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 A B S T R A C T

Background: Multimodal AI systems increasingly rely on biomedical signals such as EEG and eye movement 
data for emotion recognition. However, these models face challenges including limited training data, inter-
subject variability, session-specific spurious correlations, and incomplete modality representation, all of which 
reduce generalization and reliability.
Method: We propose TEREE, a multimodal transformer-based model that integrates temporal, spatial, and 
spectral EEG features with eye movement data. To mitigate session-specific artifacts, Bayesian Spurious 
Correlation Minimization (BSCM) is applied. In addition, a holistic multimodal processing strategy enables 
robust handling of incomplete data. The model was trained and evaluated using the SEED and SEED-FRA 
benchmark datasets under one-to-one and multi-to-one transfer paradigms.
Results: TEREE achieved state-of-the-art performance, with average multi-to-one transfer accuracies of 97.7% 
on SEED and 98.8% on SEED-FRA. Ablation studies confirmed that fusing EEG with eye movement features con-
sistently improved accuracy compared to unimodal baselines. Standard deviations across repeated experiments 
were below 5%, indicating stability.
Conclusion: By addressing inter-subject variability, spurious correlations, and incomplete modality issues, 
TEREE enhances the robustness and generalization of emotion recognition systems. These findings suggest 
that multimodal transformer-based models can substantially improve the reliability of affective computing 
applications such as human–computer interaction and mental health monitoring.
1. Introduction

Sentiment analysis has emerged as an essential tool across various 
domains, enabling applications such as mental health monitoring for 
early detection of conditions like depression, anxiety, or Alzheimer’s 
disease; brain–computer interfaces that facilitate communication for 
individuals with disabilities; personalized learning that tailors educa-
tional content based on students’ emotional states; human–computer 
interaction to enhance user experiences in gaming, virtual reality, and 
AI-driven systems; workplace productivity to monitor employee well-
being; and market research to gauge consumers’ emotional responses 
to advertisements and products [1–7].

Recent advancements in multimodal transformer-based models have 
significantly improved accuracy in detection and classification tasks, 
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often surpassing traditional state-of-the-art methods [8,9]. These mod-
els excel at integrating multiple modalities, providing a comprehensive 
representation of complex data. In the context of human behavior and 
emotion analysis, such systems leverage diverse biomedical data, with 
electroencephalography (EEG) being a cornerstone modality due to its 
rich behavioral and emotional information [10–12]. Additionally, EEG-
based models have shown promise in cognitive state recognition and 
neuropsychiatric disorder diagnosis, further expanding their utility [13,
14].

Despite these advancements, the data-intensive nature of transform-
ers, coupled with the high costs and constraints of collecting EEG 
datasets, presents significant challenges [15,16]. First, EEG signal fea-
tures vary across subjects, leading to models that perform well for some 
individuals but poorly for others, thus hindering generalization [17–
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19]. Second, external factors such as electrode placement, recording 
duration, and environmental conditions can introduce session-specific 
patterns, causing spurious correlations where models mistakenly as-
sociate recording conditions with class labels rather than intrinsic 
neural features [20,21]. Third, incomplete modality representation – 
caused by hardware malfunctions, poor electrode contact, or move-
ment artifacts – results in missing or unusable signals, complicating 
classification [22,23].

To address these limitations, several multimodal approaches have 
been proposed. Weighted representation distribution alignment bal-
ances marginal and conditional distributions between source and target 
domains to mitigate individual differences in cross-subject emotion 
recognition, though significant domain disparities can lead to subop-
timal alignment [24]. Domain-adversarial neural networks combine 
domain adaptation with deep feature learning to ensure discriminative 
and domain-invariant features, though large domain shifts may still im-
pair generalization [25]. Dynamic domain adaptation algorithms adjust 
models in real time to address global and local domain divergences, 
enhancing performance in cross-subject and cross-session EEG emotion 
recognition; however, their reliance on domain-shift assumptions limits 
applicability in highly variable domains [26]. Additionally, advanced 
neural network architectures – such as spiking neural networks and 
graph neural networks – have been developed to improve EEG-based 
emotion recognition by capturing temporal and spatial dependencies 
in signals [12,27].

Motivated by the strengths and limitations of transformers in han-
dling multimodal data, we propose a multimodal transformer-based 
model that integrates EEG with a supplementary modality, such as 
eye movement (EM). This approach, termed Transformer-Based Emo-
tion Recognition using EEG and Eye Movement Data (TEREE), aims to 
enhance classification performance by addressing the aforementioned 
challenges and enabling accurate identification of emotional states 
(positive, neutral, negative). The integration of EEG and EM leverages 
their complementary strengths, with EM providing direct insights into 
attentional and emotional states through gaze patterns and pupil dy-
namics, offering advantages over modalities like GSR or ECG [28,29]. 
For example, [24] demonstrated that the use of supplementary eye 
movement data can improve model accuracy by up to 10%. Addition-
ally, [30] showed that EM can be used independently for emotion 
recognition with an accuracy exceeding 80%. Niaki et al. proposed 
a bipartite graph adversarial network that integrates bipartite graphs 
into a DANN framework to better handle cross-subject variability; 
their model achieved state-of-the-art or comparable performance, high-
lighting the effectiveness of graph-based domain adaptation for robust 
generalization [31]. Furthermore, incorporating paradigms from EEG-
based disorder diagnosis and cognitive state recognition can enhance 
the robustness of our model across diverse applications [13,32].

EEG captures neural activity, while EM’s precise behavioral data 
enhances robustness against incomplete data and individual variability. 
Validated on the SEED dataset, this combination outperforms alterna-
tive modality pairings in emotion recognition accuracy. Initially, to 
mitigate the effect of individual differences, we map EEG signals into 
a two-dimensional space, ensuring that different frequency bands and 
all channels are considered over time. Then, inspired by [33], we apply 
Bayesian Spurious Correlation Minimization (BSCM) to reduce session-
specific artifacts. In our framework, BSCM models attention weights 
as Bayesian posterior distributions and applies KL-regularized varia-
tional inference, ensuring that the transformer relies less on session-
dependent noise and more on causal neural–behavioral patterns. Fi-
nally, the entire session’s data is fed into the model at each evaluation 
stage to minimize the impact of incomplete modality representations. 
This approach enables the model to leverage the global self-attention 
mechanism when processing the data, allowing it to capture correla-
tions that are spatially and temporally distant despite the presence of 
noise.
The main contributions of our work are summarized as follows:
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• To address individual differences, we employ a data-space trans-
formation method combined with a Vision Transformer (ViT), 
ensuring that spatial, spectral, and temporal features are pre-
served and effectively analyzed for robust EEG-based emotion 
recognition.

• We mitigate spurious correlations from session-specific artifacts 
using Bayesian Spurious Correlation Minimization (BSCM). By 
modeling attention weights as a Bayesian posterior distribu-
tion with variational inference and KL-regularized loss, BSCM 
reduces reliance on non-causal patterns and enhances generaliza-
tion across sessions and subjects, as validated by improved emo-
tion recognition accuracy on the SEED and SEED-FRA datasets.

• To address incomplete modality representation, we feed the full 
session sample into the model at each analysis stage. Lever-
aging the self-attention mechanism, the model gains a global 
view of the data, allowing healthy segments to compensate for 
noisy or missing parts, thereby enhancing robustness in emotion 
recognition.

The remainder of this paper is structured as follows: Section 2 
provides background on the challenges of transformers in emotion 
recognition using biomedical data. Section 3 discusses related work, 
highlighting existing methods and their limitations. Section 4 presents 
the design of our proposed transformer-based model, detailing its key 
components. Section 5 describes the implementation details and ex-
perimental setup. Section 6 evaluates our approach with benchmark 
datasets and compares it with state-of-the-art methods. Finally, Sec-
tion 7 concludes the paper with a summary of findings and potential 
future research directions.

2. Background knowledge

In this section, we first discuss some of the challenges that models 
face when dealing with limited-scale datasets, including individual 
differences in data, spurious correlations between modalities, and in-
complete modality representation. We then introduce key concepts 
related to attention mechanisms, including multi-head self-attention 
and multi-head cross-attention.

2.1. Challenges in models due to data characteristics

The performance of models is strongly influenced by the charac-
teristics of the data used for training. Key challenges include indi-
vidual differences in data, spurious correlations between modalities, 
and incomplete modality representations, which are discussed in the 
following sections.

Intrinsic differences in human physiology and brain function can 
significantly affect data analysis and the performance of machine learn-
ing models. EEG signals, for example, exhibit considerable variability 
across individuals, even when they perform the same task. These 
variations arise from factors such as brain structure, lifestyle, stress 
levels, and overall physical condition. For instance, in the SEED dataset, 
described in Section 5, EEG recordings are collected from 12 subjects 
of different genders and age groups while they are exposed to positive, 
neutral, or negative video stimuli using a 62-channel EEG device.

In EEG data analysis, one major challenge is the occurrence of 
spurious correlations, such as those caused by the limited spatial resolu-
tion of electrophysiological methods. Recorded EEG signals may result 
from the mixing of activity across multiple brain sources, which can 
lead to artificial correlations between regions. This issue may result in 
misinterpretations of functional brain connectivity. For example, Fig. 
1 illustrates patterns observed in the left hemisphere of the brain (R: 
Real) alongside artificially induced patterns resulting from spurious 
correlations (A: Artificial), inspired by [34]. Such spurious correlations 
can obscure the true structure of brain networks.
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Fig. 1. Correlation patterns observed in the left hemisphere of the brain. (R: 
Real) shows true correlations, while (A: Artificial) depicts patterns arising from 
spurious correlations.
Source: Adapted from [34].

A critical challenge in multimodal learning is incomplete modality 
representation, where certain modalities may be partially or entirely 
missing. In real-world applications, missing data in one or more modal-
ities is common. For example, in an emotion recognition system, some 
EEG channels may become disconnected from the subject’s scalp, result-
ing in missing signals. In other cases, a modality is present but affected 
by high noise levels, distortion, or missing segments, making it difficult 
to extract meaningful information.

A real-world example from the SEED dataset illustrates this issue. 
Fig.  2 shows Short-Time Fourier Transform (STFT) representations from 
an experiment in which subjects watched a five-minute neutral video. 
Panel (a) represents the EEG signal from Channel 47, which remains 
unaffected, while Panel (b) represents Channel 48, where severe noise 
disrupts the entire frequency spectrum. As observed in panel (b), the 
adjacent channel remains unaffected, highlighting the variability of this 
problem.

The risk of incomplete modality representation increases in sce-
narios involving multiple modalities, as missing or corrupted data in 
one modality can reduce the overall performance of the model. Ad-
dressing this challenge requires robust techniques capable of handling 
missing or noisy data while maintaining model reliability across diverse 
conditions.

2.2. Data fusion using multi-head cross-attention

The presence of five distinct senses enables humans to perceive and 
interpret their surroundings effectively. For example, by simultaneously 
seeing and smelling a fruit, we can better assess its quality. Over time, 
the human brain has learned to associate visual appearance, aroma, 
and taste. While each sensory modality independently provides useful 
information, the likelihood of selecting a delicious strawberry increases 
when both vision and smell are combined.

