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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• A Deep Learning (DL) method to detect 
micro particles in biomass mixture is 
proposed.

• A new microscopic image dataset for the 
detection using DL is proposed.

• Detection performance of seven DL ar-
chitectures is thoroughly evaluated.

• The DL method shows better detection 
performance compared to ImageJ 
method.
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A B S T R A C T

Investigating the interaction between influent particles and biomass is basic and important for the biological 
wastewater treatment. The micro-level methods allow for this, such as the microscope image analysis method 
with the conventional ImageJ processing software. However, these methods are cost and time-consuming, and 
require a large amount of work on manual parameter tuning. To deal with this problem, we proposed a deep 
learning (DL) method to automatically detect and quantify microparticles free from biomass and entrapped in 
biomass from microscope images. Firstly, we introduced a “TU Delft-Interaction between Particles and Biomass” 
dataset containing labeled microscope images. Then, we built DL models using this dataset with seven state-of- 
the-art model architectures for a instance segmentation task, such as Mask R-CNN, Cascade Mask R-CNN, Yolact 
and YOLOv8. The results show that the Cascade Mask R-CNN with ResNet50 backbone achieves promising 
detection accuracy, with a mAP50box and mAP50mask of 90.6 % on the test set. Then, we benchmarked our results 
against the conventional ImageJ processing method. The results show that the DL method significantly out-
performs the ImageJ processing method in terms of detection accuracy and processing cost. The DL method 
shows a 13.8 % improvement in micro-average precision, and a 21.7 % improvement in micro-average recall, 
compared to the ImageJ method. Moreover, the DL method can process 70 images within 1 min, while the 
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ImageJ method costs at least 6 h. The promising performance of our method allows it to offer a potential 
alternative to examine the interaction between microparticles and biomass in biological wastewater treatment 
process in an affordable manner. This approach offers more useful insights into the treatment process, enabling 
further reveal the microparticles transfer in biological treatment systems.

1. Introduction

The pollution in water bodies is a worldwide issue, that affects 
human health and ecosystems (Lebreton et al., 2017; Borrelle et al., 
2020; Jia et al., 2023a). Particulate matter commonly exist in aquatic 
environment, such as colloids and suspended solids (Bhat and Janaszek, 
2024). Our daily life produce a large volume of wastewater, with the 
majority of pollutants existing in particulate form (Lan et al., 2022; 
Noyan et al., 2017). To remove these pollutants from sewage, 
wastewater-treatment plants (WWTPs) typically remove the bigger 
particles (millimeter range) by physical treatment units, such as coarse 
screens, fine screens, and sedimentation tanks. Then, they usually 
employ biological treatment process to remove many smaller particles 
(micrometer range) due to the easy operation and excellent effluent 
quality (Mesquita et al., 2013; Yang et al., 2024), which are based on 
activated sludge, biofilm or granular sludge (Zhang et al., 2024; Zhen 
et al., 2024). Finally, physicochemical technologies were employed to 
purify the wastewater further (Xu et al., 2024; Shen et al., 2023). Among 
the above procedures, the biological process is the most important 
which is designed to reduce biodegradable substrates (in solution or 
suspension) from sewage (Inbar et al., 2023). The dissolved substances 
in solution can be utilized by biomass through diffusion, whereas sus-
pended substances need to be adsorbed by the biomass firstly, then 
decomposed into soluble substances. However, desorption may occur 
when the adhesion was weak, affecting microbial growth and deterio-
rating treatment performance. The factors affecting the interaction be-
tween biomass and particles include agitator power, aeration intensity, 
particle size, and biomass size (Sven et al., 2017; Mohamad et al., 2018). 
Therefore, monitoring the particle transfer process in biological treat-
ment system and subsequently optimizing operations (e.g., mixing and 
aeration) are crucial for enhancing the treatment performance.

To monitor micro objects in biological wastewater treatment pro-
cess, microscope image analysis is common and effective method (Inbar 
et al., 2023). It can offer information on the properties of microparticles, 
that is necessary for efficient activated sludge treatment, risk evaluation, 
and effluent quality. Researchers usually use image analysis software 
such as ImageJ to measure the particle size and investigate the 
morphology of the particles in microscope images (Schindelin et al., 
2012; Piaggio et al., 2022; Bhat, 2024a, 2024b). ImageJ provides a va-
riety of image processing and analysis functions (such as filtering, seg-
mentation, measurement, and statistical analysis), and is able to process 
various formats of images (e.g., TIFF, PNG, GIF, JPEG, BMP, DICOM and 
FITS). But this processing method is time-consuming and laborious, and 
often relies on domain-specific knowledge to fine-tune parameters (e.g., 
threshold and output size), which hinders monitoring a large number of 
samples (Grass et al., 2014; Bhat, 2024c).

