k1

(
k1J̆

e
1 + k3J̆

e
3

)
(2.25a)

s2ρf v̆3 −
sη

ξ̂k̂ζ

(
k2

1 + k2
3 + ζς + ζξ̂L̂

)
Ĕ3 = X11,3

= Cik3
L1X1 − L2X2

L2
1 − L2L3

+ ξ−1

(
sη

ζk
−Mς

)
ik3

ξ

ς

L3X1 − L1X2

L2
1 − L2L3

+ sf̆f3 + Cik3

(
h̆11 + h̆33

)
+Mik3q̆

+
sη

ξk

(
J̆e3 − ζ−1ik1J̆

m
2

)
+Mξ−1

(
k3k1J̆

e
1 + k2

3J̆
e
3

)
(2.25b)

as well as the volume averaged bulk particle velocity coupled to the electric field,

(
s2ρ+G(fr)(k2

1 + k2
3)
)
v̆1 −

s2ρf

ξ̂ζ

(
k2

1 + k2
3 + ζς

)
Ĕ1 = X22,1

=

(
KG +

G(fr)

3

)
ik1

L1X1 − L2X2

L2
1 − L2L3

+ ξ−1

(
s2ρf

ζ
− Cς

)
ik1

ξ

ς

L3X1 − L1X2

L2
1 − L2L3

+ sf̆1 + ik1

(
S1111h̆11 + S1133h̆33

)
+ 2S1313ik3h̆13 + Cik1q̆

+
s2ρf

ξ

(
J̆e1 + ζ−1ik3J̆

m
2

)
+
C

ξ
k1

(
k1J̆

e
1 + k3J̆

e
3

)
(2.26a)
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(
s2ρ+G(fr)(k2

1 + k2
3)
)
v̆3 −

s2ρf

ξ̂ζ

(
k2

1 + k2
3 + ζς

)
Ĕ3 = X22,3

=

(
KG +

G(fr)

3

)
ik3

L1X1 − L2X2

L2
1 − L2L3

+ ξ−1

(
s2ρf

ζ
− Cς

)
ik3

ξ

ς

L3X1 − L1X2

L2
1 − L2L3

+ sf̆3 + ik3

(
S1111h̆11 + S3333h̆33

)
+ 2S1313ik1h̆13 + Cik3q̆

+
s2ρf

ξ

(
J̆e3 − ζ−1ik1J̆

m
2

)
+
C

ξ
k3

(
k1J̆

e
1 + k3J̆

e
3

)
(2.26b)

X11 and X22 represent the source terms, including the rewritten divergence terms, which
are presented in Appendix B.

By substituting the particle velocity of the relative fluid wave equation into the bulk wave
equation, an equation describing the electric field variation is obtained,(

k2
1 + k2

3 + γ2
S

) (
k2

1 + k2
3 + γ2

EM

)
Ĕ1;3

= −ζL̂
s

(
k2

1 + k2
3 +

s2ρ

G(fr)

)
X11,1;3 +

sρfζL̂

G(fr)
X22,1;3 (2.27)

This equation encompasses the entire set of equations for the 2D SV-P-TMmode, expressed
in terms of the electric field component.
The equivalent expression for the particle velocity can be obtained by substituting the
electric field vector of the fluid wave equation into the bulk wave equation, which results
in,

(
k2

1 + k2
3 + γ2

S

) (
k2

1 + k2
3 + γ2

EM

)
v̆1;3

= − k̂sρ
f

ηGfr
(
k2

1 + k2
3 + ζς

)
X11,i +

1

Gfr

(
k2

1 + k2
3 + ζ(ς + L̂ξ̂)

)
X22,i (2.28)

This equation encompasses the entire set of equations for the 2D SV-P-TMmode, expressed
in terms of the bulk particle velocity field component. Note that the operators in the left-
hand-sides of both second order wave equations 2.27 and 2.28 are equal. Therefore, both
wave equations have an equal Greens function solution, Ğ, which represents the total
mechanism behind the coupling of SV to TM wave fields. Note that the right-hand-side
terms of equations 2.27 and 2.28 are quite different. This difference arises from the fact
that the coupling mechanism leading from a certain source to a resulting electric field
disturbance occurs in a completely different manner than the coupling mechanism leading
from the same source to a solid particle velocity field disturbance. For example a bulk
dipole force can yield a mechanical wave field directly, but will never directly generate an
electric field. The latter can only happen indirectly via the coupling mechanism at the
electric double layer. Therefore, the mechanism leading to the electric field distortion is of
a different nature than the mechanism leading to the particle velocity disturbance. These
mechanisms can be analysed exactly by deriving the Green’s functions describing the E1

and v1 field responses due to each different source type. These expressions are obtained in
the next section.
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2.6 Solutions to the Green’s functions for all sources

The expressions describing the horizontal component of the electric and particle velocity
impulse field responses due to any specific source type are obtained by setting all other
source functions to zero, except for the one in question, which is set to one (Delta dirac
function in space-time domain). Furthermore, the total Green’s function Ğ is substituted,
which incorporates the Green’s functions for the TM and SV wave fields. The Green’s
function describing the coupled P-waves, ĞPP , is substituted as well. Both resulting ex-
pressions for the electric and particle velocity horizontal components contain all possible
seismoelectric wave fields of the P-SV-TM system: the fast dilatational, slow dilatational,
vertical polarized shear and the transverse magnetic mode of the electromagnetic wave
fields. This is because in principal any disturbance of the EDL has the potential to gener-
ate these four wave fields. However, the extend in which each of these fields are generated
varies depending on the source type and measured field component. In all expressions dif-
ferent weighting factors apply on these four wave fields, which consist of combinations of
the medium parameters. The weighting factors can be considered as factors, which define
the strength of the coupling of that specific source type to the evaluated field component.
In Chapter 4 these coupling factors are analysed exactly by modelling the four different
wave fields for each specific source and receiver couple. In this section spatial derivatives
acting on the constituent Green’s functions of the different expressions are analysed and
a physical interpretation is given. Although the expressions are derived only for the hori-
zontal component of the measured field, the vertical component of the field is occasionally
discussed as well. In most cases the structure of this vertical component can be easily de-
rived from the horizontal component field by simply changing the component of the spatial
derivatives or adding extra terms. To see the details of this redundancy between compo-
nents, as well as the specification of the coupling factors active on the Green’s functions,
refer to Appendix B. For notational convenience, the ’solid particle velocity’ is referred
to as the ’particle velocity’ and is denoted without the subscript ’s’, as v, from this point
onward.

2.6.1 The force acting on the bulk

The reaction of the x-component of the particle velocity as well as the electric field strength
to a force acting on the bulk phase of the medium is analysed here. This mechanical force
behaves like a dipole. The bulk refers to the volume-averaged combination of both the
solid and the fluid phases in the medium, therefore in principle this force is acting on both
phases.

The x1-component of the bulk particle velocity field generated by an x1-directed force
acting on the bulk is given by,

Ğv1,f1 =Cv1,f
S1 ik1ik1ĞS + Cv1,f

EM1ik1ik1ĞEM + Cv1,f
Ps ik1ik1ĞPs + Cv1,f

Pf ik1ik1ĞPf

Cv1,f1
S2 ĞS + Cv1,f1

EM2 ĞEM (2.29)

The same field component generated by a x3-directed force acting on the bulk,
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Ğv1,f3 = Cv1,f
S1 ik3ik1ĞS + Cv1,f

EM1ik3ik1ĞEM + Cv1,f
Ps ik3ik1ĞPs + Cv1,f

Pf ik3ik1ĞPf (2.30)

Observe that both force components generate the divergence of all four wave fields. Due
to the horizontal spatial variation of this divergence the particles of the bulk are brought
into a horizontal movement. The vertical component of the particle velocity vector would
be activated due to the vertical spatial variation of this divergence. Note that only the
horizontal component of the bulk force has the ability to generate an isotropic shear wave
and an electromagnetic wave. This is visible in equation 2.29, which contains two scalar
SV and EM Green’s functions, which are not present in equation 2.32. In fact, the vertical
component of the force vector also contributes to these two wave fields, but only to the
vertical component of the particle velocity. No spatial variation is required when the force
acts parallel to the receiver direction. The structure of the Green’s function relating the
bulk force components to the horizontal electric component is equivalent to the particle
velocity relation,

ĞE1,f1 =CE1,f1
S1 ik1ik1ĞS + CE1,f1

EM1 ik1ik1ĞEM + CE1,f1
Ps ik1ik1ĞPs + CE1,f1

Ps ik1ik1ĞPf

+ CE1,f1
S2 ĞS + CE1,f1

EM2 ĞEM (2.31)

ĞE1,f3 = CE1,f3
S ik1ik3ĞS + CE1,f3

EM ik1ik3ĞEM + CE1,f3
Pf ik1ik3ĞPs + CE1,f3

Pf ik1ik3ĞPf

(2.32)

The difference lies in the constants operating on the intrinsic Green’s function. The ques-
tion is whether this electric field is a dominated by the coseismic field, generated by the
particle motion induced by the bulk force by the process discussed for equation 2.29 and
2.30, or whether it is dominated by an actual electromagnetic wave field which is generated
directly at the source location, due to source to field conversion. In Chapter 4 on Green’s
function analysis the different contributions per field will be modelled in order to constrain
this.

2.6.2 The force acting on the fluid phase

This dipole force is in reality not an independent force, because it is in fact an intrinsic
part of the bulk force. However, it is still of interest to examine it separately in theory.
Note that the structure of the Green’s functions due to the fluid phase force and the bulk
force are the same. This is not unexpected considering that the fluid force forms a part
of the bulk force. The actual difference between the effects of these forces can only be
analysed exactly in the modelling experiment in Chapter 4

The particle velocity field due to this force acting on the fluid is given by,

Ğv1,ff1 = Cv1,ff

S1 ik1ik1ĞS + Cv1,ff

EM1 ik1ik1ĞEM + Cv1,ff

Ps ik1ik1ĞPs + Cv1,ff

Pf ik1ik1ĞPf

+ Cv1,ff

S2 ĞS + Cv1,ff

EM2 ĞEM (2.33)

22



Ğv1,ff3 = Cv1,ff

S1 ik1ik3ĞS + Cv1,ff

EM1 ik1ik3ĞEM + Cv1,ff

Ps ik1ik3ĞPs + Cv1,ff

Pf ik1ik3ĞPf

(2.34)

The electric field strength is given by,

ĞE1,ff1 = CE1,ff

S1 ik1ik1ĞS + CE1,ff

EM1 ik1ik1ĞEM + CE1,ff

Ps ik1ik1ĞPs + CE1,ff

Pf ik1ik1ĞPf

+ CE1,ff

S2 ĞS + CE1,ff

EM2 ĞEM (2.35)

ĞE1,ff3 = CE1,ff

S1 ik1ik3ĞS + CE1,ff

EM1 ik1ik3ĞEM + CE1,ff

Ps ik1ik3ĞPs + CE1,ff

Pf ik1ik3ĞPf

(2.36)

2.6.3 Volume injection rate

This source type encompasses an injection of mass into the medium, which results in a
source of a monopole nature. This implies that this source does not have a certain specified
direction, as is the case for dipole source. The particle velocity field component is coupled
to this source type as follows,

Ğv1,q = Cv1,q
S ik1ĞS + Cv1,q

EM ik1ĞEM + Cv1,q
Ps ik1ĞPs + Cv1,q

Pf ik1ĞPf (2.37)

The vertical particle velocity component has a similar structure as this equation, but for
the fact that the horizontal spatial derivative acting on each of the four wave fields as we
seen in 2.37 would be replaced by a vertical one. Therefore, the total particle velocity wave
field is coupled to this volume injection via the generated divergence of all wave fields. In
other words, due the omnidirectional character of this volume injection the EDL is moved
in all directions in the 2D medium, thereby generating all four wave fields. Except for the
difference in the coupling factors, the electric field component shows the same structure as
the particle velocity,

ĞE1,q = CE1,q
S ik1ĞS + CE1,q

EM ik1ĞEM + CE1,q
Ps ik1ĞPs + CE1,q

Pf ik1ĞPf (2.38)

2.6.4 The shear strain sources

As explained in section 2.5.1 there are two strain sources h13 and h31 which together deform
the framework of the bulk in a rotational sense. The resulting particle velocity component
is related to the generated fields as follows,
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Ğv1,h13 = Cv1,h13
S1 ik1ik1ik3ĞS + Cv1,h13

EM1 ik1ik1ik3ĞEM+

Cv1,h13
Ps ik1ik1ik3ĞPs + Cv1,h13

Pf ik1ik1ik3ĞPf

+ Cv1,h13
S2 ik3ĞS + Cv1,h13

EM2 ik3ĞEM (2.39)

As well for the electric component, which has the same structure,

ĞE1,h13 = CE1,h13
S1 ik1ik1ik3ĞS + CE1,h13

EM1 ik1ik1ik3ĞEM

+ CE1,h13
Ps ik1ik1ik3ĞPs + CE1,h13

Pf ik1ik1ik3ĞPf

+ CE1,h13
S2 ik3ĞS + CE1,h13

EM2 ik3ĞEM (2.40)

In both equations the rotational deformation is coupled to the horizontal field components
via the vertical spatial variation of the SV and EM wave fields. The field components
seem to be coupled as well via the divergence of the double rotation of all four wave fields
generated at the EDL. This can be interpreted from the ik1ik1ik3 terms acting on all
constituting Green’s functions. These terms would be substituted by ik3ik1ik3 when we
would be looking at the vertical component of the measured fields.

2.6.5 The tensile strain source

The tensile strain source deforms the medium framework in perpendicular directions, with-
out any angular deformation. The generated fields due to both components of the tensile
strain source are analysed here. The effect of the horizontal component on the particle
velocity wave field is as follows,

Ğv1,h11 = Cv1,h11
Ps ik1ĞPs + Cv1,h11

Pf ik1ĞPf + Cv1,h11
SV ik1ĞS + Cv1,h11

EM ik1ĞEM

+Cv1
∗Psk1ik1ik1ik1ĞPs + Cv1

∗Psk3ik3ik3ik1ĞPs

+Cv1
∗Pfk1ik1ik1ik1ĞPf + Cv1

∗Pfk3ik3ik3ik1ĞPf

+Cv1
∗SVk1ik1ik1ik1ĞSV + Cv1

∗SVk3ik3ik3ik1ĞSV

+Cv1
∗EMk1ik1ik1ik1ĞEM + Cv1

∗EMk3ik3ik3ik1ĞEM

For the operators on the shear terms in the h33 source greens function, the double k terms
simply have to be switched, the rest stays the same.
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Ğv1,h33 = Cv1,h11
Ps ik1ĞPs + Cv1,h11

Pf ik1ĞPf + Cv1,h11
SV ik1ĞS + Cv1,h11

EM ik1ĞEM

+Cv1
∗Psk3ik1ik1ik1ĞPs + Cv1

∗Psk1ik3ik3ik1ĞPs

+Cv1
∗Pfk3ik1ik1ik1ĞPf + Cv1

∗Pfk1ik3ik3ik1ĞPf

+Cv1
∗SVk3ik1ik1ik1ĞSV + Cv1

∗SVk1ik3ik3ik1ĞSV

+Cv1
∗EMk3ik1ik1ik1ĞEM + Cv1

∗EMk1ik3ik3ik1ĞEM

The field due to both components consists of the horizontal part of the divergence of
all wave fields, because when we would measure the vertical particle velocity field these
single horizontal derivatives would be replaced by single vertical derivatives. Therefore,
this part of the field expression has a similar structure as the field generated by a volume
injection. This is as expected, because a tensile deformation of the medium affects the
volume, for example strain acting equally from all sides on the system would result in a
total volume decrease. If the strain would be of an extensional nature their acting would
result in a volume increase, which is comparable to a volume injection into the system.
However, the total of 8 extra terms containing third order spatial derivatives indicate that
the tensile deformation of the framework is of a more complex nature than the volume
injection and therefore quite unique. These terms are also dependent on the direction of
the tensile deformation: the constants acting on the ik3ik3ik1 terms in the h11 field act on
the ik1ik1ik1 terms in the h33 field, and vice versa. The electric field component generated
by this tensile deformation has the same structure as its particle velocity equivalent,

ĞE1,h11 = CE1,h11
Ps ik1ĞPs + CE1,h11

Pf ik1ĞPf + CE1,h11
SV ik1ĞS + CE1,h11

EM ik1ĞEM

+CE1
∗Psk1ik1ik1ik1ĞPs + CE1

∗Psk3ik3ik3ik1ĞPs

+CE1
∗Pfk1ik1ik1ik1ĞPf + CE1

∗Pfk3ik3ik3ik1ĞPf

+CE1
∗SVk1ik1ik1ik1ĞSV + CE1

∗SVk3ik3ik3ik1ĞSV

+CE1
∗EMk1ik1ik1ik1ĞEM + CE1

∗EMk3ik3ik3ik1ĞEM

ĞE1,h33 = CE1,h11
Ps ik1ĞPs + CE1,h11

Pf ik1ĞPf + CE1,h11
SV ik1ĞS + CE1,h11

EM ik1ĞEM

+CE1
∗Psk3ik1ik1ik1ĞPs + CE1

∗Psk1ik3ik3ik1ĞPs

+CE1
∗Pfk3ik1ik1ik1ĞPf + CE1

∗Pfk1ik3ik3ik1ĞPf

+CE1
∗SVk3ik1ik1ik1ĞSV + CE1

∗SVk1ik3ik3ik1ĞSV

+CE1
∗EMk3ik1ik1ik1ĞEM + CE1

∗EMk1ik3ik3ik1ĞEM

(2.41)

2.6.6 The electric dipole source

This type of source is a dipole which acts on the bulk, which raises the expectation that
the effect of this electric dipole is similar to the force dipole source. Here this similarity
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will be analysed for the structure of the formula’s. The particle velocity field component
generated by an electric dipole acting on the bulk is,

Ğv1,J
e
1 = Cv1,Je

Ps ik1ik1ĞPs + Cv1,Je

Pf ik1ik1ĞPf + Cv1,Je

S1 ik1ik1ĞS + Cv1,Je

EM1 ik1ik1ĞEM

+ Cv1,Je

S2 ĞS + Cv1,Je

EM2 ĞEM (2.42)

Ğv1,J
e
3 = Cv1,Je

Ps ik1ik3ĞPs + Cv1,Je

Pf ik1ik3ĞPf + Cv1,Je

S1 ik1ik3ĞS + Cv1,Je

EM1 ik1ik3ĞEM

(2.43)

As expected, the structure is the same as for the field generated by the dipole force in 2.29
and 2.30. The same observation goes for the electric field generated by the electric dipole
source,

ĞE1,Je1 = CE1,Je
S1 ik1ik1ĞSV + CE1,Je

EM1 ik1ik1ĞEM + CE1,Je
Ps ik1ik1ĞPs + CE1,Je

Pf ik1ik1ĞPf

+ CE1,J1e
EM2 ĞEM + CE1,J1e

S2 ĞSV (2.44)

ĞE1,Je3 = CE1,Je
S1 ik1ik3ĞSV + CE1,Je

EM1 ik1ik3ĞEM + CE1,Je
Ps ik1ik3ĞPs + CE1,Je

Pf ik1ik3ĞPf

(2.45)

However, here only the structure with respect to the abundance of the various fields and
the spatial derivatives acting on each of them are analysed. The effects of the medium
parameter operators will be shown in Chapter 4.

2.6.7 The magnetic dipole source

The magnetic source is particularly interesting for this 2D medium, because it acts in the
horizontal direction which is invariant here, the x2- direction. However, due to the fact
that the flux of a magnetic field has the intrinsic property to generate an electric field which
circulates this magnetic flux vector, the effects of this specific source are quite significant.
Because of this, the magnetic source is not directly affecting the medium, but via the
generation of this rotating electric field. The structure of the generated particle velocity
field is as follows,

Ğv1,J
m
2 =

L̂

Gfr
s2ρf ik3

ĞEM − ĞS
γ2
S − γ2

EM

Note that in this case only two wave fields are generated, the electromagnetic wave field and
the vertical polarized shear wave field, which are the only two divergence-free wave fields.
This is because the effective source in this case is the rotation of an electric dipole. This
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source is of a rotational nature and therefore only has the ability to generate rotational
wave fields such as the EM and SV wave fields. However, due to this rotational nature
this source does not have the ability to generate dilatational P-waves, which are curl-free
wave fields. In fact, when we would analyse the effect of this source on the vertical field
component as wel we would observe that the vertical derivative is replaced by the negative
horizontal derivative. In other words, the magnetic dipole generates the rotation of these
two wave fields. For the particle velocity field the amplitudes of the EM and SV waves
are the same strength, but have opposite polarity. The generated electric field component
shows the same structure, but the amplitudes of the two fields cannot be as easily evaluated
as for the particle velocity case. The electric field due to a magnetic dipole is as follows,

ĞE1,Jm2 = ((s2ρ/G(fr) − γ2
S)− k̂s2(ρ(f))2/(ηG(fr)))

ĞS − ĞEM
γ2
S − γ2

EM

(2.46)

The difference between these amplitude factors will be analysed in the Chapter 4.
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Chapter 3

Interferometric Green’s function
recovery for the 2D P-SV-TM mode

In this chapter the theory of interferometry is briefly outlined. An interferometric relation
for the P-SV-TM mode in a homogeneous, dissipative 2D medium is derived for the first
order equations system according to the mathematical scheme presented by Wapenaar in
2004 [15]. The Green’s functions as derived in the previous chapter are used to model this
interferometric relation. The result of this interferometric retrieval is showed at the end of
this chapter.

3.1 Interferometry

To understand where the concept of interferometry comes from, it is worth to evaluate a
simple optic laser beam interferometry problem before we proceed to the application of this
basic theory in seismoelectric wave fields. Useful characteristics of a laser beam are that the
propagation path of its energy is constricted to a specific direction in the form of a Gaussian
beam, as well as that its frequency spectrum is limited to a single frequency, which remains
constant over a significant length of the laser beam, referred to as the ’coherence length’.
This gives us the advantage to analyse the behaviour of only one monochromatic ray, in
stead of having to deal with a full omnidirectional wave field. Additionally, the refraction of
the monochromatic laser beam will also not result in an omnidirectional wave field, due to
the monochromatic properties of the laser. Schuster et al. [10] addressed a simple optical
example of a laser light beam illuminating an irregularly shaped lens from below (figure
3.1). As the beam propagates through the lens, it leaves the lens at point A. However, part
of the energy of the beam is reflected at position A, as well as at position r at the bottom
of the lens, resulting in the beam leaving the lens again at position B. Of course, part of
the laser beam can continue to form multiple reflections until all of its energy has been
attenuated, but here we only evaluate the laser beams leaving at positions A and B. When
these two laser beams leaving at A and B were to interfere together they will produce an
interferogram, also referred to as the intensity of the summed wave fields. The form of
this interferogram is only dependent on the phase difference between the beams leaving
at A and B. This phase difference is caused by the fact that the beam at B experienced
two reflections in the lens as well as a longer propagation path through it than the beam
leaving at A. In other words, the interferogram is a measure of the difference between
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the propagation paths of A and B. In addition, because these paths propagate through
the lens, this interferogram can provide us useful information about the properties of the
lens, for example its thickness as well as its properties that control the speed of the light
beams, without requiring any information about the emitted source laser beam [10]. In
2004 Wapenaar [12] proved that this principle of interferometry can also be applied to the
complex seismic world. Before I continue to explain this concept introduced by Wapenaar
[15], a few analogies will be shown between interferometry of this simple optic experiment
and the complex seismic world [12]. The emitting laser beam is replaced by a seismic
source, for example a point source of volume injection. The acoustic wave field emitted by
this source travels through a homogeneous, isotropic, acoustic medium and is measured at
two different positions at the boundary of the medium, resulting in trace recordings A and
B. Instead of a single ray path leaving the medium at two different positions, we have now
a full diverging wave field of which we sample two ray paths at receiver positions A and B.
We produce an interferogram of these two sampled ray paths by simply cross-correlating
the two traces. In the frequency domain this effectively comes down to a multiplication of
the spectrum of one trace with the complex conjugate of the spectrum of the other [14].
This process results in a trace which reflects only the phase difference between the two
received rays and is not at all depending on the position of the source. This effectively
comes down to a subtraction of one ray path from the other, leaving only that part which
the two ray paths do not have in common. Depending on which trace is conjugated in
the frequency domain, cross-correlation yields either the causal or the a-causal version of
this phase difference, because it is a non-commutative process [18] . For a more intuitive
understanding, refer to figure 3.1 from Schuster [10], where two direct raypaths received at
A and B are depicted. Subtracting one from the other results in a vector pointing from A
to B, which is effectively the same as a direct wave measured at B, due to a virtual source
at A.