A similar principle applies to machine learning models. One of the 
widely used mechanisms in deep learning is multimodal fusion, particu-
larly in transformer-based architectures. In this paper, we focus on one 
type of fusion, while other common approaches are discussed in [35]. 
3 
Fig. 2. Short-Time Fourier Transform representations of EEG signals during a 
five-minute neutral video. (a) Channel 47, unaffected. (b) Channel 48, where 
severe noise disrupts the entire frequency spectrum, illustrating the risk of 
incomplete modality representation in multimodal scenarios.

However, before addressing fusion in transformers, it is important to 
understand why transformers are advantageous in certain applications.

The fundamental operation of transformers is based on the attention 
mechanism. Fig.  3 provides a simplified comparison of how neurons 
interact in three deep learning models: CNNs, RNNs, and the attention 
mechanism.

In CNNs, the feedforward architecture ensures that only spatially 
adjacent input elements have direct connections. This design allows 
CNNs to effectively capture local relationships but limits their ability 
to identify global features in large-scale inputs. RNNs, in contrast, 
employ a sequential structure that captures order and positional depen-
dencies of input elements. However, as the sequence length increases, 
the vanishing gradient problem reduces the influence of early inputs, 
restricting the model’s ability to capture long-range dependencies.

Transformers address these limitations through the self-attention 
mechanism, which enables every input element to interact with all 
others. This property allows transformers to capture global dependen-
cies effectively, albeit at a higher computational cost—a trade-off often 
justified in applications where accuracy is critical.

When modeling relationships across different modalities, multi-head 
cross-attention can be employed. As illustrated in Fig.  4, scaled dot-
product attention serves as the core operation for both self-attention 
and cross-attention. It computes attention scores that determine how 
much one token (or feature) should attend to another. Multi-head 
self-attention focuses on dependencies within a single sequence, while 
multi-head cross-attention models interactions between different se-
quences. In applications such as EEG signal analysis, where related 
emotions may appear at distinct time intervals, multi-head attention 
is particularly beneficial for capturing temporal dependencies.

Multi-head cross-attention focuses on interactions between two dif-
ferent sequences, allowing one sequence to attend to and learn from the 
other. For example, EEG signal images and textual information related 
to eye movements, recorded simultaneously, are fed into two modalities 
𝑀1 and 𝑀2. These are then processed by the multi-head cross-attention 
mechanism, producing 𝑀1′ and 𝑀2′, which represent the normalized 
modalities enriched by the influence of the other.

Using (𝑄𝑀1, 𝐾𝑀1, 𝑉𝑀1) and (𝑄𝑀2, 𝐾𝑀2, 𝑉𝑀2), the attention mecha-
nism computes relevance scores that determine how much focus should 
be assigned to different parts of the input data. These scores guide the 
model in identifying the most relevant features for the current task.

3. Related work

This section reviews recent advancements in affective computing 
using multimodal biomedical data, as well as challenges specific to 
EEG-based emotion recognition. We organize the literature into two 
subsections: multimodal frameworks integrating EEG with other phys-
iological signals (e.g., GSR, eye movement) and approaches addressing 
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Fig. 3. Simplified comparison of neuron interactions in CNNs, RNNs, and the attention mechanism.
Fig. 4. Illustrating the relationship between scaled dot-product attention, multi-head self-attention, and multi-head cross-attention. Scaled dot-product attention 
forms the basic operation, while self-attention captures intra-sequence dependencies and cross-attention models interactions across different modalities.
EEG-specific challenges, including individual differences, spurious cor-
relations, and incomplete modality representations. We critically evalu-
ate these works, highlighting gaps that our proposed Transformer-Based 
Emotion Recognition (TEREE) model aims to address by simultaneously 
tackling all three challenges.

3.1. Affective computing using multimodal biomedical data

Multimodal frameworks that combine EEG with complementary 
signals such as galvanic skin response (GSR) or eye movement (EM) 
have shown significant potential for emotion recognition, yet they 
face persistent challenges. For instance, graph convolutional networks 
equipped with attention mechanisms have been applied to detect 
depression-related neural patterns in EEG data, yielding promising 
results but still struggling with inter-subject variability that limits gen-
eralization across diverse populations [36]. Similar efforts integrating 
EEG and GSR for stress detection in virtual reality environments have 
reported performance degradation when modalities are misaligned 
due to ambiguities in cross-modal correlations [37]. The value of 
eye-tracking for studying attentional biases in depression has also 
been highlighted, emphasizing EM’s role as a complementary modal-
ity; however, this approach does not address incomplete EEG data, 
which frequently occurs in real-world applications due to hardware 
malfunctions or noise [38].

Transformer-based multimodal architectures have recently
advanced the field by integrating diverse biomedical signals. One pro-
posed solution introduces a BiProjection mechanism that unifies EEG 
and EM into a shared representation space, thereby improving emotion 
recognition accuracy [39]. Another approach employs self-distillation 
within transformers to reduce EEG signal noise, consequently en-
hancing cross-subject performance [40]. Nonetheless, these methods 
often fail to account for substantial inter-subject variability, which 
hinders generalization when training data is limited [41]. A unified 
transformer framework has also been introduced for joint emotion 
4 
and intent recognition; however, its dependency on balanced multi-
modal data overlooks the prevalent challenge of incomplete modal-
ity representation, such as missing EEG channels [42,43]. Moreover, 
transformer-based models tailored for wearable emotion recognition 
exhibit limited robustness due to session-specific artifacts that pro-
duce spurious correlations [44]. Overall, the existing literature often 
addresses these challenges independently, lacking a holistic approach 
that concurrently mitigates individual differences, spurious correla-
tions, and incomplete data—all of which are critical for the practical 
deployment of EEG-based emotion recognition systems.

3.2. EEG challenges in emotion recognition

EEG-based emotion recognition is promising due to its ability to 
directly capture neural correlates of emotional states. However, chal-
lenges such as individual differences, spurious correlations, and incom-
plete modality representations continue to hinder model accuracy and 
generalization.

To address individual differences, a model-agnostic meta-learning 
framework has been developed to rapidly adapt to individual varia-
tions via one-shot learning, leading to improved cross-subject gener-
alization [45]. Research has also shown that variations in individual 
theta frequency are correlated with inhibitory control efficiency, with 
stronger connections observed in the superior temporal and inferior 
frontal gyri, reflecting neural dynamics that drive behavioral vari-
ability [46]. To enhance cross-subject performance, a spatio-temporal 
feature-fused convolutional graph attention network with multi-head 
attention has been introduced [47]. A domain-adaptive approach based 
on a cross-attention dilated causal convolutional neural network in-
tegrated with a domain discriminator has also been proposed to re-
duce both inter- and intra-subject variability [48]. In addition, con-
trastive learning has been employed to enable unsupervised multi-
source domain adaptation by aligning conditional distributions across 
domains [49]. A multi-task self-supervised learning framework incorpo-
rating channel and frequency masking has likewise proven effective in 
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mitigating individual and modality-related variations [50]. Neverthe-
less, large domain shifts in EEG data distributions remain a major obsta-
cle, potentially limiting the generalizability of these approaches [25].

Spurious correlations – often introduced by session-specific artifacts 
or environmental noise – have also been extensively investigated. For 
example, constrained generalized Gaussian filters have been used to 
suppress such correlations in EEG signals [51]. A completeness-induced 
adaptive broad learning model has been proposed to generate compre-
hensive EEG and EM representations, thereby reducing inter-modality 
spurious correlations [24]. To minimize artefactual dependencies be-
tween pre-stimulus oscillations and behavioral responses, an end-point 
corrected Hilbert transform has been applied [52]. Filtering spuri-
ous EEG channel connections has also been addressed through an 
Adjacency-Explainable Graph Neural Network (AEG), which maximizes 
mutual information with true emotional states [53]. Techniques in-
volving cross-scenario and cross-subject adaptation using adversarial 
learning and multi-kernel maximum mean discrepancy have further 
improved robustness [54], while an attentive simple graph convo-
lutional network has been designed to mitigate sex-specific correla-
tions [55]. Despite their effectiveness, these approaches tend to address 
narrow categories of spurious correlations and often overlook broader 
session-level artifacts.

Another critical challenge is incomplete modality representation, 
particularly in the presence of missing or corrupted EEG channels. 
This has been addressed through the use of an LSTM-enhanced multi-
view dynamical emotion graph that adaptively updates EEG graph 
structures [56]. Multimodal physiological signal fusion using self-
attention and cross-attention transformers has also been explored to 
obtain more reliable EEG representations [57]. A graph convolutional 
network based on contrastive learning has been proposed to cap-
ture emotional features shared across modalities, thereby enhancing 
resilience to data loss [58]. More integrative frameworks have also 
emerged. For example, contrastive learning has been applied to extract 
invariant EEG features across multiple domains, effectively addressing 
challenges related to individual variability, spurious correlations, and 
data incompleteness [59]. Wang et al. [60] proposed a hierarchi-
cal spatial transformer that captures long-range dependencies from 
electrode to brain-region level. It outperforms CNNs and RNNs on 
DEAP and MAHNOB-HCI by emphasizing key brain regions. In [61], 
a spatio-temporal feature fusion network combining CNN-based spa-
tial maps and temporal features with Bi-LSTM fusion is introduced. 
Improvements in signal representation have also been achieved by 
combining spatial graph-BERT and temporal LSTM in a spatio-temporal 
graph BERT model [62]. Furthermore, contrastive reinforced transfer 
learning, which uses reinforcement learning to dynamically select 
transferable EEG features, has shown promising results [63]. Finally, 
a multi-class transfer learning framework incorporating source label 
adaptive correction and nuclear norm maximization has been proposed 
to enhance model robustness [64].

Despite these advancements, the literature rarely offers unified 
solutions that simultaneously address individual differences, spurious 
correlations, and incomplete modality representation—especially in 
multimodal contexts. Many existing methods are tailored to unimodal 
EEG data, which limits their effectiveness in comprehensive frame-
works such as TEREE that integrate EEG and EM for robust emotion 
recognition across varied scenarios.

4. Transformer-based emotion recognition using biomedical data

Fig.  5 illustrates the architecture of the proposed model, which 
consists of four main components: (i) data projection, (ii) multi-head 
cross-attention, (iii) a stack of self-attention blocks, and (iv) the classi-
fication head. Each component is described in detail in the following 
subsections.
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4.1. Data projection

In the data projection stage, EEG and EM data are tokenized into 
two separate streams and projected linearly. Studies have shown that 
the spatial, spectral, and temporal aspects of EEG data each provide 
valuable information about individuals’ emotional states. By analyzing 
all three aspects together, it is possible to minimize the effect of 
individual differences in data. To achieve this, the dimensionality of 
1D EEG data is expanded into 2D to preserve all three aspects. This 
approach enhances the true correlations between samples within the 
same class and reduces the impact of inter-subject variability [65–67].