Considering the limitations associated with the ImageJ method, the 
development of a new automatic and efficient particle detection method 
for microscope image analysis is needed (Tran et al., 2023). Recently, 
Deep Learning (DL) approaches have garnered considerable research 
attention, as they provide automated alternatives to conventional 
methods (Zhao et al., 2020). Some studies have shown the significance 
of DL methods, particularly Convolutional Neural Networks (CNNs) for 
wastewater treatment, management, and monitoring, including works 
on various computer vision (CV) tasks, e.g., image classification and 
object detection. For example, Yurtsever and Yurtsever (2019) used the 
GoogLeNet model to recognize and classify micro beads in urban 
wastewater into five categories based on microscope images, achieving 
the classification accuracy of 89 %. Inbar et al. (2023) proposed a DL 

method to analyze and monitor the activated sludge process. They 
employed YOLOv5 and Faster R-CNN to detect filaments, protozoa, 
spherical flocs and open flocs from microscope images of flocs and mi-
croorganisms, with the mean average precision (mAP) of 67 % and 52 %, 
respectively. Satoh et al. (2021) used the InceptionV3 model to monitor 
the morphology of sludge flocs from microscope images. The model can 
identify and classify aggregated and dispersed flocs with a training ac-
curacy of about 95 %, and successfully detect the 20 % morphological 
change in the aggregated flocs. However, most of these studies focus on 
detecting microorganisms (e.g., filaments, bacteria, protozoa and sludge 
flocs). There is a lack of DL methods for influent particle detection. 
Although some other methods are effective to investigate the particles 
transfer process between wastewater and activated sludge, such as DNA 
tracer encapsulated in silica particles, while the cost is super high (Grass 
et al., 2014).

To bridge this gap, we proposed a DL method to detect and quantify 
microparticles free from biomass and entrapped in biomass. To the best 
of our knowledge, this work is the first to propose and assess DL-based 
methods to examine the interaction between microparticles and 
biomass in biological wastewater treatment process. This paper is 
structured as follows. Section 2 presents the materials and methodology 
used in this work. Section 3 introduces the experiments. Section 4 pre-
sents and discusses the experimental results and the limitations of this 
study. In Section 5, we summarized the conclusions.

2. Materials and methodology

2.1. The TUD-IPB dataset

We created the “TU Delft-Interaction between Particles and Biomass” 
(TUD-IPB) dataset from the experiments conducted in water lab of TU 
Delft (Stevinweg 1, Delft, Netherlands). Fig. 1 shows the scheme of the 
experiments. We collected the biomass mixture from a sewage treatment 
plant located in the city of Utrecht, the Netherlands. The Royal Has-
koning DHV designed this plant with a treatment ability of 74,700 
m3⋅d− 1 and a sludge loading rate of 0.05 kgCOD⋅kgVSS− 1⋅d− 1. The 
biomass mixture was sampled with a specified down inflow and top 
outflow cylinder from the bottom of Nereda reactor after 30 min of 
aeration. The mixture was rinsed with distilled water three times, fol-
lowed by sequential sieving through the mesh size of 3.1 mm, 2.0 mm, 
1.0 mm and 0.2 mm, respectively. The biomass with the diameter of 
>3.1 mm (A), 2.0–3.1 mm (B), 1.0–2.0 mm (C), 0.2–1.0 mm (D) and 
<0.2 mm (E) were primarily collected for batch test (Fig. 1(1)). The 
fluorescent micro beads (Cospheric, WTW D-82362 Weilheim, Model: 
SEP 25. Order NO: 209503) were used to simulate particles of sewage. 
The diameter and density of the micro beads were 250 μm and 1.02 
g⋅L− 1, respectively. The new micro beads were grind into crushed par-
ticles (82.58 ± 47.95 μm) by a mortar, followed by the dilution of 
distilled water (2000–2500 particles⋅L− 1) (Fig. 1(2)). The batch test was 
carried out using five conical flasks with the volume of 250 mL each. For 
each flask, 200 mL solution of fluorescent crushed particles was dropped 
in, followed by the addition of biomass. These five conical flasks were 
added by the biomass with varying diameter, respectively. Then the 
mixture was aerated with the intensity of 2 L⋅min− 1 for 60 min (Fig. 1
(3)). Samples (10 mL) were taken at 10 min, 30 min and 60 min from 
each flask and were observed by a digital microscope (VHX-5000). 
Finally, each sample was recorded by several microscope images with a 
resolution of 1600 × 1200 pixel to capture all the micro crushed parti-
cles (Fig. 1(4)). We annotated the micro crushed particles free from 
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biomass and entrapped in biomass with mask labels (Fig. 1(5)). Since 
this experiment focused on establishing an analytical method using 
collected images rather than exploring the interaction between particles 
and biomass through the images, no repeat experiments were 
conducted.

This dataset is representative and captures variability across mate-
rials found in wastewater treatment systems. In this experiment, we 
utilized the biomass mixture comprising both granular sludge and 
common activated sludge flocs, representing the full range of size dis-
tribution for usually found microbial aggregate (De Kreuk et al., 2007). 
Besides, microbial aggregates in actual municipal wastewater treatment 
plants typically appear as dark brown with minimal color variation. 
Moreover, we used the commonly used fluorescent microbeads as 
tracers (Sorasan et al., 2022). This representative dataset significantly 
benefits to the development of DL models with great applicability and 
generalization capability to various real-world biological wastewater 
treatment systems.

