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ARTICLE INFO ABSTRACT
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Background: Multimodal Al systems increasingly rely on biomedical signals such as EEG and eye movement
data for emotion recognition. However, these models face challenges including limited training data, inter-
subject variability, session-specific spurious correlations, and incomplete modality representation, all of which
reduce generalization and reliability.

Method: We propose TEREE, a multimodal transformer-based model that integrates temporal, spatial, and
spectral EEG features with eye movement data. To mitigate session-specific artifacts, Bayesian Spurious
Correlation Minimization (BSCM) is applied. In addition, a holistic multimodal processing strategy enables
robust handling of incomplete data. The model was trained and evaluated using the SEED and SEED-FRA
benchmark datasets under one-to-one and multi-to-one transfer paradigms.

Results: TEREE achieved state-of-the-art performance, with average multi-to-one transfer accuracies of 97.7%
on SEED and 98.8% on SEED-FRA. Ablation studies confirmed that fusing EEG with eye movement features con-
sistently improved accuracy compared to unimodal baselines. Standard deviations across repeated experiments
were below 5%, indicating stability.

Conclusion: By addressing inter-subject variability, spurious correlations, and incomplete modality issues,
TEREE enhances the robustness and generalization of emotion recognition systems. These findings suggest
that multimodal transformer-based models can substantially improve the reliability of affective computing
applications such as human—-computer interaction and mental health monitoring.

1. Introduction often surpassing traditional state-of-the-art methods [8,9]. These mod-

els excel at integrating multiple modalities, providing a comprehensive

Sentiment analysis has emerged as an essential tool across various
domains, enabling applications such as mental health monitoring for
early detection of conditions like depression, anxiety, or Alzheimer’s
disease; brain-computer interfaces that facilitate communication for
individuals with disabilities; personalized learning that tailors educa-
tional content based on students’ emotional states; human-computer
interaction to enhance user experiences in gaming, virtual reality, and
Al-driven systems; workplace productivity to monitor employee well-
being; and market research to gauge consumers’ emotional responses
to advertisements and products [1-7].

Recent advancements in multimodal transformer-based models have
significantly improved accuracy in detection and classification tasks,

representation of complex data. In the context of human behavior and
emotion analysis, such systems leverage diverse biomedical data, with
electroencephalography (EEG) being a cornerstone modality due to its
rich behavioral and emotional information [10-12]. Additionally, EEG-
based models have shown promise in cognitive state recognition and
neuropsychiatric disorder diagnosis, further expanding their utility [13,
14].

Despite these advancements, the data-intensive nature of transform-
ers, coupled with the high costs and constraints of collecting EEG
datasets, presents significant challenges [15,16]. First, EEG signal fea-
tures vary across subjects, leading to models that perform well for some
individuals but poorly for others, thus hindering generalization [17-
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19]. Second, external factors such as electrode placement, recording
duration, and environmental conditions can introduce session-specific
patterns, causing spurious correlations where models mistakenly as-
sociate recording conditions with class labels rather than intrinsic
neural features [20,21]. Third, incomplete modality representation —
caused by hardware malfunctions, poor electrode contact, or move-
ment artifacts — results in missing or unusable signals, complicating
classification [22,23].

To address these limitations, several multimodal approaches have
been proposed. Weighted representation distribution alignment bal-
ances marginal and conditional distributions between source and target
domains to mitigate individual differences in cross-subject emotion
recognition, though significant domain disparities can lead to subop-
timal alignment [24]. Domain-adversarial neural networks combine
domain adaptation with deep feature learning to ensure discriminative
and domain-invariant features, though large domain shifts may still im-
pair generalization [25]. Dynamic domain adaptation algorithms adjust
models in real time to address global and local domain divergences,
enhancing performance in cross-subject and cross-session EEG emotion
recognition; however, their reliance on domain-shift assumptions limits
applicability in highly variable domains [26]. Additionally, advanced
neural network architectures — such as spiking neural networks and
graph neural networks — have been developed to improve EEG-based
emotion recognition by capturing temporal and spatial dependencies
in signals [12,27].

Motivated by the strengths and limitations of transformers in han-
dling multimodal data, we propose a multimodal transformer-based
model that integrates EEG with a supplementary modality, such as
eye movement (EM). This approach, termed Transformer-Based Emo-
tion Recognition using EEG and Eye Movement Data (TEREE), aims to
enhance classification performance by addressing the aforementioned
challenges and enabling accurate identification of emotional states
(positive, neutral, negative). The integration of EEG and EM leverages
their complementary strengths, with EM providing direct insights into
attentional and emotional states through gaze patterns and pupil dy-
namics, offering advantages over modalities like GSR or ECG [28,29].
For example, [24] demonstrated that the use of supplementary eye
movement data can improve model accuracy by up to 10%. Addition-
ally, [30] showed that EM can be used independently for emotion
recognition with an accuracy exceeding 80%. Niaki et al. proposed
a bipartite graph adversarial network that integrates bipartite graphs
into a DANN framework to better handle cross-subject variability;
their model achieved state-of-the-art or comparable performance, high-
lighting the effectiveness of graph-based domain adaptation for robust
generalization [31]. Furthermore, incorporating paradigms from EEG-
based disorder diagnosis and cognitive state recognition can enhance
the robustness of our model across diverse applications [13,32].

EEG captures neural activity, while EM’s precise behavioral data
enhances robustness against incomplete data and individual variability.
Validated on the SEED dataset, this combination outperforms alterna-
tive modality pairings in emotion recognition accuracy. Initially, to
mitigate the effect of individual differences, we map EEG signals into
a two-dimensional space, ensuring that different frequency bands and
all channels are considered over time. Then, inspired by [33], we apply
Bayesian Spurious Correlation Minimization (BSCM) to reduce session-
specific artifacts. In our framework, BSCM models attention weights
as Bayesian posterior distributions and applies KL-regularized varia-
tional inference, ensuring that the transformer relies less on session-
dependent noise and more on causal neural-behavioral patterns. Fi-
nally, the entire session’s data is fed into the model at each evaluation
stage to minimize the impact of incomplete modality representations.
This approach enables the model to leverage the global self-attention
mechanism when processing the data, allowing it to capture correla-
tions that are spatially and temporally distant despite the presence of
noise.

The main contributions of our work are summarized as follows:
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» To address individual differences, we employ a data-space trans-
formation method combined with a Vision Transformer (ViT),
ensuring that spatial, spectral, and temporal features are pre-
served and effectively analyzed for robust EEG-based emotion
recognition.