As shown in Fig.  6, the vertical axis (top to bottom) represents the 
channels (spatial) from 1 to 62. The frequency bands are separated 
using a bandpass filter, including Delta (0.5–4 Hz), Theta (4–8 Hz), 
Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (above 30 Hz). For 
all bands in each channel, 200 samples per second are recorded and 
converted into values from 0 to 255 to represent grayscale pixels 
(spectral), which are then arranged consecutively from left to right to 
encode the temporal dimension. For image tokenization and position 
embedding, we follow the Vision Transformer (ViT) approach [41]: the 
image is resized to 224 × 224 pixels, divided into 16 × 16 patches, 
linearly projected, and finally position embeddings are added to the 
tokens.

To mitigate potential quantization effects during the conversion 
of EEG signals into 2D images, we normalize the data prior to pixel 
mapping, which helps preserve the dynamic range. Furthermore, be-
cause the ViT-based attention mechanism emphasizes relative spatial–
temporal–spectral patterns rather than absolute signal magnitudes, the 
model is less sensitive to scaling artifacts. For the EM stream, we 
explicitly use five feature categories: gaze X and Y coordinates (visual 
attention path), pupil diameter (arousal indicator), fixation duration, 
and saccade start–end times. These features are sampled at 200 Hz and 
normalized per subject to reduce inter-individual variability. Fixations 
and saccades are segmented using the dispersion-threshold algorithm 
provided with the SEED dataset. After preprocessing, EM features are 
linearly projected, followed by dropout and positional encoding, before 
being integrated via cross-attention with EEG representations. Dropout 
is applied before the position embedding operation to randomly re-
move some neurons during training, thereby reducing overfitting and 
mitigating spurious correlations between modalities [68].

4.2. Self-attention block

Although the self-attention block is the third stage of the model, 
we explain it first since multi-head cross-attention is essentially a 
combination of multiple self-attention mechanisms.

Self-attention is crucial for modeling the relationships between EEG 
and EM signals, as it captures long-range dependencies within fused 
multimodal representations. In our model, self-attention operates on to-
kenized sequences derived from the fusion of spatio–temporal–spectral 
EEG features and EM signals. The attention scores are computed as: 

Attention(𝑄,𝐾, 𝑉 ) = sof tmax

(

𝑄𝐾T
√

𝑑𝑘

)

𝑉 . (1)

where 𝑄, 𝐾, and 𝑉  are linear projections of the input, and 𝑑𝑘 is the 
dimensionality of the key vectors. This mechanism allows each token 
to attend to all others, enabling effective integration of multimodal 
information.

To further refine the fused representations, multiple self-attention 
layers are stacked. Residual connections and layer normalization im-
prove gradient stability and facilitate training deeper architectures: 

𝑋𝑙+1 = MLP
(

Norm
(

Attention(𝑄,𝐾, 𝑉 ) +𝑋𝑙)) (2)

where 𝑋𝑙 denotes the input at layer 𝑙, and the multi-layer perceptron 
(MLP) introduces additional feature transformations. By leveraging self-
attention, the model captures both intra-modal dependencies within 
EEG and EM signals and inter-modal relationships, ensuring robust 
multimodal feature fusion.
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Fig. 5. Overall workflow of the proposed model for emotion recognition across negative, neutral, and positive states. The model comprises four main stages: (i) 
signal conversion and projection (EEG 1D→ 2D spatial–temporal–spectral mapping and EM feature projection); (ii) multi-head cross-attention (× 2) for multimodal 
fusion; (iii) a stack of self-attention blocks (× 10) for global representation learning; and (iv) classification. The green dotted line marks the Bayesian Spurious 
Correlation Minimization stage, where attention weights are modeled in a Bayesian manner and regularized to reduce session-specific spurious correlations.
Fig. 6. Illustration of EEG signal conversion into 2D images, preserving spatial information (channels), spectral information (frequency-band intensity), and 
temporal information (time).
4.3. Multi-head cross-attention

Multi-head cross-attention plays a central role in our model by 
integrating EEG and EM signals, enabling the network to learn cross-
modal relationships. It aligns features between EEG and EM, ensuring 
effective multimodal fusion.

Given a query (𝑄) from one modality (e.g., EEG) and key (𝐾) and 
value (𝑉 ) from another (e.g., EM), the attention mechanism computes 
relevance scores as: 

Attention(𝑄EEG, 𝐾EM, 𝑉EM) = sof tmax

(

𝑄EEG𝐾T
EM

√

𝑑𝑘

)

𝑉EM (3)

To improve integration, we employ a bidirectional cross-attention 
mechanism, where EEG and EM mutually influence each other. This en-
sures that the learned representations capture both EEG-informed gaze 
patterns and gaze-informed neural responses. The attention outputs 
from cross-modal interactions are then combined with intra-modal self-
attention, refining the feature space and reducing spurious correlations.

By leveraging multi-head cross-attention, the model effectively
aligns spatial, temporal, and spectral features across modalities, en-
abling robust emotion recognition even in the presence of missing or 
noisy data.

4.3.1. Integrating BSCM into bidirectional multimodal attention
Algorithm 1 in TEREE integrates cross-attention transformers with 

variational autoencoder (VAE) losses to address spurious correlations 
and incomplete modality issues in EEG and EM data. The cross-
attention mechanism aligns EEG’s neural patterns with EM’s behavioral 
cues (e.g., gaze coordinates, fixation durations), capturing inter-modal 
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dependencies while filtering session-specific noise. VAE losses enforce 
a probabilistic latent space, enabling robust reconstruction of missing 
modalities by learning shared representations. Experiments on the 
SEED dataset confirm that TEREE achieves superior accuracy under 
missing EM data compared to unimodal models, highlighting the syn-
ergy of cross-attention and VAE in handling incomplete data and 
reducing overfitting.

The Bayesian Spurious Correlation Minimization (BSCM) aims to 
minimize the influence of spurious correlations by treating the model’s 
decision function as a Bayesian posterior distribution rather than a 
fixed deterministic function. In this context, bidirectional multimodal 
attention learns posterior distributions over attention weights instead 
of fixed values. Formally, standard Invariant Risk Minimization seeks 
a representation 𝛷 that remains consistent across environments 𝑒 ∈  , 
with the optimal classifier 𝑤 satisfying: 
𝑤 ∈ argmin

𝑤

∑

𝑒∈
𝑅𝑒(𝑤◦𝛷), (4)

where 𝑅𝑒 represents the empirical risk in environment 𝑒. However, a 
deep model may still capture spurious correlations due to overfitting. 
To mitigate this, BSCM introduces Bayesian learning, which models the 
classifier 𝑤 as a distribution rather than a fixed parameter: 
𝑝(𝑤|𝐷) ∝ 𝑝(𝐷|𝑤)𝑝(𝑤), (5)

where: 𝑝(𝑤|𝐷) is the posterior distribution of the classifier, 𝑝(𝐷|𝑤) is 
the likelihood of data given the model, 𝑝(𝑤) is the prior distribution 
over model parameters. As shown in Algorithm 1 BSCM incorporates 
this into bidirectional multimodal attention by sampling weights from 
a learned posterior rather than using deterministic attention scores.
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Algorithm 1 Bayesian Spurious Correlation Minimization (BSCM) for 
Bidirectional Multimodal Attention in TEREE
1: Inputs:
2: 𝑋EEG: EEG data
3: 𝑋EM: Eye movement data
4: 𝛩: prior parameters (𝜇, 𝜎2) for attention weights
5: 𝛼: learning rate
6: 𝑁 : number of training epochs
7: 𝜆: KL regularization coefficient
8: Outputs:
9: 𝑀 : trained multimodal transformer with Bayesian attention
10: Initialization:
11:  Initialize variational parameters (𝜇, 𝜌) for attention weights 𝑊  with prior  (𝜇, 𝜎2𝐼).
12:  Construct model architecture with bidirectional cross-attention and self-attention 

blocks.
13: for epoch 𝑛 = 1 to 𝑁 do
14:  for each minibatch (𝑥EEG , 𝑥EM , 𝑦) do
15:  Bayesian Weight Sampling:
16:   Compute 𝜎 = log(1 + exp(𝜌)).
17:   Sample 𝜀 ∼  (0, 𝐼) and set 𝑊 ∗ = 𝜇 + 𝜎 ⊙ 𝜀.
18:  Forward Pass:
19:   Encode EEG and EM into embeddings.
20:   Apply bidirectional cross-attention with sampled weights:
21:  𝐴∗

EEG→EM = sof tmax

(

𝑄EEG𝑊 ∗𝐾⊤
EM

√

𝑑

)

𝑉EM

22:  𝐴∗
EM→EEG = sof tmax

(

𝑄EM𝑊 ∗𝐾⊤
EEG

√

𝑑

)

𝑉EEG

23:   Fuse attention outputs and pass through stacked self-attention + MLP layers.
24:  Loss Computation:
25:   Prediction loss: pred = − log 𝑝(𝑦|ℎ)
26:   KL term: KL = 𝐷KL(𝑞(𝑊 |𝐷) ‖ 𝑝(𝑊 ))
27:   Total loss:  = pred + 𝜆KL
28:  Backward + Update:
29:   Backpropagate ∇.
30:   Update (𝜇, 𝜌) and model parameters via Adam with lr 𝛼.
31:   Apply Bayesian dropout to attention layers for regularization.
32:  end for
33:  Evaluate model on validation set, record metrics.
34: end for
35: Return: trained model 𝑀 .

4.4. Classification

The input to the classification head is the latent array obtained 
after processing through multiple bidirectional multimodal attention 
blocks and self-attention layers. This array contains the integrated and 
refined features extracted from both EEG and EM modalities. The clas-
sification head transforms this latent representation into logits, which 
are the raw, unnormalized scores for each class. These logits are then 
converted into class probabilities using a softmax activation function. 
During training, categorical cross-entropy loss is computed between 
the predicted logits and the ground-truth labels. Because a complete 
set of EEG data collected during a five-minute session, together with 
the corresponding EM signals, is processed at each stage, the self-
attention block delivers a comprehensive multimodal representation to 
the classification stage.

5. Dataset description and experimental setup

Two well-known multimodal emotional datasets, SEED [69] and 
SEED-FRA [28], were used in our experiments, both involving EEG and 
eye movement signals. As shown in Table  1, although the SEED dataset 
originally contains 15 participants (referred to as subjects), simultane-
ous EEG and EM recordings are available for only 12; therefore, our 
experiments were conducted on this subset to ensure consistency across 
modalities.

In SEED, each subject viewed a total of 15 video clips during each 
session, categorized into three emotional valences: five positive, five 
neutral, and five negative. After an interval of approximately one week, 
the subjects participated in a second session with a new set of 15 
video clips, followed by a third session, resulting in three experimental 
sessions for each subject. In SEED-FRA, eight subjects each watched 21 
videos across three sessions.
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Participants viewed the clips in a controlled environment while 
their EEG and eye-tracking data were recorded. Each trial lasted five 
minutes, sampled at 200 Hz, and was labeled as negative, neutral, 
or positive. EEG signals were recorded using a 62-channel ESI Neu-
roScan system, and the raw EEG data files were used. In the SEED 
dataset, eye-movement data were stored in an Excel file containing 
timestamps, gaze X and Y coordinates (e.g., X: 512, Y: 384), pupil 
dilation (e.g., 3.5 mm), fixation duration (e.g., 200 ms), and saccade 
start/end times (e.g., 10:01:23.456 to 10:01:23.789). These annotations 
provide behavioral insights into emotional responses, complementing 
EEG data and enhancing the accuracy of the proposed TEREE model.