Figure 3.1: Concept of creating an interferogram from a direct arrival at position A and the
reflected arrival at position B. Figure obtained from Schuster, 2004 [10]
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3.2 The reciprocity theorem of the correlation type

In 2006 Wapenaar and Slob [16] developed the concept of the interferometric Green’s
function retrieval, based on the reciprocity theorem of the correlation type. I will address
this theorem now by linking it to Schuster’s [10] interferometric theory as described above.
Imagine, a heterogeneous, lossless domain D of arbitrary shape bounded by boundary
∂D. Within this domain two receivers are present, which measure field responses coming
from sources anywhere inside as well as on the boundary of the domain (figure 3.2). This
case is very complicated compared to the laser beam case where we had only one source
location as well as only two ray paths to compare. The objective for the complicated
case we have here is to obtain from the total measured field, the direct response at one
of the receivers due to a point source at the other receiver position. This is in fact the
same as quantifying the phase difference between the total fields measured at both receiver
positions. In order to end up with this phase difference, it is required to cross-correlate the
two received signals due to each source present in the domain. The cross-correlation of the
responses to all sources, measured at the two receiver locations, are summed up, resulting
in a stack of the total retrieval. This is done by integrating the cross-correlated fields over
the entire domain. A practical advantage of this method is the fact that we sum all the
cross-correlations, resulting in a high signal-to-noise ratio. It is therefore desirable to have
a large amount of sources. In the case of a passive measurement, when noise sources are
used, a great number of sources is achieved by measuring over a sufficiently long time.
In Appendix C the reciprocity theorem of the correlation type is derived. Here it is also
shown how an interferometric relation can be derived from that theorem for the retrieval
of a specific Green’s function. In the next section this interferometric relation will be
used to model the interferometric retrieval of the causal Green’s function which relates the
horizontal component of the particle velocity field impulse response at a receiver position
to the horizontal directed electric dipole impulse source. For this retrieval, the particle
velocity responses as well as the time reversed electric field responses to all source types
derived in the previous Chapter 2, are required.

Figure 3.2: Concept of creating an interferogram from a direct arrival at receivers A and B, due
to sources spread out over the entire domain. Here, only the sources on the boundary are depicted.
Figure is obtained from Wapenaar et al. 2011 [17]
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3.3 Interferometry relation

In Appendix C the full derivation of a specific interferometric relation C.29 from the
reciprocity theorem of the correlation type is given. This interferometry relation is modelled
by inserting the Green’s function solutions, as derived in Chapter 2, into the boundary
integral of this relation. This has been done with success before in 1D for the other SH-TE
mode by de Ridder in 2007 [5]. An important finding of this research was that the domain
integral is not required for the retrieval, because it only gave a slight amplitude error.
Based on this finding, the same assumption is made that the domain integral is negligible.
De Ridder also discovered that the mechanical sources form the strongest contribution
to the boundary integral [5]. Due to erroneous results concerning the field responses to
the tensile strain sources, these specific Green’s functions are left out. These adjustments
change the interferometry relation C.29 into the following approximation of the relation,

GE1,f1(x̄B, x̄A, ω) +G∗v1,J
e
1 (x̄A, x̄B, ω)

≈ −
∮
∂D

[n3Ĝ
∗v1,Jm2
x̄A,x̄ Ĝ

E1,Je1
x̄B ,x̄ − n1Ĝ

∗v1,Jm2
x̄A,x̄ Ĝ

E1,Je3
x̄B ,x̄ + n3Ĝ

∗v1,Je1
x̄A,x̄ Ĝ

E1,Jm2
x̄B ,x̄ − n1Ĝ

∗v1,Je3
x̄A,x̄ Ĝ

E1,Jm2
x̄B ,x̄

+n3Ĝ
∗v1,2h31
x̄A,x̄ ĜE1,f1

x̄B ,x̄ +n1Ĝ
∗v1,2h31
x̄A,x̄ ĜE1,f3

x̄B ,x̄ +n3Ĝ
∗v1,f1
x̄A,x̄ ĜE1,2h31

x̄B ,x̄ +n1Ĝ
∗v1,f3
x̄A,x̄ ĜE1,2h31

x̄B ,x̄ +n1Ĝ
∗v1,Cq
x̄A,x̄ Ĝ

E1,f
(f)
1

x̄B ,x̄

+ n3Ĝ
∗v1,Cq
x̄A,x̄ Ĝ

E1,f
(f)
3

x̄B ,x̄ + n1Ĝ
∗v1,ff1
x̄A,x̄ ĜE1,Cq

x̄B ,x̄ + n3Ĝ
∗v1,ff3
x̄A,x̄ ĜE1,Cq

x̄B ,x̄ ] dx̄ (3.1)

3.4 Reciprocity theorem of the convolution type

The paper by Wapenaar 2004 [15] can also be used to derive a reciprocity relation of the
convolution type. However, in this section the reciprocity relation will be derived according
to the method presented in the paper by Wapenaar in 2005 [13]. This approach starts out
with the following seismoelectric interaction quantity in 3D,

∂j

[
εijkÊi,AĤk,B − εijkĤk,AÊi,B − v̂si,Aτ̂ bij,B + τ̂ bij,Av̂

s
i,B + ŵj,Ap̂B − p̂Aŵj,B

]
(3.2)

The product rule for partial differentiation is applied to this quantity. Subsequently, the
first order seismoelectric coupled equations for the 3D system are substituted in this in-
teraction quantity [13]. The domain integral is taken of this interaction quantity and the
assumption is made that the medium parameters are the same for both states,

∮
∂D

[
εijkÊi,AĤk,B − εijkĤk,AÊi,B − v̂si,Aτ̂ bij,B + τ̂ bij,Av̂

s
i,B + ŵj,Ap̂B − p̂Aŵj,B

]
= (3.3)∫

D

[
Ĵmk,AĤk,B − Ĥk,AĴ

m
k,B − Ĵei,AÊi,B + Êi,AĴ

e
i,B − f̂ bi,Av̂si,B + v̂si,Af̂

b
i,B − f̂

f
j,Aŵj,B + ŵj,Af̂

f
j,B

]
d3x

(3.4)

The boundary integral on the left-hand side vanishes when we assume that the medium is
isotropic, homogeneous as well as unbounded. The relation is further simplified when we
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assume we have a 2D domain with a line boundary, which contains two states in which
we specify only the sources or wave fields of interest of the P-SV-TM mode. In state A a
particle velocity field is active due to an electric dipole source at position xA. In state B
an electric field is generated by a bulk force at position xB. All source and field have the
same orientation. This results in the following integral relation,

∫
D
Ĵem,AÊm,Bd

2x =

∫
D
v̂sn,Af̂

b
n,Bd

2x (3.5)

If the sources of both states are replaced by impulse sources, the fields in each state
change into Greens functions generated by this impulse source at the location xA or xB.
For example, by changing the electric dipole source in state A into an impulse source at
location xA turns the particle velocity field in state A into a Green’s function due to this
specific electric impulse at xA. The same happens for the field and source in state B, which
gives the following reciprocity relation,

ĜE1,fb1 (xA, xB) = Ĝv
s
1,J

e
1 (xB, xA) (3.6)

Note that the electric field Green’s function is only nonzero at xA and the particle velocity
Green’s function is only non-zero at xB, which is due to the fact that both are multiplied
in the integral with the impulse function of the other independent state. This reciprocity
relation is of great relevance to the modelling experiment in the next section, because it
dictates that the causal and a-causal Green’s functions should form together a asymmetric
signal around the zero time. This is because in the source function ŝ used for the derivation
of the interferometric relation the Je1 is defined with a minus sign in front, while f b1 is
positive.

3.5 Modelling of the interferometric Green’s function retrieval
for a circle boundary

The Green’s function representation is modelled for a 2D porous saturated, homogeneous,
dissipative and isotropic medium. Thereby, both the left-hand side and the right-hand side
are implemented and compared to each other. The success of the interferometric retrieval
depends on whether these two implemented expressions coincide. The medium parameters
are specified in table D.1 in Appendix D. The boundary of the medium is modelled as a
perfect circle with a radius of 500 meters. The receivers xA and xB are put at a horizontal
offset of 160 meters such that their middle point coincides with the circle’s center point
(figure 3.3). A total of 3600 uncorrelated sources are equally distributed over the circle
boundary. The modelling experiment is conducted in the frequency domain, whereby
the Green’s functions are each convolved with the same source wavelet, a Ricker wavelet
with a radial frequency of 800 radians per second. Thereby, Green’s function responses
are computed at the two receivers due to impulse sources distributed regularly over the
circle boundary. For each source position the horizontal component of the particle velocity
response at xA is cross-correlated with the same component of the electric field response at
xB. Actually, several cross correlation are done for different source types at each position,
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as is specified in the boundary integral of the relation 3.1. In figure 3.3(a) it is shown what
the result is of such a cross-correlation of a single source at the boundary. The boundary
integral over all the sources is taken by simply stacking all cross-correlation results. This
should hypothetically yield a resultant electric field response at xB due to an impulse bulk
force source at xA plus a time reversed particle velocity field response at xA due to an
electric dipole. A schematic representation of this is given in figure 3.3(b). The Green’s
functions used for the interferometric modelling are all convolved with a Ricker wavelet of
800 radians per second. Therefore, the left-hand side is convolved with the square of the
Ricker wavelet in order to validate the comparison to the cross-correlated Ricker wavelets
in the right-hand side.

(a) (b)

Figure 3.3: Green’s responses are computed at receivers xA and xB due to all sources distributed
regularly over the circle boundary. In figure 3.3(a) an example is given of a cross-correlation of
the two responses at xA and xB due to a single source at the boundary. The schematic result of
integrating over all cross-correlated source responses is given in 3.3(b), where the orange vector
represents the left-hand side of equation 3.1.
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3.5.1 Modelling result and interpretation

Figure 3.4: Interferometric retrieval is plotted in blue. The retrieval is about five times weaker
in amplitude than the left-hand side (red), therefore it is multiplied by a factor of 5.

In figure 3.4 the result of the left-hand side of the implemented equation 3.1 is plotted
in red. The two Green’s functions in the left-hand side should be exactly reciprocal and
therefore symmetric around the point of zero seconds, according to the reciprocity relation
3.6. However, the time-reversed Green’s function of the particle velocity response to an
electric dipole source contains an extra event at arrival time of 0.08 seconds, which is not
visible in the causal Green’s function. For the specified distance between xA and xB of 160
meters this arrival time corresponds to an SV-wave, which has a speed of 2.027 · 103 ms−1

as specified in table D.1. The causal electric field response to a bulk force does not show
this extra SV-wave event, which would mean it would have to show a distinct coelectric
SV-wave. As described by Pride and Haartssen [8] the coseismic electric field of an SV-
wave is much weaker than the coelectric field of a fast P-wave. According to that fact,
this Green’s function GE1,f1(x̄B, x̄A, ω) gives a plausible result. And according to that,
the Green’s function G∗v1,−Je1 (x̄A, x̄B, ω) must be incorrect, due to this extra unexpected
SV-wave arrival. In order to analyse the rest of the relation further, the reciprocity relation
3.6 is used to substitute for this incorrect Green’s function. This changes the relation 3.1
into the following,
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∗v1,−Je3
x̄A,x̄ Ĝ
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This relation 3.7 is implemented in the same model as described for the previous result in
3.3 and results in the interferometric retrieval given in figure 3.5. The causal and a-causal
arrivals of the left-hand side at respectively, 0.05 and −0.05 seconds are exactly reciprocal
as prescribed by 3.6. This arrival time of 0.05 seconds corresponds to the arrival of a
fast P-wave, which has a speed of 3.122 · 103 ms−1. An important observation of these
anti-symmetric P-wave arrivals is that they each have a total of 5 zero crossings. The inter-
ferometric retrieval is plotted in blue. The retrieval also shows two anti-symmetric events
at 0.05 and −0.05 seconds. However, these events each have a total of 4 zero-crossings.
Refer to section 3.6.4 for a detailed interpretation of these wavelet shape discrepancies.
Another clear observation of figure 3.5 is that the interferometric retrieval contains several
extra events which are not present in the left-hand side.

Figure 3.5: The Green’s function describing the response of the particle velocity field to the
electric dipole source is substituted for by using the reciprocity relation 3.6.

3.6 Differences in contributions to the interferometric retrieval

When analysing the cross-correlation pairs in equation 3.7 it can be observed that only
responses to sources of the same character are cross-correlated. For instance, only electro-
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magnetic responses are cross-correlated, never an electromagnetic response with a response
to a source acting on the bulk. In fact, we can distinguish three main classes: bulk source,
fluid phase source and electromagnetic source responses. In this section the interferomet-
ric relation is modelled again, but now only the cross-correlation pairs belonging to one of
these three classifications is activated, in order to find out which class of source types form
the main contribution.

3.6.1 Electromagnetic sources

For this experiment only the electric and magnetic dipole sources are not set to zero.

Figure 3.6: The cross-correlation terms containing only responses to electromagnetic sources
contributed to the interferometric retrieval here. Note that the contribution hardly existent

The field responses to the electromagnetic sources hardly give a significant contribution to
he retrieval of the exact left-hand side.
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3.6.2 Fluid phase sources

For this experiment only the dipole force acting on the fluid phase as well as the monopole
volume injection source are not set to zero.

Figure 3.7: Only the cross-correlation terms containing the responses to sources acting on the
fluid phase are modelled here. Their contribution is much stronger than the contribution form the
electromagnetic source responses as shown in figure 3.6.

The fluid source responses do contribute to the interferometric retrieval of the P-wave
arrivals, with an amplitude of the order 10−11. These responses are also contributing to
the two causal events at about 0.03 and 0.15 seconds, which are not found in the exact
left-hand side signal.

37



3.6.3 Bulk sources

For this experiment only the dipole shear strain source as well as the dipole force acting
on the bulk are not set to zero.

Figure 3.8: Only the cross-correlation terms containing the responses to sources acting on the
bulk are modelled here. Their contribution is the strongest to the interferometric retrieval.

When examining figure 3.8 it can be seen that this interferometric retrieval of only the
bulk force responses gives the biggest contribution to the left-hand side P-wave arrivals,
with an amplitude of the order 10−10. It can also be observed that the bulk forces are
responsible for the strong a-causal events at about -0.03 and -0.15 seconds, which are not
represented by the left-hand side signal. These a-causal events have a stronger amplitude
than their causal equivalents observed in figure 3.6.
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Interpretation

The interferometric retrieval did not yield an correct retrieval of the left-hand side of
equation 3.7. However, there is still some resemblance, because the retrieval does contain
an anti-symmetric signal at arrival times -0.05 and 0.05 seconds just as the exact left-hand
side shows as well. However, there is a difference in the wavelet shapes, because the left-
hand side contains five zero crossings, while the retrieval contains four. In section 3.6.4 this
problem is further explained. The final clear inconsistency between the retrieval and the
left-hand side are caused by the four extra events found in the retrieval. The two causal
events at about 0.03 and 0.15 seconds are a result of the responses to the sources acting
on the fluid phase (figure 3.7). The two a-causal events at about -0.03 and -0.15 seconds
are a result of the responses to the sources acting on the bulk (figure 3.8). In Chapter 5
a possible explanation of these extra events is presented, based on the detailed analysis of
all field responses which will be undertaken in Chapter 4.

3.6.4 Wavelet shape analysis

Although the interferometric retrieved P-wave events do arrive at the same time as the
anti-symmetric left-hand side signal, there is a clear discrepancy visible in the shape of
the wavelets between the interferometric retrieval and the left-hand side. The shape of
the wavelets in the figure 3.5 can now be compared to the Ricker wavelet and its time
derivatives of different orders in order to find out what causes this shape difference. In
figure 3.9 a Ricker wavelet is depicted , as well as its first, second and third order derivatives
in time. The centre frequency of this Ricker is 100 radians per second, which is 8 times
lower than the Ricker used for the modelling. This lower frequency is used for this purpose,
because it enables better identification of the specific shape.

(a) Ricker (b) First derivative

(c) Second derivative (d) Third derivative

Figure 3.9: Ricker wavelet with center frequency of 100 radians per second and its derivative
with respect to time for the first, second and third order.
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When comparing the left-hand side signal in figure 3.5 with the Ricker wavelets in figure
3.9 it matches best with the shape of the wavelet in figure 3.9(d). It has the same amount
of peaks and is asymmetric as well. Therefore, the left-hand side anti-symmetric fast
P-waves can be interpreted as third order time derivatives of the Ricker wavelet. The
shape of the interferometric retrieved P-wave arrivals resembles the shape of the wavelet in
figure 3.9(c) most. It has the same amount of peaks and shows symmetry. Therefore, the
interferometric retrieved P-wave arrivals resemble the second order time derivative of the
Ricker wavelet. This is not in accordance with the interpretation that the left-hand side is
the third order derivative of the source wavelet. The conclusion is that the interferometric
retrieval matches the left-hand side only in that it shows as well two anti-symmetric P-
wave arrivals. But the amplitude of the retrieval is 5 times too low and it seems that its
differential order is one too low compared to the left-hand side. Another discrepancy is
that the interferometric retrieval shows several extra artefacts, which are not represented
by the left-hand side. The only way to discover where these difficulties are coming from
is by evaluating the cross-correlated terms separately. In the next Chapter 4 all Green’s
functions contributing to the interferometric retrieval will be analysed separately in order
to discover where the difficulties arise from.
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Chapter 4

Analysis of the 2D homogeneous
Green’s function solutions for the
P-SV-TM mode

In the hope to shed light on the discrepancies encountered during the interferometric
modelling in the previous chapter, a detailed analysis is undertaken of the relevant Green’s
functions used there. In section 2.5, the analysis of the Green’s functions showed that
in principal every source type has the ability to generate all four P-SV-TM mode wave
fields, except for the magnetic dipole which does not generate P-waves. However, from the
structure of the Green’s functions alone it could not be established which of the constituent
wave fields are actually detectable. By modelling the responses separately the actual effect
of the different sources on the horizontal component of the electric and particle velocity
wave fields of the P-SV-TM mode can be analysed. The modelled 2D medium is of a
dissipative, homogeneous, isotropic and saturated porous nature and can be regarded as a
surface spanned in the horizontal x1- and vertical x3-directions. The medium parameters
used for this experiment and the wave speeds are denoted in Table D.1. The horizontal
component of the field response due to a single source is modelled at a single receiver
in three different configuration set-ups. This means that the receiver represents for all
situations a horizontal receiver vector. The source vector is either directed in the horizontal
or the vertical direction, with an exception for the volume injection source, which is a
monopole source, and the magnetic source vector, which only has a component in the
direction perpendicular to the model plane. The source and the receiver are placed at
a distance of 200 meters at a horizontal offset, a vertical offset and a diagonal offset, as
is defined more precisely with coördinates in (figure 4.1). For this configuration and the
specified medium parameters the arrival times corresponding to the fast P-wave and the
SV-wave are 0.065 and 0.1 seconds, respectively. The electromagnetic wave field is always
observed as an instantaneous arrival, due to its significantly larger wave speed compared
to the other wave fields (table D.1). The slow P-wave is not displayed nor discussed,
because it is negligibly small in all cases with an amplitude of the order 10−154. The
Green’s functions are convolved with a Ricker wavelet with a center angular frequency of
600 radians per second. Additionally, an interpretation will be made of these modelling
results. Amplitude radiation maps of only the detectable constituent wave fields are shown
additionally to support the interpretation of the field responses. In an amplitude radiation
map the maximum of the absolute value of the amplitude is given of the field response as
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(a) Horizontal configuration (b) Vertical configuration (c) Diagonal configuration

Figure 4.1: The red lines indicate the two possible source directions analysed here, the horizontal
and the vertical component. The coördinates of the source position are (0,0) for all configurations.
The green line represents the receiver vector. The black line represents the offset between source
and receiver, which is 200 meters for all configurations. Receiver coördinates for 4.1(a) are (200,0)
and for 4.1(b) (0,200). For the diagonal configuration in 4.1(c) the offset is diagonal and the
corresponding receiver coördinates are (141.42,141.42)

a function of the angle of the offset vector between source and receiver. Therefore, when
looking at this polar plot the source can be imagined to remain at the center of the polar
plot while the receiver is varied along the circle boundary. The maximum amplitude values
for the angles of 0, 90 and 315 degrees correspond to the configurations of the horizontal,
vertical and diagonal offset as described in figure 4.1.
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4.1 Analysis of the horizontal component of the particle ve-
locity response

In this section the response of the horizontal component of the particle velocity vector to
all relevant source are analysed.

4.1.1 Modelled response to a bulk force

The bulk force is a source of a dipole nature. It is active on both the solid framework
and the fluid phase of the medium. The effects of the horizontal as well as the vertical
component of the force on the horizontal component of the solid particle velocity field are
analysed here.

When the receiver is aligned with the horizontally directed force, two events can be dis-
tinguished in figure 4.2(a). One event arrives at 0.067 seconds, which corresponds to a
fast P-wave arrival. The second arrival corresponds to an SV-wave, because it arrives at
0.1 seconds. When the receiver is put at a vertical offset only, the P-wave reduces to an
almost insignificant amplitude compared to the SV-wave (factor of 1000 smaller), which
remains unchanged (4.2(b)). In the case of an offset at 45 degrees, both events can be
distinguished again (4.2(c)). However, in this case the P-wave has a smaller amplitude
than in figure 4.2(a). The SV-wave retains the same amplitude strength of about 1 · 10−9

ms−1for all configurations. In the case of a vertically directed force, for both horizontal
and vertical offsets this force has no influence at all on the horizontal component of the
particle velocity field (figures 4.3(a) and 4.3(b)). However, for the diagonal configuration
both a P-wave and an SV-wave arrival can be distinguished (4.3(c)). The amplitude of
the SV-wave is about 10 times smaller than the amplitude of this wave in the case of a
horizontally directed force for the same configuration (4.2(c)). However, the P-wave has
the same amplitude as the P-wave event in figure 4.2(c).