We mitigate spurious correlations from session-specific artifacts
using Bayesian Spurious Correlation Minimization (BSCM). By
modeling attention weights as a Bayesian posterior distribu-
tion with variational inference and KL-regularized loss, BSCM
reduces reliance on non-causal patterns and enhances generaliza-
tion across sessions and subjects, as validated by improved emo-
tion recognition accuracy on the SEED and SEED-FRA datasets.
To address incomplete modality representation, we feed the full
session sample into the model at each analysis stage. Lever-
aging the self-attention mechanism, the model gains a global
view of the data, allowing healthy segments to compensate for
noisy or missing parts, thereby enhancing robustness in emotion
recognition.

The remainder of this paper is structured as follows: Section 2
provides background on the challenges of transformers in emotion
recognition using biomedical data. Section 3 discusses related work,
highlighting existing methods and their limitations. Section 4 presents
the design of our proposed transformer-based model, detailing its key
components. Section 5 describes the implementation details and ex-
perimental setup. Section 6 evaluates our approach with benchmark
datasets and compares it with state-of-the-art methods. Finally, Sec-
tion 7 concludes the paper with a summary of findings and potential
future research directions.

2. Background knowledge

In this section, we first discuss some of the challenges that models
face when dealing with limited-scale datasets, including individual
differences in data, spurious correlations between modalities, and in-
complete modality representation. We then introduce key concepts
related to attention mechanisms, including multi-head self-attention
and multi-head cross-attention.

2.1. Challenges in models due to data characteristics

The performance of models is strongly influenced by the charac-
teristics of the data used for training. Key challenges include indi-
vidual differences in data, spurious correlations between modalities,
and incomplete modality representations, which are discussed in the
following sections.

Intrinsic differences in human physiology and brain function can
significantly affect data analysis and the performance of machine learn-
ing models. EEG signals, for example, exhibit considerable variability
across individuals, even when they perform the same task. These
variations arise from factors such as brain structure, lifestyle, stress
levels, and overall physical condition. For instance, in the SEED dataset,
described in Section 5, EEG recordings are collected from 12 subjects
of different genders and age groups while they are exposed to positive,
neutral, or negative video stimuli using a 62-channel EEG device.

In EEG data analysis, one major challenge is the occurrence of
spurious correlations, such as those caused by the limited spatial resolu-
tion of electrophysiological methods. Recorded EEG signals may result
from the mixing of activity across multiple brain sources, which can
lead to artificial correlations between regions. This issue may result in
misinterpretations of functional brain connectivity. For example, Fig.
1 illustrates patterns observed in the left hemisphere of the brain (R:
Real) alongside artificially induced patterns resulting from spurious
correlations (A: Artificial), inspired by [34]. Such spurious correlations
can obscure the true structure of brain networks.
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Fig. 1. Correlation patterns observed in the left hemisphere of the brain. (R:
Real) shows true correlations, while (A: Artificial) depicts patterns arising from
spurious correlations.

Source: Adapted from [34].

A critical challenge in multimodal learning is incomplete modality
representation, where certain modalities may be partially or entirely
missing. In real-world applications, missing data in one or more modal-
ities is common. For example, in an emotion recognition system, some
EEG channels may become disconnected from the subject’s scalp, result-
ing in missing signals. In other cases, a modality is present but affected
by high noise levels, distortion, or missing segments, making it difficult
to extract meaningful information.

A real-world example from the SEED dataset illustrates this issue.
Fig. 2 shows Short-Time Fourier Transform (STFT) representations from
an experiment in which subjects watched a five-minute neutral video.
Panel (a) represents the EEG signal from Channel 47, which remains
unaffected, while Panel (b) represents Channel 48, where severe noise
disrupts the entire frequency spectrum. As observed in panel (b), the
adjacent channel remains unaffected, highlighting the variability of this
problem.

The risk of incomplete modality representation increases in sce-
narios involving multiple modalities, as missing or corrupted data in
one modality can reduce the overall performance of the model. Ad-
dressing this challenge requires robust techniques capable of handling
missing or noisy data while maintaining model reliability across diverse
conditions.

2.2. Data fusion using multi-head cross-attention

The presence of five distinct senses enables humans to perceive and
interpret their surroundings effectively. For example, by simultaneously
seeing and smelling a fruit, we can better assess its quality. Over time,
the human brain has learned to associate visual appearance, aroma,
and taste. While each sensory modality independently provides useful
information, the likelihood of selecting a delicious strawberry increases
when both vision and smell are combined.

A similar principle applies to machine learning models. One of the
widely used mechanisms in deep learning is multimodal fusion, particu-
larly in transformer-based architectures. In this paper, we focus on one
type of fusion, while other common approaches are discussed in [35].
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Fig. 2. Short-Time Fourier Transform representations of EEG signals during a
five-minute neutral video. (a) Channel 47, unaffected. (b) Channel 48, where
severe noise disrupts the entire frequency spectrum, illustrating the risk of
incomplete modality representation in multimodal scenarios.

However, before addressing fusion in transformers, it is important to
understand why transformers are advantageous in certain applications.

The fundamental operation of transformers is based on the attention
mechanism. Fig. 3 provides a simplified comparison of how neurons
interact in three deep learning models: CNNs, RNNs, and the attention
mechanism.

In CNNs, the feedforward architecture ensures that only spatially
adjacent input elements have direct connections. This design allows
CNNs to effectively capture local relationships but limits their ability
to identify global features in large-scale inputs. RNNs, in contrast,
employ a sequential structure that captures order and positional depen-
dencies of input elements. However, as the sequence length increases,
the vanishing gradient problem reduces the influence of early inputs,
restricting the model’s ability to capture long-range dependencies.

Transformers address these limitations through the self-attention
mechanism, which enables every input element to interact with all
others. This property allows transformers to capture global dependen-
cies effectively, albeit at a higher computational cost—a trade-off often
justified in applications where accuracy is critical.

When modeling relationships across different modalities, multi-head
cross-attention can be employed. As illustrated in Fig. 4, scaled dot-
product attention serves as the core operation for both self-attention
and cross-attention. It computes attention scores that determine how
much one token (or feature) should attend to another. Multi-head
self-attention focuses on dependencies within a single sequence, while
multi-head cross-attention models interactions between different se-
quences. In applications such as EEG signal analysis, where related
emotions may appear at distinct time intervals, multi-head attention
is particularly beneficial for capturing temporal dependencies.