The proposed TEREE model was implemented in PyTorch. Each 
transformer block consists of a multi-head self-attention or cross-
attention layer followed by a feed-forward MLP. The MLP is composed 
of two fully connected layers with a hidden dimension of 1024, sepa-
rated by a GeLU activation and followed by dropout (rate = 0.1). Layer 
normalization is applied before each attention and MLP sub-layer.

For optimization, we employed the Adam optimizer with weight 
decay set to 1×10−4. A grid search was performed over hyperparameters 
to select the optimal configuration. The best performance was achieved 
with a learning rate of 1 × 10−4, a batch size of 32, and 40 training 
epochs. To stabilize training, learning rate warm-up was applied during 
the first 10% of epochs, followed by cosine annealing decay.

For the BSCM integration, the posterior parameters were initialized 
with 𝜇 = 0 and 𝜌 = log(exp(0.1) − 1), corresponding to a small initial 
variance, following standard practice in variational Bayesian neural 
networks. The KL regularization coefficient 𝜆 was selected via grid 
search on the validation set, and a linear annealing schedule was 
applied during the first 10 epochs to stabilize training. These settings 
ensure both stable optimization and reproducibility of our approach.

Dropout (0.1) and Bayesian dropout within attention weights were 
used as regularizers. For classification, categorical cross-entropy loss 
was employed, while for BSCM integration, an additional KL-
divergence regularization term was included.

For our experimental environment, we utilized a workstation
equipped with an Intel Core i7 CPU, 48 GB of RAM, and an NVIDIA 
GeForce GTX 1080 GPU.

To assess our model’s performance, we employed two evaluation 
paradigms: one-to-one and multi-to-one. As described in Algorithm 2, 
in the one-to-one paradigm, the EEG and EM signals (labeled data) from 
a single subject (e.g., Subject 1) are used as the source domain, while 
the EEG data from each remaining subject (e.g., Subject 2) serves as a 
separate target domain. In simpler terms, the model is trained on data 
from Subject 1 and evaluated on data from Subjects 2 through 12. As 
shown in Algorithm 3, in the multi-to-one paradigm, data from several 
subjects are combined to improve learning and performance on a single 
target subject. The goal is to leverage the diversity and quantity of data 
from multiple sources to build a more robust model that can generalize 
effectively to the target subject.
Algorithm 2 One-to-One Transfer Paradigm
Require: Dataset 𝐷 with 𝑁 subjects, Model 𝑀
1: for each subject 𝑖 ∈ {1, 2,… , 𝑁} do
2:  Assign subject 𝑖’s data as the test set 𝐷test
3:  Randomly select data from another subject 𝑗 ≠ 𝑖 as the training set 𝐷train
4:  Train the model 𝑀 on 𝐷train
5:  Evaluate 𝑀 on 𝐷test and record the performance
6: end for
7: Compute and return the average performance metrics across all 𝑁 subjects

Algorithm 3 Multi-To-One Transfer Paradigm
Require: Dataset 𝐷 with 𝑁 subjects, Model 𝑀
1: for each subject 𝑖 ∈ {1, 2,… , 𝑁} do
2:  Assign subject 𝑖’s data as the test set 𝐷test
3:  Use data from all other 𝑁 − 1 subjects as the training set 𝐷train
4:  Train the model 𝑀 on 𝐷train
5:  Evaluate 𝑀 on 𝐷test and record the performance
6: end for
7: Compute and return the average performance metrics across all 𝑁 subjects
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Table 1
Summary of the multimodal datasets employed in this study, including SEED and SEED-FRA, with details on 
participants, sessions, recording modalities, and experimental settings.
 Dataset SEED SEED-FRA

 Number of Participants 15 (12 both in EEG and EM) 8  
 Sessions 3 (15 clips per session) 3 (21 clips per session)  
 Emotion Categories Positive, Neutral, Negative Positive, Neutral, Negative 
 EEG System 62-channel ESI NeuroScan 62-channel ESI NeuroScan 
 Eye Movement Data Timestamps, gaze X and Y, pupil dilation, fixation duration, saccades
 Eye Movement Data 5 min per video clip
 Sampling Rate 200 samples per second
Fig. 7. Overall confusion matrices for the SEED and SEED-FRA datasets across 
three sessions in the multi-to-one transfer paradigm, illustrating classification 
performance across negative, neutral, and positive emotional states.

Fig. 8. t-SNE visualization of EEG feature distributions for Subject 1 under the 
multi-to-one setting. Pre-training distributions show substantial overlap among 
emotional classes, while post-training with the proposed TEREE model yields 
compact intra-class clusters and clearer inter-class separation across SEED and 
SEED-FRA datasets.

6. Experimental results

The confusion matrix in Fig.  7 shows both the correct classifications 
and misclassifications made by the model. The proposed model per-
forms best in emotion recognition during the first session of the SEED 
dataset and the second session of the SEED-FRA dataset. However, the 
differences are not very significant. The model is better at identifying 
positive and negative emotions than neutral emotions, indicating that 
it more easily detects brain patterns associated with emotional states. 
This may be because the brain remains influenced by the previous 
emotional state and does not fully return to neutral before the next 
emotion is induced.
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Fig. 9. Comparison of the average accuracy of different models across three 
sessions for all subjects, on the SEED dataset sorted in ascending order. 
(a):[58], (b):[50], (c):[45], (d):[25], (e):[64], (f):[70], (g):[59], (h):[62], 
(i):[56], (j):[26], (k):[63], (l):[47], (m):[24], (n): Ours.

To further evaluate our model’s effectiveness, we use Subject 1 
as the target subject and apply t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) to visualize the data distributions before and after 
training.

Fig.  8 shows the t-SNE visualization of EEG feature distributions. 
Before training, samples from different emotional states exhibit sub-
stantial overlap, making class boundaries indistinguishable. After train-
ing with the proposed TEREE model, the feature space becomes more 
structured: intra-class samples form compact clusters, while inter-class 
separation is clearly enhanced. This improvement is particularly ev-
ident in the distinct boundaries between positive, neutral, and neg-
ative emotions. These results demonstrate that the model, together 
with BSCM regularization, effectively learns discriminative and gen-
eralizable representations, thereby improving emotion classification 
performance. In both SEED and SEED-FRA datasets, emotion samples 
after training show tighter intra-class clustering and clearer inter-
class separation, indicating that the model successfully extracts the 
most informative features from the source domain and adapts them to 
individual differences in the target domain.

Tables  2 and 3 report the performance of our model compared with 
the approaches in [24,25], and [26] under the one-to-one and multi-
to-one transfer paradigms on the SEED dataset. Similarly, Tables  4 and
5 present the corresponding results on the SEED-FRA dataset.

These comparisons evaluate the ability of models to recognize emo-
tions across different subjects. Accuracy was used as the evaluation 
metric, averaged over tasks from each session. As illustrated in Fig.  9, 
our proposed TEREE model consistently outperforms baseline methods, 
particularly in terms of average recognition accuracy across sessions.

On the SEED dataset, for example, our model achieved average 
emotion recognition accuracies of 93.5%, 96.2%, and 91.9% under the 
one-to-one transfer paradigm, and 97.7%, 97.2%, and 97.1% under the 
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Table 2
The emotion recognition accuracy (%) of the cross-subject experiment under 
the one-to-one transfer paradigm in three sessions on the SEED dataset. Subject 
1 was used as a training subject. Other subjects were used one by one for 
testing. The 𝛥 value represents the difference between the highest and lowest 
predicted accuracy values across different subjects.
 Session1 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub2 (60.4%), Max: Sub12 (93.1%) 81.2 38.6 
 [24] Min: Sub10 (75.1%), Max: Sub11 (99.0%) 87.1 23.8 
 [26] Min: Sub10 (75.6%), Max: Sub9 (91.1%) 85.8 15.5 
 [31] Min: Sub10 (70.5%), Max: Sub8 (92.7%) 83.7 22.5 
 Ours Min: Sub10 (86.6%), Max: Sub11 (100.0%) 93.5 13.3 
 Session2 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub10 (72.4%), Max: Sub3 (92.6%) 82.4 25.5 
 [24] Min: Sub10 (86.2%), Max: Sub5 (100.0%) 94.0 13.7 
 [26] Min: Sub4 (63.5%), Max: Sub7 (100.0%) 88.1 36.4 
 [31] Min: Sub10 (70.5%), Max: Sub8 (92.7%) 83.7 22.5 
 Ours Min: Sub10 (93.3%), Max: Sub2 (100.0%) 96.2 6.6  
 Session3 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub10 (72.5%), Max: Sub3 (89.9%) 81.9 27.7 
 [24] Min: Sub11 (73.9%), Max: Sub4 (96.4%) 86.9 22.4 
 [26] Min: Sub10 (72.9%), Max: Sub7 (93.1%) 82.7 20.1 
 [31] Min: Sub10 (70.5%), Max: Sub8 (92.7%) 83.7 22.5 
 Ours Min: Sub11 (80.0%), Max: Sub8 (93.3%) 91.9 13.3 

Table 3
The emotion recognition accuracy (%) of the cross-subject experiment under 
the multi-to-one transfer paradigm in three sessions on the SEED dataset. For 
each subject, the model is trained on other subjects and tested on that subject. 
The 𝛥 value represents the difference between the highest and lowest predicted 
accuracy values across different subjects.
 Session1 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub2 (72.3%), Max: Sub12 (93.2%) 82.9 20.9 
 [24] Min: Sub1 (90.5%), Max: Sub8 (100.0%) 96.9 9.5  
 [26] Min: Sub10 (81.4%), Max: Sub12 (100.0%) 92.0 18.5 
 Ours Min: Sub1 (93.3%), Max: Sub8 (100.0%) 97.7 6.6  
 Session2 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub4 (64.9%), Max: Sub6 (100.0%) 81.55 35.0 
 [24] Min: Sub11 (88.3%), Max: Sub7 (100.0%) 95.3 11.6 
 [26] Min: Sub10 (80.6%), Max: Sub12 (100.0%) 92.4 19.3 
 Ours Min: Sub9 (93.3%), Max: Sub5 (100.0%) 97.2 6.6  
 Session3 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub2 (72.2%), Max: Sub3 (98.4%) 85.2 26.2 
 [24] Min: Sub1 (81.2%), Max: Sub6 (100.0%) 96.4 18.7 
 [26] Min: Sub2 (81.3%), Max: Sub9 (100.0%) 93.7 18.6 
 Ours Min: Sub10 (86.6%), Max: Sub3 (100.0%) 97.1 13.3 

multi-to-one paradigm. Similar trends were observed on the SEED-FRA 
dataset. Notably, the model consistently performed better in multi-
to-one experiments compared to one-to-one experiments across both 
datasets.