(a) (b) (c)

Figure 4.2: Particle velocity field response to the horizontal component of the bulk force

Interpretation of the observations on the bulk force response

The horizontal directed force generates an SV-wave which is detectable at all three different
receiver positions. This implies that this force generates an SV-wave with a horizontal
polarization. The horizontal force also generates a fast P-wave, however this P-wave does
not influence the particle velocity field for the vertical offset configuration. In fact, it has
a maximum amplitude for the horizontal offset and a smaller amplitude for the diagonal
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(a) (b) (c)

Figure 4.3: Particle velocity field response to the vertical component of the bulk force

offset. This specific fast P-wave field is examined further by looking at its radiation pattern
in figure 4.4(a). This figure shows a typical dipole field. The effect of the dilatational
particle motion decreases for an increase in the alignment angle, and indeed becomes zero
for a vertical offset at 90 degrees, which is in line with are modelled results. The results
for the vertical component of the bulk force are quite different, in that it only generates a
horizontal particle movement when the receiver is positioned in the diagonal configuration.
For this configuration both a dilatational P-wave and a transversal SV-wave are detected.
In the radiation pattern of the fast P-wave field can be observed that this vertical force
on the bulk does not generate any horizontal movement at source-receiver alignments of
either 0 or 90 degrees, which corresponds to the horizontal and vertical offset configuration
(4.4(b)). The influence on the horizontal particle movement increases for angle values in
between the horizontal and vertical offset angles. For the SV-wave radiation pattern, the
same interpretation holds as for the P-wave (figure 4.4(c)).

4.1.2 Modelled response to a force acting only on the fluid phase

This dipole force acts purely on the fluid phase of the medium, which is different from the
bulk force, which acts on both the fluid and the solid phase.

The horizontal component of the force acting on the fluid phase generates only a de-
tectable SV-wave for all configurations. The amplitude of the SV-wave arrival varies with
the orientation of the source-receiver alignment. The amplitude is strongest in the case of
the horizontal offset configuration, with a value of approximately 3·10−9 ms−1 (4.5(a)). For
the vertical offset configuration, the amplitude diminishes to the order of 10−11 (4.5(b)).
For the diagonal configuration the amplitude is about half of the amplitude modelled for
the horizontal offset (4.5(c)). The vertical component of the force acting on the fluid phase
also generates only a detectable SV-wave. This wave field only affects the particle velocity
field when the receiver is placed in the diagonal offset configuration (4.6(c)).

Interpretation of the observations on the response to the fluid phase force

The force acting only on the fluid phase is actually not a source type which can be simulated
in reality, because applying a force to a medium will always affect the solid phase as well.
However, theoretically it is interesting to look at this force type, because if it acts only
on the fluid phase it can be seen as a microscopic acceleration of only the mobile fluid
layer of the EDL inside the pore spaces. Our observations of the horizontal component
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(a) (b)

(c)

Figure 4.4: Radiation patterns for the particle velocity field are shown: in (a) the radiation
pattern of the P-wave field generated by the horizontal force component, in (b) the radiation
pattern of the P-wave field generated by the vertical force component and in (c) the pattern of the
SV-wave field generated by the vertical force component.

(a) (b) (c)

Figure 4.5: Particle velocity field response to the horizontal component of the fluid force
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(a) (b) (c)

Figure 4.6: Particle velocity field response to the vertical component of the fluid force

of this force indicate that accelerating the EDL in the horizontal direction generates an
SV-wave with a horizontal polarization. In the radiation pattern of this SV-wave field
can be seen that the amplitude of this polarization is strongest in the direction of the
force. A possible explanation of this SV-wave field is that the force acting in the horizontal
direction on the fluid EDL causes an acceleration in that direction. Due to the fact that
all equations are volume averaged over a volume containing both fluid as solid phases, a
directional acceleration purely in the fluid phase can be translated directly to the solid
phase, in the same direction. In the case of the force acting on the EDL in the vertical
direction the same thing would happen, because of the isotropic and homogeneous nature
of the medium. However, the vertical particle velocity is not modelled here. But we do
see that this vertical directed source does have the ability to generate horizontal particle
motion, because this wave field is observed in figure 4.6(c). This can be explained by the
fact that any displacement of the elastic framework in a certain direction can induce a
displacement in a perpendicular direction, due to the interconnectivity of this elastic solid
framework.

4.1.3 Modelled response to a volume injection rate

This source can be regarded as a literal injection of volume into the fluid phase of the
medium at the source location. It is the only source of monopole nature discussed in this
thesis.

(a) (b) (c)

Figure 4.7: Particle velocity field response to the volume injection
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This source only induces a detectable horizontal particle velocity wave field of the P-wave
type. This P-wave is however not detectable in the case of the vertical offset configuration
(4.7(b)). The amplitude is strongest in the case of the horizontal offset configuration
(4.7(a)) with a value of approximately 2.5 · 10−7 ms−1. In the other configuration in figure
4.7(c) the amplitude is a bit less with a value of about 1.5 · 10−7 ms−1.

Interpretation of the observations on the volume injection response

In the modelling results we observed that the volume injection only generates a detectable
dilatational movement of the horizontal component of the particle velocity field. In fact,
the total wave field generated by this source is a purely radially orientated dilatational
wave field. Therefore, the particle velocity displacement vector has in the whole medium
this radial orientation. This behaviour is caused by the monopole or isotropic nature of the
volume injection source, which we also observed in equation 2.37, which showed us that
the wave field is composed of the divergence of all constituent wave field types. This also
explains why this movement was not detectable when the receiver was placed at a vertical
offset: the particle velocity induced by this source is directed in the vertical direction here,
which is perpendicular to the receiver which measures the horizontal component only.

4.1.4 Modelled response to a shear strain source

This source deforms the medium by way of rotational shearing it at the source location.

(a) (b) (c)

Figure 4.8: Particle velocity field response to the horizontal component of the shear strain source

For the horizontal offset configuration this source has no influence on the horizontal com-
ponent of the particle velocity field (4.8(a)). At a vertical offset a shear wave with an
amplitude of the order of 10−3 is generated, as well as a P-wave with a considerably lower
amplitude of the order 10−4. For the diagonal configuration there is also an SV-wave gen-
erated, however its polarity is reversed in this case. The amplitude of the P-wave is much
stronger for this configuration. A close examination of the P-wave for both figures 4.8(b)
and 4.8(c), shows that there occurs a polarity switch for the P-wave as well.

Interpretation of the observations on the response to the shear strain source

In the section on the shear strain source in Chapter 2 I discussed the complicated third order
spatial derivatives acting on the constituent Green’s functions. In the modelling results we
observed a polarity switch between the vertical and diagonal offset for both the P-wave as
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the SV-wave. This polarity switch could be explained by the third order spatial derivatives
active on both P and SV-waves, as seen in the Green’s function 2.39. This complicated
pattern arises, due to the fact that the SV-wave field is actually a combination of a vertical
spatial derivative and a third order spatial derivative term (equation 2.39). In figure 4.9(a)
just the vertical derivative of the SV-wave field is shown. This tells us that this term is
not detectable at positions horizontally aligned with the source. In figure 4.9(b) the third
order spatial derivative of the SV-wave is shown. These radiation patterns together yield
the total pattern of the SV wavefield (figure 4.9(c)), which shows six lobes, each distanced
at 60 degrees from each other. From our observations of 4.8(c) we know that the polarity
switches for the diagonal configuration, which is at 315 degrees in the radiation pattern,
which could imply that the entire lobe at this angle is of opposite polarity with respect to
the lobe at 90 degrees. This radiation pattern is of a much more complex nature than for
instance in the case of a dipole force, which showed just four lobes of the same polarity
(4.4(c)). This increase of complexity arises from the fact that this source generates a double
rotation of the fields of which the divergence results in the particle velocity field.

(a) (b)

(c)

Figure 4.9: In figure (a) the SV radiation pattern purely due to the vertical derivative is shown.
In (b) the SV radiation pattern due to the third order derivative is shown. In figure (c) the total
SV radiation patterns is given, which is simply the summation of patterns in (a) and (b).
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4.1.5 Modelled response to a magnetic dipole

The magnetic dipole source is analysed here. This source is directed perpendicular to the
2D medium surface.

(a) (b) (c)

Figure 4.10: Particle velocity field response to the magnetic dipole

In figure 4.10(b) and 4.10(c) the arrival of an EM-wave with an amplitude of the order
of 10−13 as well as an SV-wave with an amplitude of the order 10−13 are distinguishable.
However, for the horizontal configuration given in figure 4.10(a) there is no detectable
horizontal particle velocity.

Interpretation of the observations on the response to the magnetic dipole

According to Faraday’s law, the spatial rotation of the electric field is induced by a temporal
variation in the magnetic flux. Faraday’s law dictates that the orientation of the curl of the
electric field is opposite to the magnetic flux vector. The magnetic dipole source generates a
a magnetic flux varying in time in the direction perpendicular to the 2D medium. According
to Faraday’s law, this results in an electric field which varies in a rotational manner in the
plane of the 2D medium. A schematic representation of this is given in figure 4.11, where
the magnetic flux direction is given by the black outward pointing vector and the generated
electric field direction is indicated by the red arrows. These electric field vectors generate

Figure 4.11: This figure illustrates the effects of Faraday’s law [6]. The magnetic dipole source is
denoted by the black outward pointing vector and the induced rotational electric field is denoted
by the red field vectors. In yellow the positions of the receiver for the three different configurations
are denoted by H (horizontal offset), D (diagonal offset) and V (vertical offset).

the electromagnetic wave field with a polarization which is parallel to these red vectors
in figure 4.11. In turn this electric field generates as well a particle velocity motion with

49



the same spatial orientation. The effect of this could result in outward propagating SV-
waves. This could be better captured when looking at the schematic representation in
figure 4.11. Here, point H represents the receiver position in the case of the horizontal set
up. For this set up, the electric field vector is orientated in the vertical direction and this
could be an explanation why no horizontal component of the SV-wave is measured for this
configuration. When we look at the other set ups, denoted by points D (diagonal setup)
and V (vertical setup), the electric field vector clearly has a horizontal component. This
could also explain why for the vertical configuration the amplitude of the SV-wave is bigger
than for the diagonal configuration, because at point V, the full electric field vector points
in the horizontal direction, while for point D only a part of the field vector is horizontally
directed. The same interpretation goes for the EM-wave which has the same polarization
direction as the SV-wave, but is detected by the particle velocity receiver as the coelectric
field.
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4.2 Analysis of the horizontal component of the electric re-
sponse

In this section the response of the horizontal component of the electric field is analysed for
the same sources as in the previous section. The electric dipole, which was not considered
in the previous section due to erroneous results, is included for this case.

4.2.1 Modelled response to a bulk force

When examining the electric field response to the horizontally directed bulk force in figure
4.12, a P-wave arrival can be observed for all three configurations. The amplitude of the
P-wave is about 3 · 10−7 Vm−1 for the horizontal offset configuration (4.12(a)). For the
vertical configuration the amplitude decreases to a value of about 7 ·1 0−9 Vm−1. For the
diagonal configuration the amplitude is about half the amplitude of the P-wave for the
horizontal configuration. There is also a detectable EM-wave observable in figures 4.12(a)
and 4.12(b). The amplitude is the same in both case, with an absolute value of about
3 · 10−9Vm−1. However, the polarity of the EM-wave in 4.12(a) is negative as opposed to
the positive polarity observed for the EM-wave in 4.12(b). The vertical directed bulk force
only generates a horizontal directed electric field when the receiver is placed in the diagonal
configuration (4.13(c)). It generates a fast P-wave with amplitude of a bit less than 2 ·10−7

Vm−1. Additionally, an EM-wave is detected with an amplitude of approximately 3 · 10−9

Vm−1 and a reversed polarity with respect to the EM-wave seen in figure 4.12(b).

(a) (b) (c)

Figure 4.12: Electric field response to the horizontal component of the bulk force

(a) (b) (c)

Figure 4.13: Electric field response to the vertical component of the bulk force
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Interpretation

From the observations can be seen that the horizontal component of the bulk force gen-
erates a dominant fast P-wave. The coseismic field, which travels intrinsically with this
P-wave, is detected by the horizontal electric field receiver for all configurations. The
strongest response is measured when the source and receiver are aligned. It is interesting
to compare this observation with the particle velocity field response to the same bulk force
component in section 4.1.1. In figure 4.2 could be seen that the SV-wave is the dominant
field in all configurations and the P-wave is of a much smaller amplitude. Apparently,
the electric receiver detects no coseismic field of this strong SV-wave, but instead mea-
sures the coseismic field of the much weaker P-wave of 4.2. This is consistent with Pride’s
theory [8], which states that in general a shear wave generates a much weaker co-moving
electric field compared to the co-moving electric field generated by a P-wave, as discussed
in Chapter 2. The same explanation goes for the effect of the vertical component on the
horizontal component of the electric field for the diagonal configuration. The detection of
an EM-wave event for the vertical configuration, implies that the horizontal component of
the bulk force causes direct conversion into an EM-wave field. It is useful to examine a
radiation pattern of this field, because the amplitude variations of this field are difficult to
analyse when plotted together with the much more dominant coseismic P-wave field. In
the radiation pattern of figure 4.14(a) can be seen that the generated EM-wave creates the
same electric field amplitude for both the horizontal and the vertical configuration. The
reason why we cannot see the EM-wave event in 4.2(a) as clear as in 4.2(b) is caused by the
fact that the fast P-wave is much stronger in figure 4.2(a). Note that from the observation
of the polarity reversal of the EM-wave in figures 4.12(a) an 4.12(b) can be inferred that
the polarity of the lobe at zero degrees is reversed with respect to the lobe at 90 degrees.
An interpretation of this radiation pattern could be that this force generates an EM-wave
field which is equivalent to an EM-wave field which would be generated by a pure electric
dipole with the same orientation. Due to the prevalence of the charged mobile EDL layer,
the bulk force has the ability to convert into an electric dipole. This interpretation can be
verified further by looking at the radiation pattern of the EM-wave field due to an actual
electric dipole later in this section (figure 4.22(a)).

(a) (b)

Figure 4.14: The EM radiation pattern for the response of the horizontal electric field component
to the horizontal component of the bulk force
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4.2.2 Modelled response to a force acting only on the fluid phase

This dipole force acts purely on the fluid phase of the medium. The horizontal compo-
nent of the force acting on the fluid generates both a fast P-wave as an SV-wave for all
configurations. The amplitude of the SV-wave arrival is for all configurations bigger than
the P-wave. For the horizontal offset the P- and SV-wave amplitudes are about 1 · 10−4

and 1.5 · 10−4 Vm−1, respectively (figure 4.15(a)). For the vertical configuration both
amplitudes decrease with about a factor of 100 (4.15(b)). For the diagonal configuration
in figure 4.15(c) the amplitudes are about half the amplitude as seen for the horizontal
configuration in figure 4.15(a). The vertical component of the fluid force only generates a
detectable P- and SV-wave for the diagonal configuration in figure 4.15(c) with amplitudes
of about 5 · 10−5 Vm−1 and 7 · 10−5 Vm−1, respectively.

(a) (b) (c)

Figure 4.15: Electric field response to the horizontal component of the fluid force

(a) (b) (c)

Figure 4.16: Electric field response to the vertical component of the fluid force

Interpretation of the observations on the effect of the fluid force

As opposed to the observation for the effect of the bulk force, we do observe for the force
acting on the fluid phase a coseismic electric field of the SV-wave field. In section 4.1.2
was observed that the fluid force generates a detectable SV-wave in the particle velocity
field. No fast P-wave was detected in the particle velocity field. However, the coseismic
electric fields of both an SV-wave and a fast P-wave are detected as seen in figures 4.15 and
4.16. This indicates that the coseismic field of the P-wave is apparently so much stronger
than the SV-wave that even when the fast P-wave is insignificantly small compared to the
SV-wave field, it is still detected. This is in line with the observations and interpretation
for the bulk force in section 4.2.1
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4.2.3 Modelled response to a volume injection rate

(a) (b) (c)

Figure 4.17: Electric field response to the volume injection

Examination of figure 4.17 shows us that the volume injection generates a fast P-wave
for both the horizontal (figure 4.17(a)) and the diagonal configuration (4.17(c)). The
amplitude of this P-wave is in both cases of the same order. However, the amplitude is a
bit lower for the diagonal configuration with 6 · 10−4 Vm−1 compared to 8 · 10−4 Vm−1 for
the horizontal configuration. No wave field is detected for the vertical configuration (figure
4.17(b)).

Interpretation of the observation of the response to the volume injection

The monopole volume injection source generates a purely dilatational P-wave, which is
equipartitioned in all directions in this isotropic medium, as already explained in detail in
section 4.1.3. The coseismic field of this same dilatational field is detected by the electric
field receiver. This is simply because the charged particles contained in the mobile part
of the EDL move along with the dilatational P-wave, thus generating a variation in the
electric field strength in the same direction as the P-wave polarization.

4.2.4 Modelled response to a shear strain source

(a) (b) (c)

Figure 4.18: Electric field response to the horizontal component of the shear strain source

For the horizontal configuration, the shear strain source does not generate any wave field
which affects the horizontal electric field component (figure 4.18(a)). However, for the
vertical configuration a distinct fast P-wave is visible with an amplitude of about 1 · 10−1

Vm−1 (figure 4.18(b)). Also a much smaller EM-wave can be distinguished with amplitude
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of the order 10−2. Note that the shape of the EM wavelet is asymmetrical. For the diagonal
configuration in figure 4.18(c), a fast P-wave is observed with an amplitude about twice as
strong as in figure 4.18(a). No EM-wave is distinguishable here.

Interpretation of the observation of the response to the shear strain source

In section 4.1.4 we observed that this shear strain source generates a fast P-wave and an
SV-wave, affecting the particle velocity field, for the vertical and diagonal configurations.
Although both wave fields were of the same order, the shear wave appeared to be stronger
than the P-wave, especially for the vertical configuration. Here, for the electric field (figure
4.18), we observed as well no field disturbances for the horizontal configuration. However,
only the coseismic electric field is detected of the fast P-wave and not of the SV-wave. This
is because the fast P-wave generates a much stronger co-moving electric field compared to
the SV-wave, as already explained for the effects of the bulk force in section 4.2.1, where a
similar phenomenon was observed. The small EM wavelet observed for the vertical config-
uration in figure 4.18(b) is interesting because of its asymmetrical shape. This asymmetry
for the vertical configuration indicates that the field is generated via a spatial derivative
in the vertical direction of the source. In equation 2.40 in Chapter 2 can be seen that this
distinct EM wavelet for the vertical configuration could arise either from the third order
spatial derivative term or the first order vertical spatial derivative term. By examining
the radiation patterns in figure 4.19, generated by each of the terms separately, it can be
observed that for the angle of 90 degrees the third order spatial derivative term (figure
4.19(b)) yields a 106 times stronger amplitude than the first order term. Therefore, it can
be concluded that the EM wavelet in figure 4.18(b) is a result of the third order spatial
derivative of the EM Green’s function seen in equation 2.40.

(a) (b)

Figure 4.19: In figure 4.19(a) the vertical spatial derivative term of the EM wave field is shown,
where the amplitude is of the order 10−9. In figure 4.19(b) the third order spatial derivative term
of the EM wave field is shown, where the amplitude is of the order 10−3.

4.2.5 Modelled response to an electric dipole source

In figure 4.20(a), the electric field response to a horizontal electric dipole is given for the
horizontal configuration. A strong EM-wave arrival of positive polarity and an amplitude
of about 7 ·10−1 Vm−1, as well as a weaker fast P-wave arrival with an amplitude of about
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1 · 10−1 Vm−1, can be observed. For the vertical configuration in figure 4.20(b), only an
EM-wave can be distinguished with the same absolute amplitude value as the EM-wave
observed in figure 4.20(a). However, the EM-wave is of reversed polarity in this case. For
the diagonal configuration only a fast P-wave can be detected with an amplitude of about
5 · 10−2 Vm−1. For the vertical component of the electric dipole can be observed that
it does not generate any disturbance in the electric field for both horizontal and vertical
configurations (figures 4.21(a) and 4.21(b)). For the diagonal set up, an EM-wave with an
amplitude of about 7 · 10−1 Vm−1 is generated, as well as a weaker fast P-wave with an
amplitude of about 4 · 10−2 Vm−1.

(a) (b) (c)

Figure 4.20: Electric field response to the horizontal component of the electric dipole

(a) (b) (c)

Figure 4.21: Electric field response to the vertical component of the electric dipole

Interpretation of the observation of the response to the electric dipole

The horizontal component of the electric dipole source generates both an EM-wave and a
fast P-wave. The radiation pattern of the EM-wave generated by the horizontal component
of the electric dipole is given in figure 4.22(a). In section 4.2.1, the idea that the bulk
force has the ability to act as an electric dipole was introduced. This can be verified by
comparing the radiation pattern of the EM-wave of the horizontal bulk force in that section
in figure 4.14(a) with the radiation pattern for the same wave due to the same component
of the electric dipole here in figure 4.22(a). The shape of the radiation patterns are indeed
the same, except for the much lower amplitude in the case of the bulk force. This lower
amplitude can be explained by the energy loss caused by the coupling of the mechanical
force field into an electric field. However, the idea that the bulk force can generate the
same EM wave as an electric dipole seems plausible. The question is now whether this idea
also works the other way round, in other words whether an electric dipole source also has
the ability to act as a bulk force and generate a similar fast P-wave field. The radiation
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patterns of the fast P-wave field generated by the electric dipole in figure 4.22(b) and the
bulk force in figure 4.14(b) are compared. The shapes of the two radiation patterns turn out
to be the same. However, the electric dipole generates a fast P-wave with a much stronger
coseismic electric field than the coseismic field of the fast P-wave generated by the bulk
force. This is remarkable, because one would expect that the electric dipole generates a
weaker fast P-wave than the bulk force, because of energy loss during conversion. However,
a possible explanation could be that an electric dipole has in general a much stronger effect
on this type of medium than a bulk force.

(a) (b)

Figure 4.22: The EM radiation pattern for the response of the horizontal electric field component
to the horizontal component of the electric dipole is given in 4.22(a). Note the resemblance to the
radiation pattern in figure 4.14(a). There is also a resemblance between the radiation pattern of
the fast P-wave field in figure 4.22(b) due to the horizontal electric dipole and the radiation pattern
in figure 4.14(b).