Multi-head cross-attention focuses on interactions between two dif-
ferent sequences, allowing one sequence to attend to and learn from the
other. For example, EEG signal images and textual information related
to eye movements, recorded simultaneously, are fed into two modalities
M1 and M2. These are then processed by the multi-head cross-attention
mechanism, producing M1’ and M?2’, which represent the normalized
modalities enriched by the influence of the other.

Using (O 15 Kpr1s Varr) and (Q o, Kz, Viago), the attention mecha-
nism computes relevance scores that determine how much focus should
be assigned to different parts of the input data. These scores guide the
model in identifying the most relevant features for the current task.

3. Related work

This section reviews recent advancements in affective computing
using multimodal biomedical data, as well as challenges specific to
EEG-based emotion recognition. We organize the literature into two
subsections: multimodal frameworks integrating EEG with other phys-
iological signals (e.g., GSR, eye movement) and approaches addressing
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Fig. 3. Simplified comparison of neuron interactions in CNNs, RNNs, and the attention mechanism.

M2’

Multi-Head
Self-Attention

Scaled Dot-
Product Attention

Multi-Head
Cross-Attention

Fig. 4. Illustrating the relationship between scaled dot-product attention, multi-head self-attention, and multi-head cross-attention. Scaled dot-product attention
forms the basic operation, while self-attention captures intra-sequence dependencies and cross-attention models interactions across different modalities.

EEG-specific challenges, including individual differences, spurious cor-
relations, and incomplete modality representations. We critically evalu-
ate these works, highlighting gaps that our proposed Transformer-Based
Emotion Recognition (TEREE) model aims to address by simultaneously
tackling all three challenges.

3.1. Affective computing using multimodal biomedical data

Multimodal frameworks that combine EEG with complementary
signals such as galvanic skin response (GSR) or eye movement (EM)
have shown significant potential for emotion recognition, yet they
face persistent challenges. For instance, graph convolutional networks
equipped with attention mechanisms have been applied to detect
depression-related neural patterns in EEG data, yielding promising
results but still struggling with inter-subject variability that limits gen-
eralization across diverse populations [36]. Similar efforts integrating
EEG and GSR for stress detection in virtual reality environments have
reported performance degradation when modalities are misaligned
due to ambiguities in cross-modal correlations [37]. The value of
eye-tracking for studying attentional biases in depression has also
been highlighted, emphasizing EM’s role as a complementary modal-
ity; however, this approach does not address incomplete EEG data,
which frequently occurs in real-world applications due to hardware
malfunctions or noise [38].

Transformer-based multimodal architectures have recently
advanced the field by integrating diverse biomedical signals. One pro-
posed solution introduces a BiProjection mechanism that unifies EEG
and EM into a shared representation space, thereby improving emotion
recognition accuracy [39]. Another approach employs self-distillation
within transformers to reduce EEG signal noise, consequently en-
hancing cross-subject performance [40]. Nonetheless, these methods
often fail to account for substantial inter-subject variability, which
hinders generalization when training data is limited [41]. A unified
transformer framework has also been introduced for joint emotion

and intent recognition; however, its dependency on balanced multi-
modal data overlooks the prevalent challenge of incomplete modal-
ity representation, such as missing EEG channels [42,43]. Moreover,
transformer-based models tailored for wearable emotion recognition
exhibit limited robustness due to session-specific artifacts that pro-
duce spurious correlations [44]. Overall, the existing literature often
addresses these challenges independently, lacking a holistic approach
that concurrently mitigates individual differences, spurious correla-
tions, and incomplete data—all of which are critical for the practical
deployment of EEG-based emotion recognition systems.

3.2. EEG challenges in emotion recognition

EEG-based emotion recognition is promising due to its ability to
directly capture neural correlates of emotional states. However, chal-
lenges such as individual differences, spurious correlations, and incom-
plete modality representations continue to hinder model accuracy and
generalization.

To address individual differences, a model-agnostic meta-learning
framework has been developed to rapidly adapt to individual varia-
tions via one-shot learning, leading to improved cross-subject gener-
alization [45]. Research has also shown that variations in individual
theta frequency are correlated with inhibitory control efficiency, with
stronger connections observed in the superior temporal and inferior
frontal gyri, reflecting neural dynamics that drive behavioral vari-
ability [46]. To enhance cross-subject performance, a spatio-temporal
feature-fused convolutional graph attention network with multi-head
attention has been introduced [47]. A domain-adaptive approach based
on a cross-attention dilated causal convolutional neural network in-
tegrated with a domain discriminator has also been proposed to re-
duce both inter- and intra-subject variability [48]. In addition, con-
trastive learning has been employed to enable unsupervised multi-
source domain adaptation by aligning conditional distributions across
domains [49]. A multi-task self-supervised learning framework incorpo-
rating channel and frequency masking has likewise proven effective in



N. Esmi et al.

mitigating individual and modality-related variations [50]. Neverthe-
less, large domain shifts in EEG data distributions remain a major obsta-
cle, potentially limiting the generalizability of these approaches [25].

Spurious correlations - often introduced by session-specific artifacts
or environmental noise — have also been extensively investigated. For
example, constrained generalized Gaussian filters have been used to
suppress such correlations in EEG signals [51]. A completeness-induced
adaptive broad learning model has been proposed to generate compre-
hensive EEG and EM representations, thereby reducing inter-modality
spurious correlations [24]. To minimize artefactual dependencies be-
tween pre-stimulus oscillations and behavioral responses, an end-point
corrected Hilbert transform has been applied [52]. Filtering spuri-
ous EEG channel connections has also been addressed through an
Adjacency-Explainable Graph Neural Network (AEG), which maximizes
mutual information with true emotional states [53]. Techniques in-
volving cross-scenario and cross-subject adaptation using adversarial
learning and multi-kernel maximum mean discrepancy have further
improved robustness [54], while an attentive simple graph convo-
lutional network has been designed to mitigate sex-specific correla-
tions [55]. Despite their effectiveness, these approaches tend to address
narrow categories of spurious correlations and often overlook broader
session-level artifacts.