The 𝛥 value reported in each table represents the difference between 
the highest and lowest accuracy values across different subjects. For our 
model, this value is the smallest across all sessions, indicating that the 
choice of training subject has less impact on accuracy. Compared to 
prior methods [24–26], this suggests that individual differences exert a 
smaller influence on the performance of our model.

To investigate how EEG and EM signals complement each other, we 
conducted ablation studies (Table  6). The model was evaluated under 
four conditions: using only EEG, only EM, and the fusion of both modal-
ities, in both one-to-one and multi-to-one settings. All reported results 
represent mean accuracy over five independent runs, with standard 
deviations consistently below 5%, confirming the stability of the model.

The results demonstrate that multimodal fusion significantly im-
proves performance. For example, in Session 1 of the SEED dataset 
(one-to-one setting), the model achieved 93.5% accuracy, compared 
to 91.8% with EEG alone and 73.4% with EM alone. Across all ex-
periments, EEG-only models generally performed better than EM-only 
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Table 4
The emotion recognition accuracy (%) of the cross-subject experiment under 
the one-to-one transfer paradigm in three sessions on the SEED-FRA dataset. 
Subject 1 was used as a training subject. Other subjects were used one by 
one for testing. The 𝛥 value represents the difference between the highest and 
lowest predicted accuracy values across different subjects.
 Session1 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub2 (60.4%), Max: Sub8 (87.5%) 83.9 27.1 
 [24] Min: Sub8 (78.3%), Max: Sub5 (93.1%) 93.7 15.2 
 [26] Min: Sub5 (67.3%), Max: Sub2 (85.8%) 76.8 18.5 
 [31] Min: Sub2 (84.1%), Max: Sub6 (86.8%) 90.7 12.7 
 Ours Min: Sub8 (87.5%), Max: Sub5 (100.0%) 94.6 12.5 
 Session2 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub4 (67.1%), Max: Sub3 (92.6%) 79.8 25.5 
 [24] Min: Sub4 (87.4%), Max: Sub2 (100.0%) 97.6 12.6 
 [26] Min: Sub3 (56.5%), Max: Sub4 (94.6%) 78.2 38.1 
 [31] Min: Sub2 (84.1%), Max: Sub2 (86.8%) 90.7 12.7 
 Ours Min: Sub7 (87.5%), Max: Sub3 (100.0%) 98.1 12.5 
 Session3 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub2 (65.2%), Max: Sub7 (92.9%) 76.9 27.7 
 [24] Min: Sub3 (77.5%), Max: Sub4 (96.4%) 86.1 18.9 
 [26] Min: Sub3 (72.0%), Max: Sub4 (85.7%) 79.8 13.7 
 [31] Min: Sub2 (84.1%), Max: Sub6 (86.8%) 90.7 12.7 
 Ours Min: Sub3 (87.5%), Max: Sub8 (100.0%) 90.1 12.5 

Table 5
The emotion recognition accuracy (%) of the cross-subject experiment under 
the multi-to-one transfer paradigm in three sessions on the SEED-FRA dataset. 
For each subject, the model is trained on other subjects and tested on that 
subject. The 𝛥 value represents the difference between the highest and lowest 
predicted accuracy values across different subjects.
 Session1 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub8 (60.6%), Max: Sub6 (82.8%) 74.2 22.2 
 [24] Min: Sub2 (76.5%), Max: Sub4 (94.7%) 91.9 18.2 
 [26] Min: Sub2 (75.2%), Max: Sub6 (91.4%) 89.1 16.2 
 Ours Min: Sub8 (87.5%), Max: Sub6 (100.0%) 95.1 12.5 
 Session2 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub2 (65.7%), Max: Sub5 (77.5%) 71.2 11.8 
 [24] Min: Sub6 (82.7%), Max: Sub4 (97.7%) 92.2 15.0 
 [26] Min: Sub6 (70.7%), Max: Sub1 (88.7%) 85.5 18.0 
 Ours Min: Sub5 (87.5%), Max: Sub8 (100.0%) 98.8 12.5 
 Session3 Min and Max Avg.(%) 𝛥  
 [25] Min: Sub1 (67.0%), Max: Sub5 (85.2%) 75.0 18.2 
 [24] Min: Sub8 (82.3%), Max: Sub4 (95.0%) 86.4 12.7 
 [26] Min: Sub2 (77.2%), Max: Sub4 (97.6%) 85.0 20.4 
 Ours Min: Sub5 (87.5%), Max: Sub4 (100.0%) 94.9 12.5 

models. However, in every session, combining EEG and EM yielded 
the highest accuracy, confirming that the modalities were effectively 
integrated and that spurious correlations did not impair performance. 
Moreover, by feeding the entire transformed EEG image into the trans-
former at once, the issue of incomplete modality representations was 
alleviated. As summarized in Table  6, the model’s accuracy using EEG 
alone remained above 85% across all sessions.

Fig.  10 illustrates the training and test accuracy of the model with 
and without the BSCM mechanism over 50 epochs. As observed in the 
figure, although the model with BSCM initially learns slightly slower, 
the final accuracy remains largely similar to the model without BSCM. 
Additionally, the gap between test and training accuracy is reduced in 
the presence of BSCM, indicating a decrease in overfitting.

We analyze the channel attention by visualizing the weights learned 
by the proposed model. Fig.  11 shows the distribution of channel 
attention across the scalp for positive, neutral, and negative samples 
from the SEED dataset.

The red areas on the scalp indicate channels with higher attention 
weights, whereas the blue areas correspond to channels with lower 
weights. The relatively small extent of red regions compared to blue 
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Fig. 10. Training and test accuracy in the multi-to-one configuration using the SEED dataset.
Table 6
Comparison of average accuracy (%) for the proposed TEREE model using 
EEG-only, EM-only, and fused EEG+EM modalities across one-to-one and 
multi-to-one transfer settings. Results highlight the performance gains achieved 
through multimodal fusion.
 Paradigms One-to-One Multi-to-One

 Modality EEG EM Fusion EEG EM Fusion

 Ses.1 91.8 73.4 93.5 86.1 84.5 97.7 
 SEED Ses.2 89.8 82.4 96.2 86.2 84.8 97.2 
 Ses.3 85.7 80.6 91.9 85.9 85.0 97.1 
 Modality EEG EM Fusion EEG EM Fusion

 Ses.1 87.2 77.8 94.6 91.6 85.7 95.1 
 SEED-FRA Ses.2 92.2 86.9 98.1 92.8 79.1 98.8 
 Ses.3 87.8 76.1 90.1 90.0 78.9 94.9 

suggests that only a limited number of EEG channels are strongly 
correlated with emotional states, while many others contribute less. 
Notably, the temporal lobes exhibit greater activation when subjects 
view both positive and negative videos. In addition, a stronger hemi-
spheric imbalance is observed during negative video viewing, whereas 
the distribution of active regions appears more balanced when viewing 
neutral videos.

7. Conclusions

This study introduced TEREE, a transformer-based model for emo-
tion recognition using multimodal biomedical signals, specifically EEG 
and EM data. TEREE addresses three key challenges in emotion
recognition—individual differences, spurious correlations, and incom-
plete modality representation. The model transforms EEG signals into 
spatio–temporal–spectral 2D representations and integrates EM features 
through a modified multi-head cross-attention mechanism, further 
enhanced by Bayesian spurious correlation minimization. This de-
sign enables the model to capture nuanced emotional patterns while 
reducing the impact of subject variability.

Experimental results demonstrate that TEREE not only improves 
classification accuracy in cross-subject settings but also minimizes per-
formance disparities among individuals, ensuring robustness and gen-
eralizability. The fusion of EEG and EM data consistently enhances 
accuracy across all sessions, confirming effective modality integration 
while mitigating the influence of spurious correlations. Moreover, by 
incorporating complete transformed EEG data into the transformer, 
TEREE effectively alleviates the challenge of incomplete modality rep-
resentation. Notably, the model achieves accuracies of 97.7% and 
98.8% in multi-to-one transfer paradigms, underscoring its potential for 
advancing multimodal emotion recognition. By improving classification 
accuracy, reducing inter-subject variability, and overcoming modality-
specific challenges, TEREE contributes to more reliable and practical 
applications in human–computer interaction and affective computing.
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Fig. 11. (Top) Grad-CAM heatmaps of brain signal mappings for three 
video samples (Positive, Neutral, Negative) from Subject 1, trained under 
the multi-to-one configuration using the TEREE model on the SEED dataset. 
(Bottom) Topomap showing emotional neural patterns derived from aggre-
gated frequency band estimates. Color intensity reflects importance, with 
‘‘Low’’ indicating lower relevance and ‘‘High’’ indicating higher relevance. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Despite these promising results, several limitations remain. First, 
converting EEG signals into 2D images may still introduce minor 
quantization-related information loss, even though normalization and 
the ViT-based attention mechanism mitigate much of its effect. Second, 
hyperparameter choices, such as the KL regularization coefficient, 
require careful tuning, which may limit straightforward reproducibility 
across datasets. Third, while robustness to incomplete modalities was 
partially validated through ablation studies, further experiments with 
systematically varied levels of missing EEG channels or EM data are 
needed to provide stronger empirical evidence. Finally, although strong 
performance was demonstrated on SEED and SEED-FRA, broader eval-
uation on more diverse datasets and real-world scenarios is necessary 
to confirm generalizability. Future research could explore alternative 
signal representations that preserve the full dynamic range of EEG 
data, investigate adaptive strategies for hyperparameter scheduling, 
and extend the framework to additional modalities or larger-scale 
longitudinal studies.

CRediT authorship contribution statement

Nima Esmi: Writing – original draft, Visualization, Validation, 
Project administration, Methodology, Investigation, Formal analysis, 
Data curation, Conceptualization. Asadollah Shahbahrami: Writing 
– review & editing, Supervision, Resources, Conceptualization. Georgi 
Gaydadjiev: Writing – review & editing. Peter de Jonge: Writing – 
review & editing.



N. Esmi et al. Intelligence-Based Medicine 12 (2025) 100305 
Funding statement

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

No new data were created or analyzed in this study.

References

[1] Mostafaei Sahar Hassanzadeh, Tanha Jafar, Sharafkhaneh Amir. A novel 
deep learning model based on transformer and cross modality attention for 
classification of sleep stages. J Biomed Inf 2024;157:104689.

[2] Helmy AbdelMoniem, Nassar Radwa, Ramdan Nagy. Depression detection for 
twitter users using sentiment analysis in English and Arabic tweets. Artif Intell 
Med 2024;147:102716. http://dx.doi.org/10.1016/j.artmed.2023.102716.

[3] Pfeffer Maximilian Achim, Ling Steve Sai Ho, Wong Johnny Kwok Wai. 
Exploring the frontier: Transformer-based models in EEG signal analysis for 
brain-computer interfaces. Comput Biol Med 2024;108705. http://dx.doi.org/10.
1016/j.compbiomed.2024.108705.