4.2.6 Modelled response to a magnetic dipole

(a) (b) (c)

Figure 4.23: Electric field response to the magnetic dipole

In figures 4.23(a) and 4.23(c) can be observed that the magnetic dipole vector only affects
the electric field for the vertical and diagonal configurations with amplitude values of
13 · 10−5 Vm−1 and 9 · 10−5 Vm−1, respectively. For the horizontal configuration there is
no electric field response to this source (figure 4.23(a)).
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Interpretation of the observation of the response to the magnetic dipole

The particle velocity response to this source type yields both an EM-wave and an SV-wave
for the horizontal and diagonal configurations as discussed in section 4.1.5. The amplitudes
of these fields were in the order of 10−12. In the case of the electric field response to this
source type (figure 4.23) only an EM-wave is detected, because the coseismic electric field
of the SV-wave is insignificantly small.
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Chapter 5

Discussion of results

In this thesis the first steps are take to retrieve a Green’s function by interferometry
of the P-SV-TM mode in 2D. Each dipole source type generates four fields, fast and
slow P-waves, a vertically polarized S-wave and a TM-mode electromagnetic field. The
magnetic source generates only an SV-wave and a TM-mode field. To better understand the
contributions from the different constituents per source type, a Green’s function analysis
of this complicated P-SV-TM mode has been performed. All field responses necessary for
the interferometric Green’s retrieval, as specified in equation 3.7, which is repeated here
as equation 5.1, were analysed for different configurations. By considering the effect of
cross-correlation on these field responses, the analysis of Chapter 4 can now be used to
evaluate the results found in Chapter 3.
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E1,Jm2
x̄B ,x̄ − n1Ĝ
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∗v1,2h31
x̄A,x̄ ĜE1,f3
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∗v1,ff3
x̄A,x̄ ĜE1,Cq
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5.1 Possible explanations for the discrepancies observed in
the interferometric retrieval

The exact left hand-side of equation 3.7 results in an anti-symmetrical signal of P-waves as
observed in figure 3.5 . The interferometric retrieval of these P-wave arrivals, arises from
the cross-correlation of the coseismic field of the P-wave received at electric receiver B,
with the seismic P-wave received at the particle velocity receiver A (refer to figure 3.3 for
the model configuration). However, the responses at these receivers do not always consist
purely of a dominant P-wave arrival. On the contrary, as observed in Chapter 2, all sources,
except for the magnetic dipole, have the ability to generate all three wave fields. On top
of that, in Chapter 4, all these three wave fields were indeed observed, however which field
was actually detectable turned out to depend strongly on the source type as well as on
the geometry of the configuration. We think that the extra retrieved events as observed
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in figure 3.5 could be caused by the cross-correlation of P-waves with SV-waves. In order
to verify that, the time lags need to be known, which would result from cross-correlating
these two wave types, for different illumination angles. In table 5.1 these various time lags
are shown accordingly. As observed from the final interferometric retrieval the extra events
occur at ± 0.15 and ± 0.03 seconds. In the table 5.1, can be observed that these arrival
times could result from cross-correlating signals which arise from sources at a horizontal
offset orientation. When increasing this angle of illumination from horizontal to finally
the vertical orientation, these two time lags will converge to the same time lag value of
0.09 seconds. The vertical configurations are not considered further in this discussion,
because no retrieved event at ± 0.09 seconds is observed in figure 3.5. It will be assumed
that the time lag values as shown in table 5.1 will not change significantly as the angle
of illumination is varied between 0 to 30 degrees. Another assumption is that responses
due to the diagonal configuration (offset angle of 45 degrees) as observed in Chapter 4 are
comparable to configuration with an offset angle of 30 degrees. These assumptions enable
the examination of both horizontal and diagonal configurations from Chapter 4, for the
purpose of finding an explanation for the extra retrieved events.

Table 5.1: In this table the resulting time lag values by cross-correlating the specified wave types
coming from either sides of the circle are given in seconds. With ’illumination right’ or ’illumination
left’, is meant that the sources are located on the right- or left- half side of the modelled circle
boundary, respectively. With ’horizontal’ is meant an illumination angle range of 330-30 degrees
and 150-210 degrees, for the right and left sides of the circle boundary, respectively.

Cross-correlated wave types Horizontal illumination right Horizontal illumination left
PB ⊗ SVA -0.15 s -0.03 s
SVB ⊗ PA 0.03 s 0.15 s

5.1.1 Cross-correlation terms containing responses to the bulk sources

In figure 3.8 could be observed that the bulk source responses contribute significantly to
the P-wave retrieval. Except of the fact that the retrieval signal is of a different wavelet
shape as discussed in section 3.6.4. The bulk responses also contribute to the a-causal
artefacts at −0.03 and −0.15 seconds. It will be investigated now, from which of the four
bulk source cross-correlation pairs in equation 5.1 these artefacts could arise from.

The cross-correlation pair, which compares the particle velocity response to a shear strain
with the electric field response to a vertical bulk force is given by,

n1Ĝ
∗v1,2h31
x̄A,x̄ ĜE1,f3

x̄B ,x̄ (5.2)

The electric field response due to a vertical bulk source is only non-zero for the diagonal
configuration. Therefore, the contribution of this term will only come from the areas of
the circle which are neither exactly vertically nor horizontally orientated with respect to
the receivers. Therefore, only sources from the diagonally orientated parts of the circle
boundary will contribute to this term. The particle velocity response to the shear source
for the diagonal configuration results in dominant P- and SV-waves of the order of 10−3

(figure 4.8(c)). The electric field yields a dominant P-wave of the order 10−7, but the
SV-wave is of an undetectable amplitude (figure 4.13(c)). The result of cross-correlating
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the P-waves of both responses will be the phase difference between the P-wave arrivals,
which is due to the receiver offset, with an amplitude around the order of 10−10. However,
the extra SV-wave event in the particle velocity response causes extra artefacts in the re-
sulting cross-correlation. This is due to the extra phase difference which exists between P-
and SV- wave arrivals. From table 5.1 can be seen that the cross-correlation of a P-wave
received at B with a SV-wave received at A would result in a time lag of -0.15 and -0.03
seconds for sources located at the right and left sides of the circle, respectively.

The cross-correlation pair, which compares the particle velocity response to a shear strain
with the electric field response to a horizontal bulk force is given by,

n3Ĝ
∗v1,2h31
x̄A,x̄ ĜE1,f1

x̄B ,x̄ (5.3)

For the diagonal configuration the particle velocity response to a strain source shows dom-
inant P- and SV-waves of the order of 10−3 (figure 4.8(c)). For the same configuration
the electric field response to the horizontal bulk force yields only a P-wave of amplitude
order 10−7. This would yield the same result as the cross-correlation pair 5.2, but the con-
tribution is probably much less because the n3- component is very low for the horizontal
illumination angle range and zero for a purely horizontal illumination.

The cross-correlation pair, which compares the particle velocity response to a horizontal
bulk force with the electric field response to a shear strain is given by,

n3Ĝ
∗v1,f1
x̄A,x̄ ĜE1,2h31

x̄B ,x̄ (5.4)

For the vertical offset, the electric field response shows a dominant coseismic field of a
P-wave with an amplitude of the order 10−1. The velocity field shows an SV-wave of
amplitude of order 10−9, but no detectable P-wave. I expect that cross-correlating this
coseismic P-wave with a seismic SV-wave has no significant contribution, because there is
no artefact observable at 0.09 seconds, which is the expected time lag for vertical configu-
rations. For the diagonal configuration the particle velocity field, a dominant SV-wave is
observed as well, but this configuration does also yield a detectable P-wave with an am-
plitude of the order 10−10 (figure 4.2(c)). The P-wave detected for the same configuration
for the electric field is of the order 101 (figure 4.18(c)). Cross-correlation of the responses
would therefore yield a P-wave arrival with an amplitude of the order 10−10, but due to
the much stronger SV-wave in the particle velocity field, bigger contributions will be made
to the a-causal artefacts at −0.03 and −0.15 seconds.

The cross-correlation pair which compares the particle velocity response to a vertical bulk
force with the electric field response to a shear strain is given by,

n1Ĝ
∗v1,f3
x̄A,x̄ ĜE1,2h31

x̄B ,x̄ (5.5)

Only the diagonal offset orientation has the ability to generate a particle velocity field
due to the vertical bulk force, as observed from figure 4.3, therefore the cross-correlation
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only has a contribution for non-vertical and non-horizontal offset orientations. For the
diagonal offset, the particle velocity response yields both a fast P-wave as an SV-wave of
amplitude order 10−10. In the case of the electric field response to the shear strain source
for this particular configuration (figure 4.18(c)), only the fast P-wave gives a dominant
contribution of order 101. Cross-correlation of these two responses would yield a P-wave
arrival of the order 10−10. However, the dominant SV-wave in the particle velocity trace
again contributes significantly to the a-causal artefacts.

5.1.2 Cross-correlation terms containing responses to the fluid sources

In figure 3.7 could be seen that the cross-correlation of responses to volume injection and
force acting on the fluid phase contribute to the anti-symmetric P-wave retrieval, but not
as strongly as the bulk force responses did, as observed from figure 3.8. The fluid source
responses contribute mainly to the causal artefacts at 0.03 and 0.15 seconds, but also show
a slight contribution to the a-causal equivalents.

The cross-correlation pair, which compares the particle velocity response to a volume
injection source to the electric field response to the horizontal component of the fluid
force,

n1Ĝ
∗v1,Cq
x̄A,x̄ Ĝ

E1,f
(f)
1

x̄B ,x̄ (5.6)

The particle velocity field induced by the volume injection source produces for both the
horizontal and the diagonal configuration a P-wave amplitude of the order of 10−7 (figures
4.7(a) and 4.7(c)). The electric field response to the horizontal component of the force
acting on the fluid phase yields a P-wave amplitude of the order of 10−4 for both configu-
rations (figures 4.15(a) and 4.15(c)). The co-seicmic field of an SV-wave of the same order
is detected as well. The cross-correlation of these two field responses would yield a P-wave
arrival with amplitude of the order 10−11 due to sources located at horizontal diagonal
offsets. However, the extra SV-wave event observed in the electric field response will affect
the cross-correlation result. Nevertheless, it will not contribute to the a-causal artefacts as
was observed for the bulk force cross-correlation pairs, for which SV-waves were observed in
the particle velocity fields (which is the conjugate part of the cross-correlation pair). Due
to the fact that the SV-wave occurs for the fluid force cross-correlation pairs as a coseismic
in the non-conjugated electric field response, the resulting artefacts will now occur only in
the causal part of the resulting signal. Therefore, the coseismic SV-wave will contribute to
the causal artefacts observed in figure 3.7 at 0.03 and 0.15 seconds.

The cross-correlation pair, which compares the particle velocity response to a volume
injection source to the electric field response to the vertical component of the fluid force,

n3Ĝ
∗v1,Cq
x̄A,x̄ Ĝ

E1,f
(f)
3

x̄B ,x̄ (5.7)

The particle velocity field response is zero for the vertical configuration (figure 4.7(b)).
Therefore, only the diagonal configuration needs to be discussed here, which shows a de-
tectable P-wave with an amplitude of the order 10−7 for the particle velocity response
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(figure 4.7(c)). The electric field response to the vertical component of the bulk force
yields a detectable P-wave as well, of the order 10−4. It also shows a detectable SV-wave
of the same order. Cross-correlation of these two responses would yield a P-wave arrival
with amplitude of the order 10−11 for diagonal offset orientations only. The extra coseismic
SV-wave event will contribute to the causal artefacts at 0.025 and 0.16 seconds.

The cross-correlation pair which compares the particle velocity response to a volume in-
jection source to the electric field response to the horizontal component of the fluid force,
is given by

n1Ĝ
∗v1,ff1
x̄A,x̄ ĜE1,Cq

x̄B ,x̄ (5.8)

For the horizontal and diagonal configurations the particle velocity response to the hor-
izontal component of the fluid force is dominated by an SV-wave with an amplitude of
the order 10−9 (figures 4.5(a) and 4.5(c)). For the same configurations, the electric field
response to a volume injection is dominated by the coseismic field of P-waves of the order
of 10−3. The correlation between these two wave field responses will only result in a-causal
artefacts, because here we cross-correlate a coseismic P-wave with a seismic SV-wave. In
figure 3.7 you can see a slight contribution to the a-causal artefacts, which I think arise
from this specific cross-correlation.

The cross-correlation pair, which compares the particle velocity response to a volume
injection source to the electric field response to the horizontal component of the fluid
force,

n3Ĝ
∗v1,ff3
x̄A,x̄ ĜE1,Cq

x̄B ,x̄ (5.9)

Only for the diagonal configuration, the particle velocity gives a response to the vertical
component of the fluid force (figure 4.6). This response shows a dominant seismic SV-
wave of the amplitude order 10−9. The electric field response to the volume injection
source yields a coseismic P-wave of the amplitude order of 10−3. As was the case for the

cross-correlation term, n1Ĝ
∗v1,ff1
x̄A,x̄ ĜE1,Cq

x̄B ,x̄ , this term will also result in a contribution to the
a-causal artefacts.
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Chapter 6

Conclusions

The original goal of this thesis was to obtain an interferometric retrieval of the exact left
hand-side. The resulting retrieval showed some resemblances to the exact left-hand side,
because the exact anti-symmetric P-wave signal was observed as well for the retrieval.
However, the retrieval amplitude was about five times lower and its shape indicates that
it is a second order derivative of a Ricker wavelet, in stead of a third order derivative
as is indicated by the shape of the left-hand side. The retrieval also showed four extra
events, which were not represented by the left hand-side. The detailed analysis conducted
in Chapter 4 made it possible to determine which source responses give the strongest con-
tribution to the desired exact retrieval and which contribute to the unwanted extra events.

The cross-correlation pairs which contain the field responses to sources acting on the
bulk give the strongest contribution to the interferometric retrieval. The cross-correlation
pairs containing the responses to the sources acting purely on the fluid phase have less
contribution to the retrieval, but not as negligible as the pairs containing the responses
to electromagnetic sources. The anti-symmetric P-wave arrivals which characterize the
Green’s function on the left hand-side of the interferometric relation 5.1, are retrieved
by cross-correlation of the electric coseismic fields of P-waves with seismic P-waves. As
was observed from the analysis in Chapter 4 these P-waves are quite abundant in most
of the responses. However, due to the abundance of SV-waves as well, the causal and
a-causal artefacts arise. The a-causal artefacts of the interferometric retrieval arise from
cross-correlating coseismic fields of P-waves received at xB with seismic SV-waves received
at xA, which are generated by sources acting on the bulk. The causal artefacts arise from
cross-correlating electric coseismic fields of SV-waves received at xB with seismic P-waves
received at xA, generated by sources acting on the fluid phase. Therefore, the fact that
dominant seismic or coseismic SV-waves occur in several field responses results in the ob-
served artefacts in the interferometric retrieval. The causality of these artefacts depend
on whether this SV-wave event is observed in the particle velocity field, which forms the
conjugate of the pair, or as a coseismic in the electric field, which forms the non-conjugate
of the pair. Whether the artefact appears at the absolute travel time of 0.15 seconds or at
0.03 seconds depends on from which side the receivers are illuminated.
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Suggestions for future research

The field responses to the shear strain sources turned out to contribute most significantly to
the interferometric retrieval modelled in this thesis. In spite of this strong contribution, the
retrieval’s amplitude was five times weaker than the exact left hand-side. This could be due
to the fact that the other source terms of the strain tensor, the tensile strain sources h11 and
h33, were not modelled in this thesis. It can be expected that these sources will have a very
strong contribution to the retrieval and therefore it is recommended to include them in any
future attempt to model the interferometric retrieval of a seismoelectric P-SV-TM mode
wave field. Another assumption made in this interferometric modelling experiment, was
that the domain integral of the interferometry relation is negligible. Including this volume
integral in the model could present a possible solution for the encountered inconsistencies
in the results.
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Appendix A

Spatial derivatives of the Bessel
function K0

Ĝ2D(xR, xS , s) = Ĝ2D(r, s) =
1

2π
K0(γr) (A.1)

(A.2)

Where, γ = s
c and r =

√
(x1,R − x1,S)2 + (x3,R − x3,S)2. The receiver position is the

variable coordinate. The derivatives of the modified Bessel function of second kind and
order zero are given (Abramowitz and Stegun, 1972),

2n

z
einπKn(z) = ei(n−1)πKn−1(z)− ei(n+1)πKn+1(z) (A.3)

2einπK ′n(z) = ei(n−1)πKn−1(z) + ei(n+1)πKn+1(z) (A.4)

K ′n(z) =
n

z
Kn(z)−Kn+1(z) (A.5)

∂R3 K0(γr) = γ
x3,R − x3,S

r
K ′0(γr)

= −γ
x3,R − x3,S

r
K1(γr) (A.6)

∂R1 K0(γr) = γ

[
x1,R − x1,S

r
K ′0(γr)

]
= −γ

[
x1,R − x1,S

r
K1(γr)

]
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∂R1 ∂
R
1 K0(γr) = ∂R1 γ

[
x1,R − x1,S

r
K ′0(γr)

]
= −∂R1 γ

[
x1,R − x1,S

r
K1(γr)

]
= −γ

[(
1

r
−

(x1,R − x1,S)2

r3

)
K1(γr) + γ

(x1,R − x1,S)2

r2
K ′1(γr)

]
= −γ2

[(
1−

(x1,R − x1,S)2

r2

)
K1(γr)

γr
+

(x1,R − x1,S)2

r2
K ′1(γr)

]
= γ2

[
−K1(γr)

γr
+

(x1,R − x1,S)2

r2

(
K1(γr)

γr
−K ′1(γr)

)]
= γ2

[
(x1,R − x1,S)2

r2
K2(γr)− K1(γr)

γr

]
(A.7)

∂R1 ∂
R
1 ∂

R
1 K0(γr) = γ2∂R1

[
(x1,R − x1,S)2

r2
K2(γr)

]
− γ∂R1

[
K1(γr)

r

]
= γ2

[
2(
x1,R − x1,S

r2
−

(x1,R − x1,S)3

r4
)K2(γr)− γ

(x1,R − x1,S)3

2r3
(K1(γr) +K3(γr))

]
− γ∂R1

[
K1(γr)

r

]
= γ2

[
2(
x1,R − x1,S

r2
−

(x1,R − x1,S)3

r4
)K2(γr)− γ

(x1,R − x1,S)3

2r3
(K1(γr) +K3(γr))

]
+ γ

[
K1(γr)

r3
(x1,R − x1,S) +

γ

2r
(x1,R − x1,S) (K0(γr) +K2(γr))

]
(A.8)

∂R3 ∂
R
1 ∂

R
1 K0(γr) = γ

x3,R − x3,S

r3
K1(γr) + γ2x3,R − x3,S

2r2
(K0(γr) +K2(γr))

− (x1,R − x1,S)2
( γ
r2

)2 [
2(x3,R − x3,S)K2(γr) +

γ

2
r(x3,R − x3,S) (K1(γr) +K3(γr))

]
(A.9)

∂R3 ∂
R
1 K0(γr) = ∂R3 γ

[
x1,R − x1,S

r
K ′0(γr)

]
= −∂R3 γ

[
x1,R − x1,S

r
K1(γr)

]
= −γ

[
−

(x1,R − x1,S)(x3,R − x3,S)

r3
K1(γr) + γ

(x1,R − x1,S)(x3,R − x3,S)

r2
K ′1(γr)

]
= γ2

[(
K1(γr)

γr
−K ′1(γr)

)
(x1,R − x1,S)(x3,R − x3,S)

r2

]
= γ2

[
K2(γr)

(x1,R − x1,S)(x3,R − x3,S)

r2

]
(A.10)
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∂R3 ∂
R
3 ∂

R
1 K0(γr) =

γ2(x1,R − x1,S)

[
K2(γr)

r2
−

2(x3,R − x3,S)2K2(γr)

r4
− γ

2

(x3,R − x3,S)2

r2
(K1(γr) +K3(γr))

]
(A.11)
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Appendix B

Green’s function representations of
2D P-SV-TM mode wave fields

The full expressions for all Green’s functions discussed in Chapter 2 are given here. These
functions are found by substituting the relevant source type into the source terms of the
two second order wave equations B.5 and B.6.

B.1 Wave equations and source functions

The two second order wave equations 2.27 and 2.28 derived in Chapter 2 are repeated here,
respectively,

(
k2

1 + k2
3 + γ2

S

) (
k2

1 + k2
3 + γ2

EM

)
Ĕ1;3 =

− ζL̂

s

(
k2

1 + k2
3 +

s2ρ

Gfr

)
X11,1;3 +

sρfζL̂

Gfr
X22,1;3 (B.1)

(
k2

1 + k2
3 + γ2

S

) (
k2

1 + k2
3 + γ2

EM

)
v̆1;3 =

− k̂sρf

ηGfr
(
k2

1 + k2
3 + ζς

)
X11,1;3 +

1

Gfr

(
k2

1 + k2
3 + ζ(ς + L̂ξ̂)

)
X22,1;3 (B.2)

The full seismoelectric Green’s function consists of a coupled electromagnetic and elasto-
dynamic transveral Green’s function, ĞEM and ĞS , respectively,

Ğ =
1(

k2
1 + k2

3 + γ2
S

) (
k2

1 + k2
3 + γ2

EM

)
=
ĞEM − ĞS
γ2
S − γ2

EM

=
ĞEM

γ2
S − γ2

EM

− ĞS
γ2
S − γ2

EM

(B.3)
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(k2
1 + k2

3)Ğ =
(k2

1 + k2
3)ĞEM − (k2

1 + k2
3)ĞS

γ2
S − γ2

EM

=
1− γ2

EM ĞEM − 1 + γ2
SĞS

γ2
S − γ2

EM

=
γ2
SĞS − γ2

EM ĞEM
γ2
S − γ2

EM

(B.4)

The second order wave equation for both the horizontal as vertical component of the electric
field, which can be selected by choosing either the 1 or the 3, respectively,

Ĕ1;3 =

− ζL̂

s

(
k2

1 + k2
3 +

s2ρ

Gfr

)
ĞX11,1;3 +

sρfζL̂

Gfr
ĞX22,1;3

= −ζL̂
s

(
k2

1 + k2
3

)
ĞX11,1;3 −

ζL̂

s
ĞX11,1;3 +

sρfζL̂

Gfr
ĞX22,1;3

= −ζL̂
s

(
γ2
SĞS − γ2

EM ĞEM
γ2
S − γ2

EM

)
X11,1;3 −

s2ρζL̂

sGfr

(
ĞEM

γ2
S − γ2

EM

− ĞS
γ2
S − γ2

EM

)
X11,1;3

+
sρfζL̂

Gfr

(
ĞEM

γ2
S − γ2

EM

− ĞS
γ2
S − γ2

EM

)
X22,1;3

= − ζL̂

sGfr

(
Gfrγ2

SĞS −Gfrγ2
EM ĞEM + s2ρĞEM − s2ρĞS
γ2
S − γ2

EM

)
X11,1;3

+
sρfζL̂

Gfr

(
ĞEM

γ2
S − γ2

EM

− ĞS
γ2
S − γ2

EM

)
X22,1;3

= ζL̂
s2ρ− γ2

sG
fr

sGfr
1

γ2
S − γ2

EM

ĞSX11,1;3

+ ζL̂
γ2
EMG

fr − s2ρ

sGfr
1

γ2
S − γ2

EM

ĞEMX11,1;3

− ζL̂sρf

Gfr
1

γ2
S − γ2

EM

ĞSX22,1;3

+
ζL̂sρf

Gfr
1

γ2
S − γ2

EM

ĞEMX22,1;3 (B.5)

The second order wave equation for both the horizontal as vertical component of the
particle velocity field, which can be selected by choosing either the 1 or the 3, respectively,
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v̆1;3 =

− k̂sρf

ηGfr

(
k2

1 + k2
3 + ζL̂

)
ĞX11,1;3 +

1

Gfr

(
k2

1 + k2
3 + ζ(ς + L̂ξ̂)