Another critical challenge is incomplete modality representation,
particularly in the presence of missing or corrupted EEG channels.
This has been addressed through the use of an LSTM-enhanced multi-
view dynamical emotion graph that adaptively updates EEG graph
structures [56]. Multimodal physiological signal fusion using self-
attention and cross-attention transformers has also been explored to
obtain more reliable EEG representations [57]. A graph convolutional
network based on contrastive learning has been proposed to cap-
ture emotional features shared across modalities, thereby enhancing
resilience to data loss [58]. More integrative frameworks have also
emerged. For example, contrastive learning has been applied to extract
invariant EEG features across multiple domains, effectively addressing
challenges related to individual variability, spurious correlations, and
data incompleteness [59]. Wang et al. [60] proposed a hierarchi-
cal spatial transformer that captures long-range dependencies from
electrode to brain-region level. It outperforms CNNs and RNNs on
DEAP and MAHNOB-HCI by emphasizing key brain regions. In [61],
a spatio-temporal feature fusion network combining CNN-based spa-
tial maps and temporal features with Bi-LSTM fusion is introduced.
Improvements in signal representation have also been achieved by
combining spatial graph-BERT and temporal LSTM in a spatio-temporal
graph BERT model [62]. Furthermore, contrastive reinforced transfer
learning, which uses reinforcement learning to dynamically select
transferable EEG features, has shown promising results [63]. Finally,
a multi-class transfer learning framework incorporating source label
adaptive correction and nuclear norm maximization has been proposed
to enhance model robustness [64].

Despite these advancements, the literature rarely offers unified
solutions that simultaneously address individual differences, spurious
correlations, and incomplete modality representation—especially in
multimodal contexts. Many existing methods are tailored to unimodal
EEG data, which limits their effectiveness in comprehensive frame-
works such as TEREE that integrate EEG and EM for robust emotion
recognition across varied scenarios.

4. Transformer-based emotion recognition using biomedical data

Fig. 5 illustrates the architecture of the proposed model, which
consists of four main components: (i) data projection, (ii) multi-head
cross-attention, (iii) a stack of self-attention blocks, and (iv) the classi-
fication head. Each component is described in detail in the following
subsections.

Intelligence-Based Medicine 12 (2025) 100305
4.1. Data projection

In the data projection stage, EEG and EM data are tokenized into
two separate streams and projected linearly. Studies have shown that
the spatial, spectral, and temporal aspects of EEG data each provide
valuable information about individuals’ emotional states. By analyzing
all three aspects together, it is possible to minimize the effect of
individual differences in data. To achieve this, the dimensionality of
1D EEG data is expanded into 2D to preserve all three aspects. This
approach enhances the true correlations between samples within the
same class and reduces the impact of inter-subject variability [65-67].

As shown in Fig. 6, the vertical axis (top to bottom) represents the
channels (spatial) from 1 to 62. The frequency bands are separated
using a bandpass filter, including Delta (0.5-4 Hz), Theta (4-8 Hz),
Alpha (8-13 Hz), Beta (13-30 Hz), and Gamma (above 30 Hz). For
all bands in each channel, 200 samples per second are recorded and
converted into values from O to 255 to represent grayscale pixels
(spectral), which are then arranged consecutively from left to right to
encode the temporal dimension. For image tokenization and position
embedding, we follow the Vision Transformer (ViT) approach [41]: the
image is resized to 224 x 224 pixels, divided into 16 x 16 patches,
linearly projected, and finally position embeddings are added to the
tokens.

To mitigate potential quantization effects during the conversion
of EEG signals into 2D images, we normalize the data prior to pixel
mapping, which helps preserve the dynamic range. Furthermore, be-
cause the ViT-based attention mechanism emphasizes relative spatial—
temporal-spectral patterns rather than absolute signal magnitudes, the
model is less sensitive to scaling artifacts. For the EM stream, we
explicitly use five feature categories: gaze X and Y coordinates (visual
attention path), pupil diameter (arousal indicator), fixation duration,
and saccade start—end times. These features are sampled at 200 Hz and
normalized per subject to reduce inter-individual variability. Fixations
and saccades are segmented using the dispersion-threshold algorithm
provided with the SEED dataset. After preprocessing, EM features are
linearly projected, followed by dropout and positional encoding, before
being integrated via cross-attention with EEG representations. Dropout
is applied before the position embedding operation to randomly re-
move some neurons during training, thereby reducing overfitting and
mitigating spurious correlations between modalities [68].

4.2. Self-attention block

Although the self-attention block is the third stage of the model,
we explain it first since multi-head cross-attention is essentially a
combination of multiple self-attention mechanisms.

Self-attention is crucial for modeling the relationships between EEG
and EM signals, as it captures long-range dependencies within fused
multimodal representations. In our model, self-attention operates on to-
kenized sequences derived from the fusion of spatio-temporal-spectral
EEG features and EM signals. The attention scores are computed as:

Q\/K_T)V &)
dk

where Q, K, and V are linear projections of the input, and d, is the
dimensionality of the key vectors. This mechanism allows each token
to attend to all others, enabling effective integration of multimodal
information.

To further refine the fused representations, multiple self-attention
layers are stacked. Residual connections and layer normalization im-
prove gradient stability and facilitate training deeper architectures:

Attention(Q, K, V) = softmax(

X'*! = MLP(Norm(Attention(Q, K, V) + X')) @)

where X! denotes the input at layer /, and the multi-layer perceptron
(MLP) introduces additional feature transformations. By leveraging self-
attention, the model captures both intra-modal dependencies within
EEG and EM signals and inter-modal relationships, ensuring robust
multimodal feature fusion.
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Fig. 5. Overall workflow of the proposed model for emotion recognition across negative, neutral, and positive states. The model comprises four main stages: (i)
signal conversion and projection (EEG 1D— 2D spatial-temporal-spectral mapping and EM feature projection); (ii) multi-head cross-attention (x 2) for multimodal
fusion; (iii) a stack of self-attention blocks (x 10) for global representation learning; and (iv) classification. The green dotted line marks the Bayesian Spurious
Correlation Minimization stage, where attention weights are modeled in a Bayesian manner and regularized to reduce session-specific spurious correlations.
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Fig. 6. Illustration of EEG signal conversion into 2D images, preserving spatial information (channels), spectral information (frequency-band intensity), and

temporal information (time).
4.3. Multi-head cross-attention

Multi-head cross-attention plays a central role in our model by
integrating EEG and EM signals, enabling the network to learn cross-
modal relationships. It aligns features between EEG and EM, ensuring
effective multimodal fusion.

Given a query (Q) from one modality (e.g., EEG) and key (K) and
value (V) from another (e.g., EM), the attention mechanism computes
relevance scores as:

O Ky
Attention(Qggg, Kpm» Vem) = sof tmax< ZLEG M Vem 3)
Vi

To improve integration, we employ a bidirectional cross-attention
mechanism, where EEG and EM mutually influence each other. This en-
sures that the learned representations capture both EEG-informed gaze
patterns and gaze-informed neural responses. The attention outputs
from cross-modal interactions are then combined with intra-modal self-
attention, refining the feature space and reducing spurious correlations.