2.2. Deep learning algorithms

To detect free particles and entrapped particles and qualify the area 
of them, we conducted the multi-class instance segmentation task. This 
task is to assign category labels and instance identities to pixels in im-
ages of each particle, and qualify the number of pixels belonging to each 
particle for further calculating the area of each particle. Thus, it can 
simultaneously tackle with the problem of object detection and semantic 
segmentation (Jia et al., 2023a). In this work, we selected four state-of- 
the-art instance segmentation algorithms, including (1) Mask Region- 
based Convolutional Neural Network (Mask R-CNN) (He et al., 2017), 
(2) Cascade Mask R-CNN (Cai and Vasconcelos, 2019), (3) You Only 
Look At CoefficienTs (Yolact) (Bolya et al., 2019) and (4) You Only Look 
Once v8 (YOLOv8) (Jocher et al., 2023).

2.2.1. Mask R-CNN
Fig. 2 shows the detailed architecture of the Mask R-CNN with the 

ResNet backbone (He et al., 2016). The Mask R-CNN is a two-stage 
network, which extends the Faster R-CNN (Ren et al., 2015) by adding 
a branch for predicting object segmentation masks alongside the existing 
branch for bounding box prediction. In the first stage, the ResNet 
backbone extracts feature maps from the input data. Then, it uses a 
Region Proposal Network (RPN) to produce region proposals from the 
shared feature maps. These proposals and the feature maps are fed into 

the RoIAlign layer to extract a fixed size feature map of each RoI (Region 
of Interest). In the second stage, the mask head (i.e., convolutional 
layers) predicts pixel-wise masks in each RoI from fixed size feature 
maps. On the other hand, the detection head (i.e., an original part of the 
Faster R-CNN) uses fixed size feature maps for the bounding box and 
classification regression tasks.

2.2.2. Cascade Mask R-CNN
Fig. 3 shows the architecture of the Cascade Mask R-CNN with the 

ResNet backbone. The Cascade Mask R-CNN is a multi-stage extension of 
Mask R-CNN. The original Mask R-CNN comprises only a single stage to 
predict masks and bounding box in each RoI, i.e., the second stage of 
Mask R-CNN (Fig. 2). Compared with the Mask R-CNN, the Cascade 
Mask R-CNN comprises multiple stages, where the output of each stage 
is input to the next stage to obtain better refinement predictions. First, 
the ResNet backbone extracts feature maps, and then input them to three 
pooling layers. At the same time, region proposals produced by the RPN 
are fed into the first pooling layer (the top pooling layer). Second, the 
first network head (the top network head in Fig. 3) performs the first 
round of classification and bounding box regression. Then, these 
bounding boxes are considered as the input for the subsequent network 
head (the middle network head in Fig. 3). Similarly, the bounding boxes 
produced by the second network head are input to the last pooling layer 
(the bottom pooling layer). Finally, the last network head predicts the 
category, location of objects and pixel-wise masks from the output of the 
last pooling layer. In addition, the training data of each stage is sampled 
with increasing Intersection Over Union (IoU) thresholds, which ad-
dresses different training distributions (Chen et al., 2019).

In object detection and image segmentation tasks, the IoU is used to 
measure the deviation between ground truth and predicted area, which 
is calculated as follows: 

IoU =
Area(GT ∩ Pred)
Area(GT ∪ Pred)

(1) 

where GT and Pred are the ground-truth and predicted bounding box or 
mask, respectively; A high IoU means that the predicted area does not 
deviate much from the ground truth bounding box or mask.

This threshold is usually set as 0.5 (Jia et al., 2023a). However, using 
only a single IoU threshold for training usually causes a problem. On the 
one hand, a low IoU threshold (e.g., 0.5) typically creates noisy detec-
tion in positive samples. On the other hand, a high threshold (e.g., 0.7) 
normally results in model overfitting due to vanishing positive samples 

Fig. 1. Experimental scheme.
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for large thresholds. The Cascade Mask R-CNN addresses this problem by 
using multi-stage detectors trained with increasing IoU thresholds (Cai 
and Vasconcelos, 2019).

2.2.3. Yolact
Fig. 4 shows the architecture of the Yolact with the ResNet backbone. 

The Yolact is a one-stage real-time instance segmentation algorithm, 
which divides the segmentation process into two parallel tasks (Bolya 
et al., 2019). Firstly, it produces a set of prototype masks of the entire 
input image using a protonet network. At the same time, it predicts the 
mask coefficient of each instance using a prediction head. Then, it lin-
early combines the mask coefficients with the prototype masks to obtain 
the final segmentation mask of each instance. Compared with two-stage 
instance segmentation algorithms (e.g., Mask R-CNN), the Yolact ach-
ieves faster processing speed by avoiding feature pooling and proposal 
generation, which are common used in two-stage algorithms (Cao et al., 
2020). For example, Yolact enables to process images at an FPS of 30 on 
the COCO dataset (Lin et al., 2014) with the competitive accuracy (Bolya 
et al., 2019).