[4] Balcioğlu Yavuz Selim, Çelik Ahmet Alkan, Altindağ Erkut. Sentiment analysis 
of reddit reviews on mobile gaming: Insights from the gaming community. Int 
J Hum-Comput Interact 2025;1–13. http://dx.doi.org/10.1080/10447318.2025.
2464897.

[5] Yuan Aijia, Garcia Colato Edlin, Pescosolido Bernice, Song Hyunju, Sam-
tani Sagar. Improving workplace well-being in modern organizations: A review 
of large language model-based mental health chatbots. ACM Trans Manag Inf 
Syst 2025;16(1):1–26. http://dx.doi.org/10.1145/3701041.

[6] Xu Haiyu, Guo Zhiwei, Saad Aldosary, Tolba Amr, Al-Dulaimi Anwer, Yu Keping, 
Rodrigues Joel JPC. Consumer QoE-aware cognitive semantic sentiment analysis 
via hybrid large models. IEEE Consum Electron Mag 2025;14(2):59–68. http:
//dx.doi.org/10.1109/MCE.2024.3437550.

[7] Acharya Madhav, Deo Ravinesh C, Barua Prabal Datta, Devi Aruna, Tao Xiaohui. 
EEGConvNeXt: A novel convolutional neural network model for automated 
detection of Alzheimer’s disease and frontotemporal dementia using EEG signals. 
Comput Methods Programs Biomed 2025;108652. http://dx.doi.org/10.1016/j.
cmpb.2025.108652.

[8] Jin Xiaofang, Xiao Jieyu, Jin Libiao, Zhang Xinruo. Residual multimodal trans-
former for expression-EEG fusion continuous emotion recognition. CAAI Trans 
Intell Technol 2024;9(5):1290–304. http://dx.doi.org/10.1049/cit2.12346.

[9] Li Jing, Chen Ning, Zhu Hongqing, Li Guangqiang, Xu Zhangyong, Chen Dingxin. 
Incongruity-aware multimodal physiology signals fusion for emotion recognition. 
Inf Fusion 2024;105:102220. http://dx.doi.org/10.1016/j.inffus.2023.102220.

[10] Pei Guanxiong, Shang Qian, Hua Shizhen, Li Taihao, Jin Jia. EEG-based affective 
computing in virtual reality with a balancing of the computational efficiency and 
recognition accuracy. Comput Hum Behav 2024;152:108085. http://dx.doi.org/
10.1016/j.chb.2023.108085.

[11] Gao Ziheng, Huang Jiajin, Chen Jianhui, Zhou Haiyan. FAformer: parallel 
Fourier-attention architectures benefits EEG-based affective computing with 
enhanced spatial information. Neural Comput Appl 2024;36(8):3903–19. http:
//dx.doi.org/10.1007/s00521-023-09289-z.

[12] Xu FeiFan, Pan Deng, Zheng Haohao, Ouyang Yu, Jia Zhe, Zeng Hong. EESCN: A 
novel spiking neural network method for EEG-based emotion recognition. Com-
put Methods Programs Biomed 2024;243:107927. http://dx.doi.org/10.1016/j.
cmpb.2023.107927.

[13] Zhao Yue, Zeng Hong, Zheng Haohao, Wu Jing, Kong Wanzeng, Dai Guojun. 
A bidirectional interaction-based hybrid network architecture for eeg cognitive 
recognition. Comput Methods Programs Biomed 2023;238:107593. http://dx.doi.
org/10.1016/j.cmpb.2023.107593.

[14] Parsa Mohsen, Rad Habib Yousefi, Vaezi Hadi, Hossein-Zadeh Gholam-Ali, 
Setarehdan Seyed Kamaledin, Rostami Reza, Rostami Hana, Vahabie Abdol-
Hossein. EEG-based classification of individuals with neuropsychiatric disorders 
using deep neural networks: A systematic review of current status and future 
directions. Comput Methods Programs Biomed 2023;240:107683. http://dx.doi.
org/10.1016/j.cmpb.2023.107683.

[15] Han Zihao, De Wilde Philippe. OCT data is all you need: How vision transformers 
with and without pre-training benefit imaging. 2025, http://dx.doi.org/10.
48550/arXiv.2502.12379, arXiv preprint arXiv:2502.12379.
11 
[16] Peruzzo Elia, Sangineto Enver, Liu Yahui, De Nadai Marco, Bi Wei, Lepri Bruno, 
Sebe Nicu. Spatial entropy as an inductive bias for vision transformers. Mach 
Learn 2024;113(9):6945–75. http://dx.doi.org/10.1007/s10994-024-06570-7.

[17] Chen Bianna, Chen CL Philip, Zhang Tong. GDDN: Graph domain disentangle-
ment network for generalizable EEG emotion recognition. IEEE Trans Affect 
Comput 2024;15(3):1739–53. http://dx.doi.org/10.1109/TAFFC.2024.3371540.

[18] Chang Jiang, Zhang Zhixin, Qian Yuhua, Lin Pan. Multi-scale hyperbolic con-
trastive learning for cross-subject EEG emotion recognition. IEEE Trans Affect 
Comput 2025;1–16. http://dx.doi.org/10.1109/TAFFC.2025.3535542.

[19] Yang Jianli, Zhang Zhen, Fu Zhiyu, Li Bing, Xiong Peng, Liu Xiuling. Cross-
subject classification of depression by using multiparadigm EEG feature fusion. 
Comput Methods Programs Biomed 2023;233:107360. http://dx.doi.org/10.
1016/j.cmpb.2023.107360.

[20] Jeganathan Jayson, Koussis Nikitas C, Paton Bryan, Phogat Richa, Pang James, 
Mansour Sina L, Zalesky Andrew, Breakspear Michael. Spurious correlations 
in surface-based functional brain imaging. Imaging Neurosci 2025;3(1):1–15. 
http://dx.doi.org/10.1162/imag_a_00478.

[21] Charlebois-Poirier Audrey-Rose, Davoudi Saeideh, Lalancette Ève, 
Knoth Inga Sophia, Lippé Sarah. The level of cognitive functioning in 
school-aged children is predicted by resting EEG directed phase lag index. Sci 
Rep 2025;15(1):1–13. http://dx.doi.org/10.1038/s41598-025-85635-6.

[22] Lin Changkai, Cheng Hongju, Rao Qiang, Yang Yang. M3SA: Multimodal senti-
ment analysis based on multi-scale feature extraction and multi-task learning. 
IEEE/ACM Trans Audio Speech Lang Process 2024;32(1):1416–29. http://dx.doi.
org/10.1109/TASLP.2024.3361374.

[23] Rukhsar Salim, Tiwari Anil Kumar. Lightweight convolution transformer for 
cross-patient seizure detection in multi-channel EEG signals. Comput Meth-
ods Programs Biomed 2023;242:107856. http://dx.doi.org/10.1016/j.cmpb.2023.
107856.

[24] Gong Xinrong, Chen CL Philip, Hu Bin, Zhang Tong. CiABL: Completeness-
induced adaptative broad learning for cross-subject emotion recognition with 
EEG and eye movement signals. IEEE Trans Affect Comput 2024;15(4):1970–84. 
http://dx.doi.org/10.1109/TAFFC.2024.3392791.

[25] Ganin Yaroslav, Ustinova Evgeniya, Ajakan Hana, Germain Pascal, 
Larochelle Hugo, Laviolette François, March Mario, Lempitsky Victor. Domain-
adversarial training of neural networks. J Mach Learn Res 2016;17(59):1–35. 
http://dx.doi.org/10.48550/arXiv.1505.07818.

[26] Li Zhunan, Zhu Enwei, Jin Ming, Fan Cunhang, He Huiguang, Cai Ting, 
Li Jinpeng. Dynamic domain adaptation for class-aware cross-subject and cross-
session EEG emotion recognition. IEEE J Biomed Heal Inf 2022;26(12):5964–73. 
http://dx.doi.org/10.1109/JBHI.2022.3210158.

[27] Lin Xuefen, Chen Jielin, Ma Weifeng, Tang Wei, Wang Yuchen. EEG emotion 
recognition using improved graph neural network with channel selection. Com-
put Methods Programs Biomed 2023;231:107380. http://dx.doi.org/10.1016/j.
cmpb.2023.107380.

[28] Liu Wei, Zheng Wei-Long, Li Ziyi, Wu Si-Yuan, Gan Lu, Lu Bao-Liang. Identifying 
similarities and differences in emotion recognition with EEG and eye movements 
among Chinese, German, and French people. J Neural Eng 2022;19(2):1–20. 
http://dx.doi.org/10.1088/1741-2552/ac5c8d.

[29] Feng Naishi, Zhou Bin, Zhang Qianqian, Hua Chengcheng, Yuan Yue. A com-
prehensive exploration of motion sickness process analysis from EEG signal 
and virtual reality. Comput Methods Programs Biomed 2025;264:108714. http:
//dx.doi.org/10.1016/j.cmpb.2025.108714.

[30] Tarnowski Paweł, Kołodziej Marcin, Majkowski Andrzej, Rak Remigiusz Jan. 
Eye-tracking analysis for emotion recognition. Comput Intell Neurosci 
2020;2020(1):2909267. http://dx.doi.org/10.1155/2020/2909267.

[31] Niaki Marzieh, Dharia Shyamal Y, Chen Yangjun, Valderrama Camilo E. Bi-
partite graph adversarial network for subject-independent emotion recognition. 
IEEE J Biomed Heal Informat. 2025;1–14. http://dx.doi.org/10.1109/JBHI.2025.
3570187.

[32] Xu Yongjie, Yu Zengjie, Li Yisheng, Liu Yuehan, Li Ye, Wang Yishan. Autism 
spectrum disorder diagnosis with EEG signals using time series maps of brain 
functional connectivity and a combined CNN–LSTM model. Comput Meth-
ods Programs Biomed 2024;250:108196. http://dx.doi.org/10.1016/j.cmpb.2024.
108196.

[33] Lin Yong, Dong Hanze, Wang Hao, Zhang Tong. Bayesian invariant risk mini-
mization. In: Conference on computer vision and pattern recognition. 2022, p. 
16000–9. http://dx.doi.org/10.1109/CVPR52688.2022.01555.

[34] Hipp Joerg F, Hawellek David J, Corbetta Maurizio, Siegel Markus, Engel An-
dreas K. Large-scale cortical correlation structure of spontaneous oscillatory 
activity. Nat Neurosci 2012;15(6):884–90. http://dx.doi.org/10.1038/nn.3101.

[35] Xu Peng, Zhu Xiatian, Clifton David A. Multimodal learning with transformers: 
A survey. IEEE Trans Pattern Anal Mach Intell 2023;45(10):12113–32.

[36] Zhang Zhongyi, Meng Qinghao, Jin LiCheng, Wang Hanguang, Hou Huirang. A 
novel EEG-based graph convolution network for depression detection: incorpo-
rating secondary subject partitioning and attention mechanism. Expert Syst Appl 
2024;239(1):1–13. http://dx.doi.org/10.1016/j.eswa.2023.122356.