By leveraging multi-head cross-attention, the model effectively
aligns spatial, temporal, and spectral features across modalities, en-
abling robust emotion recognition even in the presence of missing or
noisy data.

4.3.1. Integrating BSCM into bidirectional multimodal attention
Algorithm 1 in TEREE integrates cross-attention transformers with
variational autoencoder (VAE) losses to address spurious correlations
and incomplete modality issues in EEG and EM data. The cross-
attention mechanism aligns EEG’s neural patterns with EM’s behavioral
cues (e.g., gaze coordinates, fixation durations), capturing inter-modal

dependencies while filtering session-specific noise. VAE losses enforce
a probabilistic latent space, enabling robust reconstruction of missing
modalities by learning shared representations. Experiments on the
SEED dataset confirm that TEREE achieves superior accuracy under
missing EM data compared to unimodal models, highlighting the syn-
ergy of cross-attention and VAE in handling incomplete data and
reducing overfitting.

The Bayesian Spurious Correlation Minimization (BSCM) aims to
minimize the influence of spurious correlations by treating the model’s
decision function as a Bayesian posterior distribution rather than a
fixed deterministic function. In this context, bidirectional multimodal
attention learns posterior distributions over attention weights instead
of fixed values. Formally, standard Invariant Risk Minimization seeks
a representation @ that remains consistent across environments e € &,
with the optimal classifier w satisfying:

w € arg min Z R (wod), 4)
w
ee&
where R¢ represents the empirical risk in environment e. However, a
deep model may still capture spurious correlations due to overfitting.
To mitigate this, BSCM introduces Bayesian learning, which models the
classifier w as a distribution rather than a fixed parameter:

p(w|D) o« p(D|w)p(w), 6))

where: p(w|D) is the posterior distribution of the classifier, p(D|w) is
the likelihood of data given the model, p(w) is the prior distribution
over model parameters. As shown in Algorithm 1 BSCM incorporates
this into bidirectional multimodal attention by sampling weights from
a learned posterior rather than using deterministic attention scores.
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Algorithm 1 Bayesian Spurious Correlation Minimization (BSCM) for

Bidirectional Multimodal Attention in TEREE

1: Inputs:

Xggg: EEG data

Xgym: Eye movement data

©: prior parameters (u,c2) for attention weights

a: learning rate

N: number of training epochs

A: KL regularization coefficient

. Outputs:

M: trained multimodal transformer with Bayesian attention

10: Initialization:

11: Initialize variational parameters (u,p) for attention weights W with prior N (y,o-zl ).

12: Construct model architecture with bidirectional cross-attention and self-attention
blocks.

13: for epoch n=1to N do

14:  for each minibatch (xggg,Xgm.y) do

CRNQITL WD

15: Bayesian Weight Sampling:

16: Compute ¢ = log(1 + exp(p)).

17: Sample € ~ N'(0,1) and set W* = y+06 Q.

18: Forward Pass:

19: Encode EEG and EM into embeddings.

20: Apply bidirectional cross-attention with sampled weights:
w kT

21: AfpGoEm = softmax(QEEGWTKEM> Vem
ol

22: AEM—>EEG = softmax<7QEMu\//EKEEG VEEG

23: Fuse attention outputs and pass through stacked self-attention + MLP layers.

24: Loss Computation:

25: Prediction loss: Lyreq = —log p(yIh)

26: KL term: Ly = Dy (¢(W|D) |l p(W))

27: Total loss: £ = Lyeq + ALk,

28: Backward + Update:

29: Backpropagate VL.

30: Update (4, p) and model parameters via Adam with Ir a.

31: Apply Bayesian dropout to attention layers for regularization.

32:  end for

33: Evaluate model on validation set, record metrics.

34: end for

35: Return: trained model M.

4.4. Classification

The input to the classification head is the latent array obtained
after processing through multiple bidirectional multimodal attention
blocks and self-attention layers. This array contains the integrated and
refined features extracted from both EEG and EM modalities. The clas-
sification head transforms this latent representation into logits, which
are the raw, unnormalized scores for each class. These logits are then
converted into class probabilities using a softmax activation function.
During training, categorical cross-entropy loss is computed between
the predicted logits and the ground-truth labels. Because a complete
set of EEG data collected during a five-minute session, together with
the corresponding EM signals, is processed at each stage, the self-
attention block delivers a comprehensive multimodal representation to
the classification stage.

5. Dataset description and experimental setup

Two well-known multimodal emotional datasets, SEED [69] and
SEED-FRA [28], were used in our experiments, both involving EEG and
eye movement signals. As shown in Table 1, although the SEED dataset
originally contains 15 participants (referred to as subjects), simultane-
ous EEG and EM recordings are available for only 12; therefore, our
experiments were conducted on this subset to ensure consistency across
modalities.

In SEED, each subject viewed a total of 15 video clips during each
session, categorized into three emotional valences: five positive, five
neutral, and five negative. After an interval of approximately one week,
the subjects participated in a second session with a new set of 15
video clips, followed by a third session, resulting in three experimental
sessions for each subject. In SEED-FRA, eight subjects each watched 21
videos across three sessions.
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Participants viewed the clips in a controlled environment while
their EEG and eye-tracking data were recorded. Each trial lasted five
minutes, sampled at 200 Hz, and was labeled as negative, neutral,
or positive. EEG signals were recorded using a 62-channel ESI Neu-
roScan system, and the raw EEG data files were used. In the SEED
dataset, eye-movement data were stored in an Excel file containing
timestamps, gaze X and Y coordinates (e.g., X: 512, Y: 384), pupil
dilation (e.g., 3.5 mm), fixation duration (e.g., 200 ms), and saccade
start/end times (e.g., 10:01:23.456 to 10:01:23.789). These annotations
provide behavioral insights into emotional responses, complementing
EEG data and enhancing the accuracy of the proposed TEREE model.

The proposed TEREE model was implemented in PyTorch. Each
transformer block consists of a multi-head self-attention or cross-
attention layer followed by a feed-forward MLP. The MLP is composed
of two fully connected layers with a hidden dimension of 1024, sepa-
rated by a GeLU activation and followed by dropout (rate = 0.1). Layer
normalization is applied before each attention and MLP sub-layer.

For optimization, we employed the Adam optimizer with weight
decay set to 1x10*. A grid search was performed over hyperparameters
to select the optimal configuration. The best performance was achieved
with a learning rate of 1 x 10, a batch size of 32, and 40 training
epochs. To stabilize training, learning rate warm-up was applied during
the first 10% of epochs, followed by cosine annealing decay.