2.2.4. YOLOv8
YOLOv8 network was released in 2023, which belongs to the famous 

YOLO series networks (Jocher et al., 2023). These networks are 
commonly used in object detection and instance segmentation tasks due 
to the high detection accuracy and fast processing speed. YOLOv8 
mainly includes the backbone and the head modules. The YOLOv8 uses 
the CSPDarknet53 as its backbone. The backbone, a convolutional 
neural network, is used to extract feature maps from the input data. 
Then, these feature maps are processed by the head module to predict 
object locations, object segmentation masks and object category. 
YOLOv8 adopts an anchor-free method for object detection. It involves 
predicting the center of objects before constructing the corresponding 
bounding boxes, rather than predicting offsets from predefined anchor 
boxes. This method enables YOLOv8 to achieve faster processing speed.

2.3. ImageJ processing method

Researchers have frequently used ImageJ processing software to 

Fig. 2. Outline of the Mask R-CNN with ResNet backbone architecture for instance segmentation (He et al., 2017). First, the ResNet backbone derives feature maps 
from the input. Then, the region proposal network creates region proposals from these feature maps. Furthermore, these proposals and the feature maps are fed into 
the RoIAlign layer, that extract fixed size feature maps of each proposal. Finally, the mask head predicts pixel-wise masks, and the detection head simultaneously 
predicts the category and precise location of objects from the fixed size feature maps. Acronyms used: Convolutional layer (Conv.), Fully connected layer (FC).

Fig. 3. Outline of the Cascade Mask R-CNN with ResNet backbone architecture 
for instance segmentation (Cai and Vasconcelos, 2019). First, the ResNet 
backbone extracts feature maps from the input, and then input these feature 
maps to three pooling layers. At the same time, the region proposal network 
generates region proposals from these feature maps. These proposals are fed 
into the first pooling layer (the top pooling layer). Second, the first network 
head predicts the category and location of objects with bounding box from the 
output of the pooling layer. Then, the predicted bounding boxes are input to the 
second pooling layer (the middle pooling layer) for the next round of classifi-
cation and bounding box regression. Similarly, the predicted bounding boxes in 
this stage are input to the last pooling layer (the bottom pooling layer). Finally, 
the last network head predicts the category, location of objects and pixel-wise 
masks from the output of the last pooling layer.

Fig. 4. Outline of the Yolact with ResNet backbone architecture for instance segmentation (Bolya et al., 2019). First, it uses a protonet network to produce prototype 
masks of the entire input image, and uses a prediction head to predict the mask coefficient of each instance. Then, it obtains the final segmentation mask of each 
instance by linearly combining the mask coefficients with the prototype masks.
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measure and analyze the particle characteristics in the images 
(Schindelin et al., 2012; Piaggio et al., 2022; Bhat et al., 2024). The high 
definition images were usually taken by digital microscope. The recog-
nition procedure usually consisted of 3 steps: (1) Converting the original 
image to 8-bit type; (2) Adjusting the threshold (e.g., minimum and 
maximum value) and output size for each image by subjective judge-
ment; (3) Analyzing the particles (e.g., particle size, circularity, and 
display results). Every step is operated manually. After analyzing the 
images, this software outputs the area, perimeter, angle, circularity and 
other characteristics of each recognized particle. However, the adjusted 
threshold and output size can seriously influence the analyzed results. 
To improve the analysis accuracy, it is often necessary to try several 
times to achieve the optimal result. Sometimes, the original images need 
to be polished to reduce the impact on the output.

3. Experimental procedure

In this work, we aimed to demonstrate the potential of DL methods in 
comparison to the conventional ImageJ processing method for detection 
and quantification of microparticles free from biomass and entrapped in 
biomass in biological wastewater treatment process. To achieve this, we 
carried out two experiments. Experiment 1 involves evaluating seven 
state-of-the-art DL model architectures to identify the best performing 
model architecture on the TUD-IPB dataset (see Section 2.1). Experi-
ment 2 involves benchmarking performance of the best performing 
model architecture against ImageJ processing method.

3.1. Experiment 1: DL architectures comparison

Table 1 shows the subsets used for Experiment 1. Firstly, we 
randomly selected 702 images from the TUD-IPB dataset described in 
Section 2.1. Then, we annotated the free particles (1081 items) and 
entrapped particles (616 items) in images with mask labels. Finally, we 
randomly divided these images into train, validation and test sets with 
the ratio of 80:10:10 (Table 1). The train and validation subsets are used 
to train the models, and evaluate their performance during the training 
process, respectively. The test subset is employed to assess the models' 
generalization capability on an “unseen” dataset. In this experiment, we 
compared the detection and segmentation performances of seven 
selected DL architectures on validation and test subsets: (1) Mask R-CNN 
with ResNet50 backbone, (2) Mask R-CNN with ResNet101 backbone, 
(3) Cascade Mask R-CNN with ResNet50 backbone, (4) Cascade Mask R- 
CNN with ResNet101 backbone, (5) Yolact with ResNet50 backbone, (6) 
Yolact with ResNet101 backbone, and (7) YOLOv8.

3.2. Experiment 2: DL versus ImageJ processing method

In this experiment, we compared the detection and segmentation 
accuracy and cost of the DL method and ImageJ processing method on 
test set in Table 1. We selected the best performing model architecture 
on test set emerging in Experiment 1.