[37] Kim Hun-gyeom, Song Solwoong, Cho Baek Hwan, Jang Dong Pyo. Deep 
learning-based stress detection for daily life use using single-channel EEG and 
GSR in a virtual reality interview paradigm. PLoS One 2024;19(7):1–13. http:
//dx.doi.org/10.1371/journal.pone.0305864.

http://refhub.elsevier.com/S2666-5212(25)00109-7/sb1
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb1
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb1
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb1
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb1
http://dx.doi.org/10.1016/j.artmed.2023.102716
http://dx.doi.org/10.1016/j.compbiomed.2024.108705
http://dx.doi.org/10.1016/j.compbiomed.2024.108705
http://dx.doi.org/10.1016/j.compbiomed.2024.108705
http://dx.doi.org/10.1080/10447318.2025.2464897
http://dx.doi.org/10.1080/10447318.2025.2464897
http://dx.doi.org/10.1080/10447318.2025.2464897
http://dx.doi.org/10.1145/3701041
http://dx.doi.org/10.1109/MCE.2024.3437550
http://dx.doi.org/10.1109/MCE.2024.3437550
http://dx.doi.org/10.1109/MCE.2024.3437550
http://dx.doi.org/10.1016/j.cmpb.2025.108652
http://dx.doi.org/10.1016/j.cmpb.2025.108652
http://dx.doi.org/10.1016/j.cmpb.2025.108652
http://dx.doi.org/10.1049/cit2.12346
http://dx.doi.org/10.1016/j.inffus.2023.102220
http://dx.doi.org/10.1016/j.chb.2023.108085
http://dx.doi.org/10.1016/j.chb.2023.108085
http://dx.doi.org/10.1016/j.chb.2023.108085
http://dx.doi.org/10.1007/s00521-023-09289-z
http://dx.doi.org/10.1007/s00521-023-09289-z
http://dx.doi.org/10.1007/s00521-023-09289-z
http://dx.doi.org/10.1016/j.cmpb.2023.107927
http://dx.doi.org/10.1016/j.cmpb.2023.107927
http://dx.doi.org/10.1016/j.cmpb.2023.107927
http://dx.doi.org/10.1016/j.cmpb.2023.107593
http://dx.doi.org/10.1016/j.cmpb.2023.107593
http://dx.doi.org/10.1016/j.cmpb.2023.107593
http://dx.doi.org/10.1016/j.cmpb.2023.107683
http://dx.doi.org/10.1016/j.cmpb.2023.107683
http://dx.doi.org/10.1016/j.cmpb.2023.107683
http://dx.doi.org/10.48550/arXiv.2502.12379
http://dx.doi.org/10.48550/arXiv.2502.12379
http://dx.doi.org/10.48550/arXiv.2502.12379
http://arxiv.org/abs/2502.12379
http://dx.doi.org/10.1007/s10994-024-06570-7
http://dx.doi.org/10.1109/TAFFC.2024.3371540
http://dx.doi.org/10.1109/TAFFC.2025.3535542
http://dx.doi.org/10.1016/j.cmpb.2023.107360
http://dx.doi.org/10.1016/j.cmpb.2023.107360
http://dx.doi.org/10.1016/j.cmpb.2023.107360
http://dx.doi.org/10.1162/imag_a_00478
http://dx.doi.org/10.1038/s41598-025-85635-6
http://dx.doi.org/10.1109/TASLP.2024.3361374
http://dx.doi.org/10.1109/TASLP.2024.3361374
http://dx.doi.org/10.1109/TASLP.2024.3361374
http://dx.doi.org/10.1016/j.cmpb.2023.107856
http://dx.doi.org/10.1016/j.cmpb.2023.107856
http://dx.doi.org/10.1016/j.cmpb.2023.107856
http://dx.doi.org/10.1109/TAFFC.2024.3392791
http://dx.doi.org/10.48550/arXiv.1505.07818
http://dx.doi.org/10.1109/JBHI.2022.3210158
http://dx.doi.org/10.1016/j.cmpb.2023.107380
http://dx.doi.org/10.1016/j.cmpb.2023.107380
http://dx.doi.org/10.1016/j.cmpb.2023.107380
http://dx.doi.org/10.1088/1741-2552/ac5c8d
http://dx.doi.org/10.1016/j.cmpb.2025.108714
http://dx.doi.org/10.1016/j.cmpb.2025.108714
http://dx.doi.org/10.1016/j.cmpb.2025.108714
http://dx.doi.org/10.1155/2020/2909267
http://dx.doi.org/10.1109/JBHI.2025.3570187
http://dx.doi.org/10.1109/JBHI.2025.3570187
http://dx.doi.org/10.1109/JBHI.2025.3570187
http://dx.doi.org/10.1016/j.cmpb.2024.108196
http://dx.doi.org/10.1016/j.cmpb.2024.108196
http://dx.doi.org/10.1016/j.cmpb.2024.108196
http://dx.doi.org/10.1109/CVPR52688.2022.01555
http://dx.doi.org/10.1038/nn.3101
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb35
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb35
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb35
http://dx.doi.org/10.1016/j.eswa.2023.122356
http://dx.doi.org/10.1371/journal.pone.0305864
http://dx.doi.org/10.1371/journal.pone.0305864
http://dx.doi.org/10.1371/journal.pone.0305864


N. Esmi et al. Intelligence-Based Medicine 12 (2025) 100305 
[38] Imbert Laetitia, Neige Cécilia, Moirand Rémi, Piva Giulia, Bediou Benoit, 
Vallet William, Brunelin Jerome. Eye-tracking evidence of a relationship between 
attentional bias for emotional faces and depression severity in patients with 
treatment-resistant depression. Sci Rep 2024;14(1):1–6. http://dx.doi.org/10.
1038/s41598-024-62251-4.

[39] Moreno-Galván Diego Aarón, López-Santillán Roberto, González-Gurrola Luis Car-
los, Montes-Y-Gómez Manuel, Sánchez-Vega Fernando, López-Monroy Adrián Pas-
tor. Automatic movie genre classification and emotion recognition via a 
BiProjection multimodal transformer. Inf Fusion 2025;113(1):1–15. http://dx.doi.
org/10.1016/j.inffus.2024.102641.

[40] Ma Hui, Wang Jian, Lin Hongfei, Zhang Bo, Zhang Yijia, Xu Bo. A transformer-
based model with self-distillation for multimodal emotion recognition in 
conversations. IEEE Trans Multimed 2024;26(1):776–88. http://dx.doi.org/10.
1109/TMM.2023.3271019.

[41] Dosovitskiy Alexey, Beyer Lucas, Kolesnikov Alexander, Weissenborn Dirk, 
Zhai Xiaohua, Unterthiner Thomas, Dehghani Mostafa, Minderer Matthias, 
Heigold Georg, Gelly Sylvain, Uszkoreit Jakob, Houlsby Neil. An image is 
worth 16x16 words: Transformers for image recognition at scale. Int Conf Learn 
Represent 2021;1–21.

[42] Singh Gopendra Vikram, Firdaus Mauajama, Ekbal Asif, Bhattacharyya Push-
pak. EmoInt-trans: A multimodal transformer for identifying emotions and 
intents in social conversations. IEEE/ACM Trans Audio Speech Lang Process 
2023;31(1):290–300. http://dx.doi.org/10.1109/TASLP.2022.3224287.

[43] Huang Jian, Tao Jianhua, Liu Bin, Lian Zheng, Niu Mingyue. Multimodal trans-
former fusion for continuous emotion recognition. Int Conf Acoust Speech Signal 
Process 2020;3507–11. http://dx.doi.org/10.1109/ICASSP40776.2020.9053762.

[44] Wu Yujin, Daoudi Mohamed, Amad Ali. Transformer-based self-supervised 
multimodal representation learning for wearable emotion recognition. IEEE 
Trans Affect Comput 2023;15(1):157–72. http://dx.doi.org/10.48550/arXiv.
2303.17611.

[45] Chen Cheng, Fang Hao, Yang Yuxiao, Zhou Yi. Model-agnostic meta-learning for 
EEG-based inter-subject emotion recognition. J Neural Eng 2025;22(1):016008. 
http://dx.doi.org/10.1088/1741-2552/ad9956.

[46] Gómez-Lombardi Andre, Costa Begoña Góngora, Gutiérrez Pavel Prado, Car-
vajal Pablo Muñoz, Rivera Lucía Z, El-Deredy Wael. The cognitive triad 
network-oscillation-behaviour links individual differences in EEG theta frequency 
with task performance and effective connectivity. Sci Rep 2024;14(1):21482. 
http://dx.doi.org/10.1038/s41598-024-72229-x.

[47] Li Zhongjie, Zhang Gaoyan, Wang Longbiao, Wei Jianguo, Dang Jianwu. Emotion 
recognition using spatial–temporal EEG features through convolutional graph 
attention network. J Neural Eng 2023;20(1):016046. http://dx.doi.org/10.1088/
1741-2552/acb79e.

[48] Li Chao, Bian Ning, Zhao Ziping, Wang Haishuai, Schuller Björn W. Multi-view 
domain-adaptive representation learning for EEG-based emotion recognition. Inf 
Fusion 2024;104:102156. http://dx.doi.org/10.1016/j.inffus.2023.102156.

[49] Xu Chengjian, Song Yonghao, Zheng Qingqing, Wang Qiong, Heng Pheng-Ann. 
Unsupervised multi-source domain adaptation via contrastive learning for eeg 
classification. Expert Syst Appl 2025;261:125452. http://dx.doi.org/10.1016/j.
eswa.2024.125452.

[50] Li Guangqiang, Chen Ning, Niu Yixiang, Xu Zhangyong, Dong Yuxuan, Jin Jing, 
Zhu Hongqin. MSLTE: multiple self-supervised learning tasks for enhancing EEG 
emotion recognition. J Neural Eng 2024;21(2):024003. http://dx.doi.org/10.
1088/1741-2552/ad3c28.

[51] Ludwig Siegfried, Bakas Stylianos, Adamos Dimitrios A, Laskaris Nikolaos, Pana-
gakis Yannis, Zafeiriou Stefanos. EEGminer: discovering interpretable features 
of brain activity with learnable filters. J Neural Eng 2024;21(3):036010. http:
//dx.doi.org/10.1088/1741-2552/ad44d7.

[52] Vinao-Carl Matteo, Gal-Shohet Yuval, Rhodes Edward, Li J, Hampshire Adam, 
Sharp D, Grossman Nir. Just a phase? Causal probing reveals spurious phasic 
dependence of sustained attention. NeuroImage 2024;285:120477. http://dx.doi.
org/10.1016/j.neuroimage.2023.120477.

[53] Yang Hua, Chen CL Philip, Chen Bianna, Zhang Tong. Improving the inter-
pretability through maximizing mutual information for EEG emotion recognition. 
IEEE Trans Affect Comput 2024;1–14. http://dx.doi.org/10.1109/TAFFC.2024.
3463469.
12 
[54] Luo Yun, Liu Wei, Li Hanqi, Lu Yong, Lu Bao-Liang. A cross-scenario and cross-
subject domain adaptation method for driving fatigue detection. J Neural Eng 
2024;21(4):046004. http://dx.doi.org/10.1088/1741-2552/ad546d.