)
ĞX22,1;3

=− k̂sρf

ηGfr
(
k2

1 + k2
3

)
ĞX11,1;3 −

k̂sρf

ηGfr
(ζς) ĞX11,1;3

+
1

Gfr
(
k2

1 + k2
3

)
ĞX22,1;3 +

1

Gfr

(
ζ(ς + L̂ξ̂)

)
ĞX22,1;3

=− k̂sρf

ηGfr

(
γ2
SĞS − γ2

EM ĞEM
γ2
S − γ2

EM

)
X11,1;3 −

k̂sρf

ηGfr
(ζς)

(
ĞEM

γ2
S − γ2

EM

− ĞS
γ2
S − γ2

EM

)
X11,1;3

+
1

Gfr

(
γ2
SĞS − γ2

EM ĞEM
γ2
S − γ2

EM

)
X22,1;3 +

1

Gfr

(
ζ(ς + L̂ξ̂)

)( ĞEM
γ2
S − γ2

EM

− ĞS
γ2
S − γ2

EM

)
X22,1;3

=− k̂sρf

ηGfr

(
γ2
SĞS

γ2
S − γ2

EM

)
X11,1;3 +

k̂sρf

ηGfr

(
γ2
EM ĞEM
γ2
S − γ2

EM

)
X11,1;3

− k̂sρf

ηGfr
(ζς)

(
ĞEM

γ2
S − γ2

EM

)
X11,1;3 +

k̂sρf

ηGfr
(ζς)

(
ĞS

γ2
S − γ2

EM

)
X11,1;3

+
1

Gfr

(
γ2
SĞS

γ2
S − γ2

EM

)
X22,1;3 −

1

Gfr

(
γ2
EM ĞEM
γ2
S − γ2

EM

)
X22,1;3

+
1

Gfr

(
ζ(ς + L̂ξ̂)

)( ĞEM
γ2
S − γ2

EM

)
X22,1;3 −

1

Gfr

(
ζ(ς + L̂ξ̂)

)( ĞS
γ2
S − γ2

EM

)
X22,1;3

= +
sρfk

ηGfr
ζς − γ2

S

γ2
S − γ2

EM

ĞSX11,1;3

+
sρfk

ηGfr
γ2
EM − ζς
γ2
S − γ2

EM

ĞEMX11,1;3

+
1

Gfr
γ2
S − ζ(ς + L̂ξ̂)

γ2
S − γ2

EM

ĞSX22,1;3

+
1

Gfr
ζ(ς + L̂ξ̂)− γ2

EM

γ2
S − γ2

EM

ĞEMX22,1;3 (B.6)

The specification of the source terms X11,1 and X22,1 are given in the next section.
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B.2 Specification of the source terms affecting the horizontal
component of the field vectors

X
f1;3
11,1 =− C

C2 −HM
ik1s

3ρE(1 +
ξ̂L̂

ς
)ĞPP ik1;3f̆1;3

− C

C2 −HM
ik1sM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3f̆1;3

−
sη

ζk̂ς
−M

C2 −HM
ik1s

3ρf ĞPP ik1;3f̆1;3

−
sη

ζk̂ς
−M

C2 −HM
ik1sC

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3f̆1;3 (B.7)

X
f1;3
22,1 =− KG +Gfr/3

C2 −HM
ik1s

3ρE(1 +
ξ̂L̂

ς
)ĞPP ik1;3f̆1;3

− KG +Gfr/3

C2 −HM
ik1sM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3f̆1;3

−
s2ρf

ζς − C
C2 −HM

ik1s
3ρf ĞPP ik1;3f̆1;3

−
s2ρf

ζς − C
C2 −HM

ik1sC
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3f̆1;3

+ sf̆1;− (B.8)

X
ff1;3
11,1 =

C

C2 −HM
ik1s

3ρf ĞPP ik1;3f̆
f
1;3

+
C

C2 −HM
ik1sC

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3f̆
f
1;3

+

sη

ζk̂ς
−M

C2 −HM
ik1s

3ρĞPP ik1;3f̆
f
1;3

+

sη

ζk̂ς
−M

C2 −HM
ik1sH

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3f̆
f
1;3

+ sf̆f1;− (B.9)
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X
ff1;3
22,1 =

KG +Gfr/3

C2 −HM
ik1s

3ρf ĞPP ik1;3f̆
f
1;3

+
KG +Gfr/3

C2 −HM
ik1sC

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3f̆
f
1;3

+

s2ρf

ζς − C
C2 −HM

ik1s
3ρĞPP ik1;3f̆

f
1;3

+

s2ρf

ζς − C
C2 −HM

ik1sH
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3f̆
f
1;3 (B.10)

X
h11;33
11,1 =− C

C2 −HM
ik1Cs

2ρf
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

− C

C2 −HM
ik1C

2
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ

00)h̆11;33

+
C

C2 −HM
ik1s

2C1KG

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+
C

C2 −HM
ik1s

2C1G
fr(

4

3
k2

1;3 −
2

3
k2

3;1)ĞPP h̆11;33

+
C

C2 −HM
ik1MKG(1− γ2

00Ğ
00)

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+
C

C2 −HM
ik1MGfr(

4

3
k2

1;3 −
2

3
k2

3;1)
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

−
sη

ζk̂ς
−M

C2 −HM
ik1s

2ρC
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

−
sη

ζk̂ς
−M

C2 −HM
ik1CH

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ

00)h̆11;33

+

sη

ζk̂ς
−M

C2 −HM
ik1s

2ρfKG

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+

sη

ζk̂ς
−M

C2 −HM
ik1s

2ρfGfr(
4

3
k2

1;3 −
2

3
k2

3;1)ĞPP h̆11;33

+

sη

ζk̂ς
−M

C2 −HM
ik1CKG(1− γ2

00Ğ
00)

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+

sη

ζk̂ς
−M

C2 −HM
ik1CG

fr(
4

3
k2

1;3 −
2

3
k2

3;1)
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+ Cik1h̆11;33 (B.11)

73



X
h11;33
22,1 =− KG +Gfr/3

C2 −HM
ik1Cs

2ρf
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

− KG +Gfr/3

C2 −HM
ik1C

2
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ

00)h̆11;33

+
KG +Gfr/3

C2 −HM
ik1s

2C1KG

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+
KG +Gfr/3

C2 −HM
ik1s

2C1G
fr(

4

3
k2

1;3 −
2

3
k2

3;1)ĞPP h̆11;33

+
KG +Gfr/3

C2 −HM
ik1MKG(1− γ2

00Ğ
00)

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+
KG +Gfr/3

C2 −HM
ik1MGfr(

4

3
k2

1;3 −
2

3
k2

3;1)
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

−
s2ρf

ζς − C
C2 −HM

ik1s
2ρC

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

−
s2ρf

ζς − C
C2 −HM

ik1CH
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ

00)h̆11;33

+

s2ρf

ζς − C
C2 −HM

ik1s
2ρfKG

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+

s2ρf

ζς − C
C2 −HM

ik1s
2ρfGfr(

4

3
k2

1;3 −
2

3
k2

3;1)ĞPP h̆11;33

+

s2ρf

ζς − C
C2 −HM

ik1CKG(1− γ2
00Ğ

00)
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+

s2ρf

ζς − C
C2 −HM

ik1CG
fr(

4

3
k2

1;3 −
2

3
k2

3;1)
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

h̆11;33

+

[
(KG +

4

3
Gfr); (KG −

2

3
Gfr)

]
ik1h̆11;33 (B.12)
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X
Je1;3
11,1 =

C

C2 −HM
ik1

s3ρfη

ξ̂k̂
ĞPP ik1;3J̆

e
1;3

+
C

C2 −HM
ik1

s(sρfM + ηC/k̂)

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3J̆
e
1;3

+
C

C2 −HM
ik1CM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)ik1;3J̆

e
1;3

− C

C2 −HM
ik1

s4C1ρ
f

ξ̂
ĞPP ik1;3J̆

e
1;3

− C

C2 −HM
ik1

s2(CC1 +Mρf )

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3J̆
e
1;3

− C

C2 −HM
ik1

CM

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)ik1;3J̆

e
1;3

+

sη

ζk̂ς
−M

C2 −HM
ik1

s3ρη

ξ̂k̂
ĞPP ik1;3J̆

e
1;3

+

sη

ζk̂ς
−M

C2 −HM
ik1

s(sρM + ηH/k̂)

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3J̆
e
1;3

+

sη

ζk̂ς
−M

C2 −HM
ik1

MH

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)ik1;3J̆

e
1;3

−
sη

ζk̂ς
−M

C2 −HM
ik1

(s2ρf )2

ξ̂
ĞPP ik1;3J̆

e
1;3

−
sη

ζk̂ς
−M

C2 −HM
ik1

2s2ρfC

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3J̆
e
1;3

−
sη

ζk̂ς
−M

C2 −HM
ik1

C2

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)ik1;3J̆

e
1;3

− M

ξ̂
ik1ik1;3J̆

e
1;3 +

sη

ξ̂k̂
J̆e1;− (B.13)
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X
Je1;3
22,1 = +

KG +Gfr/3

C2 −HM
ik1

s3ρfη

ξ̂k̂
ĞPP ik1;3J̆

e
1;3

+
KG +Gfr/3

C2 −HM
ik1

s(sρfM + ηC/k̂)

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3J̆
e
1;3

+
KG +Gfr/3

C2 −HM
ik1CM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)ik1;3J̆

e
1;3

− KG +Gfr/3

C2 −HM
ik1

s4C1ρ
f

ξ̂
ĞPP ik1;3J̆

e
1;3

− KG +Gfr/3

C2 −HM
ik1

s2(CC1 +Mρf )

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3J̆
e
1;3

− KG +Gfr/3

C2 −HM
ik1

CM

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)ik1;3J̆

e
1;3

+

s2ρf

ζς − C
C2 −HM

ik1
s3ρη

ξ̂k̂
ĞPP ik1;3J̆

e
1;3

+

s2ρf

ζς − C
C2 −HM

ik1
s(sρM + ηH/k̂)

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3J̆
e
1;3

+

s2ρf

ζς − C
C2 −HM

ik1
MH

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)ik1;3J̆

e
1;3

−
s2ρf

ζς − C
C2 −HM

ik1
(s2ρf )2

ξ̂
ĞPP ik1;3J̆

e
1;3

−
s2ρf

ζς − C
C2 −HM

ik1
2s2ρfC

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1;3J̆
e
1;3

−
s2ρf

ζς − C
C2 −HM

ik1
C2

ξ̂

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)ik1;3J̆

e
1;3

− C

ξ̂
ik1ik1;3J̆

e
1;3 +

s2ρf

ξ̂
J̆e1;− (B.14)
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Xq
11,1 =− C

C2 −HM
ik1s

2ρfM
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

q̆

− C

C2 −HM
ik1CM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)q̆

+
C

C2 −HM
ik1s

2C1C
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

q̆

+
C

C2 −HM
ik1CM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)q̆

−
sη

ζk̂ς
−M

C2 −HM
ik1s

2ρM
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

q̆

−
sη

ζk̂ς
−M

C2 −HM
ik1MH

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)q̆

+

sη

ζk̂ς
−M

C2 −HM
ik1s

2ρfC
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

q̆

+

sη

ζk̂ς
−M

C2 −HM
C2

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)q̆

+Mik1q̆ (B.15)

Xq
22,1 =− KG +Gfr/3

C2 −HM
ik1s

2ρfM
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

q̆

− KG +Gfr/3

C2 −HM
ik1CM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)q̆

+
KG +Gfr/3

C2 −HM
ik1s

2C1C
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

q̆

+
KG +Gfr/3

C2 −HM
ik1CM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)q̆

−
s2ρf

ζς − C
C2 −HM

ik1s
2ρM

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

q̆

−
s2ρf

ζς − C
C2 −HM

ik1MH
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)q̆

+

s2ρf

ζς − C
C2 −HM

ik1s
2ρfC

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

q̆

+

s2ρf

ζς − C
C2 −HM

C2
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

(1− γ2
00Ğ00)q̆

+ Cik1q̆ (B.16)
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Xh13
11 =− C

C2 −HM
ik14s2C1G

frĞPP ik1ik3h̆13

− C

C2 −HM
ik14MGfr

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1ik3h̆13

−
sη

ζk̂ς
−M

C2 −HM
ik14s2ρfGfrĞPP ik1ik3h̆13

−
sη

ζk̂ς
−M

C2 −HM
ik14CGfr

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1ik3h̆13 (B.17)

Xh13
22 =− KG +Gfr/3

C2 −HM
ik14s2C1G

frĞPP ik1ik3h̆13

− KG +Gfr/3

C2 −HM
ik14MGfr

γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1ik3h̆13

−
s2ρf

ζς − C
C2 −HM

ik14s2ρfGfrĞPP ik1ik3h̆13

−
s2ρf

ζς − C
C2 −HM

ik14CGfr
γ2
PsĞPs − γ2

Pf ĞPf

γ2
Ps − γ2

Pf

ik1ik3h̆13

+ ik3G
frh̆13 (B.18)

X
Jm2
11 =

sη

ξ̂k̂ζ
ik3J̆

m
2 (B.19)

X
Jm2
22 =

s2ρf

ξ̂ζ
ik3J̆

m
2 (B.20)

By substituting each of these source terms into the X11,1 and X22,1 expressions for the
second order wave equations B.5 and B.6, the impulse response functions to these specific
sources can be found. These resulting Green’s functions are given in the next section of
this Appendix.
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B.3 Particle velocity response to the bulk force

FPs =
sρf k̂

η

sMγ2
PsC +

(
sη

ζk̂ς
−M

)
(sCγ2

Ps − s3ρf )− Cs3ρE
(

1 + ξ̂L̂
ς

)
Gfr

(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.21)

FPf =
sρf k̂

η

sMγ2
PfC +

(
sη

ζk̂ς
−M

)
(sCγ2

Pf − s3ρf )− Cs3ρE
(

1 + ξ̂L̂
ς

)
Gfr

(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.22)

ZPs =
(H −Gfr)

(
sMγ2

Ps − s3ρE(1 + ξ̂L̂
ς )
)

+
(
sCγ2

Ps − s3ρf
)

( s
2ρf

ζς − C)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.23)

ZPf =
(H −Gfr)

(
sMγ2

Pf − s3ρE(1 + ξ̂L̂
ς )
)

+
(
sCγ2

Pf − s3ρf
)

( s
2ρf

ζς − C)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.24)
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Cv1,f
S1 = FPf

ζς − γ2
S

γ2
Pf − γ2

S

− FPs
ζς − γ2

S

γ2
Ps − γ2

S

−
ZPs(γ

2
S − ζ(ς + L̂ξ̂))

γ2
Ps − γ2

S

+
ZPf (γ2

S − ζ(ς + L̂ξ̂))

γ2
Pf − γ2

S

(B.25)

Cv1,f
EM1 = FPf

γ2
EM − ζς

γ2
Pf − γ2

EM

− FPs
γ2
EM − ζς

γ2
Ps − γ2

EM

−
ZPs(ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Ps − γ2

EM

+
ZPf (ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Pf − γ2

EM

(B.26)

Cv1,f
Ps = FPs

ζς − γ2
S

γ2
Ps − γ2

S

+
ZPs(γ

2
S − ζ(ς + L̂ξ̂))

γ2
Ps − γ2

S

+ FPs
γ2
EM − ζς

γ2
Ps − γ2

EM

+
ZPs(ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Ps − γ2

EM

(B.27)

Cv1,f
Pf = −FPf

ζς − γ2
S

γ2
Pf − γ2

S

−
ZPf (γ2

S − ζ(ς + L̂ξ̂))

γ2
Pf − γ2

S

− FPf
γ2
EM − ζς

γ2
Pf − γ2

EM

−
ZPf (ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Pf − γ2

EM

(B.28)

Cv1,f1
S2 = +

(γ2
S − ζ(ς + L̂ξ̂))

Gfr(γ2
S − γ2

EM )
s (B.29)

Cv1,f
EM2 = +

(ζ(ς + L̂ξ̂)− γ2
EM )

Gfr(γ2
S − γ2

EM )
s (B.30)

Ğv1,f1 = Cv1,f
S1 ik1ik1ĞS + Cv1,f1

S2 ĞS + Cv1,f
EM1ik1ik1ĞEM

+ Cv1,f1
EM2 ĞEM + Cv1,f

Ps ik1ik1ĞPs + Cv1,f
Pf ik1ik1ĞPf (B.31)

Ğv1,f3 = Cv1,f
S1 ik3ik1ĞS +Cv1,f

EM1ik3ik1ĞEM +Cv1,f
Ps ik3ik1ĞPs +Cv1,f

Pf ik3ik1ĞPf (B.32)
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B.4 Particle velocity response to fluid force

FPs =
sρf k̂

η

C(sCγ2
Ps − s3ρf ) +

(
sη

ζk̂ς
−M

)
(sHγ2

Ps − s3ρ)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.33)

FPf =
sρf k̂

η

C(sCγ2
Pf − s3ρf ) +

(
sη

ζk̂ς
−M

)
(sHγ2

Pf − s3ρ)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.34)

ZPs =
(H −Gfr)

(
sCγ2

Ps − s3ρf
)

+ ( s
2ρf

ζς − C)
(
sHγ2

Ps − s3ρ
)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.35)

ZPf =
(H −Gfr)

(
sCγ2

Pf − s3ρf
)

+ ( s
2ρf

ζς − C)
(
sHγ2

Pf − s3ρ
)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.36)

Cv1,ff

S1 =
ζς − γ2

S

γ2
Ps − γ2

S

FPs −
ζς − γ2

S

γ2
Pf − γ2

S

FPf +
ZPs(γ

2
S − ζ(ς + L̂ξ̂))

γ2
Ps − γ2

S

−
ZPf (γ2

S − ζ(ς + L̂ξ̂))

γ2
Pf − γ2

S

(B.37)

Cv1,ff

S2 =
ρf k̂

ηGfr
ζς − γ2

S

γ2
S − γ2

EM

(B.38)

(B.39)

Cv1,ff

EM1 =
γ2
EM − ζς

γ2
Ps − γ2

EM

FPs −
γ2
EM − ζς

γ2
Pf − γ2

EM

FPf +
ZPs(ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Ps − γ2

EM

−
ZPf (ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Pf − γ2

EM

(B.40)

(B.41)

Cv1,ff

EM2 =
ρf k̂

ηGfr
γ2
EM − ζς
γ2
S − γ2

EM

(B.42)

(B.43)

Cv1,ff

Ps = −
ζς − γ2

S

γ2
Ps − γ2

S

FPs −
ZPs(γ

2
S − ζ(ς + L̂ξ̂))

γ2
Ps − γ2

S

−
γ2
EM − ζς

γ2
Ps − γ2

EM

FPs

−
ZPs(ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Ps − γ2

EM

(B.44)

(B.45)

Cv1,ff

Pf = +
s2ρ− γ2

SG
fr

γ2
Pf − γ2

S

FPf +
ZPf (γ2

S − ζ(ς + L̂ξ̂))

γ2
Pf − γ2

S

+
γ2
EMG

fr − s2ρ

γ2
Pf − γ2

EM

FPf

+
ZPf (ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Pf − γ2

EM

(B.46)
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Ğv1,ff1 = Cv1,ff

S1 ik1ik1ĞS + Cv1,ff

S2 ĞS + Cv1,ff

EM1 ik1ik1ĞEM + Cv1,ff

EM2 ĞEM

Cv1,ff

Ps ik1ik1ĞPs + Cv1,ff

Pf ik1ik1ĞPf (B.47)

Ğv1,ff3 = Cv1,ff

S1 ik1ik3ĞS + Cv1,ff

EM1 ik1ik3ĞEM + Cv1,ff

Ps ik1ik3ĞPs + Cv1,ff

Pf ik1ik3ĞPf

(B.48)

B.5 Particle velocity response to volume injection

FS,Ps =

sρf k̂

η

C
(
−s2ρfMγ2Ps + s2CρE(1 + ξ̂L̂

ς )γ2Ps

)
+
(
sη

ζk̂ς
−M

) (
−s2ρMγ2Ps − (C2 −HM)γ2Psγ

2
S + s2ρfCγ2Ps

)
Gfr (γ2S − γ2EM )

(
γ2Ps − γ2Pf

)
(C2 −HM)

(B.49)

FEM,Ps =

sρf k̂

η

C
(
−s2ρfMγ2Ps + s2CρE(1 + ξ̂L̂

ς )γ2Ps

)
+
(
sη

ζk̂ς
−M

) (
−s2ρMγ2Ps − (C2 −HM)γ2Psγ

2
EM + s2ρfCγ2Ps

)
Gfr (γ2S − γ2EM )

(
γ2Ps − γ2Pf

)
(C2 −HM)

(B.50)

FS,Pf =

sρf k̂

η

C
(
−s2ρfMγ2Pf + s2CρE(1 + ξ̂L̂

ς )γ2Pf

)
+
(
sη

ζk̂ς
−M

)(
−s2ρMγ2Pf − (C2 −HM)γ2Pfγ

2
S + s2ρfCγ2Pf

)
Gfr (γ2S − γ2EM )

(
γ2Ps − γ2Pf

)
(C2 −HM)

(B.51)

FEM,Pf =

sρf k̂

η

C
(
−s2ρfMγ2Pf + s2CρE(1 + ξ̂L̂

ς )γ2Pf

)
+
(
sη

ζk̂ς
−M

)(
−s2ρMγ2Pf − (C2 −HM)γ2Pfγ

2
EM + s2ρfCγ2Pf

)
Gfr (γ2S − γ2EM )

(
γ2Ps − γ2Pf

)
(C2 −HM)

(B.52)
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ZS,Ps =

−
(
γ2S − ζ(ς + L̂ξ̂)

) (H −Gfr)
(
s2ρfMγ2Ps − s

2CρE(1 + ξ̂L̂
ς

)γ2Ps

)
+

(
s2ρf

ζς
− C

)
(s2ρMγ2Ps + (C2 −HM)γ2Psγ

2
S − s

2ρfCγ2Ps)

Gfr
(
γ2S − γ

2
EM

) (
γ2Ps − γ

2
Pf

)
(C2 −HM)

(B.53)

ZEM,Ps =

−
(
ζ(ς + L̂ξ̂)− γ2EM

) (H −Gfr)
(
s2ρfMγ2Ps − s

2CρE(1 + ξ̂L̂
ς

)γ2Ps

)
+

(
s2ρf

ζς
− C

)
(s2ρMγ2Ps + (C2 −HM)γ2Psγ

2
EM − s

2ρfCγ2Ps)

Gfr
(
γ2S − γ

2
EM

) (
γ2Ps − γ

2
Pf

)
(C2 −HM)

(B.54)

ZS,Pf =

−
(
γ2S − ζ(ς + L̂ξ̂)

) (H −Gfr)
(
s2ρfMγ2Pf − s

2CρE(1 + ξ̂L̂
ς

)γ2Pf

)
+

(
s2ρf

ζς
− C

)
(s2ρMγ2Pf + (C2 −HM)γ2Pfγ

2
S − s

2ρfCγ2Pf )

Gfr
(
γ2S − γ

2
EM

) (
γ2Ps − γ

2
Pf

)
(C2 −HM)

(B.55)