3.3. Implementation of DL architectures

We firstly initialized the DL architectures with weights pre-trained 
on COCO dataset (Lin et al., 2014), and then fine-tuned it on the train 
set. We performed random flipping data augmentation during training 

(Jia et al., 2023b). We trained the models for 100 epochs using the SGD 
optimizer with a batch size of 4, a momentum of 0.9 and a weight decay 
of 0.0001 (Loshchilov and Hutter, 2016). Due to the limited computa-
tional resources available, we only fine-tuned learning rate hyper-
parameter in the set of {0.00001, 0.0001, 0.001, 0.01} for each DL 
architecture, since this parameter significantly affect the convergence 
rate of training scheme and model performance (Nakama, 2009). We 
only employed the best learning rate in Experiments 2. To avoid over-
fitting, we employed the model with parameters obtained from the 
epoch that produces the highest validation accuracy. Then, we assessed 
the model performance using the test set. The experiments are imple-
mented on the Delft Blue supercomputer with NVIDIA Tesla V100S GPU 
(32 GB) (Delft High Performance Computing Centre (DHPC), 2022) 
using the Python programming language (version 3.8.16) and the 
PyTorch DL framework (version 1.13.1).

3.4. Performance evaluation metric

To evaluate the overall performances of DL models across all classes, 
we employed five metrics: (1) box-level mAP50 (mAP50box), (2) mask- 
level mAP50 (mAP50mask), (3) micro-average precision (micro-P), (4) 
micro-average recall (micro-R) and (5) micro-average F1 (micro-F1). The 
mAP50 is the mean Average Precision (mAP) at the IoU threshold of 50 
% (Chian et al., 2021). The other metrics are also computed using the 
same threshold. The mAP is a comprehensive evaluation metric of all 
classes for a given IoU threshold, which is expressed as follows: 

mAP =
1
n
∑n

i=1
APi (2) 

where APi is the average precision (AP) of the i-th class for a given IoU 
threshold; n is the number of classes.

The AP value is the average of the precision P values at different 
recalls R, i.e., the area under the precision-recall curve (Padilla et al., 
2020). These three values are defined as follows: 

APi =

∫ 1

0
Pi(Ri)dRi (3) 

Pi =
TPi

TPi + FPi
(4) 

Ri =
TPi

TPi + FNi
(5) 

where Pi(Ri) is the precision at the recall of Ri; TPi (True Positive) rep-
resents the number of detected bounding boxes or masks that belong to 
class i and have an IoU equal to or above the threshold; FPi (False Pos-
itive) represent the number of detected bounding boxes or masks that 
either do not belong to class i or have an IoU below the threshold; FNi 
(False Negative) means the number of ground truths belonging to class i 
that remain undetected.

The micro-P, micro-R and micro-F1 metrics are computed as follows: 

micro − P =

∑n

i
TPi

∑n

i
TPi +

∑n

i
FPi

(6) 

micro − R =

∑n

i
TPi

∑n

i
TPi +

∑n

i
FNi

(7) 

micro − F1 =
2 × micro − P × micro − R

micro − P + micro − R
(8) 

Table 1 
Subsets for Experiment 1.

Subset No. images No. masks per class

Entrapped particle Free particle

Train 562 478 927
Validation 70 67 68
Test 70 71 86
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4. Results and discussion

4.1. Experiment 1: DL architectures comparison

Table 2 shows the training time and validation accuracy of seven 
model architectures with different learning rates on the instance seg-
mentation task. Models with higher learning rates (i.e., 0.01) usually 
obtain the best validation accuracy across most models architectures, 
such as YOLOv8, Mask R-CNN and Cascade Mask R-CNN regardless of 
the backbone used. But for those model architectures, a too low learning 
rate (i.e., 0.00001) generally leads to poor validation accuracy. For 
Yolact architectures, a learning rate of 0.0001 (ResNet50 backbone) and 
0.001 (ResNet101 backbone) yield the best accuracy among the tested 
learning rates. A higher learning rate (i.e., 0.01) may cause the deviation 
from the optimal value due to large updates to the model weights, 
resulting in the difficulty of model convergence. A lower learning rate (i. 
e., 0.00001) may cause the learning process to take a long time to 
converge or become stuck at local minimum (Dutta et al., 2018). Due to 
the fast processing speed of one-stage algorithms, Yolact and YOLOv8 
takes less training time than two-stage algorithms (i.e., Mask R-CNN and 
Cascade Mask R-CNN). Especially, the training speed of YOLOv8 is 30 
min per 100 epochs, which is 7–10 times faster than Mask R-CNN 
(198–270 min) and Cascade Mask R-CNN (240–306 min). However, 
YOLOv8 performs the worst in validation accuracy, with a mAP50box 
ranging from 48.7 % to 70.7 % and a mAP50mask between 41.9 % and 
51.3 % with the learning rates ranging from 0.01 to 0.0001. Other model 
architectures achieve higher accuracy compared to YOLOv8, obtaining a 
mAP50box ranging from 44.6 % to 87.0 % and a mAP50mask between 
47.4 % and 87.9 % under the same learning rate range.