For the BSCM integration, the posterior parameters were initialized
with 4 = 0 and p = log(exp(0.1) — 1), corresponding to a small initial
variance, following standard practice in variational Bayesian neural
networks. The KL regularization coefficient 1 was selected via grid
search on the validation set, and a linear annealing schedule was
applied during the first 10 epochs to stabilize training. These settings
ensure both stable optimization and reproducibility of our approach.

Dropout (0.1) and Bayesian dropout within attention weights were
used as regularizers. For classification, categorical cross-entropy loss
was employed, while for BSCM integration, an additional KL-
divergence regularization term was included.

For our experimental environment, we utilized a workstation
equipped with an Intel Core i7 CPU, 48 GB of RAM, and an NVIDIA
GeForce GTX 1080 GPU.

To assess our model’s performance, we employed two evaluation
paradigms: one-to-one and multi-to-one. As described in Algorithm 2,
in the one-to-one paradigm, the EEG and EM signals (labeled data) from
a single subject (e.g., Subject 1) are used as the source domain, while
the EEG data from each remaining subject (e.g., Subject 2) serves as a
separate target domain. In simpler terms, the model is trained on data
from Subject 1 and evaluated on data from Subjects 2 through 12. As
shown in Algorithm 3, in the multi-to-one paradigm, data from several
subjects are combined to improve learning and performance on a single
target subject. The goal is to leverage the diversity and quantity of data
from multiple sources to build a more robust model that can generalize
effectively to the target subject.

Algorithm 2 One-to-One Transfer Paradigm

Require: Dataset D with N subjects, Model M

1: for each subject i € {1,2,...,N} do

2: Assign subject i’s data as the test set Dyqq

3 Randomly select data from another subject j # i as the training set Dy,
4 Train the model M on Dy,

5: Evaluate M on Dy and record the performance

6: end for

7: Compute and return the average performance metrics across all N subjects

Algorithm 3 Multi-To-One Transfer Paradigm

Require: Dataset D with N subjects, Model M

1: for each subject i € {1,2,...,N} do

2: Assign subject i’s data as the test set Dy

3 Use data from all other N — 1 subjects as the training set Dy,

4 Train the model M on Dy,

5: Evaluate M on Dy and record the performance

6: end for

7: Compute and return the average performance metrics across all N subjects
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Table 1
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Summary of the multimodal datasets employed in this study, including SEED and SEED-FRA, with details on
participants, sessions, recording modalities, and experimental settings.

Dataset SEED

SEED-FRA

Number of Participants

Sessions 3 (15 clips per session)
Emotion Categories Positive, Neutral, Negative
EEG System 62-channel ESI NeuroScan

Eye Movement Data
Eye Movement Data
Sampling Rate

15 (12 both in EEG and EM) 8

3 (21 clips per session)
Positive, Neutral, Negative
62-channel ESI NeuroScan

Timestamps, gaze X and Y, pupil dilation, fixation duration, saccades

5 min per video clip
200 samples per second

80 pos:
[
2neu

=

neg

pos. neu. neg. pos. neu. neg.
Predicted Predicted

SEED-session1-3 SEED-FRA-session1-3

Fig. 7. Overall confusion matrices for the SEED and SEED-FRA datasets across
three sessions in the multi-to-one transfer paradigm, illustrating classification
performance across negative, neutral, and positive emotional states.

Distribution on SEED-FRA before training Distribution on SEED-FRA after training

e Positive  ®Neutral @ Negative

Fig. 8. t-SNE visualization of EEG feature distributions for Subject 1 under the
multi-to-one setting. Pre-training distributions show substantial overlap among
emotional classes, while post-training with the proposed TEREE model yields
compact intra-class clusters and clearer inter-class separation across SEED and
SEED-FRA datasets.

6. Experimental results

The confusion matrix in Fig. 7 shows both the correct classifications
and misclassifications made by the model. The proposed model per-
forms best in emotion recognition during the first session of the SEED
dataset and the second session of the SEED-FRA dataset. However, the
differences are not very significant. The model is better at identifying
positive and negative emotions than neutral emotions, indicating that
it more easily detects brain patterns associated with emotional states.
This may be because the brain remains influenced by the previous
emotional state and does not fully return to neutral before the next
emotion is induced.

1001
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Fig. 9. Comparison of the average accuracy of different models across three
sessions for all subjects, on the SEED dataset sorted in ascending order.
(2):[581, (b):[501, (c):[45], (d):[25], (e):[64], ():[70], (g):[59], (h):[62],
@@):[561, ():[26], (k):[63], (D:[471, (m):[24], (n): Ours.

To further evaluate our model’s effectiveness, we use Subject 1
as the target subject and apply t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) to visualize the data distributions before and after
training.

Fig. 8 shows the t-SNE visualization of EEG feature distributions.
Before training, samples from different emotional states exhibit sub-
stantial overlap, making class boundaries indistinguishable. After train-
ing with the proposed TEREE model, the feature space becomes more
structured: intra-class samples form compact clusters, while inter-class
separation is clearly enhanced. This improvement is particularly ev-
ident in the distinct boundaries between positive, neutral, and neg-
ative emotions. These results demonstrate that the model, together
with BSCM regularization, effectively learns discriminative and gen-
eralizable representations, thereby improving emotion classification
performance. In both SEED and SEED-FRA datasets, emotion samples
after training show tighter intra-class clustering and clearer inter-
class separation, indicating that the model successfully extracts the
most informative features from the source domain and adapts them to
individual differences in the target domain.

Tables 2 and 3 report the performance of our model compared with
the approaches in [24,25], and [26] under the one-to-one and multi-
to-one transfer paradigms on the SEED dataset. Similarly, Tables 4 and
5 present the corresponding results on the SEED-FRA dataset.

These comparisons evaluate the ability of models to recognize emo-
tions across different subjects. Accuracy was used as the evaluation
metric, averaged over tasks from each session. As illustrated in Fig. 9,
our proposed TEREE model consistently outperforms baseline methods,
particularly in terms of average recognition accuracy across sessions.