ZEM,Pf =

−
(
ζ(ς + L̂ξ̂)− γ2EM

) (H −Gfr)
(
s2ρfMγ2Pf − s

2CρE(1 + ξ̂L̂
ς

)γ2Pf

)
+

(
s2ρf

ζς
− C

)
(s2ρMγ2Pf + (C2 −HM)γ2Pfγ

2
EM − s

2ρfCγ2Pf )

Gfr
(
γ2S − γ

2
EM

) (
γ2Ps − γ

2
Pf

)
(C2 −HM)

(B.56)

Cv1,q
S =

ζς − γ2
S

γ2
Ps − γ2

S

FS,Ps −
ζς − γ2

S

γ2
Pf − γ2

S

FS,Pf +
ZS,Ps

γ2
Ps − γ2

S

−
ZS,Pf

γ2
Pf − γ2

S

+
sρf k̂M

ηGfr
ζς − γ2

S

γ2
S − γ2

EM

+
γ2
S − ζ(ς + L̂ξ̂)

Gfr(γ2
S − γ2

EM )
C (B.57)

Cv1,q
EM =

γ2
EM − ζς

γ2
Ps − γ2

EM

FEM,Ps −
γ2
EM − ζς

γ2
Pf − γ2

EM

FEM,Pf +
ZEM,Ps

γ2
Ps − γ2

EM

−
ZEM,Pf

γ2
Pf − γ2

EM

+
sρf k̂M

ηGfr
γ2
EM − ζς
γ2
S − γ2

EM

−
ζ(ς + L̂ξ̂)− γ2

EM

Gfr(γ2
S − γ2

EM )
C (B.58)

Cv1,q
Ps = −

ζς − γ2
S

γ2
Ps − γ2

S

FS,Ps −
ZS,Ps

γ2
Ps − γ2

S

+−
γ2
EM − ζς

γ2
Ps − γ2

EM

FEM,Ps −
ZEM,Ps

γ2
Ps − γ2

EM

− sρf k̂

ηGfr

sη

ζk̂ς
−M

γ2
Ps − γ2

Pf

γ2
Ps +

1

Gfr

s2ρf

ζς − C
γ2
Ps − γ2

Pf

γ2
Ps (B.59)

Cv1,q
Pf =

ζς − γ2
S

γ2
Pf − γ2

S

FS,Pf +
ZS,Pf

γ2
Pf − γ2

S

+
γ2
EM − ζς

γ2
Pf − γ2

EM

FEM,Pf +
ZEM,Pf

γ2
Pf − γ2

EM

+
sρf k̂

ηGfr

sη

ζk̂ς
−M

γ2
Ps − γ2

Pf

γ2
Pf −

1

Gfr

s2ρf

ζς − C
γ2
Ps − γ2

Pf

γ2
Pf (B.60)
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Ğv1,q = Cv1,q
S ik1ĞS + Cv1,q

EM ik1ĞEM + Cv1,q
Ps ik1ĞPs + Cv1,q

Pf ik1ĞPf (B.61)

B.6 Particle velocity response to shear strain

FPs =
sρf k̂

η

C(4MGfrγ2
Ps − 4s2GfrρE(1 + L̂ξ̂/ς)) +

(
sη

ζk̂ς
−M

)
(4CGfrγ2

Ps − 4s2ρfGfr

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.62)

FPf =
sρf k̂

η

C(4MGfrγ2
Pf − 4s2GfrρE(1 + L̂ξ̂/ς)) +

(
sη

ζk̂ς
−M

)
(4CGfrγ2

Pf − 4s2ρfGfr

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.63)

ZPs =

(
H −Gfr

)
(4MGfrγ2

Ps − 4s2GfrρE(1 + L̂ξ̂/ς)) +
(
s2ρf

ζς − C
)

(4CGfrγ2
Ps − 4s2ρfGfr

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.64)

ZPf =

(
H −Gfr

)
(4MGfrγ2

Pf − 4s2GfrρE(1 + L̂ξ̂/ς)) +
(
s2ρf

ζς − C
)

(4CGfrγ2
Pf − 4s2ρfGfr

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.65)
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Cv1,h13
S1 = −

ζς − γ2
S

γ2
Ps − γ2

S

FPs +
ζς − γ2

S

γ2
Pf − γ2

S

FPf −
ZPs(γ

2
S − ζ(ς + L̂ξ̂))

γ2
Ps − γ2

S

+
ZPf (γ2

S − ζ(ς + L̂ξ̂))

γ2
Pf − γ2

S

(B.66)

Cv1,h13
EM1 = −

γ2
EM − ζς

γ2
Ps − γ2

EM

FPs +
γ2
EM − ζς

γ2
Pf − γ2

EM

FPf −
ZPs(ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Ps − γ2

EM

+
ZPf (ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Pf − γ2

EM

(B.67)

Cv1,h13
Ps = +

ζς − γ2
S

γ2
Ps − γ2

S

FPs +
ZPs(γ

2
S − ζ(ς + L̂ξ̂))

γ2
Ps − γ2

S

+
γ2
EM − ζς

γ2
Ps − γ2

EM

FPs

+
ZPs(ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Ps − γ2

EM

(B.68)

Cv1,h13
Pf = −

ζς − γ2
S

γ2
Pf − γ2

S

FPf −
ZPf (γ2

S − ζ(ς + L̂ξ̂))

γ2
Pf − γ2

S

−
γ2
EM − ζς

γ2
Pf − γ2

EM

FPf

−
ZPf (ζ(ς + L̂ξ̂)− γ2

EM )

γ2
Pf − γ2

EM

(B.69)

Cv1,h13
EM2 =

ζ(ς + L̂ξ̂)− γ2
EM

γ2
S − γ2

EM

(B.70)

Cv1,h13
S2 =

γ2
S − ζ(ς + L̂ξ̂)

γ2
S − γ2

EM

(B.71)

Ğv1,h13 = Cv1,h13
S1 ik1ik1ik3ĞS + Cv1,h13

S2 ik3ĞS + Cv1,h13
EM1 ik1ik1ik3ĞEM + Cv1,h13

EM2 ik3ĞEM

+ Cv1,h13
Ps ik1ik1ik3ĞPs + Cv1,h13

Pf ik1ik1ik3ĞPf (B.72)

B.7 Particle velocity response to tensile strain

A1 =
sρf k̂

ηGfr
1

(γ2
S − γ2

EM )(γ2
Ps − γ2

Pf )(C2 −HM)
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A2 =
1

Gfr
1

(γ2
S − γ2

EM )(γ2
Ps − γ2

Pf )(C2 −HM)

FS,Ps = (−Cs2ρfγ2
Ps + C2γ2

Psγ
2
S + s2ρE(1 +

ξ̂L̂

ς
)KGγ

2
Ps −MKGγ

2
Sγ

2
Ps)/(γ

2
Ps − γ2

S)

(B.73)

ZS,Ps = (−Cs2ργ2
Ps + CHγ2

Psγ
2
S + s2ρfKGγ

2
Ps − CKGγ

2
Sγ

2
Ps)/(γ

2
Ps − γ2

S) (B.74)

FEM,Ps = (−Cs2ρfγ2
Ps + C2γ2

Psγ
2
EM + s2ρE(1 +

ξ̂L̂

ς
)KGγ

2
Ps −MKGγ

2
EMγ

2
Ps)/(γ

2
Ps − γ2

EM )

(B.75)

ZEM,Ps = (−Cs2ργ2
Ps + CHγ2

Psγ
2
EM + s2ρfKGγ

2
Ps − CKGγ

2
EMγ

2
Ps)/(γ

2
Ps − γ2

EM )
(B.76)

FS,Pf = (−Cs2ρfγ2
Pf + C2γ2

Pfγ
2
S + s2ρE(1 +

ξ̂L̂

ς
)KGγ

2
Ps −MKGγ

2
Sγ

2
Pf )/(γ2

Pf − γ2
S)

(B.77)

ZS,Pf = (−Cs2ργ2
Pf + CHγ2

Pfγ
2
S + s2ρfKGγ

2
Ps − CKGγ

2
Sγ

2
Pf )/(γ2

Pf − γ2
S) (B.78)

FEM,Pf = (−Cs2ρfγ2
Pf + C2γ2

Pfγ
2
EM + s2ρE(1 +

ξ̂L̂

ς
)KGγ

2
Ps −MKGγ

2
EMγ

2
Pf )/(γ2

Pf − γ2
EM )

(B.79)

ZEM,Pf = (−Cs2ργ2
Pf + CHγ2

Pfγ
2
EM + s2ρfKGγ

2
Ps − CKGγ

2
EMγ

2
Pf )/(γ2

Pf − γ2
EM )

(B.80)

YPs = A1(γ2
S − γ2

EM )[−C3γ2
Ps + CMKGγ

2
Ps +

(
sη

ζk̂ς
−M

)(
−CHγ2

Ps + CKGγ
2
Ps

)
]

(B.81)

YPf = A1(γ2
S − γ2

EM )[−C3γ2
Pf + CMKGγ

2
Pf +

(
sη

ζk̂ς
−M

)(
−CHγ2

Pf + CKGγ
2
Pf

)
]

(B.82)
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ZPs = A2(γ2
EM−γ2

S)[(−C2γ2
Ps+MKGγ

2
Ps)(H−G)+

(
s2ρf

ζς
− C

)(
−CHγ2

Ps + CKGγ
2
Ps

)
]

(B.83)

ZPf = A2(γ2
EM−γ2

S)[(−C2γ2
Pf+MKGγ

2
Pf )(H−G)+

(
s2ρf

ζς
− C

)(
−CHγ2

Pf + CKGγ
2
Pf

)
]

(B.84)

Operator on ik1ĞPs,

Cv1,h11;33
Ps = −

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FEM,Ps

−
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FS,Ps

−
(
A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂) +A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZS,Ps

−
(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZEM,Ps

+ YPs + ZPs

Operator on ik1ĞPf ,

Cv1,h11;33
Pf = +

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FEM,Pf

+
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FS,Pf

+

(
A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂)) +A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZS,Pf

+

(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZEM,Pf

− YPf − ZPf

Operator on ik1ĞS ,

Cv1,h11;33
SV = +

(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FS,Ps

+

(
A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂) +A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZS,Ps

−
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂)(H −Gfr)

)
FS,Pf

−
(
A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂)) +A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZS,Pf

+
1

Gfr
γ2
S − ζ(ς + L̂ξ̂)

γ2
S − γ2

EM

[H;H − 2Gfr]ik1 +
sρf k̂

ηGfr
ζς − γ2

S

γ2
S − γ2

EM

Cik1

87



Operator on ik1ĞEM ,

Cv1,h11;33
EM = +

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FEM,Ps

+

(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZEM,Ps

−
(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FEM,Pf

−
(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZEM,Pf

+
1

Gfr
ζ(ς + L̂ξ̂)− γ2

EM

γ2
S − γ2

EM

[H;H − 2Gfr]ik1 +
sρf k̂

ηGfr
γ2
EM − ζς
γ2
S − γ2

EM

Cik1

The triple operators on h11 are defined separately,

FPs,k12 = (MGfr
4

3
γ2
Ps − s2ρE(1 +

ξ̂L̂

ς
)Gfr

4

3
) (B.85)

FPs,k32 = (s2ρE(1 +
ξ̂L̂

ς
)Gfr

2

3
+ k2

1 −MGfr
2

3
γ2
Ps) (B.86)

FPf,k12 = (MGfr
4

3
γ2
Pf − s2ρE(1 +

ξ̂L̂

ς
)Gfr

4

3
) (B.87)

FPf,k32 = (s2ρE(1 +
ξ̂L̂

ς
)Gfr

2

3
+ k2

1 −MGfr
2

3
γ2
Pf ) (B.88)

ZPs,k12 = (CGfr
4

3
γ2
Ps − s2ρfGfr

4

3
) (B.89)

ZPs,k32 = (s2ρfGfr
2

3
− CGfr 2

3
γ2
Ps) (B.90)

ZPf,k12 = (CGfr
4

3
γ2
Pf − s2ρfGfr

4

3
) (B.91)

ZPf,k32 = (s2ρfGfr
2

3
− CGfr 2

3
γ2
Pf ) (B.92)

Shear operator on ik3
1ĞPs,

Cv1
∗Psk1 = −

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FPs,k12/(γ

2
Ps − γ2

EM )

−
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FPs,k12/(γ

2
Ps − γ2

S)

+

(
A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂))−A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZPs,k12/(γ

2
Ps − γ2

S)

−
(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZPs,k12/(γ

2
Ps−γ2

EM )

(B.93)
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Shear operator on ik1ik
2
3ĞPs,

Cv1
∗Psk3 = −

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FPs,k32/(γ

2
Ps − γ2

EM )

−
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FPs,k32/(γ

2
Ps − γ2

S)

+

(
A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂))−A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZPs,k32/(γ

2
Ps − γ2

S)

−
(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZPs,k32/(γ

2
Ps−γ2

EM )

(B.94)

Shear operator on ik3
1ĞPf ,

Cv1
∗Pfk1 = +

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FPf,k12/(γ

2
Pf − γ2

EM )

+
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FPf,k12/(γ

2
Pf − γ2

S)

−
(
A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂))−A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZPf,k12/(γ

2
Pf − γ2

S)

+

(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
FPf,k12/(γ

2
Pf−γ2

EM )

(B.95)

Shear operator on ik2
3ik1ĞPf ,

Cv1
∗Pfk3 = +

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FPf,k32/(γ

2
Pf − γ2

EM )

+
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FPf,k32/(γ

2
Pf − γ2

S)

−
(
A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂))−A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZPf,k32/(γ

2
Pf − γ2

S)

+

(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
FPf,k32/(γ

2
Pf−γ2

EM )

(B.96)

Operator on ik3
1ĞS ,

Cv1
∗SVk1 = −

(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FPs,k12/(γ

2
Ps − γ2

S)

+

(
−A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂))−A2(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZPs,k12/(γ

2
Ps − γ2

S)

+
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂)(H −Gfr)

)
FPf,k12/(γ

2
Pf − γ2

S)

−
(
−A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂))−A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZPf,k12/(γ

2
Pf − γ2

S)

(B.97)
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Operator on ik2
3ik1ĞS ,

Cv1
∗SVk3 = −

(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂))(H −Gfr)

)
FPs,k32/(γ

2
Ps − γ2

S)

+

(
−A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂))−A2(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZPs,k32/(γ

2
Ps − γ2

S)

+
(
A1(ζς − γ2

S)C +A2(γ2
S − ζ(ς + L̂ξ̂)(H −Gfr)

)
FPf,k32/(γ

2
Pf − γ2

S)

−
(
−A2(

s2ρf

ζς
− C)(γ2

S − ζ(ς + L̂ξ̂))−A1(ζς − γ2
S)

(
sη

ζk̂ς
−M

))
ZPf,k32/(γ

2
Pf − γ2

S)

(B.98)

Operator on ik3
1ĞEM ,

Cv1
∗EMk1 = +

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FPs,k12/(γ

2
Ps − γ2

EM )

+

(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZPs,k12/(γ

2
Ps− γ2

EM )

−
(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FPf,k12/(γ

2
Pf − γ2

EM )

−
(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZPf,k12/(γ

2
Pf−γ2

EM )

(B.99)

Operator on ik2
3ik1ĞEM ,

Cv1
∗EMk3 = +

(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FPs,k32/(γ

2
Ps − γ2

EM )

+

(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZPs,k32/(γ

2
Ps− γ2

EM )

−
(
A1(γ2

EM − ζς)C +A2(ζ(ς + L̂ξ̂)− γ2
EM )(H −Gfr)

)
FPf,k32/(γ

2
Pf − γ2

EM )

−
(
A2(

s2ρf

ζς
− C)(ζ(ς + L̂ξ̂)− γ2

EM ) +A1(γ2
EM − ζς)

(
sη

ζk̂ς
−M

))
ZPf,k32/(γ

2
Pf−γ2

EM )

(B.100)

Ğv1,h11 = Cv1,h11
Ps ik1ĞPs + Cv1,h11

Pf ik1ĞPf + Cv1,h11
SV ik1ĞS + Cv1,h11

EM ik1ĞEM

+ Cv1
∗Psk1ik1ik1ik1ĞPs + Cv1

∗Psk3ik3ik3ik1ĞPs

+ Cv1
∗Pfk1ik1ik1ik1ĞPf + Cv1

∗Pfk3ik3ik3ik1ĞPf

+ Cv1
∗SVk1ik1ik1ik1ĞSV + Cv1

∗SVk3ik3ik3ik1ĞSV

+ Cv1
∗EMk1ik1ik1ik1ĞEM + Cv1

∗EMk3ik3ik3ik1ĞEM (B.101)
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For the operators on the shear terms in the h33 source greens function, the double k terms
simply have to be switched, the rest stays the same.

Ğv1,h33 = Cv1,h11
Ps ik1ĞPs + Cv1,h11

Pf ik1ĞPf + Cv1,h11
SV ik1ĞS + Cv1,h11

EM ik1ĞEM

+ Cv1
∗Psk3ik1ik1ik1ĞPs + Cv1

∗Psk1ik3ik3ik1ĞPs

+ Cv1
∗Pfk3ik1ik1ik1ĞPf + Cv1

∗Pfk1ik3ik3ik1ĞPf

+ Cv1
∗SVk3ik1ik1ik1ĞSV + Cv1

∗SVk1ik3ik3ik1ĞSV

+ Cv1
∗EMk3ik1ik1ik1ĞEM + Cv1

∗EMk1ik3ik3ik1ĞEM (B.102)

B.8 Particle velocity response to the electric dipole

This Green’s function gave erroneous modelling results, because it turned out an unex-
pected dominant SV-wave arrival. It requires a recalculation, starting from wave equation
B.6.

FγEMγPs =
[
k̂sρfC(γ2

EM − ζς) + (H −Gfr)(ζ(ς + L̂ξ̂)− γ2
EM )η

]
[
L̂

ςk̂
s3ρfη −

s2CρEL̂γ2
Ps

ς
+ (ξ̂−1 − 1)CMγ2

Psγ
2
EM

]

+ ξ̂−1

[
k̂sρf (γ2

EM − ζς)
(
sη

ζk̂ς
−M

)
+ (

s2ρf

ζς
− C)

(
ζ(ς + L̂ξ̂)− γ2

EM

)
η

]
[
(
(ρf )2

ρρE
− 1)

s3ρη

k̂
+ s2γ2

Ps(ρM + ρEH − 2ρfC) + (C2 −HM)γ2
Psγ

2
EM

]
(B.103)

FγEMγPf =
[
k̂sρfC(γ2

EM − ζς) + (H −Gfr)(ζ(ς + L̂ξ̂)− γ2
EM )η

]
[
L̂

ςk̂
s3ρfη −

s2CρEL̂γ2
Pf

ς
+ (ξ̂−1 − 1)CMγ2

Pfγ
2
EM

]

+ ξ̂−1

[
k̂sρf (γ2

EM − ζς)
(
sη

ζk̂ς
−M

)
+ (

s2ρf

ζς
− C)

(
ζ(ς + L̂ξ̂)− γ2

EM

)
η

]
[
(
(ρf )2

ρρE
− 1)

s3ρη

k̂
+ s2γ2

Pf (ρM + ρEH − 2ρfC) + (C2 −HM)γ2
Pfγ

2
EM

]
(B.104)
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FEM,Ps =
FγEMγPs

ηGfr(γ2
S − γ2

EM )(C2 −HM)(γ2
Ps − γ2

Pf )(γ2
Ps − γ2

EM )
(B.105)

FEM,Pf =
FγEMγPf

ηGfr(γ2
S − γ2

EM )(C2 −HM)(γ2
Ps − γ2

Pf )(γ2
Pf − γ2

EM )
(B.106)

FEM =
sρf k̂M

ηGfr ξ̂

ζς − γ2
EM

γ2
S − γ2

EM

+
C

Gfr ξ̂

γ2
EM − ζ(ς + L̂ξ̂)

γ2
S − γ2

EM

(B.107)

FγSγPs =
[
k̂sρfC(ζς − γ2

S) + (H −Gfr)(γ2
S − ζ(ς + L̂ξ̂))η

]
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ςk̂
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ς
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]

+ ξ̂−1

[
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(
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)
+ (
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)
η

]
[
(
(ρf )2

ρρE
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k̂
+ s2γ2

Ps(ρM + ρEH − 2ρfC) + (C2 −HM)γ2
Psγ

2
S

]
(B.108)

FγSγPf =
[
k̂sρfC(ζς − γ2

S) + (H −Gfr)(γ2
S − ζ(ς + L̂ξ̂))η

]
[
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s3ρfη −
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ς
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2
S

]

+ ξ̂−1

[
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(
sη
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)
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(
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)
η

]
[
(
(ρf )2

ρρE
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s3ρη
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+ s2γ2

Pf (ρM + ρEH − 2ρfC) + (C2 −HM)γ2
Pfγ

2
S

]
(B.109)

FS,Ps =
FγSγPs

ηGfr(γ2
S − γ2

EM )(C2 −HM)(γ2
Ps − γ2

Pf )(γ2
Ps − γ2

S)
(B.110)

FS,Pf =
FγSγPf

ηGfr(γ2
S − γ2

EM )(C2 −HM)(γ2
Ps − γ2

Pf )(γ2
Pf − γ2

S)
(B.111)

FS =
sρf k̂M

ηGfr ξ̂

γ2
S − ζς

γ2
S − γ2

EM

+
C

Gfr ξ̂

ζ(ς + L̂ξ̂)− γ2
S

γ2
S − γ2

EM

(B.112)

A =
sρf k̂

[
(ξ̂−1 − 1)C2M + ξ̂−1

(
sη

ζk̂ς
−M

)
(C2 −HM)

]
ηGfr(C2 −HM)(γ2

Ps − γ2
Pf )

(B.113)

B =

[
(1− ξ̂−1)(H −Gfr)CM − ξ̂−1

(
s2ρf

ζς − C
)

(C2 −HM)
]

Gfr(C2 −HM)(γ2
Ps − γ2

Pf )
(B.114)
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C
v1,Je1
S1 = (FS,Ps − FS,Pf + FS) (B.115)

C
v1,Je1
S2 = −ζL̂s

2ρf

Gfr
1

γ2
S − γ2

EM

(B.116)

C
v1,Je1
EM1 = +(FEM,Ps − FEM,Pf + FEM ) (B.117)

C
v1,Je1
EM2 =

ζL̂s2ρf

Gfr
1

γ2
S − γ2

EM

(B.118)

C
v1,Je1
Pf = (FEM,Pf + FS,Pf − γ2

Pf (A+B)) (B.119)

Cv1,Je

Ps = (γ2
Ps(A+B)− FEM,Ps − FS,Ps) (B.120)

Ğv1,J
e
1 = Cv1,Je

Ps ik1ik1ĞPs + Cv1,Je

Pf ik1ik1ĞPf + Cv1,Je

S1 ik1ik1ĞS + Cv1,Je

EM1 ik1ik1ĞEM

+ Cv1,Je

S2 ĞS + Cv1,Je

EM2 ĞEM (B.121)

Ğv1,J
e
3 = Cv1,Je

Ps ik1ik3ĞPs + Cv1,Je

Pf ik1ik3ĞPf + Cv1,Je

S1 ik1ik3ĞS + Cv1,Je

EM1 ik1ik3ĞEM

(B.122)