In this experiment, we also compared the performance of different 
model architectures on unseen images from the test subset. Table 3
shows the performance of different model architectures on the test 
subset. In this table, we only reported the learning rate corresponding to 

the highest mAP50mask achieved on the validation set for every archi-
tecture. The results shows that both the Cascade Mask R-CNN and Mask 
R-CNN with ResNet50 backbones achieve the best performance, with 
mAP50box of 90.6 % and 89.2 %, and mAP50mask of 90.6 % and 90.3 % 
on the test subset, respectively. The Yolact performs worse, achieving a 
mAP50box varying between 78.2 % and 80.3 % and mAP50mask varying 
between 85.3 % and 85.9 % depending on the backbone. For example, 
with the same ResNet50 backbone, Cascade Mask R-CNN yields a sig-
nificant improvement of 12.4 % in mAP50box and 4.7 % in mAP50mask, 
compared to Yolact. One main reason for the poor performance of Yolact 
is that it generates insufficient prototype masks of the input images. The 
YOLOv8 performs the worst, with a mAP50box of 74.6 % and a 
mAP50mask of 56.4 %. It is not surprising since most one-stage model 
architectures usually perform worse than two-stage architectures in 
accuracy (Jia et al., 2023a).

While the Cascade Mask R-CNN and Mask R-CNN with ResNet50 
backbone exhibit similar overall accuracy (i.e., mAP50box and mAP50-
mask metric values), the Cascade Mask R-CNN outperforms the Mask R- 
CNN in achieving a balanced accuracy between the two classes. For 
example, the Cascade Mask R-CNN obtains similar accuracy for free 
particles (APbox = 91.0 % and APmask = 91.0 %) and entrapped particles 
(APbox = 90.1 % and APmask = 90.1 %). However, the Mask R-CNN 
exhibits a 3.8 % difference in APbox and a 3.1 % difference in APmask 
between free particles and entrapped particles. Thus, we selected the 
Cascade Mask R-CNN with ResNet50 backbone as the best model ar-
chitecture among the tested architectures, and used it in Experiment 2.

Table 4 shows the confusion matrix of the Cascade Mask R-CNN 
model for particle detection. We found that most particles are correctly 
detected in test set, including 59 entrapped particle cases and 76 free 
particle cases, while some particles are undetected (15 cases), some 
background noise in images is falsely detected as particles (15 cases), 
and few particles are wrongly classified (7 cases). In addition, the model 
demonstrates a strong capability to distinguish these two particle 

Table 2 
Training time and validation accuracy of seven architectures.

Model architecture Backbone Learning rate Training time (min) Validation accuracy

mAP50box mAP50mask

Mask R-CNN ResNet50 0.01 207 84.0 % 86.6 %
0.001 198 83.4 % 85.9 %
0.0001 200 44.6 % 47.4 %
0.00001 227 0.0 % 0.0 %

ResNet101 0.01 261 86.2 % 86.5 %
0.001 270 82.8 % 86.8 %
0.0001 269 49.7 % 55.1 %
0.00001 266 0.0 % 0.0 %

Cascade Mask R-CNN ResNet50 0.01 256 87.0 % 87.8 %
0.001 240 86.4 % 86.5 %
0.0001 247 65.8 % 67.5 %
0.00001 244 0.0 % 0.0 %

ResNet101 0.01 300 86.8 % 87.9 %
0.001 306 85.1 % 85.9 %
0.0001 301 69.5 % 72.9 %
0.00001 303 0.0 % 0.0 %

Yolact ResNet50 0.01 – – –
0.001 183 78.6 % 72.9 %
0.0001 183 84.1 % 83.8 %
0.00001 201 81.3 % 81.5 %

ResNet101 0.01 – – –
0.001 258 83.4 % 83.5 %
0.0001 247 79.1 % 82.0 %
0.00001 258 80.0 % 82.2 %

YOLOv8 CSPDarknet53 0.01 30 70.7 % 51.3 %
0.001 31 63.1 % 49.5 %
0.0001 31 48.7 % 41.9 %
0.00001 31 14.0 % 10.0 %

Note: the bold entities are the best results of each model architecture on validation subset.
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classes. For example, the model only detects 4 entrapped particles as free 
particles, and identifies 3 free particles as entrapped particles. These 
results shows that the DL model can provide an alternative method for 
automatically detecting and quantifying free particles and entrapped 
particles. Furthermore, it could be used to investigate the interaction 
between microparticles and biomass in biological wastewater treatment 
process.

4.2. Experiment 2: DL versus ImageJ processing method

Table 5 shows the detection performance and processing time of the 
DL and ImageJ methods on the test subset. The DL method consistently 
outperforms the ImageJ method across all evaluation metrics. Out of 
157 ground-truth particles in test subset, the DL method (TP = 135) 
correctly detects 34 more particles than the ImageJ method (TP = 101). 
This results in an improvement of 21.7 % in micro-R (86 % vs 64.3 %), 
due to a higher number of TPs. In addition, the DL method (FP = 22) 
yields 17 fewer misdetections compared to the ImageJ method (FP =
39). Thus, the DL method achieves an improvement of 13.8 % in micro-P, 
and an improvement of 18.0 % in micro-F1, compared to the ImageJ 
method. Furthermore, the DL method can accurately classify 135 par-
ticles into “free particles” and “entrapped particles” categories, thanks to 
its feature-learning ability. The DL models, especially CNNs, can learn 
complex feature representations from input data by multiple layers of 
nonlinear information processing (Jia et al., 2023a). This enables them 
to effectively handle complex computer vision tasks. In contrast, the 
ImageJ method, which does not involve leaning from data, can only 

identify particles as a single generic “particle” category. It requires 
additional post-processing to distinguish between “free particles” and 
“entrapped particles”.