On the SEED dataset, for example, our model achieved average
emotion recognition accuracies of 93.5%, 96.2%, and 91.9% under the
one-to-one transfer paradigm, and 97.7%, 97.2%, and 97.1% under the
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Table 2

The emotion recognition accuracy (%) of the cross-subject experiment under
the one-to-one transfer paradigm in three sessions on the SEED dataset. Subject
1 was used as a training subject. Other subjects were used one by one for
testing. The 4 value represents the difference between the highest and lowest
predicted accuracy values across different subjects.
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Table 4

The emotion recognition accuracy (%) of the cross-subject experiment under
the one-to-one transfer paradigm in three sessions on the SEED-FRA dataset.
Subject 1 was used as a training subject. Other subjects were used one by
one for testing. The 4 value represents the difference between the highest and
lowest predicted accuracy values across different subjects.

Sessionl Min and Max Avg.(%) A Sessionl Min and Max Avg.(%) A

[25] Min: Sub2 (60.4%), Max: Sub12 (93.1%) 81.2 38.6 [25] Min: Sub2 (60.4%), Max: Sub8 (87.5%) 83.9 27.1
[24] Min: Sub10 (75.1%), Max: Subl1 (99.0%) 87.1 23.8 [24] Min: Sub8 (78.3%), Max: Sub5 (93.1%) 93.7 15.2
[26] Min: Sub10 (75.6%), Max: Sub9 (91.1%) 85.8 15.5 [26] Min: Sub5 (67.3%), Max: Sub2 (85.8%) 76.8 18.5
[31] Min: Sub10 (70.5%), Max: Sub8 (92.7%) 83.7 22.5 [31] Min: Sub2 (84.1%), Max: Sub6 (86.8%) 90.7 12.7
Ours Min: Sub10 (86.6%), Max: Subl1l (100.0%) 93.5 13.3 Ours Min: Sub8 (87.5%), Max: Sub5 (100.0%) 94.6 12.5
Session2 Min and Max Avg.(%) A Session2 Min and Max Avg.(%) A

[25] Min: Sub10 (72.4%), Max: Sub3 (92.6%) 82.4 25.5 [25] Min: Sub4 (67.1%), Max: Sub3 (92.6%) 79.8 25.5
[24] Min: Sub10 (86.2%), Max: Sub5 (100.0%) 94.0 13.7 [24] Min: Sub4 (87.4%), Max: Sub2 (100.0%) 97.6 12.6
[26] Min: Sub4 (63.5%), Max: Sub7 (100.0%) 88.1 36.4 [26] Min: Sub3 (56.5%), Max: Sub4 (94.6%) 78.2 38.1
[31] Min: Sub10 (70.5%), Max: Sub8 (92.7%) 83.7 225 [31] Min: Sub2 (84.1%), Max: Sub2 (86.8%) 90.7 12.7
Ours Min: Sub10 (93.3%), Max: Sub2 (100.0%) 96.2 6.6 Ours Min: Sub7 (87.5%), Max: Sub3 (100.0%) 98.1 125
Session3 Min and Max Avg.(%) A Session3 Min and Max Avg.(%) A

[25] Min: Sub10 (72.5%), Max: Sub3 (89.9%) 81.9 27.7 [25] Min: Sub2 (65.2%), Max: Sub7 (92.9%) 76.9 27.7
[24] Min: Subl1 (73.9%), Max: Sub4 (96.4%) 86.9 22.4 [24] Min: Sub3 (77.5%), Max: Sub4 (96.4%) 86.1 189
[26] Min: Sub10 (72.9%), Max: Sub7 (93.1%) 82.7 20.1 [26] Min: Sub3 (72.0%), Max: Sub4 (85.7%) 79.8 13.7
[31] Min: Sub10 (70.5%), Max: Sub8 (92.7%) 83.7 22,5 [31] Min: Sub2 (84.1%), Max: Sub6 (86.8%) 90.7 12.7
Ours Min: Sub11 (80.0%), Max: Sub8 (93.3%) 91.9 13.3 Ours Min: Sub3 (87.5%), Max: Sub8 (100.0%) 90.1 12.5

Table 3 Table 5

The emotion recognition accuracy (%) of the cross-subject experiment under
the multi-to-one transfer paradigm in three sessions on the SEED dataset. For
each subject, the model is trained on other subjects and tested on that subject.
The 4 value represents the difference between the highest and lowest predicted
accuracy values across different subjects.

The emotion recognition accuracy (%) of the cross-subject experiment under
the multi-to-one transfer paradigm in three sessions on the SEED-FRA dataset.
For each subject, the model is trained on other subjects and tested on that
subject. The 4 value represents the difference between the highest and lowest
predicted accuracy values across different subjects.

Sessionl Min and Max Avg.(%) A Sessionl Min and Max Avg.(%) A

[25] Min: Sub2 (72.3%), Max: Sub12 (93.2%) 82.9 20.9 [25] Min: Sub8 (60.6%), Max: Sub6 (82.8%) 74.2 22.2
[24] Min: Subl (90.5%), Max: Sub8 (100.0%) 96.9 9.5 [24] Min: Sub2 (76.5%), Max: Sub4 (94.7%) 91.9 18.2
[26] Min: Sub10 (81.4%), Max: Subl2 (100.0%) 92.0 18.5 [26] Min: Sub2 (75.2%), Max: Sub6 (91.4%) 89.1 16.2
Ours Min: Subl (93.3%), Max: Sub8 (100.0%) 97.7 6.6 Ours Min: Sub8 (87.5%), Max: Sub6 (100.0%) 95.1 12.5
Session2 Min and Max Avg.(%) A Session2 Min and Max Avg.(%) A

[25] Min: Sub4 (64.9%), Max: Sub6 (100.0%) 81.55 35.0 [25] Min: Sub2 (65.7%), Max: Sub5 (77.5%) 71.2 11.8
[24] Min: Subl1 (88.3%), Max: Sub7 (100.0%) 95.3 11.6 [24] Min: Sub6 (82.7%), Max: Sub4 (97.7%) 92.2 15.0
[26] Min: Sub10 (80.6%), Max: Sub12 (100.0%) 92.4 19.3 [26] Min: Sub6 (70.7%), Max: Subl (88.7%) 85.5 18.0
Ours Min: Sub9 (93.3%), Max: Sub5 (100.0%) 97.2 6.6 Ours Min: Sub5 (87.5%), Max: Sub8 (100.0%) 98.8 12.5
Session3 Min and Max Avg.(%) A Session3 Min and Max Avg.(%) 4

[25] Min: Sub2 (72.2%), Max: Sub3 (98.4%) 85.2 26.2 [25] Min: Subl (67.0%), Max: Sub5 (85.2%) 75.0 18.2
[24] Min: Subl (81.2%), Max: Sub6 (100.0%) 96.4 18.7 [24] Min: Sub8 (82.3%), Max: Sub4 (95.0%) 86.4 12.7
[26] Min: Sub2 (81.3%), Max: Sub9 (100.0%) 93.7 18.6 [26] Min: Sub2 (77.2%), Max: Sub4 (97.6%) 85.0 20.4
Ours Min: Sub10 (86.6%), Max: Sub3 (100.0%) 97.1 13.3 Ours Min: Sub5 (87.5%), Max: Sub4 (100.0%) 94.9 12.5

multi-to-one paradigm. Similar trends were observed on the SEED-FRA
dataset. Notably, the model consistently performed better in multi-
to-one experiments compared to one-to-one experiments across both
datasets.