[55] Peng Dan, Zheng Wei-Long, Liu Luyu, Jiang Wei-Bang, Li Ziyi, Lu Yong, 
Lu Bao-Liang. Identifying sex differences in EEG-based emotion recognition 
using graph convolutional network with attention mechanism. J Neural Eng 
2023;20(6):066010. http://dx.doi.org/10.1088/1741-2552/ad085a.

[56] Xu Guixun, Guo Wenhui, Wang Yanjiang. LSTM-enhanced multi-view dynam-
ical emotion graph representation for EEG signal recognition. J Neural Eng 
2023;20(3):036038. http://dx.doi.org/10.1088/1741-2552/ace07d.

[57] Zhang Yuzhe, Liu Huan, Wang Di, Zhang Dalin, Lou Tianyu, Zheng Qinghua, 
Quek Chai. Cross-modal credibility modelling for EEG-based multimodal emotion 
recognition. J Neural Eng 2024;21(2):026040. http://dx.doi.org/10.1088/1741-
2552/ad3987.

[58] Zhang Yiling, Liao Yuan, Chen Wei, Zhang Xiruo, Huang Liya. Emotion recogni-
tion of EEG signals based on contrastive learning graph convolutional model. J 
Neural Eng 2024;21(4):046060. http://dx.doi.org/10.1088/1741-2552/ad7060.

[59] Hu Mengting, Xu Dan, He Kangjian, Zhao Kunyuan, Zhang Hao. Cross-subject 
emotion recognition with contrastive learning based on EEG signal correlations. 
Biomed Signal Process Control 2025;104:107511. http://dx.doi.org/10.1016/j.
bspc.2025.107511.

[60] Wang Zhe, Wang Yongxiong, Hu Chuanfei, Yin Zhong, Song Yu. Transformers 
for EEG-based emotion recognition: A hierarchical spatial information learning 
model. IEEE Sens J 2022;22(5):4359–68. http://dx.doi.org/10.1109/JSEN.2022.
3144317.

[61] Wang Zhe, Wang Yongxiong, Zhang Jiapeng, Hu Chuanfei, Yin Zhong, Song Yu. 
Spatial-temporal feature fusion neural network for EEG-based emotion recogni-
tion. IEEE Trans Instrum Meas 2022;71(1):1–12. http://dx.doi.org/10.1109/TIM.
2022.3165280.

[62] Yan Jingjie, Du Chengkun, Li Na, Zhou Xiaoyang, Liu Ying, Wei Jinsheng, 
Yang Yuan. Spatio-temporal graph bert network for EEG emotion recognition. 
Biomed Signal Process Control 2025;104:107576. http://dx.doi.org/10.1016/j.
bspc.2025.107576.

[63] Zang Zhibang, Yu Xiangkun, Fu Baole, Liu Yinhua, Ge Shuzhi Sam. Contrastive 
reinforced transfer learning for EEG-based emotion recognition with considera-
tion of individual differences. Biomed Signal Process Control 2025;106:107622. 
http://dx.doi.org/10.1016/j.bspc.2025.107622.

[64] Zhu Lei, Xu Mengxuan, Huang Aiai, Zhang Jianhai, Tan Xufei. Multiple class 
transfer learning framework with source label adaptive correction for EEG 
emotion recognition. Biomed Signal Process Control 2025;104:107536. http:
//dx.doi.org/10.1016/j.bspc.2025.107536.

[65] Zhou Hong-Yu, Yu Yizhou, Wang Chengdi, Zhang Shu, Gao Yuanxu, Pan Jia, 
Shao Jun, Lu Guangming, Zhang Kang, Li Weimin. A transformer-based 
representation-learning model with unified processing of multimodal input for 
clinical diagnostics. Nat Biomed Eng 2023;7(6):743–55. http://dx.doi.org/10.
1038/s41551-023-01045-x.

[66] Li Rui, Ren Chao, Zhang Sipo, Yang Yikun, Zhao Qiqi, Hou Kechen, Yuan Wen-
jie, Zhang Xiaowei, Hu Bin. STSNet: a novel spatio-temporal-spectral network 
for subject-independent EEG-based emotion recognition. Heal Inf Sci Syst 
2023;11(1):1–25. http://dx.doi.org/10.1007/s13755-023-00226-x.

[67] Luo Jie, Cui Weigang, Xu Song, Wang Lina, Li Xiao, Liao Xiaofeng, Li Yang. 
A dual-branch spatio-temporal-spectral transformer feature fusion network for 
EEG-based visual recognition. IEEE Trans Ind Inf 2024;20(2):1721–31. http:
//dx.doi.org/10.1109/TII.2023.3280560.

[68] Lengerich Benjamin J, Xing Eric, Caruana Rich. Dropout as a regularizer of 
interaction effects. Int Conf Artif Intell Stat 2022;7550–64.

[69] Zheng Wei-Long, Lu Bao-Liang. Investigating critical frequency bands and 
channels for EEG-based emotion recognition with deep neural networks. IEEE 
Trans Auton Ment Dev 2015;7(3):162–75. http://dx.doi.org/10.1109/TAMD.
2015.2431497.

[70] Zhang Haokai, Li Pengrui, Chang Hongli, Liu Shihong, Qin Yun, Xie Jiaxin, 
Wang Manqing, Gao Dongrui, Wu Dingming. A coupling of common–private 
topological patterns learning approach for cross-subject emotion recognition. 
Biomed Signal Process Control 2025;105:107550. http://dx.doi.org/10.1016/j.
bspc.2025.107550.

http://dx.doi.org/10.1038/s41598-024-62251-4
http://dx.doi.org/10.1038/s41598-024-62251-4
http://dx.doi.org/10.1038/s41598-024-62251-4
http://dx.doi.org/10.1016/j.inffus.2024.102641
http://dx.doi.org/10.1016/j.inffus.2024.102641
http://dx.doi.org/10.1016/j.inffus.2024.102641
http://dx.doi.org/10.1109/TMM.2023.3271019
http://dx.doi.org/10.1109/TMM.2023.3271019
http://dx.doi.org/10.1109/TMM.2023.3271019
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb41
http://dx.doi.org/10.1109/TASLP.2022.3224287
http://dx.doi.org/10.1109/ICASSP40776.2020.9053762
http://dx.doi.org/10.48550/arXiv.2303.17611
http://dx.doi.org/10.48550/arXiv.2303.17611
http://dx.doi.org/10.48550/arXiv.2303.17611
http://dx.doi.org/10.1088/1741-2552/ad9956
http://dx.doi.org/10.1038/s41598-024-72229-x
http://dx.doi.org/10.1088/1741-2552/acb79e
http://dx.doi.org/10.1088/1741-2552/acb79e
http://dx.doi.org/10.1088/1741-2552/acb79e
http://dx.doi.org/10.1016/j.inffus.2023.102156
http://dx.doi.org/10.1016/j.eswa.2024.125452
http://dx.doi.org/10.1016/j.eswa.2024.125452
http://dx.doi.org/10.1016/j.eswa.2024.125452
http://dx.doi.org/10.1088/1741-2552/ad3c28
http://dx.doi.org/10.1088/1741-2552/ad3c28
http://dx.doi.org/10.1088/1741-2552/ad3c28
http://dx.doi.org/10.1088/1741-2552/ad44d7
http://dx.doi.org/10.1088/1741-2552/ad44d7
http://dx.doi.org/10.1088/1741-2552/ad44d7
http://dx.doi.org/10.1016/j.neuroimage.2023.120477
http://dx.doi.org/10.1016/j.neuroimage.2023.120477
http://dx.doi.org/10.1016/j.neuroimage.2023.120477
http://dx.doi.org/10.1109/TAFFC.2024.3463469
http://dx.doi.org/10.1109/TAFFC.2024.3463469
http://dx.doi.org/10.1109/TAFFC.2024.3463469
http://dx.doi.org/10.1088/1741-2552/ad546d
http://dx.doi.org/10.1088/1741-2552/ad085a
http://dx.doi.org/10.1088/1741-2552/ace07d
http://dx.doi.org/10.1088/1741-2552/ad3987
http://dx.doi.org/10.1088/1741-2552/ad3987
http://dx.doi.org/10.1088/1741-2552/ad3987
http://dx.doi.org/10.1088/1741-2552/ad7060
http://dx.doi.org/10.1016/j.bspc.2025.107511
http://dx.doi.org/10.1016/j.bspc.2025.107511
http://dx.doi.org/10.1016/j.bspc.2025.107511
http://dx.doi.org/10.1109/JSEN.2022.3144317
http://dx.doi.org/10.1109/JSEN.2022.3144317
http://dx.doi.org/10.1109/JSEN.2022.3144317
http://dx.doi.org/10.1109/TIM.2022.3165280
http://dx.doi.org/10.1109/TIM.2022.3165280
http://dx.doi.org/10.1109/TIM.2022.3165280
http://dx.doi.org/10.1016/j.bspc.2025.107576
http://dx.doi.org/10.1016/j.bspc.2025.107576
http://dx.doi.org/10.1016/j.bspc.2025.107576
http://dx.doi.org/10.1016/j.bspc.2025.107622
http://dx.doi.org/10.1016/j.bspc.2025.107536
http://dx.doi.org/10.1016/j.bspc.2025.107536
http://dx.doi.org/10.1016/j.bspc.2025.107536
http://dx.doi.org/10.1038/s41551-023-01045-x
http://dx.doi.org/10.1038/s41551-023-01045-x
http://dx.doi.org/10.1038/s41551-023-01045-x
http://dx.doi.org/10.1007/s13755-023-00226-x
http://dx.doi.org/10.1109/TII.2023.3280560
http://dx.doi.org/10.1109/TII.2023.3280560
http://dx.doi.org/10.1109/TII.2023.3280560
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb68
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb68
http://refhub.elsevier.com/S2666-5212(25)00109-7/sb68
http://dx.doi.org/10.1109/TAMD.2015.2431497
http://dx.doi.org/10.1109/TAMD.2015.2431497
http://dx.doi.org/10.1109/TAMD.2015.2431497
http://dx.doi.org/10.1016/j.bspc.2025.107550
http://dx.doi.org/10.1016/j.bspc.2025.107550
http://dx.doi.org/10.1016/j.bspc.2025.107550

	TEREE: Transformer-based emotion recognition using EEG and Eye movement data
	Introduction
	Background Knowledge
	Challenges in Models Due to Data Characteristics
	Data Fusion Using Multi-head Cross-attention

	Related Work
	Affective Computing Using Multimodal Biomedical Data
	EEG Challenges in Emotion Recognition

	Transformer-Based Emotion Recognition using Biomedical Data
	Data Projection
	Self-attention Block
	Multi-head Cross-attention
	Integrating BSCM into Bidirectional Multimodal Attention

	Classification

	Dataset Description and Experimental Setup
	Experimental Results
	Conclusions
	CRediT authorship contribution statement
	Funding Statement
	Declaration of competing interest
	Data availability
	References