In terms of processing time, manual parameter tuning for ImageJ 
processing usually costs 5–10 min for one image. Thus, manually pro-
cessing all 70 images in test subset costs at least 6 h. Nevertheless, the DL 
method can automatically process all 70 images within 1 min without 
manual parameter tuning. The DL method significantly reduce the 
manual effort and processing time, compared to conventional ImageJ 
processing method.

Fig. 5 shows particle detection results of the DL method and ImageJ 
processing method on four typical images. The results show that the DL 
method significantly outperforms the ImageJ method on detecting 
particles in microscope images. The accuracy of ImageJ processing 
method usually decreases due to the infection of sludge flocs, small and 
big granules. Fig. 5(a) includes some irregular particles and biomass in a 
clean background. We observed that the DL method accurately identifies 
four free particles, while the ImageJ method only correctly detects three 
items (threshold 79–136, output size 8000–45,000 μm2). The free par-
ticle close to biomass is not detected, and the ImageJ method errone-
ously detects four small biomass as particles. Fig. 5(b) includes particles 
and sludge flocs (Diameter < 0.2 mm). The DL method correctly rec-
ognizes two of three ground-truth entrapped particles, but the ImageJ 
method only detects one particle (threshold 87–105, output size 
9800–9900 μm2). Furthermore, if the output size is adjusted to a wider 
range, many small sludge flocs are detected as particles erroneously. 
Fig. 5(c) includes particles and small granules (diameter is 0.2–1.0 mm). 
The DL method correctly detects two of three ground-truth entrapped 
particles and one free particle. The ImageJ method (threshold 123–137, 
output size 5100–5200 μm2) only detects one entrapped particle and a 
free particle correctly. Similar to Fig. 5(b), many small biomass are 
wrongly detected as particles if the analyzed size range becomes bigger. 
Fig. 5(d) represents the mixture of particles and big granules (diameter 
is 2.0–3.1 mm). The DL method accurately identifies all the ground-truth 
entrapped particles, while the ImageJ method only identifies one of 
them (threshold 33–74, output size 21,000–22,000 μm2). The lower 
detection accuracy of the ImageJ method can be mainly attributed to the 
large number of sludge flocs or small granules present in the background 
of images. Their presence significantly affects the measurement results 
of ImageJ (without post-polishment). If the output size is adjusted 
bigger, the ImageJ method can yield more “particles”, while most of 
them are biomass. Thus, ImageJ method yields more FPs than the DL 
method (see Table 5).

Fig. 6 compares the particle areas predicted by the DL method (135 
TPs), with their ground-truth measurements. The results show a strong 
correlation, with an R2 value of 0.9944, indicating an excellent fit be-
tween the particle areas predicted by the DL method and those manually 
measured. Furthermore, the DL method demonstrates consistent accu-
racy in predicting both large (25,000 μm2 < area < 50,000 μm2) and 
small (area < 25,000 μm2) particles and measuring their areas, with 

Table 3 
Performance of different model architectures on the test set.

Model architecture Backbone Learning rate mAP50box mAP50mask AP50box per class AP50mask per class

Entrapped particle Free particle Entrapped particle Free particle

Mask R-CNN Resnet50 0.01 89.2 % 90.3 % 87.3 % 91.1 % 88.8 % 91.9 %

Resnet101 0.001 84.9 % 88.0 % 78.4 % 91.5 % 84.4 % 91.5 %

Cascade Mask R-CNN Resnet50 0.01 90.6 % 90.6 % 90.1 % 91.0 % 90.1 % 91.0 %

Resnet101 0.01 86.5 % 88.0 % 84.8 % 88.3 % 85.6 % 90.4 %

Yolact Resnet50 0.0001 78.2 % 85.9 % 75.0 % 81.4 % 86.6 % 85.2 %

Resnet101 0.001 80.3 % 85.3 % 78.5 % 82.1 % 84.8 % 85.7 %

YOLOv8 CSPDarknet53 0.01 74.6 % 56.4 % 67.2 % 81.9 % 54.0 % 58.9 %

Note: the bold entities are the best results of model architectures.

Table 4 
Confusion matrix of the Cascade Mask R-CNN model for particle detection.

Predicted class

Entrapped 
particle

Free 
particle

Background

True 
class

Entrapped 
particle

59 4 8

Free particle 3 76 7
Background 4 11 –

Note: the bold entities are the number of particles detected correctly.

Table 5 
Detection performance of deep learning and ImageJ methods on the test subset.

Processing 
method

Detection accuracy Processing 
time

TP FN FP Micro- 
P

Micro- 
R

Micro- 
F1

Deep 
learning

135 22 22 86.0 
%

86.0 
%

86.0 % <1 min

ImageJ 101 56 39 72.1 % 64.3 % 68.0 % >6 h

Note: the bold entities are the best results of processing methods.
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minimal variance observed in model performances across different 
particle sizes.