B.9 Electric field response to the bulk force

FPs = ζL̂
sMγ2

PsC +
(
sη

ζk̂ς
−M

)
(sCγ2

Ps − s3ρf )− Cs3ρE
(

1 + ξ̂L̂
ς

)
sGfr

(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.123)

FPf = ζL̂
sMγ2

PfC +
(
sη

ζk̂ς
−M

)
(sCγ2

Pf − s3ρf )− Cs3ρE
(

1 + ξ̂L̂
ς

)
sGfr

(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.124)

ZPs = ζL̂sρf
(H −Gfr)

(
sMγ2

Ps − s3ρE(1 + ξ̂L̂
ς )
)

+
(
sCγ2

Ps − s3ρf
)

( s
2ρf

ζς − C)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.125)

ZPf = ζL̂sρf
(H −Gfr)

(
sMγ2

Pf − s3ρE(1 + ξ̂L̂
ς )
)

+
(
sCγ2

Pf − s3ρf
)

( s
2ρf

ζς − C)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.126)
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CE1,f1
S1 = CE1,f3

S =

[
FPf

s2ρ− γ2
SG

fr

γ2
Pf − γ2

S

− FPs
s2ρ− γ2

SG
fr

γ2
Ps − γ2

S

+
ZPs

γ2
Ps − γ2

S

−
ZPf

γ2
Pf − γ2

S

]
(B.127)

CE1,f1
S2 = − ζL̂s2ρf

Gfr(γ2
S − γ2

EM )
(B.128)

CE1,f1
EM1 = CE1,f3

EM = +

[
FPf

γ2
EMG

fr − s2ρ

γ2
Pf − γ2

EM

− FPs
γ2
EMG

fr − s2ρ

γ2
Ps − γ2

EM

− ZPs
γ2
Ps − γ2

EM

+
ZPf

γ2
Pf − γ2

EM

]
(B.129)

CE1,f1
EM2 = +

ζL̂s2ρf

Gfr(γ2
S − γ2

EM )
(B.130)

CE1,f1
Ps = CE1,f3

Ps = +

[
FPs

s2ρ− γ2
SG

fr

γ2
Ps − γ2

S

− ZPs
γ2
Ps − γ2

S

+ FPs
γ2
EMG

fr − s2ρ

γ2
Ps − γ2

EM

+
ZPs

γ2
Ps − γ2

EM

]
(B.131)

CE1,f1
Pf = CE1,f3

Pf =

[
−FPf

s2ρ− γ2
SG

fr

γ2
Pf − γ2

S

+
ZPf

γ2
Pf − γ2

S

− FPf
γ2
EMG

fr − s2ρ

γ2
Pf − γ2

EM

−
ZPf

γ2
Pf − γ2

EM

]
(B.132)

ĞE1,f1 = CE1,f1
S1 ik1ik1ĞS + CE1,f1

S2 ĞS + CE1,f1
EM1 ik1ik1ĞEM + CE1,f1

EM2 ĞEM

+ CE1,f1
Ps ik1ik1ĞPs + CE1,f1

Ps ik1ik1ĞPf (B.133)

ĞE1,f3 = CE1,f3
S ik1ik3ĞS + CE1,f3

EM ik1ik3ĞEM + CE1,f3
Ps ik1ik3ĞPs + CE1,f3

Pf ik1ik3ĞPf

(B.134)
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B.10 Electric field response to the fluid force

FPs = ζL̂
C(sCγ2

Ps − s3ρf ) +
(
sη

ζk̂ς
−M

)
(sHγ2

Ps − s3ρ)

sGfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.135)

FPf = ζL̂
C(sCγ2

Pf − s3ρf ) +
(
sη

ζk̂ς
−M

)
(sHγ2

Pf − s3ρ)

sGfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.136)

ZPs = ζL̂sρf
(H −Gfr)

(
sCγ2

Ps − s3ρf
)

+ ( s
2ρf

ζς − C)
(
sHγ2

Ps − s3ρ
)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.137)

ZPf = ζL̂sρf
(H −Gfr)

(
sCγ2

Pf − s3ρf
)

+ ( s
2ρf

ζς − C)
(
sHγ2

Pf − s3ρ
)

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.138)

CE1,ff

S1 =
s2ρ− γ2

SG
fr

γ2
Ps − γ2

S

FPs −
s2ρ− γ2

SG
fr

γ2
Pf − γ2

S

FPf −
ZPs

γ2
Ps − γ2

S

+
ZPf

γ2
Pf − γ2

S

(B.139)

CE1,ff

S2 = ζL̂
s2ρ− γ2

SG
fr

Gfr(γ2
S − γ2

EM )
(B.140)

CE1,ff

EM1 =
γ2
EMG

fr − s2ρ

γ2
Ps − γ2

EM

FPs −
γ2
EMG

fr − s2ρ

γ2
Pf − γ2

EM

FPf +
ZPs

γ2
Ps − γ2

EM

−
ZPf

γ2
Pf − γ2

EM

(B.141)

CE1,ff

EM2 = ζL̂
γ2
EMG

fr − s2ρ

Gfr(γ2
S − γ2

EM )
(B.142)

CE1,ff

Ps = −
s2ρ− γ2

SG
fr

γ2
Ps − γ2

S

FPs +
ZPs

γ2
Ps − γ2

S

−
γ2
EMG

fr − s2ρ

γ2
Ps − γ2

EM

FPs −
ZPs

γ2
Ps − γ2

EM

(B.143)

CE1,ff

Pf =
s2ρ− γ2

SG
fr

γ2
Pf − γ2

S

FPf −
ZPf

γ2
Pf − γ2

S

+
γ2
EMG

fr − s2ρ

γ2
Pf − γ2

EM

FPf +
ZPf

γ2
Pf − γ2

EM

(B.144)

ĞE1,ff1 = CE1,ff

S1 ik1ik1ĞS + CE1,ff

S2 ĞS + CE1,ff

EM1 ik1ik1ĞEM + CE1,ff

EM2 ĞEM

+ CE1,ff

Ps ik1ik1ĞPs + CE1,ff

Pf ik1ik1ĞPf (B.145)
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ĞE1,ff3 = CE1,ff

S1 ik1ik3ĞS +CE1,ff

EM1 ik1ik3ĞEM +CE1,ff

Ps ik1ik3ĞPs +CE1,ff

Pf ik1ik3ĞPf

(B.146)

B.11 Electric field response to volume injection rate

FS,Ps =

ζL̂
C

(
−s2ρfMγ2Ps + s2CρE(1 + ξ̂L̂

ς
)γ2Ps

)
+

(
sη

ζk̂ς
−M

) (
−s2ρMγ2Ps − (C2 −HM)γ2Psγ

2
S + s2ρfCγ2Ps

)
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(
γ2S − γ

2
EM

) (
γ2Ps − γ

2
Pf

)
(C2 −HM)

FEM,Ps =

ζL̂
C

(
−s2ρfMγ2Ps + s2CρE(1 + ξ̂L̂

ς
)γ2Ps

)
+

(
sη

ζk̂ς
−M
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−s2ρMγ2Ps − (C2 −HM)γ2Psγ

2
EM + s2ρfCγ2Ps

)
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(
γ2S − γ

2
EM

) (
γ2Ps − γ

2
Pf

)
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(B.147)

FS,Pf =

ζL̂
C

(
−s2ρfMγ2Pf + s2CρE(1 + ξ̂L̂

ς
)γ2Pf

)
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(
sη
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2
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2
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(C2 −HM)

(B.148)

FEM,Pf =

ζL̂
C

(
−s2ρfMγ2Pf + s2CρE(1 + ξ̂L̂

ς
)γ2Pf

)
+

(
sη
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2
EM + s2ρfCγ2Pf
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(
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2
EM
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γ2Ps − γ

2
Pf
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(B.149)

ZS,Ps =

ζL̂sρf
(H −Gfr)

(
s2ρfMγ2Ps − s

2CρE(1 + ξ̂L̂
ς

)γ2Ps

)
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s2ρf

ζς
− C

)
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2
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2
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(B.150)

ZEM,Ps =

ζL̂sρf
(H −Gfr)

(
−s2ρfMγ2Ps + s2CρE(1 + ξ̂L̂

ς
)γ2Ps

)
+

(
s2ρf

ζς
− C
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2
EM + s2ρfCγ2Ps)
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(
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2
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2
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(B.151)

ZS,Pf =

ζL̂sρf
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(
s2ρfMγ2Pf − s

2CρE(1 + ξ̂L̂
ς

)γ2Pf

)
+

(
s2ρf
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2
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2ρfCγ2Pf )
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(
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2
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) (
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2
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(B.152)

ZEM,Pf =

ζL̂sρf
(H −Gfr)

(
−s2ρfMγ2Pf + s2CρE(1 + ξ̂L̂

ς
)γ2Pf

)
+

(
s2ρf
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)
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2
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(
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2
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2
Pf
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(B.153)
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CE1,q
S =

s2ρ− γ2
SG

fr

γ2
Ps − γ2

S

FS,Ps −
s2ρ− γ2

SG
fr

γ2
Pf − γ2

S

FS,Pf +
ZS,Ps

γ2
Ps − γ2

S

−
ZS,Pf

γ2
Pf − γ2

S

+
ζL̂M

sGfr
s2ρ− γ2

SG
fr

γ2
S − γ2

EM

− ζL̂sρfC

Gfr(γ2
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(B.154)

CE1,q
EM =

γ2
EMG

fr − s2ρ

γ2
Ps − γ2

EM

FEM,Ps −
γ2
EMG

fr − s2ρ

γ2
Pf − γ2

EM

FEM,Pf +
ZEM,Ps

γ2
Ps − γ2

EM

−
ZEM,Pf

γ2
Pf − γ2

EM

+
ζL̂M

sGfr
γ2
EMG

fr − s2ρ

γ2
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EM

− ζL̂sρfC

Gfr(γ2
S − γ2

EM )
(B.155)

CE1,q
Ps = −

s2ρ− γ2
SG

fr

γ2
Ps − γ2

S

FS,Ps −
ZS,Ps

γ2
Ps − γ2

S

−
γ2
EMG

fr − s2ρ

γ2
Ps − γ2

EM

FEM,Ps −
ZEM,Ps

γ2
Ps − γ2

EM

− ζL̂
sη

ζk̂ς
−M

s(γ2
Ps − γ2

Pf )
γ2
Ps (B.156)

CE1,q
Pf =

s2ρ− γ2
SG

fr

γ2
Pf − γ2

S

FS,Pf +
ZS,Pf

γ2
Pf − γ2

S

+
γ2
EMG

fr − s2ρ
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Pf − γ2

EM

FEM,Pf +
ZEM,Pf
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Pf − γ2
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+ ζL̂

sη

ζk̂ς
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Ps − γ2
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Pf (B.157)

ĞE1,q = CE1,q
S ik1ĞS + CE1,q

EM ik1ĞEM + CE1,q
Ps ik1ĞPs + CE1,q

Pf ik1ĞPf (B.158)

B.12 Electric field response to a shear strain

FPs = ζL̂
C(4MGfrγ2

Ps − 4s2GfrρE(ς + L̂ξ̂)) +
(
sη

ζk̂ς
−M

)
(4CGfrγ2
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FPf = ζL̂
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(B.160)
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(
s2ρf

ζς − C
)

(4CGfrγ2
Ps − 4s2ρfGfr

Gfr
(
γ2
S − γ2

EM

) (
γ2
Ps − γ2

Pf

)
(C2 −HM)

(B.161)
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(B.162)
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(B.163)
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(B.164)
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(B.165)
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(B.166)

CE1,h13
S2 = − ζL̂sρf
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EM
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CE1,h13
EM2 =
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(B.168)

ĞE1,h13 = CE1,h13
S1 ik1ik1ik3ĞS+CE1,h13
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Ps ik1ik1ik3ĞPs + CE1,h13

Pf ik1ik1ik3ĞPf (B.169)

98



B.13 Electric field response to a tensile strain source

A =
ζL̂

Gfr
1

(γ2
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2
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2
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S)Gfr

s
A

[
−C3γ2

Ps + CMKGγ
2
Ps +

(
sη

ζk̂ς
−M

)(
−CHγ2

Ps + CKGγ
2
Ps

)]
(B.178)

YPf =
(γ2
EM − γ2

S)Gfr

s
A

[
−C3γ2

Pf + CMKGγ
2
Pf +

(
sη

ζk̂ς
−M

)(
−CHγ2

Pf + CKGγ
2
Pf

)]
(B.179)
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Operator on ik1ĞPs,

CE1,h11;33
Ps = −

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FEM,Ps

−
(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FS,Ps

+

(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZS,Ps

−
(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZEM,Ps + YPs

Operator on ĞPf (equal to the negative of the ĞPs operator, and all γ2
Ps replaced by γ2

Pf ),

CE1,h11;33
Pf = +

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FEM,Pf

+

(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FS,Pf

−
(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZS,Pf

+

(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZEM,Pf − YPf

Operators on ĞS ,

CE1,h11;33
S1 = +

(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FS,Ps

−
(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZS,Ps

−
(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FS,Pf

+

(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZS,Pf

CE1,h11;33
S2 =

ζL̂

sGfr(γ2
S − γ2

EM )

(
C(s2ρ− γ2

SG
fr)− s2ρf [H;H − 2Gfr]

)
(B.180)
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Operator on ik1ĞEM ,

CE1,h11;33
EM1 = +

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FEM,Ps

+

(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZEM,Ps

−
(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FEM,Pf

−
(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZEM,Pf

CE1,h11;33
EM2 = +

ζL̂

sGfr(γ2
S − γ2

EM )

(
C(γ2

EMG
fr − s2ρ) + s2ρf [H;H − 2Gfr]

)
(B.181)
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Operators on triple spatial derivatives of all greens functions,

FPs,k1 = A(MGfr
4

3
γ2
Ps − s2ρE(1 +

ξ̂L̂

ς
)Gfr

4

3
) (B.182)

FPs,k3 = A(s2ρE(1 +
ξ̂L̂

ς
)Gfr

2

3
+ k2

1 −MGfr
2

3
γ2
Ps) (B.183)

FPf,k1 = A(MGfr
4

3
γ2
Pf − s2ρE(1 +

ξ̂L̂

ς
)Gfr

4

3
) (B.184)

FPf,k3 = A(s2ρE(1 +
ξ̂L̂

ς
)Gfr

2

3
+ k2

1 −MGfr
2

3
γ2
Pf ) (B.185)

ZPs,k1 = A(CGfr
4

3
γ2
Ps − s2ρfGfr

4

3
) (B.186)

ZPs,k3 = A(s2ρfGfr
2

3
− CGfr 2

3
γ2
Ps) (B.187)

ZPf,k1 = A(CGfr
4

3
γ2
Pf − s2ρfGfr

4

3
) (B.188)

ZPf,k3 = A(s2ρfGfr
2

3
− CGfr 2

3
γ2
Pf ) (B.189)

Operator on ik3
1ĞPs,

CE1,h11
∗Psk1 = −

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FPs,k1

γ2
Ps − γ2

EM

−
(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FPs,k1

γ2
Ps − γ2

S

+

(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZPs,k1

γ2
Ps − γ2

S

−
(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZPs,k1

γ2
Ps − γ2

EM
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Operator on ik2
3ik1ĞPs,

CE1,h11
∗Psk3 = −

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FPs,k3

γ2
Ps − γ2

EM

−
(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FPs,k3

γ2
Ps − γ2

S

+

(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZPs,k3

γ2
Ps − γ2

S

−
(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZPs,k3

γ2
Ps − γ2

EM

Operator on ik3
1ĞPf ,

CE1,h11
∗Pfk1 = +

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FPf,k1

γ2
Pf − γ2

EM

+

(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FPf,k1

γ2
Pf − γ2

S

−
(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZPf,k1

γ2
Pf − γ2

S

+

(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZPf,k1

γ2
Pf − γ2

EM
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Operator on ik2
3ik1ĞPf ,

CE1,h11
∗Pfk3 = +

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FPf,k3

γ2
Pf − γ2

EM

+

(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FPf,k3

γ2
Pf − γ2

S

−
(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZPf,k3

γ2
Pf − γ2

S

+

(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZPf,k3

γ2
Pf − γ2

EM

Operator on ik3
1ĞS ,

CE1,h11
∗SVk1 =

+

(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FPs,k1

γ2
Ps − γ2

S

−
(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZPs,k1

γ2
Ps − γ2

S

−
(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FPf,k1

γ2
Pf − γ2

S

+

(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZPf,k1

γ2
Pf − γ2

S
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Operator on ik2
3ik1ĞS ,

CE1,h11
∗SVk3 =

+

(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FPs,k3

γ2
Ps − γ2

S

−
(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZPs,k3

γ2
Ps − γ2

S

−
(
s2ρ− γ2

SG
fr

s
C − sρf (H −Gfr)

)
FPf,k3

γ2
Pf − γ2

S

+

(
s3(ρf )2

ζς
− Csρf −

s2ρ− γ2
SG

fr

s

(
sη

ζk̂ς
−M

))
ZPf,k3

γ2
Pf − γ2

S

Operator on ik3
1ĞEM ,

CE1,h11
∗EMk1 =

+

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FPs,k1

γ2
Ps − γ2

EM

+

(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZPs,k1

γ2
Ps − γ2

EM

−
(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FPf,k1

γ2
Pf − γ2

EM

−
(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZPf,k1

γ2
Pf − γ2

EM
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Operator on ik2
3ik1ĞEM ,

CE1,h11
∗EMk3 =

+

(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FPs,k3

γ2
Ps − γ2

EM

+

(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZPs,k3

γ2
Ps − γ2

EM

−
(
γ2
EMG

fr − s2ρ

s
C + sρf (H −Gfr)

)
FPf,k3

γ2
Pf − γ2

EM

−
(
s3(ρf )2

ζς
− Csρf +

γ2
EMG

fr − s2ρ

s

(
sη

ζk̂ς
−M

))
ZPf,k3

γ2
Pf − γ2

EM

ĞE1,h11 = CE1,h11
Ps ik1ĞPs + CE1,h11

Pf ik1ĞPf + CE1,h11
SV ik1ĞS + CE1,h11

EM ik1ĞEM

+ CE1
∗Psk1ik1ik1ik1ĞPs + CE1

∗Psk3ik3ik3ik1ĞPs

+ CE1
∗Pfk1ik1ik1ik1ĞPf + CE1

∗Pfk3ik3ik3ik1ĞPf

+ CE1
∗SVk1ik1ik1ik1ĞSV + CE1

∗SVk3ik3ik3ik1ĞSV

+ CE1
∗EMk1ik1ik1ik1ĞEM + CE1

∗EMk3ik3ik3ik1ĞEM

For the operators on the shear terms in the h33 source greens function, the double k terms
simply have to be switched, the rest stays the same.

ĞE1,h33 = CE1,h11
Ps ik1ĞPs + CE1,h11

Pf ik1ĞPf + CE1,h11
SV ik1ĞS + CE1,h11

EM ik1ĞEM

+ CE1
∗Psk3ik1ik1ik1ĞPs + CE1

∗Psk1ik3ik3ik1ĞPs

+ CE1
∗Pfk3ik1ik1ik1ĞPf + CE1

∗Pfk1ik3ik3ik1ĞPf

+ CE1
∗SVk3ik1ik1ik1ĞSV + CE1

∗SVk1ik3ik3ik1ĞSV

+ CE1
∗EMk3ik1ik1ik1ĞEM + CE1

∗EMk1ik3ik3ik1ĞEM
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B.14 Electric field response to an electric dipole

A =
ζL̂

Gfr
1

(γ2
S − γ2

EM )(γ2
Ps − γ2

Pf )(C2 −HM)
(B.190)

BS1 =
s2ρ− γ2

SG
fr

s
(B.191)

BS2 = BEM2 = sρf (B.192)

BEM1 =
γ2
EMG

fr − s2ρ

s
(B.193)

FS,Ps = (−s
3ρfη

ξ̂k̂
+
s2ρfM + sηC/k̂

ξ̂
γ2
Ps − CMγ2

Psγ
2
S +

s4ρE(1 +
ξ̂L̂)

ς
)ρf

ξ

−
s2CρE(1 +

ξ̂L̂)

ς
) + s2Mρf

ξ
γ2
Ps +

CM

ξ
γ2
Psγ

2
S)A (CBS1 − (H −G)BS2)

+ (−s
3ρη

ξ̂k̂
+
s2ρM + sηH/k̂

ξ̂
γ2
Ps −

MH

ξ̂
γ2
Psγ

2
S

+
(s2ρf )2

ξ̂
− 2s2ρfC

ξ̂
γ2
Ps +

C2

ξ̂
γ2
Psγ

2
S)A

(
(
sη

ζk̂ς
−M)BS1 − (

s2ρf

ζς
− C)BS2

)

FS,Pf = (−s
3ρfη

ξ̂k̂
+
s2ρfM + sηC/k̂

ξ
γ2
Pf − CMγ2

Pfγ
2
S +

s4ρE(1 +
ξ̂L̂)

ς
)ρf

ξ

−
s2CρE(1 +

ξ̂L̂)

ς
) + s2Mρf

ξ
γ2
Pf +

CM

ξ
γ2
Pfγ

2
S)A (CBS1 − (H −G)BS2)

+ (−s
3ρη

ξ̂k̂
+
s2ρM + sηH/k̂

ξ̂
γ2
Pf −

MH

ξ̂
γ2
Pfγ

2
S

+
(s2ρf )2

ξ̂
− 2s2ρfC

ξ̂
γ2
Pf +

C2

ξ̂
γ2
Pfγ

2
S)A

(
(
sη

ζk̂ς
−M)BS1 − (

s2ρf

ζς
− C)BS2

)
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FEM,Ps = (−s
3ρfη

ξ̂k̂
+
s2ρfM + sηC/k̂

ξ̂
γ2
Ps − CMγ2

Psγ
2
EM +

s4ρE(1 +
ξ̂L̂)

ς
)ρf

ξ

−
s2CρE(1 +

ξ̂L̂)

ς
) + s2Mρf

ξ
γ2
Ps +

CM

ξ
γ2
Psγ

2
S)A (CBEM1 + (H −G)BEM2)

+ (−s
3ρη

ξ̂k̂
+
s2ρM + sηH/k̂

ξ̂
γ2
Ps −

MH

ξ̂
γ2
Psγ

2
EM

+
(s2ρf )2

ξ̂
− 2s2ρfC

ξ̂
γ2
Ps +

C2

ξ̂
γ2
Psγ

2
EM )A

(
(
sη

ζk̂ς
−M)BEM1 + (

s2ρf

ζς
− C)BEM2

)

FEM,Pf = (−s
3ρfη

ξ̂k̂
+
s2ρfM + sηC/k̂

ξ
γ2
Pf − CMγ2

Pfγ
2
EM +

s4ρE(1 +
ξ̂L̂)

ς
)ρf

ξ

−
s2CρE(1 +

ξ̂L̂)