The A value reported in each table represents the difference between
the highest and lowest accuracy values across different subjects. For our
model, this value is the smallest across all sessions, indicating that the
choice of training subject has less impact on accuracy. Compared to
prior methods [24-26], this suggests that individual differences exert a
smaller influence on the performance of our model.

To investigate how EEG and EM signals complement each other, we
conducted ablation studies (Table 6). The model was evaluated under
four conditions: using only EEG, only EM, and the fusion of both modal-
ities, in both one-to-one and multi-to-one settings. All reported results
represent mean accuracy over five independent runs, with standard
deviations consistently below 5%, confirming the stability of the model.

The results demonstrate that multimodal fusion significantly im-
proves performance. For example, in Session 1 of the SEED dataset
(one-to-one setting), the model achieved 93.5% accuracy, compared
to 91.8% with EEG alone and 73.4% with EM alone. Across all ex-
periments, EEG-only models generally performed better than EM-only

models. However, in every session, combining EEG and EM yielded
the highest accuracy, confirming that the modalities were effectively
integrated and that spurious correlations did not impair performance.
Moreover, by feeding the entire transformed EEG image into the trans-
former at once, the issue of incomplete modality representations was
alleviated. As summarized in Table 6, the model’s accuracy using EEG
alone remained above 85% across all sessions.

Fig. 10 illustrates the training and test accuracy of the model with
and without the BSCM mechanism over 50 epochs. As observed in the
figure, although the model with BSCM initially learns slightly slower,
the final accuracy remains largely similar to the model without BSCM.
Additionally, the gap between test and training accuracy is reduced in
the presence of BSCM, indicating a decrease in overfitting.

We analyze the channel attention by visualizing the weights learned
by the proposed model. Fig. 11 shows the distribution of channel
attention across the scalp for positive, neutral, and negative samples
from the SEED dataset.

The red areas on the scalp indicate channels with higher attention
weights, whereas the blue areas correspond to channels with lower
weights. The relatively small extent of red regions compared to blue
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Fig. 10. Training and test accuracy in the multi-to-one configuration using the SEED dataset.

Table 6

Comparison of average accuracy (%) for the proposed TEREE model using
EEG-only, EM-only, and fused EEG+EM modalities across one-to-one and
multi-to-one transfer settings. Results highlight the performance gains achieved
through multimodal fusion.

Paradigms One-to-One Multi-to-One

Modality EEG EM Fusion EEG EM Fusion
Ses.1 91.8 73.4 93.5 86.1 84.5 97.7

SEED Ses.2 89.8 82.4 96.2 86.2 84.8 97.2
Ses.3 85.7 80.6 91.9 85.9 85.0 97.1

Modality EEG EM Fusion EEG EM Fusion
Ses.1 87.2 77.8 94.6 91.6 85.7 95.1

SEED-FRA Ses.2 92.2 86.9 98.1 92.8 79.1 98.8
Ses.3 87.8 76.1 90.1 90.0 78.9 94.9

suggests that only a limited number of EEG channels are strongly
correlated with emotional states, while many others contribute less.
Notably, the temporal lobes exhibit greater activation when subjects
view both positive and negative videos. In addition, a stronger hemi-
spheric imbalance is observed during negative video viewing, whereas
the distribution of active regions appears more balanced when viewing
neutral videos.

7. Conclusions

This study introduced TEREE, a transformer-based model for emo-
tion recognition using multimodal biomedical signals, specifically EEG
and EM data. TEREE addresses three key challenges in emotion
recognition—individual differences, spurious correlations, and incom-
plete modality representation. The model transforms EEG signals into
spatio-temporal-spectral 2D representations and integrates EM features
through a modified multi-head cross-attention mechanism, further
enhanced by Bayesian spurious correlation minimization. This de-
sign enables the model to capture nuanced emotional patterns while
reducing the impact of subject variability.

Experimental results demonstrate that TEREE not only improves
classification accuracy in cross-subject settings but also minimizes per-
formance disparities among individuals, ensuring robustness and gen-
eralizability. The fusion of EEG and EM data consistently enhances
accuracy across all sessions, confirming effective modality integration
while mitigating the influence of spurious correlations. Moreover, by
incorporating complete transformed EEG data into the transformer,
TEREE effectively alleviates the challenge of incomplete modality rep-
resentation. Notably, the model achieves accuracies of 97.7% and
98.8% in multi-to-one transfer paradigms, underscoring its potential for
advancing multimodal emotion recognition. By improving classification
accuracy, reducing inter-subject variability, and overcoming modality-
specific challenges, TEREE contributes to more reliable and practical
applications in human-computer interaction and affective computing.

10

____Positive _Neutral Negative

Fig. 11. (Top) Grad-CAM heatmaps of brain signal mappings for three
video samples (Positive, Neutral, Negative) from Subject 1, trained under
the multi-to-one configuration using the TEREE model on the SEED dataset.
(Bottom) Topomap showing emotional neural patterns derived from aggre-
gated frequency band estimates. Color intensity reflects importance, with
“Low” indicating lower relevance and “High” indicating higher relevance. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Despite these promising results, several limitations remain. First,
converting EEG signals into 2D images may still introduce minor
quantization-related information loss, even though normalization and
the ViT-based attention mechanism mitigate much of its effect. Second,
hyperparameter choices, such as the KL regularization coefficient,
require careful tuning, which may limit straightforward reproducibility
across datasets. Third, while robustness to incomplete modalities was
partially validated through ablation studies, further experiments with
systematically varied levels of missing EEG channels or EM data are
needed to provide stronger empirical evidence. Finally, although strong
performance was demonstrated on SEED and SEED-FRA, broader eval-
uation on more diverse datasets and real-world scenarios is necessary
to confirm generalizability. Future research could explore alternative
signal representations that preserve the full dynamic range of EEG
data, investigate adaptive strategies for hyperparameter scheduling,
and extend the framework to additional modalities or larger-scale
longitudinal studies.
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