4.3. Limitations

DL methods are increasingly applied in various aspects of wastewater 

treatment, including energy conservation and sludge bulking control 
(Wang et al., 2024; Zheng et al., 2022). Organic matter is crucial for 
biological wastewater treatment systems. Many organic matter in actual 
sewage existed in the form of particles, represented by particle chemical 
oxygen demand (pCOD). In municipal wastewater, the pCOD typically 
constitutes >50 % of the total COD, with particle sizes ranging from 0.45 
to 250.00 μm (Alondra et al., 2021). The interaction (e.g., attach and 
detach) between pCOD and biomass (e.g., activated sludge and granular 
sludge) plays a critical role in the efficiency of sewage treatment. 
Therefore, this study focuses on developing a new method to analyze the 
interaction between particles and biomass effectively and efficiently.

Although the above experiment results indicate the cost- 
effectiveness of DL methods, we acknowledged several limitations in 
our dataset and methodology that require further improvement for real- 
world applications. Firstly, the dataset used in Experiment 1 contains a 
limited amount of data for model training and validation. While the 
detection and segmentation accuracy of the models developed in 
Experiment 1 is acceptable (mAP50box ≈ 90 %, mAP50mask ≈ 90 %), 
more images are needed to develop a sufficiently robust model. Arya 
et al. (2020) suggest that image classification typically requires over 
5000 labeled images per class to develop a robust and reliable detection 
model. Similar requirement may be applicable to the instance segmen-
tation task in this study. Secondly, training a model in a supervised 
learning manner requires a large amount of labeled data. However, la-
beling small particles in microscope images is expensive and laborious. 
This hinders obtaining a robust model for monitoring the particle 
transfer process in the activated sludge system. Researchers can enhance 
efforts to bridge this gap by exploiting self-supervised machine learning 
techniques (Liu et al., 2021). These techniques learns the data feature 

Fig. 5. Detection results of the DL method (middle) and ImageJ processing method (bottom). The objects in these four example images are (a) microparticles and 
biomass, (b) microparticles and sludge flocs (D < 0.2 mm), (c) microparticles and small granules (D = 0.2–1.0 mm), and (d) microparticles and big granules (D =
2.0–3.1 mm).

Fig. 6. Comparison of the areas of 135 particles correctly detected by the deep 
learning method in the test subset with their corresponding ground-truth 
measurements.
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representations from unlabeled data without any supervision. Third, 
future work should focus on a more comprehensive hyper-parameter 
optimization analysis (e.g., batch size and momentum). Besides, an 
evaluation of various data augmentation techniques to improve model 
performance is needed, such as cropping, rotation, noise addition, 
changes in color or brightness and copy-paste augmentation (Shorten 
and Khoshgoftaar, 2019). Literature demonstrates benefits for the use of 
these techniques for improving DL model performance (Jia et al., 2023b; 
Wu et al., 2024). Finally, this study lacks understanding of the specific 
features that may drive the detection of microparticles free from biomass 
and entrapped in biomass. This lack of interpretability may limit the use 
of DL models in real-life scenarios, where understanding DL models' 
decision-making process is important. Future work may focus on 
building safer, and more reliable models by understanding models' 
decision-making process using some techniques, such as Gradient- 
weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017).

5. Conclusion

Monitoring the particle transport process between wastewater and 
activated sludge is significant for improving the treatment performance. 
While the traditional micro-level methods (such as microscope image 
analysis with the conventional ImageJ processing software) are time- 
consuming and laborious, to address this challenge we proposed a DL 
method to automatically detect and quantify microparticles free from 
biomass and entrapped in biomass. Firstly, we introduced a novel 
dataset including about 700 labeled microscope images with free and 
entrapped microparticles; then, we evaluated the performance of 
various DL architectures in an instance segmentation task. The results 
show that the Cascade Mask R-CNN with ResNet50 backbone performs 
best, achieving a mAP50box and a mAP50mask of 90.6 %. It also obtains a 
balanced accuracy for free particles (APbox = 91.0 %) and entrapped 
particles (APbox = 90.1 %). Furthermore, we observed that the DL 
method obtained an improvement of 13.8 % in micro-average precision 
and 21.7 % in micro-average recall, compared against the ImageJ 
method. The DL method can automatically classify free particles and 
entrapped particles, while the ImageJ method can only detect particles 
as a single generic “particle” category. In addition, the DL method 
processes 70 images within 1 min without manual parameter tuning, 
which is significantly faster than the ImageJ method with manual 
parameter tuning (over 6 h).

Researchers could use the proposed DL method to further evaluate 
the ratio of the number (or area) of free particles to entrapped particles, 
and the number (area) distribution of each particle. These can provide 
more insights to explore new phenomena. This study is an initial step in 
developing a DL-based framework, that can be possibly used in waste-
water treatment plants as an intelligent tool to analyze and monitor the 
interaction between microparticles and biomass in biological waste-
water treatment process. We also believe our proposed novel dataset is a 
great resource for the community to develop such tool.
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