ς
) + s2Mρf

ξ
γ2
Pf +

CM

ξ
γ2
Pfγ

2
S)A (CBEM1 + (H −G)BEM2)

+ (−s
3ρη

ξ̂k̂
+
s2ρM + sηH/k̂

ξ̂
γ2
Pf −

MH

ξ̂
γ2
Pfγ

2
EM

+
(s2ρf )2

ξ̂
− 2s2ρfC

ξ̂
γ2
Pf +

C2

ξ̂
γ2
Pfγ

2
EM )A

(
(
sη

ζk̂ς
−M)BEM1 + (

s2ρf

ζς
− C)BEM2

)

Y =
ζL̂

sGfrξ

1

γ2
S − γ2

EM

(B.194)
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CE1,Je
S1 =

FS,Ps
γ2
Ps − γ2

S

+
FS,Pf

γ2
Pf − γ2

S

− Y (s2ρ− γ2
SG

fr − sρf C
M

)M (B.195)

CE1,J1e
S2 = Y (s2ρ− γ2

SG
fr)

sη

k̂
− Y s3(ρf )2 (B.196)

CE1,Je
EM1 =

FEM,Ps

γ2
Ps − γ2

EM

+
FEM,Pf

γ2
Pf − γ2

EM

− Y (γ2
EMG

fr − s2ρ+ sρf
C

M
)M (B.197)

CE1,J1e
EM2 = +Y (γ2

EMG
fr − s2ρ)

sη

k̂
+ Y s3(ρf )2 (B.198)

CE1,Je
Ps = −

FS,Ps
γ2
Ps − γ2

S

−
FEM,Ps

γ2
Ps − γ2

EM

+Aγ2
Ps

C2Mξ − C2M

ξ

(γ2
EM − γ2

S)Gfr

s

+Aγ2
Pf

MH − C2

ξ
(
sη

ζk̂ς
−M)

(γ2
EM − γ2

S)Gfr

s
(B.199)

CE1,Je
Pf = −

FS,Pf
γ2
Pf − γ2

S

−
FEM,Pf

γ2
Pf − γ2

EM

−Aγ2
Pf

C2Mξ − C2M

ξ

(γ2
EM − γ2

S)Gfr

s

−Aγ2
Pf

MH − C2

ξ
(
sη

ζk̂ς
−M)

(γ2
EM − γ2

S)Gfr

s
(B.200)

ĞE1,Je1 = CE1,Je
S1 ik1ik1ĞSV + CE1,J1e

S2 ĞSV + CE1,Je
EM1 ik1ik1ĞEM

+ CE1,J1e
EM2 ĞEM + CE1,Je

Ps ik1ik1ĞPs + CE1,Je
Pf ik1ik1ĞPf (B.201)

ĞE1,Je3 = CE1,Je
S1 ik1ik3ĞSV +CE1,Je

EM1 ik1ik3ĞEM +CE1,Je
Ps ik1ik3ĞPs+CE1,Je

Pf ik1ik3ĞPf

(B.202)
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Appendix C

Derivation of the interferometry
relation

C.1 Derivation of the first order differential matrix equation
for the 2D P-SV-TM mode

In this Appendix the first order equations will be written in the following general form of
a matrix vector differential equation,

sĀij ûj + B̄ij ûj + CikDx,kj ûj = ˆ̄si (C.1)

First of all, the grouped medium parameters are substituted back into the first order basic
equations, described in Chapter 1. Now, unfortunately it is not possible to substitute
the filtration velocity term in Maxwell’s equations by the fluid phase equations of motion,
which would eliminate the latter. This would be possible for SH-TE mode, but in this case
there is another coupling to the P wave, via the filtration velocity. Therefore we would
have to substitute for the filtration velocity also in the deformation equations, as well as
the solid phase equations of motion, which would result in second order equations, which
is not wanted for this purpose.

ς = σ̂e + sε− L̂ξ̂ (C.2)
ζ = σ̂m + sµ (C.3)
ξ̂ = ηL̂/k̂ (C.4)

The first order system of equations for the 2D P-SV-TM mode,
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sεÊ1 + σ̂eÊ1 −
ηL0

k̂
L0Ê1 +

ηL0

k̂
ŵ1 + ∂3Ĥ2 = −Ĵe1 ,

sεÊ3 + σ̂eÊ3 −
ηL0

k̂
L0Ê3 +

ηL0

k̂
ŵ3 − ∂1Ĥ2 = −Ĵe3 ,

sµĤ2 + σ̂mĤ2 + ∂3Ê1 − ∂1Ê3 = −Ĵm2 ,
sρv̂1 + sρ(f)ŵ1 − ∂1τ11 − ∂3τ31 = f̂1,

sρv̂3 + sρ(f)ŵ3 − ∂3τ33 − ∂1τ31 = f̂3,

−sτ11 + S1111∂1v̂1 + S1133∂3v̂3 + C (∂1ŵ1 + ∂3ŵ3) = S1111ĥ11 + S1133ĥ33 + Cq̂,

−sτ33 + S3333∂3v̂3 + S3311∂1v̂1 + C (∂1ŵ1 + ∂3ŵ3) = S3333ĥ33 + S3311ĥ11 + Cq̂,

−sτ31 + S3131 (∂1v̂3 + ∂3v̂1) = 2S3131ĥ31,

sρ(f)v̂1 −
η

k̂
Ê1 +

η

k̂
ŵ1 + ∂1p̂ = f̂

(f)
1 ,

sρ(f)v̂3 −
η

k̂
L̂Ê3 +

η

k̂
ŵ3 + ∂3p̂ = f̂

(f)
3 ,

sp̂+ C (∂1v̂1 + ∂3v̂3) +M (∂1ŵ1 + ∂3ŵ3) = C
(
ĥ11 + ĥ33

)
+Mq̂,

ū =



Ê1

Ê3

Ĥ2

v̂1

v̂3

−τ̂11

−τ̂33

−τ̂31

ŵ1

ŵ3

p̂



(C.6)

s̄ =



−Ĵe1
−Ĵe3
−Ĵm2
f̂1

f̂3

(KG + 4
3G

(fr))ĥ11 + (KG − 2
3G

(fr))ĥ33 + Cq̂

(KG + 4
3G

(fr))ĥ11 + (KG − 2
3G

(fr))ĥ33 + Cq̂

2G(fr)ĥ31

f̂
(f)
1

f̂
(f)
3

C
(
ĥ11 + ĥ33

)
+Mq̂



(C.7)
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Ā =



ε 0 0 0 0 0 0 0 0 0 0
0 ε 0 0 0 0 0 0 0 0 0
0 0 µ 0 0 0 0 0 0 0 0

0 0 0 ρ 0 0 0 0 ρ(f) 0 0

0 0 0 0 ρ 0 0 0 0 ρ(f) 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

0 0 0 ρ(f) 0 0 0 0 0 0 0

0 0 0 0 ρ(f) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1



(C.8)

B̄ =



σ̂e − ηL̂2

k̂
0 0 0 0 0 0 0 ηL̂

k̂
0 0

0 σ̂e − ηL̂2

k̂
0 0 0 0 0 0 0 ηL̂

k̂
0

0 0 σ̂m 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

−ηL̂

k̂
0 0 0 0 0 0 0 η

k̂
0 0

0 −ηL̂

k̂
0 0 0 0 0 0 0 η

k̂
0

0 0 0 0 0 0 0 0 0 0 0



(C.9)

B̄ =

 B̄11 O B̄13

O O O
−B̄T

13 O B̄33

 (C.10a)

B̄11 =

 σ̂e − ηL̂2

k̂
0 0

0 σ̂e − ηL̂2

k̂
0

0 0 σ̂m

 (C.10b)

B̄13 =


ηL̂

k̂
0 0

0 ηL̂

k̂
0

0 0 0

 (C.10c)

B̄33 =


η

k̂
0 0

0 η

k̂
0

0 0 0

 (C.10d)

The stiffness tensor parameters of the porous solid, Sijkl, are substituted for and matrix
C is written as follows,
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C =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 K + 4G/3 K − 2G/3 0 0 0 C
0 0 0 0 0 K − 2G/3 K + 4G/3 0 0 0 C
0 0 0 0 0 0 0 G 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 C C 0 0 0 M



(C.11)

C−1 =

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 3C2−M(3K+4G)
4G(3C2−M(G+3K))

− M(2G−3K)+3C2

4G(3C2−M(G+3K))
0 0 0 3C

6C2−M(2G+6K)

0 0 0 0 0 − M(2G−3K)+3C2

4G(3C2−M(G+3K))
3C2−M(3K+4G)

4G(3C2−M(G+3K))
0 0 0 3C

6C2−M(2G+6K)

0 0 0 0 0 0 0 G−1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 3C
6C2−M(2G+6K)

3C
6C2−M(2G+6K)

0 0 0 − 3K+G
3C2−M(G+3K)


(C.12)

Dx =



0 0 ∂3 0 0 0 0 0 0 0 0
0 0 −∂1 0 0 0 0 0 0 0 0
∂3 −∂1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ∂1 0 ∂3 0 0 0
0 0 0 0 0 0 ∂3 ∂1 0 0 0
0 0 0 ∂1 0 0 0 0 0 0 0
0 0 0 0 ∂3 0 0 0 0 0 0
0 0 0 ∂3 ∂1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ∂1

0 0 0 0 0 0 0 0 0 0 ∂3

0 0 0 0 0 0 0 0 ∂1 ∂3 0



(C.13)

C−1B̄ = B = B̄ (C.14)

C−1Ā = A 6= Ā (C.15)
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C−1Ā = A =

ε 0 0 0 0 0 0 0 0 0 0
0 ε 0 0 0 0 0 0 0 0 0
0 0 µ 0 0 0 0 0 0 0 0

0 0 0 ρ 0 0 0 0 ρ(f) 0 0

0 0 0 0 ρ 0 0 0 0 ρ(f) 0

0 0 0 0 0 3C2−M(3K+4G)
4G(3C2−M(G+3K))

− M(2G−3K)+3C2

4G(3C2−M(G+3K))
0 0 0 3C

6C2−M(2G+6K)

0 0 0 0 0 − M(2G−3K)+3C2

4G(3C2−M(G+3K))
3C2−M(3K+4G)

4G(3C2−M(G+3K))
0 0 0 3C

6C2−M(2G+6K)

0 0 0 0 0 0 0 G−1 0 0 0

0 0 0 ρ(f) 0 0 0 0 0 0 0

0 0 0 0 ρ(f) 0 0 0 0 0 0

0 0 0 0 0 3C
6C2−M(2G+6K)

3C
6C2−M(2G+6K)

0 0 0 − 3K+G
3C2−M(G+3K)


(C.16)

C−1 ˆ̄s = ŝ 6= ˆ̄s (C.17)

ŝ = (C.18)

−Ĵe1
−Ĵe3
−Ĵm2
f̂1

f̂3

−6MG((K+ 4
3
G)ĥ11+(K− 2

3
G)ĥ33+Cq̂)

4G(3C2−M(G+3K))
+

3C2(ĥ11+ĥ33+M
C
q̂)

6C2−M(2G+6K)
−6MG((K+ 4

3
G)ĥ11+(K− 2

3
G)ĥ33+Cq̂)

4G(3C2−M(G+3K))
+

3C2(ĥ11+ĥ33+M
C
q̂)

6C2−M(2G+6K)

2ĥ31

f̂
(f)
1

f̂
(f)
3

6CGĥ11−8CGĥ33+(6C2−6KM−2GM)q̂
6C2−M(2G+6K)



(C.19)

Which is simplified by substituting S = K − 2
3G−

C2

M and KC = S + 2G,

C−1 ˆ̄s = ŝ 6= ˆ̄s (C.20)
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ŝ = (C.21)

−Ĵe1
−Ĵe3
−Ĵm2
f̂1

f̂3

KC ĥ11+Sĥ33
2(KC−G)

KC ĥ11+Sĥ33
2(KC−G)

2ĥ31

f̂
(f)
1

f̂
(f)
3

4Gĥ33−3Gĥ11
3M
2C

(KC+S)
+ q̂



(C.22)

The inverse of C is applied to the entire equation C.1, resulting in the following vectorial
first order differential equation, which represents the entire 2D P-SV-TM system,

sÂij ûj + B̂ij ûj +Dx,kj ûj = ŝi (C.23)

C.2 Derivation of reciprocity theorem of the correlation type

Now that the first order basic equations describing the P-SV-TMmode of the seismoelectric
system in 2D have been put in the system matrix form, we can easily manipulate it into
a reciprocity theorem of the correlation type [15]. Two independent physical states uA
and uB are defined in the same domain D, enclosed by boundary, ∂D. The ’∗’ indicates
conjugation, meaning that all fields in state A are time reversed. For each state the location
of the source as well as the location where the generated field is measured can be defined
independently, as well as their own unique system matrix A and loss term matrix B.
However, we assume here that the two different fields affect the same domain, therefore
A and B are equal for both states. Another relevant assumption is that the flow velocity
of the medium is zero for both states. The interaction of the power spectrum of these
two fields can be quantified by a so-called interaction quantity of the form: Dx,kj û

∗
A,kûB,j

(for more details on interaction quantities, refer to Hoop et al. 1988 [4]). This interaction
quantity represents the variation of the cross-correlation or power spectrum of the two field
states in space. In [15], Gauss’ divergence theorem is applied to this interaction quantity
by integrating it over the domain and transforming part of the volume integral into a
boundary integral. The latter action is possible due to the spatial derivatives contained in
Dx,kj . The resulting reciprocity theorem of the correlation type in 2D is as follows,

∫
D
û†AŝB + ŝ†AûB = −

∮
∂D

û†ANxûBdx+

∫
D
û†A(B +B†)ûBd

2x (C.24)

We adjust equation C.24 such that we can represent all 11 different wave fields as a Greens
function generated by any of the 11 sources. To establish this, the source vector is re-
placed by a diagonal matrix containing spatial Dirac delta functions in the place of every
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source function ŝ. Consequently, the field vector û has to be replaced by an 11x11 - ma-
trix, containing 121 Greens function representations of all possible field response-source
combinations, which is as follows,

Ĝ =



ĜE1,J
e
1 ĜE1,J

e
3 ĜE1,J

m
2 ĜE1,f1 ĜE1,f3 ĜE1,CH1 ĜE1,CH1 ĜE1,2h31 Ĝ

E1,f
f
1 Ĝ

E1,f
f
3 ĜE1,Cq

ĜE3,J
e
1 ĜE3,J

e
3 ĜE3,J

m
2 ĜE3,f1 ĜE3,f3 ĜE3,CH1 ĜE3,CH1 ĜE3,2h31 Ĝ

E3,f
f
1 Ĝ

E3,f
f
3 ĜE3,Cq

ĜH2,J
e
1 ĜH2,J

e
3 ĜH2,J

m
2 ĜH2,f1 ĜH2,f3 ĜH2,CH1 ĜH2,CH1 ĜH2,2h31 Ĝ

H2,f
f
1 Ĝ

H2,f
f
3 ĜH2,Cq

Ĝv1,J
e
1 Ĝv1,J

e
3 Ĝv1,J

m
2 Ĝv1,f1 Ĝv1,f3 Ĝv1,CH1 Ĝv1,CH1 Ĝv1,2h31 Ĝ

v1,f
f
1 Ĝ

v1,f
f
3 Ĝ

v1,f
f
3

Ĝv3,J
e
1 Ĝv3,J

e
3 Ĝv3,J

m
2 Ĝv3,f1 Ĝv3,f3 Ĝv3,CH1 Ĝv3,CH1 Ĝv3,2h31 Ĝ

v3,f
f
1 Ĝ

v3,f
f
3 Ĝv3,Cq

Ĝτ11,J
e
1 Ĝτ11,J

e
3 Ĝτ11,J

m
2 Ĝτ11,f1 Ĝτ11,f3 Ĝτ11,CH1 Ĝτ11,CH1 Ĝτ11,2h31 Ĝ

τ11,f
f
1 Ĝ

τ11,f
f
3 Ĝτ11,Cq

Ĝτ33,J
e
1 Ĝτ33,J

e
3 Ĝτ33,J

m
2 Ĝτ33,f1 Ĝτ33,f3 Ĝτ33,CH1 Ĝτ33,CH1 Ĝτ33,2h31 Ĝ

τ33,f
f
1 Ĝ

τ33,f
f
3 Ĝτ33,Cq

Ĝτ31,J
e
1 Ĝτ31,J

e
3 Ĝτ31,J

m
2 Ĝτ31,f1 Ĝτ31,f3 Ĝτ31,CH1 Ĝτ31,CH1 Ĝτ31,2h31 Ĝ

τ31,f
f
1 Ĝ

τ31,f
f
3 Ĝτ31,Cq

Ĝw1,J
e
1 Ĝw1,J

e
3 Ĝw1,J

m
2 Ĝw1,f1 Ĝw1,f3 Ĝw1,CH1 Ĝw1,CH1 Ĝw1,2h31 Ĝ

w1,f
f
1 Ĝ

w1,f
f
3 Ĝw1,Cq

Ĝw3,J
e
1 Ĝw3,J

e
3 Ĝw3,J

m
2 Ĝw3,f1 Ĝw3,f3 Ĝw3,CH1 Ĝw3,CH1 Ĝw3,2h31 Ĝ

w3,f
f
1 Ĝ

w3,f
f
3 Ĝw3,Cq

Ĝp,J
e
1 Ĝp,J

e
3 Ĝp,J

m
2 Ĝp,f1 Ĝp,f3 Ĝp,CH1 Ĝp,CH1 Ĝp,2h31 Ĝ

p,f
f
1 Ĝ

p,f
f
3 Ĝp,Cq


(C.25)

Each unique element of this matrix function is a Greens function representation of a com-
bination of a certain field and the source generating it. The substitution of this matrix into
C.24 and some rewritings, turns the reciprocity theorem into the following matrix function,

∫
D
Ĝ†xA,xB + ĜxB ,xA = −

∮
∂D

ĜxB ,xNxĜ
†
xA,x

dx+

∫
D
ĜxB ,x(B +B†)Ĝ†xA,xd

2x (C.26)

Matrix Nx contains the components of the normal vector of the boundary of the domain.
It has to work on the field vector in parallel with the Dx matrix, therefore it is equal to
Dx where ∂ is changed to n,

Nx =



0 0 n3 0 0 0 0 0 0 0 0
0 0 −n1 0 0 0 0 0 0 0 0
n3 −n1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 n1 0 n3 0 0 0
0 0 0 0 0 0 n3 n1 0 0 0
0 0 0 n1 0 0 0 0 0 0 0
0 0 0 0 n3 0 0 0 0 0 0
0 0 0 n3 n1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 n1

0 0 0 0 0 0 0 0 0 0 n3

0 0 0 0 0 0 0 0 n1 n3 0



(C.27)

For the domain integral we the matrix summation B +B† needs to be defined,
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B+B† =



2<(σ̂e − ηL̂2

k̂
) 0 0 0 0 0 0 0 2i=(ηL̂

k̂
) 0 0

0 2<(σ̂e − ηL̂2

k̂
) 0 0 0 0 0 0 0 2i=(ηL̂

k̂
) 0

0 0 2<(σ̂m) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

−2i=(ηL̂
k̂

) 0 0 0 0 0 0 0 2<(η
k̂
) 0 0

0 −2i=(ηL̂
k̂

) 0 0 0 0 0 0 0 2<(η
k̂
) 0

0 0 0 0 0 0 0 0 0 0 0


(C.28)

We select one element from this representation in order to find an expression which can be
modelled. The selected element for this experiment is the Green’s function which relates
the x1 component of the causal electric field response at xb due to a x1 directed impulse
force on the bulk at xa. Selecting this specific element from the causal Green’s function
(state B), yields the following interferometric relation,

GE1,f1(x̄B, x̄A, ω) +G∗v1,J
e
1 (x̄A, x̄B, ω)

= −
∮
∂D

[n3G
∗v1,Jm2
x̄A G

E1,Je1
x̄B − n1G

∗v1,Jm2
x̄A G

E1,Je3
x̄B + n3G

∗v1,Je1
x̄A G

E1,Jm2
x̄B − n1G

∗v1,Je3
x̄A G

E1,Jm2
x̄B

+n1G
∗v1,CH1
x̄A GE1,f1

x̄B +n3G
∗v1,2h31
x̄A GE1,f1

x̄B +n3G
∗v1,CH1
x̄A GE1,f3

x̄B +n1G
∗v1,2h31
x̄A GE1,f3

x̄B +n1G
∗v1,f1
x̄A GE1,CH1

x̄B

+ n3G
∗v1,f3
x̄A GE1,CH1

x̄B + n3G
∗v1,f1
x̄A GE1,2h31

x̄B + n1G
∗v1,f3
x̄A GE1,2h31

x̄B + n1G
∗v1,Cq
x̄A G

E1,f
f
1

x̄B

+ n3G
∗v1,Cq
x̄A G

E1,f
f
3

x̄B + n1G
∗v1,ff1
x̄A GE1,Cq

x̄B + n3G
∗v1,ff3
x̄A GE1,Cq

x̄B ] dx̄

+

∫
D
[2<(σ̂e − ηL̂2

k̂
)G
∗v1,Je1
x̄A G

E1,Je1
x̄B + 2i=(

ηL̂

k̂
)G
∗v1,ff1
x̄A G

E1,Je1
x̄B

+ 2<(σ̂e − ηL̂2

k̂
)G
∗v1,Je3
x̄A G

E1,Je3
x̄B + 2i=(

ηL̂

k̂
)G
∗v1,ff3
x̄A G

E1,Je3
x̄B + 2<(σm)G

v1,Jm2
x̄A G

E1,Jm2
x̄B

− 2i=(
ηL̂

k̂
)G

v1,Je1
x̄A G

E1,f
f
1

x̄B + 2<(
η

k̂
)G

v1,f
f
1

x̄A G
E1,f

f
1

x̄B

− 2i=(
ηL̂

k̂
)G

v1,Je3
x̄A G

E1,f
f
3

x̄B + 2<(
η

k̂
)G

v1,f
f
3

x̄A G
E1,f

f
3

x̄B ] dx̄2 (C.29)
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Appendix D

Medium parameters

For further details on these medium parameters, the reader is referred to Pride [7].

Table D.1: Overview of the relevant medium parameters for the homogeneous medium. Note
that for the slow P- and TM- wave speeds the lower and upper frequency limit is given.

Property Unit Value Medium Dimension
Porosity φ 0.3 [−]
Pore fluid density ρf 1.0 · 103 [kg m−3]
Solid density ρs 2.7 · 103 [kg m−3]
Shear modulus framework of grains Gfr 9.0 · 109 [Pa]
Pore fluid viscosity η 1.0 · 10−3 [kg m−1 s−1]
Static permeability k0 1.3 · 10−12 [m2]
Static electrokinetic coupling L0 1.048 · 10−8 [m2 s−1 V−1]
Tortuosity α∞ 3.0 [-]
Relative perm. of the (pore) fluid εrf 80 [-]
Relative perm. of the solid εrs 4 [-]
Bulk electric conductivity σe 9.3 · 10−7 [S m−1]
Magnetic permeability µ 1.256 · 10−6 [NA−2]
Fast P-wave speed vPf 3.122 · 103 [m s−1]
Slow P-wave speed vPs 1.636− 8.149 · 101 [m s−1]
SV-wave speed vSV 2.027 · 103 [m s−1]
EM-wave speed vEM 7.257 · 105 − 4.104 · 107 [m s−1]
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